
netsuite

#netsuite

Table of Contents

About 1

Chapter 1: Getting started with netsuite 2

Remarks 2

Where to get Help 2

Versions 2

Examples 2

Eclipse SuiteCloud IDE Setup 2

Hello, World 1.0 Client Script 3

Hello, World 2.0 Client Script 4

Chapter 2: Create a record 6

Examples 6

Create new Task 6

Creating record in dynamic mode 6

Chapter 3: Executing a Search 7

Examples 7

SS 2.0 Ad Hoc Search 7

SS 2.0 From Saved Search 7

Chapter 4: Executing a Search 9

Examples 9

SS 2.0 From Saved Search 9

SS 2.0 Ad Hoc Search 9

Performing a summarized search 10

Chapter 5: Exploiting formula columns in saved searches 11

Introduction 11

Examples 11

Oracle SQL CASE statement in a Netsuite formula 11

Parsing a hierarchical record name using a regular expression 11

Build a complex string by concatenating multiple fields 11

Customize the CSS (stylesheet) for a column by inserting a DIV element 11

Protect string formulas from corruption and injection attacks 11

Protect field values from corruption when passing through a URL 12

Test the value of `mainline` in an SQL CASE statement 12

Complex, real-world-like example 12

Count records with with and without a value provided in a field (count missing and non-mis 12

Chapter 6: Governance 14

Remarks 14

Governance 14

API Usage Limit 14

Timeout and Instruction Count Limits 15

Memory Usage Limit 16

Examples 16

How many units do I have remaining? 16

Chapter 7: Inline Editing with SuiteScript 18

Introduction 18

Syntax 18

Parameters 18

Remarks 18

Performance and Limitations 18

References: 19

Examples 19

[1.0] Submit a Single Field 19

[1.0] Submit Multiple Fields 19

[2.0] Submit a Single Field 20

[2.0] Submit Multiple Fields 20

Chapter 8: Loading a record 21

Examples 21

SS 1.0 21

SS 2.0 21

Chapter 9: Lookup Data from Related Records 22

Introduction 22

Syntax 22

Parameters 22

Remarks 22

Performance 22

Limitations 22

Examples 23

[1.0] Lookup Single Field 23

[1.0] Lookup Multiple Fields 23

[1.0] Lookup Joined Fields 23

[2.0] Lookup Single Field 24

[2.0] Lookup Multiple Fields 24

[2.0] Lookup Joined Fields 25

Chapter 10: Mass Delete 26

Introduction 26

Examples 26

Delete based on Search Criteria 26

Chapter 11: Requesting customField, customFieldList & customSearchJoin with PHP API Advanc

27

Introduction 27

Examples 27

customField & customFieldList Usage 27

customSearchJoin Usage 27

Chapter 12: RESTlet - Process external documents 29

Introduction 29

Examples 29

RESTlet - store and attach file 29

Chapter 13: RestLet - Retrieve Data (Basic) 31

Introduction 31

Examples 31

Retrieve Customer Name 31

Chapter 14: Script and Script Deployment Records 32

Introduction 32

Examples 32

Script Records 32

Script Deployment Records 33

Chapter 15: Script Type Overview 35

Introduction 35

Examples 35

The Client Script 35

The User Event Script 36

The Scheduled and Map/Reduce Scripts 36

The Suitelet and Portlet Scripts 37

The RESTlet 38

The Mass Update Script 38

The Workflow Action Script 38

The Bundle Installation Script 38

Chapter 16: Scripting searches with Filter Expressions 40

Introduction 40

Examples 40

Filter term 40

Filter expression 41

Filter expressions vs Filter Objects 42

Useful hints 43

Chapter 17: Searches with large number of results 45

Introduction 45

Examples 45

Using Search.ResultSet.each method 45

Using ResultSet.getRange method 45

Using Search.PagedData.fetch method 47

Using dedicated Map/Reduce script 47

Chapter 18: Sourcing 50

Parameters 50

Remarks 50

Impact of Store Value 50

Limitations of Sourcing 50

Examples 50

Pulling data into a custom field on Field Changed 50

Defining Sourcing 51

Chapter 19: SS2.0 Suitelet Hello World 52

Examples 52

Basic Hello World Suitelet - Plain Text Response 52

Chapter 20: SuiteScript - Process Data from Excel 53

Introduction 53

Examples 53

Update Rev Rec Dates and Rule 53

Chapter 21: Understanding Transaction Searches 55

Introduction 55

Remarks 55

Examples 55

Filtering only on Internal ID 55

Filtering with Main Line 58

Filtering Specific Sublists 60

Chapter 22: User Event: Before and After Submit events 63

Syntax 63

Parameters 63

Remarks 63

beforeSubmit and afterSubmit 63

Typical Use Cases for beforeSubmit 64

Typical Use Cases for afterSubmit 64

User Events do not chain 64

Event Handlers return void 64

!! CAUTION !! 65

Examples 65

Minimal: Log a message 65

Before Submit: Validate record before it is committed to database 66

After Submit: Determine whether a field was changed 68

Chapter 23: User Event: Before Load event 70

Parameters 70

Remarks 70

beforeLoad 70

Typical Use Cases for beforeLoad 70

User Events do not chain 71

Event Handler returns void 71

Examples 71

Minimal: Log a message on Before Load 71

Modifying the UI form 72

Restrict execution based on the action that triggered the User Event 73

Restrict execution based on the context that triggered the User Event 73

Chapter 24: Using the NetSuite Records Browser 76

Examples 76

Using the NetSuite Records Browser 76

Other Schema 76

Navigating the Records Browser 76

Reading the Schema 76

Finding a Field 77

Required Fields 77

nlapiSubmitField and Inline Editing 77

Chapter 25: Working with Sublists 79

Introduction 79

Remarks 79

Sublist Indices 79

Standard vs Dynamic Mode 79

Limitations 79

References: 80

Examples 80

[1.0] How many lines on a sublist? 80

[1.0] Sublists in Standard Mode 80

[1.0] Sublists in Dynamic Mode 81

[1.0] Find a Line Item 81

[2.0] How many lines on a sublist? 82

[2.0] Sublists in Standard Mode 82

[2.0] Sublists in Dynamic Mode 83

[2.0] Find a Line Item 83

Credits 85

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: netsuite

It is an unofficial and free netsuite ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official netsuite.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/netsuite
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with netsuite

Remarks

NetSuite is a cloud-based ERP, CRM, E-Commerce, and Professional Services management
platform. It is used by over 30,000 companies to run their entire business.

NetSuite is fully customizable by administrators and developers, including via a JavaScript-based
API called SuiteScript. Developers are able to write scripts that are triggered by various events
throughout the NetSuite system to automate business processes.

Where to get Help

Join the NetSuite Professionals Slack Community, where you have instant access to over
200 NetSuite Professionals across the globe.

1.

Use the NetSuite Records Browser for the schema of all record types2.
Mozilla Developer Network's JavaScript Reference Guide3.

Versions

Version Release Date

2016.2 2016-09-20

Examples

Eclipse SuiteCloud IDE Setup

Download and install the latest Eclipse IDE
Install Eclipse one of two ways:

Eclipse Installer1.
Download the zip for your favorite package2.

•

If you don't already have a preferred Eclipse package, Eclipse for JavaScript
Developers is recommended

•

1.

Install SuiteCloud IDE plugin
Once installation is complete, launch Eclipse1.
Navigate to Help > Install New Software...2.
Click Add... to add a new Update Site

Name: SuiteCloud IDE•
Location: http://system.netsuite.com/download/ide/update_e4

Note: the location depends on the version of NetSuite you're currently on.○

For example: if you're currently on Release 2017.1 then you should use
this url instead: http://system.netsuite.com/download/ide/update_17_1

○

•

3.

2.

https://riptutorial.com/ 2

http://netsuiteprofessionals.com/
https://system.na1.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2016_1/script/record/account.html
https://developer.mozilla.org/docs/Web/JavaScript
https://system.netsuite.com/help/helpcenter/en_US/PDF/ReleaseNotes_2016.2.0.pdf
https://eclipse.org/downloads/
https://eclipse.org/downloads/eclipse-packages/
http://system.netsuite.com/download/ide/update_e4
https://netsuite.custhelp.com/app/answers/detail/a_id/50195/kw/IDE#bridgehead_4602444786
http://system.netsuite.com/download/ide/update_17_1

Select "SuiteCloud IDE" site in the Work With dropdown4.
Proceed through the install wizard5.
Restart Eclipse when prompted6.

Configure the SuiteCloud IDE plugin
When Eclipse restarts, you will be prompted to set up the SuiteCloud plugin with a
master password and default NetSuite account

1.

After completing this set up wizard, navigate to Preferences > NetSuite
Here you will find all of the SuiteCloud IDE preferences•

2.

[Optional] If your primary use for Eclipse is NetSuite development, navigate to
Preferences > General > Perspectives and make the "NetSuite" Perspective your
default

3.

3.

Create a new NetSuite project
Right-click in the NS Explorer window and select New > NetSuite project1.
Follow the wizard for the project setup of your choosing. The project types are as
follows:

Account Customization: A project that leverages the SuiteCloud Development
Framework for building custom objects, records, and scripts for customizing a
NetSuite account.

1.

SuiteScript: A project used exclusively for writing scripts.2.
SSP Application: A SuiteScript Server Pages application, used typically in
conjunction with SiteBuilder or SuiteCommerce for NetSuite-backed E-
Commerce applications.

3.

2.

4.

Hello, World 1.0 Client Script

Create the source file for your new Client Script

Create a new JavaScript file using your favorite editor or IDE1.

Add the following source code to your file (original source here)

/**
 * A simple "Hello, World!" example of a Client Script. Uses the `pageInit`
 * event to write a message to the console log.
 */

function pageInit(type) {
 console.log("Hello, World from a 1.0 Client Script!");
}

2.

Save the file as hello-world.js wherever you wish3.

1.

Use the source file we just created to create a new Script record in NetSuite
In your NetSuite account, navigate to Customization > Scripting > Scripts > New1.
When prompted, select hello-world.js as the Script File2.
Click Create Script Record3.
When prompted, select Client Script as the Script Type4.
Name your Script record Hello World5.
Map the function named pageInit in our source file to the Page Init script event by 6.

2.

https://riptutorial.com/ 3

https://gitlab.com/stoicsoftware/learn-suitescript/blob/master/hello-world/hello-world.js

entering pageInit in the Page Init Function field
Save your new Script record7.

Deploy your new Script to the Employee record
On your newly created Script record, click Deploy Script1.
In the Applies To field, select Employee2.
Make sure the Status field is set to Testing3.
Click Save4.

3.

See your script in action!
Open your browser's developer/JavaScript console (typically F12 on most browsers)1.
Create a new Employee by navigating to Lists > Employees > Employees > New2.
Observe your "Hello, World" message in the browser console.3.

4.

Hello, World 2.0 Client Script

Create the source file for your new Client Script

Create a new JavaScript file using your favorite editor or IDE1.

Add the following source code to your file (original source here)

define([], function () {
 /**
 * A simple "Hello, World!" example of a Client Script. Uses the `pageInit`
 * event to write a message to the console log.
 *
 * @NApiVersion 2.x
 * @NModuleScope Public
 * @NScriptType ClientScript
 */
 var exports = {};
 function pageInit(context) {
 console.log("Hello, World from a 2.0 Client Script!");
 }
 exports.pageInit = pageInit;
 return exports;
});

2.

Save the file as hello-world2.js wherever you wish3.

1.

Use the source file we just created to create a new Script record in NetSuite
In your NetSuite account, navigate to Customization > Scripting > Scripts > New1.
When prompted, select hello-world2.js as the Script File2.
Click Create Script Record3.
Name your Script record Hello World4.
Save your new Script record5.

2.

Deploy your new Script to the Employee record
On your newly created Script record, click Deploy Script1.
In the Applies To field, select Employee2.
Make sure the Status field is set to Testing3.
Click Save4.

3.

See your script in action!4.

https://riptutorial.com/ 4

https://gitlab.com/stoicsoftware/learn-suitescript/blob/master/hello-world/hello-world2.js

Open your browser's developer/JavaScript console (typically F12 on most browsers)1.
Create a new Employee by navigating to Lists > Employees > Employees > New2.
Observe your "Hello, World" message in the browser console.3.

Read Getting started with netsuite online: https://riptutorial.com/netsuite/topic/3828/getting-started-
with-netsuite

https://riptutorial.com/ 5

https://riptutorial.com/netsuite/topic/3828/getting-started-with-netsuite
https://riptutorial.com/netsuite/topic/3828/getting-started-with-netsuite

Chapter 2: Create a record

Examples

Create new Task

var record = nlapiCreateRecord('task');
record.setFieldValue('title', taskTitle);
var id = nlapiSubmitRecord(record, true);

Creating record in dynamic mode

var record = nlapiCreateRecord('customrecord_ennveeitissuetracker', { recordmode: 'dynamic' });
nlapiLogExecution('DEBUG', 'record', record); record.setFieldValue('custrecord_name1', name);
record.setFieldValue('custrecord_empid', id); record.setFieldValue('custrecord_contactno',
contactno); record.setFieldValue('custrecord_email', email);
record.setFieldValue('custrecord_location', loc); record.setFieldValue('custrecord_incidentdate',
incidentdate); record.setFieldValue('custrecord_issuedescription', desc); //
record.setFieldValue('custrecord_reportedby', report); record.setFieldValue('custrecord_issuetype',
issuetype); record.setFieldValue('custrecord_priority', priority); //
record.setFieldValue('custrecord_replacementprovided', repl);
record.setFieldValue('custrecord_issuestatus', issuestatus); //
record.setFieldValue('custrecord_resolvedby', resolvedby);
record.setFieldValue('custrecord_remarks', remarks);
record.setFieldValue('custrecord_resolvedby', resolvedby);
record.setFieldValue('custrecord_updatedstatus', updatedstatus); var id =
nlapiSubmitRecord(record,true); var recordId = nlapiGetRecordId(); record =
nlapiLoadRecord('customrecord_ennveeitissuetracker', id);

Read Create a record online: https://riptutorial.com/netsuite/topic/5127/create-a-record

https://riptutorial.com/ 6

https://riptutorial.com/netsuite/topic/5127/create-a-record

Chapter 3: Executing a Search

Examples

SS 2.0 Ad Hoc Search

require(['N/search'], function(SEARCHMODULE){

 var type = 'transaction';
 var columns = [];
 columns.push(SEARCHMODULE.createColumn({
 name: 'internalid'
 }));
 columns.push(SEARCHMODULE.createColumn({
 name: 'formulanumeric',
 formula: '{quantity}-{quantityshiprecv}'
 }));

 var salesOrdersArray = [123,456,789];
 var filters = [];
 filters.push(['type', 'anyof', 'SalesOrd']);
 filters.push('and');
 filters.push(['mainline', 'is', 'F']);
 filters.push('and');
 filters.push(['internalid', 'anyof', salesOrdersArray]);

 var mySearchObj = {};
 mySearchObj.type = type;
 mySearchObj.columns = columns;
 mySearchObj.filters = filters;

 var mySearch = SEARCHMODULE.create(mySearchObj);
 var resultset = mySearch.run();
 var results = resultset.getRange(0, 1000);
 for(var i in results){
 var result = results[i];
 var row = {};
 for(var k in result.columns){
 log.debug('Result is ' + result.getValue(result.columns[k])); //Access result from
here
 }
 }
});

SS 2.0 From Saved Search

require(['N/search'], function(SEARCHMODULE){
 var savedSearchId = 'customsearch_mySavedSearch';
 var mySearch = SEARCHMODULE.load(savedSearchId);
 var resultset = mySearch.run();
 var results = resultset.getRange(0, 1000);
 for(var i in results){
 var result = results[i];
 for(var k in result.columns){
 log.debug('Result is ' + result.getValue(result.columns[k])); //Access result from

https://riptutorial.com/ 7

here
 }
 }
});

Read Executing a Search online: https://riptutorial.com/netsuite/topic/6081/executing-a-search

https://riptutorial.com/ 8

https://riptutorial.com/netsuite/topic/6081/executing-a-search

Chapter 4: Executing a Search

Examples

SS 2.0 From Saved Search

require(['N/search'], function(SEARCHMODULE){
 var savedSearchId = 'customsearch_mySavedSearch';
 var mySearch = SEARCHMODULE.load(savedSearchId);
 var resultset = mySearch.run();
 var results = resultset.getRange(0, 1000);
 for(var i in results){
 var result = results[i];
 for(var k in result.columns){
 log.debug('Result is ' + result.getValue(result.columns[k])); //Access result from
here
 }
 }
});

SS 2.0 Ad Hoc Search

require(['N/search'], function(SEARCHMODULE){

 var type = 'transaction';
 var columns = [];
 columns.push(SEARCHMODULE.createColumn({
 name: 'internalid'
 }));
 columns.push(SEARCHMODULE.createColumn({
 name: 'formulanumeric',
 formula: '{quantity}-{quantityshiprecv}'
 }));

 var salesOrdersArray = [123,456,789];
 var filters = [];
 filters.push(['type', 'anyof', 'SalesOrd']);
 filters.push('and');
 filters.push(['mainline', 'is', 'F']);
 filters.push('and');
 filters.push(['internalid', 'anyof', salesOrdersArray]);

 var mySearchObj = {};
 mySearchObj.type = type;
 mySearchObj.columns = columns;
 mySearchObj.filters = filters;

 var mySearch = SEARCHMODULE.create(mySearchObj);
 var resultset = mySearch.run();
 var results = resultset.getRange(0, 1000);
 for(var i in results){
 var result = results[i];
 var row = {};
 for(var k in result.columns){
 log.debug('Result is ' + result.getValue(result.columns[k])); //Access result from

https://riptutorial.com/ 9

here
 }
 }
});

Performing a summarized search

// Assuming N/search is imported as `s`
var mySalesOrderSearch = s.create({
 type: 'salesorder'
 // Use the summary property of a Column to perform grouping/summarizing
 columns: [{
 name: 'salesrep',
 summary: s.Summary.GROUP
 },{
 name: 'internalid',
 summary: s.Summary.COUNT
 }],
 filters: [{
 name: 'mainline',
 operator: 'is',
 values: ['T']
 }]
});

mySalesOrderSearch.run().each(function (result) {
 var repId = result.getValue({
 "name": "salesrep",
 "summary": s.Summary.GROUP
 });
 var repName = result.getText({
 "name": "salesrep",
 "summary": s.Summary.GROUP
 });
 var orderCount = parseInt(result.getValue({
 "name": "internalid",
 "summary": s.Summary.COUNT
 }), 10);

 log.debug({
 "title": "Order Count by Sales Rep",
 "details": repName + " has sold " + orderCount + " orders."
 });
});

Read Executing a Search online: https://riptutorial.com/netsuite/topic/6359/executing-a-search

https://riptutorial.com/ 10

https://riptutorial.com/netsuite/topic/6359/executing-a-search

Chapter 5: Exploiting formula columns in
saved searches

Introduction

Formula columns in saved searches can exploit many features of Oracle SQL and HTML. The
examples show how these features can be used, as well as pitfalls to avoid.

Examples

Oracle SQL CASE statement in a Netsuite formula

Using a CASE statement, conditionally display an expression in the column based on values found
in another column, a.k.a. “my kingdom for an OR”. In the example, the result is obtained when the
status of the transaction is Pending Fulfillment or Partially Fulfilled:

CASE DECODE({status}, 'Pending Fulfillment', 1, 'Partially Fulfilled', 1, 0)
WHEN 1 THEN expression-1
END

Parsing a hierarchical record name using a regular expression

Using a regular expression, parse a record name that might be hierarchical. The expression looks
for the final colon in the name. It returns what follows the colon, or the entire name if none:

regexp_substr({name} , '[^:]*$')

Build a complex string by concatenating multiple fields

The example builds a string from the name of the parent record, the name of this record, and the
memo of this record.

{createdfrom} || ' ' || {name} || ' ' || {memo}

Customize the CSS (stylesheet) for a column by inserting a DIV element

'<div style="font-size:11pt">' || expression || '</div>'

Protect string formulas from corruption and injection attacks

In a string formula field, consider that some values might contain substrings which look to the
browser like HTML. Unless this is intentional, it is important to protect the values from corruption.
This is useful to avoid injection attacks: it prevents someone from entering HTML into a comment
field in a web order that later gets interpreted on the desk of the customer service rep.

htf.escape_sc(

https://riptutorial.com/ 11

expression)

Protect field values from corruption when passing through a URL

utl_url.escape(expression)

Test the value of `mainline` in an SQL CASE statement

In a saved search formula, the possible values of mainline are designed to be useful in an HTML
context. When mainline is true, the value of {mainline} is the 1-character string * (asterisk). When
mainline is false, the value of {mainline} is the 6-character string (non-breaking space,
HTML encoded as a character entity reference). These string values can be compared with string
literals in an SQL context.

CASE
WHEN {mainline} = '*' THEN expression-when-true
WHEN {mainline} = ' ' THEN expression-when-false
END

Complex, real-world-like example

The following example combines several of the techniques covered here. It puts a hyperlink in a
custom formatted column which, when clicked, opens the sales order record associated with a
row. The hyperlink is designed to open the record in a new window or tab when clicked, and to
display a tooltip when hovered. The internalid field used in the URL is protected from URL
encoding. The customer name, when available, is displayed in the same column, protected from
HTML encoding.

'<div style="font-size:11pt">'
 ||
CASE {mainline}
WHEN '*' THEN '
' || htf.escape_sc(regexp_substr({name} , '[^:]*$')) || '
'
END
 ||
'<a alt="" title="Open the order associated with this line." '
 ||
'href="javascript:void(0);" onClick="window.open('''
 ||
'https://system.na1.netsuite.com/app/accounting/transactions/transaction.nl?id='
 ||
utl_url.escape({internalid})
 ||
''' , ''_blank'')">'
 ||
{number}
 ||
''
 ||
'</div>'

Count records with with and without a value provided in a field (count missing

https://riptutorial.com/ 12

and non-missing values)

Using Oracle SQL’s NVL2() function, you can create a display column which contains one value if a
field contains data and another value if a field does not contain data. For example, in an Entity
search, turn the presence of a primary e-mail address into a text display column:

NVL2({email} , 'YES' , 'NO')

This lets you count records subtotaled by the presence or absence of an email address:

Field: Internal ID
Summary Type: Count

Field: Formula (Text)
Summary Type: Group
Formula: NVL2({email} , 'YES' , 'NO')

Read Exploiting formula columns in saved searches online:
https://riptutorial.com/netsuite/topic/8298/exploiting-formula-columns-in-saved-searches

https://riptutorial.com/ 13

https://riptutorial.com/netsuite/topic/8298/exploiting-formula-columns-in-saved-searches

Chapter 6: Governance

Remarks

Governance

"Governance" is the name given to NetSuite's system for detecting and halting long-running,
runaway, or resource-intensive scripts.

Each script type has governance limits that it cannot exceed, and there are four types of
governance limits in place for each script type.

API usage limit•
Instruction Count limit•
Timeout limit•
Memory usage limit•

If a script exceeds its governance limit in any one of these four areas, NetSuite will throw an
uncatchable exception and terminate the script immediately.

API Usage Limit

NetSuite limits the API usage of your scripts with a system based on "usage units". Some NetSuite
API calls, particularly the ones that perform a read or write action on the database, cost a specific
number of units each time they are invoked. Each script type then has a maximum number of units
that can be used during each execution of the script.

If a script exceeds its API usage limit, NetSuite terminates the script by throwing an
SSS_USAGE_LIMIT_EXCEEDED error.

Below are a few examples of unit costs for common operations. For an exhaustive list of
Governance costs, see the article titled "API Governance" in NetSuite Help.

Operation Unit Cost

Loading a Saved Search 5

Retrieving Search Results 10

Scheduling a task 10

Requesting a URL 10

Sending an email 10

Creating a custom record 2

https://riptutorial.com/ 14

Operation Unit Cost

Creating an Employee record 5

Creating a Sales Order record 10

Saving a custom record 4

Saving a Contact record 10

Saving a Purchase Order record 20

Different operations use different amounts of units, and certain operations cost a different amount
based on the record type being used. The larger the number of units a function costs, typically the
longer it will take to execute.

Transactions are the largest of the record types, so working with them costs the largest amount of
units. Conversely, custom records are very lightweight, and so do not cost many units. Standard
NetSuite records that are not Transactions, like Customers, Employees, or Contacts, sit in
between the two in terms of cost.

These are the usage limits by script type:

Script Type Usage Limit

Client 1,000

User Event 1,000

Suitelet 1,000

Portlet 1,000

Workflow Action 1,000

RESTlet 5,000

Scheduled 10,000

Map/Reduce 10,000

Bundle Installation 10,000

Mass Update 10,000 per record

Timeout and Instruction Count Limits

NetSuite also uses the governance system to detect and halt runaway scripts by using a timeout
mechanism and an instruction counter.

https://riptutorial.com/ 15

If a script takes too much time to run, NetSuite will stop it by throwing an SSS_TIME_LIMIT_EXCEEDED
error.

In addition, runaway scripts can be detected and halted based on their "Instruction Count". If the
defined instruction count limits are exceeded, NetSuite will stop the script by throwing an
SSS_INSTRUCTION_COUNT_EXCEEDED error.

There is, unfortunately, no Help documentation that defines:

the timeout for each script type•
the instruction count limits for each script type•
what constitutes a single "instruction"•

It is simply important to know that if you encounter either the SSS_TIME_LIMIT_EXCEEDED error or the
SSS_INSTRUCTION_COUNT_EXCEEDED error in one of your scripts, you have processing that is taking too
long. Focus your investigation on your loop structures to determine where optimizations may be
made.

Memory Usage Limit

If your script exceeds the memory usage limit, NetSuite will terminate your script by throwing a
SSS_MEMORY_USAGE_EXCEEDED error.

Every variable declared, every function defined, every Object stored contributes to the memory
usage of your script.

Both the Scheduled Script and the Map/Reduce Script have documented 50MB memory limits.
There is also a documented limit of 10MB for the size of any String passed in to or returned from a
RESTlet. There is no other documentation on the specific limits for a given script.

Examples

How many units do I have remaining?

In SuiteScript 1.0, use nlobjContext.getRemainingUsage() to retrieve the remaining units. An
nlobjContext reference is retrieved using the global nlapiGetContext function.

// 1.0
var context = nlapiGetContext();
nlapiLogExecution("DEBUG", "Governance Monitoring", "Remaining Usage = " +
context.getRemainingUsage());

nlapiSearchRecord("transaction"); // uses 10 units
nlapiLogExecution("DEBUG", "Governance Monitoring", "Remaining Usage = " +
context.getRemainingUsage());

In SuiteScript 2.0, use the getRemainingUsage method of the N/runtime module's Script object.

// 2.0

https://riptutorial.com/ 16

require(["N/log", "N/runtime", "N/search"], function (log, runtime, s) {
 var script = runtime.getCurrentScript();
 log.debug({
 "title": "Governance Monitoring",
 "details": "Remaining Usage = " + script.getRemainingUsage()
 });

 s.load({"id":"customsearch_mysearch"}); // uses 5 units
 log.debug({
 "title": "Governance Monitoring",
 "details": "Remaining Usage = " + script.getRemainingUsage()
 });
});

Read Governance online: https://riptutorial.com/netsuite/topic/7227/governance

https://riptutorial.com/ 17

https://riptutorial.com/netsuite/topic/7227/governance

Chapter 7: Inline Editing with SuiteScript

Introduction

Inline editing allows users to very quickly modify and update the data for a particular record
without having to load the entire record on a page, edit the form, then save the record.

NetSuite developers have a corresponding functionality called submitFields. The submitFields
functionality is provided by the nlapiSubmitField global function in SuiteScript 1.0 and the
N/record#submitFields method in SuiteScript 2.0.

Syntax

nlapiSubmitField(recordType, recordId, fieldId, fieldValue);•
nlapiSubmitField(recordType, recordId, fieldIds, fieldValues);•
nlapiSubmitField(recordType, recordId, fieldId, fieldValue, doSourcing);•

Parameters

Parameter Details

recordType String - The internal ID of the type of record being updated

recordId String or Number - The internal ID of the record being updated

fieldIds String or String[] - The internal ID(s) of the field(s) being updated

fieldValues any or any[] - The corresponding values to be set in the given fields

doSourcing
Boolean - Whether dependent values should be sourced in upon record
submission. Default is false

Remarks

The submitFields functionality is a companion feature to the lookupFields functionality.

Performance and Limitations

submitFields performs significantly faster and uses less governance than making the same
changes by loading and submitting the full record.

Multiple fields can be updated at once for the same cost as updating a single field. Updating more
fields with submitFields does not incur a higher governance cost.

https://riptutorial.com/ 18

http://www.riptutorial.com/netsuite/topic/9068/lookup-data-from-related-records

However, you must be aware that only certain fields on each record type are inline-editable, and
the performance savings only applies to these inline-editable fields. If you use the submitFields
function on any non-inline-editable field, the field will be updated correctly, but behind the scenes,
NetSuite will actually load and submit the record, thus taking more time and using more
governance. You can determine whether a field is inline-editable by referring to the
"nlapiSubmitField" column in the Records Browser.

submitFields functionality is also limited to the body fields of a record. If you need to modify sublist
data, you will need to load the record to make your changes, then submit the record.

References:

NetSuite Help: "Inline Editing and SuiteScript Overview"•
NetSuite Help: "Inline Editing Using nlapiSubmitField"•
NetSuite Help: "Consequences of Using nlapiSubmitField on Non Inline Editable Fields"•
NetSuite Help: "Field APIs"•
NetSuite Help: "record.submitFields(options)"•

Examples

[1.0] Submit a Single Field

/**
 * A SuiteScript 1.0 example of using nlapiSubmitField to update a single field on a related
record
 */

// From a Sales Order, get the Customer ID
var customerId = nlapiGetFieldValue("entity");

// Set a comment on the Customer record
nlapiSubmitField("customer", customerId, "comments", "This is a comment added by inline
editing with SuiteScript.");

[1.0] Submit Multiple Fields

/**
 * A SuiteScript 1.0 example of using nlapiSubmitField to update multiple fields on a related
record
 */

// From a Sales Order, get the Customer ID
var customerId = nlapiGetFieldValue("entity");

// Set a Comment and update the Budget Approved field on the Customer record
nlapiSubmitField("customer", customerId,
 ["comments", "isbudgetapproved"],
 ["The budget has been approved.", "T"]);

https://riptutorial.com/ 19

http://www.riptutorial.com/netsuite/topic/7756/using-the-netsuite-records-browser

[2.0] Submit a Single Field

/**
 * A SuiteScript 2.0 example of using N/record#submitFields to update a single field on a
related record
 */

require(["N/record", "N/currentRecord"], function (r, cr) {

 // From a Sales Order, get the Customer ID
 var customerId = cr.get().getValue({"fieldId": "entity"});

 // Set a Comment on the Customer record
 r.submitFields({
 "type": r.Type.CUSTOMER,
 "id": customerId,
 "values": {
 "comments": "This is a comment added by inline editing with SuiteScript."
 }
 });
});

[2.0] Submit Multiple Fields

/**
 * A SuiteScript 2.0 example of using N/record#submitFields to update multiple fields on a
related record
 */

require(["N/record", "N/currentRecord"], function (r, cr) {

 // From a Sales Order, get the Customer ID
 var customerId = cr.get().getValue({"fieldId": "entity"});

 // Set a Comment and check the Budget Approved box on the Customer record
 r.submitFields({
 "type": r.Type.CUSTOMER,
 "id": customerId,
 "values": {
 "comments": "The budget has been approved.",
 "isbudgetapproved": true
 }
 });
});

Read Inline Editing with SuiteScript online: https://riptutorial.com/netsuite/topic/9082/inline-editing-
with-suitescript

https://riptutorial.com/ 20

https://riptutorial.com/netsuite/topic/9082/inline-editing-with-suitescript
https://riptutorial.com/netsuite/topic/9082/inline-editing-with-suitescript

Chapter 8: Loading a record

Examples

SS 1.0

var recordType = 'customer'; // The type of record to load. The string internal id.
var recordID = 100; // The specific record instances numeric internal id.
var initializeValues = null;
/* The first two parameters are required but the third --
* in this case the variable initializeValues -- is optional. */
var loadedRecord = nlapiLoadRecord(recordType, recordID, initializeValues);

SS 2.0

This example assumes that the record module is set to the variable RECORDMODULE, as shown
below.

require(['N/record'], function(RECORDMODULE){

 var recordType = RECORDMODULE.Type.SALES_ORDER; //The type of record to load.
 var recordID = 100; //The internal ID of the existing record instance in NetSuite.
 var isDynamic = true; //Determines whether to load the record in dynamic mode.

 var loadedRecord = RECORDMODULE.load({
 type: recordType,
 id: recordID,
 isDynamic: isDynamic,
 });
});

Read Loading a record online: https://riptutorial.com/netsuite/topic/4685/loading-a-record

https://riptutorial.com/ 21

https://riptutorial.com/netsuite/topic/4685/loading-a-record

Chapter 9: Lookup Data from Related
Records

Introduction

When processing a given record, you will oft need to retrieve data from one of its related records.
For example, when working with a given Sales Order, you may need to retrieve data from the
related Sales Rep. In SuiteScript terminology, this is called a lookup.

Lookup functionality is provided by the nlapiLookupField global function in SuiteScript 1.0 and the
N/search module's lookupFields method in SuiteScript 2.0

Syntax

nlapiLookupField(recordType, recordId, columns);•

Parameters

Parameter Details

recordType
String - The internal ID of the type of record being looked up (e.g. salesorder,
employee)

recordId String or Number - The internal ID of the record being looked up

columns
String or String[] - The list of fields to retrieve from the record. Field IDs can be
referenced from the "Search Columns" section of the Records Browser. Joined
fields can be retrieved using dot syntax (e.g. salesrep.email)

Remarks

Performance

A Lookup is just shorthand for performing a search that filters on the internal ID of a single record
for the result. Under the hood, lookups are actually performing a search, so the performance will
be similar to that of a search that returns a single record.

This also means that a lookup will perform faster than loading the record to retrieve the same
information.

https://riptutorial.com/ 22

http://www.riptutorial.com/netsuite/topic/7756/using-the-netsuite-records-browser

Limitations

Lookups can only be used to retrieve body field data. You cannot retrieve data from the sublists of
a related record using a lookup. If you need sublist data, you will either need to perform a search
or load the related record.

Examples

[1.0] Lookup Single Field

/**
 * An example of nlapiLookupField to retrieve a single field from a related record
 */

// Get the Sales Rep record ID
var repId = nlapiGetFieldValue("salesrep");

// Get the name of the Sales Rep
var repName = nlapiGetFieldText("salesrep");

// Retrieve the email address from the associated Sales Rep
var repEmail = nlapiLookupField("employee", repId, "email");

console.log(repEmail);
console.log(repName + "'s email address is " + repEmail);

[1.0] Lookup Multiple Fields

/**
 * An example of nlapiLookupField to retrieve multiple fields from a related record
 */

// Get the Sales Rep record ID
var repId = nlapiGetFieldValue("salesrep");

// Retrieve multiple fields from the associated Sales Rep
var repData = nlapiLookupField("employee", repId, ["email", "firstname"]);

console.log(repData);
console.log(repData.firstname + "'s email address is " + repData.email);

[1.0] Lookup Joined Fields

/**
 * An example of nlapiLookupField to retrieve joined fields from a related record
 */

var repId = nlapiGetFieldValue("salesrep");

// Retrieve multiple fields from the associated Sales Rep
var repData = nlapiLookupField("employee", repId, ["email", "firstname", "department.name"]);

https://riptutorial.com/ 23

console.log(repData);
console.log(repData.firstname + "'s email address is " + repData.email);
console.log(repData.firstname + "'s department is " + repData["department.name"]);

[2.0] Lookup Single Field

require(["N/search", "N/currentRecord"], function (s, cr) {

 /**
 * An example of N/search#lookupFields to retrieve a single field from a related record
 */
 (function () {

 var record = cr.get();

 // Get the Sales Rep record ID
 var repId = record.getValue({
 "fieldId": "salesrep"
 });

 // Get the name of the Sales Rep
 var repName = record.getText({
 "fieldId": "salesrep"
 });

 // Retrieve the email address from the associated Sales Rep
 var repData = s.lookupFields({
 "type": "employee",
 "id": repId,
 "columns": ["email"]
 });

 console.log(repData);
 console.log(repName + "'s email address is " + repData.email);
 })();
});

[2.0] Lookup Multiple Fields

require(["N/search", "N/currentRecord"], function (s, cr) {

 /**
 * An example of N/search#lookupFields to retrieve multiple fields from a related record
 */
 (function () {

 var record = cr.get();

 // Get the Sales Rep record ID
 var repId = record.getValue({
 "fieldId": "salesrep"
 });

 // Retrieve the email address from the associated Sales Rep
 var repData = s.lookupFields({
 "type": "employee",
 "id": repId,

https://riptutorial.com/ 24

 "columns": ["email", "firstname"]
 });

 console.log(repData);
 console.log(repData.firstname + "'s email address is " + repData.email);
 })();
});

[2.0] Lookup Joined Fields

require(["N/search", "N/currentRecord"], function (s, cr) {

 /**
 * An example of N/search#lookupFields to retrieve joined fields from a related record
 */
 (function () {

 var record = cr.get();

 // Get the Sales Rep record ID
 var repId = record.getValue({
 "fieldId": "salesrep"
 });

 // Retrieve the email address from the associated Sales Rep
 var repData = s.lookupFields({
 "type": "employee",
 "id": repId,
 "columns": ["email", "firstname", "department.name"]
 });

 console.log(repData);
 console.log(repData.firstname + "'s email address is " + repData.email);
 console.log(repData.firstname + "'s department is " + repData["department.name"]);
 })();
});

Read Lookup Data from Related Records online: https://riptutorial.com/netsuite/topic/9068/lookup-
data-from-related-records

https://riptutorial.com/ 25

https://riptutorial.com/netsuite/topic/9068/lookup-data-from-related-records
https://riptutorial.com/netsuite/topic/9068/lookup-data-from-related-records

Chapter 10: Mass Delete

Introduction

This sample shows how to mass delete records in NetSuite by leveraging the Mass Update
feature. Typically, we're told not to delete records, but to make records inactive, but if you must,
then this small script does just that. Once the script is deployed as a 'Mass Update' script type,
simply go to Lists > Mass Update > Mass Updates > Custom Updates. You should see your mass
delete. Next, set up your search criteria in your mass delete and do a preview to validate your data
before deleting.

Examples

Delete based on Search Criteria

/**
 * NetSuite will loop through each record in your search
 * and pass the record type and id for deletion
 * Try / Catch is useful if you wish to handle potential errors
 */

function MassDelete(record_type, record_id)
{
 try
 {
 nlapiDeleteRecord(record_type, record_id)
 }
 catch (err)
 {
 var errMessage = err;
 if(err instanceof nlobjError)
 {
 errMessage = errMessage + ' ' + err.getDetails() + ' ' + 'Failed to Delete ID : '
+ record_id;
 }
 nlapiLogExecution('ERROR', 'Error', errMessage);
 return err
 }
}

Read Mass Delete online: https://riptutorial.com/netsuite/topic/9062/mass-delete

https://riptutorial.com/ 26

https://riptutorial.com/netsuite/topic/9062/mass-delete

Chapter 11: Requesting customField,
customFieldList & customSearchJoin with
PHP API Advanced Search

Introduction

These where some of the hardest things (and least talked about) to do with the PHP API
advanced search (where you specify what fields).

Im in the process of migrating to rest_suite github library that uses RESTLET, and get around the
PHP API user concurrency limit of 1.

But before i delete my old code im posting it here. Example specs for these field can be found
here:
http://www.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2016_1/schema/search/transactionsearchrow.html?mode=package

Examples

customField & customFieldList Usage

$service = new NetSuiteService();
$search = new TransactionSearchAdvanced();
$internalId = '123';//transaction internalId

$search->criteria->basic->internalIdNumber->searchValue = $internalId;
$search->criteria->basic->internalIdNumber->operator = "equalTo";

$field = new SearchColumnSelectCustomField();
$field->scriptId = 'custbody_os_freight_company';//this is specific to you & found in netsuite
$search->columns->basic->customFieldList->customField[] = $field;

$field = new SearchColumnStringCustomField();
$field->scriptId = 'custbody_os_warehouse_instructions';//this is specific to you & found in
netsuite
$search->columns->basic->customFieldList->customField[] = $field;

//and so on, you can keep adding to the customField array the custom fields you want

$request = new SearchRequest();

$request->searchRecord = $search;

$searchResponse = $service->search($request);

customSearchJoin Usage

$service = new NetSuiteService();
$search = new TransactionSearchAdvanced();

https://riptutorial.com/ 27

http://www.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2016_1/schema/search/transactionsearchrow.html?mode=package

$internalId = '123';//transaction internalId

$search->criteria->basic->internalIdNumber->searchValue = $internalId;
$search->criteria->basic->internalIdNumber->operator = "equalTo";

$CustomSearchRowBasic = new CustomSearchRowBasic();
$CustomSearchRowBasic->customizationRef->scriptId = 'custbody_os_entered_by';//this is
specific to you & found in netsuite
$CustomSearchRowBasic->searchRowBasic = new EmployeeSearchRowBasic();
$CustomSearchRowBasic->searchRowBasic->entityId = new SearchColumnStringField();

$search->columns->customSearchJoin[] = $CustomSearchRowBasic;
//and so on, you can keep adding to the customSearchJoin array the custom fields you want

$request = new SearchRequest();

$request->searchRecord = $search;

$searchResponse = $service->search($request);

Read Requesting customField, customFieldList & customSearchJoin with PHP API Advanced
Search online: https://riptutorial.com/netsuite/topic/9799/requesting-customfield--customfieldlist---
customsearchjoin-with-php-api-advanced-search

https://riptutorial.com/ 28

https://riptutorial.com/netsuite/topic/9799/requesting-customfield--customfieldlist---customsearchjoin-with-php-api-advanced-search
https://riptutorial.com/netsuite/topic/9799/requesting-customfield--customfieldlist---customsearchjoin-with-php-api-advanced-search

Chapter 12: RESTlet - Process external
documents

Introduction

When retrieving a document from an external system, it requires us to ensure the correct
document extension is affixed to the document. The sample code shows how to store a document
properly in NetSuite's File Cabinet as well as attaching it to its corresponding record.

Examples

RESTlet - store and attach file

 /**
 * data - passed in object
 * switch - get file extension if there is one
 * nlapiCreateFile - create file in File Cabinet
 * nlapiAttachRecord - attach file to record
 */

function StoreAttachFile(data)
{
 var record_type = data.recordType
 var record_id = data.recordId;

 if(record_id && record_type == 'vendorbill')
 {
 try
 {
 var file_type = data.fileType;
 var file_extension;

 switch (file_type)
 {
 case "pdf":
 file_extension = "pdf";
 break;
 case "docx":
 file_extension = "doc";
 break;
 case "txt":
 file_extension = "txt";
 break;
 case "JPGIMAGE":
 file_extension = "jpg";
 break;
 case "png":
 file_extension = "png";
 break;
 default:
 // unknown type
 // there should probably be some error-handling

https://riptutorial.com/ 29

 }

 var file_name = data.fileName + "." + file_extension;
 var file = data.fileContent;

 var doc = nlapiCreateFile(file_name, file_type, file);
 doc.setFolder(115);//Get Folder ID from: Documents > File > File Cabinet

 var file_id = nlapiSubmitFile(doc);

 nlapiAttachRecord("file", file_id, record_type, record_id);
 nlapiLogExecution('DEBUG', 'after submit', file_id);
 }

 catch (err)
 {
 var errMessage = err;
 if(err instanceof nlobjError)
 {
 errMessage = errMessage + ' ' + err.getDetails();
 }
 nlapiLogExecution('DEBUG', 'Error', errMessage)
 }
 }
 return true;
}

Read RESTlet - Process external documents online:
https://riptutorial.com/netsuite/topic/9021/restlet---process-external-documents

https://riptutorial.com/ 30

https://riptutorial.com/netsuite/topic/9021/restlet---process-external-documents

Chapter 13: RestLet - Retrieve Data (Basic)

Introduction

This sample shows the basic structure of a RESTlet script that is intended to be used to retrieve
data from an external system. RESTlets are endpoints that are created to allow communication
with external systems.

Examples

Retrieve Customer Name

/**
 * requestdata - the data packet expected to be passed in by external system
 * JSON - data format exchange
 * stringify() convert javascript object into a string with JSON.stringify()
 * nlobjError - add in catch block to log exceptions
 */

function GetCustomerData(requestdata)
{
 var jsonString = JSON.stringify(requestdata);
 nlapiLogExecution('DEBUG', 'JSON', jsonString);

 try
 {
 var customer = requestdata.customer;
 nlapiLogExecution('DEBUG', 'customer', customer);
 }
 catch (err)
 {
 var errMessage = err;
 if(err instanceof nlobjError)
 {
 errMessage = errMessage + ' ' + err.getDetails() + ' ' + errMessage;
 }
 nlapiLogExecution('DEBUG', 'Error', errMessage);
 }
}

Read RestLet - Retrieve Data (Basic) online: https://riptutorial.com/netsuite/topic/9006/restlet---
retrieve-data--basic-

https://riptutorial.com/ 31

https://riptutorial.com/netsuite/topic/9006/restlet---retrieve-data--basic-
https://riptutorial.com/netsuite/topic/9006/restlet---retrieve-data--basic-

Chapter 14: Script and Script Deployment
Records

Introduction

In order for NetSuite to know how to utilize our source code, we need to be able to tell it which
functions to call, when to call them, and who to call them for. We accomplish all of these with the
Script and Script Deployment records.

Examples

Script Records

NetSuite uses the Script record to map the function(s) in your source file to specific events that
occur in the system. For instance, if you need some business logic to run when a form is saved in
the UI, the Script record will tell NetSuite which function to call when the Save Record event occurs.

You can think of the Script record as defining when our source code should run; it essentially
defines something akin to:

"When a record is saved, call the saveRecord function in hello-world.js."

Here is an example of what that Script record would look like:

https://riptutorial.com/ 32

Script Deployment Records

Once we have a Script record created, we then need to deploy that script into the system. While
the Script record tells NetSuite which functions to call from our source file, the Script Deployment
record lets NetSuite know which records and users our Script should execute for.

While the Script record defines when our source code should run, the Script Deployment defines
where and who can run our script. If we have a Script record that says:

"When a record is saved, call the saveRecord function in hello-world.js."

https://riptutorial.com/ 33

https://i.stack.imgur.com/sTOyz.png

then our Script Deployment for that record might modify that slightly to:

"When an Employee record is saved, call the saveRecord function in hello-world.js, but
only for users in the Administrators group."

Again, here is an example of what that Script Deployment would look like:

A Script can have multiple Script Deployments associated to it. This allows us to deploy the same
business logic to multiple different record types with varying audiences.

Read Script and Script Deployment Records online:
https://riptutorial.com/netsuite/topic/8835/script-and-script-deployment-records

https://riptutorial.com/ 34

https://i.stack.imgur.com/NsUhp.png
https://riptutorial.com/netsuite/topic/8835/script-and-script-deployment-records

Chapter 15: Script Type Overview

Introduction

You create SuiteScript customizations using an event-driven system. You define various types of
Script records, each of which has its own unique set of events, and in your source file, you define
functions that will be called to handle those events as they occur.

Scripts are one of the primary components with which you'll design and build your applications.
The goal with this article is merely to become acquainted with the Script types and events
available.

Examples

The Client Script

The Client Script is one of the more commonly used, and complex, script types available to you.
As its name implies, the Client Script runs in the browser, i.e. on the client side. It is the only script
type that runs on the client side; all others will execute on the server side of NetSuite.

The primary use of the Client Script is for responding to user interactions with record forms within
the NetSuite UI.

As soon as the user loads a record form in Edit mode, a pageInit event is fired that we can use to
run code as the form is initialized, before the user can interact with it.

Whenever the user then changes any field on the form, a series of events will fire:

A validateField event fires that allows us to validate the value the user is trying to enter in
the field. We can use this to either accept or prevent the change from taking place.

1.

A fieldChanged event then fires that allows us to respond to the new value in the field.2.
Lastly, a postSourcing event fires after any and all dependent fields have also sourced in their
values. This allows us to respond to the change and make sure we are working with all of the
correct data.

3.

This series of events fires no matter whether the user is changing a body field or a sublist field.

As the user does make changes to sublist lines, another series of events will be triggered:

A lineInit event is fired whenever the user initially selects a new or existing line, before they
are able to make any changes to the fields on the line.

1.

Whenever the user clicks the Add button to add a new line, a validateLine event is fired that
allows us to verify that the entire line is valid and can be added to the record.

2.

Whenever the user clicks the Insert button to add a new line above an existing one, a
validateInsert event is fired, which works exactly like the validateLine event.

3.

Similarly, whenever the user tries to remove a line, a validateDelete is fired that allows to 4.

https://riptutorial.com/ 35

either allow or deny the removal of the line.
[SuiteScript 1.0 only] Lastly, after the appropriate validation event succeeds, if the change to
the line also effected a change to the total amount of a transaction, then a recalc event is
fired that allows us to respond to the change in amount of our transaction.

5.

[SuiteScript 2.0 only] Lastly, after the appropriate validation event succeeds, a sublistChanged
event is fired to allow us to respond to the completed line change.

6.

Finally, when the user clicks the Save button on the record, a saveRecord event is fired that allows
us to validate whether the record is valid and can be saved. We can either prevent the save from
occurring, or allow it to proceed with this event.

The Client script has by far the most events of any Script type, and the most complex relationship
between those events.

The User Event Script

Closely related to the Client Script is the User Event Script. The events of this Script type are
again fired when a record is being loaded or saved, but it instead runs on the server side. As such,
it cannot be used to respond immediately to field changes, but it also is not limited to only users
interacting with the record on a form.

User Event scripts will execute no matter where the load or submit request is coming from,
whether it's a user working in the UI, a third-party integration, or another internal Script making the
request.

Whenever a process or user attempts to read a record out of the database, the User Event's
beforeLoad event is triggered. We can use this to pre-process data, set default values, or
manipulate the UI form before the user sees it.

Once a process or user attempts to submit a record to the database, whether it's the creation of a
new record, editing of an existing record, or the deletion of a record, the following sequence
occurs:

First, before the request actually makes its way to the database, a beforeSubmit event fires.
We can use this event, for example, to clean up the record before it gets in the database.

1.

The request is sent to the database, and the record is created/modified/deleted accordingly.2.
After the database processing is complete, an afterSubmit event fires. We can use this event,
for example, to send out email notifications of changes, or to sync up with integrated third-
party systems.

3.

You can also watch this series of videos that help to visualize the events of this script type.

The Scheduled and Map/Reduce Scripts

There are two types of scripts we can leverage for running background processing on a specific,
regular interval; these are the Scheduled and the Map/Reduce scripts. Note that the Map/Reduce
script type is only available in SuiteScript 2.0. The Scheduled script is available for both 1.0 and
2.0.

https://riptutorial.com/ 36

https://www.youtube.com/playlist?list=PLG2tK6Va2WUCseA3viGC2oYPkyA45wfA-

The Scheduled script only has a single execute event that gets triggered on whatever schedule you
define. For example, you may want to run a nightly script that applies payments to invoices, or an
hourly script that syncs data with an external system. When the time interval hits, NetSuite fires
this execute event on your Scheduled script.

The Map/Reduce script works similarly, but once it is triggered, it breaks the processing into four
distinct phases:

The getInputData phase is where you gather all of the input data you will need to complete
the business process. You can use this phase to perform searches, read records, and
package your data into a decipherable data structure.

1.

NetSuite automatically passes the results of your getInputData phase to the second phase,
called map. This phase is responsible for grouping your input data logically for processing. For
instance, if you're applying payments to invoices, you may want to first group the invoices by
Customer.

2.

The results of the map phase are then passed to the reduce phase, which is where the actual
processing takes place. This is where you would, keeping with our example, actually apply
the Payments to the Invoices.

3.

Lastly, a summary phase is invoked that contains data regarding the results of all your
processing across the previous three phases. You can use this to generate reports or send
out emails that processing is complete.

4.

The major advantage of the Map/Reduce script is that NetSuite will automatically parallelize the
processing for you across multiple queues, if available.

Both of these script types have an extremely large governance limit, so you can also use them for
bulk processing or generally long-running background processes.

The shortest interval either of these script types can be configured to run is every 15 minutes.

Both of these script types can also be invoked on-demand by users or by other scripts, if
necessary.

The Suitelet and Portlet Scripts

Often we will want to build custom UI pages in NetSuite; enter the Suitelet. The Suitelet script is
designed for building internal, custom UI pages. Pages can be free-form HTML, or they can utilize
NetSuite's UI Builder APIs to construct forms that follow NetSuite's look and feel.

When it is deployed, a Suitelet receives its own unique URL. The Suitelet then has a single render
event that is called whenever that URL is hit with an HTTP GET or POST request. Typically, the
response to the GET request would be to render the form itself, and then the form would POST back
to itself for processing the form data.

We can also leverage Suitelets to build wizard-style UI progressions using NetSuite's "Assistant"
UI components.

Portlets are extremely similar to Suitelets, except that they are specifically used to build custom
dashboard widgets rather than full custom pages. Other than that, the two script types function

https://riptutorial.com/ 37

very much alike.

The RESTlet

RESTlets allow us to build custom REST-based endpoints into NetSuite; thus, RESTlets form the
backbone of nearly any integration into NetSuite.

RESTlets provide individual event handlers for four of the most commonly used HTTP request
methods:

GET•
POST•
PUT•
DELETE•

When a RESTlet receives a request, it will route the request to the appropriate event handler
function based on the HTTP request method used.

Authentication to a RESTlet can be done via user session, HTTP headers, or OAuth tokens.

The Mass Update Script

Using the Mass Update script, we can build custom Mass Updates for users to perform. This
functions just like a normal Mass Update, where the user selects the type of Mass Update, builds
a search that returns the records to update, and then each search result is passed individually into
the custom Mass Update script.

The script provides a single each event handler that receives the internal ID and record type of the
record that is to be updated.

Mass Update scripts must be triggered manually by users through the standard Mass Update
interface.

Mass Update scripts have a massively high governance limit and are intended for commonly used,
custom bulk processing.

The Workflow Action Script

Workflows can be somewhat limited in their functionality; for example, workflows cannot interact
with line items. The Workflow Action script type is intended to be invoked by a Workflow to add
scripting functionality to accomplish what the workflow itself cannot.

Workflow Actions have a single onAction event handler that will be invoked by the Workflow.

The Bundle Installation Script

Lastly, we have the Bundle Installation script type, which provides several events that allow us to
interact with the installation, update, and uninstallation of a particular bundle. This is a rarely-
encountered script type, but important to be aware of nonetheless.

https://riptutorial.com/ 38

The Bundle Installation includes the following event handlers, which should be fairly self-
explanatory:

beforeInstall•
afterInstall•
beforeUpdate•
afterUpdate•
beforeUninstall•

Read Script Type Overview online: https://riptutorial.com/netsuite/topic/7829/script-type-overview

https://riptutorial.com/ 39

https://riptutorial.com/netsuite/topic/7829/script-type-overview

Chapter 16: Scripting searches with Filter
Expressions

Introduction

When you create searches with Suitescript, you could provide as "filters" either array of Filter
objects, or filter expression. The second option is more readable and gives you very flexible option
to provide nested expressions (up to 3 levels) using not only the default "AND", but also, "OR" and
"NOT" operators.

Examples

Filter term

To understand the filter expressions, we should start with Filter Term. This is a simple array of
strings, containing at least 3 elements:

Filter (Field/Join field/Formula/Summary)1.
Operator (search.Operator)2.
Values (string value(or array of string values), to be used as filter parameter)3.

 // Simple example:
 ['amount', 'equalto', '0.00']

 // When the field is checkbox, use 'T' or 'F'
 ['mainline', 'is', 'T']

 // You can use join fields
 ['customer.companyname', 'contains', 'ltd']

 // summary filter term
 ['sum(amount)', 'notlessthan', '170.50']

 // summary of joined fields
 ['sum(transaction.amount)', 'greatherthan', '1000.00']

 // formula:
 ["formulatext: NVL({fullname},'John')", "contains", "ohn"]

 // and even summary formula refering joined fields:
 ['sum(formulanumeric: {transaction.netamount} + {transaction.taxtotal})',
'greaterthanorequalto','100.00']

 // for selection fields, you may use 'anyof'
 // and put values in array
 ['type','anyof',['CustInvc','VendBill','VendCred']]

 // when using unary operator, like isempty/isnotempty
 // don't forget that the filter term array contains at least 3 elements
 // and put an empty string as third:

https://riptutorial.com/ 40

 ['email', 'isnotempty', '']

 // you may have more than 3 elements in Filter Term array,
 // when the operator requires more than one value:
 ['grossamount','between','100.00','200.00']

In some selector fields, you can use special values.

 // When filtering the user related fields, you can use:
 // Me (Current user): @CURRENT@
 // My Team (somebody from the team I am leading): @HIERARCHY@
 ['nextapprover','is','@CURRENT@']

 // The same is valid for Subsidiary, Department, Location, etc.
 // @CURRENT@ means MINE (Subsidiary, Department...)
 // @HIERARCHY@ means MINE or DESCENDANTS
 ["subsidiary","is","@HIERARCHY@"]

 // on selection fields you may use @ANY@ and @NONE@
 ['nextapprover','is','@NONE@']

Filter expression

Simple filter expression is also an array. It contains one or more filter terms, combined with
operators - 'AND', 'OR', 'NOT'. (Operators are case insensitive):

[
 ['mainline', 'is', 'T'],
 'and', ['type','anyof',['CustInvc','CustCred']],
 'and', 'not', ['amount', 'equalto', '0.00'],
 'or', ['customer.companyname', 'contains', 'ltd']
]

More complex filter expressions, could contain filter terms AND nested filter expressions,
combined with operators. No more than 3 levels of nested expressions are allowed:

[
 ['mainline', 'is', 'T'],
 'and', ['type','anyof',['CustInvc','CustCred']],
 'and', [['customer.companyname', 'contains', 'ltd'],
 'or', ['customer.companyname', 'contains', 'inc']
],
 'and', [['subsidiary', 'is', 'HQ'],
 'or', ['subsidiary', 'anyof', '@HIERARCHY@']
],
 'and', ['trandate', 'notbefore', 'yesterday']
]

And finally, let's put all this altogether in a SS2.0 sample:

var s = search.create({
 type : 'transaction',
 columns : [
 'trandate',

https://riptutorial.com/ 41

 'tranid',
 'currency',
 'customer.companyname',
 'customer.country',
 'amount'
],
 filters : [
 ['mainline', 'is', 'T'],
 'and', ['type','anyof',['VendBill','VendCred']],
 'and', [['customer.companyname', 'contains', 'ltd'],
 'or', ['customer.companyname', 'contains', 'inc']
],
 'and', [['subsidiary', 'is', 'HQ'],
 'or', ['subsidiary', 'anyof', '@HIERARCHY@']
],
 'and', ['trandate', 'notbefore', 'yesterday']
]
});

Filter expressions vs Filter Objects

Filter expressions cannot include Filter Objects. This is very important. If you decide to form your
filters with Filter Expression, you use array of string arrays. The following syntax is wrong:

// WRONG!!!
var f1 = search.createFilter({
 name: 'mainline',
 operator: search.Operator.IS,
 values: 'T'
});

var f2 = search.createFilter({
 name: 'type',
 operator: search.Operator.ANYOF,
 values: ['VendBill','VendCred']
});

// here you will receive an error message
var s = search.create({
 type : 'transaction',
 filters : [f1, 'and', f2] // f1,f2 are Filter Objects, instead of string arrays
});

Instead, use the correct:

// CORRECT!!!
var f1 = ['mainline', search.Operator.IS, 'T'];

var f2 = ['type', search.Operator.ANYOF, ['VendBill','VendCred']];

var s = search.create({
 type : 'transaction',
 filters : [f1, 'and', f2]
});

or if you want to keep with Filter Objects approach, pass an array of filter objects, and forget about

https://riptutorial.com/ 42

operators 'AND', 'OR', 'NOT'. It will be always AND

// correct, but not useful
var f1 = search.createFilter({
 name: 'mainline',
 operator: search.Operator.IS,
 values: 'T'
});

var f2 = search.createFilter({
 name: 'type',
 operator: search.Operator.ANYOF,
 values: ['VendBill','VendCred']
});

var s = search.create({
 type : 'transaction',
 filters : [f1, f2] // here you have array of Filter Objects,
 // filtering only when all of them are TRUE
});

Useful hints

Here you can find the list of available search filter values for date fileds:
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N3010842.html
These you can use in expressions like:

1.

['trandate', 'notbefore', 'daysAgo17']

Here are the search operators:
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N3005172.html
Of course you can use serach.Operator enum:
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4345782273.html

2.

Here are the search summary types:
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N3010474.html

3.

You can use ANYOF operator only on select type fields (List/Record). If you want to use it
against free-text fields (like names, emails etc.), the only way is to create a nested Filter
Expression with 'OR' operators:

4.

[['email', 'startswith', 'user1@abcd.com'],
 'or', ['email', 'startswith', 'user2@abcd.com'],
 'or', ['email', 'startswith', 'user3@abcd.com'],
 'or', ['email', 'startswith', 'user4@abcd.com']
]

or you can write small script, doing this instead of you:

function stringFieldAnyOf(fieldId, listOfValues) {
 var result = [];

https://riptutorial.com/ 43

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N3010842.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N3005172.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4345782273.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N3010474.html

 if (listOfValues.length > 0) {
 for (var i = 0; i < listOfValues.length; i++) {
 result.push([fieldId, 'startswith', listOfValues[i]]);
 result.push('or');
 }
 result.pop(); // remove the last 'or'
 }
 return result;
}

// usage: (two more filters added just to illustrate how to combine with other filters)
var custSearch = search.create({
 type: record.Type.CUSTOMER,
 columns: searchColumn,
 filters: [
 ['companyname', 'startswith', 'A'],
 'and', stringFieldAnyOf('email', ['user1@abcd.com', 'user2@abcd.com']),
 'and', ['companyname', 'contains', 'b']
]

});

Still not confident? Looking for a cheat? :)
Create a saved search in the Netsuite UI, take the search ID (lets say: customsearch1234)
and log.debug the filter expression:

5.

 var s = search.load('customsearch1234');

 log.debug('filterExpression', JSON.stringify(s.filterExpression));

Read Scripting searches with Filter Expressions online:
https://riptutorial.com/netsuite/topic/10732/scripting-searches-with-filter-expressions

https://riptutorial.com/ 44

https://riptutorial.com/netsuite/topic/10732/scripting-searches-with-filter-expressions

Chapter 17: Searches with large number of
results

Introduction

Suitescript 2.0 provides 4 methods to handle the search results.

They have different syntax, limitations and governance, and are appropriate for different situations.
We will focus here on how to access ALL search results, using each of these methods.

Examples

Using Search.ResultSet.each method

This is shortest, easiest and most commonly used method. Unfortunately, it has one major
limitation - cannot be used on searches with more than 4000 results (rows).

 // Assume that 'N/search' module is included as 'search'

 var s = search.create({
 type : search.Type.TRANSACTION,
 columns : ['entity','amount'],
 filters : [['mainline', 'is', 'T'],
 'and', ['type', 'is', 'CustInvc'],
 'and', ['status', 'is', 'open']
]
 });

 var resultSet = s.run();

 // you can use "each" method on searches with up to 4000 results
 resultSet.each(function(result) {

 // you have the result row. use it like this....
 var transId = result.id;
 var entityId = result.getValue('entity');
 var entityName = result.getText('entity');
 var amount = result.getValue('amount');

 // don't forget to return true, in order to continue the loop
 return true;

 });

Using ResultSet.getRange method

In order to use getRange for handling the large number of results, we will have to consider the
following:

getRange has 2 parameters: start and end. Always positive, always (start < end)1.

https://riptutorial.com/ 45

start is the inclusive index of the first result to return2.
end is the exclusive index of the last result to return3.
If there are fewer results available than requested, then the array will contain fewer than end
- start entries. For example, if there are only 25 search results, then getRange(20, 30) will
return an array of 5 search.Result objects.

4.

Although the above help sentence doesn't say it directly, both start and end could be
outside the range of available results. In the same example - if there are only 25 search
results, getRange(100, 200) will return an empty array []

5.

Maximum 1000 rows at a time. (end - start) <= 10006.

 // Assume that 'N/search' module is included as 'search'

 // this search will return a lot of results (not having any filters)
 var s = search.create({
 type: search.Type.TRANSACTION,
 columns : ['entity','amount'],
 filters: []
 });

 var resultSet = s.run();

 // now take the first portion of data.
 var currentRange = resultSet.getRange({
 start : 0,
 end : 1000
 });

 var i = 0; // iterator for all search results
 var j = 0; // iterator for current result range 0..999

 while (j < currentRange.length) {

 // take the result row
 var result = currentRange[j];
 // and use it like this....
 var transId = result.id;
 var entityId = result.getValue('entity');
 var entityName = result.getText('entity');
 var amount = result.getValue('amount');

 // finally:
 i++; j++;
 if(j==1000) { // check if it reaches 1000
 j=0; // reset j an reload the next portion
 currentRange = resultSet.getRange({
 start : i,
 end : i+1000
 });
 }
 }

Lets calculate the Governance. We have 1 + count/1000 getRange calls taking 10 units each, so:

G = (1 + count/1000) * 10

Example: 9500 rows will take 100 units

https://riptutorial.com/ 46

Using Search.PagedData.fetch method

PagedData is an object, returned by the Search.runPaged(options) method. It works exactly as the
UI searches do. PagedData object contains 2 important properties, that you can see on the right
side of results header in search results page in Netsuite UI:

count (the total number of the results)•
pageRanges (list of pages, available in UI as combo-box selector)•

options.pageSize parameter is limited again to 1000 result rows.
PagedData.fetch method is used to fetch the result portion you want (indexed by pageIndex
parameter). With a little bit more code, you receive the same convenient callback function as
Search.ResultSet.each, without having the 4000 rows limitation.

 // Assume that 'N/search' module is included as 'search'

 // this search will return a lot of results (not having any filters)
 var s = search.create({
 type: search.Type.TRANSACTION,
 columns : ['entity','amount'],
 filters : []
 });

 var pagedData = s.runPaged({pageSize : 1000});

 // iterate the pages
 for(var i=0; i < pagedData.pageRanges.length; i++) {

 // fetch the current page data
 var currentPage = pagedData.fetch(i);

 // and forEach() thru all results
 currentPage.data.forEach(function(result) {

 // you have the result row. use it like this....
 var transId = result.id;
 var entityId = result.getValue('entity');
 var entityName = result.getText('entity');
 var amount = result.getValue('amount');

 });

 }

Lets calculate the Governance. We have 5 units for runPaged(), and 1 + count/1000
pagedData.fetch calls taking 5 units each, so:

G = 5 + ceil(count/1000) * 5

Example: 9500 rows will take 55 units. Approximately half of the getRange governance units.

Using dedicated Map/Reduce script

For really huge search results, you can use dedicated Map/Reduce script. It is much more

https://riptutorial.com/ 47

inconvenient, but sometimes unavoidable. And sometimes could be very handy.
The trick here is, that in Get Input Data stage, you can provide to the NS engine not the actual
data (i.e. script result), but just the definition of the search. NS will execute the search for you
without counting the governance units. Then each single result row will be passed to the Map
stage.
Of course, there is a limitation: The total persisted size of data for a map/reduce script is not
allowed to exceed 50MB. In a search result, each key and the serialized size of each value is
counted towards the total size. "Serialized" means, that the search result row is converted to string
with JSON.stringify. Thus, the value size is proportional to the number of search result columns in
a result set. If you get to trouble with STORAGE_SIZE_EXCEEDED error, consider reducing the
columns, combining to formulas, grouping the result or even splitting the search to multiple sub-
searches, which could be executed in Map or Reduce stages.

 /**
 * @NApiVersion 2.0
 * @NScriptType MapReduceScript
 */
 define(['N/search'], function(search) {

 function getInputData()
 {
 return search.create({
 type: search.Type.TRANSACTION,
 columns : ['entity','amount'],
 filters : []
 });
 }

 function map(context)
 {
 var searchResult = JSON.parse(context.value);
 // you have the result row. use it like this....
 var transId = searchResult.id;
 var entityId = searchResult.values.entity.value;
 var entityName = searchResult.values.entity.text;
 var amount = searchResult.values.amount.value;

 // if you want to pass some part of the search result to the next stage
 // write it to context:
 context.write(entityId, transId);
 }

 function reduce(context)
 {
 // your code here ...
 }

 function summarize(summary)
 {
 // your code here ...
 }

 return {
 getInputData: getInputData,
 map: map,
 reduce: reduce,
 summarize: summarize

https://riptutorial.com/ 48

 };
});

Of course the example here is simplified, without error handling and is given just to be compared
with others. More examples are available at Map/Reduce Script Type examples in NS Help Center

Read Searches with large number of results online:
https://riptutorial.com/netsuite/topic/10687/searches-with-large-number-of-results

https://riptutorial.com/ 49

https://system.eu2.netsuite.com/app/help/helpcenter.nl?fid=section_4387799161.html
https://riptutorial.com/netsuite/topic/10687/searches-with-large-number-of-results

Chapter 18: Sourcing

Parameters

Parameter Details

Source List
The field on the destination record which links to the source record. You must
choose a source list before you can choose your source field.

Source
From

The field on the source record from which data will actually be pulled. The field
you choose must match the type of the destination field. For example, if you are
sourcing from a Phone Number field, the destination field must be a Phone
Number field as well.

Remarks

Impact of Store Value

The Store Value setting on the custom field definition plays a very important role in the behaviour
of Sourcing:

When Store Value is checked, data is sourced into the field only upon initial creation of the
record. After that, NetSuite breaks the sourcing link between the fields, and they become two
independent fields. This effectively allows you to leverage Sourcing as a mechanism for
setting the initial or default value of your custom field.

•

When Store Value is unchecked, data is sourced dynamically into the field every time the
record is loaded. Any changes a user or script might make to the field are never saved. If
you leave Store Value unchecked, it is a good idea to make your field read-only.

•

Limitations of Sourcing

Sourcing cannot be applied to native NetSuite fields. If you need a native field as your
destination field, then you will need to either create a workflow or write a script to perform the
data sourcing.

•

Sourcing cannot be applied to sublist column fields. If you need a sublist column as your
destination field, then you will need to either create a workflow or write a script to perform the
data sourcing.

•

Examples

Pulling data into a custom field on Field Changed

https://riptutorial.com/ 50

// If you find yourself doing something like this...
function fieldChanged(type, name, index) {
 if (name == 'salesrep') {
 var salesRepId = nlapiGetFieldValue('salesrep');
 var salesRepEmail = nlapiLookupField('employee', salesRepId, 'email');
 nlapiSetFieldValue('custbody_salesrep_email', salesRepEmail);
 }
}
// Stop! and consider using Sourcing for your custom field instead of code

Defining Sourcing

While not strictly a SuiteScript topic, Sourcing is an incredibly powerful feature of NetSuite, and it's
an important tool in the toolbelt for any SuiteScript developer. Sourcing allows us to pull data into a
record from any of its related records, without writing any code or building a workflow to do so.

Less code is always more maintainable code.

Sourcing is defined on the Sourcing & Filtering tab of a Custom Field definition.

Read Sourcing online: https://riptutorial.com/netsuite/topic/7034/sourcing

https://riptutorial.com/ 51

http://i.stack.imgur.com/zDNMk.png
https://riptutorial.com/netsuite/topic/7034/sourcing

Chapter 19: SS2.0 Suitelet Hello World

Examples

Basic Hello World Suitelet - Plain Text Response

/**
*@NApiVersion 2.x
*@NScriptType Suitelet
*/

define([],function() { // NetSuite's AMD pattern
 function onRequest_entry(context) { // Suitelet entry function receives a context obj
 context.response.write('Hello World'); // Write a response using the context obj
 }
 return {
 onRequest: onRequest_entry // Function assigned to entry point
 };
});

Read SS2.0 Suitelet Hello World online: https://riptutorial.com/netsuite/topic/6723/ss2-0-suitelet-
hello-world

https://riptutorial.com/ 52

https://riptutorial.com/netsuite/topic/6723/ss2-0-suitelet-hello-world
https://riptutorial.com/netsuite/topic/6723/ss2-0-suitelet-hello-world

Chapter 20: SuiteScript - Process Data from
Excel

Introduction

Sometimes the returned search results in a Mass Update isn't the same as the results in a
standard search, this is due to some limitations in a Mass Update Search. An example of this is
Rev Rec Journal entries. Therefore, the workaround for this was to get the data from the standard
saved search and use a script to read the excel data and update, as opposed to using the mass
update feature.

Examples

Update Rev Rec Dates and Rule

/**
 * Save the results from the saved search as .csv and store in file cabinet
 * Get the file's internal id when loading the file
 * Use \n to process each row
 * Get the internal id and whatever columns that need updating
 * Create a filtered search and pass the internal id
 * If the passed in internal id finds a record match, then update the rev rec dates and rule
 */

function ProcessSearchData()
{
 var loaded_file = nlapiLoadFile(4954);//loads from file cabinet
 var loaded_string = loaded_file.getValue();
 var lines = loaded_string.split('\n');//split on newlines
 nlapiLogExecution('DEBUG', 'lines', lines);
 var values;
 for (var i = 1; i < lines.length; i++)
 {
 nlapiLogExecution('DEBUG', 'count', i);
 values = lines[i].split(',');//split by comma
 var internal_id = values[0];//first column value
 nlapiLogExecution('DEBUG', 'internal_id', internal_id);
 var start_date = values[1];
 var end_date = values[2];

 if(internal_id)
 {
 UpdateDates(internal_id, start_date, end_date)
 nlapiLogExecution('DEBUG', '"""REV REC PLANs UPDATED"""');
 }
 }
 return true;
}

function UpdateDates(internal_id, start_date, end_date)
{

https://riptutorial.com/ 53

 var filters = new Array();
 filters[0] = new nlobjSearchFilter('internalid', null, 'is', internal_id);

 var columns = [];
 columns[0] = new nlobjSearchColumn('internalid');
 columns[1] = new nlobjSearchColumn('revrecstartdate');
 columns[2] = new nlobjSearchColumn('revrecenddate');

 var rev_rec_plan = nlapiSearchRecord('revenueplan', null, filters, columns);
 if(rev_rec_plan)
 {
 for (var i = 0; rev_rec_plan != null && i < rev_rec_plan.length; i++)
 {
 var record = nlapiLoadRecord('revenueplan', rev_rec_plan[0].getValue(columns[0]));
 var id = record.getId();
 record.setFieldValue('revrecstartdate', start_date);
 record.setFieldValue('revrecenddate', end_date);
 record.setFieldValue('revenuerecognitionrule', 2)//Exact days based on Arrangement
dates
 nlapiSubmitRecord(record);
 }
 }
 return internal_id;
}

Read SuiteScript - Process Data from Excel online:
https://riptutorial.com/netsuite/topic/9034/suitescript---process-data-from-excel

https://riptutorial.com/ 54

https://riptutorial.com/netsuite/topic/9034/suitescript---process-data-from-excel

Chapter 21: Understanding Transaction
Searches

Introduction

A deep understanding of how Transaction searches function is crucial knowledge for every
NetSuite developer, but the default behaviour of these searches, and controlling that behaviour,
can be quite confusing initially.

Remarks

References:

NetSuite Help page: "Using Main Line in Transaction Search Criteria"•

Examples

Filtering only on Internal ID

Let's explore an example Transaction search where we define a filter for a single transaction's
internal ID:

https://riptutorial.com/ 55

https://i.stack.imgur.com/7P0vY.png

We've specified a filter to only show us results for the Transaction with the internal ID of 875; here
is that Transaction:

We can see it is a Sales Order with a single line item.

Because internal IDs are unique across all transactions, we can expect only one search result for
this search. Here is the search result:

https://riptutorial.com/ 56

https://i.stack.imgur.com/KfGVs.png

Instead of the single result we expect, we get four results. What's more, every result has exactly
the same internal ID. How is that possible?

To understand what is happening here, we need to recall that data stored in NetSuite records is
divided into two categories:

Body Data: Data stored in standalone fields of the record (e.g. Date, Sales Rep, Document
Number, Coupon Code)

1.

Sublist Data: Data stored in lists within each record, usually displayed on subtabs in the UI
(e.g. Items on a Sales Order)

2.

Transactions contain multiple sublists of data, including its:

line items•
shipping information•
tax information•
COGS (Cost of Goods Sold) details•

In these search results, NetSuite is actually showing us one result for the transaction body, then
other results for data on the various sublists within that same transaction.

Notice the column in our search results simply named with an asterisk (*). Notice also that one of
the results has an asterisk populated in this column while the rest are empty. This column

https://riptutorial.com/ 57

https://i.stack.imgur.com/WJbQT.png

indicates which search result represents the body of the transaction, which is also called the
transaction's Main Line.

There are times when you will want transaction searches to only show the Main Line data, and
times where you will only want the line-level detail. The remaining examples show how to control
what shows up in our results.

Filtering with Main Line

When we only want one result per transaction, that means we only want the Body, or Main Line, of
each transaction. To accomplish this, there is a filter named "Main Line".

By setting the Main Line filter to Yes in our search criteria, we are essentially saying "Only show
me body-level data for the transactions in my results":

Modifying our previous search criteria this way now gives us the single result we expected
originally:

https://riptutorial.com/ 58

https://i.stack.imgur.com/4lW4y.png

If we reverse our Main Line filter to No, we are saying "Show me only the data from sublists in my
results":

https://riptutorial.com/ 59

https://i.stack.imgur.com/hLr63.png

To recap Main Line's behaviour:

With Main Line set to Yes, we received one result for only the body of the transaction.•
With Main Line set to No, we received three results for only the sublist data of the
transaction.

•

With no Main Line filter at all, we received four results, essentially the combination of all the
body and sublist data for the transaction.

•

Note that the Main Line filter is not supported for Journal Entry searches.

Filtering Specific Sublists

Recall that every transaction contains multiple sublists of data. Now that we can show only sublist
data using Main Line, we can further refine our search results to specific sublist data.

Most of the sublists included in Transaction results have a corresponding search filter to toggle
whether they are included in your results:

https://riptutorial.com/ 60

https://i.stack.imgur.com/SZpWa.png

Use the Shipping Line filter to control data from the Shipping sublist•
Use the Tax Line filter to control data from the Tax sublist•
Use the COGS Line filter to control data from the COGS sublist•

Each of these filters behaves like Main Line or any other checkbox filter: Yes to include this data,
No to exclude it from your results.

Notice that there is no filter for Item Line to control the data from the Item sublist. Essentially, in
order to say "Only show me the data from the Items sublist", we need to specify all of these
aforementioned filters as No in our criteria:

With this criteria, your search will return one result per item line on each matching transaction.

In my opinion, this missing filter is a major gap in the search functionality that should be fixed; it
would be much easier and more consistent to simply have an Item Line is Yes filter. Until then, this
is how you must specify that you only want Item data in your transaction results.

Read Understanding Transaction Searches online:

https://riptutorial.com/ 61

https://i.stack.imgur.com/XOMbM.png

https://riptutorial.com/netsuite/topic/9012/understanding-transaction-searches

https://riptutorial.com/ 62

https://riptutorial.com/netsuite/topic/9012/understanding-transaction-searches

Chapter 22: User Event: Before and After
Submit events

Syntax

beforeSubmit(type) // Before Submit, 1.0•
beforeSubmit(scriptContext) // Before Submit, 2.0•
afterSubmit(type) // After Submit, 1.0•
afterSubmit(scriptContext) // After Submit, 2.0•

Parameters

Parameter Details

SuiteScript 2.0 -

scriptContext {Object}

scriptContext.newRecord
{N/record.Record} A reference to the record that is being read from
the database. We can use it to modify the field values on the record

scriptContext.oldRecord
{N/record.Record} A read-only reference to the previous state of the
record. We can use it to compare to the new values

scriptContext.type
{UserEventType} An enumeration of the type of write action being
performed

SuiteScript 1.0 -

type {String} The type of write action being performed

Remarks

beforeSubmit and afterSubmit

These two events are triggered by any database write operation on a record. Any time a user, a
script, a CSV import, or a web service request attempts to write a record to the database, the
Submit events get fired.

Record actions that trigger both Submit events:

Create•
Edit•

https://riptutorial.com/ 63

Delete•
XEdit (inline edit)•
Approve•
Reject•
Cancel•
Pack•
Ship•

Record actions that trigger beforeSubmit only:

Mark Complete•
Reassign (support cases)•
Edit Forecast•

Record actions that trigger afterSubmit only:

Dropship•
Special Order•
Order Items•
Pay Bills•

Typical Use Cases for beforeSubmit

Validate record before it is committed to database•
Permission and restriction checks•
Last-minute changes before database commit•
Pull updates from external systems•

Typical Use Cases for afterSubmit

Email notification of record changes•
Browser redirection•
Create/update dependent records•
Push changes to external systems•

User Events do not chain

Code written in User Events will not trigger any User Events on other records. For example,
modifying the associated Customer record from the beforeSubmit of a Sales Order record will not
trigger the Customer record's submit events.

NetSuite does this to avoid User Events triggering each other in an infinite loop. If you do need
User Events to fire in a chained sequence, other script types (e.g. RESTlets, Suitelets, Scheduled
Scripts) will need to be injected in between the events.

https://riptutorial.com/ 64

Event Handlers return void

The return type of the Submit event handlers is void. Any data returned from our event handler
has no effect on the system. We do not need to return anything from our handler function as we
cannot actually do anything with its returned value.

!! CAUTION !!

Be very cautious when comparing values between old and new records. Empty fields from the old
record are returned as null, while empty fields from the new record are returned as an empty
String. This means you cannot simply compare the old with the new, or you will get false positives.
Any logic you write must handle the case where one is null and one is an empty String
appropriately.

Examples

Minimal: Log a message

// 1.0, Revealing Module pattern
var myNamespace = myNamespace || {};

myNamespace.example = (function () {

 /**
 * User Event 1.0 example detailing usage of the Submit events
 *
 * @appliedtorecord employee
 */
 var exports = {};

 function beforeSubmit(type) {
 nlapiLogExecution("DEBUG", "Before Submit", "action=" + type);
 }

 function afterSubmit(type) {
 nlapiLogExecution("DEBUG", "After Submit", "action=" + type);
 }

 exports.beforeSubmit = beforeSubmit;
 exports.afterSubmit = afterSubmit;
 return exports;
})();

// 2.0
define(["N/log"], function (log) {

 /**
 * User Event 2.0 example showing usage of the Submit events
 *
 * @NApiVersion 2.x
 * @NModuleScope SameAccount

https://riptutorial.com/ 65

 * @NScriptType UserEventScript
 * @appliedtorecord employee
 */
 var exports = {};

 function beforeSubmit(scriptContext) {
 log.debug({
 "title": "Before Submit",
 "details": "action=" + scriptContext.type
 });
 }

 function afterSubmit(scriptContext) {
 log.debug({
 "title": "After Submit",
 "details": "action=" + scriptContext.type
 });
 }

 exports.beforeSubmit = beforeSubmit;
 exports.afterSubmit = afterSubmit;
 return exports;
});

Before Submit: Validate record before it is committed to database

For this example, we want to make sure that any Employee who is marked as a Project Resource
also has an appropriate Labor Cost defined.

// 1.0, Revealing Module pattern
var myNamespace = myNamespace || {};
myNamespace.example = (function () {

 /**
 * User Event 1.0 example detailing usage of the Submit events
 *
 * @appliedtorecord employee
 */
 var exports = {};

 function beforeSubmit(type) {
 if (!isEmployeeValid(nlapiGetNewRecord())) {
 throw nlapiCreateError("STOIC_ERR_INVALID_DATA", "Employee data is not valid",
true);
 }
 }

 function isEmployeeValid(employee) {
 return (!isProjectResource(employee) || hasValidLaborCost(employee));
 }

 function isProjectResource(employee) {
 return (employee.getFieldValue("isjobresource") === "T");
 }

 function hasValidLaborCost(employee) {
 var laborCost = parseFloat(employee.getFieldValue("laborcost"));

 return (Boolean(laborCost) && (laborCost > 0));

https://riptutorial.com/ 66

 }

 exports.beforeSubmit = beforeSubmit;
 return exports;
})();

// 2.0
define(["N/error"], function (err) {

 var exports = {};

 /**
 * User Event 2.0 example detailing usage of the Submit events
 *
 * @NApiVersion 2.x
 * @NModuleScope SameAccount
 * @NScriptType UserEventScript
 * @appliedtorecord employee
 */
 function beforeSubmit(scriptContext) {
 if (!isEmployeeValid(scriptContext)) {
 throw err.create({
 "name": "STOIC_ERR_INVALID_DATA",
 "message": "Employee data is not valid",
 "notifyOff": true
 });
 }
 }

 function isEmployeeValid(scriptContext) {
 return (!isProjectResource(scriptContext.newRecord) ||
hasValidLaborCost(scriptContext.newRecord));
 }

 function isProjectResource(employee) {
 return (employee.getValue({"fieldId" : "isjobresource"}));
 }

 function hasValidLaborCost(employee) {
 var laborCost = employee.getValue({"fieldId" : "laborcost"});

 return (Boolean(laborCost) && (laborCost > 0));
 }

 exports.beforeSubmit = beforeSubmit;
 return exports;
});

Note that we pass references to the new record into our validation because we do not care what
the values used to be; we are only concerned with the values that are about to be written to the
database. In 2.0, we do that via the scriptContext.newRecord reference, and in 1.0 we call the
global function nlapiGetNewRecord.

When the data being submitted is not valid, we create and throw an error. In a beforeSubmit event,
in order to prevent the changes from being written to the database, your function must throw an
Exception. Often developers try to return false from their function, expecting that to be enough,
but that is not sufficient. Error objects are created in 2.0 using the N/error module, and in 1.0 using
the global nlapiCreateError function; we then raise an Exception using our created error object with

https://riptutorial.com/ 67

the throw keyword.

After Submit: Determine whether a field was changed

After the record gets stored in the database, we want to inspect what was changed on the record.
We'll do this inspection by comparing values between the old and new record instances.

// 1.0, Revealing Module pattern
var myNamespace = myNamespace || {};
myNamespace.example = (function () {

 /**
 * User Event 1.0 example detailing usage of the Submit events
 *
 * @appliedtorecord employee
 */
 var exports = {};

 function afterSubmit(type) {
 notifySupervisor();
 }

 function notifySupervisor() {
 // Old and New record instances are retrieved from global functions
 var employee = nlapiGetNewRecord();
 var prevEmployee = nlapiGetOldRecord();

 // If Employee Status didn't change, there's nothing to do
 if (!didStatusChange(employee, prevEmployee)) {
 return;
 }

 // Otherwise, continue with business logic...
 }

 function didStatusChange(employee, prevEmployee) {
 var status = employee.getFieldValue("employeestatus");
 var prevStatus = prevEmployee.getFieldValue("employeestatus");

 /* !! Caution !!
 * Empty fields from the Old record come back as `null`
 * Empty fields from the New record come back as an empty String
 * This means you cannot simply compare the old and new
 */
 return ((prevStatus || status) && (status !== prevStatus));
 }

 exports.afterSubmit = afterSubmit;
 return exports;
})();

// 2.0
define(["N/runtime"], function (runtime) {

 /**
 * User Event 2.0 example detailing usage of the Submit events
 *
 * @NApiVersion 2.x
 * @NModuleScope SameAccount

https://riptutorial.com/ 68

 * @NScriptType UserEventScript
 * @appliedtorecord employee
 */
 var exports = {};

 function afterSubmit(scriptContext) {
 notifySupervisor(scriptContext);
 }

 function notifySupervisor(scriptContext) {
 // Old and New records are simply properties on scriptContext
 var employee = scriptContext.newRecord;
 var prevEmployee = scriptContext.oldRecord;

 // If Employee Status didn't change, there's nothing to do
 if (!didStatusChange(employee, prevEmployee)) {
 return;
 }

 // Otherwise, continue with business logic...
 }

 function didStatusChange(employee, prevEmployee) {
 var status = employee.getValue({"fieldId" : "employeestatus"});
 var prevStatus = prevEmployee.getValue({"fieldId" : "employeestatus"});

 /* !! Caution !!
 * Empty fields from the Old record come back as `null`
 * Empty fields from the New record come back as an empty String
 * This means you cannot simply compare the old and new
 */
 return ((prevStatus || status) && (status !== prevStatus));
 }

 exports.afterSubmit = afterSubmit;
 return exports;
});

Be very cautious when comparing values between old and new records. Empty fields from the old
record are returned as null, while empty fields from the new record are returned as an empty
String. This means you cannot simply compare the old with the new, or you will get false positives.
Any logic you write must handle the case where one is null and one is an empty String
appropriately.

Read User Event: Before and After Submit events online:
https://riptutorial.com/netsuite/topic/7200/user-event--before-and-after-submit-events

https://riptutorial.com/ 69

https://riptutorial.com/netsuite/topic/7200/user-event--before-and-after-submit-events

Chapter 23: User Event: Before Load event

Parameters

Parameter Details

SuiteScript 2.0 -

scriptContext {Object}

scriptContext.newRecord
{N/record.Record} A reference to the record being loaded from the
database

scriptContext.type {UserEventType} The action type that triggered this User Event

scriptContext.form
{N/ui/serverWidget.Form} A reference to the UI form that will be
rendered

SuiteScript 1.0 -

type {Object} The action type that triggered this User Event

form {nlobjForm} A reference to the UI form that will be rendered

request
{nlobjRequest} the HTTP GET request; only available when
triggered by browser requests

Remarks

beforeLoad

The Before Load event is triggered by any read operation on a record. Any time a user, a script, a
CSV import, or a web service request attempts to read a record from the database, the Before Load
event gets fired.

Record actions that trigger a beforeLoad event:

Create•
Edit•
View / Load•
Copy•
Print•
Email•
QuickView•

https://riptutorial.com/ 70

Typical Use Cases for beforeLoad

Modify the UI form before the user sees it•
Set default field values•
Data pre-processing•

User Events do not chain

Code written in User Events will not trigger any User Events on other records. For example,
loading the associated Customer record from the beforeLoad of a Sales Order record will not trigger
the Customer record's beforeLoad. Even if you are loading another Transaction record, its User
Events will not be fired.

NetSuite does this to avoid User Events triggering each other in an infinite loop. If you do need
User Events to fire in a chained sequence, other script types (e.g. RESTlets, Suitelets, Scheduled
Scripts) will need to be injected in between the events.

Event Handler returns void

The return type of the beforeLoad event handler is void. Any data returned from our event handler
has no effect on the system. We do not need to return anything from our handler function as we
cannot actually do anything with its returned value.

Examples

Minimal: Log a message on Before Load

// 1.0
function beforeLoad(type, form, request) {
 nlapiLogExecution("DEBUG", "Before Load", "type=" + type);
}

// 2.0
/**
 * @NApiVersion 2.x
 * @NScriptType UserEventScript
 * @NModuleScope SameAccount
 */
define(["N/log"], function (log) {
 function beforeLoad(context) {
 log.debug({
 "title": "Before Load",
 "details": "type=" + context.type
 });
 }

 return {

https://riptutorial.com/ 71

 "beforeLoad": beforeLoad
 };
});

Modifying the UI form

// 1.0
// Revealing Module pattern, structures 1.0 similar to 2.0
var myNamespace = myNamespace || {};
myNamespace.example = (function () {

 /** @appliedtorecord employee */
 var exports = {};

 function beforeLoad(type, form, request) {
 showBonusEligibility(form);
 }

 function showBonusEligibility(form) {
 var field = form.addField("custpage_is_bonus_eligible",
 "checkbox", "Eligible for Bonus?");
 field.setDefaultValue(isEligibleForBonus(nlapiGetNewRecord()) ? "T" : "F");
 }

 function isEligibleForBonus(rec) {
 // Implement actual business rules for bonus eligibility here
 return true;
 }

 exports.beforeLoad = beforeLoad;
 return exports;
})();

// 2.0
/**
 * @appliedtorecord employee
 * @NScriptType UserEventScript
 * @NApiVersion 2.x
 */
define(["N/log", "N/ui/serverWidget"], function (log, ui) {
 var exports = {};

 function beforeLoad(context) {
 showBonusEligibility(context.form);
 }

 function showBonusEligibility(form) {
 var field = form.addField({
 "id": "custpage_is_bonus_eligible",
 "label": "Eligible for Bonus?",
 "type": ui.FieldType.CHECKBOX
 });
 field.defaultValue = (isEligibleForBonus() ? "T" : "F");
 }

 function isEligibleForBonus(rec) {
 // Implement actual business rules for bonus eligibility here
 return true;
 }

https://riptutorial.com/ 72

 exports.beforeLoad = beforeLoad;
 return exports;
});

Restrict execution based on the action that triggered the User Event

// 1.0
// Utilize the type argument and raw Strings to filter your
// execution by the action
function beforeLoad(type, form, request) {
 // Don't do anything on APPROVE
 // Note that `type` is an Object, so we must use ==, not ===
 if (type == "approve") {
 return;
 }

 // Continue with normal business logic...
}

// 2.0
/**
 * @appliedtorecord employee
 * @NScriptType UserEventScript
 * @NApiVersion 2.x
 */
define([], function () {
 var exports = {};

 // Utilize context.type value and context.UserEventType enumeration
 // to filter your execution by the action
 function beforeLoad(context) {
 // Don't do anything on APPROVE
 if (context.type === context.UserEventType.APPROVE) {
 return;
 }

 // Continue with normal business logic...
 }

 exports.beforeLoad = beforeLoad;
 return exports;
});

Restrict execution based on the context that triggered the User Event

In SuiteScript 1.0, we retrieve the current execution context using
nlapiGetContext().getExecutionContext(), then we compare the result to the appropriate raw
Strings.

// 1.0 in Revealing Module pattern
var myNamespace = myNamespace || {};
myNamespace.example = (function () {
 var exports = {};

 function beforeLoad(type, form, request) {

https://riptutorial.com/ 73

 showBonusEligibility(form);
 }

 function showBonusEligibility(form) {
 // Doesn't make sense to modify UI form when the request
 // did not come from the UI
 var currentContext = nlapiGetContext().getExecutionContext();
 if (!wasTriggeredFromUi(currentContext)) {
 return;
 }

 // Continue with form modification...
 }

 function wasTriggeredFromUi(context) {
 // Current context must be compared to raw Strings
 return (context === "userinterface");
 }

 function isEligibleForBonus() {
 return true;
 }

 exports.beforeLoad = beforeLoad;
 return exports;
})();

In SuiteScript 2.0, we get the current execution context by importing the N/runtime module and
inspecting its executionContext property. We can then compare its value to the values of the
runtime.ContextType enumeration rather than raw Strings.

// 2.0
/**
 * @NScriptType UserEventScript
 * @NApiVersion 2.x
 */
define(["N/ui/serverWidget", "N/runtime"], function (ui, runtime) {
 var exports = {};

 function beforeLoad(scriptContext) {
 showBonusEligibility(scriptContext.form);
 }

 function showBonusEligibility(form) {
 // Doesn't make sense to modify the form if the
 if (!wasTriggeredFromUi(runtime.executionContext)) {
 return;
 }

 // Continue with form modification...
 }

 function wasTriggeredFromUi(context) {
 // Context can be compared to enumeration from runtime module
 return (context === runtime.ContextType.USER_INTERFACE);
 }

 exports.beforeLoad = beforeLoad;
 return exports;

https://riptutorial.com/ 74

});

Read User Event: Before Load event online: https://riptutorial.com/netsuite/topic/7119/user-event--
before-load-event

https://riptutorial.com/ 75

https://riptutorial.com/netsuite/topic/7119/user-event--before-load-event
https://riptutorial.com/netsuite/topic/7119/user-event--before-load-event

Chapter 24: Using the NetSuite Records
Browser

Examples

Using the NetSuite Records Browser

The Records Browser defines the schema for all scriptable record types; it is an extremely critical
reference tool for every SuiteScript developer. When you need to know how to reference a
particular field on a specific record type in your script, the Records Browser is your guide.

Direct Link

Other Schema

You may also notice tabs at the top of the Records Browser for Schema Browser and Connect
Browser. These are very similar to the Records Browser, but for different NetSuite APIs.

The Schema Browser provides the schema for the SOAP-based Web Services API, while the
Connect Browser provides the schema for the ODBC connector.

Navigating the Records Browser

You browse the Records Browser first by Record Type, i.e. "Sales Order", "Invoice", "Employee".
There is no searching capability within the Records Browser, so all navigation is done manually.
Record Types are organized alphabetically, so you first click on the first letter of the record type
you are interested in, then select the Record Type itself at the left.

For example, if you wanted to see the schema for the Subisidary record type, you would first click
on S at the top, then Subsidiary at the left.

Reading the Schema

Each schema provides you with an overwhelming amount of information about each record type. It
is important to know how to break down all of this information.

At the top of the schema is the name of the Record Type followed by the Internal ID of the record
type; this internal ID is the programmatic reference for the record type. The schema is then broken
up into several sections:

Fields: The Fields section lists the details for all of the record's body fields. The fields
described here can be used when you are working with the record currently in context, or
with a direct reference to a record object.

•

Sublists: The Sublists section shows all of the sublists on the record and every scriptable •

https://riptutorial.com/ 76

https://system.na1.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2016_1/script/record/account.html

column within each sublist. The fields in this section again apply when you are working with
the record currently in context, or with a direct reference to a record object.
Tabs: The Tabs section describes all of the native subtabs on the record type.•
Search Joins: The Search Joins section describes all of the related records through which
you can build joins in your searches of this record type.

•

Search Filters: The Search Filters section describes all of the fields that are available as a
search filter for this record type. The internal ID when using a specific field as a search filter
does not always match its internal ID as a body field.

•

Search Columns: The Search Columns section describes all of the fields that are available
as a search column for this record type. The internal ID when using a specific field as a
search column does not always match its internal ID as a body field.

•

Transform Types: The Transform Types section describes all of the record types that this
one can be transformed into using the record transformation API.

•

Finding a Field

As stated previously, there is no searching capability built in to the Records Browser. Once you've
navigated to the appropriate Record Type, if you don't already know a particular field's Internal ID,
the easiest way to find it is to use your browser's Find function (usually CTRL+F) to locate the field
by its name in the UI.

Required Fields

The Required column of the schema indicates whether this field is required to save the record. If
this column says true, then you will need to provide a value for this field when saving any record of
this type.

nlapiSubmitField and Inline Editing

The nlapiSubmitField column is a critical piece to understand. This column indicates whether the
field is available for inline editing. If nlapiSubmitField is true, then the field can be edited inline.
This greatly impacts how this field is handled when trying to use the nlapiSubmitField or
record.submitFields functions in your scripts.

When this column is true, you can safely use the Submit Fields APIs to update this field inline.
When it is false, you can still use these functions to update the field, but what actually happens
behind the scenes changes significantly.

When nlapiSubmitField is false for a particular field, and you utilize one of the Submit Fields APIs
on it, the scripting engine behind the scenes will actually do a full load of the record, update the
field, and submit the change back to the database. The end result is the same, but because the
entire record is loaded and saved, your script will actually use a lot more governance than you
might expect and will take longer to execute.

You can read about this in more detail on the Help page titled "Consequences of Using
nlapiSubmitField on Non Inline Editable Fields."

https://riptutorial.com/ 77

Read Using the NetSuite Records Browser online: https://riptutorial.com/netsuite/topic/7756/using-
the-netsuite-records-browser

https://riptutorial.com/ 78

https://riptutorial.com/netsuite/topic/7756/using-the-netsuite-records-browser
https://riptutorial.com/netsuite/topic/7756/using-the-netsuite-records-browser

Chapter 25: Working with Sublists

Introduction

NetSuite Records are divided into Body fields and Sublists. There are four types of sublists: Static,
Editor, Inline Editor, and List.

We are able to add, insert, edit, and remove line items using Sublist APIs.

For a reference on exactly which sublists support SuiteScript, see the NetSuite Help page titled
"Scriptable Sublists".

Remarks

Sublist Indices

Each line item in a sublist has an index that we can use to reference it.

In SuiteScript 1.0, these indices are 1-based, so the first line item has index 1, the second has
index 2, and so on.

In SuiteScript 2.0, these indices are 0-based, so the first line item has index 0, the second has
index 1, and so on. This of course more closely matches Array indexing in most languages,
including JavaScript.

Standard vs Dynamic Mode

The API we use for interacting with a sublist depends on whether we are working with the record
in Standard or Dynamic mode.

The Standard-mode APIs simply let us provide the index of the line we want to work with as a
parameter to the appropriate function.

The Dynamic-mode APIs follow a pattern:

Select the line we want to work with1.
Modify the selected line as desired2.
Commit the changes to the line3.

In Dynamic Mode, if we do not commit the changes to each line we modify, then those changes
will not be reflected when the record is saved.

Limitations

In order to work with sublist data via SuiteScript, we must have a reference in memory to the

https://riptutorial.com/ 79

record. This means the record either needs to be retrieved from the script context, or we need to
load the record from the database.

We cannot work with sublists via either lookup or submitFields functionality.

Static sublists do not support SuiteScript at all.

References:

NetSuite Help: "What is a Sublist?"•
NetSuite Help: "Sublist Types"•
NetSuite Help: "Scriptable Sublists"•
NetSuite Help: "Working with Sublist Line Items"•
NetSuite Help: "Sublist APIs"•
NetSuite Help: "Working with Records in Dynamic Mode"•

Examples

[1.0] How many lines on a sublist?

// How many Items does a Sales Order have...

// ... if we're in the context of a Sales Order record
var itemCount = nlapiGetLineItemCount("item");

// ... or if we've loaded the Sales Order
var order = nlapiLoadRecord("salesorder", 123);
var itemCount = order.getLineItemCount("item");

[1.0] Sublists in Standard Mode

// Working with Sublists in Standard mode ...

// ... if the record is in context:

// Add item 456 with quantity 10 at the end of the item sublist
var nextIndex = nlapiGetLineItemCount("item") + 1;
nlapiSetLineItemValue("item", "item", nextIndex, 456);
nlapiSetLineItemValue("item", "quantity", nextIndex, 10);

// Inserting item 234 with quantity 3 at the beginning of a sublist
nlapiInsertLineItem("item", 1);
nlapiSetLineItemValue("item", "item", 1, 234);
nlapiSetLineItemValue("item", "quantity", 1, 3);

// Insert item 777 with quantity 2 before the end of the last item
var itemCount = nlapiGetLineItemCount("item");
nlapiInsertLineItem("item", itemCount);
nlapiSetLineItemValue("item", "item", itemCount, 777);
nlapiSetLineItemValue("item", "quantity", itemCount, 2);

// Remove the first line item

https://riptutorial.com/ 80

http://www.riptutorial.com/netsuite/topic/9068/lookup-data-from-related-records
http://www.riptutorial.com/netsuite/topic/9082/inline-editing-with-suitescript

nlapiRemoveLineItem("item", 1);

// Remove the last line item
nlapiRemoveLineItem("item", nlapiGetLineItemCount("item"));

// ... or if we have a reference to the record (rec):

// Add item 456 with quantity 10 at the end of the item sublist
var nextIndex = rec.getLineItemCount("item") + 1;
rec.setLineItemValue("item", "item", nextIndex, 456);
rec.setLineItemValue("item", "quantity", nextIndex, 10);

// Insert item 777 with quantity 3 at the beginning of the sublist
rec.insertLineItem("item", 1);
rec.setLineItemValue("item", "item", 1, 777);
rec.setLineItemValue("item", "quantity", 1, 3);

// Remove the first line
rec.removeLineItem("item", 1);

// Remove the last line
rec.removeLineItem("item", rec.getLineItemCount("item"));

[1.0] Sublists in Dynamic Mode

// Adding a line item to the end of a sublist in Dynamic Mode...

// ... if the record is in context:
nlapiSelectNewLineItem("item");
nlapiSetCurrentLineItemValue("item", "item", 456);
nlapiSetCurrentLineItemValue("item", "quantity", 10);
nlapiCommitLineItem("item");

// ... or if we have a reference to the record (rec):
rec.selectNewLineItem("item");
rec.setCurrentLineItemValue("item", "item", 456);
rec.setCurrentLineItemValue("item", "quantity", 10);
rec.commitLineItem("item");

[1.0] Find a Line Item

// Which line has item 456 on it...

// ... if we're in the context of a record
var index = nlapiFindLineItemValue("item", "item", 456);
if (index > -1) {
 // we found it...
} else {
 // item 456 is not in the list
}

// ... or if we have a reference to the record (rec)
var index = rec.findLineItemValue("item", "item", 456);
if (index > -1) {
 // we found it on line "index"...
} else {
 // item 456 is not in the list

https://riptutorial.com/ 81

}

[2.0] How many lines on a sublist?

// How many lines in a sublist in SuiteScript 2.0...

require(["N/record"], function (r) {
 var rec = r.load({
 "type": r.Type.SALES_ORDER,
 "id": 123
 });

 // How many lines are on the Items sublist?
 var itemCount = rec.getLineCount({"sublistId": "item"});
});

[2.0] Sublists in Standard Mode

// Working with a sublist in Standard Mode in SuiteScript 2.0...

require(["N/record"], function (r) {
 var rec = r.create({
 "type": r.Type.SALES_ORDER,
 "isDynamic": false
 });

 // Set relevant body fields ...

 // Add line item 456 with quantity 10 at the beginning of the Items sublist
 rec.setSublistValue({"sublistId": "item", "fieldId": "item", "value": 456, "line": 0});
 rec.setSublistValue({"sublistId": "item", "fieldId": "quantity", "value": 10, "line": 0});

 // Insert line item 238 with quantity 5 at the beginning of the Items sublist
 rec.insertLine({"sublistId": "item", "line": 0});
 rec.setSublistValue({"sublistId": "item", "fieldId": "item", "value": 238, "line": 0});
 rec.setSublistValue({"sublistId": "item", "fieldId": "quantity", "value": 5, "line": 0});

 // Insert line item 777 with quantity 3 before the last line of the Items sublist
 var lastIndex = rec.getLineCount({"sublistId": "item"}) - 1; // 2.0 sublists have 0-based
index
 rec.insertLine({"sublistId": "item", "line": lastIndex}); // The last line will now
actually be at lastIndex + 1
 rec.setSublistValue({"sublistId": "item", "fieldId": "item", "value": 777, "line":
lastIndex});
 rec.setSublistValue({"sublistId": "item", "fieldId": "quantity", "value": 3, "line":
lastIndex});

 // Remove the first line
 rec.removeLine({"sublistId": "item", "line": 0});

 // Remove the last line
 rec.removeLine({"sublistId": "item", "line": rec.getLineCount({"sublistId": "item"}) -
1});

 rec.save();
});

https://riptutorial.com/ 82

[2.0] Sublists in Dynamic Mode

// Working with Sublists in Dynamic Mode in SuiteScript 2.0...

require(["N/record"], function (r) {
 var rec = r.create({
 "type": r.Type.SALES_ORDER,
 "isDynamic": true
 });

 // Set relevant body fields ...

 // Add line item 456 with quantity 10 at the end of the Items sublist
 var itemCount = rec.selectNewLine({"sublistId": "item"});
 rec.setCurrentSublistValue({"sublistId": "item", "fieldId": "item", "value": 456});
 rec.setCurrentSublistValue({"sublistId": "item", "fieldId": "quantity", "value": 10});
 rec.commitLine({"sublistId": "item"});

 // Insert line item 378 with quantity 2 at the beginning of the Items sublist
 rec.insertLine({"sublistId": "item", "line": 0});
 rec.selectLine({"sublistId": "item", "line": 0});
 rec.setCurrentSublistValue({"sublistId": "item", "fieldId": "item", "value": 378});
 rec.setCurrentSublistValue({"sublistId": "item", "fieldId": "quantity", "value": 2});
 rec.commitLine({"sublistId": "item"});

 // Insert line item 777 with quantity 3 before the last line of the Items sublist
 var lastIndex = rec.getLineCount({"sublistId": "item"}) - 1; // 2.0 sublists have 0-based
index
 rec.insertLine({"sublistId": "item", "line": lastIndex}); // The last line will now
actually be at lastIndex + 1
 rec.selectLine({"sublistId": "item", "line": lastIndex});
 rec.setCurrentSublistValue({"sublistId": "item", "fieldId": "item", "value": 777});
 rec.setCurrentSublistValue({"sublistId": "item", "fieldId": "quantity", "value": 3});
 rec.commitLine({"sublistId": "item"});

 // Remove the first line
 rec.removeLine({"sublistId": "item", "line": 0});

 // Remove the last line
 rec.removeLine({"sublistId": "item", "line": rec.getLineCount({"sublistId": "item"}) -
1});

 rec.save();
});

[2.0] Find a Line Item

// Finding a specific line item in SuiteScript 2.0...

require(["N/record"], function (r) {
 var rec = r.load({
 "type": r.Type.SALES_ORDER,
 "id": 123
 });

 // Find the line that contains item 777
 var index = rec.findSublistLineWithValue({"sublistId": "item", "fieldId": "item", "value":
777});

https://riptutorial.com/ 83

 // find returns -1 if the item isn't found
 if (index > -1) {
 // we found it on line "index"
 } else {
 // item 777 is not in the list
 }
});

Read Working with Sublists online: https://riptutorial.com/netsuite/topic/9098/working-with-sublists

https://riptutorial.com/ 84

https://riptutorial.com/netsuite/topic/9098/working-with-sublists

Credits

S.
No

Chapters Contributors

1
Getting started with
netsuite

4444, Community, erictgrubaugh, Kirk Lampert

2 Create a record Deepa N, michoel, YNK, Zain Shaikh

3 Executing a Search Adolfo Garza

4
Exploiting formula
columns in saved
searches

MetaEd

5 Governance erictgrubaugh

6
Inline Editing with
SuiteScript

erictgrubaugh

7 Loading a record Adolfo Garza, Eidolon108, LittleZul, michoel, VicDid, YNK

8
Lookup Data from
Related Records

erictgrubaugh

9 Mass Delete MG2016

10

Requesting
customField,
customFieldList &
customSearchJoin
with PHP API
Advanced Search

Hayden Thring

11
RESTlet - Process
external documents

MG2016

12
RestLet - Retrieve
Data (Basic)

MG2016

13
Script and Script
Deployment Records

erictgrubaugh

14
Script Type
Overview

erictgrubaugh

Scripting searches 15 Slavi Slavov

https://riptutorial.com/ 85

https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2387970/erictgrubaugh
https://riptutorial.com/contributor/490557/kirk-lampert
https://riptutorial.com/contributor/7671215/deepa-n
https://riptutorial.com/contributor/3230114/michoel
https://riptutorial.com/contributor/2761788/ynk
https://riptutorial.com/contributor/230431/zain-shaikh
https://riptutorial.com/contributor/5984803/adolfo-garza
https://riptutorial.com/contributor/524717/metaed
https://riptutorial.com/contributor/2387970/erictgrubaugh
https://riptutorial.com/contributor/2387970/erictgrubaugh
https://riptutorial.com/contributor/5984803/adolfo-garza
https://riptutorial.com/contributor/5190501/eidolon108
https://riptutorial.com/contributor/2553634/littlezul
https://riptutorial.com/contributor/3230114/michoel
https://riptutorial.com/contributor/4407099/vicdid
https://riptutorial.com/contributor/2761788/ynk
https://riptutorial.com/contributor/2387970/erictgrubaugh
https://riptutorial.com/contributor/5848848/mg2016
https://riptutorial.com/contributor/1164342/hayden-thring
https://riptutorial.com/contributor/5848848/mg2016
https://riptutorial.com/contributor/5848848/mg2016
https://riptutorial.com/contributor/2387970/erictgrubaugh
https://riptutorial.com/contributor/2387970/erictgrubaugh
https://riptutorial.com/contributor/8239503/slavi-slavov

with Filter
Expressions

16
Searches with large
number of results

Slavi Slavov

17 Sourcing erictgrubaugh

18
SS2.0 Suitelet Hello
World

LittleZul

19
SuiteScript - Process
Data from Excel

MG2016

20
Understanding
Transaction
Searches

erictgrubaugh

21
User Event: Before
and After Submit
events

erictgrubaugh

22
User Event: Before
Load event

erictgrubaugh

23
Using the NetSuite
Records Browser

erictgrubaugh

24
Working with
Sublists

erictgrubaugh

https://riptutorial.com/ 86

https://riptutorial.com/contributor/8239503/slavi-slavov
https://riptutorial.com/contributor/2387970/erictgrubaugh
https://riptutorial.com/contributor/2553634/littlezul
https://riptutorial.com/contributor/5848848/mg2016
https://riptutorial.com/contributor/2387970/erictgrubaugh
https://riptutorial.com/contributor/2387970/erictgrubaugh
https://riptutorial.com/contributor/2387970/erictgrubaugh
https://riptutorial.com/contributor/2387970/erictgrubaugh
https://riptutorial.com/contributor/2387970/erictgrubaugh

	About
	Chapter 1: Getting started with netsuite
	Remarks
	Where to get Help
	Versions
	Examples
	Eclipse SuiteCloud IDE Setup
	Hello, World 1.0 Client Script
	Hello, World 2.0 Client Script

	Chapter 2: Create a record
	Examples
	Create new Task
	Creating record in dynamic mode

	Chapter 3: Executing a Search
	Examples
	SS 2.0 Ad Hoc Search
	SS 2.0 From Saved Search

	Chapter 4: Executing a Search
	Examples
	SS 2.0 From Saved Search
	SS 2.0 Ad Hoc Search
	Performing a summarized search

	Chapter 5: Exploiting formula columns in saved searches
	Introduction
	Examples
	Oracle SQL CASE statement in a Netsuite formula
	Parsing a hierarchical record name using a regular expression
	Build a complex string by concatenating multiple fields
	Customize the CSS (stylesheet) for a column by inserting a DIV element
	Protect string formulas from corruption and injection attacks
	Protect field values from corruption when passing through a URL
	Test the value of `mainline` in an SQL CASE statement
	Complex, real-world-like example
	Count records with with and without a value provided in a field (count missing and non-missing values)

	Chapter 6: Governance
	Remarks

	Governance
	API Usage Limit
	Timeout and Instruction Count Limits
	Memory Usage Limit
	Examples
	How many units do I have remaining?

	Chapter 7: Inline Editing with SuiteScript
	Introduction
	Syntax
	Parameters
	Remarks

	Performance and Limitations
	References:
	Examples
	[1.0] Submit a Single Field
	[1.0] Submit Multiple Fields
	[2.0] Submit a Single Field
	[2.0] Submit Multiple Fields

	Chapter 8: Loading a record
	Examples
	SS 1.0
	SS 2.0

	Chapter 9: Lookup Data from Related Records
	Introduction
	Syntax
	Parameters
	Remarks

	Performance
	Limitations
	Examples
	[1.0] Lookup Single Field
	[1.0] Lookup Multiple Fields
	[1.0] Lookup Joined Fields
	[2.0] Lookup Single Field
	[2.0] Lookup Multiple Fields
	[2.0] Lookup Joined Fields

	Chapter 10: Mass Delete
	Introduction
	Examples
	Delete based on Search Criteria

	Chapter 11: Requesting customField, customFieldList & customSearchJoin with PHP API Advanced Search
	Introduction
	Examples
	customField & customFieldList Usage
	customSearchJoin Usage

	Chapter 12: RESTlet - Process external documents
	Introduction
	Examples
	RESTlet - store and attach file

	Chapter 13: RestLet - Retrieve Data (Basic)
	Introduction
	Examples
	Retrieve Customer Name

	Chapter 14: Script and Script Deployment Records
	Introduction
	Examples
	Script Records
	Script Deployment Records

	Chapter 15: Script Type Overview
	Introduction
	Examples
	The Client Script
	The User Event Script
	The Scheduled and Map/Reduce Scripts
	The Suitelet and Portlet Scripts
	The RESTlet
	The Mass Update Script
	The Workflow Action Script
	The Bundle Installation Script

	Chapter 16: Scripting searches with Filter Expressions
	Introduction
	Examples
	Filter term
	Filter expression
	Filter expressions vs Filter Objects
	Useful hints

	Chapter 17: Searches with large number of results
	Introduction
	Examples
	Using Search.ResultSet.each method
	Using ResultSet.getRange method
	Using Search.PagedData.fetch method
	Using dedicated Map/Reduce script

	Chapter 18: Sourcing
	Parameters
	Remarks
	Impact of Store Value
	Limitations of Sourcing
	Examples
	Pulling data into a custom field on Field Changed

	Defining Sourcing

	Chapter 19: SS2.0 Suitelet Hello World
	Examples
	Basic Hello World Suitelet - Plain Text Response

	Chapter 20: SuiteScript - Process Data from Excel
	Introduction
	Examples
	Update Rev Rec Dates and Rule

	Chapter 21: Understanding Transaction Searches
	Introduction
	Remarks
	Examples
	Filtering only on Internal ID
	Filtering with Main Line
	Filtering Specific Sublists

	Chapter 22: User Event: Before and After Submit events
	Syntax
	Parameters
	Remarks

	beforeSubmit and afterSubmit
	Typical Use Cases for beforeSubmit
	Typical Use Cases for afterSubmit
	User Events do not chain
	Event Handlers return void
	!! CAUTION !!
	Examples
	Minimal: Log a message
	Before Submit: Validate record before it is committed to database
	After Submit: Determine whether a field was changed

	Chapter 23: User Event: Before Load event
	Parameters
	Remarks

	beforeLoad
	Typical Use Cases for beforeLoad
	User Events do not chain
	Event Handler returns void
	Examples
	Minimal: Log a message on Before Load
	Modifying the UI form
	Restrict execution based on the action that triggered the User Event
	Restrict execution based on the context that triggered the User Event

	Chapter 24: Using the NetSuite Records Browser
	Examples
	Using the NetSuite Records Browser

	Other Schema
	Navigating the Records Browser
	Reading the Schema
	Finding a Field
	Required Fields
	nlapiSubmitField and Inline Editing

	Chapter 25: Working with Sublists
	Introduction
	Remarks
	Sublist Indices
	Standard vs Dynamic Mode
	Limitations
	References:
	Examples
	[1.0] How many lines on a sublist?
	[1.0] Sublists in Standard Mode
	[1.0] Sublists in Dynamic Mode
	[1.0] Find a Line Item
	[2.0] How many lines on a sublist?
	[2.0] Sublists in Standard Mode
	[2.0] Sublists in Dynamic Mode
	[2.0] Find a Line Item

	Credits

