
mvvm

#mvvm

Table of Contents

About 1

Chapter 1: Getting started with mvvm 2

Remarks 2

Examples 2

C# MVVM Summary and Complete Example 2

Credits 8

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: mvvm

It is an unofficial and free mvvm ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official mvvm.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/mvvm
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with mvvm

Remarks

This section provides an overview of what mvvm is, and why a developer might want to use it.

It should also mention any large subjects within mvvm, and link out to the related topics. Since the
Documentation for mvvm is new, you may need to create initial versions of those related topics.

Examples

C# MVVM Summary and Complete Example

Summary:

MVVM is an architectural pattern that is represented by three distinct components, the Model,
View and ViewModel. In order to understand these three layers, it is necessary to briefly define
each, followed by an explanation of how they work together.

Model is the layer that drives the business logic. It retrieves and stores information from any data
source for consumption by the ViewModel.

ViewModel is the layer that acts as a bridge between the View and the Model. It may or may not
transform the raw data from the Model into a presentable form for the View. An example
transformation would be: a boolean flag from the model to string of 'True' or 'False' for the view.

View is the layer that represents the interface of the software (i.e. the GUI). Its role is to display
the information from the ViewModel to the user, and to communicate the changes of the
information back to the ViewModel.

These three components work together by referencing one another in the following fashion:

The View references the ViewModel.•
The ViewModel references the Model.•

It is important to note that the View and the ViewModel are capable of two-way communications
known as Data Bindings.

A major ingredient for two-way communication (data-binding) is the INotifyPropertyChanged
interface.

By utilizing this mechanism, the View can modify the data in the ViewModel through user input,
and the ViewModel can update the View with data that may have been updated via processes in
the Model or with updated data from the repository.

MVVM architecture puts a heavy emphasis on the Separation of Concerns for each of these
layers. Separating the layers benefits us as:

https://riptutorial.com/ 2

https://msdn.microsoft.com/en-us/library/system.componentmodel.inotifypropertychanged(v=vs.110).aspx

Modularity: Each layer's internal implementation can be changed or swapped without
affecting the others.

•

Increased testability: Each layer can be Unit Tested with fake data, which is not possible if
the ViewModel's code is written in the Code-Behind of the View.

•

The Build:

Create a new WPF Application project

Create three new folders in your solution: Model, ViewModel and View, and delete the original
MainWindow.xaml, just to get a fresh start.

https://riptutorial.com/ 3

https://i.stack.imgur.com/CTF6R.png

Create three new items, each corresponding to a separate layer:

Right click the Model folder, and add a Class item called HelloWorldModel.cs.•
Right click the ViewModel folder, and add a Class item called HelloWorldViewModel.cs.•
Right click the View folder, and add a Window (WPF) item called HelloWorldView.xaml.•

Alter App.xaml to point to the new View

<Application x:Class="MyMVVMProject.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:MyMVVMProject"
 StartupUri="/View/HelloWorldView.xaml">
 <Application.Resources>

 </Application.Resources>
</Application>

ViewModel:

Begin with building the ViewModel first. The class must implement the INotifyPropertyChanged
interface, declare a PropertyChangedEventHandler event, and create a method to raise the event

https://riptutorial.com/ 4

https://i.stack.imgur.com/R6mDC.png
https://i.stack.imgur.com/Djj3j.png

(source: MSDN: How to Implement Property Change Notification). Next, declare a field and a
corresponding property, making sure to call the OnPropertyChanged() method in the property's set
accessor. The constructor in the below example is being used to demonstrate that the Model
provides the data to the ViewModel.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Linq;
using System.Runtime.CompilerServices;
using System.Text;
using System.Threading.Tasks;
using MyMVVMProject.Model;

namespace MyMVVMProject.ViewModel
{
 // Implements INotifyPropertyChanged interface to support bindings
 public class HelloWorldViewModel : INotifyPropertyChanged
 {
 private string helloString;

 public event PropertyChangedEventHandler PropertyChanged;

 public string HelloString
 {
 get
 {
 return helloString;
 }
 set
 {
 helloString = value;
 OnPropertyChanged();
 }
 }

 /// <summary>
 /// Raises OnPropertychangedEvent when property changes
 /// </summary>
 /// <param name="name">String representing the property name</param>
 protected void OnPropertyChanged([CallerMemberName] string name = null)
 {
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(name));
 }

 public HelloWorldViewModel()
 {
 HelloWorldModel helloWorldModel = new HelloWorldModel();
 helloString = helloWorldModel.ImportantInfo;
 }
 }
}

Model:

Next, build the Model. As stated previously, The Model provides data for the ViewModel by
pulling it from a repository (as well as pushing it back to the repository for saving). This is
demonstrated below with the GetData() method, which will return a simple List<string>. Business

https://riptutorial.com/ 5

https://msdn.microsoft.com/en-us/library/ms743695(v=vs.110).aspx

logic is also applied in this layer, and can be seen in the ConcatenateData() method. This method
builds the sentence “Hello, world!” from the List<string> that was previously returned from our
“repository”.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace MyMVVMProject.Model
{
 public class HelloWorldModel
 {
 private List<string> repositoryData;
 public string ImportantInfo
 {
 get
 {
 return ConcatenateData(repositoryData);
 }
 }

 public HelloWorldModel()
 {
 repositoryData = GetData();
 }

 /// <summary>
 /// Simulates data retrieval from a repository
 /// </summary>
 /// <returns>List of strings</returns>
 private List<string> GetData()
 {
 repositoryData = new List<string>()
 {
 "Hello",
 "world"
 };
 return repositoryData;
 }

 /// <summary>
 /// Concatenate the information from the list into a fully formed sentence.
 /// </summary>
 /// <returns>A string</returns>
 private string ConcatenateData(List<string> dataList)
 {
 string importantInfo = dataList.ElementAt(0) + ", " + dataList.ElementAt(1) + "!";
 return importantInfo;
 }
 }
}

View:

Finally, the View can be built. There is nothing that needs to be added to the code behind for this
example, although this can vary depending on the needs of the application. However, there are a

https://riptutorial.com/ 6

few lines added to the XAML. The Window needs a reference to the ViewModel namespace. This is
mapped to the XAML namespace xmlns:vm="clr-namespace:MyMVVMProject.ViewModel". Next, the
Window needs a DataContext. This is set to <vm:HelloWorldViewModel/>. Now the label (or control of
your choosing) can be added to the window. The key point at this stage is to ensure that you set
the Binding to the property of the ViewModel that you wish to display as the label content. In this
case, it is {Binding HelloString}.

It is important to bind to the property, and not the field, as in the latter case the View will not
receive the notification that the value changed, since the OnPropertyChanged() method will only raise
the PropertyChangedEvent on the property, and not on the field.

<Window x:Class="MyMVVMProject.View.HelloWorldView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:MyMVVMProject.View"
 xmlns:vm="clr-namespace:MyMVVMProject.ViewModel"
 mc:Ignorable="d"
 Title="HelloWorldView" Height="300" Width="300">
 <Window.DataContext>
 <vm:HelloWorldViewModel/>
 </Window.DataContext>
 <Grid>
 <Label x:Name="label" FontSize="30" Content="{Binding HelloString}"
HorizontalAlignment="Center" VerticalAlignment="Center"/>
 </Grid>
</Window>

Read Getting started with mvvm online: https://riptutorial.com/mvvm/topic/4293/getting-started-
with-mvvm

https://riptutorial.com/ 7

https://riptutorial.com/mvvm/topic/4293/getting-started-with-mvvm
https://riptutorial.com/mvvm/topic/4293/getting-started-with-mvvm

Credits

S.
No

Chapters Contributors

1
Getting started with
mvvm

Community, Gabor Barat, Kcvin, Kevin Mills, Maverik, MotKohn,
Umair Farooq

https://riptutorial.com/ 8

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2906385/gabor-barat
https://riptutorial.com/contributor/1144624/kcvin
https://riptutorial.com/contributor/1306571/kevin-mills
https://riptutorial.com/contributor/504757/maverik
https://riptutorial.com/contributor/5976576/motkohn
https://riptutorial.com/contributor/4651012/umair-farooq

	About
	Chapter 1: Getting started with mvvm
	Remarks
	Examples
	C# MVVM Summary and Complete Example

	Credits

