
nhibernate

#nhibernate



Table of Contents

About 1

Chapter 1: Getting started with nhibernate 2

Remarks 2

Examples 2

Installation or Setup 2

Chapter 2: Cascades 3

Syntax 3

Remarks 3

Examples 3

save-update 3

none 3

delete 3

delete-orphan 3

all 3

all-delete-orphan 4

Chapter 3: LINQ to NHibernate Queries 5

Remarks 5

Examples 5

Basic query 5

Chapter 4: Mappings 6

Examples 6

A sample of Model to Map 6

Xml Mappings 7

Fluent NHibernate Mappings 7

Chapter 5: QueryOver Queries 9

Remarks 9

Examples 9

Basic query 9

Query with join using JoinQueryOver 9

Query with join using JoinAlias 9



Credits 10



About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version 
from: nhibernate

It is an unofficial and free nhibernate ebook created for educational purposes. All the content is 
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at 
Stack Overflow. It is neither affiliated with Stack Overflow nor official nhibernate.

The content is released under Creative Commons BY-SA, and the list of contributors to each 
chapter are provided in the credits section at the end of this book. Images may be copyright of 
their respective owners unless otherwise specified. All trademarks and registered trademarks are 
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor 
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/nhibernate
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com


Chapter 1: Getting started with nhibernate

Remarks

This section provides an overview of what nhibernate is, and why a developer might want to use it.

It should also mention any large subjects within nhibernate, and link out to the related topics. 
Since the Documentation for nhibernate is new, you may need to create initial versions of those 
related topics.

Examples

Installation or Setup

Detailed instructions on getting nhibernate set up or installed.

Read Getting started with nhibernate online: https://riptutorial.com/nhibernate/topic/1663/getting-
started-with-nhibernate

https://riptutorial.com/ 2

https://riptutorial.com/nhibernate/topic/1663/getting-started-with-nhibernate
https://riptutorial.com/nhibernate/topic/1663/getting-started-with-nhibernate


Chapter 2: Cascades

Syntax

cascade="all-delete-orphan"•

Remarks

Entities has associations to other objects, this may be an association to a single item (many-to-
one) or an association to a collection (one-to-many, many-to-any).

At any rate, you are able to tell NHibernate to automatically traverse an entity's associations, and 
act according to the cascade option. For instance, adding an unsaved entity to a collection with 
save-update cascade will cause it to be saved along with its parent object, without any need for 
explicit instructions on our side.

https://ayende.com/blog/1890/nhibernate-cascades-the-different-between-all-all-delete-orphans-
and-save-update

Examples

save-update

when the object is saved/updated, check the associations and save/update any object that require 
it (including save/update the associations in many-to-many scenario).

none

do not do any cascades, let the users handles them by themselves.

delete

when the object is deleted, delete all the objects in the association.

delete-orphan

when the object is deleted, delete all the objects in the association. In addition to that, when an 
object is removed from the association and not associated with another object (orphaned), also 
delete it.

all

when an object is save/update/delete, check the associations and save/update/delete all the 
objects found.

https://riptutorial.com/ 3

https://ayende.com/blog/1890/nhibernate-cascades-the-different-between-all-all-delete-orphans-and-save-update
https://ayende.com/blog/1890/nhibernate-cascades-the-different-between-all-all-delete-orphans-and-save-update


all-delete-orphan

when an object is save/update/delete, check the associations and save/update/delete all the 
objects found. In additional to that, when an object is removed from the association and not 
associated with another object (orphaned), also delete it.

Read Cascades online: https://riptutorial.com/nhibernate/topic/2754/cascades

https://riptutorial.com/ 4

https://riptutorial.com/nhibernate/topic/2754/cascades


Chapter 3: LINQ to NHibernate Queries

Remarks

The LINQ to NHibernate driver is centered on the IQueryable<T> interface.

Be sure to add using NHibernate.Linq; in order to use the NHibernate LINQ provider.

Examples

Basic query

IQueryable<Cat> cats = session.Query<Cat>() 
    .Where(c => c.Name == "Max");

Read LINQ to NHibernate Queries online: https://riptutorial.com/nhibernate/topic/3544/linq-to-
nhibernate-queries

https://riptutorial.com/ 5

https://riptutorial.com/nhibernate/topic/3544/linq-to-nhibernate-queries
https://riptutorial.com/nhibernate/topic/3544/linq-to-nhibernate-queries


Chapter 4: Mappings

Examples

A sample of Model to Map

NHibernate uses classes to map into tables or views. Creating a Plain Old CLR Object (POCOs, 
sometimes called Plain Ordinary CLR Objects) is a good practice for persistent classes. A POCO 
has its data accessible through the standard .NET property mechanisms, shielding the internal 
representation from the publicly visible interface.

namespace Project 
{ 
    public class Customer 
    { 
        public virtual string Id { get; set; } 
 
        public virtual string Name { get; set; } 
 
        public virtual char Sex { get; set; } 
 
        public virtual float Weight { get; set;} 
 
        public virtual bool Active { get; set;} 
 
        public virtual DateTime Birthday { get; set;} 
 
        public Customer() 
        { 
        } 
    } 
}

NHibernate is not restricted in its usage of property types: all .NET types and primitives (like string, 
char and DateTime) can be mapped, including classes from the System.Collections and 
System.Collections.Generics namespaces. You can also map a relation between the entities, 
having properties that refer to another entity type. You can map them as values, collections of 
values, or associations to other entities. The property named Id here is a special property that 
represents the database identifier (primary key) of that class, which is highly recommended for 
entities like a Cat. NHibernate can use identifiers internally only, without having to declare them on 
the class, but we would lose some of the flexibility in our application architecture.

No special interface has to be implemented for persistent classes nor do we have to subclass from 
a special root persistent class. NHibernate also doesn't use any build time processing, such as IL 
manipulation; it relies solely on .NET reflection and runtime class enhancement. So, without any 
dependency in the POCO class on NHibernate, we can map it to a database table or view.

For the above mentioned runtime class enhancement to work, NHibernate requires that all public 
properties of an entity class are declared as virtual. The entity class must have a no-arguments 
constructor (protected or public) for NHibernate to create the objects.

https://riptutorial.com/ 6

https://en.wikipedia.org/wiki/Plain_Old_CLR_Object
https://en.wikipedia.org/wiki/Plain_Old_CLR_Object


Xml Mappings

The xml mapping uses a hbm.xml file which is a hibernate mapping file. It is a syntax xml file which 
contains the metadata required for the object/relational mapping. The metadata includes 
declaration of persistent classes and the mapping of properties (to columns and foreign key 
relationships to other entities) to database tables.

Add a file named Entity.hbm.xml into the project and set it as embedded resource on the properties 
tab. For sample, Customer.hbm.xml:

<?xml version="1.0" encoding="utf-8" ?> 
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2" 
    namespace="Project" assembly="Project"> 
 
    <class name="Customer" table="CUSTOMERS"> 
 
        <id name="Id"> 
            <column name="Customer_Id" sql-type="int" not-null="true"/> 
            <generator class="native" /> 
        </id> 
 
        <!-- A cat has to have a name, but it shouldn' be too long. --> 
        <property name="Name"> 
            <column name="Name" length="60" not-null="true" /> 
        </property> 
        <property name="Sex" /> 
        <property name="Weight" /> 
        <property name="Active" /> 
        <property name="Birthday" /> 
    </class> 
 
</hibernate-mapping>

The hibernate-mapping tag contains the namespace and assembly project information. The class 
tag contains the name of the entity on the project and the table which is been mapped. The id tag 
contains the mapping for the primary key where the column is specified by the column tag and 
generator tag define how the id is generated. The property tag contains information for the other 
columns in the database.

Fluent NHibernate Mappings

The Fluent NHibernate is a library to help you to map the entities using C# code instead of xml 
mappings. Fluent NHibernate uses the fluent pattern and it is based on conventions to create the 
mappings and it gives you the power of the visual studio tools (such as intellisense) to improve the 
way you map your entities.

Add the reference of the Fluent NHibernate from Nuget on your project and add a class 
CustomerMap.cs:

namespace Project.Mappings 
{ 
    public class CustomerMap : ClassMap<Customer> 
    { 

https://riptutorial.com/ 7

http://www.fluentnhibernate.org/
https://en.wikipedia.org/wiki/Fluent_interface
https://www.nuget.org/packages/FluentNHibernate/


        public CustomerMap() 
        { 
            Table("CUSTOMERS"); 
 
            Id(x => x.Id).Column("Customer_Id").GeneratedBy.Native(); 
 
            //map a property while specifying the max-length as well as setting 
            //it as not nullable. Will result in the backing column having 
            //these characteristics, but this will not be enforced in the model! 
            Map(x => x.Name) 
                .Length(16) 
                .Not.Nullable(); 
 
            Map(x => x.Sex); 
 
            Map(x => x.Weight); 
 
            Map(x => x.Active); 
 
            //Map a property while specifying the name of the column in the database 
            Map(x => x.Birthday, "BIRTHDAY"); 
 
            //Maps a many-to-one relationship 
            References(x => x.Company); 
 
            //Maps a one-to-many relationship, while also defining which 
            //column to use as key in the foreign table. 
            HasMany(x => x.Orders).KeyColumn("CustomerPk"); 
        } 
    } 
}

The CustomerMap class inhirits from ClassMap<T> that is the base class for mapping and contains all 
methods necessary to create the map of your T entity. The method Table define the table name 
you are mapping. The Id method is used to map the primery key column. The Map method is used 
to map other columns.

Read Mappings online: https://riptutorial.com/nhibernate/topic/3543/mappings

https://riptutorial.com/ 8

https://riptutorial.com/nhibernate/topic/3543/mappings


Chapter 5: QueryOver Queries

Remarks

NHibernate 3.0 introduced the QueryOver API, which combines the use of extension methods and 
lambda expressions to provide a statically typesafe wrapper around the ICriteria API. The ICriteria 
API is NHibernate's implementation of the Query Object pattern.

Examples

Basic query

A basic QueryOver query is performed against an ISession using the QueryOver<T> method, where T 
is the type of a mapped entity.

IList<Customer> customers = session.QueryOver<Customer>() 
    .Where(c => c.LastName == "Simpson") 
    .List();

Query with join using JoinQueryOver

To join and and for instance filter on the joined table use JoinQueryOver.

IList<Customer> customers = session.QueryOver<Customer>() 
    .Inner.JoinQueryOver(x => x.Organisation) 
    .Where(y => y.Name == "Acme Inc") 
    .List();

Query with join using JoinAlias

It's possible to use JoinAlias method to join several tables. It's useful when it's needed to specify 
some property from the joined table in the select statement:

Customer customerAlias = null; 
Organization organizationAlias = null; 
 
IList<Customer> customers = session.QueryOver(() => customerAlias) 
    .Left.JoinAlias(x => x.Organization, () => organizationAlias) 
    .Where(customer => customer.Name == "Customer Name") 
    .And(() => customerAlias.Age > 18) 
    .AndNot(() => organizationAlias.Name == "Forbidden Organization") 
    .List();

Read QueryOver Queries online: https://riptutorial.com/nhibernate/topic/3545/queryover-queries

https://riptutorial.com/ 9

http://martinfowler.com/eaaCatalog/queryObject.html
https://riptutorial.com/nhibernate/topic/3545/queryover-queries


Credits

S. 
No

Chapters Contributors

1
Getting started with 
nhibernate

Community, Felipe Oriani, Laurel

2 Cascades dove

3
LINQ to NHibernate 
Queries

ngm

4 Mappings aeliusd, Felipe Oriani, Nathan Tuggy

5 QueryOver Queries aeliusd, ngm, Roman Koliada

https://riptutorial.com/ 10

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/316799/felipe-oriani
https://riptutorial.com/contributor/6083675/laurel
https://riptutorial.com/contributor/30913/dove
https://riptutorial.com/contributor/206297/ngm
https://riptutorial.com/contributor/1737218/aeliusd
https://riptutorial.com/contributor/316799/felipe-oriani
https://riptutorial.com/contributor/4099598/nathan-tuggy
https://riptutorial.com/contributor/1737218/aeliusd
https://riptutorial.com/contributor/206297/ngm
https://riptutorial.com/contributor/5126411/roman-koliada

	About
	Chapter 1: Getting started with nhibernate
	Remarks
	Examples
	Installation or Setup


	Chapter 2: Cascades
	Syntax
	Remarks
	Examples
	save-update
	none
	delete
	delete-orphan
	all
	all-delete-orphan


	Chapter 3: LINQ to NHibernate Queries
	Remarks
	Examples
	Basic query


	Chapter 4: Mappings
	Examples
	A sample of Model to Map
	Xml Mappings
	Fluent NHibernate Mappings


	Chapter 5: QueryOver Queries
	Remarks
	Examples
	Basic query
	Query with join using JoinQueryOver
	Query with join using JoinAlias


	Credits



