
nginx

#nginx

Table of Contents

About 1

Chapter 1: Getting started with nginx 2

Remarks 2

Versions 2

Examples 2

Installation and setup 2

Nginx installation on Debian and Debian-based distros like Ubuntu 3

Restart NGINX 3

Ubuntu example 3

Reload NGINX configuration file 3

Ubuntu 14.04 example 4

Ubuntu 16.04 example 4

Shutdown NGINX 4

Nginx inside 4

Test if your changes in nginx.config are valid 5

Chapter 2: Logging 6

Examples 6

Basic example 6

Syntax 6

Reopen log files 6

Avoid logging for favicon.ico and robots.txt 6

Chapter 3: Nginx Configurations 7

Examples 7

Configuration File’s Structure 7

Simple Directives 7

Block Directive 7

Context 7

Comment 7

Test NGINX configuration file 7

Specify configuration file to load 8

config changes without restart 8

Logging to Syslog, incl. mapping of HTTP-Codes to Syslog severities. 8

Limit request methods 9

Chapter 4: nginx reverse proxy 10

Examples 10

simple reverse proxy 10

Chapter 5: Useful Redirects 11

Examples 11

HTTPS Redirect 11

Redirect requests to another server 11

Mobile Site Redirection 11

HTTP location on HTTPS server 12

Disallow Requests Based on Host or Country Code 12

Chapter 6: Using nginx to provide clean browser URLs 14

Examples 14

Redirect vs reverse proxy 14

Chapter 7: Wordpress blog integration with rails application using nginx 16

Examples 16

nginx server block 16

Credits 18

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: nginx

It is an unofficial and free nginx ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official nginx.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/nginx
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with nginx

Remarks

NGINX is pronounced like "engine x" and is commonly used as a high performance server for
protocols HTTP, HTTPS, SMTP, POP3 and IMAP. It can be used as a reverse proxy server, HTTP
cache or load balancing.

It is an open source project with source available here.

Versions

Version Original release date Latest version Status Release Date

0.5 2006-12-04 0.5.38 Legacy 2009-09-14

0.6 2007-06-14 0.6.39 Legacy 2009-09-14

0.7 2008-05-19 0.7.69 Legacy 2011-07-19

0.8 2009-06-02 0.8.55 Legacy 2011-07-19

1.0 2011-04-12 1.0.15 Legacy 2012-04-12

1.2 2012-04-23 1.2.9 Legacy 2013-05-13

1.4 2013-04-24 1.4.7 Legacy 2014-03-18

1.6 2014-04-24 1.6.3 Legacy 2015-04-07

1.8 2015-04-21 1.8.1 Legacy 2016-01-26

1.9 2015-04-28 1.9.15 Legacy 2016-04-19

1.10 2016-04-26 1.10.3 Stable 2016-05-31

1.11 2016-05-24 1.11.9 Mainline 2016-07-26

Examples

Installation and setup

Nginx is a Web server used to serve HTTP requests over the Internet.

Nginx is available on Linux, Windows and other OSes as direct download, and can also be built
from source. For detailed instructions see Nginx official reference.

https://riptutorial.com/ 2

http://hg.nginx.org/nginx/
https://www.nginx.com/resources/wiki/start/topics/tutorials/install/

ubuntu/debian

nginx stable version is available in official repo, it can be installed using

sudo apt-get install nginx

It will install and configure system startup files, but if you need latest version, you may need to add
official ppa.

sudo add-apt-repository ppa:nginx/stable
sudo apt-get update
sudo apt-get install nginx

above instructions will install latest stable edition.

Nginx installation on Debian and Debian-based distros like Ubuntu

Run command below to install nginx.

sudo apt-get install nginx

By default, Nginx automatically starts when it is installed. You can access the default Nginx
landing page to confirm that the software is running properly by visiting your server's domain name
or public IP address in your web browser.

but if you need latest version, you may need to add official ppa.

sudo add-apt-repository ppa:nginx/stable
sudo apt-get update
sudo apt-get install nginx

Restart NGINX

As a root user:

nginx -s restart

Ubuntu example

sudo service nginx restart

Reload NGINX configuration file

As a root user:

sudo nginx -s reload

https://riptutorial.com/ 3

Ubuntu 14.04 example

sudo service nginx reload

Ubuntu 16.04 example

sudo systemctl reload nginx

Before reloading, it is a good idea to check config for syntax errors:

sudo nginx -t

Or

sudo service nginx configtest

Shutdown NGINX

Run as a root user.

Fast shutdown:

nginx -s stop

Graceful shutdown:

nginx -s quit

Nginx inside

One of the biggest appeals of Nginx is the difference in how it works internally as compared to the
other popular servers, specially Apache.

Servers are busy programs as they have to serve requests from multiple clients. The more
requests a server can successfully serve per second, the better.

Nginx works on a concurrency paradigm known as Asynchronous IO.

In a conventional server, one thread is dedicated to one request. This means, once a thread takes
up a request, it is effectively unavailable for other requests. But in reality, a thread could do a lot
better by accepting a bunch of requests and serving them simultaneously. Asynchronous IO is
what enables this.

Nginx, therefore with its Asynchronous IO architecture, can serve many requests within one
thread.

https://riptutorial.com/ 4

Another good thing about Nginx is its relatively leaner resource footprint. Compared to Apache,
Nginx is less resource heavy, and this makes it suitable to cloud servers what tend not to be very
powerful.

There are certainly other Async IO server out there, but Nginx is the most well supported among
all in terms of pluginx (aka Nginx Modules).

Test if your changes in nginx.config are valid

Ubuntu 14.04 example

sudo nginx -t

Read Getting started with nginx online: https://riptutorial.com/nginx/topic/1121/getting-started-with-
nginx

https://riptutorial.com/ 5

https://riptutorial.com/nginx/topic/1121/getting-started-with-nginx
https://riptutorial.com/nginx/topic/1121/getting-started-with-nginx

Chapter 2: Logging

Examples

Basic example

Syntax

Syntax: log_format name string ...;
Syntax: access_log path [format [buffer=size] [gzip[=level]] [flush=time] [if=condition]];
access_log off;

Using them together

log_format compression '$remote_addr - $remote_user [$time_local] '
 '"$request" $status $bytes_sent '
 '"$http_referer" "$http_user_agent" "$gzip_ratio"';

access_log /spool/logs/nginx-access.log compression buffer=32k;
error_log /spool/logs/nginx-error.log;

Reopen log files

As a root user run:

nginx -s reopen

Avoid logging for favicon.ico and robots.txt

location = /favicon.ico {
 log_not_found off;
 access_log off;
}

location = /robots.txt {
 allow all;
 log_not_found off;
 access_log off;
}

Read Logging online: https://riptutorial.com/nginx/topic/2551/logging

https://riptutorial.com/ 6

https://riptutorial.com/nginx/topic/2551/logging

Chapter 3: Nginx Configurations

Examples

Configuration File’s Structure

nginx consists of modules which are controlled by directives specified in the configuration file.

Simple Directives

A simple directive consists of the name and parameters separated by spaces and ends with a
semicolon (;).

Block Directive

A block directive has the same structure as a simple directive, but instead of the semicolon it ends
with a set of additional instructions surrounded by braces ({ and }).

Context

If a block directive can have other directives inside braces, it is called a context (examples: events,
http, server, and location).

Directives placed in the configuration file outside of any contexts are considered to be in the main
context. The events and http directives reside in the main context, server in http, and location in
server.

Comment

The rest of a line after the # sign is considered a comment.

Test NGINX configuration file

You can check for syntax errors and referenced files in an NGINX configuration file before running
it with:

nginx -t

Alternatively you can run service script

https://riptutorial.com/ 7

service nginx configtest

While both of these commands will tell you if your new nginx configuration is ok [without killing
your current instance]. Configtest uses the running service and tells you if it passes or fails the
check whereas nginx -t will not only check the config but print any info, warning as well as error
messages.

Source: http://devget.net/nginxapache/nginx-configtest-vs-nginx-t/

Specify configuration file to load

nginx -c <file name>

Start NGINX with an explicit configuration file.

config changes without restart

nginx -s reload

Logging to Syslog, incl. mapping of HTTP-Codes to Syslog severities.

Paste this snippet somewhere in the http {} Block; or place it in it's own file in the
/etc/nginx/conf.d/ folder. Also see the official docs for logging to syslog.

Access Log

log_format fmt_syslog '[$time_local] $status $remote_addr $http_host "$request"
$body_bytes_sent $request_time "$http_user_agent" $remote_user';
map $status $log_is_error { "~^5\d\d" 1; default 0; }
map $status $log_is_warn { "~^4[0-8]{2}" 1; default 0; }
map $status $log_is_info { "~^[1-3]\d\d" 1; default 0; }
access_log
syslog:server=unix:/run/systemd/journal/syslog,nohostname,facility=local2,severity=error
fmt_syslog if=$log_is_error;
access_log
syslog:server=unix:/run/systemd/journal/syslog,nohostname,facility=local2,severity=warn
fmt_syslog if=$log_is_warn;
access_log
syslog:server=unix:/run/systemd/journal/syslog,nohostname,facility=local2,severity=info
fmt_syslog if=$log_is_info;

Error Log

error_log syslog:server=unix:/run/systemd/journal/syslog,nohostname,facility=local2 error;

This example assumes rsyslog (or similar) is listening on Socket /run/systemd/journal/syslog - as
it's default on Debian 8 when journald has activated ForwardToSyslog. Using this socket, you
bypass journald. If that socket is not available try /dev/log instead.

Feel free to use another facility instead of local2. You may also change the log_format to suit your
needs.

https://riptutorial.com/ 8

http://devget.net/nginxapache/nginx-configtest-vs-nginx-t/
http://nginx.org/en/docs/syslog.html
https://www.freedesktop.org/software/systemd/man/journald.conf.html
http://nginx.org/en/docs/http/ngx_http_log_module.html#log_format

Limit request methods

A usual Website just needs 3 HTTP Methods: GET, HEAD and POST. Block all other Methods by using
limit_except:

location / {
 [...]
 # Note: GET includes HEAD
 limit_except GET POST {
 deny all;
 }
 [...]
}

Read Nginx Configurations online: https://riptutorial.com/nginx/topic/2550/nginx-configurations

https://riptutorial.com/ 9

http://nginx.org/en/docs/http/ngx_http_core_module.html#limit_except
https://riptutorial.com/nginx/topic/2550/nginx-configurations

Chapter 4: nginx reverse proxy

Examples

simple reverse proxy

Define which servers to include in the load balancing scheme.
It's best to use the servers' private IPs for better performance and security.

upstream backend {

 ip_hash;
 server 10.10.10.10 slow_start=30s max_fails=3 fail_timeout=15s;
 server 10.10.10.12 slow_start=30s max_fails=3 fail_timeout=15s;

 # Activates the cache for connections to upstream servers.
 keepalive 20;
}

This server accepts all traffic to port 80 and passes it to the upstream.
Notice that the upstream name and the proxy_pass need to match.

server {
 listen 80;
 server_name example.com;

 location / {
 proxy_pass http://backend/;
 }
}

Read nginx reverse proxy online: https://riptutorial.com/nginx/topic/7431/nginx-reverse-proxy

https://riptutorial.com/ 10

https://riptutorial.com/nginx/topic/7431/nginx-reverse-proxy

Chapter 5: Useful Redirects

Examples

HTTPS Redirect

server {
 listen 80 default_server;
 listen [::]:80 default_server;
 server_name example.com www.example.com;
 return 307 https://$host$request_uri;
}

A 301 redirect is also an alternative but if a POST is made to a 301, then many clients will
resubmit the request as a GET - which almost always will fail serverside. A 307 mandates the
same request type.

Redirect requests to another server

server {
 server_name example.com;
 return 301 $scheme://example.net$request_uri;
}

Mobile Site Redirection

Nginx configuration to detect request from mobile user-agent and redirect them to mobile site.

location / {

 #mobile site handling as per user agent
 set $mobile_rewrite do_not_perform; // variable to store action. default set to not
perform redirection to mobile site.

 if ($http_user_agent ~*
"(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge
|maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm(
os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows
ce|xda|xiino") {
 set $mobile_rewrite perform;
 }

 if ($http_user_agent ~* "^(1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a
wa|abac|ac(er|oo|s\-
)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s
)|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-
|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-
d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-
5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp(i|ip)|hs\-c|ht(c(\-|
|_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac(|\-
|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt(

https://riptutorial.com/ 11

|\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg(g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-
w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-
cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v)|mwbp|mywa|n10[0-
2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-
|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-
8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-
7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-
)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-
0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v
)|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-
mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-
3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-|)|webc|whit|wi(g
|nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-)") {
 set $mobile_rewrite perform;
 }

 #google bot mobile handling
 if ($http_user_agent ~* "(googlebot-mobile)") {
 set $mobile_rewrite perform;
 }

 if ($mobile_rewrite = perform) {
 proxy_pass http://www.mobile-domain.com:$port;
 }
}

HTTP location on HTTPS server

HTTPS server with http location:

server {
 listen 443;
 root /var/www/
 location / {
 ...
 }
 location /http {
 rewrite ^ http://$host$request_uri? permanent;
 }
}

HTTP server redirects to HTTPS except one location:

server {
 root /var/www/
 location / {
 rewrite ^ https://$host$request_uri? permanent;
 }
 location /http {
 ...
 }
}

Disallow Requests Based on Host or Country Code

Use Nginx map to parse fields and reject requests.

https://riptutorial.com/ 12

http://nginx.org/en/docs/http/ngx_http_map_module.html

Allowed hosts
map $http_host $name {
 hostnames;

 default no;

 example.com yes;
 *.example.com yes;
 example.org yes;
 *.example.org yes;
 .example.net yes;
 wap.* yes;
}

Allowed countries
map $geoip_country_code $allowed_country {
 default no;
 country_code_1 yes;
 country_code_2 yes;
}

server {
 listen 80 default_server;
 listen [::]:80 default_server;

 # Disallow access based on hostname
 if ($name = no) {
 return 444;
 }

 # Disallow access based on GeoIP
 if ($allowed_country = no) {
 return 444;
 }
...

Read Useful Redirects online: https://riptutorial.com/nginx/topic/3631/useful-redirects

https://riptutorial.com/ 13

https://riptutorial.com/nginx/topic/3631/useful-redirects

Chapter 6: Using nginx to provide clean
browser URLs

Examples

Redirect vs reverse proxy

Professionally made web applications don't expose the internal details of the server environment
to the user. When you place an order at your retailer, you don't see (or have to type)
https://mydealer.com:8443/Dealerapp/entryPage.html, but just mydealer.com, although the app
server needs all the details given in the longer URL. This can be achieved via:

if ($scheme = http) {
 return 301 https://$server_name$request_uri;
}

This does a redirect. Even if the client didn't request a secure connection, the browser is at once
redirected to it. In countries having strict data privacy laws, you might even be obliged to do this
for any commercial site. The redirect way is taken because here the browser needs to know about
the secure connection, otherwise it wouldn't negotiate with the server to make it secure.

location /app/ {
 proxy_pass https://mydealer.com:8443/Dealerapp/entryPage.html;
}

This is a reverse proxy. It is transparent to the browser. So you can completely hide from the end
user whether you have one or more app servers, on which ports they listen, or how their
applications are named. Otherwise, if your datacenter needs to move the app to another server
that listens on 8543, all bookmarks of your clients would become invalid. This example also directs
the user to your entry page. This could be omitted if you name the entry page index.html. But
maybe you have several entry pages within an app that the user might want to bookmark, so you
are more flexible if you're not bound to index.html.

I postfixed the company URL with /app. This could be omitted if your domain only serves this app.
In case that in addition to the app, there also is some static content, like your company description,
you may want to have the simple URL for that.

This proxy only works for the entry page. I usually need two more URL schemes, one for static
content of the web app, like JavaScript, CSS, and images. I put all those in a folder structure
below a folder called serverapp, and write the following proxy:

location /app/serverapp/ {
 proxy_pass https://mydealer.com:8443/Dealerapp/serverapp/;
}

https://riptutorial.com/ 14

https://mydealer.com:8443/Dealerapp/entryPage.html

And another path for REST services; here the rest URL path doesn't match a folder, but a path of
a jax-rs REST service:

location /rest/ {
 proxy_pass https://mydealer.com:8443/Dealerapp/rest/;
}

One more step, rarely mentioned anywhere, needs to be taken. The app server runs under the
URL path /Dealerapp, so it will issue a session cookie having property path=Dealerapp. The
browser doesn't know this path, and due to its Same Origin Policy will ignore the cookie. We could
convince it via Cross-Origin Resource Sharing to allow this, but it's probably easier to modify the
cookie path by setting the path to /, writing something like

<session-config>
 <session-timeout>720</session-timeout>
 <cookie-config>
 <name>SZSESSION</name>
 <path>/</path>
 <http-only>true</http-only>
 <secure>true</secure>
 </cookie-config>
</session-config>

to our web.xml.

Read Using nginx to provide clean browser URLs online:
https://riptutorial.com/nginx/topic/6270/using-nginx-to-provide-clean-browser-urls

https://riptutorial.com/ 15

https://riptutorial.com/nginx/topic/6270/using-nginx-to-provide-clean-browser-urls

Chapter 7: Wordpress blog integration with
rails application using nginx

Examples

nginx server block

Once you have setup and configured the php5-fpm and wordpress settings you can configure the
/etc/nginx/conf/nginx.conf file as below.

You need to define the location blocks inside the server block and rewrite the url there as defined.

server {
listen 443 ssl;
 server_name abc.co.uk;
 root /home/ubuntu/www/abc/current/public;
 try_files $uri/index.html $uri @unicorn;
 ssl on;
 ssl_certificate /etc/nginx/ssl/abc.crt;
 ssl_certificate_key /etc/nginx/ssl/abc.key;
 location /blog/wp-admin/ {
 root /var/www/html/;
 index index.php;
 try_files $uri $uri/ /index.php?$args;
 location ~* \.(js|css|xml|txt|jpg)$ {
 expires 14d;
 root /var/www/html/;
 access_log off;
 }

 location ~ \.php$ {
 try_files $uri $uri/ /index.php;
 fastcgi_pass unix:/var/run/php5-fpm.sock;
 fastcgi_param SCRIPT_FILENAME $request_filename;
 fastcgi_index index.php;
 include /etc/nginx/conf/fastcgi_params;
 }

}
location ^~ /blog {
 root /var/www/html/;
 index index.php;
 try_files $uri $uri/ /index.php?$args;
 rewrite ^/blog/(.*)+$ /blog/index.php?$1;
 location ~* \.(js|css|xml|txt|jpg)$ {
 expires 14d;
 root /var/www/html/;
 access_log off;
 }

 location ~ \.php$ {
 try_files $uri $uri/ /index.php;
 fastcgi_pass unix:/var/run/php5-fpm.sock;
 fastcgi_param SCRIPT_FILENAME $request_filename;

https://riptutorial.com/ 16

 fastcgi_index index.php;
 include /etc/nginx/conf/fastcgi_params;
 }

 }

}

Read Wordpress blog integration with rails application using nginx online:
https://riptutorial.com/nginx/topic/3891/wordpress-blog-integration-with-rails-application-using-
nginx

https://riptutorial.com/ 17

https://riptutorial.com/nginx/topic/3891/wordpress-blog-integration-with-rails-application-using-nginx
https://riptutorial.com/nginx/topic/3891/wordpress-blog-integration-with-rails-application-using-nginx

Credits

S.
No

Chapters Contributors

1
Getting started with
nginx

Bbak, Community, I Am Batman, James, Marek Skiba, Mark
Stosberg, Neo, Przemysław Jagielski, rajarshig, RamenChef,
RationalDev, theDrifter, treecoder, Xevaquor

2 Logging Gustav, RationalDev, timbo

3 Nginx Configurations Bbak, James, Pablo Fernandez, RationalDev

4 nginx reverse proxy smart-developer

5 Useful Redirects
Aleksey Deryagin, Alexandre Maciel, Alexey Ten, Gaurav
Kumar, Joshua DeWald, Justin W., Keelan, Muaaz Rafi, smart-
developer, timbo

6
Using nginx to
provide clean
browser URLs

TAM

7

Wordpress blog
integration with rails
application using
nginx

Abid Iqbal

https://riptutorial.com/ 18

https://riptutorial.com/contributor/7451417/bbak
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3872951/i-am-batman
https://riptutorial.com/contributor/359034/james
https://riptutorial.com/contributor/6729812/marek-skiba
https://riptutorial.com/contributor/254318/mark-stosberg
https://riptutorial.com/contributor/254318/mark-stosberg
https://riptutorial.com/contributor/1126335/neo
https://riptutorial.com/contributor/6712731/przemyslaw-jagielski
https://riptutorial.com/contributor/6712731/przemyslaw-jagielski
https://riptutorial.com/contributor/4203686/rajarshig
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2800482/rationaldev
https://riptutorial.com/contributor/4370885/thedrifter
https://riptutorial.com/contributor/1206051/treecoder
https://riptutorial.com/contributor/1124467/xevaquor
https://riptutorial.com/contributor/904563/gustav
https://riptutorial.com/contributor/2800482/rationaldev
https://riptutorial.com/contributor/127660/timbo
https://riptutorial.com/contributor/7451417/bbak
https://riptutorial.com/contributor/359034/james
https://riptutorial.com/contributor/7595/pablo-fernandez
https://riptutorial.com/contributor/2800482/rationaldev
https://riptutorial.com/contributor/5218673/smart-developer
https://riptutorial.com/contributor/644386/aleksey-deryagin
https://riptutorial.com/contributor/6024951/alexandre-maciel
https://riptutorial.com/contributor/1016033/alexey-ten
https://riptutorial.com/contributor/6784424/gaurav-kumar
https://riptutorial.com/contributor/6784424/gaurav-kumar
https://riptutorial.com/contributor/22752/joshua-dewald
https://riptutorial.com/contributor/2332785/justin-w-
https://riptutorial.com/contributor/1544337/keelan
https://riptutorial.com/contributor/5224982/muaaz-rafi
https://riptutorial.com/contributor/5218673/smart-developer
https://riptutorial.com/contributor/5218673/smart-developer
https://riptutorial.com/contributor/127660/timbo
https://riptutorial.com/contributor/2162496/tam
https://riptutorial.com/contributor/2282559/abid-iqbal

	About
	Chapter 1: Getting started with nginx
	Remarks
	Versions
	Examples
	Installation and setup
	Nginx installation on Debian and Debian-based distros like Ubuntu
	Restart NGINX

	Ubuntu example
	Reload NGINX configuration file

	Ubuntu 14.04 example
	Ubuntu 16.04 example
	Shutdown NGINX
	Nginx inside
	Test if your changes in nginx.config are valid

	Chapter 2: Logging
	Examples
	Basic example

	Syntax
	Reopen log files
	Avoid logging for favicon.ico and robots.txt

	Chapter 3: Nginx Configurations
	Examples
	Configuration File’s Structure

	Simple Directives
	Block Directive
	Context
	Comment
	Test NGINX configuration file
	Specify configuration file to load
	config changes without restart
	Logging to Syslog, incl. mapping of HTTP-Codes to Syslog severities.
	Limit request methods

	Chapter 4: nginx reverse proxy
	Examples
	simple reverse proxy

	Chapter 5: Useful Redirects
	Examples
	HTTPS Redirect
	Redirect requests to another server
	Mobile Site Redirection
	HTTP location on HTTPS server
	Disallow Requests Based on Host or Country Code

	Chapter 6: Using nginx to provide clean browser URLs
	Examples
	Redirect vs reverse proxy

	Chapter 7: Wordpress blog integration with rails application using nginx
	Examples
	nginx server block

	Credits

