
OCaml

#ocaml

Table of Contents

About 1

Chapter 1: Getting started with OCaml 2

Remarks 2

Examples 2

Installation or Setup 2

Installing OPAM 2

Mac OSX Installation Instructions 2

Ubuntu Installation Instructions 2

Compiling from source 2

Initializing OPAM 3

Your first program in OCaml 3

The REPL (toplevel) 3

Compilation to the bytecode 3

Compilation to the native code 5

Installation on Windows (native) 5

Premise 5

Install OCaml and Opam 5

Add OCaml binaries to path 5

Install Cygwin 6

Configure Opam 6

Installing packages 6

Install UTop 7

Installing Core 7

Troubleshoot: cannot create regular file 7

Troubleshoot: cannot load shared library 8

Chapter 2: Common Pitfalls 9

Examples 9

Using the wrong operator 9

Forgetting parentheses around function arguments 9

Chapter 3: Functions 11

Examples 11

Defining a Function with a let Binding 11

Using the function keyword 12

Anonymous functions 12

Recursive and Mutually Recursive Functions 13

Chapter 4: Higher Order Functions 14

Syntax 14

Examples 14

Generic algorithms 14

Dispose system resources even when an exception is raised 14

Composition operators 15

Chapter 5: List Processing 16

Examples 16

List.Map 16

Aggregate data in a list 16

Compute the total sum of a list of numbers 16

Compute the average of a list of floats 16

Re-implement basic list processing 17

Chapter 6: Mutable record fields 18

Introduction 18

Examples 18

Declaring a record with mutable fields 18

Initializing a record with mutable fields 18

Setting the value to a mutable field 18

Chapter 7: Ocamlbuild 19

Examples 19

Project depending on external libraries 19

Basic example with no external dependency 19

Chapter 8: Pattern Matching 20

Examples 20

Factorial Function using Pattern Matching 20

Evaluation of boolean expressions 20

Negation normal form : deep pattern matching 20

Matching record fields 22

Recursive list processing with pattern matching 23

Defining a function using pattern matching 23

Chapter 9: Pipes, Files, and Streams 25

Examples 25

Read from Standard Input and Print to Standard Output 25

Chapter 10: Tail recursion 27

Introduction 27

Examples 27

Sum function 27

Chapter 11: Write your first OCaml Script 28

Examples 28

Hello World 28

Compiling OCaml Code 28

Executing OCaml Code 28

In the REPL 28

As a Unix script 29

Use the system toplevel 29

Use the toplevel provided by OPAM 29

utop 29

Why utop and not ocaml? 30

Credits 31

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: ocaml

It is an unofficial and free OCaml ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official OCaml.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/ocaml
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with OCaml

Remarks

This section provides an overview of what ocaml is, and why a developer might want to use it.

It should also mention any large subjects within ocaml, and link out to the related topics. Since the
Documentation for ocaml is new, you may need to create initial versions of those related topics.

Examples

Installation or Setup

Installing OPAM

OPAM is a package manager for OCaml. It builds and manages compiler versions and OCaml
libraries for you easily.

The easiest way to install OPAM on your operating system is to use a package manager for your
system. e.g apt-get, yum or homebrew.

Mac OSX Installation Instructions

Update homebrew formulae and install OPAM.

brew update
brew install opam

Ubuntu Installation Instructions

add-apt-repository ppa:avsm/ppa
apt-get update
apt-get install ocaml opam

Compiling from source

wget http://caml.inria.fr/pub/distrib/ocaml-4.03/ocaml-4.03.0.tar.gz
tar xf ocaml-4.03.0.tar.gz
cd ocaml-4.03.0
./configure -prefix installation_path
make world.opt
make install

https://riptutorial.com/ 2

https://opam.ocaml.org/
http://brew.sh/

Initializing OPAM

Once you have OPAM installed, run opam init and follow the instructions.

Once done you should be able to run the OCaml interpreter from your shell.

$ ocaml
 OCaml version 4.03.0

#

Your first program in OCaml

Now that the OCaml distribution is available on your favorite operating system, we can create your
first program in OCaml: the Hello World!

We have different ways to launch an OCaml program.

The REPL (toplevel)

You can execute your code interactively with the toplevel. With the OCaml toplevel, you can write
and execute OCaml code, as a UNIX shell. Afterwards, the toplevel checks the type of your code
immediately. So, you can quickly and easily test some parts of code without compilation and
execution.

You can launch the toplevel with the ocaml command. Then, you can write an OCaml sentence
ended by ;; which is evaluated immediately. The toplevel displays the type and the value of your
expression just after:

"Hello Worlds!";;
- : string = "Hello Worlds!"

It is also possible to launch the toplevel on your file. You can see this explanation about that.

To facilitate your input in the toplevel, you can use a tool like ledit or rlwrap which provides some
features (like input history):

 $ ledit ocaml

 $ rlwrap ocaml

Compilation to the bytecode

We have two different compilers, one which compiles to bytecode and the other which compiles to
native code. The first is the same as the bytecode of the Java's virtual machine. So, the bytecode
is less efficient but more portable.

https://riptutorial.com/ 3

http://www.riptutorial.com/ocaml/example/7096/hello-world

We have some extensions files used by the OCaml compilers:

extension definition

.ml The source code (as .c in C)

.mli The interface (as .h in C)

.cmo Source code compiled by ocamlc in bytecode

.cmi Interface code compiled by ocamlc

.cmx and .o Source code compiled by ocamlopt in native code

.cma Library (bucket of some *.cmo) in bytecode

.cmxa and .a Library in native code

.cmxs Library in native code (to load dynamicaly)

The bytecode compiler is ocamlc.

You have different common options:

-c: to compile a source file without the linkage process (to produce an executable). So, the
command ocaml -c foo.ml produces a .cmo file. Unlike C in which the header file does not
need to be compiled, it's necessary in OCaml to compile the .mli file: ocaml -c foo.mli.

•

You need to compile the interface first. When you compile the source file afterwards, OCaml tries
to check that the implementation matches the interface.

The .mli file is not a mandatory. If you compile a .ml file without a .mli file, OCaml will produce a
.cmi file automatically.

-o: to compile some .cmo files to an executable. For example: ocamlc -o program foo.cmo
bar.cmo. These files need to be arranged by the dependencies for which the first file has no
dependence.

•

-I: to indicate an other directory where the compiler can find the necessary files for the
compilation (like the interface or source code). It's the same than the -I from a C compiler.

•

We have many other options. You can see the manual for more information.

So, you can write the hello.ml now, and compile this file with ocamlc -o hello hello.ml to produce
a bytecode program:

let () = print_endline "Hello World!"

The let () = ... is the first entry of your program (like the main in C). After, we use the function
print_endline (provided by the standard library) with the argument "Hello World!" to print Hello

https://riptutorial.com/ 4

http://caml.inria.fr/pub/docs/manual-ocaml/comp.html

Worlds with a newline in the standard output.

After the compilation, you have the .cmo file and the .cmi file automatically produced by the
compiler and your program hello. You can open your program, and in the top of this file, you can
see:

#!/usr/local/bin/ocamlrun

That means your program need the ocamlrun program (provided by the distribution) to execute the
bytecode (like the JVM).

Compilation to the native code

We have an another compiler that produces native code. The compiler is: ocamlopt. However, the
resultant executable can't work on most other architectures.

ocamlopt uses the same options as ocamlc so you can execute ocamlopt -o hello hello.ml. After,
you can see a .cmx and a .o file.

Finally, from your bytecode/native code program, you can execute:

$./hello
Hello World!
$

Installation on Windows (native)

Premise

These instruction shows a procedure to install native OCaml binaries in Windows. If your operative
system is Windows 10 (Insider Preview) build 14316 or later you can also install OCaml through
Bash on Ubuntu on Windows. In this case, follow the instruction to install OCaml on Ubuntu.

Install OCaml and Opam

Download OCaml official distribution. It contains both OCaml compilers and Opam packet
manager. Suppose you have installed the software in C:/OCaml. To be sure you've correcly
installed OCaml open cmd.exe and type ocaml.

If you see the message 'ocaml' is not recognized as an internal or external command, operable
program or batch file you need to add C:/OCaml/bin to your Path (Environment Variable).

Add OCaml binaries to path

in Control Panel > System and Security > System > Advanced system settings (on the left) >

https://riptutorial.com/ 5

https://en.wikipedia.org/wiki/Windows_Subsystem_for_Linux
http://protz.github.io/ocaml-installer/

Environment Variables and then select Path in System Variable tab, then Edit.

Add C:/OCaml/bin; to the list.

Install Cygwin

Without Cygwin you can't use Opam. In fact, if you try to open Opam typing opam in cmd.exe it
shows a message: Fatal error: exception Unix.Unix_error(20, "create_process", "cygcheck").

Download Cygwin and start the installer. Be sure to check the following packages:

automake•
diffutils•
libreadline•
make•
m4•
mingw64-x86_64-gcc-core•
mingw64-x86_64-gmp•
mingw64-x86_64-openssl•
mingw64-x86_64-pkg-config•
mingw64-x86_64-sqlite3•
patch•
rlwrap•
unzip•
wget•

Suppose you have installed the software in C:/cygwin (C:/cygwin64 for 64bit version). Open cmd and
type wget (or one of the executable present in C:/cygwin/bin) to check if you can use the Cygwin
executables. If the executable won't open, add C:/cygwin/bin to your Path (Environment Variable).

Configure Opam

Open cmd.exe and type opam init to configure Opam.

Then install ocamlfind (part of the OCaml compiler) with

opam install ocamlfind
opam config env

Check if ocamlfind is installed typing it in cmd.exe.

The command opam config env is used to add opam's executables directory to the enviroment path.
If after logout you cannot reach ocamlfind anymore, you can manually add it adding to path the
following line: C:/Users/<your user>/Documents/.opam/system/bin/.

https://riptutorial.com/ 6

https://cygwin.com/install.html

Installing packages

Packages are installed through Opam with the command opam install xyz where xyz is the name
of the package.

Install UTop

Try running the command opam install utop. If you have no errors, then typing utop will open the
executable.

If you see the message

[ERROR] The compilation of zed failed at "ocaml setup.ml -build".

you have to manually install the single packages. Try again typing:

opam install zed
opam install lambda-term
opam install utop

Both lambda-term and utop might not install. See Troubleshoot section.

Installing Core

You can install core package with opam install core. On Windows 64bit version (and 64bit Cygwin)
you will see the following error:

[ERROR] core is not available because your system doesn't comply with os != "win32" & ocaml-
version = "4.02.3".

Troubleshoot: cannot create regular file

If package with name xyz.10.1 fails to install (where xyz is the name of the package, and 10.1 its
version) with the following message:

install: cannot create regular file '/cygdrive/c/Users/<your
user>/Documents/.opam/system/bin/<something>': File exists

You have to go in this directory:

C:\Users\<your user>\Documents\.opam\repo\default\packages\<xyz>\<xyz.10.1>\files

and delete the file xyz.10.1.install.

https://riptutorial.com/ 7

Troubleshoot: cannot load shared library

If you try to open some Opam's package (eg: utop) and you see this error:

Fatal error: cannot load shared library dlllwt-unix_stubs
Reason: The specified module could not be found.

Run opam config env again and try to reopen the executable.

Read Getting started with OCaml online: https://riptutorial.com/ocaml/topic/1826/getting-started-
with-ocaml

https://riptutorial.com/ 8

https://riptutorial.com/ocaml/topic/1826/getting-started-with-ocaml
https://riptutorial.com/ocaml/topic/1826/getting-started-with-ocaml

Chapter 2: Common Pitfalls

Examples

Using the wrong operator

In OCaml, there are different arithmetic operators for floats and integers. Additionally, these
operators can only be used on 2 floats or 2 integers. Here are invalid expressions in OCaml

1.0 + 2.0
1 + 2.0
1 +. 2
1 +. 2.0

The correct expression for each of these respectively are

1. +. 2.
float_of_int 1 +. 2.
1 + 2
float_of_int 1 +. 2.

There is no automatic casting of integers to floats or vice-versa in OCaml. Everything is explicit.
Here is a list of the integer and float operators

Operation Integer Operator Float Operator

Addition a + b c +. d

Subtraction a - b c -. d

Multiplication a * b c *. c

Division a / b c /. d

Modulus a mod b modfloat c d

Exponentiation N/a c ** d

Where a and b are integers and c and d are floats.

Forgetting parentheses around function arguments

A common mistake is to forget surrounding compound function arguments with parentheses,
leading to type errors.

string_of_int 1+1;;

https://riptutorial.com/ 9

Error: This expression has type string but an expression was expected of type int

This is because of the precedence. In fact, the above evaluates to

(string_of_int 1) + 1;;

which is wrong. A correct syntax would be

string_of_int (1+1);;

- : string = "2"

Read Common Pitfalls online: https://riptutorial.com/ocaml/topic/8146/common-pitfalls

https://riptutorial.com/ 10

https://riptutorial.com/ocaml/topic/8146/common-pitfalls

Chapter 3: Functions

Examples

Defining a Function with a let Binding

Values can be given names using let:

let a = 1;;
val a : int = 1

You can use similar syntax to define a function. Just provide additional parameters for the
arguments.

let add arg1 arg2 = arg1 + arg2;;
val add : int -> int -> int = <fun>

We can call it like this:

add 1 2;;
- : int = 3

We can pass values in directly like that, or we can pass values bound to names:

add a 2;;
- : int = 3

The line that the interpreter gives us after we define something is the value of the object with its
type signature. When we gave it a simple value bound to a, it came back with:

val a : int = 1

Which means a is an int, and its value is 1.

The type signature of our function is a little more complicated:

val add : int -> int -> int = <fun>

The type signature of add looks like a bunch of ints and arrows. This is because a function that
takes two arguments is actually a function which just takes one argument, but returns another
function that takes the next argument. You could instead read it like this:

val add : int -> (int -> int) = <fun>

This is useful when we want to create different sorts of functions on the fly. For example, a
function that adds 5 to everything:

https://riptutorial.com/ 11

let add_five = add 5;;
val add_five : int -> int = <fun>
add_five 5;;
- : int = 10
add_five 10;;
- : int = 15

Using the function keyword

The function keyword automatically has pattern matching when you define the body of your
function. Observe it below:

let foo = function
0 -> "zero"
| 1 -> "one"
| 2 -> "couple"
| 3 -> "few"
| _ -> "many";;
val foo : int -> bytes = <fun>

foo 0;;
- : bytes = "zero"

foo 3;;
- : bytes = "few"

foo 10;;
- : bytes = "many"

let bar = function
"a" | "i" | "e" | "o" | "u" -> "vowel"
| _ -> "consonant";;
val bar : bytes -> bytes = <fun>

bar "a";;
- : bytes = "vowel"

bar "k";;
- : bytes = "consonant"

Anonymous functions

Since functions are ordinary values, there is a convenient syntax for creating functions without
names:

List.map (fun x -> x * x) [1; 2; 3; 4]
(* - : int list = [1; 4; 9; 16] *)

This is handy, as we would otherwise have to name the function first (see let) to be able to use it:

let square x = x * x
(* val square : int -> int = <fun> *)

List.map square [1; 2; 3; 4]
(* - : int list = [1; 4; 9; 16] *)

https://riptutorial.com/ 12

http://www.riptutorial.com/ocaml/example/9420/defining-a-function-with-a-let-binding

Recursive and Mutually Recursive Functions

You can define a function to be recursive with the rec keyword, so it can call itself.

let rec fact n = match n with
 | 0 -> 1
 | n -> n * fact (n - 1);;

val fact : int -> int = <fun>

fact 0;;
- : int = 1
fact 4;;
- : int = 24

You can also define mutually recursive functions with the and keyword, so they can call each other.

let rec first x = match x with
 | 1 -> 1
 | x -> second (x mod 10)

 and second x = first (x + 1);;

val first : int -> int = <fun>
val second : int -> int = <fun>

first 20;;
- : int = 1
first 12345;;
- : int = 1

Notice that the second function does not have the req keyword.

Read Functions online: https://riptutorial.com/ocaml/topic/2793/functions

https://riptutorial.com/ 13

https://riptutorial.com/ocaml/topic/2793/functions

Chapter 4: Higher Order Functions

Syntax

val (|>) : 'a -> ('a -> 'b) -> 'b•
val (@@) : ('a -> 'b) -> 'a -> 'b•

Examples

Generic algorithms

Higher-order functions can be used to implement generic algorithms, giving up the responsibility of
providing final details to the user. For instance List.sort expects a comparison function, which
allows to implement various ways of sorting. Here we implement case-insensitive sorting of
strings:

let string_case_insensitive_sort lst =
 let case_insensitive_compare a b =
 String.compare (String.lowercase a) (String.lowercase b)
 in
 List.sort case_insensitive_compare lst

There is a rich list of higher-order functions in the standard library, especially in the List module,
see List.fold_left and List.sort for instance. More advanced examples can be found in third-
party libraries. A good example is the simulated annealing implemented in ocaml-gsl. Simulated
annealing is a generic optimisation procedure which is parametrised by a function used to explore
the set of states of the problem and an error function (called here energy function).

Users familiar with C++ can compare this to the Strategy pattern.

Dispose system resources even when an exception is raised

Higher-order functions can be used to ensure that system resources are disposed, even when a
treatment raises an exception. The pattern used by with_output_file allows a clean separation of
concerns: the higher-order with_output_file functions takes care of managing the system
resources bound to file manipulation while the treatment f only consumes the output channel.

let with_output_file path f =
 let c = open_out path in
 try
 let answer = f c in
 (close_out c; answer)
 with exn -> (close_out c; raise exn)

Let us use this higher-order function to implement a function writing a string to a file:

let save_string path s =

https://riptutorial.com/ 14

http://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html
http://mmottl.github.io/gsl-ocaml/api/Siman.html
https://en.wikipedia.org/wiki/Simulated_annealing
https://en.wikipedia.org/wiki/Simulated_annealing
https://en.wikibooks.org/wiki/Computer_Science_Design_Patterns/Strategy

 (with_output_file path) (fun c -> output_string c s)

Using more advanced functions than fun c -> output_string c s it is possible to save more
complex values. See for instance the Marshal module in the standard library or the Yojson library
by Martin Jambon.

Composition operators

Two useful higher-order functions are the binary application (@@) and reverse-application or "pipe" (
|>) operators. Although since 4.01 they're available as primitives, it might still be instructive to
define them here:

let (|>) x f = f x
let (@@) f x = f x

Consider the problem of incrementing the square of 3. One way of expressing that computation is
this:

(* 1 -- Using parentheses *)
succ (square 3)
(* - : int = 10 *)

(* where `square` is defined as: *)
let square x = x * x

Note that we couldn't simply do succ square 3 because (due to left-associativity) that would reduce
to the meaningless (succ square) 3. Using application (@@) we can express that without the
parentheses:

(* 2 -- Using the application operator *)
succ @@ square 3
(* - : int = 10 *)

Notice how the last operation to be performed (namely succ) occurs first in the expression? The
reverse-application operator (|>) allows us to, well, reverse this:

(* 3 -- Using the reverse-application operator *)
3 |> square |> succ
(* - : int = 10 *)

The number 3 is now "piped" through square and then succ, as opposed to being applied to square
to yield a result that succ is applied to.

Read Higher Order Functions online: https://riptutorial.com/ocaml/topic/2729/higher-order-
functions

https://riptutorial.com/ 15

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Marshal.html
http://mjambon.com/yojson.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html
http://caml.inria.fr/pub/docs/manual-ocaml/expr.html
https://riptutorial.com/ocaml/topic/2729/higher-order-functions
https://riptutorial.com/ocaml/topic/2729/higher-order-functions

Chapter 5: List Processing

Examples

List.Map

List.map has the signature ('a -> 'b) -> 'a list -> 'b list which in English is a function that
takes a function (we'll call this the mapping function) from one type (namely 'a) to another type
(namely 'b) and a list of the first type. The function returns a list of the second type where every
element is the result of calling the mapping function on an element of the first list.

List.map string_of_int [1; 2; 3; 4]
#- ["1"; "2"; "3"; "4"] : string list

The types 'a and 'b don't have to be different. For example, we can map numbers to their squares
just as easily.

let square x = x * x in
List.map square [1; 2; 3; 4]
#- [1; 4; 9; 16] : int list

Aggregate data in a list

The List.fold_left and List.fold_right functions are higher-order functions that implement the
outer logic of list aggregation. Aggregating a list, sometimes also referred to as reducing a list,
means computing a value derived from the sequential inspection of all items in that list.

The documentation of the List module states that

List.fold_left f a [b1; ...; bn] is f (... (f (f a b1) b2) ...) bn.•
List.fold_right f [a1; ...; an] b is f a1 (f a2 (... (f an b) ...)). (This latter function is
not tail-recursive.)

•

In plain English computing List.fold_left f a [b1; ...; bn] amounts to running through the list
[b1; ...; bn] keeping track of an accumulator initially set to a: each time we see an item in the list,
we use f to update the value of the accumulator, and when we are done, the accumulator is the
final value of our computation. The List.fold_right function is similar.

Here are a few practical examples:

Compute the total sum of a list of numbers

List.fold_left (+) 0 lst

Compute the average of a list of floats

https://riptutorial.com/ 16

http://www.riptutorial.com/ocaml/topic/2729/higher-order-functions
http://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html

let average lst =
 let (sum, n) =
 List.fold_left (fun (sum, n) x -> (sum +. x, n + 1)) (0.0, 0) lst
 in
 sum /. (float_of_int n)

Re-implement basic list processing

The functions List.fold_left and List.fold_right are so general that they can be used to
implement almost every other functions from the list module:

let list_length lst = (* Alternative implementation to List.length *)
 List.fold_left (+) 0 lst

let list_filter predicate lst = (* Alternative implementation to List.filter *)
 List.fold_right (fun a b -> if predicate a then a :: b else b) lst []

It is even possible to reimplement the List.iter function, remember that () is the global state of
the program to interpret this code as a further example of list aggregation:

let list_iter f lst = (* Alternation implementation to List.iter *)
 List.fold_left (fun () b -> f b) () lst

These examples are meant to be learning material, these implementations have no virtue over the
corresponding functions from the standard library.

Read List Processing online: https://riptutorial.com/ocaml/topic/2730/list-processing

https://riptutorial.com/ 17

https://riptutorial.com/ocaml/topic/2730/list-processing

Chapter 6: Mutable record fields

Introduction

Like most OCaml values, records are immutable by default. However, since OCaml also handles
imperative programming, it provides a way to make individual fields mutable. Mutable fields can be
modified in-place by assignment, rather than having to resort to usual functional techniques, such
as functional update.

While introducing side-effects, mutable fields can result in an improved performance when used
correctly.

Examples

Declaring a record with mutable fields

In the following, weight is declared as a mutable field.

type person = {
 name: string;
 mutable weight: int
};;

Remark: As far as design is concerned here, one would consider the fact that a person's name
isn't likely to change, but their weight is.

Initializing a record with mutable fields

Initializing a record with mutable fields isn't different from a regular record initialization.

let john = { name = "John"; weight = 115 };;

Setting the value to a mutable field

To assign a new value to a mutable record field, use the <- operator.

john.weight <- 120;;

Note: The previous expression has a unit type.

Read Mutable record fields online: https://riptutorial.com/ocaml/topic/9367/mutable-record-fields

https://riptutorial.com/ 18

https://riptutorial.com/ocaml/topic/9367/mutable-record-fields

Chapter 7: Ocamlbuild

Examples

Project depending on external libraries

If your project depends on the external libraries, you should first install them with opam. Assuming
your dependencies are foo and bar and the main entry point of your project is foobar.ml you can
then build a bytecode executable with

ocamlbuild -use-ocamlfind -pkgs 'foo,bar' foobar.byte

Warning: the names foo and bar must be the names of the ocamlfind packages, they may differ
from the names of the opam packages.

Instead of specifying the packages on the command line, you can create a config file named _tags
with the following content

true: package(foo), package(bar)

Basic example with no external dependency

If your project has no external dependency and has foo.ml as its main entry point, you can compile
a bytecode version with

ocamlbuild foo.byte

To get a native executable, run

ocamlbuild foo.native

Read Ocamlbuild online: https://riptutorial.com/ocaml/topic/2183/ocamlbuild

https://riptutorial.com/ 19

https://riptutorial.com/ocaml/topic/2183/ocamlbuild

Chapter 8: Pattern Matching

Examples

Factorial Function using Pattern Matching

let rec factorial n = match n with
| 0 | 1 -> 1
| n -> n * (factorial (n - 1))

This function matches on both the values 0 and 1 and maps them to the base case of our
recursive definition. Then all other numbers map to the recursive call of this function.

Evaluation of boolean expressions

We define the type of boolean expressions whose atoms are identified by strings as

type expr =
| Atom of string
| Not of expr
| And of expr * expr
| Or of expr * expr

and can evaluate these expressions using an oracle : string -> bool giving the values of the
atoms we find as follows:

let rec eval oracle = function
| Atom(name) -> oracle name
| Not(expr) -> not(eval oracle expr)
| And(expr1, expr2) -> (eval oracle expr1) && (eval oracle expr2)
| Or(expr1, expr2) -> (eval oracle expr1) || (eval oracle expr2)

See how the function is clear and easy to read. Thanks to correct use of pattern matching, a
programmer reading this function needs little time to ensure it is correctly implemented.

Negation normal form : deep pattern matching

Pattern matching allows to deconstruct complex values and it is by no way limited to the “outer
most” level of the representation of a value. To illustrate this, we implement the function
transforming a boolean expression into a boolean expression where all negations are only on
atoms, the so called negation normal form and a predicate recognising expressions in this form:

We define the type of boolean expressions whose atoms are identified by strings as

type expr =
| Atom of string
| Not of expr
| And of expr * expr

https://riptutorial.com/ 20

| Or of expr * expr

Let us first define a predicate recognising expressions in negation normal form:

let rec is_nnf = function
| (Atom(_) | Not(Atom(_))) -> true
| Not(_) -> false
| (And(expr1, expr2) | Or(expr1, expr2)) -> is_nnf expr1 && is_nnf expr2

As you see, it is possible to match against nested patterns like Not(Atom(_)). Now we implement a
function mapping a boolean expression to an equivalent boolean expression in negation normal
form:

let rec nnf = function
| (Atom(_) | Not(Atom(_))) as expr -> expr
| Not(And(expr1, expr2)) -> Or(nnf(Not(expr1)),nnf(Not(expr2)))
| Not(Or(expr1, expr2)) -> And(nnf(Not(expr1)),nnf(Not(expr2)))
| And(expr1, expr2) -> And(nnf expr1, nnf expr2)
| Or(expr1, expr2) -> Or(nnf expr1, nnf expr2)
| Not(Not(expr)) -> nnf expr

This second function makes even more uses of nested patterns. We finally can test our code in
the toplevel on the negation of an implication:

let impl a b =
Or(Not(a), b);;
 val impl : expr -> expr -> expr = <fun>
let expr = Not(impl (Atom "A") (Atom "B"));;
val expr : expr = Not (Or (Not (Atom "A"), Atom "B"))
nnf expr;;
- : expr = And (Atom "A", Not (Atom "B"))
is_nnf (nnf expr);;
- : bool = true

The OCaml type system is able to verify the exhaustivity of a pattern matching. For instance, if we
omit the Not(Or(expr1, expr2)) case in the nnf function, the compiler issues a warning:

let rec non_exhaustive_nnf = function
| (Atom(_) | Not(Atom(_))) as expr -> expr
| Not(And(expr1, expr2)) -> Or(nnf(Not(expr1)),nnf(Not(expr2)))
| And(expr1, expr2) -> And(nnf expr1, nnf expr2)
| Or(expr1, expr2) -> Or(nnf expr1, nnf expr2)
| Not(Not(expr)) -> nnf expr;;
 Characters 14-254:
 function
 | (Atom(_) | Not(Atom(_))) as expr -> expr
 | Not(And(expr1, expr2)) -> Or(nnf(Not(expr1)),nnf(Not(expr2)))
 | And(expr1, expr2) -> And(nnf expr1, nnf expr2)
 | Or(expr1, expr2) -> Or(nnf expr1, nnf expr2)
 | Not(Not(expr)) -> nnf expr..
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a case that is not matched:
Not (Or (_, _))
val non_exhaustive_nnf : expr -> expr = <fun>

https://riptutorial.com/ 21

(This warning can be treated as an error with the -w @8 option when invoking the compiler or the
interpreter.)

This feature provides an increased level of safety and correctness in programs that are accepted
by the compiler. It has however other uses and can for instance be used in explorative
programming. It is is very fun to write a conversion to a normal form, starting with crude versions
of the function that handle the easy cases and using examples of non-matched cases provided by
the compiler to refine the treatment.

Matching record fields

Pattern matching can be used to deconstruct records. We illustrate this with a record type
representing locations in a text file, e.g. the source code of a program.

type location = {
 filename : string;
 line: int;
 column: int;
 offset: int;
}

A value x of type location can be deconstructed like this:

let { filename; line; column; offset; } = x

A similar syntax can be used to define functions, for instance a function to print locations:

let print_location { filename; line; column; offset; } =
 Printf.printf "%s: %d: %d" filename line column

or alternatively

let print_location = function { filename; line; column; offset; } ->
 Printf.printf "%s: %d: %d" filename line column

Patterns matching records do not need to mention all fields of a record. Since the function does
not use the offset field, we can leave it out:

let print_location { filename; line; column; } =
 Printf.printf "%s: %d: %d" filename line column

When the record is defined in a module, it is enough to qualify the first field occurring in the
pattern:

module Location =
struct
 type t = {
 filename : string;
 line: int;
 column: int;

https://riptutorial.com/ 22

 offset: int;
 }
end

let print_location { Location.filename; line; column; } =
 Printf.printf "%s: %d: %d" filename line column

Recursive list processing with pattern matching

Here we demonstrate how to process lists recursively using OCaml's pattern matching syntax.

let rec map f lst =
 match lst with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

In this case, the pattern [] matches the empty list, while hd::tl matches any list that has at least
one element, and will assign the first element of the list to hd and the rest of the list (could be
empty) to tl.

Note that hd::tl is a very general pattern and will match any list that isn't empty. We can also write
patterns that match on lists with a specific number of elements:

(* Return the last element of a list. Fails if the list is empty. *)
let rec last lst =
 match lst with
 | [] -> failwith "Empty list"
 | [x] -> x (* Equivalent to x::[], [x] matches a list with only one element *)
 | hd::tl -> last tl

(* The second to last element of a list. *)
let rec second_to_last lst =
 match lst with
 | [] -> failwith "Empty list"
 | x::[] -> failwith "Singleton list"
 | fst::snd::[] -> snd
 | hd::tl -> second_to_last tl

Additionally, OCaml supports pattern matching on the elements of lists themselves. We can be
more specific about the structure of elements inside a list, and OCaml will infer the correct function
type:

(* Assuming a list of tuples, return a list with first element of each tuple. *)
let rec first_elements lst =
 match lst with
 | [] -> []
 | (a, b)::tl -> a::(first_elements tl)
(* val first_elements : ('a * 'b) list -> 'a list = <fun> *)

By combining these patterns together, we can process any arbitrarily complex list.

Defining a function using pattern matching

https://riptutorial.com/ 23

The keyword function can be used to initiate pattern-matching on the the last argument of a
function. For example, we can write a function called sum, which computes the sum of a list of
integers, this way

let rec sum = function
 | [] -> 0
 | h::t -> h + sum t
;;

val sum : int list -> int = <fun>

Read Pattern Matching online: https://riptutorial.com/ocaml/topic/2656/pattern-matching

https://riptutorial.com/ 24

https://riptutorial.com/ocaml/topic/2656/pattern-matching

Chapter 9: Pipes, Files, and Streams

Examples

Read from Standard Input and Print to Standard Output

We prepare a file called reverser.ml with the following contents:

let acc = ref [] in
 try
 while true do
 acc := read_line () :: !acc;
 done
 with
 End_of_file -> print_string (String.concat "\n" !acc)

We then compile our program using the following command:

$ ocamlc -o reverser.byte reverser.ml

We test it out by piping data to our new executable:

$ cat data.txt
one
two
three
$./reverser.byte < data.txt
three
two
one

The reserver.ml program is written in an imperative style. While imperative style is fine, it is
interesting to compare this to the functional translation:

let maybe_read_line () =
 try Some(read_line())
 with End_of_file -> None

let rec loop acc =
 match maybe_read_line () with
 | Some(line) -> loop (line :: acc)
 | None -> List.iter print_endline acc

let () = loop []

Thanks to introducing the function maybe_read_line the control flow is much simpler in this second
version than in the first.

Read Pipes, Files, and Streams online: https://riptutorial.com/ocaml/topic/3252/pipes--files--and-

https://riptutorial.com/ 25

https://riptutorial.com/ocaml/topic/3252/pipes--files--and-streams

streams

https://riptutorial.com/ 26

https://riptutorial.com/ocaml/topic/3252/pipes--files--and-streams

Chapter 10: Tail recursion

Introduction

Functional languages such as OCaml rely heavily on recursive functions. However, such functions
can lead to memory over consumption or, when handling large datasets, to stack overflows.

Tail recursion is an important source of optimization in such cases. It allows a program to drop the
caller context when the recursive call is the last of the function.

Examples

Sum function

Below is a non-tail-recursive function to compute the sum of a list of integers.

let rec sum = function
 | [] -> 0
 | h::t -> h + (sum t)

The last operation the function performs is the addition. Thus, the function isn't tail-recursive.

Below is a tail-recursive version of the same function.

let sum l =
 let rec aux acc = function
 | [] -> acc
 | h::t -> aux (acc+h) t
 in
 aux 0 l

Here, the aux function is tail-recursive: the last operation it performs is calling itself. As a
consequence, the latter version of sum can be used with lists of any length.

Read Tail recursion online: https://riptutorial.com/ocaml/topic/9650/tail-recursion

https://riptutorial.com/ 27

https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/Stack_overflow
https://riptutorial.com/ocaml/topic/9650/tail-recursion

Chapter 11: Write your first OCaml Script

Examples

Hello World

This example assumes you've installed OCaml.

Compiling OCaml Code

Create a new file named hello.ml, with the following contents:

print_string "Hello world!\n"

ocamlc is the OCaml compiler. To compile and run this script, run

$ ocamlc -o hello hello.ml

and then execute the resulting binary

$./hello
Hello world!

Executing OCaml Code

You can also run this script without compiling it into a binary. You can do so by using ocaml, the
ocaml toplevel system that permits interactive use of OCaml. In your shell, simply run

$ ocaml hello.ml
Hello world!

In the REPL

Open a new shell, and type ocaml to open the toplevel system. Once in the session, you can type
the same program:

 OCaml version 4.02.1

print_string "hello world!\n";;

press enter to evaluate the expression, and trigger the print.

https://riptutorial.com/ 28

http://www.riptutorial.com/ocaml/topic/1826/getting-started-with-ocaml

hello world!
- : unit = ()

Success! We see it printed hello world!, but what is the - : unit = () about? OCaml has no
statements, everything is an expression that evaluates to some typed value. In this case,
print_string is a function that takes in a stringas input, and returns a unit. Think of unit as a type
that can only take one value, () (also referred to as unit), and represents a finished computation
that returns no meaningful value.

In this case, print_string also has the side-effect of putting characters it received as input onto the
screen, which is why we see the first line.

To exit the REPL, press ctrl+D.

As a Unix script

We have two ways to create an OCaml script. The first use the system toplevel (provided by your
package manager like apt-get) and the second use the toplevel provided by OPAM.

Use the system toplevel

Open your favorite editor, and write:

#!/usr/bin/ocaml

print_string "hello worlds!\n";;

After, you can use chmod +x your_file.ml and you can execute your script with ./your_file.ml.

Use the toplevel provided by OPAM

#!/usr/bin/env ocaml

print_string "hello worlds!\n";;

The big difference is about the version of your toplevel. Indeed, if you configured your OPAM with
a specific switch (like opam switch 4.03.0), the script will use OCaml 4.03.0. In the first way, in
Debian Sid for example, the script will use OCaml 4.02.3.

You can replace the shebang by #!/usr/bin/env utop to use utop instead the vanilla toplevel.

utop

utop is another ocaml toplevel outside the distribution - that means, you need to download and
install utop (the easy way is to use OPAM: opam install utop). utop has many features like the

https://riptutorial.com/ 29

http://www.riptutorial.com/ocaml/topic/1826/getting-started-with-ocaml
https://en.wikipedia.org/wiki/Shebang_(Unix)

historic, the completion and the interactive line editing.

So, if you want an easy way to try some ocaml codes, utop is the best.

Why utop and not ocaml?

utop and ocaml have no a big difference if you want an ocaml script like above. But the common
thing in the OCaml community is to use utop instead ocaml.

In fact, the ocaml REPL is provided by the ocaml distribution. So, this REPL follows the release
cycle of the compiler and if you want some extras features, you need to wait the next release of
the compiler. utop, as we explained, is outside the distribution, so the release cycle is not
constraint by the compiler and if you want an extra feature, you will be more likely to try to push
this feature inside utop than ocaml :) !

For this point (and for the historic feature) most people in the ocaml community prefer to use utop
than ocaml.

Read Write your first OCaml Script online: https://riptutorial.com/ocaml/topic/2168/write-your-first-
ocaml-script

https://riptutorial.com/ 30

https://riptutorial.com/ocaml/topic/2168/write-your-first-ocaml-script
https://riptutorial.com/ocaml/topic/2168/write-your-first-ocaml-script

Credits

S.
No

Chapters Contributors

1
Getting started with
OCaml

chucksys, Community, incud, Jason Yeo, Pierre Chambart,
Romain Calascibetta, Thomash

2 Common Pitfalls Eli Sadoff, RichouHunter

3 Functions Conrad.Dean, fileyfood500, Hunan Rostomyan, Jason Yeo

4
Higher Order
Functions

chucksys, Hunan Rostomyan, Michael Le Barbier Grünewald

5 List Processing Hunan Rostomyan, Kyle, Michael Le Barbier Grünewald

6 Mutable record fields RichouHunter

7 Ocamlbuild Thomash

8 Pattern Matching
Conrad.Dean, jayelm, Michael Le Barbier Grünewald,
RichouHunter

9
Pipes, Files, and
Streams

Conrad.Dean, ivg, Marco Predari, Michael Le Barbier
Grünewald

10 Tail recursion RichouHunter

11
Write your first
OCaml Script

Conrad.Dean, Jason Yeo, Kevin Chavez, Romain Calascibetta,
Uncle Pa

https://riptutorial.com/ 31

https://riptutorial.com/contributor/3988732/chucksys
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3288446/incud
https://riptutorial.com/contributor/382740/jason-yeo
https://riptutorial.com/contributor/1213783/pierre-chambart
https://riptutorial.com/contributor/2200717/romain-calascibetta
https://riptutorial.com/contributor/1372399/thomash
https://riptutorial.com/contributor/5021321/eli-sadoff
https://riptutorial.com/contributor/3092183/richouhunter
https://riptutorial.com/contributor/656833/conrad-dean
https://riptutorial.com/contributor/8028053/fileyfood500
https://riptutorial.com/contributor/2672370/hunan-rostomyan
https://riptutorial.com/contributor/382740/jason-yeo
https://riptutorial.com/contributor/3988732/chucksys
https://riptutorial.com/contributor/2672370/hunan-rostomyan
https://riptutorial.com/contributor/2654678/michael-le-barbier-grunewald
https://riptutorial.com/contributor/2672370/hunan-rostomyan
https://riptutorial.com/contributor/714167/kyle
https://riptutorial.com/contributor/2654678/michael-le-barbier-grunewald
https://riptutorial.com/contributor/3092183/richouhunter
https://riptutorial.com/contributor/1372399/thomash
https://riptutorial.com/contributor/656833/conrad-dean
https://riptutorial.com/contributor/2980246/jayelm
https://riptutorial.com/contributor/2654678/michael-le-barbier-grunewald
https://riptutorial.com/contributor/3092183/richouhunter
https://riptutorial.com/contributor/656833/conrad-dean
https://riptutorial.com/contributor/2625442/ivg
https://riptutorial.com/contributor/4145136/marco-predari
https://riptutorial.com/contributor/2654678/michael-le-barbier-grunewald
https://riptutorial.com/contributor/2654678/michael-le-barbier-grunewald
https://riptutorial.com/contributor/3092183/richouhunter
https://riptutorial.com/contributor/656833/conrad-dean
https://riptutorial.com/contributor/382740/jason-yeo
https://riptutorial.com/contributor/654575/kevin-chavez
https://riptutorial.com/contributor/2200717/romain-calascibetta
https://riptutorial.com/contributor/8006960/uncle-pa

	About
	Chapter 1: Getting started with OCaml
	Remarks
	Examples
	Installation or Setup

	Installing OPAM
	Mac OSX Installation Instructions
	Ubuntu Installation Instructions
	Compiling from source
	Initializing OPAM
	Your first program in OCaml

	The REPL (toplevel)
	Compilation to the bytecode
	Compilation to the native code
	Installation on Windows (native)

	Premise
	Install OCaml and Opam
	Add OCaml binaries to path

	Install Cygwin
	Configure Opam
	Installing packages
	Install UTop
	Installing Core
	Troubleshoot: cannot create regular file
	Troubleshoot: cannot load shared library

	Chapter 2: Common Pitfalls
	Examples
	Using the wrong operator
	Forgetting parentheses around function arguments

	Chapter 3: Functions
	Examples
	Defining a Function with a let Binding
	Using the function keyword
	Anonymous functions
	Recursive and Mutually Recursive Functions

	Chapter 4: Higher Order Functions
	Syntax
	Examples
	Generic algorithms
	Dispose system resources even when an exception is raised
	Composition operators

	Chapter 5: List Processing
	Examples
	List.Map
	Aggregate data in a list
	Compute the total sum of a list of numbers
	Compute the average of a list of floats
	Re-implement basic list processing

	Chapter 6: Mutable record fields
	Introduction
	Examples
	Declaring a record with mutable fields
	Initializing a record with mutable fields
	Setting the value to a mutable field

	Chapter 7: Ocamlbuild
	Examples
	Project depending on external libraries
	Basic example with no external dependency

	Chapter 8: Pattern Matching
	Examples
	Factorial Function using Pattern Matching
	Evaluation of boolean expressions
	Negation normal form : deep pattern matching
	Matching record fields
	Recursive list processing with pattern matching
	Defining a function using pattern matching

	Chapter 9: Pipes, Files, and Streams
	Examples
	Read from Standard Input and Print to Standard Output

	Chapter 10: Tail recursion
	Introduction
	Examples
	Sum function

	Chapter 11: Write your first OCaml Script
	Examples
	Hello World

	Compiling OCaml Code
	Executing OCaml Code
	In the REPL
	As a Unix script
	Use the system toplevel
	Use the toplevel provided by OPAM

	utop
	Why utop and not ocaml?

	Credits

