
Objective-C Language

#objective-c

Table of Contents

About 1

Chapter 1: Getting started with Objective-C Language 2

Versions 2

Examples 2

Hello World 2

Compiling the program 3

Chapter 2: Basic Data Types 4

Syntax 4

Examples 4

BOOL 4

id 4

SEL 5

IMP (implementation pointer) 6

NSInteger and NSUInteger 7

Chapter 3: Blocks 9

Syntax 9

Remarks 9

Examples 9

Blocks as Method Parameters 9

Defining and Assigning 10

Blocks as Properties 10

Block Typedefs 10

Blocks as local variables 11

Chapter 4: BOOL / bool / Boolean / NSCFBoolean 12

Examples 12

BOOL/Boolean/bool/NSCFBoolean 12

BOOL VS Boolean 12

Chapter 5: Categories 14

Syntax 14

Remarks 14

Examples 14

Simple Category 14

Declaring a class method 14

Adding a property with a category 15

Conforming to protocol 15

Create a Category on XCode 16

Chapter 6: Classes and Objects 19

Syntax 19

Examples 19

Creating classes with initialization values 19

Singleton Class 19

The "instancetype" return type 21

Specifying Generics 21

Difference between allocation and initialization 22

Chapter 7: Continue and Break! 23

Examples 23

Continue and Break Statement 23

Chapter 8: Declare class method and instance method 25

Introduction 25

Syntax 25

Examples 25

How to declare class method and instance method. 25

Chapter 9: Enums 27

Syntax 27

Examples 27

Defining an enum 27

typedef enum declaration in Objective-C 27

Converting C++ std::vector to an Objective-C Array 28

Chapter 10: Error Handling 30

Syntax 30

Examples 30

Asserting 30

Error & Exception handling with try catch block 30

Chapter 11: Fast Enumeration 32

Examples 32

Fast enumeration of an NSArray 32

Fast enumeration of an NSArray with index. 32

Chapter 12: Format-Specifiers 33

Introduction 33

Syntax 33

Remarks 33

Examples 34

Integer Example - %i 34

Chapter 13: Grand Central Dispatch 35

Introduction 35

Examples 35

What is Grand central dispatch. 35

Chapter 14: Inheritance 36

Syntax 36

Examples 36

Car is inherited from Vehicle 36

Chapter 15: Key Value Coding / Key Value Observing 38

Examples 38

Most Common Real Life Key Value Coding Example 38

Key Value Observing 38

Querying KVC Data 40

Collection Operators 40

Chapter 16: Logging 44

Syntax 44

Remarks 44

Examples 44

Logging 44

NSLog vs printf 44

NSLog Output Format 45

Logging Variable Values 45

Empty message is not printed 45

Removing Log Statements from Release Builds 46

Using __FUNCTION __ 46

NSLog and BOOL type 46

Logging NSLog meta data 47

Logging by Appending to a File 47

Chapter 17: Low-level Runtime Environment 49

Remarks 49

Examples 49

Attach object to another existing object (association) 49

Augmenting methods using Method Swizzling 49

Calling methods directly 51

Chapter 18: Memory Management 53

Examples 53

Automatic Reference Counting 53

Strong and weak references 54

Manual Memory Management 54

Memory management rules when using manual reference counting. 55

Chapter 19: Methods 57

Syntax 57

Examples 57

Method parameters 57

Create a basic method 57

Return values 58

Class methods 58

Calling methods 58

Instance methods 59

Pass by value parameter passing 59

Pass by reference parameter passing 60

Chapter 20: Modern Objective-C 62

Examples 62

Literals 62

NSNumber 62

NSArray 62

NSDictionary 62

Container subscripting 63

Chapter 21: Multi-Threading 64

Examples 64

Creating a simple thread 64

Create more complex thread 64

Thread-local storage 65

Chapter 22: NSArray 66

Syntax 66

Examples 66

Creating Arrays 66

Finding out the Number of Elements in an Array 66

Accessing elements 66

Getting a single item 66

First and Last Item 67

Filtering Arrays With Predicates 67

Converting NSArray to NSMutableArray to allow modification 67

Sorting array with custom objects 67

Compare method 67

NSSortDescriptor 68

Blocks 68

Performance 68

Converting between Sets and Arrays 68

Reverse an Array 68

Looping through 69

Using Generics 69

Enumerating using blocks 69

Comparing arrays 70

Add objects to NSArray 70

Chapter 23: NSArray 71

Examples 71

Creating NSArray instances 71

Sorting Arrays 71

Filter NSArray and NSMutableArray 71

Chapter 24: NSAttributedString 73

Examples 73

Creating a string that has custom kerning (letter spacing) editshare 73

Create a string with text struck through 73

Using Enumerating over Attributes in a String and underline part of string 73

How you create a tri-color attributed string. 74

Chapter 25: NSCache 75

Examples 75

NSCache 75

Chapter 26: NSCalendar 76

Examples 76

System Locale Information 76

Initializing a Calendar 76

Calendrical Calculations 77

Chapter 27: NSData 78

Examples 78

Create 78

Get NSData lengh 78

Encoding and decoding a string using NSData Base64 78

NSData and Hexadecimal String 79

Chapter 28: NSDate 81

Remarks 81

Examples 81

Creating an NSDate 81

Date Comparison 81

Convert NSDate that is composed from hour and minute (only) to a full NSDate 82

Converting NSDate to NSString 83

Chapter 29: NSDictionary 84

Examples 84

Create 84

NSDictionary to NSArray 84

NSDictionary to NSData 84

NSDictionary to JSON 85

Block Based Enumeration 85

Fast Enumeration 85

Chapter 30: NSDictionary 86

Syntax 86

Remarks 86

Examples 86

Creating using literals 86

Creating using dictionaryWithObjectsAndKeys: 86

Creating using plists 87

Setting a Value in NSDictionary 87

Standard 87

Shorthand 87

Getting a Value from NSDictionary 87

Standard 88

Shorthand 88

Check if NSDictionary already has a key or not 88

Chapter 31: NSJSONSerialization 89

Syntax 89

Parameters 89

Remarks 89

Examples 89

JSON Parsing using NSJSONSerialization Objective c 89

Chapter 32: NSMutableArray 91

Examples 91

Adding elements 91

Insert Elements 91

Deleting Elements 91

Sorting Arrays 92

Move object to another index 92

Filtering Array content with Predicate 92

Creating an NSMutableArray 92

Chapter 33: NSMutableDictionary 94

Parameters 94

Examples 94

NSMutableDictionary Example 94

Removing Entries From a Mutable Dictionary 95

Chapter 34: NSObject 97

Introduction 97

Syntax 97

Examples 97

NSObject 97

Chapter 35: NSPredicate 99

Syntax 99

Remarks 99

Examples 99

Filter By Name 99

Find movies except given ids 100

Find all the objects which is of type movie 101

Find Distinct object ids of array 101

Find movies with specific ids 101

Case Insensitive comparison with exact title match 101

Case sensitive with exact title match 101

Case Insensitive comparison with matching subset 101

Chapter 36: NSRegularExpression 102

Syntax 102

Examples 102

Find all the numbers in a string 102

Check whether a string matches a pattern 102

Chapter 37: NSSortDescriptor 104

Examples 104

Sorted by combinations of NSSortDescriptor 104

Chapter 38: NSString 105

Introduction 105

Remarks 105

Examples 105

Creation 105

String Length 106

Changing Case 106

Comparing Strings 106

Joining an Array of Strings 107

Encoding and Decoding 107

Splitting 108

Searching for a Substring 109

Working with C Strings 109

Removing Leading and Trailing Whitespace 110

Formatting 110

Reversing a NSString Objective-C 110

Chapter 39: NSTextAttachment 112

Syntax 112

Remarks 112

Examples 112

NSTextAttachment Example 112

Chapter 40: NSTimer 113

Examples 113

Creating a Timer 113

Invalidating a timer 113

Manually firing a timer 113

Storing information in the Timer 114

Chapter 41: NSURL 115

Examples 115

Create 115

Compare NSURL 115

Modifying and Converting a File URL with removing and appending path 115

Chapter 42: NSUrl send a post request 117

Examples 117

Simple POST request 117

Simple Post Request With Timeout 117

Chapter 43: NSUserDefaults 118

Examples 118

Simple example 118

Clear NSUserDefaults 118

Chapter 44: Predefined Macros 119

Introduction 119

Syntax 119

Examples 119

Predefined Macros 119

Chapter 45: Properties 120

Syntax 120

Parameters 120

Examples 121

What are properties? 121

Custom getters and setters 122

Properties that cause updates 123

Chapter 46: Protocols 126

Examples 126

Basic Protocol Definition 126

Optional and required methods 126

Conforming to Protocols 126

Forward Declarations 127

Checking existance of optional method implementations 127

Check conforms Protocol 127

Chapter 47: Protocols and Delegates 129

Remarks 129

Examples 129

Implementation of Protocols and Delegation mechanism. 129

Chapter 48: Random Integer 131

Examples 131

Basic Random Integer 131

Random Integer within a Range 131

Chapter 49: Singletons 132

Introduction 132

Examples 132

Using Grand Central Dispatch (GCD) 132

Creating Singleton class and also preventing it from having multiple instances using alloc 132

Creating Singleton and also preventing it from having multiple instance using alloc/init, 133

Chapter 50: Structs 135

Syntax 135

Remarks 135

Examples 135

CGPoint 135

Defining a Structure and Accessing Structure Members 136

Chapter 51: Subscripting 138

Examples 138

Subscripts with NSArray 138

Subscripts with NSDictionary 138

Custom Subscripting 139

Chapter 52: Unit testing using Xcode 140

Remarks 140

Examples 140

Testing a block of code or some method: 141

Feed the dummy data to the method under test if required & then compare the expected & act 141

Testing asynchronous block of code: 141

Measuring Performance of a block of code: 141

Running Test Suits: 142

Note: 142

Chapter 53: XML parsing 144

Examples 144

XML Parsing 144

Credits 146

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: objective-c-language

It is an unofficial and free Objective-C Language ebook created for educational purposes. All the
content is extracted from Stack Overflow Documentation, which is written by many hardworking
individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official Objective-C
Language.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/objective-c-language
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Objective-C
Language

Versions

Version Release Date

1.0 1983-01-01

2.0 2007-10-27

Modern 2014-03-10

Examples

Hello World

This program will output "Hello World!"

#import <Foundation/Foundation.h>

int main(int argc, char * argv[]) {
 NSLog(@"Hello World!");
}

#import is a pre-processor directive, which indicates we want to import or include the information
from that file into the program. In this case, the compiler will copy the contents of Foundation.h in
the Foundation framework to the top of the file. The main difference between #import and #include
is that #import is "smart" enough to not reprocess files that have already been included in other
#includes.

The C Language documentation explains the main function.

The NSLog() function will print the string provided to the console, along with some debugging
information. In this case, we use an Objective-C string literal: @"Hello World!". In C, you would
write this as "Hello World!", however, Apple's Foundation Framework adds the NSString class
which provides a lot of useful functionality, and is used by NSLog. The simplest way to create an
instance of NSString is like this: @"string content here".

Technically, NSLog() is part of Apple's Foundation Framework and is not actually part
of the Objective-C language. However, the Foundation Framework is ubiquitous
throughout Objective-C programming. Since the Foundation Framework is not open-
source and cannot be used outside of Apple development, there are open-source
alternatives to the framework which are associated with OPENStep and GNUStep.

https://riptutorial.com/ 2

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/prerelease/content/releasenotes/ObjectiveC/ModernizationObjC/AdoptingModernObjective-C/AdoptingModernObjective-C.html
http://www.riptutorial.com/c/example/795/hello-world
http://toastytech.com/guis/openstep.html
http://www.nongnu.org/gap/index.html

Compiling the program

Assuming we want to compile our Hello World program, which consist of a single hello.m file, the
command to compile the executable is:

clang -framework Foundation hello.m -o hello

Then you can run it:

./hello

This will output:

Hello World!

The options are:

-framework: Specifies a framework to use to compile the program. Since this program uses
Foundation, we include the Foundation framework.

•

-o: This option indicate to which file we'd like to output our program. In our case hello. If not
specified, the default value is a.out.

•

Read Getting started with Objective-C Language online: https://riptutorial.com/objective-
c/topic/199/getting-started-with-objective-c-language

https://riptutorial.com/ 3

https://riptutorial.com/objective-c/topic/199/getting-started-with-objective-c-language
https://riptutorial.com/objective-c/topic/199/getting-started-with-objective-c-language

Chapter 2: Basic Data Types

Syntax

BOOL havePlutonium = YES; // Direct assigment•
BOOL fastEnough = (car.speedInMPH >= 88); // Comparison expression•
BOOL fluxCapacitorActive = (havePlutonium && fastEnough); // Boolean expression•
 •
id somethingWicked = [witchesCupboard lastObject]; // Retrieve untyped object•
id powder = prepareWickedIngredient(somethingWicked); // Pass and return•
if ([ingredient isKindOfClass:[Toad class]]) { // Test runtime type•

Examples

BOOL

The BOOL type is used for boolean values in Objective-C. It has two values, YES, and NO, in contrast
to the more common "true" and "false".

Its behavior is straightforward and identical to the C language's.

BOOL areEqual = (1 == 1); // areEqual is YES
BOOL areNotEqual = !areEqual // areNotEqual is NO
NSCAssert(areEqual, "Mathematics is a lie"); // Assertion passes

BOOL shouldFlatterReader = YES;
if (shouldFlatterReader) {
 NSLog(@"Only the very smartest programmers read this kind of material.");
}

A BOOL is a primitive, and so it cannot be stored directly in a Foundation collection. It must be
wrapped in an NSNumber. Clang provides special syntax for this:

NSNumber * yes = @YES; // Equivalent to [NSNumber numberWithBool:YES]
NSNumber * no = @NO; // Equivalent to [NSNumber numberWithBool:NO]

The BOOL implementation is directly based on C's, in that it is a typedef of the C99 standard type
bool. The YES and NO values are defined to __objc_yes and __objc_no, respectively. These special
values are compiler builtins introduced by Clang, which are translated to (BOOL)1 and (BOOL)0. If
they are not available, YES and NO are defined directly as the cast-integer form. The definitions are
found in the Objective-C runtime header objc.h

id

id is the generic object pointer, an Objective-C type representing "any object". An instance of any
Objective-C class can be stored in an id variable. An id and any other class type can be assigned

https://riptutorial.com/ 4

back and forth without casting:

id anonymousSurname = @"Doe";
NSString * surname = anonymousSurname;
id anonymousFullName = [NSString stringWithFormat:@"%@, John", surname];

This becomes relevant when retrieving objects from a collection. The return types of methods like
objectAtIndex: are id for exactly this reason.

DataRecord * record = [records objectAtIndex:anIndex];

It also means that a method or function parameter typed as id can accept any object.

When an object is typed as id, any known message can be passed to it: method dispatch does not
depend on the compile-time type.

NSString * extinctBirdMaybe =
 [anonymousSurname stringByAppendingString:anonymousSurname];

A message that the object does not actually respond to will still cause an exception at runtime, of
course.

NSDate * nope = [anonymousSurname addTimeInterval:10];
// Raises "Does not respond to selector" exception

Guarding against exception.

NSDate * nope;
if([anonymousSurname isKindOfClass:[NSDate class]]){
 nope = [anonymousSurname addTimeInterval:10];
}

The id type is defined in objc.h

typedef struct objc_object {
 Class isa;
} *id;

SEL

Selectors are used as method identifiers in Objective-C.

In the example below, there are two selectors. new and setName:

Person* customer = [Person new];
[customer setName:@"John Doe"];

Each pair of brackets corresponds to a message send. On the first line we send a message

https://riptutorial.com/ 5

containing the new selector to the Person class and on the second line we send a message
containing the setName: selector and a string. The receiver of these messages uses the selector to
look up the correct action to perform.

Most of the time, message passing using the bracket syntax is sufficient, but occasionally you
need to work with the selector itself. In these cases, the SEL type can be used to hold a reference
to the selector.

If the selector is available at compile time, you can use @selector() to get a reference to it.

SEL s = @selector(setName:);

And if you need to find the selector at runtime, use NSSelectorFromString.

SEL s NSSelectorFromString(@"setName:");

When using NSSelectorFromString, make sure to wrap the selector name in a NSString.

It is commonly used to check if a delegate implements an optional method.

if ([self.myDelegate respondsToSelector:@selector(doSomething)]) {
 [self.myDelegate doSomething];
}

IMP (implementation pointer)

IMP is a C type referring to the implementation of a method, also known as an implementation
pointer. It is a pointer to the start of a method implementation.

Syntax:

id (*IMP)(id, SEL, …)

IMP is defined by:

typedef id (*IMP)(id self,SEL _cmd,…);

To access this IMP, the message “methodForSelector” can be used.

Example 1:

IMP ImpDoSomething = [myObject methodForSelector:@selector(doSomething)];

The method adressed by the IMP can be called by dereferencing the IMP.

ImpDoSomething(myObject, @selector(doSomething));

So these calls are equal:

https://riptutorial.com/ 6

 myImpDoSomething(myObject, @selector(doSomething));
[myObject doSomething]
[myObject performSelector:mySelector]
[myObject performSelector:@selector(doSomething)]
[myObject performSelector:NSSelectorFromString(@"doSomething")];

Example :2:

SEL otherWaySelector = NSSelectorFromString(@“methodWithFirst:andSecond:andThird:");

IMP methodImplementation = [self methodForSelector:otherWaySelector];

result = methodImplementation(self,
 betterWaySelector,
 first,
 second,
 third);

NSLog(@"methodForSelector : %@", result);

Here, we call [NSObject methodForSelector which returns us a pointer to the C function that
actually implements the method, which we can the subsequently call directly.

NSInteger and NSUInteger

The NSInteger is just a typedef for either an int or a long depending on the architecture. The same
goes for a NSUInteger which is a typedef for the unsigned variants. If you check the NSInteger
you will see the following:

#if __LP64__ || (TARGET_OS_EMBEDDED && !TARGET_OS_IPHONE) || TARGET_OS_WIN32 ||
NS_BUILD_32_LIKE_64
typedef long NSInteger;
typedef unsigned long NSUInteger;
#else
typedef int NSInteger;
typedef unsigned int NSUInteger;
#endif

The difference between an signed and an unsigned int or long is that a signed int or long can
contain negative values. The range of the int is -2 147 483 648 to 2 147 483 647 while the
unsigned int has a range of 0 to 4 294 967 295. The value is doubled because the first bit isn't
used anymore to say the value is negative or not. For a long and NSInteger on 64-bit
architectures, the range is much wider.

Most methods Apple provides are returning an NS(U)Integer over the normal int. You'll get a
warning if you try to cast it to a normal int because you will lose precision if you are running on a
64-bit architecture. Not that it would matter in most cases, but it is easier to use NS(U)Integer. For
example, the count method on a array will return an NSUInteger.

NSNumber *iAmNumber = @0;

NSInteger iAmSigned = [iAmNumber integerValue];

https://riptutorial.com/ 7

NSUInteger iAmUnsigned = [iAmNumber unsignedIntegerValue];

NSLog(@"%ld", iAmSigned); // The way to print a NSInteger.
NSLog(@"%lu", iAmUnsigned); // The way to print a NSUInteger.

Just like a BOOL, the NS(U)Integer is a primitive datatype, so you sometimes need to wrap it in a
NSNumber you can use the @ before the integer to cast it like above and retrieve it using the
methods below. But to cast it to NSNumber, you could also use the following methods:

[NSNumber numberWithInteger:0];
[NSNumber numberWithUnsignedInteger:0];

Read Basic Data Types online: https://riptutorial.com/objective-c/topic/4564/basic-data-types

https://riptutorial.com/ 8

https://riptutorial.com/objective-c/topic/4564/basic-data-types

Chapter 3: Blocks

Syntax

// Declare as a local variable:

returnType (^blockName)(parameterType1, parameterType2, ...) = ^returnType(argument1,
argument2, ...) {...};

•

// Declare as a property:

@property (nonatomic, copy, nullability) returnType (^blockName)(parameterTypes);

•

// Declare as a method parameter:

- (void)someMethodThatTakesABlock:(returnType
(^nullability)(parameterTypes))blockName;

•

// Declare as an argument to a method call:

[someObject someMethodThatTakesABlock:^returnType (parameters) {...}];

•

// Declare as a typedef:

typedef returnType (^TypeName)(parameterTypes);

TypeName blockName = ^returnType(parameters) {...};

•

// Declare a C function return a block object:

BLOCK_RETURN_TYPE (^function_name(function
parameters))(BLOCK_PARAMETER_TYPE);

•

Remarks

Blocks are specified by the Language Specification for Blocks for C, Objective-C, C++ and
Objective-C++.

Additionally, the Blocks ABI is defined by the Block Implementation Specification.

Examples

Blocks as Method Parameters

- (void)methodWithBlock:(returnType (^)(paramType1, paramType2, ...))name;

https://riptutorial.com/ 9

http://clang.llvm.org/docs/BlockLanguageSpec.html
http://clang.llvm.org/docs/Block-ABI-Apple.html

Defining and Assigning

A block that performs addition of two double precision numbers, assigned to variable addition:

double (^addition)(double, double) = ^double(double first, double second){
 return first + second;
};

The block can be subsequently called like so:

double result = addition(1.0, 2.0); // result == 3.0

Blocks as Properties

@interface MyObject : MySuperclass

@property (copy) void (^blockProperty)(NSString *string);

@end

When assigning, since self retains blockProperty, block should not contain a strong reference to
self. Those mutual strong references are called a "retain cycle" and will prevent the release of
either object.

__weak __typeof(self) weakSelf = self;
self.blockProperty = ^(NSString *string) {
 // refer only to weakSelf here. self will cause a retain cycle
};

It is highly unlikely, but self might be deallocated inside the block, somewhere during the
execution. In this case weakSelf becomes nil and all messages to it have no desired effect. This
might leave the app in an unknown state. This can be avoided by retaining weakSelf with a __strong
ivar during block execution and clean up afterward.

__weak __typeof(self) weakSelf = self;
self.blockProperty = ^(NSString *string) {
 __strong __typeof(weakSelf) strongSelf = weakSelf;
 // refer only to strongSelf here.
 // ...
 // At the end of execution, clean up the reference
 strongSelf = nil;
};

Block Typedefs

typedef double (^Operation)(double first, double second);

If you declare a block type as a typedef, you can then use the new type name instead of the full
description of the arguments and return values. This defines Operation as a block that takes two

https://riptutorial.com/ 10

doubles and returns a double.

The type can be used for the parameter of a method:

- (double)doWithOperation:(Operation)operation
 first:(double)first
 second:(double)second;

or as a variable type:

Operation addition = ^double(double first, double second){
 return first + second;
};

// Returns 3.0
[self doWithOperation:addition
 first:1.0
 second:2.0];

Without the typedef, this is much messier:

- (double)doWithOperation:(double (^)(double, double))operation
 first:(double)first
 second:(double)second;

double (^addition)(double, double) = // ...

Blocks as local variables

returnType (^blockName)(parameterType1, parameterType2, ...) = ^returnType(argument1,
argument2, ...) {...};

float (^square)(float) = ^(float x) {return x*x;};

square(5); // resolves to 25
square(-7); // resolves to 49

Here's an example with no return and no parameters:

NSMutableDictionary *localStatus;
void (^logStatus)() = ^(void){ [MYUniversalLogger logCurrentStatus:localStatus]};

// Insert some code to add useful status information
// to localStatus dictionary

logStatus(); // this will call the block with the current localStatus

Read Blocks online: https://riptutorial.com/objective-c/topic/540/blocks

https://riptutorial.com/ 11

https://riptutorial.com/objective-c/topic/540/blocks

Chapter 4: BOOL / bool / Boolean /
NSCFBoolean

Examples

BOOL/Boolean/bool/NSCFBoolean

bool is a datatype defined in C99.1.
Boolean values are used in conditionals, such as if or while statements, to conditionally
perform logic or repeat execution. When evaluating a conditional statement, the value 0 is
considered “false”, while any other value is considered “true”. Because NULL and nil are
defined as 0, conditional statements on these nonexistent values are also evaluated as
“false”.

2.

BOOL is an Objective-C type defined as signed char with the macros YES and NO to
represent true and false

3.

From the definition in objc.h:

#if (TARGET_OS_IPHONE && __LP64__) || TARGET_OS_WATCH
typedef bool BOOL;
#else
typedef signed char BOOL;
// BOOL is explicitly signed so @encode(BOOL) == "c" rather than "C"
// even if -funsigned-char is used.
#endif

#define YES ((BOOL)1)
#define NO ((BOOL)0)

NSCFBoolean is a private class in the NSNumber class cluster. It is a bridge to the
CFBooleanRef type, which is used to wrap boolean values for Core Foundation property lists
and collections. CFBoolean defines the constants kCFBooleanTrue and kCFBooleanFalse.
Because CFNumberRef and CFBooleanRef are different types in Core Foundation, it makes
sense that they are represented by different bridging classes in NSNumber.

4.

BOOL VS Boolean

BOOL

Apple's Objective-C frameworks and most Objective-C/Cocoa code uses
BOOL.

•

Use BOOL in objective-C, when dealing with any CoreFoundation APIs•

Boolean

Boolean is an old Carbon keyword , defined as an unsigned char•

https://riptutorial.com/ 12

Read BOOL / bool / Boolean / NSCFBoolean online: https://riptutorial.com/objective-
c/topic/7267/bool---bool---boolean---nscfboolean

https://riptutorial.com/ 13

https://riptutorial.com/objective-c/topic/7267/bool---bool---boolean---nscfboolean
https://riptutorial.com/objective-c/topic/7267/bool---bool---boolean---nscfboolean

Chapter 5: Categories

Syntax

@interface ClassName (categoryName) // ClassName is the class to be extended•

// Method and property declarations•

@end•

Remarks

To avoid method name clashes, it is recommended to use prefixes (like xyz_ in the example). If
methods with the same name exist, it is undefined which one will be used in the runtime.

Examples

Simple Category

Interface and implementation of a simple category on NSArray, named Filter, with a single method
that filters numbers.

It is good practice to add a prefix (PF) to the method to ensure we don't overwrite any future
NSArray methods.

@interface NSArray (PFFilter)

- (NSArray *)pf_filterSmaller:(double)number;

@end

@implementation NSArray (PFFilter)

- (NSArray *)pf_filterSmaller:(double)number
{
 NSMutableArray *result = [NSMutableArray array];
 for (id val in self)
 {
 if ([val isKindOfClass:[NSNumber class] && [val doubleValue] >= number)
 {
 [result addObject:val];
 }
 }
 return [result copy];
}

@end

Declaring a class method

https://riptutorial.com/ 14

Header file UIColor+XYZPalette.h:

@interface UIColor (XYZPalette)

+(UIColor *)xyz_indigoColor;

@end

and implementation UIColor+XYZPalette.m:

@implementation UIColor (XYZPalette)

+(UIColor *)xyz_indigoColor
{
 return [UIColor colorWithRed:75/255.0f green:0/255.0f blue:130/255.0f alpha:1.0f];
}

@end

Adding a property with a category

Properties can be added with categories using associated objects, a feature of the Objective-C
runtime.

Note that the property declaration of retain, nonatomic matches the last argument to
objc_setAssociatedObject. See Attach object to another existing object for explanations.

#import <objc/runtime.h>

@interface UIViewController (ScreenName)

@property (retain, nonatomic) NSString *screenName;

@end

@implementation UIViewController (ScreenName)

@dynamic screenName;

- (NSString *)screenName {
 return objc_getAssociatedObject(self, @selector(screenName));
}

- (void)setScreenName:(NSString *)screenName {
 objc_setAssociatedObject(self, @selector(screenName), screenName,
OBJC_ASSOCIATION_RETAIN_NONATOMIC);
}

@end

Conforming to protocol

You can add protocols to standard classes to extends their functionality:

https://riptutorial.com/ 15

http://www.riptutorial.com/objective-c/example/3821/attach-object-to-another-existing-object--association-

@protocol EncodableToString <NSObject>
- (NSString *)toString;
@end

@interface NSDictionary (XYZExtended) <EncodableToString>
@end

@implementation NSDictionary (XYZExtended)
- (NSString *)toString {
 return self.description;
}
@end

where XYZ your project's prefix

Create a Category on XCode

Categories provide the ability to add some extra functionality to an object without subclassing or
changing the actual object.

For example we want to set some custom fonts. Let's create a category that add functionality to
UIFont class. Open your XCode project, click on File -> New -> File and choose Objective-C file,
click Next enter your category name say "CustomFont" choose file type as Category and Class as
UIFont then Click "Next" followed by "Create."

https://riptutorial.com/ 16

http://i.stack.imgur.com/4bC0S.png

Declare the Category Method :-

Click "UIFont+CustomFonts.h" to view the new category's header file. Add the following code to
the interface to declare the method.

@interface UIFont (CustomFonts)

+(UIFont *)productSansRegularFontWithSize:(CGFloat)size;

@end

Now Implement the Category Method:-

Click "UIFont+CustomFonts.m" to view the category's implementation file. Add the following code
to create a method that will set ProductSansRegular Font.

+(UIFont *)productSansRegularFontWithSize:(CGFloat)size{

 return [UIFont fontWithName:@"ProductSans-Regular" size:size];

}

Import your category

https://riptutorial.com/ 17

http://i.stack.imgur.com/6mGC1.png

#import "UIFont+CustomFonts.h"

Now set the Label font

[self.label setFont:[UIFont productSansRegularFontWithSize:16.0]];

Read Categories online: https://riptutorial.com/objective-c/topic/550/categories

https://riptutorial.com/ 18

https://riptutorial.com/objective-c/topic/550/categories

Chapter 6: Classes and Objects

Syntax

Cat *cat = [[Cat alloc] init]; // Create cat object of type Cat•
Dog *dog = [[Dog alloc] init]; // Create dog object of type Dog•
NSObject *someObject = [NSObject alloc]; [someObject init]; // don’t do this•
XYZObject *object = [XYZObject new]; // Use new to create objects if NO arguments are
needed for initialization

•

NSString *someString = @"Hello, World!"; // Creating an NSString with literal syntax•
NSNumber *myFloat = @3.14f; // Another example to create a NSNumber using literal
syntax

•

NSNumber *myInt = @(84 / 2); // Create an object using a boxed expression•

Examples

Creating classes with initialization values

#import <Foundation/Foundation.h>
@interface Car:NSObject {
 NSString *CarMotorCode;
 NSString *CarChassisCode;
}

- (instancetype)initWithMotorValue:(NSString *) motorCode
andChassisValue:(NSInteger)chassisCode;
- (void) startCar;
- (void) stopCar;

@end

@implementation Car

- (instancetype)initWithMotorValue:(NSString *) motorCode
andChassisValue:(NSInteger)chassisCode{
 CarMotorCode = motorCode;
 CarChassisCode = chassisCode;
 return self;
}

- (void) startCar {...}
- (void) stopCar {...}

@end

The method initWithMotorValue: type andChassisValue: type will be used to initialize the Car
objects.

Singleton Class

https://riptutorial.com/ 19

What is a Singleton Class?

A singleton class returns the same instance no matter how many times an application requests it.
Unlike a regular class, A singleton object provides a global point of access to the resources of its
class.

When to Use Singleton Classes?

Singletons are used in situations where this single point of control is desirable, such as with
classes that offer some general service or resource.

How to Create Singleton Classes

First, create a New file and subclass it from NSObject. Name it anything, we will use CommonClass
here. Xcode will now generate CommonClass.h and CommonClass.m files for you.

In your CommonClass.h file:

#import <Foundation/Foundation.h>

@interface CommonClass : NSObject {
}
+ (CommonClass *)sharedObject;
@property NSString *commonString;
@end

In your CommonClass.m File:

#import "CommonClass.h"

@implementation CommonClass

+ (CommonClass *)sharedObject {
 static CommonClass *sharedClass = nil;
 static dispatch_once_t onceToken;
 dispatch_once(&onceToken, ^{
 sharedClass = [[self alloc] init];
 });
 return sharedClass;
}

- (id)init {
 if (self = [super init]) {
 self.commonString = @"this is string";
 }
 return self;
}

@end

How to Use Singleton Classes

The Singleton Class that we created earlier will be accessible from anywhere in the project as long
as you have imported CommonClass.h file in the relevant module. To modify and access the shared

https://riptutorial.com/ 20

data in Singleton Class, you will have to access the shared Object of that class which can be
accessed by using sharedObject method like following:

[CommonClass sharedObject]

To read or modify the elements in Shared Class, do the following:

NSString *commonString = [[CommonClass sharedObject].commonString; //Read the string in
singleton class

NSString *newString = @"New String";
[CommonClass sharedObject].commonString = newString;//Modified the string in singleton class

The "instancetype" return type

Objective-C supports a special type called `instancetype that can only be used as type returned by
a method. It evaluates to the class of the receiving object.

Consider the following class hierarchy:

@interface Foo : NSObject

- (instancetype)initWithString:(NSString *)string;

@end

@interface Bar : Foo
@end

When [[Foo alloc] initWithString:@"abc"] is called, the compiler can infer that the return type is
Foo *. The Bar class derived from Foo but did not override the declaration of the initializer. Yet,
thanks to instancetype, the compiler can infer that [[Bar alloc] initWithString:@"xyz"] returns a
value of type Bar *.

Consider the return type of -[Foo initWithString:] being Foo * instead: if you would call [[Bar
alloc] initWithString:], the compiler would infer that a Foo * is returned, not a Bar * as is the
intention of the developer. The instancetype solved this issue.

Before the introduction of instancetype, initializers, static methods like singleton accessors and
other methods that want to return an instance of the receiving class needed to return an id. The
problem is that id means "an object of any type". The compiler is thus not able to detect that
NSString *wrong = [[Foo alloc] initWithString:@"abc"]; is assigning to a variable with an incorrect
type.

Due to this issue, initializers should always use instancetype instead of id as the return value.

Specifying Generics

You can enhance your own classes with generics just like NSArray or NSDictionary.

https://riptutorial.com/ 21

@interface MyClass<__covariant T>

@property (nonnull, nonatomic, strong, readonly) NSArray<T>* allObjects;

- (void) addObject:(nonnull T)obj;

@end

Difference between allocation and initialization

In most object oriented languages, allocating memory for an object and initializing it is an atomic
operation:

// Both allocates memory and calls the constructor
MyClass object = new MyClass();

In Objective-C, these are separate operations. The class methods alloc (and its historic sibling
allocWithZone:) makes the Objective-C runtime reserve the required memory and clears it. Except
for a few internal values, all properties and variables are set to 0/NO/nil.

The object then is already "valid" but we always want to call a method to actually set up the object,
which we call an initializer. These serve the same purpose as constructors in other languages. By
convention, these methods start with init. From a language point of view, they are just normal
methods.

// Allocate memory and set all properties and variables to 0/NO/nil.
MyClass *object = [MyClass alloc];
// Initialize the object.
object = [object init];

// Shorthand:
object = [[MyClass alloc] init];

Read Classes and Objects online: https://riptutorial.com/objective-c/topic/758/classes--and-objects

https://riptutorial.com/ 22

https://riptutorial.com/objective-c/topic/758/classes--and-objects

Chapter 7: Continue and Break!

Examples

Continue and Break Statement

The continue statement in Objective-C programming language works somewhat like the break
statement. Instead of forcing termination, however, continue forces the next iteration of the loop to
take place, skipping any code in between.

For the for loop, continue statement causes the conditional test and increment portions of the loop
to execute. For the while and do...while loops, continue statement causes the program control
pass to the conditional tests.

#import <Foundation/Foundation.h>

int main ()
{
 /* local variable definition */
 int a = 10;

 /* do loop execution */
 do
 {
 if(a == 15)
 {
 /* skip the iteration */
 a = a + 1;
 continue;
 }
 NSLog(@"value of a: %d\n", a);
 a++;

 }while(a < 20);

 return 0;
}

Output:

2013-09-07 22:20:35.647 demo[29998] value of a: 10
2013-09-07 22:20:35.647 demo[29998] value of a: 11
2013-09-07 22:20:35.647 demo[29998] value of a: 12
2013-09-07 22:20:35.647 demo[29998] value of a: 13
2013-09-07 22:20:35.647 demo[29998] value of a: 14
2013-09-07 22:20:35.647 demo[29998] value of a: 16
2013-09-07 22:20:35.647 demo[29998] value of a: 17
2013-09-07 22:20:35.647 demo[29998] value of a: 18
2013-09-07 22:20:35.647 demo[29998] value of a: 19

Refer to this link for more information.

https://riptutorial.com/ 23

https://www.tutorialspoint.com/objective_c/objective_c_continue_statement.htm

Read Continue and Break! online: https://riptutorial.com/objective-c/topic/8709/continue-and-
break-

https://riptutorial.com/ 24

https://riptutorial.com/objective-c/topic/8709/continue-and-break-
https://riptutorial.com/objective-c/topic/8709/continue-and-break-

Chapter 8: Declare class method and
instance method

Introduction

Instance method are methods that are specific to particular classes. Instance methods are
declared and defined followed by - (minus) symbol.

Class methods can be called by class name itself .Class methods are declared and defined by
using + (plus)sign .

Syntax

-(void)testInstanceMethod; //Class methods declare with "+" sign1.
(void)classMethod;//instance methods declare with "-" sign2.

Examples

How to declare class method and instance method.

instance methods use an instance of a class.

@interface MyTestClass : NSObject

- (void)testInstanceMethod;

@end

They could then be used like so:

MyTestClass *object = [[MyTestClass alloc] init];
[object testInstanceMethod];

Class method can be used with just the class name.

@interface MyClass : NSObject

+ (void)aClassMethod;

@end

They could then be used like so:

[MyClass aClassMethod];

https://riptutorial.com/ 25

class methods are the convenience methods on many Foundation classes like [NSString's
+stringWithFormat:] or NSArray's +arrayWithArray

Read Declare class method and instance method online: https://riptutorial.com/objective-
c/topic/8214/declare-class-method-and-instance-method

https://riptutorial.com/ 26

https://riptutorial.com/objective-c/topic/8214/declare-class-method-and-instance-method
https://riptutorial.com/objective-c/topic/8214/declare-class-method-and-instance-method

Chapter 9: Enums

Syntax

typedef NS_ENUM(type, name) {...} -- type is the type of enumeration and name is the name
of the enum. values are in "...". This creates a basic enum and a type to go with it; programs
like Xcode will assume a variable with the enum type has one of the enum values

•

Examples

Defining an enum

Enums are defined by the following the syntax above.

typedef NS_ENUM(NSUInteger, MyEnum) {
 MyEnumValueA,
 MyEnumValueB,
 MyEnumValueC,
};

You also can set your own raw-values to the enumeration types.

typedef NS_ENUM(NSUInteger, MyEnum) {
 MyEnumValueA = 0,
 MyEnumValueB = 5,
 MyEnumValueC = 10,
};

You can also specify on the first value and all the following will use it with increment:

typedef NS_ENUM(NSUInteger, MyEnum) {
 MyEnumValueA = 0,
 MyEnumValueB,
 MyEnumValueC,
};

Variables of this enum can be created by MyEnum enumVar = MyEnumValueA.

typedef enum declaration in Objective-C

A enum declares a set of ordered values - the typedef just adds a handy name to this. The 1st
element is 0 etc.

 typedef enum {
 Monday=1,
 Tuesday,
 Wednesday

https://riptutorial.com/ 27

 } WORKDAYS;

 WORKDAYS today = Monday;//value 1

Converting C++ std::vector to an Objective-C Array

Many C++ libraries use enums and return/receive data using vectors that contain enums. As C
enums are not Objective-C objects, Objective-C collections cannot be used directly with C enums.
The example below deals with this by using a combination of an NSArray and generics and a
wrapper object for the array. This way, the collection can be explicit about the data type and there
is no worry about possible memory leaks with C arrays Objective-C objects are used.

Here is the C enum & Objective-C equivalent object:

typedef enum
{
 Error0 = 0,
 Error1 = 1,
 Error2 = 2
} MyError;

@interface ErrorEnumObj : NSObject

@property (nonatomic) int intValue;

+ (instancetype) objWithEnum:(MyError) myError;
- (MyError) getEnumValue;

@end

@implementation ErrorEnumObj

+ (instancetype) objWithEnum:(MyError) error
{
 ErrorEnumObj * obj = [ErrorEnumObj new];
 obj.intValue = (int)error;
 return obj;
}

- (MyError) getEnumValue
{
 return (MyError)self.intValue;
}

@end

And here is a possible use of it in Objective-C++ (the resulting NSArray can be used in Objective-
C only files as no C++ is used).

class ListenerImpl : public Listener
{
public:
 ListenerImpl(Listener* listener) : _listener(listener) {}
 void onError(std::vector<MyError> errors) override
 {
 NSMutableArray<ErrorEnumObj *> * array = [NSMutableArray<ErrorEnumObj *> new];

https://riptutorial.com/ 28

 for (auto&& myError : errors)
 {
 [array addObject:[ErrorEnumObj objWithEnum:myError]];
 }
 [_listener onError:array];
 }

private:
 __weak Listener* _listener;
}

If this kind of solution is to be used on multiple enums, the creation of the EnumObj (declaration &
implementation) can be done using a macro (to create a template like solution).

Read Enums online: https://riptutorial.com/objective-c/topic/1461/enums

https://riptutorial.com/ 29

https://riptutorial.com/objective-c/topic/1461/enums

Chapter 10: Error Handling

Syntax

NSAssert(condition, fmtMessage, arg1, arg2, ...) (args in italics are optional) -- Asserts that
condition evaluates to a true value. If it doesn't than the assertion will raise an exception
(NSAssertionException), with the fmtMessage formatted with the args provided

•

Examples

Asserting

@implemenetation Triangle

...

-(void)setAngles:(NSArray *)_angles {
 self.angles = _angles;

 NSAssert((self.angles.count == 3), @"Triangles must have 3 angles. Array '%@' has %i",
self.angles, (int)self.angles.count);

 CGFloat angleA = [self.angles[0] floatValue];
 CGFloat angleB = [self.angles[1] floatValue];
 CGFloat angleC = [self.angles[2] floatValue];
 CGFloat sum = (angleA + angleB + angleC);
 NSAssert((sum == M_PI), @"Triangles' angles must add up to pi radians (180°). This
triangle's angles add up to %f radians (%f°)", (float)sum, (float)(sum * (180.0f / M_PI)));
}

These assertions make sure that you don't give a triangle incorrect angles, by throwing an
exception if you do. If they didn't throw an exception than the triangle, not being a true triangle at
all, might cause some bugs in later code.

Error & Exception handling with try catch block

Exceptions represent programmer-level bugs like trying to access an array element that doesn’t
exist.

Errors are user-level issues like trying load a file that doesn’t exist. Because errors are expected
during the normal execution of a program.

Example:

 NSArray *inventory = @[@"Sam",
 @"John",
 @"Sanju"];
 int selectedIndex = 3;
 @try {
 NSString * name = inventory[selectedIndex];

https://riptutorial.com/ 30

 NSLog(@"The selected Name is: %@", name);
 } @catch(NSException *theException) {
 NSLog(@"An exception occurred: %@", theException.name);
 NSLog(@"Here are some details: %@", theException.reason);
 } @finally {
 NSLog(@"Executing finally block");
 }

OUTPUT:

An exception occurred: NSRangeException

Here are some details: *** -[__NSArrayI objectAtIndex:]: index 3 beyond bounds [0 .. 2]

Executing finally block

Read Error Handling online: https://riptutorial.com/objective-c/topic/1459/error-handling

https://riptutorial.com/ 31

https://riptutorial.com/objective-c/topic/1459/error-handling

Chapter 11: Fast Enumeration

Examples

Fast enumeration of an NSArray

This example shows how to use fast enumeration in order to traverse through an NSArray.

When you have an array, such as

NSArray *collection = @[@"fast", @"enumeration", @"in objc"];

You can use the for ... in syntax to go through each item of the array, automatically starting with
the first at index 0 and stopping with the last item:

for (NSString *item in collection) {
 NSLog(@"item: %@", item);
}

In this example, the output generated would look like

// item: fast
// item: enumeration
// item: in objc

Fast enumeration of an NSArray with index.

This example shows how to use fast enumeration in order to traverse through an NSArray. With
this way you can also track current object's index while traversing.

Suppose you have an array,

NSArray *weekDays = @[@"Monday", @"Tuesday", @"Wednesday", @"Thursday", @"Friday",
@"Saturday", @"Sunday"];

Now you can traverse through the array like below,

[weekDays enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop) {

 //... Do your usual stuff here

 obj // This is the current object
 idx // This is the index of the current object
 stop // Set this to true if you want to stop

}];

Read Fast Enumeration online: https://riptutorial.com/objective-c/topic/5583/fast-enumeration

https://riptutorial.com/ 32

https://riptutorial.com/objective-c/topic/5583/fast-enumeration

Chapter 12: Format-Specifiers

Introduction

Format-Specifiers are used in Objective-c to implant object-values into a string.

Syntax

%@ //String•
%d //Signed 32-bit integer•
%D //Signed 32-bit integer•
%u //Unsigned 32-bit integer•
%U //Unsigned 32-bit integer•
%x //Unsigned 32-bit integer in lowercase hexadecimal format•
%X //Unsigned 32-bit integer in UPPERCASE hexadecimal format•
%o //Unsigned 32-bit integer in octal format•
%O //Unsigned 32-bit integer in octal format•
%f //64-bit floating-point number•
%F //64-bit floating-point number printed in decimal notation•
%e //64-bit floating-point number in lowercase scientific notation format•
%E //64-bit floating-point number in UPPERCASE scientific notation format•
%g //special case %e which uses %f when less than 4 sig-figs are available, else %e•
%G //special case %E which uses %f when less than 4 sig-figs are available, else %E•
%c //8-bit unsigned character•
%C //16-bit UTF-16 code unit•
%s //UTF8 String•
%S //16-bit variant of %s•
%p //Void Pointer in lowercase hexidecmial format with leading '0x'•
%zx //special case %p which removes leading '0x' (For use with no-type cast)•
%a //64-bit floating-point number in scientific notation with leading '0x' and one hexadecimal
digit before the decimal point using a 'p' to notate the exponent.

•

%A //64-bit floating-point number in scientific notation with leading '0x' and one hexadecimal
digit before the decimal point using an 'P' to notate the exponent.

•

Remarks

Due to the nature of format-specifiers, if you wish to include the percentage symbol (%) in your
string, you must escape it using a second percentage symbol.

Example:

int progress = 45;//percent
NSString *progressString = [NSString stringWithFormat:@"Progress: %i%%", (int)progress];

NSLog(progressString);//logs "Progress: 45%"

https://riptutorial.com/ 33

No Format Specifier for BOOL-type exists.

Common-use solutions include:

BOOL myBool = YES;
NSString *boolState = [NSString stringWithFormat:@"BOOL state: %@", myBool?@"true":@"false"];

NSLog(boolState);//logs "true"

Which utilizes a ternary operator for casting a string-equivalent.

BOOL myBool = YES;
NSString *boolState = [NSString stringWithFormat:@"BOOL state: %i", myBool];

NSLog(boolState);//logs "1" (binary)

Which utilizes an (int) cast for implanting a binary-equivalent.

Examples

Integer Example - %i

int highScore = 57;
NSString *scoreBoard = [NSString stringWithFormat:@"HighScore: %i", (int)highScore];

NSLog(scoreBoard);//logs "HighScore: 57"

Read Format-Specifiers online: https://riptutorial.com/objective-c/topic/9048/format-specifiers

https://riptutorial.com/ 34

https://riptutorial.com/objective-c/topic/9048/format-specifiers

Chapter 13: Grand Central Dispatch

Introduction

Grand Central Dispatch (GCD) In iOS, Apple provides two ways to do multitasking: The Grand
Central Dispatch (GCD) and NSOperationQueue frameworks.We will discuss here about GCD.
GCD is a lightweight way to represent units of work that are going to be executed concurrently
You don’t schedule these units of work; the system takes care of scheduling for you. Adding
dependency among blocks can be a headache. Canceling or suspending a block creates extra
work for you as a developer!

Examples

What is Grand central dispatch.

What is Concurrency?

Doing multiple things at the same time.•

Taking advantage of number of cores available in multicore CPUs.•

Running multiple programs in parallel.•

Objectives of Concurrency

Running program in background without hogging CPU.•

Define Tasks, Define Rules and let the system take the responsibility of performing them.•

Improve responsiveness by ensuring that the main thread is free to respond to user events.•

DISPATCH QUEUES

Grand central dispatch – dispatch queues allows us to execute arbitrary blocks of code either
asynchronously or synchronously All Dispatch Queues are first in – first out All the tasks added to
dispatch queue are started in the order they were added to the dispatch queue.

Read Grand Central Dispatch online: https://riptutorial.com/objective-c/topic/8280/grand-central-
dispatch

https://riptutorial.com/ 35

https://riptutorial.com/objective-c/topic/8280/grand-central-dispatch
https://riptutorial.com/objective-c/topic/8280/grand-central-dispatch

Chapter 14: Inheritance

Syntax

@interface derived-class-Name: base-class-Name1.

Examples

Car is inherited from Vehicle

Consider a base class Vehicle and its derived class Car as follows:

#import <Foundation/Foundation.h>

@interface Vehicle : NSObject

{
 NSString *vehicleName;
 NSInteger vehicleModelNo;
}

- (id)initWithName:(NSString *)name andModel:(NSInteger)modelno;
- (void)print;
@end

@implementation Vehicle

- (id)initWithName:(NSString *)name andModel:(NSInteger)modelno{
 vehicleName = name;
 vehicleModelNo = modelno;
 return self;
}

- (void)print{
 NSLog(@"Name: %@", vehicleName);
 NSLog(@"Model: %ld", vehicleModelNo);
}

@end

@interface Car : Vehicle

{
 NSString *carCompanyName;
}

- (id)initWithName:(NSString *)name andModel:(NSInteger)modelno
 andCompanyName:(NSString *)companyname;
- (void)print;

@end

@implementation Car

https://riptutorial.com/ 36

- (id)initWithName:(NSString *)name andModel:(NSInteger) modelno
 andCompanyName: (NSString *) companyname
 {
 vehicleName = name;
 vehicleModelNo = modelno;
 carCompanyName = companyname;
 return self;
}
- (void)print
{
 NSLog(@"Name: %@", vehicleName);
 NSLog(@"Model: %ld", vehicleModelNo);
 NSLog(@"Company: %@", carCompanyName);
}

@end

int main(int argc, const char * argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 NSLog(@"Base class Vehicle Object");
 Vehicle *vehicle = [[Vehicle alloc]initWithName:@"4Wheeler" andModel:1234];
 [vehicle print];
 NSLog(@"Inherited Class Car Object");
 Car *car = [[Car alloc]initWithName:@"S-Class"
 andModel:7777 andCompanyName:@"Benz"];
 [car print];
 [pool drain];
 return 0;
}

When the above code is compiled and executed, it produces the following result:

2016-09-29 18:21:03.561 Inheritance[349:303] Base class Vehicle Object

2016-09-29 18:21:03.563 Inheritance[349:303] Name: 4Wheeler

2016-09-29 18:21:03.563 Inheritance[349:303] Model: 1234

2016-09-29 18:21:03.564 Inheritance[349:303] Inherited Class Car Object

2016-09-29 18:21:03.564 Inheritance[349:303] Name: S-Class

2016-09-29 18:21:03.565 Inheritance[349:303] Model: 7777

2016-09-29 18:21:03.565 Inheritance[349:303] Company: Benz

Read Inheritance online: https://riptutorial.com/objective-c/topic/7117/inheritance

https://riptutorial.com/ 37

https://riptutorial.com/objective-c/topic/7117/inheritance

Chapter 15: Key Value Coding / Key Value
Observing

Examples

Most Common Real Life Key Value Coding Example

Key Value Coding is integrated into NSObject using NSKeyValueCoding protocol.

What this means?

It means that any id object is capable of calling valueForKey method and its various variants like
valueForKeyPath etc. '

It also means that any id object can invoke setValue method and its various variants too.

Example:

id obj = [[MyClass alloc] init];
id value = [obj valueForKey:@"myNumber"];

int myNumberAsInt = [value intValue];
myNumberAsInt = 53;
[obj setValue:@(myNumberAsInt) forKey:@"myNumber"];

Exceptions:

Above example assumes that MyClass has an NSNumber Property called myNumber. If
myNumber does not appear in MyClass interface definition, an NSUndefinedKeyException can be
raised at possibly both lines 2 and 5 - popularly known as:

this class is not key value coding-compliant for the key myNumber.

Why this is SO powerful:

You can write code that can access properties of a class dynamically, without needing interface for
that class. This means that a table view can display values from any properties of an NSObject
derived object, provided its property names are supplied dynamically at runtime.

In the example above, the code can as well work without MyClass being available and id type obj
being available to calling code.

Key Value Observing

Setting up key value observing.

In this case, we want to observe the contentOffset on an object that our observer owns

https://riptutorial.com/ 38

//
// Class to observe
//
@interface XYZScrollView: NSObject
@property (nonatomic, assign) CGPoint contentOffset;
@end

@implementation XYZScrollView
@end

//
// Class that will observe changes
//
@interface XYZObserver: NSObject
@property (nonatomic, strong) XYZScrollView *scrollView;
@end

@implementation XYZObserver

// simple way to create a KVO context
static void *XYZObserverContext = &XYZObserverContext;

// Helper method to add self as an observer to
// the scrollView's contentOffset property
- (void)addObserver {

 // NSKeyValueObservingOptions
 //
 // - NSKeyValueObservingOptionNew
 // - NSKeyValueObservingOptionOld
 // - NSKeyValueObservingOptionInitial
 // - NSKeyValueObservingOptionPrior
 //
 // can be combined:
 // (NSKeyValueObservingOptionNew | NSKeyValueObservingOptionOld)

 NSString *keyPath = NSStringFromSelector(@selector(contentOffset));
 NSKeyValueObservingOptions options = NSKeyValueObservingOptionNew;

 [self.scrollView addObserver: self
 forKeyPath: keyPath
 options: options
 context: XYZObserverContext];
}

- (void)observeValueForKeyPath:(NSString *)keyPath ofObject:(id)object
change:(NSDictionary<NSString *,id> *)change context:(void *)context {

 if (context == XYZObserverContext) { // check the context

 // check the keyPath to see if it's any of the desired keyPath's.
 // You can observe multiple keyPath's
 if ([keyPath isEqualToString: NSStringFromSelector(@selector(contentOffset))]) {

 // change dictionary keys:
 // - NSKeyValueChangeKindKey
 // - NSKeyValueChangeNewKey
 // - NSKeyValueChangeOldKey
 // - NSKeyValueChangeIndexesKey

https://riptutorial.com/ 39

 // - NSKeyValueChangeNotificationIsPriorKey

 // the change dictionary here for a CGPoint observation will
 // return an NSPoint, so we can take the CGPointValue of it.
 CGPoint point = [change[NSKeyValueChangeNewKey] CGPointValue];

 // handle point
 }

 } else {

 // if the context doesn't match our current object's context
 // we want to pass the observation parameters to super
 [super observeValueForKeyPath: keyPath
 ofObject: object
 change: change
 context: context];
 }
}

// The program can crash if an object is not removed as observer
// before it is dealloc'd
//
// Helper method to remove self as an observer of the scrollView's
// contentOffset property
- (void)removeObserver {
 NSString *keyPath = NSStringFromSelector(@selector(contentOffset));
 [self.scrollView removeObserver: self forKeyPath: keyPath];
}

@end

Querying KVC Data

if ([[dataObject objectForKey:@"yourVariable"] isEqualToString:"Hello World"]) {
 return YES;
} else {
 return NO;
}

You can query values stored using KVC quickly and easily, without needing to retrieve or cast
these as local variables.

Collection Operators

Collection Operators can be used in a KVC key path to perform an operation on a “collection-
type” property (i.e. NSArray, NSSet and similar). For example, a common operation to perform is to
count the objects in a collection. To achieve this, you use the @count collection operator:

self.array = @[@5, @4, @3, @2, @1];
NSNumber *count = [self.array valueForKeyPath:@"@count"];
NSNumber *countAlt = [self valueForKeyPath:@"array.@count"];
// count == countAlt == 5

While this is completely redundant here (we could have just accessed the count property), it can

https://riptutorial.com/ 40

be useful on occasion, though it is rarely necessary. There are, however, some collection
operators that are much more useful, namely @max, @min, @sum, @avg and the @unionOf family. It is
important to note that these operators also require a separate key path following the operator to
function correctly. Here's a list of them and the type of data they work with:

Operator Data Type

@count (none)

@max NSNumber, NSDate, int (and related), etc.

@min NSNumber, NSDate, int (and related), etc.

@sum NSNumber, int (and related), double (and related), etc.

@avg NSNumber, int (and related), double (and related), etc.

@unionOfObjects NSArray, NSSet, etc.

@distinctUnionOfObjects NSArray, NSSet, etc.

@unionOfArrays NSArray<NSArray*>

@distinctUnionOfArrays NSArray<NSArray*>

@distinctUnionOfSets NSSet<NSSet*>

@max and @min will return the highest or lowest value, respectively, of a property of objects in the
collection. For example, look at the following code:

// “Point” class used in our collection
@interface Point : NSObject

@property NSInteger x, y;

+ (instancetype)pointWithX:(NSInteger)x y:(NSInteger)y;

@end

...

self.points = @[[Point pointWithX:0 y:0],
 [Point pointWithX:1 y:-1],
 [Point pointWithX:5 y:-6],
 [Point pointWithX:3 y:0],
 [Point pointWithX:8 y:-4],
];

NSNumber *maxX = [self valueForKeyPath:@"points.@max.x"];
NSNumber *minX = [self valueForKeyPath:@"points.@min.x"];
NSNumber *maxY = [self valueForKeyPath:@"points.@max.y"];
NSNumber *minY = [self valueForKeyPath:@"points.@min.y"];

NSArray<NSNumber*> *boundsOfAllPoints = @[maxX, minX, maxY, minY];

https://riptutorial.com/ 41

...

In just a 4 lines of code and pure Foundation, with the power of Key-Value Coding collection
operators we were able to extract a rectangle that encapsulates all of the points in our array.

It is important to note that these comparisons are made by invoking the compare: method on the
objects, so if you ever want to make your own class compatible with these operators, you must
implement this method.

@sum will, as you can probably guess, add up all the values of a property.

@interface Expense : NSObject

@property NSNumber *price;

+ (instancetype)expenseWithPrice:(NSNumber *)price;

@end

...

self.expenses = @[[Expense expenseWithPrice:@1.50],
 [Expense expenseWithPrice:@9.99],
 [Expense expenseWithPrice:@2.78],
 [Expense expenseWithPrice:@9.99],
 [Expense expenseWithPrice:@24.95]
];

NSNumber *totalExpenses = [self valueForKeyPath:@"expenses.@sum.price"];

Here, we used @sum to find the total price of all the expenses in the array. If we instead wanted to
find the average price we're paying for each expense, we can use @avg:

NSNumber *averagePrice = [self valueForKeyPath:@"expenses.@avg.price"];

Finally, there's the @unionOf family. There are five different operators in this family, but they all work
mostly the same, with only small differences between each. First, there's @unionOfObjects which will
return an array of the properties of objects in an array:

// See "expenses" array above

NSArray<NSNumber*> *allPrices = [self valueForKeyPath:
 @"expenses.@unionOfObjects.price"];

// Equal to @[@1.50, @9.99, @2.78, @9.99, @24.95]

@distinctUnionOfObjects functions the same as @unionOfObjects, but it removes duplicates:

NSArray<NSNumber*> *differentPrices = [self valueForKeyPath:
 @"expenses.@distinctUnionOfObjects.price"];

// Equal to @[@1.50, @9.99, @2.78, @24.95]

https://riptutorial.com/ 42

And finally, the last 3 operators in the @unionOf family will go one step deeper and return an array
of values found for a property contained inside dually-nested arrays:

NSArray<NSArray<Expense*,Expense*>*> *arrayOfArrays =
 @[
 @[[Expense expenseWithPrice:@19.99],
 [Expense expenseWithPrice:@14.95],
 [Expense expenseWithPrice:@4.50],
 [Expense expenseWithPrice:@19.99]
],

 @[[Expense expenseWithPrice:@3.75],
 [Expense expenseWithPrice:@14.95]
]
];

// @unionOfArrays
NSArray<NSNumber*> allPrices = [arrayOfArrays valueForKeyPath:
 @"@unionOfArrays.price"];
// Equal to @[@19.99, @14.95, @4.50, @19.99, @3.75, @14.95];

// @distinctUnionOfArrays
NSArray<NSNumber*> allPrices = [arrayOfArrays valueForKeyPath:
 @"@distinctUnionOfArrays.price"];
// Equal to @[@19.99, @14.95, @4.50, @3.75];

The one missing from this example is @distinctUnionOfSets, however this functions exactly the
same as @distinctUnionOfArrays, but works with and returns NSSets instead (there is no non-
distinct version because in a set, every object must be distinct anyway).

And that's it! Collection operators can be really powerful if used correctly, and can help to avoid
having to loop through stuff unnecessarily.

One last note: you can also use the standard collection operators on arrays of NSNumbers (without
additional property access). To do this, you access the self pseudo-property that just returns the
object:

NSArray<NSNumber*> *numbers = @[@0, @1, @5, @27, @1337, @2048];

NSNumber *largest = [numbers valueForKeyPath:@"@max.self"];
NSNumber *smallest = [numbers valueForKeyPath:@"@min.self"];
NSNumber *total = [numbers valueForKeyPath:@"@sum.self"];
NSNumber *average = [numbers valueForKeyPath:@"@avg.self"];

Read Key Value Coding / Key Value Observing online: https://riptutorial.com/objective-
c/topic/556/key-value-coding---key-value-observing

https://riptutorial.com/ 43

https://riptutorial.com/objective-c/topic/556/key-value-coding---key-value-observing
https://riptutorial.com/objective-c/topic/556/key-value-coding---key-value-observing

Chapter 16: Logging

Syntax

NSLog(@"text to log"); // Basic text log•
NSLog(@"data: %f - %.2f", myFloat, anotherFloat); // Logging text including float numbers.•
NSLog(@"data: %i", myInteger); // Logging text including integer number.•
NSLog(@"data: %@", myStringOrObject); // Logging text referencing another String or any
NSObject derived object.

•

Remarks

For logging various types of objects and data-types refer to: Objective-C, Format Specifiers

Examples

Logging

NSLog(@"Log Message!");
NSLog(@"NSString value: %@", stringValue);
NSLog(@"Integer value: %d", intValue);

The first argument of NSLog is an NSString containing the log message format. The rest of the
parameters are used as values to substitute in place of the format specifiers.

The formatting works exactly the same as printf, except for the additional format specifier %@ for
an arbitrary Objective-C object. This:

NSLog(@"%@", object);

is equivalent to:

NSLog(@"%s", [object description].UTF8String);

NSLog vs printf

NSLog(@"NSLog message");
printf("printf message\n");

Output:

2016-07-16 08:58:04.681 test[46259:1244773] NSLog message
printf message

NSLog

https://riptutorial.com/ 44

http://www.riptutorial.com/objective-c/topic/9048/format-specifiers

outputs the date, time, process name, process ID, and thread ID in addition to the log message.
printf just outputs the message.

NSLog requires an NSString and automatically adds a newline at the end. printf requires a C string
and does not automatically add a newline.

NSLog sends output to stderr, printf sends output to stdout.

Some format-specifiers in printf vs NSLog are different. For example when including a nested
string, the following differences incur:

NSLog(@"My string: %@", (NSString *)myString);
printf("My string: %s", [(NSString *)myString UTF8String]);

NSLog Output Format

NSLog(@"NSLog message");

The message that gets printed by calling NSLog has the following format when viewed in
Console.app:

Date Time Program name Process ID Thread ID Message

2016-07-16 08:58:04.681 test [46259 : 1244773] NSLog message

Logging Variable Values

You shouldn't call NSLog without a literal format string like this:

NSLog(variable); // Dangerous code!

If the variable is not an NSString, the program will crash, because NSLog expects an NSString.

If the variable is an NSString, it will work unless your string contains a %. NSLog will parse the %
sequence as a format specifier and then read a garbage value off the stack, causing a crash or
even executing arbitrary code.

Instead, always make the first argument a format specifier, like this:

NSLog(@"%@", anObjectVariable);
NSLog(@"%d", anIntegerVariable);

Empty message is not printed

When NSLog is asked to print empty string, it omits the log completely.

https://riptutorial.com/ 45

https://en.wikipedia.org/wiki/Uncontrolled_format_string

NSString *name = @"";
NSLog(@"%@", name); // Resolves to @""

The above code will print nothing.

It is a good practice to prefix logs with labels:

NSString *name = @"";
NSLog(@"Name: %@", name); // Resolves to @"Name: "

The above code will print:

2016-07-21 14:20:28.623 App[87711:6153103] Name:

Removing Log Statements from Release Builds

Messages printed from NSLog are displayed on Console.app even in the release build of your app,
which doesn't make sense for printouts that are only useful for debugging. To fix this, you can use
this macro for debug logging instead of NSLog.

#ifdef DEBUG
#define DLog(...) NSLog(__VA_ARGS__)
#else
#define DLog(...)
#endif

To use:

NSString *value = @"value 1";
DLog(@"value = %@", value);
// little known fact: programmers look for job postings in Console.app
NSLog(@"We're hiring!");

In debug builds, DLog will call NSLog. In release builds, DLog will do nothing.

Using __FUNCTION __

NSLog(@"%s %@",__FUNCTION__, @"etc etc");

Inserts the class and method name into the output:

2016-07-22 12:51:30.099 loggingExample[18132:2971471] -[ViewController viewDidLoad] etc etc

NSLog and BOOL type

There is no format specifier to print boolean type using NSLog. One way to print boolean value is
to convert it to a string.

https://riptutorial.com/ 46

BOOL boolValue = YES;
NSLog(@"Bool value %@", boolValue ? @"YES" : @"NO");

Output:

2016-07-30 22:53:18.269 Test[4445:64129] Bool value YES

Another way to print boolean value is to cast it to integer, achieving a binary output (1=yes, 0=no).

BOOL boolValue = YES;
NSLog(@"Bool value %i", boolValue);

Output:

2016-07-30 22:53:18.269 Test[4445:64129] Bool value 1

Logging NSLog meta data

NSLog(@"%s %d %s, yourVariable: %@", __FILE__, __LINE__, __PRETTY_FUNCTION__, yourVariable);

Will log the file, line number and function data along with any variables you want to log. This can
make the log lines much longer, particularly with verbose file and method names, however it can
help to speed up error diagnostics.

You can also wrap this in a Macro (store this in a Singleton or where you'll need it most);

#define ALog(fmt, ...) NSLog((@"%s [Line %d] " fmt), __PRETTY_FUNCTION__, __LINE__,
##__VA_ARGS__);

Then when you want to log, simply call

ALog(@"name: %@", firstName);

Which will give you something like;

 -[AppDelegate application:didFinishLaunchingWithOptions:] [Line 27] name: John

Logging by Appending to a File

NSLog is good, but you can also log by appending to a file instead, using code like:

NSFileHandle* fh = [NSFileHandle fileHandleForWritingAtPath:path];
if (!fh) {
 [[NSFileManager defaultManager] createFileAtPath:path contents:nil attributes:nil];
 fh = [NSFileHandle fileHandleForWritingAtPath:path];
}
if (fh) {

https://riptutorial.com/ 47

 @try {
 [fh seekToEndOfFile];
 [fh writeData:[self dataUsingEncoding:enc]];
 }
 @catch (...) {
 }
 [fh closeFile];
}

Read Logging online: https://riptutorial.com/objective-c/topic/724/logging

https://riptutorial.com/ 48

https://riptutorial.com/objective-c/topic/724/logging

Chapter 17: Low-level Runtime Environment

Remarks

In order to use the Objective-C runtime, you need to import it.

#import <objc/objc.h>

Examples

Attach object to another existing object (association)

It's possible to attach an object to an existing object as if there was a new property. This is called
association and allows one to extend existing objects. It can be used to provide storage when
adding a property via a class extension or otherwise add additional information to an existing
object.

The associated object is automatically released by the runtime once the target object is
deallocated.

#import <objc/runtime.h>

// "Key" for association. Its value is never used and doesn't
// matter. The only purpose of this global static variable is to
// provide a guaranteed unique value at runtime: no two distinct
// global variables can share the same address.
static char key;

id target = ...;
id payload = ...;
objc_setAssociateObject(target, &key, payload, OBJC_ASSOCIATION_RETAIN);
// Other useful values are OBJC_ASSOCIATION_COPY
// and OBJ_ASSOCIATION_ASSIGN

id queryPayload = objc_getAssociatedObject(target, &key);

Augmenting methods using Method Swizzling

The Objective-C runtime allows you to change the implementation of a method at runtime. This is
called method swizzling and is often used to exchange the implementations of two methods. For
example, if the methods foo and bar are exchanged, sending the message foo will now execute
the implementation of bar and vice versa.

This technique can be used to augment or "patch" existing methods which you cannot edit directly,
such as methods of system-provided classes.

In the following example, the -[NSUserDefaults synchronize] method is augmented to print the
execution time of the original implementation.

https://riptutorial.com/ 49

IMPORTANT: Many people try to do swizzling using method_exchangeImplementations. However, this
approach is dangerous if you need to call the method you're replacing, because you'll be calling it
using a different selector than it is expecting to receive. As a result, your code can break in
strange and unexpected ways—particularly if multiple parties swizzle an object in this way.
Instead, you should always do swizzling using setImplementation in conjunction with a C function,
allowing you to call the method with the original selector.

#import "NSUserDefaults+Timing.h"
#import <objc/runtime.h> // Needed for method swizzling

static IMP old_synchronize = NULL;

static void new_synchronize(id self, SEL _cmd);

@implementation NSUserDefaults(Timing)

+ (void)load
{
 Method originalMethod = class_getInstanceMethod([self class], @selector(synchronize:));
 IMP swizzleImp = (IMP)new_synchronize;
 old_synchronize = method_setImplementation(originalMethod, swizzleImp);
}
@end

static void new_synchronize(id self, SEL _cmd);
{
 NSDate *started;
 BOOL returnValue;

 started = [NSDate date];

 // Call the original implementation, passing the same parameters
 // that this function was called with, including the selector.
 returnValue = old_synchronize(self, _cmd);

 NSLog(@"Writing user defaults took %f seconds.", [[NSDate date]
timeIntervalSinceDate:started]);

 return returnValue;
}

@end

If you need to swizzle a method that takes parameters, you just add them as additional
parameters to the function. For example:

static IMP old_viewWillAppear_animated = NULL;
static void new_viewWillAppear_animated(id self, SEL _cmd, BOOL animated);

...

Method originalMethod = class_getClassMethod([UIViewController class],
@selector(viewWillAppear:));
IMP swizzleImp = (IMP)new_viewWillAppear_animated;
old_viewWillAppear_animated = method_setImplementation(originalMethod, swizzleImp);

https://riptutorial.com/ 50

...

static void new_viewWillAppear_animated(id self, SEL _cmd, BOOL animated)
{
 ...

 old_viewWillAppear_animated(self, _cmd, animated);

 ...
}

Calling methods directly

If you need to call an Objective-C method from C code, you have two ways: using objc_msgSend, or
obtaining the IMP (method implementation function pointer) and calling that.

#import <objc/objc.h>

@implementation Example

- (double)negate:(double)value {
 return -value;
}

- (double)invert:(double)value {
 return 1 / value;
}

@end

// Calls the selector on the object. Expects the method to have one double argument and return
a double.
double performSelectorWithMsgSend(id object, SEL selector, double value) {
 // We declare pointer to function and cast `objc_msgSend` to expected signature.
 // WARNING: This step is important! Otherwise you may get unexpected results!
 double (*msgSend)(id, SEL, double) = (typeof(msgSend)) &objc_msgSend;

 // The implicit arguments of self and _cmd need to be passed in addition to any explicit
arguments.
 return msgSend(object, selector, value);
}

// Does the same as the above function, but by obtaining the method's IMP.
double performSelectorWithIMP(id object, SEL selector, double value) {
 // Get the method's implementation.
 IMP imp = class_getMethodImplementation([self class], selector);

 // Cast it so the types are known and ARC can work correctly.
 double (*callableImp)(id, SEL, double) = (typeof(callableImp)) imp;

 // Again, you need the explicit arguments.
 return callableImp(object, selector, value);
}

int main() {
 Example *e = [Example new];

 // Invoke negation, result is -4
 double x = performSelectorWithMsgSend(e, @selector(negate:), 4);

https://riptutorial.com/ 51

 // Invoke inversion, result is 0.25
 double y = performSelectorWithIMP(e, @selector(invert:), 4);
}

objc_msgSend works by obtaining the IMP for the method and calling that. The IMPs for the last
several methods called are cached, so if you're sending an Objective-C message in a very tight
loop you can get acceptable performance. In some cases, manually caching the IMP can give
slightly better performance, although this is a last resort optimization.

Read Low-level Runtime Environment online: https://riptutorial.com/objective-c/topic/1180/low-
level-runtime-environment

https://riptutorial.com/ 52

https://riptutorial.com/objective-c/topic/1180/low-level-runtime-environment
https://riptutorial.com/objective-c/topic/1180/low-level-runtime-environment

Chapter 18: Memory Management

Examples

Automatic Reference Counting

With automatic reference counting (ARC), the compiler inserts retain, release, and autorelease
statements where they are needed, so you don't have to write them yourself. It also writes dealloc
methods for you.

The sample program from Manual Memory Management looks like this with ARC:

@interface MyObject : NSObject {
 NSString *_property;
}
@end

@implementation MyObject
@synthesize property = _property;

- (id)initWithProperty:(NSString *)property {
 if (self = [super init]) {
 _property = property;
 }
 return self;
}

- (NSString *)property {
 return property;
}

- (void)setProperty:(NSString *)property {
 _property = property;
}

@end

int main() {
 MyObject *obj = [[MyObject alloc] init];

 NSString *value = [[NSString alloc] initWithString:@"value"];
 [obj setProperty:value];

 [obj setProperty:@"value"];
}

You are still able to override the dealloc method to clean up resources not handled by ARC. Unlike
when using manual memory management you do not call [super dealloc].

-(void)dealloc {
 //clean up
}

https://riptutorial.com/ 53

Strong and weak references

Modern

A weak reference looks like one of these:

@property (weak) NSString *property;
NSString *__weak variable;

If you have a weak reference to an object, then under the hood:

You're not retaining it.•
When it gets deallocated, every reference to it will automatically be set to nil•

Object references are always strong by default. But you can explicitly specify that they're strong:

@property (strong) NSString *property;
NSString *__strong variable;

A strong reference means that while that reference exists, you are retaining the object.

Manual Memory Management

This is an example of a program written with manual memory management. You really shouldn't
write your code like this, unless for some reason you can't use ARC (like if you need to support
32-bit). The example avoids @property notation to illustrate how you used to have to write getters
and setters.

@interface MyObject : NSObject {
 NSString *_property;
}
@end

@implementation MyObject
@synthesize property = _property;

- (id)initWithProperty:(NSString *)property {
 if (self = [super init]) {
 // Grab a reference to property to make sure it doesn't go away.
 // The reference is released in dealloc.
 _property = [property retain];
 }
 return self;
}

- (NSString *)property {
 return [[property retain] autorelease];
}

- (void)setProperty:(NSString *)property {
 // Retain, then release. So setting it to the same value won't lose the reference.
 [property retain];
 [_property release];
 _property = property;

https://riptutorial.com/ 54

}

- (void)dealloc {
 [_property release];
 [super dealloc]; // Don't forget!
}

@end

int main() {
 // create object
 // obj is a reference that we need to release
 MyObject *obj = [[MyObject alloc] init];

 // We have to release value because we created it.
 NSString *value = [[NSString alloc] initWithString:@"value"];
 [obj setProperty:value];
 [value release];

 // However, string constants never need to be released.
 [obj setProperty:@"value"];
 [obj release];
}

Memory management rules when using manual reference counting.

These rules apply only if you use manual reference counting!

You own any object you create

By calling a method whose name begins with alloc, new, copy or mutableCopy. For example:

NSObject *object1 = [[NSObject alloc] init];
NSObject *object2 = [NSObject new];
NSObject *object3 = [object2 copy];

That means that you are responsible for releasing these objects when you are done with
them.

1.

You can take ownership of an object using retain

To take ownership for an object you call the retain method.

For example:

NSObject *object = [NSObject new]; // object already has a retain count of 1
[object retain]; // retain count is now 2

This makes only sense in some rare situations.

For example when you implement an accessor or an init method to take ownership:

- (void)setStringValue:(NSString *)stringValue {

2.

https://riptutorial.com/ 55

 [_privateStringValue release]; // Release the old value, you no longer need it
 [stringValue retain]; // You make sure that this object does not get deallocated
outside of your scope.
 _privateStringValue = stringValue;
}

When you no longer need it, you must relinquish ownership of an object you own

NSObject* object = [NSObject new]; // The retain count is now 1
[object performAction1]; // Now we are done with the object
[object release]; // Release the object

3.

You must not relinquish ownership of an object you do not own

That means when you didn't take ownership of an object you don't release it.

4.

Autoreleasepool

The autoreleasepool is a block of code that releases every object in the block that received
an autorelease message.

Example:

@autoreleasepool {
 NSString* string = [NSString stringWithString:@"We don't own this object"];
}

We have created a string without taking ownership. The NSString method stringWithString:
has to make sure that the string is correctly deallocated after it is no longer needed. Before
the method returns the newly created string calls the autorelease method so it does not have
to take ownership of the string.

This is how the stringWithString: is implemented:

+ (NSString *)stringWithString:(NSString *)string {
 NSString *createdString = [[NSString alloc] initWithString:string];
 [createdString autorelease];
 return createdString;
}

It is necessary to use autoreleasepool blocks because you sometimes have objects that you
don't own (the fourth rules does not always apply).

Automatic reference counting takes automatically care of the rules so you don't have to.

5.

Read Memory Management online: https://riptutorial.com/objective-c/topic/2751/memory-
management

https://riptutorial.com/ 56

https://riptutorial.com/objective-c/topic/2751/memory-management
https://riptutorial.com/objective-c/topic/2751/memory-management

Chapter 19: Methods

Syntax

- or +: The type of method. Instance or class?•

(): Where the return type goes. Use void if you don't want to return anything!•

Next is the name of the method. Use camelCase and make the name easy to remember an
understand.

•

If your method needs parameters, now is the time! The first parameter come right after the
name of the function like this :(type)parameterName. All the other parameters are done this
way parameterLabel:(type)parameterName

•

What does your method do? Put it all here, in the curly braces {}!•

Examples

Method parameters

If you want to pass in values to a method when it is called, you use parameters:

- (int)addInt:(int)intOne toInt:(int)intTwo {
 return intOne + intTwo;
}

The colon (:) separates the parameter from the method name.

The parameter type goes in the parentheses (int).

The parameter name goes after the parameter type.

Create a basic method

This is how to create a basic method that logs 'Hello World" to the console:

- (void)hello {
 NSLog(@"Hello World");
}

The - at the beginning denotes this method as an instance method.

The (void) denotes the return type. This method doesn't return anything, so you enter void.

The 'hello' is the name of the method.

https://riptutorial.com/ 57

Everything in the {} is the code run when the method is called.

Return values

When you want to return a value from a method, you put the type you want to return in the first set
of parentheses.

- (NSString)returnHello {
 return @"Hello World";
}

The value you want to return goes after the return keyword;

Class methods

A class method is called on the class the method belongs to, not an instance of it. This is possible
because Objective-C classes are also objects. To denote a method as a class method, change the
- to a +:

+ (void)hello {
 NSLog(@"Hello World");
}

Calling methods

Calling an instance method:

[classInstance hello];

 @interface Sample
 -(void)hello; // exposing the class Instance method
 @end

 @implementation Sample
 -(void)hello{
 NSLog(@"hello");
 }
 @end

Calling an instance method on the current instance:

[self hello];

@implementation Sample

 -(void)otherMethod{
 [self hello];
 }

 -(void)hello{
 NSLog(@"hello");
 }

https://riptutorial.com/ 58

 @end

Calling a method that takes arguments:

[classInstance addInt:1 toInt:2];

 @implementation Sample
 -(void)add:(NSInteger)add to:(NSInteger)to
 NSLog(@"sum = %d",(add+to));
 }
 @end

Calling a class method:

[Class hello];

 @interface Sample
 +(void)hello; // exposing the class method
 @end

 @implementation Sample
 +(void)hello{
 NSLog(@"hello");
 }
 @end

Instance methods

An instance method is a method that's available on a particular instance of a class, after the
instance has been instantiated:

MyClass *instance = [MyClass new];
[instance someInstanceMethod];

Here's how you define one:

@interface MyClass : NSObject

- (void)someInstanceMethod; // "-" denotes an instance method

@end

@implementation MyClass

- (void)someInstanceMethod {
 NSLog(@"Whose idea was it to have a method called \"someInstanceMethod\"?");
}

@end

Pass by value parameter passing

In pass by value of parameter passing to a method, actual parameter value is copied to formal

https://riptutorial.com/ 59

parameter value. So actual parameter value will not change after returning from called function.

@interface SwapClass : NSObject

-(void) swap:(NSInteger)num1 andNum2:(NSInteger)num2;

@end

@implementation SwapClass

-(void) num:(NSInteger)num1 andNum2:(NSInteger)num2{
 int temp;
 temp = num1;
 num1 = num2;
 num2 = temp;
}
@end

Calling the methods:

NSInteger a = 10, b =20;
SwapClass *swap = [[SwapClass alloc]init];
NSLog(@"Before calling swap: a=%d,b=%d",a,b);
[swap num:a andNum2:b];
NSLog(@"After calling swap: a=%d,b=%d",a,b);

Output:

2016-07-30 23:55:41.870 Test[5214:81162] Before calling swap: a=10,b=20
2016-07-30 23:55:41.871 Test[5214:81162] After calling swap: a=10,b=20

Pass by reference parameter passing

In pass by reference of parameter passing to a method, address of actual parameter is passed to
formal parameter. So actual parameter value will be changed after returning from called function.

@interface SwapClass : NSObject

-(void) swap:(int)num1 andNum2:(int)num2;

@end

@implementation SwapClass

-(void) num:(int*)num1 andNum2:(int*)num2{
 int temp;
 temp = *num1;
 *num1 = *num2;
 *num2 = temp;
}
@end

Calling the methods:

https://riptutorial.com/ 60

int a = 10, b =20;
SwapClass *swap = [[SwapClass alloc]init];
NSLog(@"Before calling swap: a=%d,b=%d",a,b);
[swap num:&a andNum2:&b];
NSLog(@"After calling swap: a=%d,b=%d",a,b);

Output:

2016-07-31 00:01:47.067 Test[5260:83491] Before calling swap: a=10,b=20
2016-07-31 00:01:47.070 Test[5260:83491] After calling swap: a=20,b=10

Read Methods online: https://riptutorial.com/objective-c/topic/1457/methods

https://riptutorial.com/ 61

https://riptutorial.com/objective-c/topic/1457/methods

Chapter 20: Modern Objective-C

Examples

Literals

Modern Objective C provides ways to reduce amount of code you need to initialize some common
types. This new way is very similar to how NSString objects are initialized with constant strings.

NSNumber

Old way:

NSNumber *number = [NSNumber numberWithInt:25];

Modern way:

NSNumber *number = @25;

Note: you can also store BOOL values in NSNumber objects using @YES, @NO or @(someBoolValue);

NSArray

Old way:

NSArray *array = [[NSArray alloc] initWithObjects:@"One", @"Two", [NSNumber numberWithInt:3],
@"Four", nil];

Modern way:

NSArray *array = @[@"One", @"Two", @3, @"Four"];

NSDictionary

Old way:

NSDictionary *dictionary = [NSDictionary dictionaryWithObjectsAndKeys: array, @"Object",
[NSNumber numberWithFloat:1.5], @"Value", @"ObjectiveC", @"Language", nil];

Modern way:

NSDictionary *dictionary = @{@"Object": array, @"Value": @1.5, @"Language": @"ObjectiveC"};

https://riptutorial.com/ 62

Container subscripting

In modern Objective C syntax you can get values from NSArray and NSDictionary containers using
container subscripting.

Old way:

NSObject *object1 = [array objectAtIndex:1];
NSObject *object2 = [dictionary objectForKey:@"Value"];

Modern way:

NSObject *object1 = array[1];
NSObject *object2 = dictionary[@"Value"];

You can also insert objects into arrays and set objects for keys in dictionaries in a cleaner way:

Old way:

// replacing at specific index
[mutableArray replaceObjectAtIndex:1 withObject:@"NewValue"];
// adding a new value to the end
[mutableArray addObject:@"NewValue"];

[mutableDictionary setObject:@"NewValue" forKey:@"NewKey"];

Modern way:

mutableArray[1] = @"NewValue";
mutableArray[[mutableArray count]] = @"NewValue";

mutableDictionary[@"NewKey"] = @"NewValue";

Read Modern Objective-C online: https://riptutorial.com/objective-c/topic/9486/modern-objective-c

https://riptutorial.com/ 63

https://riptutorial.com/objective-c/topic/9486/modern-objective-c

Chapter 21: Multi-Threading

Examples

Creating a simple thread

The most simple way to create a thread is by calling a selector "in the background". This means a
new thread is created to execute the selector. The receiving object can be any object, not just self
, but it needs to respond to the given selector.

- (void)createThread {
 [self performSelectorInBackground:@selector(threadMainWithOptionalArgument:)
 withObject:someObject];
}

- (void)threadMainWithOptionalArgument:(id)argument {
 // To avoid memory leaks, the first thing a thread method needs to do is
 // create a new autorelease pool, either manually or via "@autoreleasepool".
 @autoreleasepool {
 // The thread code should be here.
 }
}

Create more complex thread

Using a subclass of NSThread allows implementation of more complex threads (for example, to
allow passing more arguments or to encapsulate all related helper methods in one class).
Additionally, the NSThread instance can be saved in a property or variable and can be queried about
its current state (whether it's still running).

The NSThread class supports a method called cancel that can be called from any thread, which then
sets the cancelled property to YES in a thread-safe way. The thread implementation can query
(and/or observe) the cancelled property and exit its main method. This can be used to gracefully
shut down a worker thread.

// Create a new NSThread subclass
@interface MyThread : NSThread

// Add properties for values that need to be passed from the caller to the new
// thread. Caller must not modify these once the thread is started to avoid
// threading issues (or the properties must be made thread-safe using locks).
@property NSInteger someProperty;

@end

@implementation MyThread

- (void)main
{
 @autoreleasepool {
 // The main thread method goes here

https://riptutorial.com/ 64

 NSLog(@"New thread. Some property: %ld", (long)self.someProperty);
 }
}

@end

MyThread *thread = [[MyThread alloc] init];
thread.someProperty = 42;
[thread start];

Thread-local storage

Every thread has access to a mutable dictionary that is local to the current thread. This allows to
cache informations in an easy way without the need for locking, as each thread has its own
dedicated mutable dictionary:

NSMutableDictionary *localStorage = [NSThread currentThread].threadDictionary;
localStorage[someKey] = someValue;

The dictionary is automatically released when the thread terminates.

Read Multi-Threading online: https://riptutorial.com/objective-c/topic/3350/multi-threading

https://riptutorial.com/ 65

https://riptutorial.com/objective-c/topic/3350/multi-threading

Chapter 22: NSArray

Syntax

NSArray *words; // Declaring immutable array•
NSMutableArray *words; // Declaring mutable array•
NSArray *words = [NSArray arrayWithObjects: @"one", @"two", nil]; // Array initialization
syntax

•

NSArray *words = @[@"list", @"of", @"words", @123, @3.14]; // Declaring array literals•
NSArray *stringArray = [NSArray arrayWithObjects: [NSMutableArray array],
[NSMutableArray array], [NSMutableArray array], nil]; // Creating multidimentional arrays

•

Examples

Creating Arrays

Creating immutable arrays:

NSArray *myColors = [NSArray arrayWithObjects: @"Red", @"Green", @"Blue", @"Yellow", nil];

// Using the array literal syntax:
NSArray *myColors = @[@"Red", @"Green", @"Blue", @"Yellow"];

For mutable arrays, see NSMutableArray.

Finding out the Number of Elements in an Array

NSArray *myColors = [NSArray arrayWithObjects: @"Red", @"Green", @"Blue", @"Yellow", nil];
NSLog (@"Number of elements in array = %lu", [myColors count]);

Accessing elements

NSArray *myColors = @[@"Red", @"Green", @"Blue", @"Yellow"];
// Preceding is the preferred equivalent to [NSArray arrayWithObjects:...]

Getting a single item

The objectAtIndex: method provides a single object. The first object in an NSArray is index 0. Since
an NSArray can be homogenous (holding different types of objects), the return type is id ("any
object"). (An id can be assigned to a variable of any other object type.) Importantly, NSArrays can
only contain objects. They cannot contain values like int.

NSUInteger idx = 2;
NSString *color = [myColors objectAtIndex:idx];
// color now points to the string @"Green"

https://riptutorial.com/ 66

http://www.riptutorial.com/objective-c/topic/2008/nsmutablearray

Clang provides a better subscript syntax as part of its array literals functionality:

NSString *color = myColors[idx];

Both of these throw an exception if the passed index is less than 0 or greater than count - 1.

First and Last Item

NSString *firstColor = myColors.firstObject;
NSString *lastColor = myColors.lastObject;

The firstObject and lastObject are computed properties and return nil rather than crashing for
empty arrays. For single element arrays they return the same object. Although, the firstObject
method was not introduced to NSArray until iOS 4.0.

NSArray *empty = @[]
id notAnObject = empty.firstObject; // Returns `nil`
id kaboom = empty[0]; // Crashes; index out of bounds

Filtering Arrays With Predicates

NSArray *array = [NSArray arrayWithObjects:@"Nick", @"Ben", @"Adam", @"Melissa", nil];

NSPredicate *aPredicate = [NSPredicate predicateWithFormat:@"SELF beginswith[c] 'a'"];
NSArray *beginWithA = [array filteredArrayUsingPredicate:bPredicate];
 // beginWithA contains { @"Adam" }.

NSPredicate *ePredicate = [NSPredicate predicateWithFormat:@"SELF contains[c] 'e'"];
[array filterUsingPredicate:ePredicate];
 // array now contains { @"Ben", @"Melissa" }

More about

NSPredicate:

Apple doc : NSPredicate

Converting NSArray to NSMutableArray to allow modification

NSArray *myColors = [NSArray arrayWithObjects: @"Red", @"Green", @"Blue", @"Yellow", nil];

// Convert myColors to mutable
NSMutableArray *myColorsMutable = [myColors mutableCopy];

Sorting array with custom objects

Compare method

https://riptutorial.com/ 67

http://stackoverflow.com/questions/29319150/whats-the-difference-between-arrayindex-and-array-objectatindexindex
http://www.riptutorial.com/objective-c/topic/2004/nspredicate
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSPredicate_Class/

Either you implement a compare-method for your object:

- (NSComparisonResult)compare:(Person *)otherObject {
 return [self.birthDate compare:otherObject.birthDate];
}

NSArray *sortedArray = [drinkDetails sortedArrayUsingSelector:@selector(compare:)];

NSSortDescriptor

NSSortDescriptor *sortDescriptor;
sortDescriptor = [[NSSortDescriptor alloc] initWithKey:@"birthDate"
 ascending:YES];
NSArray *sortDescriptors = [NSArray arrayWithObject:sortDescriptor];
NSArray *sortedArray = [drinkDetails sortedArrayUsingDescriptors:sortDescriptors];

You can easily sort by multiple keys by adding more than one to the array. Using custom
comparator-methods is possible as well. Have a look at the documentation.

Blocks

NSArray *sortedArray;
sortedArray = [drinkDetails sortedArrayUsingComparator:^NSComparisonResult(id a, id b) {
 NSDate *first = [(Person*)a birthDate];
 NSDate *second = [(Person*)b birthDate];
 return [first compare:second];
}];

Performance

The -compare: and block-based methods will be quite a bit faster, in general, than using
NSSortDescriptor as the latter relies on KVC. The primary advantage of the NSSortDescriptor
method is that it provides a way to define your sort order using data, rather than code, which
makes it easy to e.g. set things up so users can sort an NSTableView by clicking on the header row.

Converting between Sets and Arrays

NSSet *set = [NSSet set];
NSArray *array = [NSArray array];

NSArray *fromSet = [set allObjects];
NSSet *fromArray = [NSSet setWithArray:array];

Reverse an Array

NSArray *reversedArray = [myArray.reverseObjectEnumerator allObjects];

https://riptutorial.com/ 68

https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSSortDescriptor_Class/Reference/Reference.html

Looping through

NSArray *myColors = @[@"Red", @"Green", @"Blue", @"Yellow"];

// Fast enumeration
// myColors cannot be modified inside the loop
for (NSString *color in myColors) {
 NSLog(@"Element %@", color);
}

// Using indices
for (NSUInteger i = 0; i < myColors.count; i++) {
 NSLog(@"Element %d = %@", i, myColors[i]);
}

// Using block enumeration
[myColors enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL * stop) {
 NSLog(@"Element %d = %@", idx, obj);

 // To abort use:
 *stop = YES
}];

// Using block enumeration with options
[myColors enumerateObjectsWithOptions:NSEnumerationReverse usingBlock:^(id obj, NSUInteger
idx, BOOL * stop) {
 NSLog(@"Element %d = %@", idx, obj);
}];

Using Generics

For added safety we can define the type of object that the array contains:

NSArray<NSString *> *colors = @[@"Red", @"Green", @"Blue", @"Yellow"];
NSMutableArray<NSString *> *myColors = [NSMutableArray arrayWithArray:colors];
[myColors addObject:@"Orange"]; // OK
[myColors addObject:[UIColor purpleColor]]; // "Incompatible pointer type" warning

It should be noted that this is checked during compilation time only.

Enumerating using blocks

NSArray *myColors = @[@"Red", @"Green", @"Blue", @"Yellow"];
[myColors enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop) {
 NSLog(@"enumerating object %@ at index %lu", obj, idx);
}];

By setting the stop parameter to YES you can indicate that further enumeration is not needed. to do
this simply set &stop = YES.

NSEnumerationOptions
You can enumerate the array in reverse and / or concurrently :

https://riptutorial.com/ 69

[myColors enumerateObjectsWithOptions:NSEnumerationConcurrent | NSEnumerationReverse
 usingBlock:^(id obj, NSUInteger idx, BOOL *stop) {
 NSLog(@"enumerating object %@ at index %lu", obj, idx);
 }];

Enumerating subset of array

NSIndexSet *indexSet = [NSIndexSet indexSetWithIndexesInRange:NSMakeRange(1, 1)];
[myColors enumerateObjectsAtIndexes:indexSet
 options:kNilOptions
 usingBlock:^(id obj, NSUInteger idx, BOOL *stop) {
 NSLog(@"enumerating object %@ at index %lu", obj, idx);
 }];

Comparing arrays

Arrays can be compared for equality with the aptly named isEqualToArray: method, which
returns YES when both arrays have the same number of elements and every pair pass an
isEqual: comparison.

NSArray *germanMakes = @[@"Mercedes-Benz", @"BMW", @"Porsche",
 @"Opel", @"Volkswagen", @"Audi"];
NSArray *sameGermanMakes = [NSArray arrayWithObjects:@"Mercedes-Benz",
 @"BMW", @"Porsche", @"Opel",
 @"Volkswagen", @"Audi", nil];

if ([germanMakes isEqualToArray:sameGermanMakes]) {
 NSLog(@"Oh good, literal arrays are the same as NSArrays");
}

The important thing is every pair must pass the isEqual: test. For custom objects this method
should be implemented.It exists in the NSObject protocol.

Add objects to NSArray

NSArray *a = @[@1];
a = [a arrayByAddingObject:@2];
a = [a arrayByAddingObjectsFromArray:@[@3, @4, @5]];

These methods are optimized to recreate the new array very efficiently, usually without having to
destroy the original array or even allocate more memory.

Read NSArray online: https://riptutorial.com/objective-c/topic/736/nsarray

https://riptutorial.com/ 70

https://riptutorial.com/objective-c/topic/736/nsarray

Chapter 23: NSArray

Examples

Creating NSArray instances

NSArray *array1 = [NSArray arrayWithObjects:@"one", @"two", @"three", nil];
NSArray *array2 = @[@"one", @"two", @"three"];

Sorting Arrays

The most flexible ways to sort an array is with the sortedArrayUsingComparator: method. This
accepts an ^NSComparisonResult(id obj1, id obj2) block.

 Return Value Description
 NSOrderedAscending obj1 comes before obj2
 NSOrderedSame obj1 and obj2 have no order
 NSOrderedDescending obj1 comes after obj2

Example:

 NSArray *categoryArray = @[@"Apps", @"Music", @"Songs",
 @"iTunes", @"Books", @"Videos"];

 NSArray *sortedArray = [categoryArray sortedArrayUsingComparator:
^NSComparisonResult(id obj1, id obj2) {
 if ([obj1 length] < [obj2 length]) {
 return NSOrderedAscending;
 } else if ([obj1 length] > [obj2 length]) {
 return NSOrderedDescending;
 } else {
 return NSOrderedSame;
 }
 }];

 NSLog(@"%@", sortedArray);

Filter NSArray and NSMutableArray

NSMutableArray *array =
 [NSMutableArray arrayWithObjects:@"Ken", @"Tim", @"Chris", @"Steve",@"Charlie",@"Melissa",
nil];

NSPredicate *bPredicate =
 [NSPredicate predicateWithFormat:@"SELF beginswith[c] 'c'"];
NSArray *beginWithB =
 [array filteredArrayUsingPredicate:bPredicate];
// beginWith "C" contains { @"Chris", @"Charlie" }.

NSPredicate *sPredicate =
 [NSPredicate predicateWithFormat:@"SELF contains[c] 'a'"];

https://riptutorial.com/ 71

[array filterUsingPredicate:sPredicate];
// array now contains { @"Charlie", @"Melissa" }

Read NSArray online: https://riptutorial.com/objective-c/topic/1181/nsarray

https://riptutorial.com/ 72

https://riptutorial.com/objective-c/topic/1181/nsarray

Chapter 24: NSAttributedString

Examples

Creating a string that has custom kerning (letter spacing) editshare

NSAttributedString (and its mutable sibling NSMutableAttributedString) allows you to create strings
that are complex in their appearance to the user.

A common application is to use this to display a string and adding custom kerning / letter-spacing.

This would be achieved as follows (where label is a UILabel), giving a different kerning for the word
"kerning"

NSMutableAttributedString *attributedString;
attributedString = [[NSMutableAttributedString alloc] initWithString:@"Apply kerning"];
[attributedString addAttribute:NSKernAttributeName value:@5 range:NSMakeRange(6, 7)];
[label setAttributedText:attributedString];

Create a string with text struck through

NSMutableAttributedString *attributeString = [[NSMutableAttributedString alloc]
initWithString:@"Your String here"];
[attributeString addAttribute:NSStrikethroughStyleAttributeName
 value:@2
 range:NSMakeRange(0, [attributeString length])];

Using Enumerating over Attributes in a String and underline part of string

 NSMutableDictionary *attributesDictionary = [NSMutableDictionary dictionary];
 [attributesDictionary setObject:[UIFont systemFontOfSize:14] forKey:NSFontAttributeName];
 //[attributesDictionary setObject:[UIColor redColor] forKey:NSForegroundColorAttributeName];
 NSMutableAttributedString *attributedString = [[NSMutableAttributedString
alloc]initWithString:@"Google www.google.com link" attributes:attributesDictionary];

 [attributedString enumerateAttribute:(NSString *) NSFontAttributeName
 inRange:NSMakeRange(0, [attributedString length])

options:NSAttributedStringEnumerationLongestEffectiveRangeNotRequired
 usingBlock:^(id value, NSRange range, BOOL *stop) {
 NSLog(@"Attribute: %@, %@", value, NSStringFromRange(range));
 }];

 NSMutableAttributedString *attributedStr = [[NSMutableAttributedString alloc]
initWithString:@"www.google.com "];

 [attributedString addAttribute:NSUnderlineStyleAttributeName
 value:[NSNumber numberWithInt:NSUnderlineStyleDouble]
 range:NSMakeRange(7, attributedStr.length)];

 [attributedString addAttribute:NSForegroundColorAttributeName

https://riptutorial.com/ 73

 value:[UIColor blueColor]
 range:NSMakeRange(6,attributedStr.length)];

 _attriLbl.attributedText = attributedString;//_attriLbl (of type UILabel) added in
storyboard

Output:

How you create a tri-color attributed string.

 NSMutableAttributedString * string = [[NSMutableAttributedString alloc]
initWithString:@"firstsecondthird"];
[string addAttribute:NSForegroundColorAttributeName value:[UIColor redColor]
range:NSMakeRange(0,5)];
[string addAttribute:NSForegroundColorAttributeName value:[UIColor greenColor]
range:NSMakeRange(5,6)];
[string addAttribute:NSForegroundColorAttributeName value:[UIColor blueColor]
range:NSMakeRange(11,5)];

Range : start to end string

Here we have firstsecondthird string so in first we have set range (0,5) so from starting first
character to fifth character it will display in green text color.

Read NSAttributedString online: https://riptutorial.com/objective-c/topic/3725/nsattributedstring

https://riptutorial.com/ 74

http://i.stack.imgur.com/nqxsQ.png
https://riptutorial.com/objective-c/topic/3725/nsattributedstring

Chapter 25: NSCache

Examples

NSCache

You use it the same way you would use NSMutableDictionary. The difference is that when
NSCache detects excessive memory pressure (i.e. it's caching too many values) it will release
some of those values to make room.

If you can recreate those values at runtime (by downloading from the Internet, by doing
calculations, whatever) then NSCache may suit your needs. If the data cannot be recreated (e.g.
it's user input, it is time-sensitive, etc.) then you should not store it in an NSCache because it will
be destroyed there.

Read NSCache online: https://riptutorial.com/objective-c/topic/8257/nscache

https://riptutorial.com/ 75

https://riptutorial.com/objective-c/topic/8257/nscache

Chapter 26: NSCalendar

Examples

System Locale Information

+currentCalendar returns the logical calendar for the current user.

 NSCalendar *calender = [NSCalendar currentCalendar];
 NSLog(@"%@",calender);

+autoupdatingCurrentCalendar returns the current logical calendar for the current user.

NSCalendar *calender = [NSCalendar autoupdatingCurrentCalendar];
NSLog(@"%@",calender);

Initializing a Calendar

- initWithCalendarIdentifier: Initializes a newly-allocated NSCalendar object for the calendar
specified by a given identifier.

NSCalendar *calender = [[NSCalendar alloc]initWithCalendarIdentifier:@"gregorian"];
NSLog(@"%@",calender);

- setFirstWeekday: Sets the index of the first weekday for the receiver.

NSCalendar *calender = [NSCalendar autoupdatingCurrentCalendar];
[calender setFirstWeekday:1];
NSLog(@"%d",[calender firstWeekday]);

- setLocale: Sets the locale for the receiver.

NSCalendar *calender = [NSCalendar autoupdatingCurrentCalendar];
[calender setLocale:[NSLocale currentLocale]];
NSLog(@"%@",[calender locale]);

- setMinimumDaysInFirstWeek: Sets the minimum number of days in the first week of the receiver.

NSCalendar *calender = [NSCalendar autoupdatingCurrentCalendar];
[calender setMinimumDaysInFirstWeek:7];
NSLog(@"%d",[calender minimumDaysInFirstWeek]);

- setTimeZone: Sets the time zone for the receiver.

NSCalendar *calender = [NSCalendar autoupdatingCurrentCalendar];
[calender setTimeZone:[NSTimeZone timeZoneForSecondsFromGMT:0]];
NSLog(@"%@",[calender timeZone]);

https://riptutorial.com/ 76

Calendrical Calculations

- components:fromDate: Returns a NSDateComponents object containing a given date decomposed
into specified components

NSCalendar *calender = [NSCalendar autoupdatingCurrentCalendar];
[calender setTimeZone:[NSTimeZone timeZoneForSecondsFromGMT:0]];
NSLog(@"%@",[calender components:NSCalendarUnitDay fromDate:[NSDate date]]);
NSLog(@"%@",[calender components:NSCalendarUnitYear fromDate:[NSDate date]]);
NSLog(@"%@",[calender components:NSCalendarUnitMonth fromDate:[NSDate date]]);

- components:fromDate:toDate:options: Returns, as an NSDateComponents object using specified
components, the difference between two supplied dates.

 NSCalendar *calender = [NSCalendar autoupdatingCurrentCalendar];
[calender setTimeZone:[NSTimeZone timeZoneForSecondsFromGMT:0]];
NSLog(@"%@",[calender components:NSCalendarUnitYear fromDate:[NSDate
dateWithTimeIntervalSince1970:0] toDate:[NSDate dateWithTimeIntervalSinceNow:18000]
options:NSCalendarWrapComponents]);

- dateByAddingComponents:toDate:options: Returns a new NSDate object representing the absolute
time calculated by adding given components to a given date.

NSCalendar *calender = [NSCalendar autoupdatingCurrentCalendar];
NSDateComponents *dateComponent = [[NSDateComponents alloc]init];
[dateComponent setYear:10];
NSLog(@"%@",[calender dateByAddingComponents:dateComponent toDate:[NSDate
dateWithTimeIntervalSinceNow:0] options:NSCalendarWrapComponents]);

- dateFromComponents: Returns a new NSDate object representing the absolute time calculated
from given components.

NSCalendar *calender = [NSCalendar autoupdatingCurrentCalendar];
NSDateComponents *dateComponent = [[NSDateComponents alloc]init];
[dateComponent setYear:2020];
NSLog(@"%@",[calender dateFromComponents:dateComponent]);

Read NSCalendar online: https://riptutorial.com/objective-c/topic/2903/nscalendar

https://riptutorial.com/ 77

https://riptutorial.com/objective-c/topic/2903/nscalendar

Chapter 27: NSData

Examples

Create

From NSString:

NSString *str = @"Hello world";
NSData *data = [str dataUsingEncoding:NSUTF8StringEncoding];

From Int:

int i = 1;
NSData *data = [NSData dataWithBytes: &i length: sizeof(i)];

You can also use the following methods:

+ dataWithContentsOfURL:
+ dataWithContentsOfURL:options:error:
+ dataWithData:
- initWithBase64EncodedData:options:
- initWithBase64EncodedString:options:
- initWithBase64Encoding:
- initWithBytesNoCopy:length:
- initWithBytesNoCopy:length:deallocator:
- initWithBytesNoCopy:length:freeWhenDone:
- initWithContentsOfFile:
- initWithContentsOfFile:options:error:
- initWithContentsOfMappedFile:
- initWithContentsOfURL:
- initWithContentsOfURL:options:error:
- initWithData:

Get NSData lengh

NSString *filePath = [[NSFileManager defaultManager] pathForRessorce: @"data" ofType:@"txt"];
NSData *data = [NSData dataWithContentsOfFile:filePath];
int len = [data length];

Encoding and decoding a string using NSData Base64

Encoding

 //Create a Base64 Encoded NSString Object
 NSData *nsdata = [@"iOS Developer Tips encoded in Base64"
dataUsingEncoding:NSUTF8StringEncoding];

 // Get NSString from NSData object in Base64

https://riptutorial.com/ 78

 NSString *base64Encoded = [nsdata base64EncodedStringWithOptions:0];
 // Print the Base64 encoded string
 NSLog(@"Encoded: %@", base64Encoded);

Decoding:

// NSData from the Base64 encoded str
NSData *nsdataFromBase64String = [[NSData alloc]initWithBase64EncodedString:base64Encoded
options:0];

// Decoded NSString from the NSData
NSString *base64Decoded = [[NSString alloc] initWithData:nsdataFromBase64String
encoding:NSUTF8StringEncoding];
NSLog(@"Decoded: %@", base64Decoded);

NSData and Hexadecimal String

Get NSData from Hexadecimal String

+ (NSData *)dataFromHexString:(NSString *)string
{
 string = [string lowercaseString];
 NSMutableData *data= [NSMutableData new];
 unsigned char whole_byte;
 char byte_chars[3] = {'\0','\0','\0'};
 int i = 0;
 int length = (int) string.length;
 while (i < length-1) {
 char c = [string characterAtIndex:i++];
 if (c < '0' || (c > '9' && c < 'a') || c > 'f')
 continue;
 byte_chars[0] = c;
 byte_chars[1] = [string characterAtIndex:i++];
 whole_byte = strtol(byte_chars, NULL, 16);
 [data appendBytes:&whole_byte length:1];
 }
 return data;
}

Get Hexadecimal String from data:

+ (NSString *)hexStringForData:(NSData *)data
{
 if (data == nil) {
 return nil;
 }

 NSMutableString *hexString = [NSMutableString string];

 const unsigned char *p = [data bytes];

 for (int i=0; i < [data length]; i++) {
 [hexString appendFormat:@"%02x", *p++];
 }

 return hexString;

https://riptutorial.com/ 79

}

Read NSData online: https://riptutorial.com/objective-c/topic/1532/nsdata

https://riptutorial.com/ 80

https://riptutorial.com/objective-c/topic/1532/nsdata

Chapter 28: NSDate

Remarks

NSDate is a very simple value type, representing one exact moment in universal time. It does not
contain information about time zones, daylight saving time, calendars, or locale.

NSDate is really only an immutable wrapper around an NSTimeInterval which is a double. There is no
mutable subclass, as with some other value types in Foundation.

Examples

Creating an NSDate

The NSDate class provides methods for creating NSDate objects corresponding to a given date and
time. An NSDate can be initialized using the designated initializer, which:

Returns an NSDate object initialized relative to 00:00:00 UTC on 1 January 2001 by a
given number of seconds.

NSDate *date = [[NSDate alloc] initWithTimeIntervalSinceReferenceDate:100.0];

NSDate also provides an easy way to create an NSDate equal to the current date and time:

NSDate *now = [NSDate date];

It is also possible to create an NSDate a given amount of seconds from the current date and time:

NSDate *tenSecondsFromNow = [NSDate dateWithTimeIntervalSinceNow:10.0];

Date Comparison

There are 4 methods for comparing NSDates in Objective-C:

- (BOOL)isEqualToDate:(NSDate *)anotherDate•
- (NSDate *)earlierDate:(NSDate *)anotherDate•
- (NSDate *)laterDate:(NSDate *)anotherDate•
- (NSComparisonResult)compare:(NSDate *)anotherDate•

Consider the following example using 2 dates, NSDate date1 = July 7, 2016 and NSDate date2 =
July 2, 2016:

NSDateComponents *comps1 = [[NSDateComponents alloc]init];
comps.year = 2016;
comps.month = 7;
comps.day = 7;

https://riptutorial.com/ 81

NSDateComponents *comps2 = [[NSDateComponents alloc]init];
 comps.year = 2016;
 comps.month = 7;
 comps.day = 2;

NSDate* date1 = [calendar dateFromComponents:comps1]; //Initialized as July 7, 2016
NSDate* date2 = [calendar dateFromComponents:comps2]; //Initialized as July 2, 2016

Now that the NSDates are created, they can be compared:

if ([date1 isEqualToDate:date2]) {
 //Here it returns false, as both dates are not equal
}

We can also use the earlierDate: and laterDate: methods of the NSDate class:

NSDate *earlierDate = [date1 earlierDate:date2];//Returns the earlier of 2 dates. Here
earlierDate will equal date2.
NSDate *laterDate = [date1 laterDate:date2];//Returns the later of 2 dates. Here laterDate
will equal date1.

Lastly, we can use NSDate's compare: method:

NSComparisonResult result = [date1 compare:date2];
 if (result == NSOrderedAscending) {
 //Fails
 //Comes here if date1 is earlier than date2. In our case it will not come here.
 }else if (result == NSOrderedSame){
 //Fails
 //Comes here if date1 is the same as date2. In our case it will not come here.
 }else{//NSOrderedDescending

 //Succeeds
 //Comes here if date1 is later than date2. In our case it will come here
 }

Convert NSDate that is composed from hour and minute (only) to a full
NSDate

There are many cases when one has created an NSDate from only an hour and minute format, i.e:
08:12

The downside for this situation is that your NSDate is almost completely "naked" and what you
need to do is to create: day, month, year, second and time zone in order to this object to "play
along" with other NSDate types.

For the sake of the example let's say that hourAndMinute is the NSDate type that is composed
from hour and minute format:

NSDateComponents *hourAndMintuteComponents = [calendar components:NSCalendarUnitHour |
NSCalendarUnitMinute
 fromDate:hourAndMinute];

https://riptutorial.com/ 82

NSDateComponents *componentsOfDate = [[NSCalendar currentCalendar]
components:NSCalendarUnitDay | NSCalendarUnitMonth | NSCalendarUnitYear
 fromDate:[NSDate date]];

NSDateComponents *components = [[NSDateComponents alloc] init];
[components setDay: componentsOfDate.day];
[components setMonth: componentsOfDate.month];
[components setYear: componentsOfDate.year];
[components setHour: [hourAndMintuteComponents hour]];
[components setMinute: [hourAndMintuteComponents minute]];
[components setSecond: 0];
[calendar setTimeZone: [NSTimeZone defaultTimeZone]];

NSDate *yourFullNSDateObject = [calendar dateFromComponents:components];

Now your object is the total opposite of being "naked".

Converting NSDate to NSString

If ww have NSDate object, and we want to convert it into NSString. There are different types of
Date strings. How we can do that?, It is very simple. Just 3 steps.

Create NSDateFormatter Object1.

 NSDateFormatter *dateFormatter = [[NSDateFormatter alloc] init];

Set the date format in which you want your string.2.

 dateFormatter.dateFormat = @"yyyy-MM-dd 'at' HH:mm";

Now, get the formatted string

 NSDate *date = [NSDate date]; // your NSDate object
 NSString *dateString = [dateFormatter stringFromDate:date];

3.

This will give output something like this: 2001-01-02 at 13:00

Note:

Creating an NSDateFormatter instance is an expensive operation, so it is recommended to create it
once and reuse when possible.

Read NSDate online: https://riptutorial.com/objective-c/topic/1981/nsdate

https://riptutorial.com/ 83

https://riptutorial.com/objective-c/topic/1981/nsdate

Chapter 29: NSDictionary

Examples

Create

NSDictionary *dict = [[NSDictionary alloc] initWithObjectsAndKeys:@"value1", @"key1",
@"value2", @"key2", nil];

or

NSArray *keys = [NSArray arrayWithObjects:@"key1", @"key2", nil];
NSArray *objects = [NSArray arrayWithObjects:@"value1", @"value2", nil];
NSDictionary *dictionary = [NSDictionary dictionaryWithObjects:objects
 forKeys:keys];

or using appropriate literal syntax

NSDictionary *dict = @{@"key": @"value", @"nextKey": @"nextValue"};

NSDictionary to NSArray

NSDictionary *myDictionary = [[NSDictionary alloc] initWithObjectsAndKeys:@"value1", @"key1",
@"value2", @"key2", nil];
NSArray *copiedArray = myDictionary.copy;

Get keys:

NSArray *keys = [myDictionary allKeys];

Get values:

NSArray *values = [myDictionary allValues];

NSDictionary to NSData

NSDictionary *myDictionary = [[NSDictionary alloc] initWithObjectsAndKeys:@"value1", @"key1",
@"value2", @"key2", nil];
NSData *myData = [NSKeyedArchiver archivedDataWithRootObject:myDictionary];

Reserve path:

NSDictionary *myDictionary = (NSDictionary*) [NSKeyedUnarchiver
unarchiveObjectWithData:myData];

https://riptutorial.com/ 84

NSDictionary to JSON

NSDictionary *myDictionary = [[NSDictionary alloc] initWithObjectsAndKeys:@"value1", @"key1",
@"value2", @"key2", nil];

NSMutableDictionary *mutableDictionary = [myDictionary mutableCopy];
NSData *data = [NSJSONSerialization dataWithJSONObject:myDictionary
options:NSJSONWritingPrettyPrinted error:nil];
NSString *jsonString = [[NSString alloc] initWithData:data encoding:NSUTF8StringEncoding];

Block Based Enumeration

Enumerating dictionaries allows you to run a block of code on each dictionary key-value pair using
the method enumerateKeysAndObjectsUsingBlock:(void (^)(id key, id obj, BOOL *stop))block

Example:

NSDictionary stockSymbolsDictionary = @{
 @"AAPL": @"Apple",
 @"GOOGL": @"Alphabet",
 @"MSFT": @"Microsoft",
 @"AMZN": @"Amazon"
 };
NSLog(@"Printing contents of dictionary via enumeration");
[stockSymbolsDictionary enumerateKeysAndObjectsUsingBlock:^(id key, id obj, BOOL *stop) {
 NSLog(@"Key: %@, Value: %@", key, obj);
}];

Fast Enumeration

NSDictionary can be enumerated using fast enumeration, just like other collection types:

NSDictionary stockSymbolsDictionary = @{
 @"AAPL": @"Apple",
 @"GOOGL": @"Alphabet",
 @"MSFT": @"Microsoft",
 @"AMZN": @"Amazon"
 };

for (id key in stockSymbolsDictionary)
{
 id value = dictionary[key];
 NSLog(@"Key: %@, Value: %@", key, value);
}

Because NSDictionary is inherently unordered, the order of keys that in the for loop is not
guaranteed.

Read NSDictionary online: https://riptutorial.com/objective-c/topic/847/nsdictionary

https://riptutorial.com/ 85

https://riptutorial.com/objective-c/topic/847/nsdictionary

Chapter 30: NSDictionary

Syntax

@{ key: value, ... }•

[NSDictionary dictionaryWithObjectsAndKeys: value, key, ..., nil];•

dict[key] = value;•

id value = dict[key];•

Remarks

The NSDictionary class declares the programmatic interface to objects that manage immutable
associations of keys and values. Use this class or its subclass NSMutableDictionary when you
need a convenient and efficient way to retrieve data associated with an arbitrary key. NSDictionary
creates static dictionaries, and NSMutableDictionary creates dynamic dictionaries. (For
convenience, the term dictionary refers to any instance of one of these classes without specifying
its exact class membership.)

A key-value pair within a dictionary is called an entry. Each entry consists of one object that
represents the key and a second object that is that key’s value. Within a dictionary, the keys are
unique. That is, no two keys in a single dictionary are equal (as determined by isEqual:). In
general, a key can be any object (provided that it conforms to the NSCopying protocol—see
below), but note that when using key-value coding the key must be a string (see Key-Value
Coding Fundamentals). Neither a key nor a value can be nil; if you need to represent a null value
in a dictionary, you should use NSNull.

NSDictionary is “toll-free bridged” with its Core Foundation counterpart, CFDictionaryRef. See Toll-
Free Bridging for more information on toll-free bridging.

Examples

Creating using literals

NSDictionary *inventory = @{
 @"Mercedes-Benz SLK250" : @(13),
 @"BMW M3 Coupe" : @(self.BMWM3CoupeInventory.count),
 @"Last Updated" : @"Jul 21, 2016",
 @"Next Update" : self.nextInventoryUpdateString
};

Creating using dictionaryWithObjectsAndKeys:

https://riptutorial.com/ 86

NSDictionary *inventory = [NSDictionary dictionaryWithObjectsAndKeys:
 [NSNumber numberWithInt:13], @"Mercedes-Benz SLK250",
 [NSNumber numberWithInt:22], @"Mercedes-Benz E350",
 [NSNumber numberWithInt:19], @"BMW M3 Coupe",
 [NSNumber numberWithInt:16], @"BMW X6",
 nil];

nil must be passed as the last parameter as a sentinel signifying the end.

It's important to remember that when instantiating dictionaries this way the values go first and the
keys second. In the example above the strings are the keys and the numbers are the values. The
method's name reflects this too: dictionaryWithObjectsAndKeys. While this is not incorrect, the more
modern way of instantiating dictionaries (with literals) is prefered.

Creating using plists

NSString *pathToPlist = [[NSBundle mainBundle] pathForResource:@"plistName"
 ofType:@"plist"];
NSDictionary *plistDict = [[NSDictionary alloc] initWithContentsOfFile:pathToPlist];

Setting a Value in NSDictionary

There are multiple ways to set a key's object in an NSDictionary, corresponding to the ways you
get a value. For instance, to add a lamborghini to a list of cars

Standard

[cars setObject:lamborghini forKey:@"Lamborghini"];

Just like any other object, call the method of NSDictionary that sets an object of a key,
objectForKey:. Be careful not to confuse this with setValue:forKey:; that's for a completely different
thing, Key Value Coding

Shorthand

cars[@"Lamborghini"] = lamborghini;

This is the syntax that you use for dictionaries in most other languages, such as C#, Java, and
Javascript. It's much more convenient than the standard syntax, and arguably more readable
(especially if you code in these other languages), but of course, it isn't standard. It's also only
available in newer versions of Objective C

Getting a Value from NSDictionary

There are multiple ways to get an object from an NSDictionary with a key. For instance, to get a
lamborghini from a list of cars

https://riptutorial.com/ 87

http://www.riptutorial.com/objective-c/topic/556/key-value-coding---key-value-observing

Standard

Car * lamborghini = [cars objectForKey:@"Lamborghini"];

Just like any other object, call the method of NSDictionary that gives you an object for a key,
objectForKey:. Be careful not to confuse this with valueForKey:; that's for a completely different
thing, Key Value Coding

Shorthand

Car * lamborghini = cars[@"Lamborghini"];

This is the syntax that you use for dictionaries in most other languages, such as C#, Java, and
Javascript. It's much more convenient than the standard syntax, and arguably more readable
(especially if you code in these other languages), but of course, it isn't standard. It's also only
available in newer versions of Objective C

Check if NSDictionary already has a key or not

Objective c:

 //this is the dictionary you start with.
 NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:@"name1", @"Sam",@"name2",
@"Sanju",nil];

//check if the dictionary contains the key you are going to modify. In this example, @"Sam"
if (dict[@"name1"] != nil) {
 //there is an entry for Key name1
}
else {
 //There is no entry for name1
}

Read NSDictionary online: https://riptutorial.com/objective-c/topic/875/nsdictionary

https://riptutorial.com/ 88

http://www.riptutorial.com/objective-c/topic/556/key-value-coding---key-value-observing
https://riptutorial.com/objective-c/topic/875/nsdictionary

Chapter 31: NSJSONSerialization

Syntax

(id)JSONObjectWithData:(NSData *)data options:(NSJSONReadingOptions)opt
error:(NSError * _Nullable *)error

•

Parameters

Operator Description

data A data object containing JSON data

opt Options for reading the JSON data and creating the Foundation objects.

error
If an error occurs, upon return contains an NSError object that describes the
problem.

Remarks

NSJSONSerialization is Available in iOS 5.0 and later An object that may be converted to JSON
must have the following properties:

The top level object is an NSArray or NSDictionary.•

All objects are instances of NSString, NSNumber, NSArray, NSDictionary, or NSNull.•

All dictionary keys are instances of NSString.•

Numbers are not NaN or infinity.•

Examples

JSON Parsing using NSJSONSerialization Objective c

NSError *e = nil;
NSString *jsonString = @"[{\"id\": \"1\", \"name\":\"sam\"}]";
NSData *data = [jsonString dataUsingEncoding:NSUTF8StringEncoding];

NSArray *jsonArray = [NSJSONSerialization JSONObjectWithData: data options:
NSJSONReadingMutableContainers error: &e];

if (!jsonArray) {
 NSLog(@"Error parsing JSON: %@", e);
} else {
 for(NSDictionary *item in jsonArray) {
 NSLog(@"Item: %@", item);

https://riptutorial.com/ 89

 }
}

Output:

Item: {
 id = 1;
 name = sam;
}

Example 2:Using contents of url:

//Parsing:

NSData *data = [NSData dataWithContentsOfURL:@“URL HERE”];
NSError *error;
NSDictionary *json = [NSJSONSerialization JSONObjectWithData:data options:kNilOptions
error:&error];
NSLog(@“json :%@”,json);

Sample response:

json: {
 MESSAGE = “Test Message";
 RESPONSE =(
 {
 email = "test@gmail.com";
 id = 15;
 phone = 1234567890;
 name = Staffy;
 }
);
 STATUS = SUCCESS;
}

 NSMutableDictionary *response = [[[json valueForKey:@"RESPONSE"]
objectAtIndex:0]mutableCopy];
 NSString *nameStr = [response valueForKey:@"name"];
 NSString *emailIdStr = [response valueForKey:@"email"];

Read NSJSONSerialization online: https://riptutorial.com/objective-c/topic/2587/nsjsonserialization

https://riptutorial.com/ 90

https://riptutorial.com/objective-c/topic/2587/nsjsonserialization

Chapter 32: NSMutableArray

Examples

Adding elements

NSMutableArray *myColors;
myColors = [NSMutableArray arrayWithObjects: @"Red", @"Green", @"Blue", @"Yellow", nil];
[myColors addObject: @"Indigo"];
[myColors addObject: @"Violet"];

//Add objects from an NSArray
NSArray *myArray = @[@"Purple",@"Orange"];
[myColors addObjectsFromArray:myArray];

Insert Elements

NSMutableArray *myColors;
int i;
int count;
myColors = [NSMutableArray arrayWithObjects: @"Red", @"Green", @"Blue", @"Yellow", nil];
[myColors insertObject: @"Indigo" atIndex: 1];
[myColors insertObject: @"Violet" atIndex: 3];

Deleting Elements

Remove at specific index:

[myColors removeObjectAtIndex: 3];

Remove the first instance of a specific object:

[myColors removeObject: @"Red"];

Remove all instances of a specific object:

[myColors removeObjectIdenticalTo: @"Red"];

Remove all objects:

[myColors removeAllObjects];

Remove last object:

[myColors removeLastObject];

https://riptutorial.com/ 91

Sorting Arrays

NSMutableArray *myColors = [NSMutableArray arrayWithObjects: @"red", @"green", @"blue",
@"yellow", nil];
NSArray *sortedArray;
sortedArray = [myColors sortedArrayUsingSelector:@selector(localizedCaseInsensitiveCompare:)];

Move object to another index

Move Blue to the beginning of the array:

NSMutableArray *myColors = [NSMutableArray arrayWithObjects: @"Red", @"Green", @"Blue",
@"Yellow", nil];

NSUInteger fromIndex = 2;
NSUInteger toIndex = 0;

id blue = [[[self.array objectAtIndex:fromIndex] retain] autorelease];
[self.array removeObjectAtIndex:fromIndex];
[self.array insertObject:blue atIndex:toIndex];

myColors is now [@"Blue", @"Red", @"Green", @"Yellow"].

Filtering Array content with Predicate

Using filterUsingPredicate: This Evaluates a given predicate against the arrays content and
return objects that match.

Example:

 NSMutableArray *array = [NSMutableArray array];
 [array setArray:@[@"iOS",@"macOS",@"tvOS"]];
 NSPredicate *predicate = [NSPredicate predicateWithFormat:@"SELF beginswith[c] 'i'"];
 NSArray *resultArray = [array filteredArrayUsingPredicate:predicate];
 NSLog(@"%@",resultArray);

Creating an NSMutableArray

NSMutableArray can be initialized as an empty array like this:

NSMutableArray *array = [[NSMutableArray alloc] init];
// or
NSMutableArray *array2 = @[].mutableCopy;
// or
NSMutableArray *array3 = [NSMutableArray array];

NSMutableArray can be initialized with another array like this:

NSMutableArray *array4 = [[NSMutableArray alloc] initWithArray:anotherArray];
// or
NSMutableArray *array5 = anotherArray.mutableCopy;

https://riptutorial.com/ 92

Read NSMutableArray online: https://riptutorial.com/objective-c/topic/2008/nsmutablearray

https://riptutorial.com/ 93

https://riptutorial.com/objective-c/topic/2008/nsmutablearray

Chapter 33: NSMutableDictionary

Parameters

objects keys

An array containing the values
for the new dictionary.

CellAn array containing the keys for the new dictionary.
Each key is copied and the copy is added to the dictionary.

Examples

NSMutableDictionary Example

+ dictionaryWithCapacity:

Creates and returns a mutable dictionary, initially giving it enough allocated memory to hold a
given number of entries.

NSMutableDictionary *dict = [NSMutableDictionary dictionaryWithCapacity:1];
NSLog(@"%@",dict);

- init

Initializes a newly allocated mutable dictionary.

NSMutableDictionary *dict = [[NSMutableDictionary alloc] init];
NSLog(@"%@",dict);

+ dictionaryWithSharedKeySet:

Creates a mutable dictionary which is optimized for dealing with a known set of keys.

id sharedKeySet = [NSDictionary sharedKeySetForKeys:@[@"key1", @"key2"]]; // returns
NSSharedKeySet
NSMutableDictionary *dict = [NSMutableDictionary dictionaryWithSharedKeySet:sharedKeySet];
dict[@"key1"] = @"Easy";
dict[@"key2"] = @"Tutorial";
//We can an object thats not in the shared keyset
dict[@"key3"] = @"Website";
NSLog(@"%@",dict);

OUTPUT

{
 key1 = Eezy;
 key2 = Tutorials;
 key3 = Website;

https://riptutorial.com/ 94

}

Adding Entries to a Mutable Dictionary

- setObject:forKey:

Adds a given key-value pair to the dictionary.

NSMutableDictionary *dict = [NSMutableDictionary dictionary];
[dict setObject:@"Easy" forKey:@"Key1"];
NSLog(@"%@",dict);

OUTPUT

{
 Key1 = Eezy;
}

- setObject:forKeyedSubscript:

Adds a given key-value pair to the dictionary.

NSMutableDictionary *dict = [NSMutableDictionary dictionary];
[dict setObject:@"Easy" forKeyedSubscript:@"Key1"];
NSLog(@"%@",dict);

OUTPUT { Key1 = Easy; }

Removing Entries From a Mutable Dictionary

- removeObjectForKey:

Removes a given key and its associated value from the dictionary.

NSMutableDictionary *dict = [NSMutableDictionary
dictionaryWithDictionary:@{@"key1":@"Easy",@"key2": @"Tutorials"}];
[dict removeObjectForKey:@"key1"];
NSLog(@"%@",dict);

OUTPUT

{
 key2 = Tutorials;
}

- removeAllObjects

Empties the dictionary of its entries.

https://riptutorial.com/ 95

NSMutableDictionary *dict = [NSMutableDictionary
dictionaryWithDictionary:@{@"key1":@"Eezy",@"key2": @"Tutorials"}];
[dict removeAllObjects];
NSLog(@"%@",dict);

OUTPUT

{
}

- removeObjectsForKeys:

Removes from the dictionary entries specified by elements in a given array.

NSMutableDictionary *dict = [NSMutableDictionary
dictionaryWithDictionary:@{@"key1":@"Easy",@"key2": @"Tutorials"}];
[dict removeObjectsForKeys:@[@"key1"]];
NSLog(@"%@",dict);

OUTPUT

{
 key2 = Tutorials;
}

Read NSMutableDictionary online: https://riptutorial.com/objective-
c/topic/3103/nsmutabledictionary

https://riptutorial.com/ 96

https://riptutorial.com/objective-c/topic/3103/nsmutabledictionary
https://riptutorial.com/objective-c/topic/3103/nsmutabledictionary

Chapter 34: NSObject

Introduction

NSObject is the root class of Cocoa, however the Objective-C language itself does not define any root
classes at all its define by Cocoa, Apple's Framework.This root class of most Objective-C class
hierarchies, from which subclasses inherit a basic interface to the runtime system and the ability to
behave as Objective-C objects.

This class have all basic property of Objective'C class object like:

self.

class (name of the class).

superclass (superclass of current class).

Syntax

self•
superclass•
init•
alloc•
new•
isEqual•
isKindOfClass•
isMemberOfClass•
description•

Examples

NSObject

@interface NSString : NSObject (NSObject is a base class of NSString class).

You can use below methods for allocation of string class:

- (instancetype)init

+ (instancetype)new

+ (instancetype)alloc

For Copy any object :

- (id)copy;

https://riptutorial.com/ 97

- (id)mutableCopy;

For compare objects :

- (BOOL)isEqual:(id)object

To get superclass of current class :

superclass

To check which kind of class is this ?

- (BOOL)isKindOfClass:(Class)aClass

Some property of NON-ARC classes:

- (instancetype)retain OBJC_ARC_UNAVAILABLE;

- (oneway void)release OBJC_ARC_UNAVAILABLE;

- (instancetype)autorelease OBJC_ARC_UNAVAILABLE;

- (NSUInteger)retainCount

Read NSObject online: https://riptutorial.com/objective-c/topic/9355/nsobject

https://riptutorial.com/ 98

https://riptutorial.com/objective-c/topic/9355/nsobject

Chapter 35: NSPredicate

Syntax

CONTAINS operator : It allows to filter objects with matching subset.

NSPredicate *filterByName = [NSPredicate predicateWithFormat:@"self.title CONTAINS[cd]
%@",@"Tom"];

•

LIKE : Its simple comparison filter.

NSPredicate *filterByNameCIS = [NSPredicate predicateWithFormat:@"self.title LIKE[cd]
%@",@"Tom and Jerry"];

•

= operator : It returns all the objects with matching filter value.

NSPredicate *filterByNameCS = [NSPredicate predicateWithFormat:@"self.title = %@",@"Tom and
Jerry"];

•

IN operator : It allows you to filter objects with specific filter set.

NSPredicate *filterByIds = [NSPredicate predicateWithFormat:@"self.id IN %@",@[@"7CDF6D22-
8D36-49C2-84FE-E31EECCECB79", @"7CDF6D22-8D36-49C2-84FE-E31EECCECB76"]];

•

NOT IN operator : It allows you to find Inverse objects with specific set.

NSPredicate *filterByNotInIds = [NSPredicate predicateWithFormat:@"NOT (self.id IN
%@)",@[@"7CDF6D22-8D36-49C2-84FE-E31EECCECB79", @"7CDF6D22-8D36-49C2-84FE-E31EECCECB76"]];

•

Remarks

For more details read NSPredicate in Apple documentation

Examples

Filter By Name

NSArray *array = @[
 @{
 @"id": @"7CDF6D22-8D36-49C2-84FE-E31EECCECB71",
 @"title": @"Jackie Chan Strike Movie",
 @"url": @"http://abc.com/playback.m3u8",
 @"thumbnailURL": @"http://abc.com/thumbnail.png",
 @"isMovie" : @1
 },
 @{
 @"id": @"7CDF6D22-8D36-49C2-84FE-E31EECCECB72",
 @"title": @"Sherlock homes",
 @"url": @"http://abc.com/playback.m3u8",
 @"thumbnailURL": @"http://abc.com/thumbnail.png",
 @"isMovie" : @0
 },

https://riptutorial.com/ 99

https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSPredicate_Class/index.html

 @{
 @"id": @"7CDF6D22-8D36-49C2-84FE-E31EECCECB73",
 @"title": @"Titanic",
 @"url": @"http://abc.com/playback.m3u8",
 @"thumbnailURL": @"http://abc.com/thumbnail.png",
 @"isMovie" : @1
 },
 @{
 @"id": @"7CDF6D22-8D36-49C2-84FE-E31EECCECB74",
 @"title": @"Star Wars",
 @"url": @"http://abc.com/playback.m3u8",
 @"thumbnailURL": @"http://abc.com/thumbnail.png",
 @"isMovie" : @1
 },
 @{
 @"id": @"7CDF6D22-8D36-49C2-84FE-E31EECCECB75",
 @"title": @"Pokemon",
 @"url": @"http://abc.com/playback.m3u8",
 @"thumbnailURL": @"http://abc.com/thumbnail.png",
 @"isMovie" : @0
 },
 @{
 @"id": @"7CDF6D22-8D36-49C2-84FE-E31EECCECB76",
 @"title": @"Avatar",
 @"url": @"http://abc.com/playback.m3u8",
 @"thumbnailURL": @"http://abc.com/thumbnail.png",
 @"isMovie" : @1
 },
 @{
 @"id": @"7CDF6D22-8D36-49C2-84FE-E31EECCECB77",
 @"title": @"Popey",
 @"url": @"http://abc.com/playback.m3u8",
 @"thumbnailURL": @"http://abc.com/thumbnail.png",
 @"isMovie" : @1
 },
 @{
 @"id": @"7CDF6D22-8D36-49C2-84FE-E31EECCECB78",
 @"title": @"Tom and Jerry",
 @"url": @"http://abc.com/playback.m3u8",
 @"thumbnailURL": @"http://abc.com/thumbnail.png",
 @"isMovie" : @1
 },
 @{
 @"id": @"7CDF6D22-8D36-49C2-84FE-E31EECCECB79",
 @"title": @"The wolf",
 @"url": @"http://abc.com/playback.m3u8",
 @"thumbnailURL": @"http://abc.com/thumbnail.png",
 @"isMovie" : @1
 }
];

// *** Case Insensitive comparision with excate title match ***
NSPredicate *filterByNameCIS = [NSPredicate predicateWithFormat:@"self.title LIKE[cd]
%@",@"Tom and Jerry"];
NSLog(@"Filter By Name(CIS) : %@",[array filteredArrayUsingPredicate:filterByNameCIS]);

Find movies except given ids

// *** Find movies except given ids ***

https://riptutorial.com/ 100

NSPredicate *filterByNotInIds = [NSPredicate predicateWithFormat:@"NOT (self.id IN
%@)",@[@"7CDF6D22-8D36-49C2-84FE-E31EECCECB79", @"7CDF6D22-8D36-49C2-84FE-E31EECCECB76"]];
NSLog(@"Filter movies except given Ids : %@",[array
filteredArrayUsingPredicate:filterByNotInIds]);

Find all the objects which is of type movie

// *** Find all the objects which is of type movie, Both the syntax are valid ***
NSPredicate *filterByMovieType = [NSPredicate predicateWithFormat:@"self.isMovie = %@",@1];
// OR
//NSPredicate *filterByMovieType = [NSPredicate predicateWithFormat:@"self.isMovie =
%@",[NSNumber numberWithBool:YES]];
NSLog(@"Filter By Movie Type : %@",[array filteredArrayUsingPredicate:filterByMovieType]);

Find Distinct object ids of array

// *** Find Distinct object ids of array ***
NSLog(@"Distinct id : %@",[array valueForKeyPath:@"@distinctUnionOfObjects.id"]);

Find movies with specific ids

// *** Find movies with specific ids ***
NSPredicate *filterByIds = [NSPredicate predicateWithFormat:@"self.id IN %@",@[@"7CDF6D22-
8D36-49C2-84FE-E31EECCECB79", @"7CDF6D22-8D36-49C2-84FE-E31EECCECB76"]];
NSLog(@"Filter By Ids : %@",[array filteredArrayUsingPredicate:filterByIds]);

Case Insensitive comparison with exact title match

// *** Case Insensitive comparison with exact title match ***
NSPredicate *filterByNameCIS = [NSPredicate predicateWithFormat:@"self.title LIKE[cd]
%@",@"Tom and Jerry"];
NSLog(@"Filter By Name(CIS) : %@",[array filteredArrayUsingPredicate:filterByNameCIS]);

Case sensitive with exact title match

// *** Case sensitive with exact title match ***
NSPredicate *filterByNameCS = [NSPredicate predicateWithFormat:@"self.title = %@",@"Tom and
Jerry"];
NSLog(@"Filter By Name(CS) : %@",[array filteredArrayUsingPredicate:filterByNameCS]);

Case Insensitive comparison with matching subset

// *** Case Insensitive comparison with matching subset ***
NSPredicate *filterByName = [NSPredicate predicateWithFormat:@"self.title CONTAINS[cd]
%@",@"Tom"];
NSLog(@"Filter By Containing Name : %@",[array filteredArrayUsingPredicate:filterByName]);

Read NSPredicate online: https://riptutorial.com/objective-c/topic/2004/nspredicate

https://riptutorial.com/ 101

https://riptutorial.com/objective-c/topic/2004/nspredicate

Chapter 36: NSRegularExpression

Syntax

NSRegularExpression *regex = [NSRegularExpression
regularExpressionWithPattern:PATTERN options:OPTIONS error:ERROR];

•

NSArray<NSTextCheckingResult *> *results = [regex matchesInString:STRING
options:OPTIONS range:RANGE_IN_STRING];

•

NSInteger numberOfMatches = [regex numberOfMatchesInString:STRING
options:OPTIONS range:RANGE_IN_STRING];

•

Examples

Find all the numbers in a string

NSString *testString = @"There are 42 sheep and 8672 cows.";
NSError *error = nil;
NSRegularExpression *regex = [NSRegularExpression regularExpressionWithPattern:@"(\\d+)"

options:NSRegularExpressionCaseInsensitive
 error:&error];

NSArray *matches = [regex matchesInString:testString
 options:0
 range:NSMakeRange(0, testString.length)];

for (NSTextCheckingResult *matchResult in matches) {
 NSString* match = [testString substringWithRange:matchResult.range];
 NSLog(@"match: %@", match);
}

The output will be match: 42 and match: 8672.

Check whether a string matches a pattern

NSString *testString1 = @"(555) 123-5678";
NSString *testString2 = @"not a phone number";

NSError *error = nil;
NSRegularExpression *regex = [NSRegularExpression regularExpressionWithPattern:@"^\\(\\d{3}\\)
\\d{3}\\-\\d{4}$"

options:NSRegularExpressionCaseInsensitive error:&error];

NSInteger result1 = [regex numberOfMatchesInString:testString1 options:0 range:NSMakeRange(0,
testString1.length)];
NSInteger result2 = [regex numberOfMatchesInString:testString2 options:0 range:NSMakeRange(0,
testString2.length)];

NSLog(@"Is string 1 a phone number? %@", result1 > 0 ? @"YES" : @"NO");
NSLog(@"Is string 2 a phone number? %@", result2 > 0 ? @"YES" : @"NO");

https://riptutorial.com/ 102

The output will show that the first string is a phone number and the second one isn't.

Read NSRegularExpression online: https://riptutorial.com/objective-
c/topic/2484/nsregularexpression

https://riptutorial.com/ 103

https://riptutorial.com/objective-c/topic/2484/nsregularexpression
https://riptutorial.com/objective-c/topic/2484/nsregularexpression

Chapter 37: NSSortDescriptor

Examples

Sorted by combinations of NSSortDescriptor

NSArray *aryFName = @[@"Alice", @"Bob", @"Charlie", @"Quentin"];
NSArray *aryLName = @[@"Smith", @"Jones", @"Smith", @"Alberts"];
NSArray *aryAge = @[@24, @27, @33, @31];

//Create a Custom class with properties for firstName & lastName of type NSString *,
//and age, which is an NSUInteger.

NSMutableArray *aryPerson = [NSMutableArray array];
[firstNames enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop) {
 Person *person = [[Person alloc] init];
 person.firstName = [aryFName objectAtIndex:idx];
 person.lastName = [aryLName objectAtIndex:idx];
 person.age = [aryAge objectAtIndex:idx];
 [aryPerson addObject:person];
}];

NSSortDescriptor *firstNameSortDescriptor = [NSSortDescriptor
sortDescriptorWithKey:@"firstName"
 ascending:YES
 selector:@selector(localizedStandardCompare:)];

NSSortDescriptor *lastNameSortDescriptor = [NSSortDescriptor sortDescriptorWithKey:@"lastName"
 ascending:YES
 selector:@selector(localizedStandardCompare:)];

NSSortDescriptor *ageSortDescriptor = [NSSortDescriptor sortDescriptorWithKey:@"age"
 ascending:NO];

NSLog(@"By age: %@", [aryPerson sortedArrayUsingDescriptors:@[ageSortDescriptor]]);
// "Charlie Smith", "Quentin Alberts", "Bob Jones", "Alice Smith"

NSLog(@"By first name: %@", [aryPerson
sortedArrayUsingDescriptors:@[firstNameSortDescriptor]]);
// "Alice Smith", "Bob Jones", "Charlie Smith", "Quentin Alberts"

NSLog(@"By last name, first name: %@", [aryPerson
sortedArrayUsingDescriptors:@[lastNameSortDescriptor, firstNameSortDescriptor]]);
// "Quentin Alberts", "Bob Jones", "Alice Smith", "Charlie Smith"

Read NSSortDescriptor online: https://riptutorial.com/objective-c/topic/5833/nssortdescriptor

https://riptutorial.com/ 104

https://riptutorial.com/objective-c/topic/5833/nssortdescriptor

Chapter 38: NSString

Introduction

The NSString class is a part of Foundation framework to work with strings (series of characters). It
also includes methods for comparing, searching and modifying strings.

Remarks

For nesting various types of objects and data-types into NSStrings refer to: Objective-C, Format
Specifiers

Examples

Creation

Simple:

NSString *newString = @"My String";

From multiple strings:

NSString *stringOne = @"Hello";
NSString *stringTwo = @"world";
NSString *newString = [NSString stringWithFormat:@"My message: %@ %@",
 stringOne, stringTwo];

Using Mutable String

NSString *stringOne = @"Hello";
NSString *stringTwo = @"World";
NSMutableString *mutableString = [NSMutableString new];
[mutableString appendString:stringOne];
[mutableString appendString:stringTwo];

From NSData:

When initializing from NSData, an explicit encoding must be provided as NSString is not able to
guess how characters are represented in the raw data stream. The most common encoding
nowadays is UTF-8, which is even a requirement for certain data like JSON.

Avoid using +[NSString stringWithUTF8String:] since it expects an explicitly NULL-terminated C-
string, which -[NSData bytes] does not provide.

NSString *newString = [[NSString alloc] initWithData:myData encoding:NSUTF8StringEncoding];

https://riptutorial.com/ 105

http://www.riptutorial.com/objective-c/topic/9048/format-specifiers
http://www.riptutorial.com/objective-c/topic/9048/format-specifiers

From NSArray:

NSArray *myArray = [NSArray arrayWithObjects:@"Apple", @"Banana", @"Strawberry", @"Kiwi",
nil];
NSString *newString = [myArray componentsJoinedByString:@" "];

String Length

NSString has a length property to get the number of characters.

NSString *string = @"example";
NSUInteger length = string.length; // length equals 7

As in the Splitting Example, keep in mind that NSString uses UTF-16 to represent characters. The
length is actually just the number of UTF-16 code units. This can differ from what the user
perceives as characters.

Here are some cases that might be surprising:

@"é".length == 1 // LATIN SMALL LETTER E WITH ACUTE (U+00E9)
@"é".length == 2 // LATIN SMALL LETTER E (U+0065) + COMBINING ACUTE ACCENT (U+0301)
@"❤�".length == 2 // HEAVY BLACK HEART (U+2764) + VARIATION SELECTOR-16 (U+FE0F)
@"��".length == 4 // REGIONAL INDICATOR SYMBOL LETTER I (U+1F1EE) + REGIONAL INDICATOR SYMBOL
LETTER T (U+1F1F9)

In order to get the number of user-perceived characters, known technically as "grapheme clusters
", you must iterate over the string with -enumerateSubstringsInRange:options:usingBlock: and keep a
count. This is demonstrated in an answer by Nikolai Ruhe on Stack Overflow.

Changing Case

To convert a String to uppercase, use uppercaseString:

NSString *myString = @"Emphasize this";
NSLog(@"%@", [myString uppercaseString]; // @"EMPHASIZE THIS"

To convert a String to lowercase, use lowercaseString:

NSString *myString = @"NORMALIZE this";
NSLog(@"%@", [myString lowercaseString]; // @"normalize this"

To capitalize the first letter character of each word in a string, use capitalizedString:

NSString *myString = @"firstname lastname";
NSLog(@"%@", [myString capitalizedString]); // @"Firstname Lastname"

Comparing Strings

Strings are compared for equality using isEqualToString:

https://riptutorial.com/ 106

http://www.riptutorial.com/objective-c/example/3828/splitting
https://en.wikipedia.org/wiki/UTF-16
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Strings/Articles/stringsClusters.html
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/#//apple_ref/occ/instm/NSString/enumerateSubstringsInRange:options:usingBlock:
http://stackoverflow.com/a/33539320/603977

The == operator just tests for object identity and does not compare the logical values of objects, so
it can't be used:

NSString *stringOne = @"example";
NSString *stringTwo = [stringOne mutableCopy];

BOOL objectsAreIdentical = (stringOne == stringTwo); // NO
BOOL stringsAreEqual = [stringOne isEqualToString:stringTwo]; // YES

The expression (stringOne == stringTwo) tests to see if the memory addresses of the two strings
are the same, which is usually not what we want.

If the string variables can be nil you have to take care about this case as well:

BOOL equalValues = stringOne == stringTwo || [stringOne isEqualToString:stringTwo];

This condition returns YES when strings have equal values or both are nil.

To order two strings alphabetically, use compare:.

NSComparisonResult result = [firstString compare:secondString];

NSComparisonResult can be:

NSOrderedAscending: The first string comes before the second string.•
NSOrderedSame: The strings are equal.•
NSOrderedDescending: The second string comes before the first string.•

To compare two strings equality, use isEqualToString:.

BOOL result = [firstString isEqualToString:secondString];

To compare with the empty string (@""), better use length.

BOOL result = string.length == 0;

Joining an Array of Strings

To combine an NSArray of NSString into a new NSString:

NSArray *yourWords = @[@"Objective-C", @"is", @"just", @"awesome"];
NSString *sentence = [yourWords componentsJoinedByString:@" "];

// Sentence is now: @"Objective-C is just awesome"

Encoding and Decoding

// decode
NSString *string = [[NSString alloc] initWithData:utf8Data

https://riptutorial.com/ 107

 encoding:NSUTF8StringEncoding];

// encode
NSData *utf8Data = [string dataUsingEncoding:NSUTF8StringEncoding];

Some supported encodings are:

NSASCIIStringEncoding•
NSUTF8StringEncoding•
NSUTF16StringEncoding (== NSUnicodeStringEncoding)•

Note that utf8Data.bytes does not include a terminating null character, which is necessary for C
strings. If you need a C string, use UTF8String:

const char *cString = [string UTF8String];
printf("%s", cString);

Splitting

You can split a string into an array of parts, divided by a separator character.

NSString * yourString = @"Stack,Exchange,Network";
NSArray * yourWords = [yourString componentsSeparatedByString:@","];
// Output: @[@"Stack", @"Exchange", @"Network"]

If you need to split on a set of several different delimiters, use -[NSString
componentsSeparatedByCharactersInSet:].

NSString * yourString = @"Stack Overflow+Documentation/Objective-C";
NSArray * yourWords = [yourString componentsSeparatedByCharactersInSet:
 [NSCharacterSet characterSetWithCharactersInString:@"+/"]];
// Output: @[@"Stack Overflow", @"Documentation", @"Objective-C"]`

If you need to break a string into its individual characters, loop over the length of the string and
convert each character into a new string.

NSMutableArray * characters = [[NSMutableArray alloc] initWithCapacity:[yourString length]];
for (int i = 0; i < [myString length]; i++) {
 [characters addObject: [NSString stringWithFormat:@"%C",
 [yourString characterAtIndex:i]];
}

As in the Length Example, keep in mind that a "character" here is a UTF-16 code unit, not
necessarily what the user sees as a character. If you use this loop with @"��", you'll see that it's
split into four pieces.

In order to get a list of the user-perceived characters, use -
enumerateSubstringsInRange:options:usingBlock:.

https://riptutorial.com/ 108

http://www.riptutorial.com/objective-c/example/2882/string-length
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/#//apple_ref/occ/instm/NSString/enumerateSubstringsInRange:options:usingBlock:
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/#//apple_ref/occ/instm/NSString/enumerateSubstringsInRange:options:usingBlock:

NSMutableArray * characters = [NSMutableArray array];
[yourString enumerateSubstringsInRange:(NSRange){0, [yourString length]}
 options:NSStringEnumerationByComposedCharacterSequences
 usingBlock:^(NSString * substring, NSRange r, NSRange s, BOOL *
b){
 [characters addObject:substring];
 }];

This preserves grapheme clusters like the Italian flag as a single substring.

Searching for a Substring

To search if a String contains a substring, do the following:

NSString *myString = @"This is for checking substrings";
NSString *subString = @"checking";

BOOL doesContainSubstring = [myString containsString:subString]; // YES

If targeting iOS 7 or OS X 10.9 (or earlier):

BOOL doesContainSubstring = ([myString rangeOfString:subString].location != NSNotFound); //
YES

Working with C Strings

To convert NSString to const char use -[NSString UTF8String]:

NSString *myNSString = @"Some string";
const char *cString = [myNSString UTF8String];

You could also use -[NSString cStringUsingEncoding:] if your string is encoded with something
other than UTF-8.

For the reverse path use -[NSString stringWithUTF8String:]:

const *char cString = "Some string";
NSString *myNSString = [NSString stringWithUTF8String:cString];
myNSString = @(cString); // Equivalent to the above.

Once you have the const char *, you can work with it similarly to an array of chars:

printf("%c\n", cString[5]);

If you want to modify the string, make a copy:

char *cpy = calloc(strlen(cString)+1, 1);
strncpy(cpy, cString, strlen(cString));
// Do stuff with cpy
free(cpy);

https://riptutorial.com/ 109

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Strings/Articles/stringsClusters.html
http://developer.apple.com/mac/library/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/Reference/NSString.html#//apple_ref/occ/instm/NSString/UTF8String
http://developer.apple.com/mac/library/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/Reference/NSString.html#//apple_ref/occ/instm/NSString/cStringUsingEncoding:
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/index.html#//apple_ref/occ/clm/NSString/stringWithUTF8String:

Removing Leading and Trailing Whitespace

NSString *someString = @" Objective-C Language \n";
NSString *trimmedString = [someString stringByTrimmingCharactersInSet:[NSCharacterSet
whitespaceAndNewlineCharacterSet]];
//Output will be - "Objective-C Language"

Method stringByTrimmingCharactersInSet returns a new string made by removing from both ends
of the String characters contained in a given character set.

We can also just remove only whitespace or newline

// Removing only WhiteSpace
NSString *trimmedWhiteSpace = [someString stringByTrimmingCharactersInSet:[NSCharacterSet
whitespaceCharacterSet]];
//Output will be - "Objective-C Language \n"

// Removing only NewLine
NSString *trimmedNewLine = [someString stringByTrimmingCharactersInSet:[NSCharacterSet
newlineCharacterSet]];
//Output will be - " Objective-C Language "

Formatting

The NSString formatting supports all the format strings available on the printf ANSI-C function.
The only addition made by the language is the %@ symbol used for formatting all the Objective-C
objects.

It is possible to format integers

int myAge = 21;
NSString *formattedAge = [NSString stringWithFormat:@"I am %d years old", my_age];

Or any object subclassed from NSObject

NSDate *now = [NSDate date];
NSString *formattedDate = [NSString stringWithFormat:@"The time right now is: %@", now];

For a complete list of Format Specifiers, please see: Objective-C, Format Specifiers, Syntax

Reversing a NSString Objective-C

// myString is "hi"
NSMutableString *reversedString = [NSMutableString string];
NSInteger charIndex = [myString length];
while (charIndex > 0) {
 charIndex--;
 NSRange subStrRange = NSMakeRange(charIndex, 1);
 [reversedString appendString:[myString substringWithRange:subStrRange]];
}

https://riptutorial.com/ 110

http://www.riptutorial.com/objective-c/topic/9048/format-specifiers

NSLog(@"%@", reversedString); // outputs "ih"

Read NSString online: https://riptutorial.com/objective-c/topic/832/nsstring

https://riptutorial.com/ 111

https://riptutorial.com/objective-c/topic/832/nsstring

Chapter 39: NSTextAttachment

Syntax

NSTextAttachment *attachmentName = [[NSTextAttachment alloc] init];1.

Remarks

NSTextAttachment objects are used by the NSAttributedString class cluster as the values for
attachment attributes. The objects you create with this class are referred to as text attachment
objects, or when no confusion will result, as text attachments or merely attachments.

Examples

NSTextAttachment Example

NSTextAttachment *attachment = [[NSTextAttachment alloc] init];
attachment.image = [UIImage imageNamed:@"imageName"];
attachment.bounds = CGRectMake(0, 0, 35, 35);
NSAttributedString *attachmentString = [NSAttributedString
attributedStringWithAttachment:attachment];

Read NSTextAttachment online: https://riptutorial.com/objective-c/topic/7143/nstextattachment

https://riptutorial.com/ 112

https://riptutorial.com/objective-c/topic/7143/nstextattachment

Chapter 40: NSTimer

Examples

Creating a Timer

This will create a timer to call the doSomething method on self in 5.0 seconds.

[NSTimer scheduledTimerWithTimeInterval:5.0
 target:self
 selector:@selector(doSomething)
 userInfo:nil
 repeats:NO];

Setting the repeats parameter to false/NO indicates that we want the timer to fire only once. If we
set this to true/YES, it would fire every five seconds until manually invalidated.

Invalidating a timer

[timer invalidate];
timer = nil;

This will stop the timer from firing. Must be called from the thread the timer was created in, see
Apple's notes:

You must send this message from the thread on which the timer was installed. If you
send this message from another thread, the input source associated with the timer may
not be removed from its run loop, which could prevent the thread from exiting properly.

Setting nil will help you next to check whether it's running or not.

if(timer) {
 [timer invalidate];
 timer = nil;
}

//Now set a timer again.

Manually firing a timer

[timer fire];

Calling the fire method causes an NSTimer to perform the task it would have usually performed
on a schedule.

In a non-repeating timer, this will automatically invalidate the timer. That is, calling fire before
the time interval is up will result in only one invocation.

https://riptutorial.com/ 113

https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSTimer_Class/#//apple_ref/occ/instm/NSTimer/invalidate

In a repeating timer, this will simply invoke the action without interrupting the usual schedule.

Storing information in the Timer

When creating a timer, you can set the userInfo parameter to include information that you want to
pass to the function you call with the timer.

By taking a timer as a parameter in said function, you can access the userInfo property.

NSDictionary *dictionary = @{
 @"Message" : @"Hello, world!"
 }; //this dictionary contains a message
[NSTimer scheduledTimerWithTimeInterval:5.0
 target:self
 selector:@selector(doSomething)
 userInfo:dictionary
 repeats:NO]; //the timer contains the dictionary and later calls the function

...

- (void) doSomething:(NSTimer*)timer{
 //the function retrieves the message from the timer
 NSLog("%@", timer.userInfo["Message"]);
}

Read NSTimer online: https://riptutorial.com/objective-c/topic/3773/nstimer

https://riptutorial.com/ 114

https://riptutorial.com/objective-c/topic/3773/nstimer

Chapter 41: NSURL

Examples

Create

From NSString:

NSString *urlString = @"https://www.stackoverflow.com";
NSURL *myUrl = [NSURL URLWithString: urlString];

You can also use the following methods:

- initWithString:
+ URLWithString:relativeToURL:
- initWithString:relativeToURL:
+ fileURLWithPath:isDirectory:
- initFileURLWithPath:isDirectory:
+ fileURLWithPath:
- initFileURLWithPath:
 Designated Initializer
+ fileURLWithPathComponents:
+ URLByResolvingAliasFileAtURL:options:error:
+ URLByResolvingBookmarkData:options:relativeToURL:bookmarkDataIsStale:error:
- initByResolvingBookmarkData:options:relativeToURL:bookmarkDataIsStale:error:
+ fileURLWithFileSystemRepresentation:isDirectory:relativeToURL:
- getFileSystemRepresentation:maxLength:
- initFileURLWithFileSystemRepresentation:isDirectory:relativeToURL:

Compare NSURL

NSString *urlString = @"https://www.stackoverflow.com";

NSURL *myUrl = [NSURL URLWithString: urlString];
NSURL *myUrl2 = [NSURL URLWithString: urlString];

if ([myUrl isEqual:myUrl2]) return YES;

Modifying and Converting a File URL with removing and appending path

1. URLByDeletingPathExtension:

If the receiver represents the root path, this property contains a copy of the original URL. If the
URL has multiple path extensions, only the last one is removed.

2. URLByAppendingPathExtension:

Returns a new URL made by appending a path extension to the original URL.

Example:

https://riptutorial.com/ 115

 NSUInteger count = 0;
 NSString *filePath = nil;
 do {
 NSString *extension = (NSString *)UTTypeCopyPreferredTagWithClass((
CFStringRef)AVFileTypeQuickTimeMovie, kUTTagClassFilenameExtension);
 NSString *fileNameNoExtension = [[asset.defaultRepresentation.url
URLByDeletingPathExtension] lastPathComponent];//Delete is used
 NSString *fileName = [NSString stringWithFormat:@"%@-%@-%u",fileNameNoExtension ,
AVAssetExportPresetLowQuality, count];
 filePath = NSTemporaryDirectory();
 filePath = [filePath stringByAppendingPathComponent:fileName];//Appending is used
 filePath = [filePath stringByAppendingPathExtension:extension];
 count++;

 } while ([[NSFileManager defaultManager] fileExistsAtPath:filePath]);

 NSURL *outputURL = [NSURL fileURLWithPath:filePath];

Read NSURL online: https://riptutorial.com/objective-c/topic/1187/nsurl

https://riptutorial.com/ 116

https://riptutorial.com/objective-c/topic/1187/nsurl

Chapter 42: NSUrl send a post request

Examples

Simple POST request

// Create the request.
NSMutableURLRequest *request = [NSMutableURLRequest requestWithURL:[NSURL
URLWithString:@"http://google.com"]];

// Specify that it will be a POST request
request.HTTPMethod = @"POST";

// This is how we set header fields
[request setValue:@"application/xml; charset=utf-8" forHTTPHeaderField:@"Content-Type"];

// Convert your data and set your request's HTTPBody property
NSString *stringData = @"some data";
NSData *requestBodyData = [stringData dataUsingEncoding:NSUTF8StringEncoding];
request.HTTPBody = requestBodyData;

// Create url connection and fire request
NSURLConnection *conn = [[NSURLConnection alloc] initWithRequest:request delegate:self];

Simple Post Request With Timeout

// Create the request.
NSMutableURLRequest *request = [NSMutableURLRequest requestWithURL:[NSURL
URLWithString:@"http://google.com"]];

// Specify that it will be a POST request
request.HTTPMethod = @"POST";

// Setting a timeout
request.timeoutInterval = 20.0;
// This is how we set header fields
[request setValue:@"application/xml; charset=utf-8" forHTTPHeaderField:@"Content-Type"];

// Convert your data and set your request's HTTPBody property
NSString *stringData = @"some data";
NSData *requestBodyData = [stringData dataUsingEncoding:NSUTF8StringEncoding];
request.HTTPBody = requestBodyData;

// Create url connection and fire request
NSURLConnection *conn = [[NSURLConnection alloc] initWithRequest:request delegate:self];

Read NSUrl send a post request online: https://riptutorial.com/objective-c/topic/7243/nsurl-send-a-
post-request

https://riptutorial.com/ 117

https://riptutorial.com/objective-c/topic/7243/nsurl-send-a-post-request
https://riptutorial.com/objective-c/topic/7243/nsurl-send-a-post-request

Chapter 43: NSUserDefaults

Examples

Simple example

For example:

FOR SAVING:

 NSUserDefaults *prefs = [NSUserDefaults standardUserDefaults];

 // saving an NSString
 [prefs setObject:txtUsername.text forKey:@"userName"];
 [prefs setObject:txtPassword.text forKey:@"password"];

 [prefs synchronize];

FOR RETRIEVING

 NSUserDefaults *prefs = [NSUserDefaults standardUserDefaults];

 // getting an NSString
 NSString *savedUsername = [prefs stringForKey:@"userName"];
 NSString *savedPassword = [prefs stringForKey:@"password"];

Clear NSUserDefaults

NSString *appDomain = [[NSBundle mainBundle] bundleIdentifier];
[[NSUserDefaults standardUserDefaults] removePersistentDomainForName:appDomain];

Read NSUserDefaults online: https://riptutorial.com/objective-c/topic/10713/nsuserdefaults

https://riptutorial.com/ 118

https://riptutorial.com/objective-c/topic/10713/nsuserdefaults

Chapter 44: Predefined Macros

Introduction

ANSI C defines a number of macros. Although each one is available for your use in programming,
the predefined macros should not be directly modified.

Syntax

DATE The current date as a character literal in "MMM DD YYYY" format1.
TIME The current time as a character literal in "HH:MM:SS" format2.
FILE This contains the current filename as a string literal.3.
LINE This contains the current line number as a decimal constant.4.
STDC Defined as 1 when the compiler complies with the ANSI standard.5.

Examples

Predefined Macros

#import <Foundation/Foundation.h>

int main()
{
 NSLog(@"File :%s\n", __FILE__);
 NSLog(@"Date :%s\n", __DATE__);
 NSLog(@"Time :%s\n", __TIME__);
 NSLog(@"Line :%d\n", __LINE__);
 NSLog(@"ANSI :%d\n", __STDC__);

 return 0;
}

When the above code in a file main.m is compiled and executed, it produces the following
result:

2013-09-14 04:46:14.859 demo[20683] File :main.m
2013-09-14 04:46:14.859 demo[20683] Date :Sep 14 2013
2013-09-14 04:46:14.859 demo[20683] Time :04:46:14
2013-09-14 04:46:14.859 demo[20683] Line :8
2013-09-14 04:46:14.859 demo[20683] ANSI :1

Read Predefined Macros online: https://riptutorial.com/objective-c/topic/8254/predefined-macros

https://riptutorial.com/ 119

https://riptutorial.com/objective-c/topic/8254/predefined-macros

Chapter 45: Properties

Syntax

@property (optional_attributes, ...) type identifier;•
@synthesize identifier = optional_backing_ivar;•
@dynamic identifier;•

Parameters

Attribute Description

atomic Implicit. Enables synchronization in synthesized accessor methods.

nonatomic Disables synchronization in the synthesized accessor methods.

readwrite Implicit. Synthesizes getter, setter and backing ivar.

readonly
Synthesizes only the getter method and backing ivar, which can be
assigned directly.

getter=name Specifies the name of getter method, implicit is propertyName.

setter=name
Specifies the name of setter method, implicity is setPropertyName:. Colon :
must be a part of the name.

strong
Implicit for objects under ARC. The backing ivar is synthesized using
__strong, which prevents deallocation of referenced object.

retain Synonym for strong.

copy
Same as strong, but the synthesized setter also calls -copy on the new
value.

unsafe_unretained
Implicit, except for objects under ARC. The backing ivar is synthesized
using __unsafe_unretained, which (for obejcts) results in dangling pointer
once the referenced object deallocates.

assign Synonym for unsafe_unretained. Suitable for non-object types.

weak
Backing ivar is synthesized using __weak, so the value will be nullified
once the referenced object is deallocated.

class
Property accessors are synthesized as class methods, instead of instance
methods. No backing storage is synthesized.

nullable The property accepts nil values. Mainly used for Swift bridging.

https://riptutorial.com/ 120

Attribute Description

nonnull The property doesn’t accept nil values. Mainly used for Swift bridging.

null_resettable
The property accepts nil values in setter, but never returns nil values
from getter. Your custom implementation of getter or setter must ensure
this behavior. Mainly used for Swift bridging.

null_unspecified
Implicit. The property doesn’t specify handling of nil values. Mainly used
for Swift bridging.

Examples

What are properties?

Here is an example class which has a couple of instance variables, without using properties:

@interface TestClass : NSObject {
 NSString *_someString;
 int _someInt;
}

-(NSString *)someString;
-(void)setSomeString:(NSString *)newString;

-(int)someInt;
-(void)setSomeInt:(NSString *)newInt;

@end

@implementation TestClass

-(NSString *)someString {
 return _someString;
}

-(void)setSomeString:(NSString *)newString {
 _someString = newString;
}

-(int)someInt {
 return _someInt;
}

-(void)setSomeInt:(int)newInt {
 _someInt = newInt;
}

@end

This is quite a lot of boilerplate code to create a simple instance variable. You have to create the
instance variable & create accessor methods which do nothing except set or return the instance
variable. So with Objective-C 2.0, Apple introduced properties, which auto-generate some or all of

https://riptutorial.com/ 121

the boilerplate code.

Here is the above class rewritten with properties:

@interface TestClass

@property NSString *someString;
@property int someInt;

@end

@implementation testClass

@end

A property is an instance variable paired with auto-generated getters and setters. For a property
called someString, the getter and setter are called someString and setSomeString: respectively. The
name of the instance variable is, by default, the name of the property prefixed with an underscore
(so the instance variable for someString is called _someString, but this can be overridden with an
@synthesize directive in the @implementation section:

@synthesize someString=foo; //names the instance variable "foo"
@synthesize someString; //names it "someString"
@synthesize someString=_someString; //names it "_someString"; the default if
 //there is no @synthesize directive

Properties can be accessed by calling the getters and setters:

[testObject setSomeString:@"Foo"];
NSLog(@"someInt is %d", [testObject someInt]);

They can also be accessed using dot notation:

testObject.someString = @"Foo";
NSLog(@"someInt is %d", testObject.someInt);

Custom getters and setters

The default property getters and setters can be overridden:

@interface TestClass

@property NSString *someString;

@end

@implementation TestClass

// override the setter to print a message
- (void)setSomeString:(NSString *)newString {
 NSLog(@"Setting someString to %@", newString);
 // Make sure to access the ivar (default is the property name with a _

https://riptutorial.com/ 122

 // at the beginning) because calling self.someString would call the same
 // method again leading to an infinite recursion
 _someString = newString;
}

- (void)doSomething {
 // The next line will call the setSomeString: method
 self.someString = @"Test";
}

@end

This can be useful to provide, for example, lazy initialization (by overriding the getter to set the
initial value if it has not yet been set):

- (NSString *)someString {
 if (_someString == nil) {
 _someString = [self getInitialValueForSomeString];
 }
 return _someString;
}

You can also make a property that computes its value in the getter:

@interface Circle : NSObject

@property CGPoint origin;
@property CGFloat radius;
@property (readonly) CGFloat area;

@end

@implementation Circle

- (CGFloat)area {
 return M_PI * pow(self.radius, 2);
}

@end

Properties that cause updates

This object, Shape has a property image that depends on numberOfSides and sideWidth. If either one
of them is set, than the image has to be recalculated. But recalculation is presumably long, and
only needs to be done once if both properties are set, so the Shape provides a way to set both
properties and only recalculate once. This is done by setting the property ivars directly.

In Shape.h

@interface Shape {
 NSUInteger numberOfSides;
 CGFloat sideWidth;

 UIImage * image;
}

https://riptutorial.com/ 123

// Initializer that takes initial values for the properties.
- (instancetype)initWithNumberOfSides:(NSUInteger)numberOfSides withWidth:(CGFloat)width;

// Method that allows to set both properties in once call.
// This is useful if setting these properties has expensive side-effects.
// Using a method to set both values at once allows you to have the side-
// effect executed only once.
- (void)setNumberOfSides:(NSUInteger)numberOfSides andWidth:(CGFloat)width;

// Properties using default attributes.
@property NSUInteger numberOfSides;
@property CGFloat sideWidth;

// Property using explicit attributes.
@property(strong, readonly) UIImage * image;

@end

In Shape.m

@implementation AnObject

// The variable name of a property that is auto-generated by the compiler
// defaults to being the property name prefixed with an underscore, for
// example "_propertyName". You can change this default variable name using
// the following statement:
// @synthesize propertyName = customVariableName;

- (id)initWithNumberOfSides:(NSUInteger)numberOfSides withWidth:(CGFloat)width {
 if ((self = [self init])) {
 [self setNumberOfSides:numberOfSides andWidth:width];
 }

 return self;
}

- (void)setNumberOfSides:(NSUInteger)numberOfSides {
 _numberOfSides = numberOfSides;

 [self updateImage];
}

- (void)setSideWidth:(CGFloat)sideWidth {
 _sideWidth = sideWidth;

 [self updateImage];
}

- (void)setNumberOfSides:(NSUInteger)numberOfSides andWidth:(CGFloat)sideWidth {
 _numberOfSides = numberOfSides;
 _sideWidth = sideWidth;

 [self updateImage];
}

// Method that does some post-processing once either of the properties has
// been updated.
- (void)updateImage {
 ...

https://riptutorial.com/ 124

}

@end

When properties are assigned to (using object.property = value), the setter method setProperty: is
called. This setter, even if provided by @synthesize, can be overridden, as it is in this case for
numberOfSides and sideWidth. However, if you set an property's ivar directly (through property if the
object is self, or object->property), it doesn't call the getter or setter, allowing you to do things like
multiple property sets that only call one update or bypass side-effects caused by the setter.

Read Properties online: https://riptutorial.com/objective-c/topic/1818/properties

https://riptutorial.com/ 125

https://riptutorial.com/objective-c/topic/1818/properties

Chapter 46: Protocols

Examples

Basic Protocol Definition

Defining a new protocol:

@protocol NewProtocol

- (void)protocolMethod:(id)argument;

- (id)anotherMethod;

@end

Optional and required methods

By default, all the methods declared in a protocol are required. This means that any class that
conforms to this protocol must implement those methods.

It is also possible to declare optional methods. These method can be implemented only if needed.

You mark optional methods with the @optional directive.

@protocol NewProtocol
- (void)protocolMethod:(id)argument;
@optional
- (id)anotherMethod;
@end

In this case, only anotherMethod is marked as optional; the methods without the @optional directive
are assumed to be required.

The @optional directive applies to methods that follow, until the end of the protocol definition or,
until another directive is found.

@protocol NewProtocol
- (void)protocolMethod:(id)argument;
@optional
- (id)anotherMethod;
- (void)andAnotherMethod:(id)argument;
@required
- (void)lastProtocolMethod;
@end

This last example defines a protocol with two optional methods and two required methods.

Conforming to Protocols

https://riptutorial.com/ 126

The following syntax indicate that a class adopts a protocol, using angle brackets.

@interface NewClass : NSObject <NewProtocol>
...
@end

This means that any instance of NewClass will respond to methods declared in its interface but
also it will provide an implementation for all the required methods of NewProtocol.

It is also possible for a class to conform to multiple protocols, by separating them with comma.

@interface NewClass : NSObject <NewProtocol, AnotherProtocol, MyProtocol>
...
@end

Like when conforming to a single protocol, the class must implement each required method of
each protocols, and each optional method you choose to implement.

Forward Declarations

It's possible to declare protocol name without methods:

@protocol Person;

use it your code (class definition, etc):

@interface World : NSObject
@property (strong, nonatomic) NSArray<id<some>> *employees;
@end

and later define protocol's method somewhere in your code:

@protocol Person
- (NSString *)gender;
- (NSString *)name;
@end

It's useful when you don't need to know protocols details until you import that file with protocol
definition. So, your class header file stays clear and contains details of the class only.

Checking existance of optional method implementations

if ([object respondsToSelector:@selector(someOptionalMethodInProtocol:)])
{
 [object someOptionalMethodInProtocol:argument];
}

Check conforms Protocol

https://riptutorial.com/ 127

Returns a Boolean indicating if the class conform the protocol:

[MyClass conformsToProtocol:@protocol(MyProtocol)];

Read Protocols online: https://riptutorial.com/objective-c/topic/448/protocols

https://riptutorial.com/ 128

https://riptutorial.com/objective-c/topic/448/protocols

Chapter 47: Protocols and Delegates

Remarks

Protocols and Delegates are two related but different concept:

A Protocol is a interface a class can conforms to, meaning that class implements the listed
methods.

A Delegate is typically an anonymous object that conforms to a protocol.

The application of Delegate called Delegation is a design pattern.

At one end we have the concept of Inheritance which creates a tight coupling between the
subclass and its superclass whereas Delegation design pattern provides an alternative to avoid
this tight coupling using which we can create a much looser relationship based on anonymous
Delegate objects.

Examples

Implementation of Protocols and Delegation mechanism.

Suppose you have two views ViewA and ViewB

Instance of ViewB is created inside ViewA, so ViewA can send message to ViewB's instance, but for
the reverse to happen we need to implement delegation (so that using delegate ViewB's instance
could send message to ViewA)

Follow these steps to implement the delegation

In ViewB create protocol as

 @protocol ViewBDelegate

-(void) exampleDelegateMethod;

 @end

1.

Declare the delegate in the sender class

 @interface ViewB : UIView
 @property (nonatomic, weak) id< ViewBDelegate > delegate;
 @end

2.

Adopt the protocol in Class ViewA

@interfac ViewA: UIView < ViewBDelegate >

3.

https://riptutorial.com/ 129

Set the delegate

-(void) anyFunction
{
 // create Class ViewB's instance and set the delegate
 [viewB setDelegate:self];
}

4.

Implement the delegate method in class ViewA

-(void) exampleDelegateMethod
{
 // will be called by Class ViewB's instance
}

5.

Use the method in class ViewB to call the delegate method as

-(void) callDelegateMethod
{
 [delegate exampleDelegateMethod];
 //assuming the delegate is assigned otherwise error
}

6.

Read Protocols and Delegates online: https://riptutorial.com/objective-c/topic/7832/protocols-and-
delegates

https://riptutorial.com/ 130

https://riptutorial.com/objective-c/topic/7832/protocols-and-delegates
https://riptutorial.com/objective-c/topic/7832/protocols-and-delegates

Chapter 48: Random Integer

Examples

Basic Random Integer

The arc4random_uniform() function is the simplest way to get high-quality random integers. As per
the manual:

arc4random_uniform(upper_bound) will return a uniformly distributed random number
less than upper_bound.

arc4random_uniform() is recommended over constructions like ''arc4random() %
upper_bound'' as it avoids "modulo bias" when the upper bound is not a power of two.

uint32_t randomInteger = arc4random_uniform(5); // A random integer between 0 and 4

Random Integer within a Range

The following code demonstrates usage of arc4random_uniform() to generate a random integer
between 3 and 12:

uint32_t randomIntegerWithinRange = arc4random_uniform(10) + 3; // A random integer between 3
and 12

This works to create a range because arc4random_uniform(10) returns an integer between 0 and 9.
Adding 3 to this random integer produces a range between 0 + 3 and 9 + 3.

Read Random Integer online: https://riptutorial.com/objective-c/topic/1573/random-integer

https://riptutorial.com/ 131

https://riptutorial.com/objective-c/topic/1573/random-integer

Chapter 49: Singletons

Introduction

Just make sure you read this thread (What is so bad about singletons?) before using it.

Examples

Using Grand Central Dispatch (GCD)

GCD will guarantee that your singleton only gets instantiated once, even if called from multiple
threads. Insert this into any class for a singleton instance called shared.

+ (instancetype)shared {

 // Variable that will point to the singleton instance. The `static`
 // modifier makes it behave like a global variable: the value assigned
 // to it will "survive" the method call.
 static id _shared;

 static dispatch_once_t _onceToken;
 dispatch_once(&_onceToken, ^{

 // This block is only executed once, in a thread-safe way.
 // Create the instance and assign it to the static variable.
 _shared = [self new];
 });

 return _shared;
}

Creating Singleton class and also preventing it from having multiple
instances using alloc/init.

We can create Singleton class in such a way that developers are forced to used the shared
instance (singleton object) instead of creating their own instances.

@implementation MySingletonClass

+ (instancetype)sharedInstance
{
 static MySingletonClass *_sharedInstance = nil;
 static dispatch_once_t oncePredicate;
 dispatch_once(&oncePredicate, ^{
 _sharedInstance = [[self alloc] initClass];
 });

 return _sharedInstance;
}

-(instancetype)initClass

https://riptutorial.com/ 132

http://stackoverflow.com/questions/137975/what-is-so-bad-about-singletons

{
 self = [super init];
 if(self)
 {
 //Do any additional initialization if required
 }
 return self;
}

- (instancetype)init
{
 @throw [NSException exceptionWithName:@"Not designated initializer"
 reason:@"Use [MySingletonClass sharedInstance]"
 userInfo:nil];
 return nil;
}
@end

/*Following line will throw an exception
 with the Reason:"Use [MySingletonClass sharedInstance]"
 when tried to alloc/init directly instead of using sharedInstance */
MySingletonClass *mySingletonClass = [[MySingletonClass alloc] init];

Creating Singleton and also preventing it from having multiple instance using
alloc/init, new.

//MySingletonClass.h
@interface MYSingletonClass : NSObject

+ (instancetype)sharedInstance;

-(instancetype)init NS_UNAVAILABLE;

-(instancetype)new NS_UNAVAILABLE;

@end

//MySingletonClass.m

@implementation MySingletonClass

+ (instancetype)sharedInstance
{
 static MySingletonClass *_sharedInstance = nil;
 static dispatch_once_t oncePredicate;
 dispatch_once(&oncePredicate, ^{
 _sharedInstance = [[self alloc]init];
 });

 return _sharedInstance;
}
-(instancetype)init
{
 self = [super init];
 if(self)
 {
 //Do any additional initialization if required

https://riptutorial.com/ 133

 }
 return self;
}
@end

Read Singletons online: https://riptutorial.com/objective-c/topic/2834/singletons

https://riptutorial.com/ 134

https://riptutorial.com/objective-c/topic/2834/singletons

Chapter 50: Structs

Syntax

typedef struct { typeA propertyA; typeB propertyB; ... } StructName•

Remarks

In Objective C, you should almost always use an object instead of a struct. However, there are still
cases where using a struct is better, such as:

When you're going to be creating and destroying a lot of values of the (struct) type, so you
need good performance and small memory usage

•

Structs are faster to create and use because when calling a method on an object,
the method has to be determined at runtime

•

Structs take up less size because objects have an extra property isa, which holds
their class

•

When the value has only a couple of properties and a small total size (take CGSize; it has 2
floats which are 4 bytes each, so it can take up 8 bytes), and is going to be used a lot (ties in
with the first point)

•

When you could use unions or bitfields, and importantly, need the size saved by them
because you need small memory usage (ties in with the first point)

•

When you really want to store an array inside of the struct, since Objective-C objects can't
directly store C-arrays. However, note that you can still "indirectly" get an array in an
Objective-C object by making it a reference (i.e. type * in place of the C-array type[])

•

When you need to communicate with some other code, such as a library, that's coded in C;
structs are fully implemented in C but objects are not

•

Examples

CGPoint

One really good example of a struct is CGPoint; it's a simple value that represents a 2-dimensional
point. It has 2 properties, x and y, and can be written as

typedef struct {
 CGFloat x;
 CGFloat y;
} CGPoint;

If you used Objective-C for Mac or iOS app development before, you've almost certainly come
across CGPoint; CGPoints hold the position of pretty much everything on screen, from views and
controls to objects in a game to changes in a gradient. This means that CGPoints are used a lot.

https://riptutorial.com/ 135

http://www.riptutorial.com/c/topic/1119/structs
http://www.riptutorial.com/c/topic/1930/bit-fields

This is even more true with really performance-heavy games; these games tend to have a lot of
objects, and all of these objects need positions. These positions are often either CGPoints, or some
other type of struct that conveys a point (such as a 3-dimensional point for 3d games).

Points like CGPoint could easily be represented as objects, like

@interface CGPoint {
 CGFloat x;
 CGFloat y;
}

... //Point-related methods (e.g. add, isEqualToPoint, etc.)

@property(nonatomic, assign)CGFloat x;
@property(nonatomic, assign)CGFloat y;

@end

@implementation CGPoint

@synthesize x, y;

...

@end

However, if CGPoint was used in this way it would take a lot longer to create and manipulate points.
In smaller, faster programs this wouldn't really cause a difference, and in those cases it would be
OK or maybe even better to use object points. But in large programs where points are be used a
lot, using objects as points can really hurt performance, making the program slower, and also
waste memory, which could force the program to crash.

Defining a Structure and Accessing Structure Members

The format of the struct statement is this:

struct [structure tag]
{
 member definition;
 member definition;
 ...
 member definition;
} [one or more structure variables];

Example: declare the ThreeFloats structure:

 typedef struct {
 float x, y, z;
} ThreeFloats;

@interface MyClass
- (void)setThreeFloats:(ThreeFloats)threeFloats;
- (ThreeFloats)threeFloats;

https://riptutorial.com/ 136

@end

Sending an instance of MyClass the message valueForKey: with the parameter @"threeFloats"
will invoke the MyClass method threeFloats and return the result wrapped in an NSValue.

Read Structs online: https://riptutorial.com/objective-c/topic/3792/structs

https://riptutorial.com/ 137

https://riptutorial.com/objective-c/topic/3792/structs

Chapter 51: Subscripting

Examples

Subscripts with NSArray

Subscripts can be used to simplify retrieving and setting elements in an array. Given the following
array

NSArray *fruit = @[@"Apples", @"Bananas", @"Cherries"];

This line

[fruit objectAtIndex: 1];

Can be replaced by

fruit[1];

They can also be used to set an element in a mutable array.

NSMutableArray *fruit = [@[@"Apples", @"Bananas", @"Cherries"] mutableCopy];
fruit[1] = @"Blueberries";
NSLog(@"%@", fruit[1]); //Blueberries

If the index of the subscript equals the count of the array, the element will be appended to the
array.

Repeated subscripts may be used to access elements of nested arrays.

NSArray *fruit = @[@"Apples", @"Bananas", @"Cherries"];
NSArray *vegetables = @[@"Avocado", @"Beans", @"Carrots"];
NSArray *produce = @[fruit, vegetables];

NSLog(@"%@", produce[0][1]); //Bananas

Subscripts with NSDictionary

Subscripts can also be used with NSDictionary and NSMutableDictionary. The following code:

NSMutableDictionary *myDictionary = [@{@"Foo": @"Bar"} mutableCopy];
[myDictionary setObject:@"Baz" forKey:@"Foo"];
NSLog(@"%@", [myDictionary objectForKey:@"Foo"]); // Baz

Can be shortened to:

https://riptutorial.com/ 138

NSMutableDictionary *myDictionary = [@{@"Foo": @"Bar"} mutableCopy];
myDictionary[@"Foo"] = @"Baz";
NSLog(@"%@", myDictionary[@"Foo"]); // Baz

Custom Subscripting

You can add subscripting to your own classes by implementing the required methods.

For indexed subscripting (like arrays):

- (id)objectAtIndexedSubscript:(NSUInteger)idx
- (void)setObject:(id)obj atIndexedSubscript:(NSUInteger)idx

For keyed subscripting (like dictionaries):

- (id)objectForKeyedSubscript:(id)key
- (void)setObject:(id)obj forKeyedSubscript:(id <NSCopying>)key

Read Subscripting online: https://riptutorial.com/objective-c/topic/3825/subscripting

https://riptutorial.com/ 139

https://riptutorial.com/objective-c/topic/3825/subscripting

Chapter 52: Unit testing using Xcode

Remarks

Dependencies:

If application uses third party libraries or cocoa pods, then those libraries or pods are needed
to be install for test as well.

•

Test class (Test Suit) extends XCTestCase.•

Get brushed up before starting:

All test classes have two methods in common setUp & tearDown.•

setUp runs before every testcase & tearDown after every testcase.•

Test cases runs alphabetically.•

In Test Driven Development, it is good to create dummy test data first.•

Test case methods starts with "test" keyword.•

Test methods accept no parameters & return no value.•

Appendix:

There are several other methods for comparing the expected result & actual result out of an
operation. Some of those methods are listed below:

XCTAssertNil(expression, comment) generates a failure if expression != nil.•
XCTAssertNotNil(expression, comment) generates a failure if expression = nil.•
XCTAssert(expression, comment) generates a failure if expression == false.•
XCTAssertTrue(expression, comment) generates a failure if expression == false.•
XCTAssertFalse(expression, comment) generates a failure if expression != false.•
XCTAssertEqualObjects(expression1, expression2, comment) generates a failure if
expression1 is not equal to expression2.

•

XCTAssertEqualObjects(expression1, expression2, comment) generates a failure if
expression1 is equal to expression2.

•

XCTAssertNotEqual(expression1, expression2, comment) generates a failure if expression1
== expression2.

•

XCTAssertEqual(expression1, expression2, comment) generates a failure if expression1 !=
expression2.

•

XCTAssertGreaterThanOrEqual(expression1, expression2, comment) generates a failure
when (expression1 < expression2).

•

Examples

https://riptutorial.com/ 140

Testing a block of code or some method:

Import the class, which contains the method to be tested.•
Perform the operation with dummy data.•
Now compare the result of operation with expected result.•

- (void)testReverseString{
NSString *originalString = @"hi_my_name_is_siddharth";
NSString *reversedString = [self.someObject reverseString:originalString];
NSString *expectedReversedString = @"htrahddis_si_eman_ym_ih";
XCTAssertEqualObjects(expectedReversedString, reversedString, @"The reversed string did not
match the expected reverse");
}

Feed the dummy data to the method
under test if required & then compare
the expected & actual results.

Testing asynchronous block of code:

- (void)testDoSomethingThatTakesSomeTime{
XCTestExpectation *completionExpectation = [self expectationWithDescription:@"Long method"];
[self.someObject doSomethingThatTakesSomeTimesWithCompletionBlock:^(NSString *result) {
 XCTAssertEqualObjects(@"result", result, @"Result was not correct!");
 [completionExpectation fulfill];
}];
[self waitForExpectationsWithTimeout:5.0 handler:nil];
}

Feed the dummy data to the method under test if required.•
The test will pause here, running the run loop, until the timeout is hit or all expectations are
fulfilled.

•

Timeout is the expected time for the asynchronous block to response.•

Measuring Performance of a block of code:

1. For Synchronous methods :

- (void)testPerformanceReverseString {
 NSString *originalString = @"hi_my_name_is_siddharth";
 [self measureBlock:^{
 [self.someObject reverseString:originalString];
 }];
}

2. For Asynchronous methods :

https://riptutorial.com/ 141

- (void)testPerformanceOfAsynchronousBlock {
 [self measureMetrics:@[XCTPerformanceMetric_WallClockTime] automaticallyStartMeasuring:YES
forBlock:^{

 XCTestExpectation *expectation = [self
expectationWithDescription:@"performanceTestWithResponse"];

 [self.someObject doSomethingThatTakesSomeTimesWithCompletionBlock:^(NSString *result) {
 [expectation fulfill];
 }];
 [self waitForExpectationsWithTimeout:5.0 handler:^(NSError *error) {
 }];
}];
}

These performance measure block gets executed for 10 times consecutively & then the
average is calculated, & on the basis of this average performance result gets created &
baseline is accepted for further evaluation.

•

The performance result is compared with the previous test results & baseline with a
customizable max standard deviation.

•

Running Test Suits:

Run all tests by choosing Product > Test. Click the Test Navigator icon to view the status and
results of the tests. You can add a test target to a project (or add a class to a test) by clicking the
Add (plus) button in the bottom-left corner of the test navigator. To view the source code for a
particular test, select it from the test list. The file opens in the source code editor.

Note:

Make sure that include unit test case box is checked when creating a new project as shown below:

https://riptutorial.com/ 142

Read Unit testing using Xcode online: https://riptutorial.com/objective-c/topic/5160/unit-testing-
using-xcode

https://riptutorial.com/ 143

http://i.stack.imgur.com/uIjto.png
https://riptutorial.com/objective-c/topic/5160/unit-testing-using-xcode
https://riptutorial.com/objective-c/topic/5160/unit-testing-using-xcode

Chapter 53: XML parsing

Examples

XML Parsing

We will parse the highlighted tag data through NSXMLParser

We have declared few properties as follows

@property(nonatomic, strong)NSMutableArray *results;
@property(nonatomic, strong)NSMutableString *parsedString;
@property(nonatomic, strong)NSXMLParser *xmlParser;

//Fetch xml data
NSURLSession *session=[NSURLSession sessionWithConfiguration:[NSURLSessionConfiguration

https://riptutorial.com/ 144

https://i.stack.imgur.com/o5Rcj.png

defaultSessionConfiguration]];

NSURLSessionDataTask *task=[session dataTaskWithRequest:[NSURLRequest requestWithURL:[NSURL
URLWithString:YOUR_XMLURL]] completionHandler:^(NSData * _Nullable data, NSURLResponse *
_Nullable response, NSError * _Nullable error) {

self.xmlParser=[[NSXMLParser alloc] initWithData:data];
self.xmlParser.delegate=self;
if([self.xmlParser parse]){
 //If parsing completed successfully

 NSLog(@"%@",self.results);

}

}];

[task resume];

Then we define the NSXMLParserDelegate

- (void)parser:(NSXMLParser *)parser didStartElement:(NSString *)elementName
namespaceURI:(nullable NSString *)namespaceURI qualifiedName:(nullable NSString *)qName
attributes:(NSDictionary<NSString *, NSString *> *)attributeDict{

 if([elementName isEqualToString:@"GeocodeResponse"]){
 self.results=[[NSMutableArray alloc] init];
 }

 if([elementName isEqualToString:@"formatted_address"]){
 self.parsedString=[[NSMutableString alloc] init];
 }

}

- (void)parser:(NSXMLParser *)parser foundCharacters:(NSString *)string{

 if(self.parsedString){
 [self.parsedString appendString:[string
stringByTrimmingCharactersInSet:[NSCharacterSet whitespaceAndNewlineCharacterSet]]];
 }

}

- (void)parser:(NSXMLParser *)parser didEndElement:(NSString *)elementName
namespaceURI:(nullable NSString *)namespaceURI qualifiedName:(nullable NSString *)qName{

 if([elementName isEqualToString:@"formatted_address"]){
 [self.results addObject:self.parsedString];

 self.parsedString=nil;
 }

}

Read XML parsing online: https://riptutorial.com/objective-c/topic/8048/xml-parsing

https://riptutorial.com/ 145

https://riptutorial.com/objective-c/topic/8048/xml-parsing

Credits

S.
No

Chapters Contributors

1
Getting started with
Objective-C
Language

Ali Riahipour, Community, connor, insys, J F, Jeff Wolski, Josh
Brown, Josh Caswell, Niraj, StrAbZ, tbodt

2 Basic Data Types
connor, Josh Caswell, Muhammad Zohaib Ehsan, ok404,
Sietse, sudo, Sujania, user459460

3 Blocks
BB9z, connor, danh, Fantini, insys, J F, Jeff Wolski, Johannes
Fahrenkrug, Josh Caswell, Kote, Lito, Oliver Atkinson, Seán
Labastille, tbodt, Yevhen Dubinin

4
BOOL / bool /
Boolean /
NSCFBoolean

Md. Ibrahim Hassan, user459460

5 Categories
atroutt, DarkDust, Ekta Padaliya, Faran Ghani, Håvard, insys,
Mykola Denysyuk, Orlando, Paulo Fierro, phi, WMios

6 Classes and Objects
Byron, DarkDust, HCarrasko, Jens Meder, Josh Caswell,
NSNoob, ok404, RamenChef, tbodt

7 Continue and Break! Md. Ibrahim Hassan

8
Declare class method
and instance method

Ruby, user459460

9 Enums
Daniel Bocksteger, DavidA, Doc, Doron Yakovlev-Golani,
lostInTransit, Mikhail Larionov, user459460

10 Error Handling Doc, Sujania

11 Fast Enumeration ff10, shuvo

12 Format-Specifiers Albert Renshaw

13
Grand Central
Dispatch

user459460

14 Inheritance BKO

15
Key Value Coding /
Key Value Observing

Cory Wilhite, insys, Jason McDermott, Nirav Bhatt,
ThatsJustCheesy, WMios

https://riptutorial.com/ 146

https://riptutorial.com/contributor/2781107/ali-riahipour
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/754604/connor
https://riptutorial.com/contributor/2311023/insys
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/731773/jeff-wolski
https://riptutorial.com/contributor/2030/josh-brown
https://riptutorial.com/contributor/2030/josh-brown
https://riptutorial.com/contributor/603977/josh-caswell
https://riptutorial.com/contributor/426335/niraj
https://riptutorial.com/contributor/43143/strabz
https://riptutorial.com/contributor/1455016/tbodt
https://riptutorial.com/contributor/754604/connor
https://riptutorial.com/contributor/603977/josh-caswell
https://riptutorial.com/contributor/4283799/muhammad-zohaib-ehsan
https://riptutorial.com/contributor/5240391/ok404
https://riptutorial.com/contributor/1328421/sietse
https://riptutorial.com/contributor/6714194/sudo
https://riptutorial.com/contributor/4435670/sujania
https://riptutorial.com/contributor/6997513/user459460
https://riptutorial.com/contributor/945906/bb9z
https://riptutorial.com/contributor/754604/connor
https://riptutorial.com/contributor/294949/danh
https://riptutorial.com/contributor/2091315/fantini
https://riptutorial.com/contributor/2311023/insys
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/731773/jeff-wolski
https://riptutorial.com/contributor/171933/johannes-fahrenkrug
https://riptutorial.com/contributor/171933/johannes-fahrenkrug
https://riptutorial.com/contributor/603977/josh-caswell
https://riptutorial.com/contributor/187668/kote
https://riptutorial.com/contributor/2342915/lito
https://riptutorial.com/contributor/1755720/oliver-atkinson
https://riptutorial.com/contributor/1972476/sean-labastille
https://riptutorial.com/contributor/1972476/sean-labastille
https://riptutorial.com/contributor/1455016/tbodt
https://riptutorial.com/contributor/1492173/yevhen-dubinin
https://riptutorial.com/contributor/5807290/md--ibrahim-hassan
https://riptutorial.com/contributor/6997513/user459460
https://riptutorial.com/contributor/338642/atroutt
https://riptutorial.com/contributor/400056/darkdust
https://riptutorial.com/contributor/5475813/ekta-padaliya
https://riptutorial.com/contributor/4748657/faran-ghani
https://riptutorial.com/contributor/320616/havard
https://riptutorial.com/contributor/2311023/insys
https://riptutorial.com/contributor/2960612/mykola-denysyuk
https://riptutorial.com/contributor/3158329/orlando
https://riptutorial.com/contributor/98443/paulo-fierro
https://riptutorial.com/contributor/289501/phi
https://riptutorial.com/contributor/3830876/wmios
https://riptutorial.com/contributor/348121/byron
https://riptutorial.com/contributor/400056/darkdust
https://riptutorial.com/contributor/1768737/hcarrasko
https://riptutorial.com/contributor/6556246/jens-meder
https://riptutorial.com/contributor/603977/josh-caswell
https://riptutorial.com/contributor/4029561/nsnoob
https://riptutorial.com/contributor/5240391/ok404
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1455016/tbodt
https://riptutorial.com/contributor/5807290/md--ibrahim-hassan
https://riptutorial.com/contributor/8002083/ruby
https://riptutorial.com/contributor/6997513/user459460
https://riptutorial.com/contributor/1016102/daniel-bocksteger
https://riptutorial.com/contributor/935579/davida
https://riptutorial.com/contributor/6620149/doc
https://riptutorial.com/contributor/4851751/doron-yakovlev-golani
https://riptutorial.com/contributor/46297/lostintransit
https://riptutorial.com/contributor/1925806/mikhail-larionov
https://riptutorial.com/contributor/6997513/user459460
https://riptutorial.com/contributor/6620149/doc
https://riptutorial.com/contributor/4435670/sujania
https://riptutorial.com/contributor/239880/ff10
https://riptutorial.com/contributor/1417879/shuvo
https://riptutorial.com/contributor/2057171/albert-renshaw
https://riptutorial.com/contributor/6997513/user459460
https://riptutorial.com/contributor/1838205/bko
https://riptutorial.com/contributor/2900820/cory-wilhite
https://riptutorial.com/contributor/2311023/insys
https://riptutorial.com/contributor/3209173/jason-mcdermott
https://riptutorial.com/contributor/1506363/nirav-bhatt
https://riptutorial.com/contributor/5390105/thatsjustcheesy
https://riptutorial.com/contributor/3830876/wmios

16 Logging

Albert Renshaw, Chris Prince, connor, Daniel Bocksteger,
DarkDust, DavidA, HariKrishnan.P, HCarrasko, Iulian Onofrei,
Jason McDermott, Josh Caswell, Kornel, Nicolas Miari,
NobodyNada, Peter N Lewis, Samet DEDE, Tapan Prakash,
tbodt, Thomas Tempelmann, Tricertops, WMios

17
Low-level Runtime
Environment

connor, DarkDust, dgatwood, Grady Player, Josh Caswell, orta,
tbodt, Tricertops

18 Memory Management James P, ok404, Tamarous, tbodt, Tricertops

19 Methods
Caleb Kleveter, Jon Schneider, Joshua, jsondwyer, mrtnf,
Sujania, Tapan Prakash, tbodt

20 Modern Objective-C pckill

21 Multi-Threading DarkDust, jsondwyer

22 NSArray

animuson, AnthoPak, Bharath, DarkDust, Ekta Padaliya, Evan,
HCarrasko, Irfan, j.f., James P, Jeff Wolski, Johannes
Fahrenkrug, Jon Schneider, Joost, Josh Caswell, Joshua,
jsondwyer, Losiowaty, mrtnf, mszaro, Muhammad Zohaib
Ehsan, njuri, NSNoob, Paulo Fierro, Ruby, tbodt

23 NSAttributedString Patrick, Sujania, user459460

24 NSCache user459460

25 NSCalendar byJeevan, connor

26 NSData Patrick, Sujania, WMios

27 NSDate jsondwyer, Nikolai Ruhe, Patrick, Sujania, WMios

28 NSDictionary
connor, Fantini, insys, Kevin Stewart, Mykola Denysyuk,
Patrick, Sujania

29 NSJSONSerialization connor, Sujania

30 NSMutableArray
aniket.ghode, animuson, DavidA, HCarrasko, J F, Joost, Ruby,
Spidy, Sujania, tbodt, william205

31 NSMutableDictionary Ravi Dhorajiya

32 NSObject CodeChanger

33 NSPredicate Dipen Panchasara

34 NSRegularExpression Johannes Fahrenkrug

35 NSSortDescriptor 4444, Rahul

https://riptutorial.com/ 147

https://riptutorial.com/contributor/2057171/albert-renshaw
https://riptutorial.com/contributor/1675875/chris-prince
https://riptutorial.com/contributor/754604/connor
https://riptutorial.com/contributor/1016102/daniel-bocksteger
https://riptutorial.com/contributor/400056/darkdust
https://riptutorial.com/contributor/935579/davida
https://riptutorial.com/contributor/2894844/harikrishnan-p
https://riptutorial.com/contributor/1768737/hcarrasko
https://riptutorial.com/contributor/865175/iulian-onofrei
https://riptutorial.com/contributor/3209173/jason-mcdermott
https://riptutorial.com/contributor/603977/josh-caswell
https://riptutorial.com/contributor/27009/kornel
https://riptutorial.com/contributor/433373/nicolas-miari
https://riptutorial.com/contributor/3476191/nobodynada
https://riptutorial.com/contributor/115876/peter-n-lewis
https://riptutorial.com/contributor/1039901/samet-dede
https://riptutorial.com/contributor/3127343/tapan-prakash
https://riptutorial.com/contributor/1455016/tbodt
https://riptutorial.com/contributor/43615/thomas-tempelmann
https://riptutorial.com/contributor/1753141/tricertops
https://riptutorial.com/contributor/3830876/wmios
https://riptutorial.com/contributor/754604/connor
https://riptutorial.com/contributor/400056/darkdust
https://riptutorial.com/contributor/1564391/dgatwood
https://riptutorial.com/contributor/593382/grady-player
https://riptutorial.com/contributor/603977/josh-caswell
https://riptutorial.com/contributor/385754/orta
https://riptutorial.com/contributor/1455016/tbodt
https://riptutorial.com/contributor/1753141/tricertops
https://riptutorial.com/contributor/488611/james-p
https://riptutorial.com/contributor/5240391/ok404
https://riptutorial.com/contributor/6552680/tamarous
https://riptutorial.com/contributor/1455016/tbodt
https://riptutorial.com/contributor/1753141/tricertops
https://riptutorial.com/contributor/5236226/caleb-kleveter
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/2301271/joshua
https://riptutorial.com/contributor/5556671/jsondwyer
https://riptutorial.com/contributor/1083331/mrtnf
https://riptutorial.com/contributor/4435670/sujania
https://riptutorial.com/contributor/3127343/tapan-prakash
https://riptutorial.com/contributor/1455016/tbodt
https://riptutorial.com/contributor/934710/pckill
https://riptutorial.com/contributor/400056/darkdust
https://riptutorial.com/contributor/5556671/jsondwyer
https://riptutorial.com/contributor/246246/animuson
https://riptutorial.com/contributor/4894980/anthopak
https://riptutorial.com/contributor/1673358/bharath
https://riptutorial.com/contributor/400056/darkdust
https://riptutorial.com/contributor/5475813/ekta-padaliya
https://riptutorial.com/contributor/2892454/evan
https://riptutorial.com/contributor/1768737/hcarrasko
https://riptutorial.com/contributor/3275134/irfan
https://riptutorial.com/contributor/3711928/j-f-
https://riptutorial.com/contributor/488611/james-p
https://riptutorial.com/contributor/731773/jeff-wolski
https://riptutorial.com/contributor/171933/johannes-fahrenkrug
https://riptutorial.com/contributor/171933/johannes-fahrenkrug
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/171436/joost
https://riptutorial.com/contributor/603977/josh-caswell
https://riptutorial.com/contributor/92714/joshua
https://riptutorial.com/contributor/5556671/jsondwyer
https://riptutorial.com/contributor/765298/losiowaty
https://riptutorial.com/contributor/1083331/mrtnf
https://riptutorial.com/contributor/220307/mszaro
https://riptutorial.com/contributor/4283799/muhammad-zohaib-ehsan
https://riptutorial.com/contributor/4283799/muhammad-zohaib-ehsan
https://riptutorial.com/contributor/3741795/njuri
https://riptutorial.com/contributor/4029561/nsnoob
https://riptutorial.com/contributor/98443/paulo-fierro
https://riptutorial.com/contributor/8002083/ruby
https://riptutorial.com/contributor/1455016/tbodt
https://riptutorial.com/contributor/6124910/patrick
https://riptutorial.com/contributor/4435670/sujania
https://riptutorial.com/contributor/6997513/user459460
https://riptutorial.com/contributor/6997513/user459460
https://riptutorial.com/contributor/3632832/byjeevan
https://riptutorial.com/contributor/754604/connor
https://riptutorial.com/contributor/6124910/patrick
https://riptutorial.com/contributor/4435670/sujania
https://riptutorial.com/contributor/3830876/wmios
https://riptutorial.com/contributor/5556671/jsondwyer
https://riptutorial.com/contributor/104790/nikolai-ruhe
https://riptutorial.com/contributor/6124910/patrick
https://riptutorial.com/contributor/4435670/sujania
https://riptutorial.com/contributor/3830876/wmios
https://riptutorial.com/contributor/754604/connor
https://riptutorial.com/contributor/2091315/fantini
https://riptutorial.com/contributor/2311023/insys
https://riptutorial.com/contributor/2236290/kevin-stewart
https://riptutorial.com/contributor/2960612/mykola-denysyuk
https://riptutorial.com/contributor/6124910/patrick
https://riptutorial.com/contributor/4435670/sujania
https://riptutorial.com/contributor/754604/connor
https://riptutorial.com/contributor/4435670/sujania
https://riptutorial.com/contributor/1039419/aniket-ghode
https://riptutorial.com/contributor/246246/animuson
https://riptutorial.com/contributor/935579/davida
https://riptutorial.com/contributor/1768737/hcarrasko
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/171436/joost
https://riptutorial.com/contributor/8002083/ruby
https://riptutorial.com/contributor/2905706/spidy
https://riptutorial.com/contributor/4435670/sujania
https://riptutorial.com/contributor/1455016/tbodt
https://riptutorial.com/contributor/2011368/william205
https://riptutorial.com/contributor/6369570/ravi-dhorajiya
https://riptutorial.com/contributor/706020/codechanger
https://riptutorial.com/contributor/990070/dipen-panchasara
https://riptutorial.com/contributor/171933/johannes-fahrenkrug
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/4743213/rahul

36 NSString

Albert Renshaw, animuson, AnthoPak, Cœur, DarkDust,
Darshan Kunjadiya, David Mangon, il Malvagio Dottor
Prosciutto, James P, Jeff Wolski, Johnny Rockex, Jon
Schneider, Josh Caswell, Joshua, jsondwyer, Md. Ibrahim
Hassan, Nikolai Ruhe, NSNoob, Orlando, Patrick, Paulo Fierro,
RamenChef, Ruby, Srinivasan Saivenkat, Sunil Sharma, tbodt,
Tricertops, ViratA, WMios

37 NSTextAttachment BKO

38 NSTimer Arc676, DarkDust, Hemang, Jason McDermott, Patrick, Ruby

39 NSURL Patrick, Sujania

40
NSUrl send a post
request

Md. Ibrahim Hassan

41 NSUserDefaults Adriana Carelli

42 Predefined Macros user459460

43 Properties
DarkDust, dgatwood, Doc, J F, Nef10, NobodyNada, tbodt,
Tricertops

44 Protocols
Håvard, insys, jsondwyer, Mykola Denysyuk, Patrick,
RamenChef, StrAbZ, tbodt, Tricertops

45
Protocols and
Delegates

RamenChef, Sanjay Mohnani

46 Random Integer Josh Caswell, jsondwyer

47 Singletons
Amit Kalghatgi, Andrew Hoos, connor, Daniel Bocksteger,
DarkDust, Glenn Smith, Itachi, pckill, Peter DeWeese

48 Structs Doc, Sujania

49 Subscripting connor, tbodt

50
Unit testing using
Xcode

ajmccall, Amon, Siddharth Sunil

51 XML parsing iphonic, Stephen Leppik

https://riptutorial.com/ 148

https://riptutorial.com/contributor/2057171/albert-renshaw
https://riptutorial.com/contributor/246246/animuson
https://riptutorial.com/contributor/4894980/anthopak
https://riptutorial.com/contributor/1033581/cour
https://riptutorial.com/contributor/400056/darkdust
https://riptutorial.com/contributor/1882271/darshan-kunjadiya
https://riptutorial.com/contributor/2549891/david-mangon
https://riptutorial.com/contributor/559451/il-malvagio-dottor-prosciutto
https://riptutorial.com/contributor/559451/il-malvagio-dottor-prosciutto
https://riptutorial.com/contributor/488611/james-p
https://riptutorial.com/contributor/731773/jeff-wolski
https://riptutorial.com/contributor/917802/johnny-rockex
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/12484/jon-schneider
https://riptutorial.com/contributor/603977/josh-caswell
https://riptutorial.com/contributor/2301271/joshua
https://riptutorial.com/contributor/5556671/jsondwyer
https://riptutorial.com/contributor/5807290/md--ibrahim-hassan
https://riptutorial.com/contributor/5807290/md--ibrahim-hassan
https://riptutorial.com/contributor/104790/nikolai-ruhe
https://riptutorial.com/contributor/4029561/nsnoob
https://riptutorial.com/contributor/3158329/orlando
https://riptutorial.com/contributor/6124910/patrick
https://riptutorial.com/contributor/98443/paulo-fierro
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/8002083/ruby
https://riptutorial.com/contributor/6515829/srinivasan-saivenkat
https://riptutorial.com/contributor/3743875/sunil-sharma
https://riptutorial.com/contributor/1455016/tbodt
https://riptutorial.com/contributor/1753141/tricertops
https://riptutorial.com/contributor/3573073/virata
https://riptutorial.com/contributor/3830876/wmios
https://riptutorial.com/contributor/1838205/bko
https://riptutorial.com/contributor/2773311/arc676
https://riptutorial.com/contributor/400056/darkdust
https://riptutorial.com/contributor/1603234/hemang
https://riptutorial.com/contributor/3209173/jason-mcdermott
https://riptutorial.com/contributor/6124910/patrick
https://riptutorial.com/contributor/8002083/ruby
https://riptutorial.com/contributor/6124910/patrick
https://riptutorial.com/contributor/4435670/sujania
https://riptutorial.com/contributor/5807290/md--ibrahim-hassan
https://riptutorial.com/contributor/1306489/adriana-carelli
https://riptutorial.com/contributor/6997513/user459460
https://riptutorial.com/contributor/400056/darkdust
https://riptutorial.com/contributor/1564391/dgatwood
https://riptutorial.com/contributor/6620149/doc
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/3386893/nef10
https://riptutorial.com/contributor/3476191/nobodynada
https://riptutorial.com/contributor/1455016/tbodt
https://riptutorial.com/contributor/1753141/tricertops
https://riptutorial.com/contributor/320616/havard
https://riptutorial.com/contributor/2311023/insys
https://riptutorial.com/contributor/5556671/jsondwyer
https://riptutorial.com/contributor/2960612/mykola-denysyuk
https://riptutorial.com/contributor/6124910/patrick
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/43143/strabz
https://riptutorial.com/contributor/1455016/tbodt
https://riptutorial.com/contributor/1753141/tricertops
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4361109/sanjay-mohnani
https://riptutorial.com/contributor/603977/josh-caswell
https://riptutorial.com/contributor/5556671/jsondwyer
https://riptutorial.com/contributor/3716597/amit-kalghatgi
https://riptutorial.com/contributor/775825/andrew-hoos
https://riptutorial.com/contributor/754604/connor
https://riptutorial.com/contributor/1016102/daniel-bocksteger
https://riptutorial.com/contributor/400056/darkdust
https://riptutorial.com/contributor/214063/glenn-smith
https://riptutorial.com/contributor/1677041/itachi
https://riptutorial.com/contributor/934710/pckill
https://riptutorial.com/contributor/431053/peter-deweese
https://riptutorial.com/contributor/6620149/doc
https://riptutorial.com/contributor/4435670/sujania
https://riptutorial.com/contributor/754604/connor
https://riptutorial.com/contributor/1455016/tbodt
https://riptutorial.com/contributor/179843/ajmccall
https://riptutorial.com/contributor/6238767/amon
https://riptutorial.com/contributor/6644319/siddharth-sunil
https://riptutorial.com/contributor/790842/iphonic
https://riptutorial.com/contributor/6388243/stephen-leppik

	About
	Chapter 1: Getting started with Objective-C Language
	Versions
	Examples
	Hello World
	Compiling the program

	Chapter 2: Basic Data Types
	Syntax
	Examples
	BOOL
	id
	SEL
	IMP (implementation pointer)
	NSInteger and NSUInteger

	Chapter 3: Blocks
	Syntax
	Remarks
	Examples
	Blocks as Method Parameters
	Defining and Assigning
	Blocks as Properties
	Block Typedefs
	Blocks as local variables

	Chapter 4: BOOL / bool / Boolean / NSCFBoolean
	Examples
	BOOL/Boolean/bool/NSCFBoolean
	BOOL VS Boolean

	Chapter 5: Categories
	Syntax
	Remarks
	Examples
	Simple Category
	Declaring a class method
	Adding a property with a category
	Conforming to protocol
	Create a Category on XCode

	Chapter 6: Classes and Objects
	Syntax
	Examples
	Creating classes with initialization values
	Singleton Class
	The "instancetype" return type
	Specifying Generics
	Difference between allocation and initialization

	Chapter 7: Continue and Break!
	Examples
	Continue and Break Statement

	Chapter 8: Declare class method and instance method
	Introduction
	Syntax
	Examples
	How to declare class method and instance method.

	Chapter 9: Enums
	Syntax
	Examples
	Defining an enum
	typedef enum declaration in Objective-C
	Converting C++ std::vector to an Objective-C Array

	Chapter 10: Error Handling
	Syntax
	Examples
	Asserting
	Error & Exception handling with try catch block

	Chapter 11: Fast Enumeration
	Examples
	Fast enumeration of an NSArray
	Fast enumeration of an NSArray with index.

	Chapter 12: Format-Specifiers
	Introduction
	Syntax
	Remarks
	Examples
	Integer Example - %i

	Chapter 13: Grand Central Dispatch
	Introduction
	Examples
	What is Grand central dispatch.

	Chapter 14: Inheritance
	Syntax
	Examples
	Car is inherited from Vehicle

	Chapter 15: Key Value Coding / Key Value Observing
	Examples
	Most Common Real Life Key Value Coding Example
	Key Value Observing
	Querying KVC Data
	Collection Operators

	Chapter 16: Logging
	Syntax
	Remarks
	Examples
	Logging
	NSLog vs printf
	NSLog Output Format
	Logging Variable Values
	Empty message is not printed
	Removing Log Statements from Release Builds
	Using __FUNCTION __
	NSLog and BOOL type
	Logging NSLog meta data
	Logging by Appending to a File

	Chapter 17: Low-level Runtime Environment
	Remarks
	Examples
	Attach object to another existing object (association)
	Augmenting methods using Method Swizzling
	Calling methods directly

	Chapter 18: Memory Management
	Examples
	Automatic Reference Counting
	Strong and weak references
	Manual Memory Management
	Memory management rules when using manual reference counting.

	Chapter 19: Methods
	Syntax
	Examples
	Method parameters
	Create a basic method
	Return values
	Class methods
	Calling methods
	Instance methods
	Pass by value parameter passing
	Pass by reference parameter passing

	Chapter 20: Modern Objective-C
	Examples
	Literals

	NSNumber
	NSArray
	NSDictionary
	Container subscripting

	Chapter 21: Multi-Threading
	Examples
	Creating a simple thread
	Create more complex thread
	Thread-local storage

	Chapter 22: NSArray
	Syntax
	Examples
	Creating Arrays
	Finding out the Number of Elements in an Array
	Accessing elements

	Getting a single item
	First and Last Item
	Filtering Arrays With Predicates
	Converting NSArray to NSMutableArray to allow modification
	Sorting array with custom objects

	Compare method
	NSSortDescriptor
	Blocks

	Performance
	Converting between Sets and Arrays
	Reverse an Array
	Looping through
	Using Generics
	Enumerating using blocks
	Comparing arrays
	Add objects to NSArray

	Chapter 23: NSArray
	Examples
	Creating NSArray instances
	Sorting Arrays
	Filter NSArray and NSMutableArray

	Chapter 24: NSAttributedString
	Examples
	Creating a string that has custom kerning (letter spacing) editshare
	Create a string with text struck through
	Using Enumerating over Attributes in a String and underline part of string
	How you create a tri-color attributed string.

	Chapter 25: NSCache
	Examples
	NSCache

	Chapter 26: NSCalendar
	Examples
	System Locale Information
	Initializing a Calendar
	Calendrical Calculations

	Chapter 27: NSData
	Examples
	Create
	Get NSData lengh
	Encoding and decoding a string using NSData Base64
	NSData and Hexadecimal String

	Chapter 28: NSDate
	Remarks
	Examples
	Creating an NSDate
	Date Comparison
	Convert NSDate that is composed from hour and minute (only) to a full NSDate
	Converting NSDate to NSString

	Chapter 29: NSDictionary
	Examples
	Create
	NSDictionary to NSArray
	NSDictionary to NSData
	NSDictionary to JSON
	Block Based Enumeration
	Fast Enumeration

	Chapter 30: NSDictionary
	Syntax
	Remarks
	Examples
	Creating using literals
	Creating using dictionaryWithObjectsAndKeys:
	Creating using plists
	Setting a Value in NSDictionary

	Standard
	Shorthand
	Getting a Value from NSDictionary

	Standard
	Shorthand
	Check if NSDictionary already has a key or not

	Chapter 31: NSJSONSerialization
	Syntax
	Parameters
	Remarks
	Examples
	JSON Parsing using NSJSONSerialization Objective c

	Chapter 32: NSMutableArray
	Examples
	Adding elements
	Insert Elements
	Deleting Elements
	Sorting Arrays
	Move object to another index
	Filtering Array content with Predicate
	Creating an NSMutableArray

	Chapter 33: NSMutableDictionary
	Parameters
	Examples
	NSMutableDictionary Example
	Removing Entries From a Mutable Dictionary

	Chapter 34: NSObject
	Introduction
	Syntax
	Examples
	NSObject

	Chapter 35: NSPredicate
	Syntax
	Remarks
	Examples
	Filter By Name
	Find movies except given ids
	Find all the objects which is of type movie
	Find Distinct object ids of array
	Find movies with specific ids
	Case Insensitive comparison with exact title match
	Case sensitive with exact title match
	Case Insensitive comparison with matching subset

	Chapter 36: NSRegularExpression
	Syntax
	Examples
	Find all the numbers in a string
	Check whether a string matches a pattern

	Chapter 37: NSSortDescriptor
	Examples
	Sorted by combinations of NSSortDescriptor

	Chapter 38: NSString
	Introduction
	Remarks
	Examples
	Creation
	String Length
	Changing Case
	Comparing Strings
	Joining an Array of Strings
	Encoding and Decoding
	Splitting
	Searching for a Substring
	Working with C Strings
	Removing Leading and Trailing Whitespace
	Formatting
	Reversing a NSString Objective-C

	Chapter 39: NSTextAttachment
	Syntax
	Remarks
	Examples
	NSTextAttachment Example

	Chapter 40: NSTimer
	Examples
	Creating a Timer
	Invalidating a timer
	Manually firing a timer
	Storing information in the Timer

	Chapter 41: NSURL
	Examples
	Create
	Compare NSURL
	Modifying and Converting a File URL with removing and appending path

	Chapter 42: NSUrl send a post request
	Examples
	Simple POST request
	Simple Post Request With Timeout

	Chapter 43: NSUserDefaults
	Examples
	Simple example
	Clear NSUserDefaults

	Chapter 44: Predefined Macros
	Introduction
	Syntax
	Examples
	Predefined Macros

	Chapter 45: Properties
	Syntax
	Parameters
	Examples
	What are properties?
	Custom getters and setters
	Properties that cause updates

	Chapter 46: Protocols
	Examples
	Basic Protocol Definition
	Optional and required methods
	Conforming to Protocols
	Forward Declarations
	Checking existance of optional method implementations
	Check conforms Protocol

	Chapter 47: Protocols and Delegates
	Remarks
	Examples
	Implementation of Protocols and Delegation mechanism.

	Chapter 48: Random Integer
	Examples
	Basic Random Integer
	Random Integer within a Range

	Chapter 49: Singletons
	Introduction
	Examples
	Using Grand Central Dispatch (GCD)
	Creating Singleton class and also preventing it from having multiple instances using alloc/init.
	Creating Singleton and also preventing it from having multiple instance using alloc/init, new.

	Chapter 50: Structs
	Syntax
	Remarks
	Examples
	CGPoint
	Defining a Structure and Accessing Structure Members

	Chapter 51: Subscripting
	Examples
	Subscripts with NSArray
	Subscripts with NSDictionary
	Custom Subscripting

	Chapter 52: Unit testing using Xcode
	Remarks
	Examples
	Testing a block of code or some method:

	Feed the dummy data to the method under test if required & then compare the expected & actual results.
	Testing asynchronous block of code:
	Measuring Performance of a block of code:
	Running Test Suits:
	Note:

	Chapter 53: XML parsing
	Examples
	XML Parsing

	Credits

