
mvvm-light

#mvvm-light

Table of Contents

About 1

Chapter 1: Getting started with mvvm-light 2

Remarks 2

Examples 2

RelayCommand 2

RelayCommand 2

ObservableObject 3

ViewModelBase 4

Credits 5

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: mvvm-light

It is an unofficial and free mvvm-light ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official mvvm-light.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/mvvm-light
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with mvvm-light

Remarks

MVVM-light is a toolkit written in C# which helps to accelerate the creation and development of
MVVM applications in WPF, Silverlight, Windows Store, Windows Phone and Xamarin.

Webpage: http://www.mvvmlight.net/

There is a cross-platform MVVM sample from the author of the library which can be found at
https://github.com/lbugnion/sample-crossplatform-flowers

Examples

RelayCommand

The RelayCommand implements the ICommand interface and can therefore be used to bind to Commands
in XAML (as the Command property of the Button element)

The constructor takes two arguments; the first is an Action which will be executed if
ICommand.Execute is called (e.g. the user clicks on the button), the second one is a Func<bool> which
determines if the action can be executed (defaults to true, called canExecute in the following
paragraph).

the basic structure is as follows:

public ICommand MyCommand => new RelayCommand(
 () =>
 {
 //execute action
 Message = "clicked Button";
 },
 () =>
 {
 //return true if button should be enabled or not
 return true;
 }
);

Some notable effects:

If canExecute returns false, the Button will be disabled for the user•
Before the action is really executed, canExecute will be checked again•
You can call MyCommand.RaiseCanExecuteChanged(); to force reevaluation of the canExecute Func•

RelayCommand

The RelayCommand<T> is similar to the RelayCommand, but allows to directly pass an object to the

https://riptutorial.com/ 2

http://www.mvvmlight.net/
https://github.com/lbugnion/sample-crossplatform-flowers

command. It implements the ICommand interface and can therefore be used to bind to Commands in
XAML (e.g. as the Command property of the Button element). You can then use the CommandParameter
property to pass the object to the command.

XAML example:

<Button Command="{Binding MyCommand}" CommandParameter="{Binding MyModel}" />

The constructor takes two arguments; the first is an Action which will be executed if
ICommand.Execute is called (e.g. the user clicks on the button), the second one is a
Func<string,bool> which determines if the action can be executed (defaults to true, called
canExecute in the following paragraph). the basic structure is as follows:

public RelayCommand<string> MyCommand => new RelayCommand<string>(
 obj =>
 {
 //execute action
 Message = obj;
 },
 obj =>
 {
 //return true if button should be enabled or not
 return obj != "allowed";
 }
);

Some notable effects:

If canExecute returns false, the Button will be disabled for the user•
Before the action is really executed, canExecute will be checked again•
You can call MyCommand.RaiseCanExecuteChanged(); to force reevaluation of the canExecute Func•

ObservableObject

The ObservableObject class contains some helpful methods to help with the MVVM pattern.

The RaisePropertyChanged provides a compile safe method to raise property changed events.
It can be called with

RaisePropertyChanged(() => MyProperty);

The Set method can be used in the property setter to set the new value and raise the property
changed event (only if change occurred). It returns true if change occurred and false otherwise.
example usage:

private string _myValue;
public string MyValue
{
 get { return _myValue; }
 set { Set(ref _myValue, value); }
}

https://riptutorial.com/ 3

ViewModelBase

ViewModelBase extends ObservableObject and adds some methods useful for viewmodels.

The property IsInDesignMode or IsInDesignModeStatic allows to determine if the code is executed in
the design mode (in Visual Studio Design View) or not. The two properties are exactly the same.

Read Getting started with mvvm-light online: https://riptutorial.com/mvvm-light/topic/10610/getting-
started-with-mvvm-light

https://riptutorial.com/ 4

https://riptutorial.com/mvvm-light/topic/10610/getting-started-with-mvvm-light
https://riptutorial.com/mvvm-light/topic/10610/getting-started-with-mvvm-light

Credits

S.
No

Chapters Contributors

1
Getting started with
mvvm-light

Community, Florian Moser

https://riptutorial.com/ 5

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2259391/florian-moser

	About
	Chapter 1: Getting started with mvvm-light
	Remarks
	Examples
	RelayCommand
	RelayCommand
	ObservableObject
	ViewModelBase

	Credits

