
nunit

#nunit

Table of Contents

About 1

Chapter 1: Getting started with nunit 2

Remarks 2

Versions 2

Examples 4

Installation Using NuGet 4

Visual Studio Unit Test Window 4

Console Runner 4

Hello World 4

Why you can’t use Assert.Equals 5

TestCaseAttribute 6

Chapter 2: Attributes 7

Remarks 7

Examples 7

TestCaseAttributeExample 7

TestFixture 7

TestFixtureSetUp 8

TearDown 8

ValuesAttribute 8

Chapter 3: Fluent Assertions 10

Remarks 10

Examples 10

Basic fluent assertion 10

Advanced Constraint Usage 10

Collections 10

Chapter 4: Test execution and lifecycle 12

Examples 12

Executing tests in a given order 12

Chapter 5: Write a custom constraint for the constraint model 14

Examples 14

Match an integer approximatively 14

Make new constraint usable in a fluent context 14

Credits 16

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: nunit

It is an unofficial and free nunit ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official nunit.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/nunit
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with nunit

Remarks

This section provides an overview of what nunit is, and why a developer might want to use it.

It should also mention any large subjects within nunit, and link out to the related topics. Since the
Documentation for nunit is new, you may need to create initial versions of those related topics.

Versions

Version Release Date

2.2 2004-08-08

2.2.1 2004-10-26

2.2.2 2004-12-07

2.2.3 2005-02-14

2.2.4 2005-12-14

2.2.5 2005-12-22

2.2.6 2006-01-21

2.2.7 2006-02-18

2.2.8 2006-04-21

2.2.9 2006-11-26

2.2.10 2007-03-15

2.4 RC1 2007-02-25

2.4 (Final Release) 2007-03-16

2.4.1 2007-05-03

2.4.2 2007-08-02

2.4.4 2007-10-20

2.4.5 2007-11-23

2.4.6 2007-12-31

https://riptutorial.com/ 2

Version Release Date

2.4.7 2008-03-30

2.4.8 2008-07-21

2.5 2009-05-02

2.5.1 2009-07-08

2.5.2 2009-08-10

2.5.3 2009-12-11

2.5.4 2010-04-08

2.5.5 2010-04-22

2.5.6 2010-07-24

2.5.7 2010-08-01

2.5.8 2010-10-14

2.5.9 2010-12-14

2.5.10 2011-04-02

2.6 2012-02-20

2.6.1 2012-08-04

2.6.2 2012-10-22

2.6.3 2013-10-10

2.6.4 2014-12-16

3.0 (Alpha 1) 2014-09-22

3.0 (Beta 1) 2015-03-25

3.0 RC1 2015-11-01

3.0.0 Final Release 2015-11-15

3.0.1 2015-12-01

3.2 2016-03-05

3.2.1 2016-04-19

https://riptutorial.com/ 3

Version Release Date

3.4 2016-06-25

Examples

Installation Using NuGet

Install-Package NUnit

This package includes all assemblies needed to create unit tests.

Tests can be executed using one of the following methods:

Visual Studio Unit Test Window•
Console runner•
Third party runner that supports NUnit 3•

Visual Studio Unit Test Window

To execute tests using the Visual Studio Unit Test Window, install the NUnit 3 Test Adapter.
https://visualstudiogallery.msdn.microsoft.com/0da0f6bd-9bb6-4ae3-87a8-537788622f2d

Console Runner

Install the NUnit Console Runner via NuGet

Install-Package NUnit.Console

The executable nunit3-console.exe is located in packages\NUnit.3.X.X\tools

Hello World

[TestFixture]
public class UnitTest1
{
 class Message
 {
 public string Text { get; } = "Hello World";
 }

 [Test]
 public void HelloWorldTest()
 {
 // Act
 var message = new Message();

https://riptutorial.com/ 4

https://visualstudiogallery.msdn.microsoft.com/0da0f6bd-9bb6-4ae3-87a8-537788622f2d

 // Assert
 Assert.That(message.Text, Is.EqualTo("Hello World"));
 }
}

Why you can’t use Assert.Equals

Ever wondered why you cannot use Assert.Equals() for both Nunit and MSTest. If you have not
then maybe as a start you need to be aware that you cannot use this method. Instead you would

https://riptutorial.com/ 5

http://i.stack.imgur.com/jGqEr.png

use Assert.AreEqual() to compare two objects for equality.

The reason here is very simple. Like any class the Assert class is inheriting from System.Object
that has a public virtual Equals method meant to check if a given object is equal to the current
object. Therefor calling that equals method would be a mistake as in a unit test you would instead
to compare two objects that have nothing to do with the Assert class. As a result Nunit and
MSTest both chose to provide a method Assert.AreEqual for that purpose.

Furthermore to ensure that you do not use the Equals method by mistake they have decided to
throw Exceptions to warn you if you do use this by mistake.

Nunit Implementation:

 [EditorBrowsable(EditorBrowsableState.Never)]
 public static new bool Equals(object a, object b)
 {
 // TODO: This should probably be InvalidOperationException
 throw new AssertionException("Assert.Equals should not be used for Assertions");
 }

TestCaseAttribute

[TestCase(0, 0, 0)]
[TestCase(34, 25, 59)]
[TestCase(-1250, 10000, 8750)]
public void AddNumbersTest(int a, int b, int expected)
{
 // Act
 int result = a + b;

 // Assert
 Assert.That(result, Is.EqualTo(expected));
}

Read Getting started with nunit online: https://riptutorial.com/nunit/topic/1738/getting-started-with-
nunit

https://riptutorial.com/ 6

http://i.stack.imgur.com/6S8qc.png
https://riptutorial.com/nunit/topic/1738/getting-started-with-nunit
https://riptutorial.com/nunit/topic/1738/getting-started-with-nunit

Chapter 2: Attributes

Remarks

Version 1 of NUnit used the classic approach to identifying tests based on inheritance and naming
conventions. From version 2.0 on, NUnit has used custom attributes for this purpose.

Because NUnit test fixtures do not inherit from a framework class, the developer is free to use
inheritance in other ways. And because there is no arbitrary convention for naming tests, the
choice of names can be entirely oriented toward communicating the purpose of the test.

All NUnit attributes are contained in the NUnit.Framework namespace. Each source file that
contains tests must include a using statement for that namespace and the project must reference
the framework assembly, nunit.framework.dll.

Beginning with NUnit 2.4.6, NUnit's attributes are no longer sealed and any attributes that derive
from them will be recognized by NUnit.

Examples

TestCaseAttributeExample

[TestCase(0, 0, 0)]
[TestCase(34, 25, 59)]
[TestCase(-1250, 10000, 8750)]
public void AddNumbersTest(int a, int b, int expected)
{
 // Act
 int result = a + b;

 // Assert
 Assert.That(result, Is.EqualTo(expected));
}

TestFixture

[TestFixture]
public class Tests {

 [Test]
 public void Test1() {
 Assert.That(true, Is.EqualTo(true));
 }

}

A test fixture marks a class as containing tests.

https://riptutorial.com/ 7

TestFixtureSetUp

This attribute used t identify a method that is called once to perform setup before any child tests
are run. For the new versions we are using OneTimeSetUp as the TestFixtureSetUp is obsolete.

OneTimeSetUp

[OneTimeSetUp]
public void SetUp()
 {

 }

TearDown

This attribute is used to identify a method that is called immediately after each tests, it will be
called even if there is any error, this is the place we can dispose our objects.

 [TearDown]
 public void CleanAfterEveryTest()
 {

 }

ValuesAttribute

The ValuesAttribute is used to specify a set of values for an individual parameter of a test

https://riptutorial.com/ 8

https://i.stack.imgur.com/1qotP.png
https://i.stack.imgur.com/Gd7vn.png

method with parameters.

 [Test]
 public void Sum_Works_Correctly(
 [Values(1, 2, 3)] int x,
 [Values(4, 5)] int y)
 {
 // Arrange
 var calculator = new Calculator();

 // Act
 int result = calculator.Sum(x, y);

 // Assert
 Assert.That(result, Is.EqualTo(x + y));
 }

Here we can see which test cases are run against these values:

Read Attributes online: https://riptutorial.com/nunit/topic/6512/attributes

https://riptutorial.com/ 9

https://i.stack.imgur.com/DqIBi.png
https://riptutorial.com/nunit/topic/6512/attributes

Chapter 3: Fluent Assertions

Remarks

NUnit's Assert.That() form supports the use of constraints as its second parameter. All constraints
provided out of the box by NUnit are available through the static classes Is, Has and Does.
Constraints can be combined into fluent expressions using the built in methods And, Or and With.
Expressions can be conveniently expanded up using the many methods in ConstraintExpression,
such as AtMost and Contains.

Examples

Basic fluent assertion

Assert.That(actual, Is.EqualTo(expected));

Advanced Constraint Usage

Large fluent assertions do become harder to read, but when combined with classes that have
good implementations of ToString(), they can generate very useful error messages.

[Test]
public void AdvancedContraintsGiveUsefulErrorMessages() {
 Assert.That(actualCollection, Has
 .Count.EqualTo(4)
 .And.Exactly(1).Property("Age").GreaterThan(60)
 .And.Some.Property("Address").Null
 .And.No.Property("Age").LessThanOrEqualTo(17));
}

On failure, this assertion generates messages like this:

Expected: property Count equal to 4 and exactly one item property Age greater
than 60 and some item property Address null and not property Age less than or
equal to 17
But was: < <Steve Taylor (23) lives in Newcastle
>, <Michelle Yung (65) lives in San Francisco
>, <Ranjit Saraman (49) lives in Milano
>, <LaChelle Oppenheimer (16) lives in
> >

Collections

var a = new List<int> { 1, 2 };
var b = new List<int> { 2, 1 };

Assert.That (a, Is.EqualTo(b)); // fails
Assert.That (a, Is.EquivalentTo(b)); // succeeds

https://riptutorial.com/ 10

Read Fluent Assertions online: https://riptutorial.com/nunit/topic/2788/fluent-assertions

https://riptutorial.com/ 11

https://riptutorial.com/nunit/topic/2788/fluent-assertions

Chapter 4: Test execution and lifecycle

Examples

Executing tests in a given order

Normally your tests should be created in such a way that execution order is no concern. However
there is always going to be an edge case were you need to break that rule.

The one scenario I came across was with R.NET whereby in a given process you can only
initialize one R Engine and once disposed you cannot reinitialize. One of my test happened to deal
with disposing the engine and if this test were to run before any other test(s) they would fail.

You will find below a code snippet of how I managed to get this to run in order using Nunit.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Reflection;
using NUnit.Framework;
using RSamples;

public class OrderedTestAttribute : Attribute
{
 public int Order { get; set; }

 public OrderedTestAttribute(int order)
 {
 this.Order = order;
 }
}

public class TestStructure
{
 public Action Test;
}

public class SampleTests
{
 [TearDown]
 public void CleanUpAfterTest()
 {
 REngineExecutionContext.ClearLog();
 }

 [OrderedTest(0)]
 public void Test1(){}

 [OrderedTest(1)]
 public void Test2(){}

 [OrderedTest(2)]
 public void Test3(){}

 [TestCaseSource(sourceName: "TestSource")]

https://riptutorial.com/ 12

 public void MainTest(TestStructure test)
 {
 test.Test();
 }

 public static IEnumerable<TestCaseData> TestSource
 {
 get
 {
 var assembly = Assembly.GetExecutingAssembly();
 Dictionary<int, List<MethodInfo>> methods = assembly
 .GetTypes()
 .SelectMany(x => x.GetMethods())
 .Where(y => y.GetCustomAttributes().OfType<OrderedTestAttribute>().Any())
 .GroupBy(z => z.GetCustomAttribute<OrderedTestAttribute>().Order)
 .ToDictionary(gdc => gdc.Key, gdc => gdc.ToList());

 foreach (var order in methods.Keys.OrderBy(x => x))
 {
 foreach (var methodInfo in methods[order])
 {
 MethodInfo info = methodInfo;
 yield return new TestCaseData(
 new TestStructure
 {
 Test = () =>
 {
 object classInstance =
Activator.CreateInstance(info.DeclaringType, null);
 info.Invoke(classInstance, null);
 }
 }).SetName(methodInfo.Name);
 }
 }
 }
 }
}

Read Test execution and lifecycle online: https://riptutorial.com/nunit/topic/2789/test-execution-
and-lifecycle

https://riptutorial.com/ 13

https://riptutorial.com/nunit/topic/2789/test-execution-and-lifecycle
https://riptutorial.com/nunit/topic/2789/test-execution-and-lifecycle

Chapter 5: Write a custom constraint for the
constraint model

Examples

Match an integer approximatively

Suppose we want to write a constraint which matches a number, but approximatively. Say, you are
supposed to have 95 people in a survey, but 93 or 96 will do as well. We can write a custom
constraint of the form:

public class AlmostEqualToConstraint : Constraint
{
 readonly int _expected;
 readonly double _expectedMin;
 readonly double _expectedMax;
 readonly int _percentageTolerance;

 public AlmostEqualToConstraint(int expected, int percentageTolerance)
 {
 _expected = expected;
 _expectedMin = expected * (1 - (double)percentageTolerance / 100);
 _expectedMax = expected * (1 + (double)percentageTolerance / 100);
 _percentageTolerance = percentageTolerance;
 Description = $"AlmostEqualTo {expected} with a tolerance of {percentageTolerance}%";
 }

 public override ConstraintResult ApplyTo<TActual>(TActual actual)
 {
 if (typeof(TActual) != typeof(int))
 return new ConstraintResult(this, actual, ConstraintStatus.Error);

 var actualInt = Convert.ToInt32(actual);

 if (_expectedMin <= actualInt && actualInt <= _expectedMax)
 return new ConstraintResult(this, actual, ConstraintStatus.Success);
 else
 return new ConstraintResult(this, actual, ConstraintStatus.Failure);
 }
}

Make new constraint usable in a fluent context

We're going to integrate the AlmostEqualToConstraint with the fluent NUnit interfaces, specifically
the Is one. We'll need to extend the NUnit provided Is and use that throughout our code.

public class Is : NUnit.Framework.Is
{
 public static AlmostEqualToConstraint AlmostEqualTo(int expected, int percentageTolerance

https://riptutorial.com/ 14

= 5)
 {
 return new AlmostEqualToConstraint(expected, percentageTolerance);
 }
}

Read Write a custom constraint for the constraint model online:
https://riptutorial.com/nunit/topic/9273/write-a-custom-constraint-for-the-constraint-model

https://riptutorial.com/ 15

https://riptutorial.com/nunit/topic/9273/write-a-custom-constraint-for-the-constraint-model

Credits

S.
No

Chapters Contributors

1
Getting started with
nunit

Community, forsvarir, kdtong, Old Fox, Pavel Yermalovich,
Thulani Chivandikwa, Woodchipper

2 Attributes kame, kdtong, Pavel Yermalovich, RJFalconer, Sibeesh Venu

3 Fluent Assertions D.R., kdtong, mark_h, Paul Hicks

4
Test execution and
lifecycle

forsvarir, Thulani Chivandikwa

5
Write a custom
constraint for the
constraint model

Horia Coman

https://riptutorial.com/ 16

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/592182/forsvarir
https://riptutorial.com/contributor/671801/kdtong
https://riptutorial.com/contributor/4332059/old-fox
https://riptutorial.com/contributor/1389423/pavel-yermalovich
https://riptutorial.com/contributor/611628/thulani-chivandikwa
https://riptutorial.com/contributor/1988163/woodchipper
https://riptutorial.com/contributor/237934/kame
https://riptutorial.com/contributor/671801/kdtong
https://riptutorial.com/contributor/1389423/pavel-yermalovich
https://riptutorial.com/contributor/28411/rjfalconer
https://riptutorial.com/contributor/5550507/sibeesh-venu
https://riptutorial.com/contributor/1400869/d-r-
https://riptutorial.com/contributor/671801/kdtong
https://riptutorial.com/contributor/1446086/mark-h
https://riptutorial.com/contributor/3195526/paul-hicks
https://riptutorial.com/contributor/592182/forsvarir
https://riptutorial.com/contributor/611628/thulani-chivandikwa
https://riptutorial.com/contributor/5910563/horia-coman

	About
	Chapter 1: Getting started with nunit
	Remarks
	Versions
	Examples
	Installation Using NuGet

	Visual Studio Unit Test Window
	Console Runner
	Hello World
	Why you can’t use Assert.Equals
	TestCaseAttribute

	Chapter 2: Attributes
	Remarks
	Examples
	TestCaseAttributeExample
	TestFixture
	TestFixtureSetUp
	TearDown
	ValuesAttribute

	Chapter 3: Fluent Assertions
	Remarks
	Examples
	Basic fluent assertion
	Advanced Constraint Usage
	Collections

	Chapter 4: Test execution and lifecycle
	Examples
	Executing tests in a given order

	Chapter 5: Write a custom constraint for the constraint model
	Examples
	Match an integer approximatively
	Make new constraint usable in a fluent context

	Credits

