
nsis

#nsis

Table of Contents

About 1

Chapter 1: Getting started with nsis 2

Remarks 2

Versions 2

Examples 2

Installation or Setup 2

Hello World! 2

Chapter 2: DotNET 4

Introduction 4

Remarks 4

.NET Values 4

Conclusion 5

Examples 5

Sample Example 5

Function w/ Macro 5

Chapter 3: Registering Libraries (RegDLL) 8

Introduction 8

Syntax 8

Parameters 8

Remarks 8

RegSrv32.exe 8

Examples 9

RegSrv32.exe Simple Usage 9

Macro: Register::DLL 9

Macro: UnRegister::DLL 10

Chapter 4: Services 12

Introduction 12

Syntax 12

Parameters 12

Examples 12

Service::Create 12

Service::QueryConfig 13

Service::State 14

Service::Start 14

Service::Stop 15

Service::Remove 15

Credits 17

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: nsis

It is an unofficial and free nsis ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official nsis.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/nsis
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with nsis

Remarks

NSIS (Nullsoft Scriptable Install System) is a professional open source system to create Windows
installers. It is designed to be as small and flexible as possible and is therefore very suitable for
internet distribution.

Being a user's first experience with your product, a stable and reliable installer is an important
component of succesful software. With NSIS you can create such installers that are capable of
doing everything that is needed to setup your software.

NSIS is script-based and allows you to create the logic to handle even the most complex
installation tasks. Many plug-ins and scripts are already available: you can create web installers,
communicate with Windows and other software components, install or update shared components
and more.

--> Taken from: https://sourceforge.net/projects/nsis/

Versions

Version Notes Release Date

2.00.0 2004-02-07

2.46.0 Probably the most common version seen in the wild. 2009-12-06

2.51.0 Final 2.x release, contains important security fixes. 2016-04-01

3.00.0 First version with official Unicode support. 2016-07-24

Examples

Installation or Setup

NSIS installer can be downloaded from http://nsis.sourceforge.net/Download. An exe of 1.6 MB
will be downloaded. You can install it using the wizard. While installing there are options to install

1. Full: Installs all the components
2. Lite: Basic and only essential components from the UI
3. Minimal: The NSIS core files only.
4. Custom: It's up to us to install whichever components that we need.

Hello World!

https://riptutorial.com/ 2

https://sourceforge.net/projects/nsis/
http://nsis.sf.net/Docs/AppendixF.html#v3.0
http://nsis.sourceforge.net/Download

Code, to be saved in „helloworld.nsi“:

Name "Hello World"
OutFile "helloworld.exe"
Section "Hello World"
MessageBox MB_OK "Hello World!"
SectionEnd

Compile it with:

<Path to NSIS>\makensis.exe <Path to script>\helloworld.nsi

Read Getting started with nsis online: https://riptutorial.com/nsis/topic/5491/getting-started-with-
nsis

https://riptutorial.com/ 3

https://riptutorial.com/nsis/topic/5491/getting-started-with-nsis
https://riptutorial.com/nsis/topic/5491/getting-started-with-nsis

Chapter 2: DotNET

Introduction

When the .NET Framework is being installed on a computer the .NET installer writes registry keys
when installation is successful. You can test whether the .NET Framework 4.5 or later is installed
by checking the registry key HKLM\SOFTWARE\Microsoft\NET Framework Setup\NDP\v4\Full for a DWORD
value named Release. The existence of this key indicates that the .NET Framework 4.5 or later
has been installed on that computer.

Remarks

.NET Values

Below is a chart that shows the versions number corresponding DWORD value in the Release key.
See below this chart for an example on how to use this in action. I will do my best to try and keep
this page up-to-date with the latest values but you can visit this page for an updated list if the
version you need isn't listed here.

Take special notice how there are two rows for 4.7, 4.6.2, 4.6.1, and 4.6. These
versions require you to check for both values as the operating systems vary.

Version Operating System Value of Release

4.7 Windows 10 Creator's Update 460798

4.7 All except Windows 10 Creator's Update 460805

4.6.2 Windows 10 Anniversary Update 394802

4.6.2 All except Windows 10 Anniversary Update 394806

4.6.1 Windows 10 November Update 394254

4.6.1 All except Windows 10 November Update 394271

4.6 Windows 10 393295

4.6 All except Windows 10 393297

4.5.2 All 379893

4.5.1 Windows 8.1 or Windows Server 2012 R2 378675

4.5.1 Windows 8 and Wiindows 7 378758

https://riptutorial.com/ 4

http://softables.tk/docs/advanced/dotnet#values
https://msdn.microsoft.com/en-us/library/hh925568(v=vs.110).aspx

Version Operating System Value of Release

4.5 All 378389

Conclusion

I haven't fully tested these functions completely so if you run into problems with one of
them let me know and I'll do my best to help. You can see this function working in
action with SharpDevelop Portable.

Like I said above I will do my best to try and keep these up-to-date but if you need a version that
these functions aren't checking for, let me know so I can revise them and update this page.

Examples

Sample Example

Here's an example on how to use the values in the registry to check for dotNET 4.5 or higher. I'd
recommend putting this snippet of code somewhere like .OnInit as this will execute before
anything else happens; this way it checks for .NET before any files get copied or registry changes
take place.

;=#
;= Define the registry key we're looking for.
!define DOTNET `SOFTWARE\Microsoft\NET Framework Setup\NDP\v4\Full`

Section "Main"
 ClearErrors ;= Clear any errors we may have encountered before hand.
 ReadRegDWORD $0 HKLM `${DOTNET}` `Release` ;= Read the value of Release.
 IfErrors +3 ;= If there is an error than there is no .NET installed so we jump 3 lines
down which lands on MessageBox.
 IntCmp $0 394806 +5 0 +5 ;= Compares the value for v4.6.2 if it matches then we jump 5
lines and avoids the MessageBox
 IntCmp $0 394802 +4 0 +4 ;= Remember to check for Windows 10's value aswell as the
above line won't.
 MessageBox MB_ICONSTOP|MB_TOPMOST `You must have v4.6.2 or greater of the .NET Framework
installed. Launcher aborting!` ;= If the check failed then we alert the user the required
version wasn't found.
 Call Unload ;= We call the Unload function here because we failed the .NET check.
 Quit ;= Closes the Launcher
SectionEnd

Function w/ Macro

Function dotNETCheck

Alternatively you can use the function I wrote below. This one makes use of LogicLib.nsh. It should
work out-of-the-box without having to know the .NET versions value from the Release key in the
registry. As it is written right now it only checks for versions between 4.5–4.7.

https://riptutorial.com/ 5

http://softables.tk/depository/development/SharpDevelop-Portable

This one requires the use of LogicLib.nsh
Copy and paste this code somewhere like .OnInit
Function dotNETCheck
 !define CheckDOTNET "!insertmacro _CheckDOTNET"
 !macro _CheckDOTNET _RESULT _VALUE
 Push `${_VALUE}`
 Call dotNETCheck
 Pop ${_RESULT}
 !macroend
 Exch $1
 Push $0
 Push $1

 ${If} $1 == "4.7"
 StrCpy $R1 460798
 ${ElseIf} $1 == "4.6.2"
 StrCpy $R1 394802
 ${ElseIf} $1 == "4.6.1"
 StrCpy $R1 394254
 ${ElseIf} $1 == "4.6"
 StrCpy $R1 393295
 ${ElseIf} $1 == "4.5.2"
 StrCpy $R1 379893
 ${ElseIf} $1 == "4.5.1"
 StrCpy $R1 378675
 ${ElseIf} $1 == "4.5"
 StrCpy $R1 378389
 ${Else}
 Goto dotNET_FALSE
 ${EndIf}

 ReadRegDWORD $R0 HKLM `SOFTWARE\Microsoft\NET Framework Setup\NDP\v4\Full` `Release`
 IfErrors dotNET_FALSE

 IntCmp $R0 $R1 dotNET_TRUE dotNET_FALSE

 dotNET_TRUE:
 StrCpy $0 true
 Goto dotNET_END

 dotNET_FALSE:
 StrCpy $0 false
 SetErrors

 dotNET_END:
 Pop $1
 Exch $0
FunctionEnd

USAGE
${CheckDOTNET} $0 "Version Number"

$0 Will hold the version number of the installed .NET
If $0 is empty ($0 == "") then the error flag is set.
${CheckDOTNET} $0 "4.5"
IfErrors 0 +4
MessageBox MB_ICONSTOP|MB_TOPMOST `You must have v4.5 or greater of the .NET Framework
installed. Launcher aborting!`
Call Unload

https://riptutorial.com/ 6

Quit
StrCmpS $0 true 0 -3

Read DotNET online: https://riptutorial.com/nsis/topic/10139/dotnet

https://riptutorial.com/ 7

https://riptutorial.com/nsis/topic/10139/dotnet

Chapter 3: Registering Libraries (RegDLL)

Introduction

In short, a DLL is a collection of small executable code, which can be called upon when needed by
a program that's running. The DLL lets the executable communicate with a specific device such as
a printer or may contain code to do any number of particular functions. As there are several
methods of implementations to do this, in this topic I'll be showing you how to register and
unregister any DLL that your application calls for; and we'll be doing so using the RegSrv32.exe
command line.

Syntax

${Register::DLL} "codec.ocx" "" $1 $0•
${UnRegister::DLL} "volumeCtrl.cpl" /DISABLEFSR $1 $0•
${RegisterDLL} "print.drv"•

Parameters

Switch Discription

/u Unregisters server.

/s Specifies regsvr32 to run silently and to not display any message boxes.

/n Specifies not to call DllRegisterServer. You must use this option with /i.

/i
:cmdline

Calls DllInstall passing it an optional [cmdline]. When used with /u, it calls dll
uninstall.

dllname Specifies the name of the dll file that will be registered.

/? Displays help at the command prompt.

Remarks

RegSrv32.exe

Using the RegSvr32.exe command line is my preferred method on getting you libraries registered so
let's start here first. Windows PCs coupled with Internet Explorer 3.0 or later come stock with
RegSvr32.exe. So there's a good chance your PC comes standard with this utility. Now if you are
running on a 64-bit machine, there are two variants you can consider. They can be found in either
$WINDIR\system32 or $WINDIR\SysWow32.

https://riptutorial.com/ 8

The parameters you can use with RegSrv32 are /u /s /i /n. The /u command switch will unregister
the file. The /i switch can be used with /u to call for DLL uninstallation. The /n parameter will not
call DllRegisterServer; it's used with /i which is the install switch. If you use /s, which means
silent, no message boxes will be displayed on Windows XP or later.

When using RegSvr32.exe from the command line you'll get message boxes after calling it. The
DLLSelfRegister function will be invoked unless using the aforementioned switch of course; if
successful an alert box will be shown denoting its success—as the same for failure which throws
an error message.

It's been my experience that the x64 RegSvr32.exe registers x86 DLL's properly on
Windows Vista and above (excludes XP; visit this article for more) and above so I use it
when installing on x64 systems even when registering a x86 file. Besides, Windows XP
is a dying art; bless it's heart. =)

Examples

RegSrv32.exe Simple Usage

#= Regardless of architecture we're using just the following

!define REGSVR `$SYSDIR\regsvr32.exe` #= define where RegSrv32 is
!define DLL `$AppDirectory\App\MyLegalProgram\myLegit.dll` #= define the file to register

##=
#= Command line usage is the same for both variants of RegSrv32 as follows
#= regsvr32 [/u] [/s] [/n] [/i[:cmdline]] DLL
#=
##= So in our .nsi file it would be similar to the following:

Exec `"${REGSVR}" /s "${DLL}"`

#= Moreover, you may also use the following

ExecWait `"${REGSVR}" /s "${DLL}"` $0 #= The $0 will contain the error code if any

#= The above will wait for exe to quit it's process before continuing

Macro: Register::DLL

##=
The variable $Bit will hold either 64 or 32 depending on system architecture
This is used with ${Register::DLL} and ${UnRegister::DLL}
Use this in the beginning of your code.
This snippet should only be used once.

Var Bit
System::Call "kernel32::GetCurrentProcess()i.s"
System::Call "kernel32::IsWow64Process(is,*i.r0)"
StrCmpS $0 0 +3
StrCpy $Bit 64
Goto +2
StrCpy $Bit 32

https://riptutorial.com/ 9

http://support.microsoft.com/kb/282747

##=
#= Register::DLL

USAGE:
${Register::DLL} "DLL Filename" /DISABLEFSR $0 $1

::DLL = Registers a DLL file.
/DISABLEFSR = Disables redirection if x64. Use "" to skip.
$0 = Return after call
$1 = '' '' ''

!define Register::DLL `!insertmacro _Register::DLL`
!macro _Register::DLL _DLL _FSR _ERR1 _ERR2
 StrCmpS $Bit 64 0 +4
 StrCmp ${_FSR} /DISABLEFSR 0 +3
 ExecDos::Exec /TOSTACK /DISABLEFSR `"${REGSVR}" /s "${_DLL}"`
 Goto +2
 ExecDos::Exec /TOSTACK `"${REGSVR}" /s "${_DLL}"`
 Pop ${_ERR1}
 Pop ${_ERR2}
!macroend

##=
Alternatively you can use this macro found in my travels
but you should include x64.nsh as this macro makes use
of it's function.

#= USAGE:
${RegisterDLL} "SomeLibrary.dll"

!define RegisterDLL "!insertmacro _RegisterDLL"
!macro _RegisterDLL _DLL
 ${If} ${RunningX64}
 ${DisableX64FSRedirection}
 ExecWait '"$SYSDIR\regsvr32.exe" /s "${_DLL}"'
 ${EnableX64FSRedirection}
 ${Else}
 RegDLL "${DLL}"
 ${EndIf}
!macroend

The /DISABLEFSR parameter should only be used on x64 machines. However, if you
mess up there's a failsafe in the macros that will dodge this bullet for you.

Macro: UnRegister::DLL

##=
The variable $Bit will hold either 64 or 32 depending on system architecture
This is used with ${Register::DLL} and ${UnRegister::DLL}
Use this in the beginning of your code.
This snippet should only be used once.

Var Bit
System::Call "kernel32::GetCurrentProcess()i.s"
System::Call "kernel32::IsWow64Process(is,*i.r0)"
StrCmpS $0 0 +3
StrCpy $Bit 64
Goto +2

https://riptutorial.com/ 10

StrCpy $Bit 32

#=#
#= UnRegister::DLL

USAGE:
${UnRegister::DLL} "DLL Filename" /DISABLEFSR $0 $1

::DLL = Unregisters a DLL file.
/DISABLEFSR = Disables redirection if x64. Use "" to skip.
$0 = Return after call
$1 = '' '' ''

!define UnRegister::DLL `!insertmacro _UnRegister::DLL`
!macro _UnRegister::DLL _DLL _FSR _ERR1 _ERR2
 StrCmpS $Bit 64 0 +4
 StrCmp ${_FSR} /DISABLEFSR 0 +3
 ExecDos::Exec /TOSTACK /DISABLEFSR `"${REGSVR}" /s /u "${_DLL}"`
 Goto +2
 ExecDos::Exec /TOSTACK `"${REGSVR}" /s /u "${_DLL}"`
 Pop ${_ERR1}
 Pop ${_ERR2}
!macroend

##=
Alternatively you can use this macro I found in my travels
but be sure to include the x64 plugin as this macro makes
use of it's function.

#= USAGE:
${UnregisterDLL} "SomeLibrary.dll"

!define UnregisterDLL "!insertmacro _UnregisterDLL"
!macro _UnregisterDLL _DLL
 ${If} ${RunningX64}
 ${DisableX64FSRedirection}
 ExecWait '"$SYSDIR\regsvr32.exe" /s /u "${_DLL}"'
 ${EnableX64FSRedirection}
 ${Else}
 UnRegDLL "${DLL}"
 ${EndIf}
!macroend

The /DISABLEFSR parameter should only be used on x64 machines. However, if you
mess up there's a failsafe in the macros that will dodge this bullet for you.

Read Registering Libraries (RegDLL) online: https://riptutorial.com/nsis/topic/10142/registering-
libraries--regdll-

https://riptutorial.com/ 11

https://riptutorial.com/nsis/topic/10142/registering-libraries--regdll-
https://riptutorial.com/nsis/topic/10142/registering-libraries--regdll-

Chapter 4: Services

Introduction

When installing a new program or updating an installation, it's good practice for you to stop an
installed application and anything related with it before overwriting any of its files. The same goes
for services. We need to be sure that the locally run service (if any) is stopped before we can
install or upgrade our program. In this topic I'll share a few macros ranging from creating a service
to querying a service to removing one all together.

Syntax

${Service::Create} "NAME" "PATH" "TYPE" "START" "DEPEND" /DISABLEFSR $0 $1•
${Service::Remove} "NAME" "" $0 $1•
${Service::QueryConfig} "NAME" /DISABLEFSR $0 $1•

Parameters

${Service::Create} Description

NAME The service name

PATH BinaryPathName to the .exe file

TYPE own, share, interact, kernel, filesys, rec

START boot, system, auto, demand, disabled, delayed-auto

DEPEND Dependencies(separated by / (forward slash))

/DISABLEFSR Disables redirection if x64. Use "" to skip.

$0 Return after call

$1 Return after call

Examples

Service::Create

##=
The variable $Bit will hold either 64 or 32 depending on system architecture
This is used with all the ${Service::} macros
Use this in the beginning of your code.
This snippet should only be used once.

https://riptutorial.com/ 12

Var Bit
System::Call "kernel32::GetCurrentProcess()i.s"
System::Call "kernel32::IsWow64Process(is,*i.r0)"
StrCmpS $0 0 +3
StrCpy $Bit 64
Goto +2
StrCpy $Bit 32

##=
#= Service::Create

USAGE:
${Service::Create} "NAME" "PATH" "TYPE" "START" "DEPEND" /DISABLEFSR $0 $1

::Create = Creates a service entry in the registry and Service Database
NAME = The Service name
PATH = BinaryPathName to the .exe file
TYPE = own|share|interact|kernel|filesys|rec
START = boot|system|auto|demand|disabled|delayed-auto
DEPEND = Dependencies(separated by / (forward slash))
/DISABLEFSR = Disables redirection if x64. Use "" to skip.
$0 = Return after call
$1 = '' '' ''

!define Service::Create `!insertmacro _Service::Create`
!macro _Service::Create _SVC _PATH _TYPE _START _DEPEND _FSR _ERR1 _ERR2
 StrCmpS $Bit 64 0 +7
 StrCmp "${_FSR}" /DISABLEFSR 0 +6
 StrCmp "${_DEPEND}" "" 0 +3
 ExecDos::Exec /TOSTACK /DISABLEFSR `"${SC}" create "${_SVC}" DisplayName=
"${FULLNAME}" binpath= "${_PATH}" type= "${_TYPE}" start= "${_START}"`
 Goto +7
 ExecDos::Exec /TOSTACK /DISABLEFSR `"${SC}" create "${_SVC}" DisplayName=
"${FULLNAME}" binpath= "${_PATH}" type= "${_TYPE}" start= "${_START}" depend= ""${_DEPEND}""`
 Goto +5
 StrCmp "${_DEPEND}" "" 0 +3
 ExecDos::Exec /TOSTACK `"${SC}" create "${_SVC}" DisplayName= "${FULLNAME}" binpath=
"${_PATH}" type= "${_TYPE}" start= "${_START}"`
 Goto +2
 ExecDos::Exec /TOSTACK `"${SC}" create "${_SVC}" DisplayName= "${FULLNAME}" binpath=
"${_PATH}" type= "${_TYPE}" start= "${_START}" depend= ""${_DEPEND}""`
 Pop ${_ERR1}
 Pop ${_ERR2}
!macroend

The /DISABLEFSR parameter should only be used on x64 machines. However, if you
mess up there's a failsafe in the macros that will dodge this bullet for you. This applies
to al the service macros listed here.

Service::QueryConfig

##=
#= Service::QueryConfig

USAGE:
${Service::QueryConfig} "NAME" /DISABLEFSR $0 $1

https://riptutorial.com/ 13

::QueryConfig = The service's binary path is returned.
NAME = The Service name
/DISABLEFSR = Disables redirection if x64. Use "" to skip.
$0 = Return after call | 1 = success
$1 = '' '' '' | Should be the file path

$1 will now hold the path to it's binary executable or an error

!define Service::QueryConfig `!insertmacro _Service::QueryConfig`
!macro _Service::QueryConfig _SVC _FSR _ERR1 _ERR2
 ReadEnvStr $R0 COMSPEC
 StrCmpS $Bit 64 0 +4
 StrCmp "${_FSR}" /DISABLEFSR 0 +3
 ExecDos::Exec /TOSTACK /DISABLEFSR `"$R0" /c "${SC} qc "${_SVC}" | FIND
"BINARY_PATH_NAME""`
 Goto +2
 ExecDos::Exec /TOSTACK `"$R0" /c "${SC} qc "${_SVC}" | FIND "BINARY_PATH_NAME""`
 Pop ${_ERR1}
 Pop ${_ERR2}
!macroend

Service::State

##=
#= Service::State

USAGE:
${Service::State} "NAME" /DISABLEFSR $0 $1

::State = The service's status is returned.
NAME = The Service name
/DISABLEFSR = Disables redirection if x64. Use "" to skip.
$0 = Return after call | 1 = success
$1 = '' '' '' | 1 = running

$1 will now hold "1" if running or "0" if not

!define Service::State `!insertmacro _Service::State`
!macro _Service::State _SVC _FSR _ERR1 _ERR2
 ReadEnvStr $R0 COMSPEC
 StrCmpS $Bit 64 0 +4
 StrCmp "${_FSR}" /DISABLEFSR 0 +3
 ExecDos::Exec /TOSTACK /DISABLEFSR `"$R0" /c "${SC} query "${_SVC}" | find /C "RUNNING""`
 Goto +2
 ExecDos::Exec /TOSTACK `"$R0" /c "${SC} query "${_SVC}" | find /C "RUNNING""`
 Pop ${_ERR1}
 Pop ${_ERR2}
!macroend

Service::Start

##=
#= Service::Start

USAGE:
${Service::Start} "NAME" /DISABLEFSR $0 $1

https://riptutorial.com/ 14

::Start = Start a service.
NAME = The Service name
/DISABLEFSR = Disables redirection if x64. Use "" to skip.
$0 = Return after call
$1 = '' '' ''

$1 will now hold "1" if running or "0" if not

!define Service::Start `!insertmacro _Service::Start`
!macro _Service::Start _SVC _FSR _ERR1 _ERR2
 StrCmpS $Bit 64 0 +4
 StrCmp "${_FSR}" /DISABLEFSR 0 +3
 ExecDos::Exec /TOSTACK /DISABLEFSR `"${SC}" start "${_SVC}"`
 Goto +2
 ExecDos::Exec /TOSTACK `"${SC}" start "${_SVC}"`
 Pop ${_ERR1}
 Pop ${_ERR2}
!macroend

Service::Stop

##=
#= Service::Stop

USAGE:
${Service::Stop} "NAME" /DISABLEFSR $0 $1

::Stop = Sends a STOP control request to a service.
NAME = The Service name
/DISABLEFSR = Disables redirection if x64. Use "" to skip.
$0 = Return after call
$1 = '' '' ''

!define Service::Stop `!insertmacro _Service::Stop`
!macro _Service::Stop _SVC _FSR _ERR1 _ERR2
 StrCmpS $Bit 64 0 +4
 StrCmp "${_FSR}" /DISABLEFSR 0 +3
 ExecDos::Exec /TOSTACK /DISABLEFSR `"${SC}" stop "${_SVC}"`
 Goto +2
 ExecDos::Exec /TOSTACK `"${SC}" stop "${_SVC}"`
 Pop ${_ERR1}
 Pop ${_ERR2}
!macroend

Service::Remove

##=
#= Service::Remove

USAGE:
${Service::Remove} "NAME" /DISABLEFSR $0 $1

::Remove = Deletes a service entry from the registry.
NAME = The Service name
/DISABLEFSR = Disables redirection if x64. Use "" to skip.
$0 = Return after call
$1 = '' '' ''

https://riptutorial.com/ 15

Be sure to stop a service first if it's running.

!define Service::Remove `!insertmacro _Service::Remove`
!macro _Service::Remove _SVC _FSR _ERR1 _ERR2
 StrCmpS $Bit 64 0 +4
 StrCmp "${_FSR}" /DISABLEFSR 0 +3
 ExecDos::Exec /TOSTACK /DISABLEFSR `"${SC}" delete "${_SVC}"`
 Goto +2
 ExecDos::Exec /TOSTACK `"${SC}" delete "${_SVC}"`
 Pop ${_ERR1}
 Pop ${_ERR2}
!macroend

Read Services online: https://riptutorial.com/nsis/topic/10184/services

https://riptutorial.com/ 16

https://riptutorial.com/nsis/topic/10184/services

Credits

S.
No

Chapters Contributors

1
Getting started with
nsis

Anders, Community, knipp, Roland Bär, wintersolider

2 DotNET demon.devin

3
Registering Libraries
(RegDLL)

demon.devin

4 Services demon.devin

https://riptutorial.com/ 17

https://riptutorial.com/contributor/3501/anders
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5300402/knipp
https://riptutorial.com/contributor/17646/roland-bar
https://riptutorial.com/contributor/3292325/wintersolider
https://riptutorial.com/contributor/8038086/demon-devin
https://riptutorial.com/contributor/8038086/demon-devin
https://riptutorial.com/contributor/8038086/demon-devin

	About
	Chapter 1: Getting started with nsis
	Remarks
	Versions
	Examples
	Installation or Setup
	Hello World!

	Chapter 2: DotNET
	Introduction
	Remarks

	.NET Values
	Conclusion
	Examples
	Sample Example
	Function w/ Macro

	Chapter 3: Registering Libraries (RegDLL)
	Introduction
	Syntax
	Parameters
	Remarks

	RegSrv32.exe
	Examples
	RegSrv32.exe Simple Usage
	Macro: Register::DLL
	Macro: UnRegister::DLL

	Chapter 4: Services
	Introduction
	Syntax
	Parameters
	Examples
	Service::Create
	Service::QueryConfig
	Service::State
	Service::Start
	Service::Stop
	Service::Remove

	Credits

