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About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version 
from: numpy

It is an unofficial and free numpy ebook created for educational purposes. All the content is 
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at 
Stack Overflow. It is neither affiliated with Stack Overflow nor official numpy.

The content is released under Creative Commons BY-SA, and the list of contributors to each 
chapter are provided in the credits section at the end of this book. Images may be copyright of 
their respective owners unless otherwise specified. All trademarks and registered trademarks are 
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor 
accurate, please send your feedback and corrections to info@zzzprojects.com
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Chapter 1: Getting started with numpy

Remarks

NumPy (pronounced “numb pie” or sometimes “numb pea”) is an extension to the Python 
programming language that adds support for large, multi-dimensional arrays, along with an 
extensive library of high-level mathematical functions to operate on these arrays.

Versions

Version Release Date

1.3.0 2009-03-20

1.4.0 2010-07-21

1.5.0 2010-11-18

1.6.0 2011-05-15

1.6.1 2011-07-24

1.6.2 2012-05-20

1.7.0 2013-02-12

1.7.1 2013-04-07

1.7.2 2013-12-31

1.8.0 2013-11-10

1.8.1 2014-03-26

1.8.2 2014-08-09

1.9.0 2014-09-07

1.9.1 2014-11-02

1.9.2 2015-03-01

1.10.0 2015-10-07

1.10.1 2015-10-12

1.10.2 2015-12-14

https://riptutorial.com/ 2

http://docs.scipy.org/doc/numpy-1.9.1/user/whatisnumpy.html
http://docs.scipy.org/doc/numpy/release.html#numpy-1-3-0-release-notes
http://docs.scipy.org/doc/numpy/release.html#numpy-1-4-0-release-notes
http://docs.scipy.org/doc/numpy/release.html#numpy-1-5-0-release-notes
http://docs.scipy.org/doc/numpy/release.html#numpy-1-6-0-release-notes
http://docs.scipy.org/doc/numpy/release.html#numpy-1-6-1-release-notes
http://docs.scipy.org/doc/numpy/release.html#numpy-1-6-2-release-notes
http://docs.scipy.org/doc/numpy/release.html#numpy-1-7-0-release-notes
http://docs.scipy.org/doc/numpy/release.html#numpy-1-7-1-release-notes
http://docs.scipy.org/doc/numpy/release.html#numpy-1-7-2-release-notes
http://docs.scipy.org/doc/numpy/release.html#numpy-1-8-0-release-notes
http://docs.scipy.org/doc/numpy/release.html#numpy-1-8-1-release-notes
http://docs.scipy.org/doc/numpy/release.html#numpy-1-8-2-release-notes
http://docs.scipy.org/doc/numpy/release.html#numpy-1-9-0-release-notes
http://docs.scipy.org/doc/numpy/release.html#numpy-1-9-1-release-notes
http://docs.scipy.org/doc/numpy/release.html#numpy-1-9-2-release-notes
http://docs.scipy.org/doc/numpy/release.html#numpy-1-10-0-release-notes
http://docs.scipy.org/doc/numpy/release.html#numpy-1-10-1-release-notes
http://docs.scipy.org/doc/numpy/release.html#numpy-1-10-2-release-notes


Version Release Date

1.10.4* 2016-01-07

1.11.0 2016-05-29

Examples

Installation on Mac

The easiest way to set up NumPy on Mac is with pip

pip install numpy 

Installation using Conda. 
Conda available for Windows, Mac, and Linux

Install Conda. There are two ways to install Conda, either with Anaconda (Full package, 
include numpy) or Miniconda (only Conda,Python, and the packages they depend on, 
without any additional package). Both Anaconda & Miniconda install the same Conda.

1. 

Additional command for Miniconda, type the command conda install numpy2. 

Installation on Windows

Numpy installation through pypi (the default package index used by pip) generally fails on 
Windows computers. The easiest way to install on Windows is by using precompiled binaries.

One source for precompiled wheels of many packages is Christopher Gohkle's site. Choose a 
version according to your Python version and system. An example for Python 3.5 on a 64 bit 
system:

Download numpy-1.11.1+mkl-cp35-cp35m-win_amd64.whl from here1. 
Open a Windows terminal (cmd or powershell)2. 
Type the command pip install C:\path_to_download\numpy-1.11.1+mkl-cp35-cp35m-
win_amd64.whl

3. 

If you don't want to mess around with single packages, you can use the Winpython distribution 
which bundles most packages together and provides a confined environment to work with. 
Similarly, the Anaconda Python distrubution comes pre-installed with numpy and numerous other 
common packages.

Another popular source is the conda package manager, which also supports virtual environments.

Download and install conda.1. 
Open a Windows terminal.2. 
Type the command conda install numpy3. 

Installation on Linux
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NumPy is available in the default repositories of most popular Linux distributions and can be 
installed in the same way that packages in a Linux distribution are usually installed.

Some Linux distributions have different NumPy packages for Python 2.x and Python 3.x. In 
Ubuntu and Debian, install numpy at the system level using the APT package manager:

sudo apt-get install python-numpy 
sudo apt-get install python3-numpy 

For other distributions, use their package managers, like zypper (Suse), yum (Fedora) etc.

numpy can also be installed with Python's package manager pip for Python 2 and with pip3 for 
Python 3:

pip install numpy  # install numpy for Python 2 
pip3 install numpy  # install numpy for Python 3

pip is available in the default repositories of most popular Linux distributions and can be installed 
for Python 2 and Python 3 using:

sudo apt-get install python-pip  # pip for Python 2 
sudo apt-get install python3-pip  # pip for Python 3

After installation, use pip for Python 2 and pip3 for Python 3 to use pip for installing Python 
packages. But note that you might need to install many dependencies, which are required to build 
numpy from source (including development-packages, compilers, fortran etc).

Besides installing numpy at the system level, it is also common (perhaps even highly 
recommended) to install numpy in virtual environments using popular Python packages such as 
virtualenv. In Ubuntu, virtualenv can be installed using:

sudo apt-get install virtualenv

Then, create and activate a virtualenv for either Python 2 or Python 3 and then use pip to install 
numpy:

virtualenv venv  # create virtualenv named venv for Python 2 
virtualenv venv -p python3  # create virtualenv named venv for Python 3 
source venv/bin/activate  # activate virtualenv named venv 
pip install numpy  # use pip for Python 2 and Python 3; do not use pip3 for Python3

Basic Import

Import the numpy module to use any part of it.

import numpy as np

Most examples will use np as shorthand for numpy. Assume "np" means "numpy" in code 
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examples.

x = np.array([1,2,3,4])

Temporary Jupyter Notebook hosted by Rackspace

Jupyter Notebooks are an interactive, browser-based development environment. They were 
originally developed to run computation python and as such play very well with numpy. To try 
numpy in a Jupyter notebook without fully installing either on one's local system Rackspace 
provides free temporary notebooks at tmpnb.org.

Note: that this is not a proprietary service with any sort of upsells. Jupyter is a wholly open-
sourced technology developed by UC Berkeley and Cal Poly San Luis Obispo. Rackspace 
donates this service as part of the development process.

To try numpy at tmpnb.org:

visit tmpnb.org1. 
either select Welcome to Python.ipynb or2. 
New >> Python 2 or3. 
New >> Python 34. 

Read Getting started with numpy online: https://riptutorial.com/numpy/topic/823/getting-started-
with-numpy
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Chapter 2: Arrays

Introduction

N-dimensional arrays or ndarrays are numpy's core object used for storing items of the same data 
type. They provide an efficient data structure that is superior to ordinary Python's arrays.

Remarks

Whenever possible express operations on data in terms of arrays and vector operations. Vector 
operations execute much faster than equivalent for loops

Examples

Create an Array

Empty array

np.empty((2,3))

Note that in this case, the values in this array are not set. This way of creating an array is therefore 
only useful if the array is filled later in the code.

From a list

np.array([0,1,2,3]) 
# Out: array([0, 1, 2, 3]) 

Create a range

np.arange(4) 
# Out: array([0, 1, 2, 3])

Create Zeros

np.zeros((3,2)) 
# Out: 
# array([[ 0.,  0.], 
#        [ 0.,  0.], 
#        [ 0.,  0.]])

Create Ones

np.ones((3,2)) 
# Out: 
# array([[ 1.,  1.], 
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#        [ 1.,  1.], 
#        [ 1.,  1.]])

Create linear-spaced array items

np.linspace(0,1,21) 
# Out: 
# array([ 0.  ,  0.05,  0.1 ,  0.15,  0.2 ,  0.25,  0.3 ,  0.35,  0.4 , 
#         0.45,  0.5 ,  0.55,  0.6 ,  0.65,  0.7 ,  0.75,  0.8 ,  0.85, 
#         0.9 ,  0.95,  1.  ])

Create log-spaced array items

np.logspace(-2,2,5) 
# Out: 
# array([  1.00000000e-02,   1.00000000e-01,   1.00000000e+00, 
#          1.00000000e+01,   1.00000000e+02])

Create array from a given function

np.fromfunction(lambda i: i**2, (5,)) 
# Out: 
# array([  0.,   1.,   4.,   9.,  16.]) 
np.fromfunction(lambda i,j: i**2, (3,3)) 
# Out: 
# array([[ 0.,  0.,  0.], 
#        [ 1.,  1.,  1.], 
#        [ 4.,  4.,  4.]])

Array operators

x = np.arange(4) 
x 
#Out:array([0, 1, 2, 3])

scalar addition is element wise

x+10 
#Out: array([10, 11, 12, 13])

scalar multiplication is element wise

x*2 
#Out: array([0, 2, 4, 6])

array addition is element wise

x+x 
#Out: array([0, 2, 4, 6]) 

array multiplication is element wise
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x*x 
#Out: array([0, 1, 4, 9])

dot product (or more generally matrix multiplication) is done with a function

x.dot(x) 
#Out: 14

In Python 3.5, the @ operator was added as an infix operator for matrix multiplication

x = np.diag(np.arange(4)) 
print(x) 
''' 
   Out: array([[0, 0, 0, 0], 
   [0, 1, 0, 0], 
   [0, 0, 2, 0], 
   [0, 0, 0, 3]]) 
''' 
print(x@x) 
print(x) 
''' 
   Out: array([[0, 0, 0, 0], 
   [0, 1, 0, 0], 
   [0, 0, 4, 0], 
   [0, 0, 0, 9]]) 
'''

Append. Returns copy with values appended. NOT in-place.

#np.append(array, values_to_append, axis=None) 
x = np.array([0,1,2,3,4]) 
np.append(x, [5,6,7,8,9]) 
# Out: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 
x 
# Out: array([0, 1, 2, 3, 4]) 
y = np.append(x, [5,6,7,8,9]) 
y 
# Out: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

hstack. Horizontal stack. (column stack) 
vstack. Vertical stack. (row stack)

# np.hstack(tup), np.vstack(tup) 
x = np.array([0,0,0]) 
y = np.array([1,1,1]) 
z = np.array([2,2,2]) 
np.hstack(x,y,z) 
# Out: array([0, 0, 0, 1, 1, 1, 2, 2, 2]) 
np.vstack(x,y,z) 
# Out: array([[0, 0, 0], 
#             [1, 1, 1], 
#             [2, 2, 2]])

Array Access
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Slice syntax is i:j:k where i is the starting index (inclusive), j is the stopping index (exclusive) 
and k is the step size. Like other python data structures, the first element has an index of 0:

x = np.arange(10) 
x[0] 
# Out: 0 
 
x[0:4] 
# Out: array([0, 1, 2, 3]) 
 
x[0:4:2] 
# Out:array([0, 2])

Negative values count in from the end of the array. -1 therefore accesses the last element in an 
array:

x[-1] 
# Out: 9 
x[-1:0:-1] 
# Out: array([9, 8, 7, 6, 5, 4, 3, 2, 1])

Multi-dimensional arrays can be accessed by specifying each dimension separated by commas. 
All previous rules apply.

x = np.arange(16).reshape((4,4)) 
x 
# Out: 
#     array([[ 0,  1,  2,  3], 
#            [ 4,  5,  6,  7], 
#            [ 8,  9, 10, 11], 
#            [12, 13, 14, 15]]) 
 
x[1,1] 
# Out: 5 
 
x[0:3,0] 
# Out: array([0, 4, 8]) 
 
x[0:3, 0:3] 
# Out: 
#     array([[ 0,  1,  2], 
#            [ 4,  5,  6], 
#            [ 8,  9, 10]]) 
 
x[0:3:2, 0:3:2] 
# Out: 
#     array([[ 0,  2], 
#            [ 8, 10]])

Transposing an array

arr = np.arange(10).reshape(2, 5)

Using .transpose method:

https://riptutorial.com/ 9



arr.transpose() 
# Out: 
#      array([[0, 5], 
#            [1, 6], 
#            [2, 7], 
#            [3, 8], 
#            [4, 9]])

.T method:

arr.T 
# Out: 
#     array([[0, 5], 
#            [1, 6], 
#            [2, 7], 
#            [3, 8], 
#            [4, 9]])

Or np.transpose:

np.transpose(arr) 
# Out: 
#     array([[0, 5], 
#            [1, 6], 
#            [2, 7], 
#            [3, 8], 
#            [4, 9]])

In the case of a 2-dimensional array, this is equivalent to a standard matrix transpose (as depicted 
above). In the n-dimensional case, you may specify a permutation of the array axes. By default, 
this reverses array.shape:

a = np.arange(12).reshape((3,2,2)) 
a.transpose() # equivalent to a.transpose(2,1,0) 
# Out: 
#   array([[[ 0,  4,  8], 
#           [ 2,  6, 10]], 
# 
#          [[ 1,  5,  9], 
#           [ 3,  7, 11]]])

But any permutation of the axis indices is possible:

a.transpose(2,0,1) 
# Out: 
#    array([[[ 0,  2], 
#            [ 4,  6], 
#            [ 8, 10]], 
# 
#           [[ 1,  3], 
#            [ 5,  7], 
#            [ 9, 11]]]) 
 
a = np.arange(24).reshape((2,3,4))  # shape (2,3,4) 
a.transpose(2,0,1).shape 
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# Out: 
#    (4, 2, 3)

Boolean indexing

arr = np.arange(7) 
print(arr) 
# Out: array([0, 1, 2, 3, 4, 5, 6])

Comparison with a scalar returns a boolean array:

arr > 4 
# Out: array([False, False, False, False, False,  True,  True], dtype=bool)

This array can be used in indexing to select only the numbers greater than 4:

arr[arr>4] 
# Out: array([5, 6])

Boolean indexing can be used between different arrays (e.g. related parallel arrays):

# Two related arrays of same length, i.e. parallel arrays 
idxs = np.arange(10) 
sqrs = idxs**2 
 
# Retrieve elements from one array using a condition on the other 
my_sqrs = sqrs[idxs % 2 == 0] 
print(my_sqrs) 
# Out: array([0, 4, 16, 36, 64])

Reshaping an array

The numpy.reshape (same as numpy.ndarray.reshape) method returns an array of the same total size, 
but in a new shape:

print(np.arange(10).reshape((2, 5))) 
# [[0 1 2 3 4] 
#  [5 6 7 8 9]]

It returns a new array, and doesn't operate in place:

a = np.arange(12) 
a.reshape((3, 4)) 
print(a) 
# [ 0  1  2  3  4  5  6  7  8  9 10 11]

However, it is possible to overwrite the shape attribute of an ndarray:

a = np.arange(12) 
a.shape = (3, 4) 
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print(a) 
# [[ 0  1  2  3] 
#  [ 4  5  6  7] 
#  [ 8  9 10 11]]

This behavior might be surprising at first, but ndarrays are stored in contiguous blocks of memory, 
and their shape only specifies how this stream of data should be interpreted as a multidimensional 
object.

Up to one axis in the shape tuple can have a value of -1. numpy will then infer the length of this axis 
for you:

a = np.arange(12) 
print(a.reshape((3, -1))) 
# [[ 0  1  2  3] 
#  [ 4  5  6  7] 
#  [ 8  9 10 11]]

Or:

a = np.arange(12) 
print(a.reshape((3, 2, -1))) 
 
# [[[ 0  1] 
#   [ 2  3]] 
 
#  [[ 4  5] 
#   [ 6  7]] 
 
#  [[ 8  9] 
#   [10 11]]]

Multiple unspecified dimensions, e.g. a.reshape((3, -1, -1)) are not allowed and will throw a 
ValueError.

Broadcasting array operations

Arithmetic operations are performed elementwise on Numpy arrays. For arrays of identical shape, 
this means that the operation is executed between elements at corresponding indices.

# Create two arrays of the same size 
a = np.arange(6).reshape(2, 3) 
b = np.ones(6).reshape(2, 3) 
 
a 
# array([0, 1, 2], 
#       [3, 4, 5]) 
b 
# array([1, 1, 1], 
#       [1, 1, 1]) 
 
# a + b: a and b are added elementwise 
a + b 
# array([1, 2, 3], 
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#       [4, 5, 6])

Arithmetic operations may also be executed on arrays of different shapes by means of Numpy 
broadcasting. In general, one array is "broadcast" over the other so that elementwise operations 
are performed on sub-arrays of congruent shape.

# Create arrays of shapes (1, 5) and (13, 1) respectively 
a = np.arange(5).reshape(1, 5) 
a 
# array([[0, 1, 2, 3, 4]]) 
b = np.arange(4).reshape(4, 1) 
b 
# array([0], 
#       [1], 
#       [2], 
#       [3]) 
 
# When multiplying a * b, slices with the same dimensions are multiplied 
# elementwise. In the case of a * b, the one and only row of a is multiplied 
# with each scalar down the one and only column of b. 
a*b 
# array([[ 0,  0,  0,  0,  0], 
#        [ 0,  1,  2,  3,  4], 
#        [ 0,  2,  4,  6,  8], 
#        [ 0,  3,  6,  9, 12]])

To illustrate this further, consider the multiplication of 2D and 3D arrays with congruent sub-
dimensions.

# Create arrays of shapes (2, 2, 3) and (2, 3) respectively 
a = np.arange(12).reshape(2, 2, 3) 
a 
# array([[[ 0  1  2] 
#         [ 3  4  5]] 
# 
#        [[ 6  7  8] 
#         [ 9 10 11]]]) 
b = np.arange(6).reshape(2, 3) 
# array([[0, 1, 2], 
#        [3, 4, 5]]) 
 
# Executing a*b broadcasts b to each (2, 3) slice of a, 
# multiplying elementwise. 
a*b 
# array([[[ 0,  1,  4], 
#         [ 9, 16, 25]], 
# 
#        [[ 0,  7, 16], 
#         [27, 40, 55]]]) 
 
# Executing b*a gives the same result, i.e. the smaller 
# array is broadcast over the other.

When is array broadcasting applied?
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Broadcasting takes place when two arrays have compatible shapes.

Shapes are compared component-wise starting from the trailing ones. Two dimensions are 
compatible if either they're the same or one of them is 1. If one shape has higher dimension than 
the other, the exceeding components are not compared.

Some examples of compatible shapes:

(7, 5, 3)    # compatible because dimensions are the same 
(7, 5, 3) 
 
 
(7, 5, 3)    # compatible because second dimension is 1 
(7, 1, 3) 
 
(7, 5, 3, 5) # compatible because exceeding dimensions are not compared 
      (3, 5) 
 
(3, 4, 5)    # incompatible 
   (5, 5) 
 
(3, 4, 5)    # compatible 
   (1, 5) 

Here's the official documentation on array broadcasting.

Populate an array with the contents of a CSV file

filePath = "file.csv" 
data = np.genfromtxt(filePath)

Many options are supported, see official documentation for full list:

data = np.genfromtxt(filePath, dtype='float', delimiter=';', skip_header=1, usecols=(0,1,3) )

Numpy n-dimensional array: the ndarray

The core data structure in numpy is the ndarray (short for n-dimensional array). ndarrays are

homogeneous (i.e. they contain items of the same data-type)•
contain items of fixed sizes (given by a shape, a tuple of n positive integers that specify the 
sizes of each dimension)

•

One-dimensional array:

x = np.arange(15) 
# array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) 
x.shape 
# (15,)

Two-dimensional array:
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x = np.asarray([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14]]) 
x 
# array([[ 0, 1, 2, 3, 4], 
# [ 5, 6, 7, 8, 9], 
# [10, 11, 12, 13, 14]]) 
x.shape 
# (3, 5)

Three-dimensional:

np.arange(12).reshape([2,3,2])

To initialize an array without specifying its contents use:

x = np.empty([2, 2]) 
# array([[ 0., 0.], 
# [ 0., 0.]])

Datatype guessing and automatic casting

The data-type is set to float by default

x = np.empty([2, 2]) 
# array([[ 0., 0.], 
# [ 0., 0.]]) 
 
x.dtype 
# dtype('float64')

If some data is provided, numpy will guess the data-type:

x = np.asarray([[1, 2], [3, 4]]) 
x.dtype 
# dtype('int32')

Note that when doing assignments numpy will attempt to automatically cast values to suit the 
ndarray's datatype

x[1, 1] = 1.5 # assign a float value 
x[1, 1] 
# 1 
# value has been casted to int 
x[1, 1] = 'z' # value cannot be casted, resulting in a ValueError

Array broadcasting

See also Broadcasting array operations.

x = np.asarray([[1, 2], [3, 4]]) 
# array([[1, 2], 
         [3, 4]]) 
y = np.asarray([[5, 6]]) 
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# array([[5, 6]])

In matrix terminology, we would have a 2x2 matrix and a 1x2 row vector. Still we're able to do a 
sum

# x + y 
array([[ 6, 8], 
       [ 8, 10]])

This is because the array y is "stretched" to:

array([[5, 6], 
       [5, 6]])

to suit the shape of x.

Resources:

Introduction to the ndarray from the official documentation: The N-dimensional array 
(ndarray)

•

Class reference: ndarray.•

Read Arrays online: https://riptutorial.com/numpy/topic/1296/arrays
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Chapter 3: Boolean Indexing

Examples

Creating a boolean array

A boolean array can be created manually by using dtype=bool when creating the array. Values 
other than 0, None, False or empty strings are considered True.

import numpy as np 
 
bool_arr = np.array([1, 0.5, 0, None, 'a', '', True, False], dtype=bool) 
print(bool_arr) 
# output: [ True  True False False  True False  True False]

Alternatively, numpy automatically creates a boolean array when comparisons are made between 
arrays and scalars or between arrays of the same shape.

arr_1 = np.random.randn(3, 3) 
arr_2 = np.random.randn(3, 3) 
 
bool_arr = arr_1 < 0.5 
print(bool_arr.dtype) 
# output: bool 
 
bool_arr = arr_1 < arr_2 
print(bool_arr.dtype) 
# output: bool

Read Boolean Indexing online: https://riptutorial.com/numpy/topic/6072/boolean-indexing
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Chapter 4: File IO with numpy

Examples

Saving and loading numpy arrays using binary files

x = np.random.random([100,100]) 
x.tofile('/path/to/dir/saved_binary.npy') 
y = fromfile('/path/to/dir/saved_binary.npy') 
z = y.reshape(100,100) 
all(x==z) 
# Output: 
#     True

Loading numerical data from text files with consistent structure

The function np.loadtxt can be used to read csv-like files:

# File: 
#    # Col_1 Col_2 
#    1, 1 
#    2, 4 
#    3, 9 
np.loadtxt('/path/to/dir/csvlike.txt', delimiter=',', comments='#') 
# Output: 
# array([[ 1.,  1.], 
#        [ 2.,  4.], 
#        [ 3.,  9.]])

The same file could be read using a regular expression with np.fromregex:

np.fromregex('/path/to/dir/csvlike.txt', r'(\d+),\s(\d+)', np.int64) 
# Output: 
# array([[1, 1], 
#        [2, 4], 
#        [3, 9]])

Saving data as CSV style ASCII file

Analog to np.loadtxt, np.savetxt can be used to save data in an ASCII file

import numpy as np 
x = np.random.random([100,100]) 
np.savetxt("filename.txt", x)

To control formatting:

np.savetxt("filename.txt", x, delimiter=", " , 
    newline="\n", comments="$ ", fmt="%1.2f", 
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    header="commented example text")

Output:

$ commented example text 
0.30, 0.61, 0.34, 0.13, 0.52, 0.62, 0.35, 0.87, 0.48, [...]

Reading CSV files

Three main functions available (description from man pages):

fromfile - A highly efficient way of reading binary data with a known data-type, as well 
as parsing simply formatted text files. Data written using the tofile method can be read 
using this function.

genfromtxt - Load data from a text file, with missing values handled as specified. Each 
line past the first skip_header lines is split at the delimiter character, and characters 
following the comments character are discarded.

loadtxt - Load data from a text file. Each row in the text file must have the same 
number of values.

genfromtxt is a wrapper function for loadtxt. genfromtxt is the most straight-forward to use as it has 
many parameters for dealing with the input file.

Consistent number of columns, consistent data type (numerical or string):

Given an input file, myfile.csv with the contents:

#descriptive text line to skip 
1.0, 2, 3 
4, 5.5, 6 
 
import numpy as np 
np.genfromtxt('path/to/myfile.csv',delimiter=',',skiprows=1)

gives an array:

array([[ 1. ,  2. ,  3. ], 
       [ 4. ,  5.5,  6. ]])

Consistent number of columns, mixed data type (across columns):

1   2.0000  buckle_my_shoe 
3   4.0000  margery_door 
 
import numpy as np 
np.genfromtxt('filename', dtype= None) 
 
 
array([(1, 2.0, 'buckle_my_shoe'), (3, 4.0, 'margery_door')], 
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dtype=[('f0', '<i4'), ('f1', '<f8'), ('f2', '|S14')])

Note the use of dtype=None results in a recarray.

Inconsistent number of columns:

file: 1 2 3 4 5 6 7 8 9 10 11 22 13 14 15 16 17 18 19 20 21 22 23 24

Into single row array:

result=np.fromfile(path_to_file,dtype=float,sep="\t",count=-1)

Read File IO with numpy online: https://riptutorial.com/numpy/topic/4973/file-io-with-numpy
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Chapter 5: Filtering data

Examples

Filtering data with a boolean array

When only a single argument is supplied to numpy's where function it returns the indices of the 
input array (the condition) that evaluate as true (same behaviour as numpy.nonzero). This can be 
used to extract the indices of an array that satisfy a given condition.

import numpy as np 
 
a = np.arange(20).reshape(2,10) 
# a = array([[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9], 
#           [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]]) 
 
# Generate boolean array indicating which values in a are both greater than 7 and less than 13 
condition = np.bitwise_and(a>7, a<13) 
# condition = array([[False, False, False, False, False, False, False, False,  True, True], 
#                    [True,  True,  True, False, False, False, False, False, False, False]], 
dtype=bool) 
 
# Get the indices of a where the condition is True 
ind = np.where(condition) 
# ind = (array([0, 0, 1, 1, 1]), array([8, 9, 0, 1, 2])) 
 
keep = a[ind] 
# keep = [ 8  9 10 11 12]

If you do not need the indices, this can be achieved in one step using extract, where you agian 
specify the condition as the first argument, but give the array to return the values from where the 
condition is true as the second argument.

# np.extract(condition, array) 
keep = np.extract(condition, a) 
# keep = [ 8  9 10 11 12]

Two further arguments x and y can be supplied to where, in which case the output will contain the 
values of x where the condition is True and the values of y where the condition is False.

# Set elements of a which are NOT greater than 7 and less than 13 to zero, np.where(condition, 
x, y) 
a = np.where(condition, a, a*0) 
print(a) 
# Out: array([[ 0,  0,  0,  0,  0,  0,  0,  0,  8,  9], 
#            [10, 11, 12,  0,  0,  0,  0,  0,  0,  0]])

Directly filtering indices

For simple cases, you can filter data directly.
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a = np.random.normal(size=10) 
print(a) 
#[-1.19423121  1.10481873  0.26332982 -0.53300387 -0.04809928  1.77107775 
# 1.16741359  0.17699948 -0.06342169 -1.74213078] 
b = a[a>0] 
print(b) 
#[ 1.10481873  0.26332982  1.77107775  1.16741359  0.17699948]

Read Filtering data online: https://riptutorial.com/numpy/topic/6187/filtering-data
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Chapter 6: Generating random data

Introduction

The random module of NumPy provides convenient methods for generating random data having the 
desired shape and distribution.

Here's the official documentation.

Examples

Creating a simple random array

# Generates 5 random numbers from a uniform distribution [0, 1) 
np.random.rand(5) 
# Out: array([ 0.4071833 ,  0.069167  ,  0.69742877,  0.45354268,  0.7220556 ])

Setting the seed

Using random.seed:

np.random.seed(0) 
np.random.rand(5) 
# Out: array([ 0.5488135 ,  0.71518937,  0.60276338,  0.54488318,  0.4236548 ])

By creating a random number generator object:

prng = np.random.RandomState(0) 
prng.rand(5) 
# Out: array([ 0.5488135 ,  0.71518937,  0.60276338,  0.54488318,  0.4236548 ])

Creating random integers

# Creates a 5x5 random integer array ranging from 10 (inclusive) to 20 (inclusive) 
np.random.randint(10, 20, (5, 5)) 
 
''' 
Out: array([[12, 14, 17, 16, 18], 
            [18, 11, 16, 17, 17], 
            [18, 11, 15, 19, 18], 
            [19, 14, 13, 10, 13], 
            [15, 10, 12, 13, 18]]) 
'''

Selecting a random sample from an array

letters = list('abcde')
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Select three letters randomly (with replacement - same item can be chosen multiple times):

np.random.choice(letters, 3) 
''' 
Out: array(['e', 'e', 'd'], 
      dtype='<U1') 
'''

Sampling without replacement:

np.random.choice(letters, 3, replace=False) 
''' 
Out: array(['a', 'c', 'd'], 
      dtype='<U1') 
'''

Assign probability to each letter:

# Choses 'a' with 40% chance, 'b' with 30% and the remaining ones with 10% each 
np.random.choice(letters, size=10, p=[0.4, 0.3, 0.1, 0.1, 0.1]) 
 
''' 
Out: array(['a', 'b', 'e', 'b', 'a', 'b', 'b', 'c', 'a', 'b'], 
  dtype='<U1') 
'''

Generating random numbers drawn from specific distributions

Draw samples from a normal (gaussian) distribution

# Generate 5 random numbers from a standard normal distribution 
# (mean = 0, standard deviation = 1) 
np.random.randn(5) 
# Out: array([-0.84423086,  0.70564081, -0.39878617, -0.82719653, -0.4157447 ]) 
 
# This result can also be achieved with the more general np.random.normal 
np.random.normal(0, 1, 5) 
# Out: array([-0.84423086,  0.70564081, -0.39878617, -0.82719653, -0.4157447 ]) 
 
# Specify the distribution's parameters 
# Generate 5 random numbers drawn from a normal distribution with mean=70, std=10 
np.random.normal(70, 10, 5) 
# Out: array([ 72.06498837,  65.43118674,  59.40024236,  76.14957316,  84.29660766])

There are several additional distributions available in numpy.random, for example poisson, binomial 
and logistic

np.random.poisson(2.5, 5)  # 5 numbers, lambda=5 
# Out: array([0, 2, 4, 3, 5]) 
 
np.random.binomial(4, 0.3, 5)  # 5 numbers, n=4, p=0.3 
# Out: array([1, 0, 2, 1, 0]) 
 
np.random.logistic(2.3, 1.2, 5)  # 5 numbers, location=2.3, scale=1.2 
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# Out: array([ 1.23471936,  2.28598718, -0.81045893,  2.2474899 ,  4.15836878])

Read Generating random data online: https://riptutorial.com/numpy/topic/2060/generating-random-
data
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Chapter 7: Linear algebra with np.linalg

Remarks

As of version 1.8, several of the routines in np.linalg can operate on a 'stack' of matrices. That is, 
the routine can calculate results for multiple matrices if they're stacked together. For example, A 
here is interpreted as two stacked 3-by-3 matrices:

np.random.seed(123) 
A = np.random.rand(2,3,3) 
b = np.random.rand(2,3) 
x = np.linalg.solve(A, b) 
 
print np.dot(A[0,:,:], x[0,:]) 
# array([ 0.53155137,  0.53182759,  0.63440096]) 
 
print b[0,:] 
# array([ 0.53155137,  0.53182759,  0.63440096])

The official np docs specify this via parameter specifications like a : (..., M, M) array_like.

Examples

Solve linear systems with np.solve

Consider the following three equations:

x0 + 2 * x1 + x2 = 4 
         x1 + x2 = 3 
x0 +          x2 = 5

We can express this system as a matrix equation A * x = b with:

A = np.array([[1, 2, 1], 
              [0, 1, 1], 
              [1, 0, 1]]) 
b = np.array([4, 3, 5])

Then, use np.linalg.solve to solve for x:

x = np.linalg.solve(A, b) 
# Out: x = array([ 1.5, -0.5,  3.5])

A must be a square and full-rank matrix: All of its rows must be be linearly independent. A should 
be invertible/non-singular (its determinant is not zero). For example, If one row of A is a multiple of 
another, calling linalg.solve will raise LinAlgError: Singular matrix:

A = np.array([[1, 2, 1], 
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              [2, 4, 2],   # Note that this row 2 * the first row 
              [1, 0, 1]]) 
b = np.array([4,8,5])

Such systems can be solved with np.linalg.lstsq.

Find the least squares solution to a linear system with np.linalg.lstsq

Least squares is a standard approach to problems with more equations than unknowns, also 
known as overdetermined systems.

Consider the four equations:

x0 + 2 * x1 + x2 = 4 
x0 + x1 + 2 * x2 = 3 
2 * x0 + x1 + x2 = 5 
x0 + x1 + x2 = 4

We can express this as a matrix multiplication A * x = b:

A = np.array([[1, 2, 1], 
              [1,1,2], 
              [2,1,1], 
              [1,1,1]]) 
b = np.array([4,3,5,4])

Then solve with np.linalg.lstsq:

x, residuals, rank, s = np.linalg.lstsq(A,b)

x is the solution, residuals the sum, rank the matrix rank of input A, and s the singular values of A. If 
b has more than one dimension, lstsq will solve the system corresponding to each column of b:

A = np.array([[1, 2, 1], 
              [1,1,2], 
              [2,1,1], 
              [1,1,1]]) 
b = np.array([[4,3,5,4],[1,2,3,4]]).T # transpose to align dimensions 
x, residuals, rank, s = np.linalg.lstsq(A,b) 
print x # columns of x are solutions corresponding to columns of b 
#[[ 2.05263158  1.63157895] 
# [ 1.05263158 -0.36842105] 
# [ 0.05263158  0.63157895]] 
print residuals # also one for each column in b 
#[ 0.84210526  5.26315789]

rank and s depend only on A, and are thus the same as above.

Read Linear algebra with np.linalg online: https://riptutorial.com/numpy/topic/3753/linear-algebra-
with-np-linalg

https://riptutorial.com/ 27

https://en.wikipedia.org/wiki/Least_squares
https://en.wikipedia.org/wiki/Rank_(linear_algebra)
https://en.wikipedia.org/wiki/Singular_value
https://riptutorial.com/numpy/topic/3753/linear-algebra-with-np-linalg
https://riptutorial.com/numpy/topic/3753/linear-algebra-with-np-linalg


Chapter 8: numpy.cross

Syntax

numpy.cross(a, b) # cross product of a and b (or vectors in a and b)•
numpy.cross(a, b, axisa=-1) #cross product of vectors in a with b, s.t. vectors in a are laid out 
along axis axisa

•

numpy.cross(a, b, axisa=-1, axisb=-1, axisc=-1) # cross products of vectors in a and b, 
output vectors laid out along axis specified by axisc

•

numpy.cross(a, b, axis=None) # cross products of vectors in a and b, vectors in a, b, and in 
output laid out along axis axis

•

Parameters

Column Column

a,b

In simplest usage, a and b are two 2- or 3-element vectors. They can also be 
arrays of vectors (i.e. two-dimensional matrices). If a is an array and 'b' is a vector, 
cross(a,b) returns an array whose elements are the cross products of each vector 
in a with the vector b. The b is an array and a is a single vector, cross(a,b) returns 
an array whose elements are the cross products of a with each vector in b. a and b 
can both be arrays if they have the same shape. In this case, cross(a,b) returns 
cross(a[0],b[0]), cross(a[1], b[1]), ...

axisa/b

If a is an array, it can have vectors laid out across the most quickly varying axis, 
the slowest varying axis, or something in between. axisa tells cross() how the 
vectors are laid out in a. By default, it takes the value of the most slowly varying 
axis. axisb works the same with input b. If the output of cross() is going to be an 
array, the output vectors can be laid out different array axes; axisc tells cross how 
to lay out the vectors in its output array. By default, axisc indicates the most slowly 
varying axis.

axis
A convenience parameter that sets axisa, axisb, and axisc all to the same value if 
desired. If axis and any of the other parameters are present in the call, the value of 
axis will override the other values.

Examples

Cross Product of Two Vectors

Numpy provides a cross function for computing vector cross products. The cross product of 
vectors [1, 0, 0] and [0, 1, 0] is [0, 0, 1]. Numpy tells us:

>>> a = np.array([1, 0, 0]) 
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>>> b = np.array([0, 1, 0]) 
>>> np.cross(a, b) 
array([0, 0, 1])

as expected.

While cross products are normally defined only for three dimensional vectors. However, either of 
the arguments to the Numpy function can be two element vectors. If vector c is given as [c1, c2], 
Numpy assigns zero to the third dimension: [c1, c2, 0]. So,

>>> c = np.array([0, 2]) 
>>> np.cross(a, c) 
array([0, 0, 2])

Unlike dot which exists as both a Numpy function and a method of ndarray, cross exists only as a 
standalone function:

>>> a.cross(b) 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
AttributeError: 'numpy.ndarray' object has no attribute 'cross'

Multiple Cross Products with One Call

Either input can be an array of 3- (or 2-) element vectors.

>>> a=np.array([[1,0,0],[0,1,0],[0,0,1]]) 
>>> b=np.array([1,0,0]) 
>>> np.cross(a,b) 
array([[ 0,  0,  0], 
       [ 0,  0, -1], 
       [ 0,  1,  0]])

The result in this case is array([np.cross(a[0],b), np.cross(a[1],b), np.cross(a[2],b)])

b can also be an array of 3- (or 2-) element vectors, but it must have the same shape as a. 
Otherwise the calculation fails with a "shape mismatch" error. So we can have

>>> b=np.array([[0,0,1],[1,0,0],[0,1,0]]) 
>>> np.cross(a,b) 
array([[ 0, -1,  0], 
       [ 0,  0, -1], 
       [-1,  0,  0]])

and now the result is array([np.cross(a[0],b[0]), np.cross(a[1],b[1]), np.cross(a[2],b[2])])

More Flexibility with Multiple Cross Products

In our last two examples, numpy assumed that a[0,:] was the first vector, a[1,:] the second, and 
a[2,:] the third. Numpy.cross has an optional argument axisa that allows us to specify which axis 
defines the vectors. So,
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>>> a=np.array([[1,1,1],[0,1,0],[1,0,-1]]) 
>>> b=np.array([0,0,1]) 
>>> np.cross(a,b) 
array([[ 1, -1,  0], 
       [ 1,  0,  0], 
       [ 0, -1,  0]]) 
>>> np.cross(a,b,axisa=0) 
array([[ 0, -1,  0], 
       [ 1, -1,  0], 
       [ 0, -1,  0]]) 
>>> np.cross(a,b,axisa=1) 
array([[ 1, -1,  0], 
       [ 1,  0,  0], 
       [ 0, -1,  0]])

The axisa=1 result and the default result are both (np.cross([1,1,1],b), np.cross([0,1,0],b), 
np.cross([1,0,-1],b)). By default, axisa always indicates the last (most slowly varying) axis of the 
array. The axisa=0 result is (np.cross([1,0,1],b), np.cross([1,1,0],b), np.cross([1,0,-1],b)).

A similar optional parameter, axisb, performs the same function for the b input, if it is also a 2-
dimensional array.

Parameters axisa and axisb tell numpy how to distribute the input data. A third parameter, axisc 
tells numpy how to distribute the output if a or b is multi-dimensional. Using the same inputs a and 
b as above, we get

>>> np.cross(a,b,1) 
array([[ 1, -1,  0], 
       [ 1,  0,  0], 
       [ 0, -1,  0]]) 
>>> np.cross(a,b,1,axisc=0) 
array([[ 1,  1,  0], 
       [-1,  0, -1], 
       [ 0,  0,  0]]) 
>>> np.cross(a,b,1,axisc=1) 
array([[ 1, -1,  0], 
       [ 1,  0,  0], 
       [ 0, -1,  0]])

So axisc=1 and the default axisc both give the same result, that is, the elements of each vector are 
contiguous in the fastest moving index of the output array. axisc is by default the last axis of the 
array. axisc=0 distributes the elements of each vector across the slowest varying dimension of the 
array.

If you want axisa, axisb, and axisc to all have the same value, you do not need to set all three 
parameters. You can set a fourth parameter, axis, to the needed single value and the other three 
parameters will be automatically set. axis overrides axisa, axisb, or axisc if any of them are 
present in the function call.

Read numpy.cross online: https://riptutorial.com/numpy/topic/6166/numpy-cross
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Chapter 9: numpy.dot

Syntax

numpy.dot(a, b, out=None)•

Parameters

Name Details

a a numpy array

b a numpy array

out a numpy array

Remarks

numpy.dot

Returns the dot product of a and b. If a and b are both scalars or both 1-D arrays then a scalar is 
returned; otherwise an array is returned. If out is given, then it is returned.

Examples

Matrix multiplication

Matrix multiplication can be done in two equivalent ways with the dot function. One way is to use 
the dot member function of numpy.ndarray.

>>> import numpy as np 
>>> A = np.ones((4,4)) 
>>> A 
array([[ 1.,  1.,  1.,  1.], 
       [ 1.,  1.,  1.,  1.], 
       [ 1.,  1.,  1.,  1.], 
       [ 1.,  1.,  1.,  1.]]) 
>>> B = np.ones((4,2)) 
>>> B 
array([[ 1.,  1.], 
       [ 1.,  1.], 
       [ 1.,  1.], 
       [ 1.,  1.]]) 
>>> A.dot(B) 
array([[ 4.,  4.], 
       [ 4.,  4.], 
       [ 4.,  4.], 
       [ 4.,  4.]])
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The second way to do matrix multiplication is with the numpy library function.

>>> np.dot(A,B) 
array([[ 4.,  4.], 
       [ 4.,  4.], 
       [ 4.,  4.], 
       [ 4.,  4.]])

Vector dot products

The dot function can also be used to compute vector dot products between two one-dimensional 
numpy arrays.

>>> v = np.array([1,2]) 
>>> w = np.array([1,2]) 
>>> v.dot(w) 
5 
>>> np.dot(w,v) 
5 
>>> np.dot(v,w) 
5

The out parameter

The numpy dot function has an optional parameter out=None. This parameter allows you to 
specify an array to write the result to. This array must be exactly the same shape and type as the 
array that would have been returned, or an exception will be thrown.

>>> I = np.eye(2) 
>>> I 
array([[ 1.,  0.], 
       [ 0.,  1.]]) 
>>> result = np.zeros((2,2)) 
>>> result 
array([[ 0.,  0.], 
       [ 0.,  0.]]) 
>>> np.dot(I, I, out=result) 
array([[ 1.,  0.], 
       [ 0.,  1.]]) 
>>> result 
array([[ 1.,  0.], 
       [ 0.,  1.]])

Let's try changing the dtype of result to int.

>>> np.dot(I, I, out=result) 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
ValueError: output array is not acceptable (must have the right type, nr dimensions, and be a 
C-Array)

And if we try using a different underlying memory order, say Fortran-style (so columns are 
contiguous instead of rows), an error also results.
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>>> result = np.zeros((2,2), order='F') 
>>> np.dot(I, I, out=result) 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
ValueError: output array is not acceptable (must have the right type, nr dimensions, and be a 
C-Array)

Matrix operations on arrays of vectors

numpy.dot can be used to multiply a list of vectors by a matrix but the orientation of the vectors 
must be vertical so that a list of eight two component vectors appears like two eight components 
vectors:

>>> a 
array([[ 1.,  2.], 
       [ 3.,  1.]]) 
>>> b 
array([[  1.,   2.,   3.,   4.,   5.,   6.,   7.,   8.], 
       [  9.,  10.,  11.,  12.,  13.,  14.,  15.,  16.]]) 
>>> np.dot(a, b) 
array([[ 19.,  22.,  25.,  28.,  31.,  34.,  37.,  40.], 
       [ 12.,  16.,  20.,  24.,  28.,  32.,  36.,  40.]])

If the list of vectors is laid out with its axes the other way round (which is often the case) then the 
array needs to be transposed before and then after the dot operation like this:

>>> b 
array([[  1.,   9.], 
       [  2.,  10.], 
       [  3.,  11.], 
       [  4.,  12.], 
       [  5.,  13.], 
       [  6.,  14.], 
       [  7.,  15.], 
       [  8.,  16.]]) 
>>> np.dot(a, b.T).T 
array([[ 19.,  12.], 
       [ 22.,  16.], 
       [ 25.,  20.], 
       [ 28.,  24.], 
       [ 31.,  28.], 
       [ 34.,  32.], 
       [ 37.,  36.], 
       [ 40.,  40.]])

Although the dot function is very fast, sometimes it is better to use einsum. The equivalent of the 
above would be:

>>> np.einsum('...ij,...j', a, b)

Which is a little slower but allows a list of vertices to be multiplied by a corresponding list of 
matrices. This would be a very convoluted process using dot:
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>>> a 
array([[[ 0,  1], 
        [ 2,  3]], 
       [[ 4,  5], 
        [ 6,  7]], 
       [[ 8,  9], 
        [10, 11]], 
       [[12, 13], 
        [14, 15]], 
       [[16, 17], 
        [18, 19]], 
       [[20, 21], 
        [22, 23]], 
       [[24, 25], 
        [26, 27]], 
       [[28, 29], 
        [30, 31]]]) 
>>> np.einsum('...ij,...j', a, b) 
array([[   9.,   29.], 
       [  58.,   82.], 
       [ 123.,  151.], 
       [ 204.,  236.], 
       [ 301.,  337.], 
       [ 414.,  454.], 
       [ 543.,  587.], 
       [ 688.,  736.]])

numpy.dot can be used to find the dot product of each vector in a list with a corresponding vector 
in another list this is quite messy and slow compared with element-wise multiplication and 
summing along the last axis. Something like this (which requires a much larger array to be 
calculated but mostly ignored)

>>> np.diag(np.dot(b,b.T)) 
array([  82.,  104.,  130.,  160.,  194.,  232.,  274.,  320.])

Dot product using element-wise multiplication and summing

>>> (b * b).sum(axis=-1) 
array([  82.,  104.,  130.,  160.,  194.,  232.,  274.,  320.])

Using einsum could be achieved with

>>> np.einsum('...j,...j', b, b) 
array([  82.,  104.,  130.,  160.,  194.,  232.,  274.,  320.])

Read numpy.dot online: https://riptutorial.com/numpy/topic/3198/numpy-dot
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Chapter 10: Saving and loading of Arrays

Introduction

Numpy arrays can be saved and loaded in various ways.

Examples

Using numpy.save and numpy.load

np.save and np.load provide a easy to use framework for saving and loading of arbitrary sized 
numpy arrays:

import numpy as np 
 
a = np.random.randint(10,size=(3,3)) 
np.save('arr', a) 
 
a2 = np.load('arr.npy') 
print a2

Read Saving and loading of Arrays online: https://riptutorial.com/numpy/topic/10891/saving-and-
loading-of-arrays
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Chapter 11: Simple Linear Regression

Introduction

Fitting a line (or other function) to a set of data points.

Examples

Using np.polyfit

We create a dataset that we then fit with a straight line $f(x) = m x + c$.

npoints = 20 
slope = 2 
offset = 3 
x = np.arange(npoints) 
y = slope * x + offset + np.random.normal(size=npoints) 
p = np.polyfit(x,y,1)           # Last argument is degree of polynomial

To see what we've done:

import matplotlib.pyplot as plt 
f = np.poly1d(p)                # So we can call f(x) 
fig = plt.figure() 
ax  = fig.add_subplot(111) 
plt.plot(x, y, 'bo', label="Data") 
plt.plot(x,f(x), 'b-',label="Polyfit") 
plt.show()

Note: This example follows the numpy documentation at 
https://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html quite closely.

Using np.linalg.lstsq

We use the same dataset as with polyfit:

npoints = 20 
slope = 2 
offset = 3 
x = np.arange(npoints) 
y = slope * x + offset + np.random.normal(size=npoints)

Now, we try to find a solution by minimizing the system of linear equations A b = c by minimizing 
|c-A b|**2

import matplotlib.pyplot as plt # So we can plot the resulting fit 
A = np.vstack([x,np.ones(npoints)]).T 
m, c = np.linalg.lstsq(A, y)[0] # Don't care about residuals right now 
fig = plt.figure() 
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ax  = fig.add_subplot(111) 
plt.plot(x, y, 'bo', label="Data") 
plt.plot(x, m*x+c, 'r--',label="Least Squares") 
plt.show()

Note: This example follows the numpy documentation at 
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.lstsq.html quite closely.

Read Simple Linear Regression online: https://riptutorial.com/numpy/topic/8808/simple-linear-
regression
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Chapter 12: subclassing ndarray

Syntax

def __array_prepare__(self, out_arr: ndarray, context: Tuple[ufunc, Tuple, int] = None) -> 
ndarray: # called on the way into a ufunc

•

def __array_wrap__(self, out_arr: ndarray, context: Tuple[ufunc, Tuple, int] = None) -> 
ndarray: # called on the way out of a ufunc

•

__array_priority__: int # used to determine which argument to invoke the above methods on 
when a ufunc is called

•

def __array_finalize__(self, obj: ndarray): # called whenever a new instance of this class 
comes into existence, even if this happens by routes other than __new__

•

Examples

Tracking an extra property on arrays

class MySubClass(np.ndarray): 
    def __new__(cls, input_array, info=None): 
        obj = np.asarray(input_array).view(cls) 
        obj.info = info 
        return obj 
 
    def __array_finalize__(self, obj): 
        # handles MySubClass(...) 
        if obj is None: 
            pass 
 
        # handles my_subclass[...] or my_subclass.view(MySubClass) or ufunc output 
        elif isinstance(obj, MySubClass): 
            self.info = obj.info 
 
        # handles my_arr.view(MySubClass) 
        else: 
            self.info = None 
 
    def __array_prepare__(self, out_arr, context=None): 
        # called before a ufunc runs 
        if context is not None: 
            func, args, which_return_val = context 
 
        return super().__array_prepare__(out_arr, context) 
 
    def __array_wrap__(self, out_arr, context=None): 
        # called after a ufunc runs 
        if context is not None: 
            func, args, which_return_val = context 
 
        return super().__array_wrap__(out_arr, context)

For the context tuple, func is a ufunc object such as np.add, args is a tuple, and which_return_val is 
an integer specifying which return value of the ufunc is being processed
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Read subclassing ndarray online: https://riptutorial.com/numpy/topic/6431/subclassing-ndarray
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