
odoo-8

#odoo-8

Table of Contents

About 1

Chapter 1: Getting started with odoo-8 2

Remarks 2

Versions 2

Examples 2

Setup 2

Configuration: 2

What is Odoo? 7

Chapter 2: Add CSS and Javascript files to Odoo module 8

Syntax 8

Parameters 8

Remarks 8

Examples 8

Store CSS and JS files correctly in Odoo module 9

Option 1: [BACKEND] Add CSS and Javascript files to use in internal pages 9

Option 2: [FRONTEND] Add CSS and Javascript files to use in a public website 9

Option 3: [COMMON] Add CSS and Javascript files to use in all pages (backend & frontend) 10

Chapter 3: Configure Email - Office 365 in Odoo 11

Examples 11

Configure E-Mail 11

Chapter 4: Create Automated Functions For Model 14

Introduction 14

Examples 14

First of all you need to create xml file for make function call 14

Corresponding Python file 14

Chapter 5: Custom widgets for fields 15

Remarks 15

Examples 15

Custom widget for numeric fields to use in TreeView 15

Chapter 6: Fields used in Odoo 8 17

Introduction 17

Parameters 17

Remarks 17

Examples 19

Examples fields of Odoo 8 19

Chapter 7: How to activate OpenERP Developer Mode 20

Remarks 20

Examples 20

Activate developer mode 21

Activating developer mode in Odoo 8 22

Activate developer mode in Odoo 10 22

Chapter 8: RPC using Odoo v8 API (Call Python function from JavaScript) 24

Remarks 24

Examples 24

An example Odoo model to call methods from 24

Odoo RPC examples 25

Chapter 9: What are the ORM Methods and details? 27

Remarks 27

Examples 28

Different types of ORM Methods 28

Credits 29

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: odoo-8

It is an unofficial and free odoo-8 ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official odoo-8.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/odoo-8
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with odoo-8

Remarks

This section provides an overview of what odoo-8 is, and why a developer might want to use it.

It should also mention any large subjects within odoo-8, and link out to the related topics. Since
the Documentation for odoo-8 is new, you may need to create initial versions of those related
topics.

Versions

Release Number Community Enterprise License Release Date

8.0 Yes No GNU AGPL 2014-09-18

9.0 Yes Yes GNU AGPL V3 2015-10-01

Examples

Setup

Odoo can be installed in three different ways:

Packaged installers (easiest, less flexible)1.
Source install (takes sometime to setup, very flexible)2.
An official docker image from docker.com3.

Official packages with all relevant dependency requirements are available on odoo.com.

Windows

Download and run the installer.

Note: On Windows 8 you may see a warning titled "Windows protected your PC". Click More Info
then Run it anyway. Accept the UAC prompt and go through the various installation steps. Odoo
will automatically be started at the end of the installation.

Configuration:

The configuration file can be found at %PROGRAMFILES%\Odoo 8.0-id\server\openerp-
server.conf. (id is your system username)

The configuration file can be edited to connect to a remote Postgresql, edit file locations or set a
dbfilter. To reload the configuration file, restart the Odoo service via Services ‣ odoo server.

https://riptutorial.com/ 2

https://en.wikipedia.org/wiki/Affero_General_Public_License
https://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License
https://hub.docker.com/_/odoo/
https://nightly.odoo.com
https://nightly.odoo.com/8.0/nightly/exe/odoo_8.0.latest.exe

Linux

Debian based distributions

To install Odoo 8.0 on Debian-based distribution, execute the following commands as root:

wget -O - https://nightly.odoo.com/odoo.key | apt-key add -
echo "deb http://nightly.odoo.com/8.0/nightly/deb/ ./" >> /etc/apt/sources.list
apt-get update && apt-get install odoo

This will automatically install all dependencies, install Odoo itself as a daemon and automatically
start it.

Note that

to print PDF reports, you must install wkhtmltopdf yourself: the version of wkhtmltopdf available in
debian repositories does not support headers and footers so it can not be installed automatically.
The recommended version is 0.12.1 and is available on the wkhtmltopdf download page, in the
archive section. As there is no official release for Debian Jessie, you can find the package on
http://nightly.odoo.com/extra/. or you can download and install it from wkhtmltopdf's download
page like this

wget https://bitbucket.org/wkhtmltopdf/wkhtmltopdf/downloads/{path to correct distro and
system architecture}
sudo dpkg -i {.deb package}
sudo cp /usr/local/bin/wkhtmlto* /usr/bin/

The configuration file can be found at /etc/odoo/openerp-server.conf

When the configuration file is edited, Odoo must be restarted using service:

$ sudo service odoo restart Restarting odoo: ok

RPM based distributions

With RHEL-based distributions (RHEL, CentOS, Scientific Linux), EPEL must be added to the
distribution's repositories for all of Odoo's dependencies to be available. For CentOS:

$ sudo yum install -y epel-release

For other RHEL-based distribution, see the EPEL documentation.

Below are the installation steps.

$ sudo yum install -y postgresql-server
$ sudo postgresql-setup initdb
$ sudo systemctl enable postgresql
$ sudo systemctl start postgresql
$ sudo yum-config-manager --add-repo=https://nightly.odoo.com/8.0/nightly/rpm/odoo.repo
$ sudo yum install -y odoo
$ sudo systemctl enable odoo

https://riptutorial.com/ 3

http://nightly.odoo.com/extra/

$ sudo systemctl start odoo

Note that

To print PDF reports, you must install wkhtmltopdf yourself: the version of wkhtmltopdf available in
Fedora/CentOS repositories does not support headers and footers so it can not be installed
automatically. Use the version available on the wkhtmltopdf download page. Configuration, similar
to debian it can be installed with

wget https://bitbucket.org/wkhtmltopdf/wkhtmltopdf/downloads/{path to correct distro and
system architecture}
sudo rpm -i {.rpm package}
sudo cp /usr/local/bin/wkhtmlto* /usr/bin/

The configuration file can be found at /etc/odoo/openerp-server.conf

When the configuration file is edited, Odoo must be restarted via Systemd:

$ sudo systemctl restart odoo

Source Install

Odoo zip can be downloaded from https://nightly.odoo.com/8.0/nightly/src/odoo_8.0.latest.zip, the
zip file then needs to be uncompressed to use its content

Git allows simpler update and easier switching between differents versions of Odoo. It also
simplifies maintaining non-module patches and contributions. The primary drawback of git is that it
is significantly larger than a tarball as it contains the entire history of the Odoo project.

The git repository is https://github.com/odoo/odoo.git.

Then you can clone the repository with

$ git clone https://github.com/odoo/odoo.git

Installing dependencies

Source installation requires manually installing dependencies:

Python 2.7. on Linux and OS X, included by default

on Windows, use the official Python 2.7.9 installer.

if Python is already installed, make sure it is 2.7.9, previous versions are less convenient and 3.x
versions are not compatible with Odoo

configuring PostgreSQL

After installation you will need to create a postgres user: by default the only user is postgres, and
Odoo forbids connecting as postgres.

https://riptutorial.com/ 4

https://nightly.odoo.com/8.0/nightly/src/odoo_8.0.latest.zip

on Linux, use your distribution's package, then create a postgres user named like your login:

$ sudo su - postgres -c "createuser -s $USER"

Because the role login is the same as your unix login unix sockets can be use without a password.
on OS X, postgres.app is the simplest way to get started, then create a postgres user as on Linux

on Windows, use PostgreSQL for windows then add PostgreSQL's bin directory (default:
C:\Program Files\PostgreSQL\9.4\bin) to your PATH

create a postgres user with a password using the pg admin gui: open pgAdminIII, double-click the
server to create a connection, select Edit ‣ New Object ‣ New Login Role, enter the usename in
the Role Name field (e.g. odoo), then open the Definition tab and enter the password (e.g. odoo),
then click OK.

The user and password must be passed to Odoo using either the -w and -r options or the
configuration file

Python dependencies listed in the requirements.txt file.

on Linux, python dependencies may be installable with the system's package manager or using
pip.

For libraries using native code (Pillow, lxml, greenlet, gevent, psycopg2, ldap) it may be necessary
to install development tools and native dependencies before pip is able to install the dependencies
themselves. These are available in -dev or -devel packages for Python, Postgres, libxml2, libxslt,
libevent, libsasl2 and libldap2. Then the Python dependecies can themselves be installed:

$ pip install -r requirements.txt

On OS X, you will need to install the Command Line Tools (xcode-select --install) then download
and install a package manager of your choice (homebrew, macports) to install non-Python
dependencies. pip can then be used to install the Python dependencies as on Linux:

$ pip install -r requirements.txt

on Windows you need to install some of the dependencies manually, tweak the requirements.txt
file, then run pip to install the remaning ones.

Install psycopg using the installer here http://www.stickpeople.com/projects/python/win-
psycopg/

Then edit the requirements.txt file: remove psycopg2 as you already have it. remove the optional
python-ldap, gevent and psutil because they require compilation. add pypiwin32 because it's
needed under windows.

Then use pip to install the dependencies using the following command from a cmd.exe prompt
(replace \YourOdooPath by the actual path where you downloaded Odoo):

https://riptutorial.com/ 5

C:\> cd \YourOdooPath
C:\YourOdooPath> C:\Python27\Scripts\pip.exe install -r requirements.txt

Less CSS via nodejs

on Linux, use your distribution's package manager to install nodejs and npm.

Note that

In debian wheezy and Ubuntu 13.10 and before you need to install nodejs manually:

$ wget -qO- https://deb.nodesource.com/setup | bash -
$ apt-get install -y nodejs

In later debian versions (>jessie) and ubuntu (>14.04) you may need to add a symlink as npm
packages call node but debian calls the binary nodejs

$ apt-get install -y npm
$ sudo ln -s /usr/bin/nodejs /usr/bin/node

Once npm is installed, use it to install less and less-plugin-clean-css:

$ sudo npm install -g less less-plugin-clean-css

on OS X, install nodejs via your preferred package manager (homebrew, macports) then install
less and less-plugin-clean-css:

$ sudo npm install -g less less-plugin-clean-css

on Windows, install nodejs, reboot (to update the PATH) and install less and less-plugin-clean-css:

C:\> npm install -g less less-plugin-clean-css

Running Odoo

Once all dependencies are set up, Odoo can be launched by running odoo.py.

Configuration can be provided either through command-line arguments or through a configuration
file.

Common necessary configurations are:

PostgreSQL host, port, user and password.

Odoo has no defaults beyond psycopg2's defaults: connects over a UNIX socket on port 5432 with
the current user and no password. By default this should work on Linux and OS X, but it will not
work on windows as it does not support UNIX sockets. Custom addons path beyond the defaults,
to load your own modules

Under Windows a typical way to execute odoo would be:

https://riptutorial.com/ 6

C:\YourOdooPath> python odoo.py -w odoo -r odoo --addons-path=addons,../mymodules --db-
filter=mydb$

Where odoo, odoo are the postgresql login and password, ../mymodules a directory with additional
addons and mydb the default db to serve on localhost:8069

Under *nix systems a typical way to execute odoo would be:

$./odoo.py --addons-path=addons,../mymodules --db-filter=mydb$Packaged installers

What is Odoo?

Odoo (formerly known as OpenERP and before that, TinyERP) is a suite of open core enterprise
management applications. Targeting companies of all sizes, the application suite covers all
business needs, from Website/Ecommerce down to manufacturing, inventory and accounting, all
seamlessly integrated. It is the first time ever a software editor managed to reach such a functional
coverage. Odoo is the most installed business software in the world. Odoo is used by 2,000,000+
users worldwide ranging from very small companies (1 user) to very large ones (300,000 users).

The source code for the OpenObject framework and core ERP (enterprise resource planning)
modules is curated by the Belgium-based Odoo S.A. Additionally, customized programming,
support, and other services are provided by an active global community and a network of 500
official partners. The main Odoo components are the OpenObject framework, about 30 core
modules (also called official modules) and more than 3000 community modules

Odoo has been used as a component of university courses. A study on experiential learning
suggested that OpenERP provides a suitable alternative to proprietary systems to supplement
teaching.

Several books have been written about Odoo, some covering specific areas such as accounting or
development

Odoo has received awards including Trends Gazelle and BOSSIE Awards three years in a row.

It uses Python scripting and PostgreSQL as it's database. Its community edition is supplemented
with an Enterprise edition @ USD 240/- per user per year and a commercially supported online
edition.The development repository is on GitHub.

In 2013, the not-for-profit Odoo Community Association was formed to ensure the ongoing
promotion and maintenance of the Odoo community versions and modules to supplement the
work of Odoo S.A. This organisation has over 150 members who are a mix of individuals and
organisations.

Read Getting started with odoo-8 online: https://riptutorial.com/odoo-8/topic/2151/getting-started-
with-odoo-8

https://riptutorial.com/ 7

https://riptutorial.com/odoo-8/topic/2151/getting-started-with-odoo-8
https://riptutorial.com/odoo-8/topic/2151/getting-started-with-odoo-8

Chapter 2: Add CSS and Javascript files to
Odoo module

Syntax

Note about XML syntax: As the record is made inside of XML file, you can not leave any tag
unclosed as you could in a plain HTML, like: <link rel='stylesheet' href="..." >, Close the link
tag instead, like:

<link rel='stylesheet' href="..." />○

•

Parameters

Possible values of inherit_id
parameter

meaning

web.assets_backend
Used in internal pages only, NOT included in a
public website.

website.assets_frontend
Used in a public website only (via "website"
module).

web.assets_common Used in both, public website and internal pages.

Remarks

If you are not sure about which option is suitable for you, then try the first option (backend) as it is
used in most cases and nearly in all cases if you have not installed the "website" module. Odoo
differentiates between "backend" and "frontend" assets because the public website provided by
the "website" module uses different styling and JS code than internal pages meant to be used for
ERP tasks, i.e. "frontend" is associated with the public website and "backend" is associated with
internal pages for ERP (meaning of "frontend" and "backend" are Odoo specific here, but they are
both "frontend" in more general sense).

You can not only choose and use one of the options, but also use any combination of them (two of
them or all of them) in the same module. Factor a backend, a frontend and a common JS/CSS
code into separated files to better adhere to DRY and have suitable code in the public website and
in the internal pages.

Do not forget to add "web" (when using option 1) or "website" (when using option 2) to the
dependency list in the __openerp__.py manifest.

Examples

https://riptutorial.com/ 8

Store CSS and JS files correctly in Odoo module

CSS and JS files should be reside under 'static' directory in the root directory of module (the rest
of subdirectory tree under 'static' is an optional convention):

static/src/css/your_file.css•
static/src/js/your_file.js•

Then add links to these files unsing one of the 3 ways listed in the following examples.

Option 1: [BACKEND] Add CSS and Javascript files to use in internal pages

Odoo v8.0 way is to add corresponding record in the XML file:

Add XML file to the manifest (i.e. __openerp__.py file.):

...
'data' : ['your_file.xml'],
...

•

Then add following record in 'your_file.xml':•

 <openerp>
 <data>
 <template id="assets_backend" name="your_module_name assets"
inherit_id="web.assets_backend">
 <xpath expr="." position="inside">
 <link rel='stylesheet' href="/your_module_name/static/src/css/
your_file.css"/>
 <script type="text/javascript" src="/your_module_name/static/src/js/
your_file.js"></script>
 </xpath>
 </template>

 </data>
 </openerp>

Option 2: [FRONTEND] Add CSS and Javascript files to use in a public
website

Note: you should use this way if you've installed a "website" module and you have a public
website available.

Add following record in 'your_file.xml':•

 <openerp>
 <data>

 <template id="assets_frontend" name="your_module_name assets"
inherit_id="website.assets_frontend">
 <xpath expr="link[last()]" position="after">

https://riptutorial.com/ 9

 <link rel='stylesheet' href="/your_module_name/static/src/css/
your_file.css"/>
 </xpath>
 <xpath expr="script[last()]" position="after">
 <script type="text/javascript" src="/your_module_name/static/src/js/
your_file.js"></script>
 </xpath>
 </template>

 </data>
 </openerp>

Option 3: [COMMON] Add CSS and Javascript files to use in all pages
(backend & frontend)

Add following record in 'your_file.xml':•

 <openerp>
 <data>

 <template id="assets_common" name="your_module_name assets"
inherit_id="web.assets_common">
 <xpath expr="." position="inside">
 <link rel='stylesheet' href="/your_module_name/static/src/css/
your_file.css"/>
 <script type="text/javascript" src="/your_module_name/static/src/js/
your_file.js"></script>
 </xpath>
 </template>

 </data>
 </openerp>

Read Add CSS and Javascript files to Odoo module online: https://riptutorial.com/odoo-
8/topic/3401/add-css-and-javascript-files-to-odoo-module

https://riptutorial.com/ 10

https://riptutorial.com/odoo-8/topic/3401/add-css-and-javascript-files-to-odoo-module
https://riptutorial.com/odoo-8/topic/3401/add-css-and-javascript-files-to-odoo-module

Chapter 3: Configure Email - Office 365 in
Odoo

Examples

Configure E-Mail

- Initially check your E-Mail Settings

In Odoo go to Settings --> Email .•

https://riptutorial.com/ 11

http://i.stack.imgur.com/7Uy7K.png

Enter the field values in "Incoming Mail Servers" & "Outgoing Mail Servers" Options.•

https://riptutorial.com/ 12

http://i.stack.imgur.com/Ptekv.png

Read Configure Email - Office 365 in Odoo online: https://riptutorial.com/odoo-
8/topic/6648/configure-email---office-365-in-odoo

https://riptutorial.com/ 13

http://i.stack.imgur.com/wLbg4.png
http://i.stack.imgur.com/bqTHn.png
https://riptutorial.com/odoo-8/topic/6648/configure-email---office-365-in-odoo
https://riptutorial.com/odoo-8/topic/6648/configure-email---office-365-in-odoo

Chapter 4: Create Automated Functions For
Model

Introduction

We often need to run some code automatically during module install. This have many reasons for
example configuring Sale module settings to meet our project requirements.

In this topic you will learn how to make automated function run on module install.

Examples

First of all you need to create xml file for make function call

<?xml version="1.0"?>
<openerp>
 <data noupdate="1">
 <function model="*model_name*" name="_configure_sales"/>
 </data>
</openerp>

This simple xml file is calls _configure_sales function from model_name model.

NOTE: this xml file should be on the top of data array, because Odoo is processiong xml files from
top to bottom.

Corresponding Python file

class *model_name*(models.Model):
 _name = *model_name*

 @api.model
 def _configure_sales(self):
 # Do the configuration here

Every time when module will be installed this function will run.

Note: If you remove noupdate from xml, function will run on upgrading as well.

Read Create Automated Functions For Model online: https://riptutorial.com/odoo-
8/topic/10633/create-automated-functions-for-model

https://riptutorial.com/ 14

https://riptutorial.com/odoo-8/topic/10633/create-automated-functions-for-model
https://riptutorial.com/odoo-8/topic/10633/create-automated-functions-for-model

Chapter 5: Custom widgets for fields

Remarks

make sure you properly add javascript file to your module•
do not forget to add 'web' as dependency in __openerp__.py:•

'depends': ['web',....]

Examples

Custom widget for numeric fields to use in TreeView

The below example widget demonstrates how to format individual cells of a TreeView column
conditionally, depending on value of the field in the particular cell. If value of field is negative, then
it'll be displayed in red color and minus symbol will be hidden, otherwise it'll be displayed in normal
color .

A widget should be written in JavaScript, lets use custom_widget_name as a name for a new widget,
and your_module_name is a technical name of your module (same as your module's root directory
name)

Uunder static/src/js/ folder in your module add javascript file (say static/src/js/custom_widget.js)
with a custom widget in it:

 openerp.your_module_name = function (instance) {

 instance.web.list.columns.add('field.custom_widget_name',
'instance.your_module_name.custom_widget_name');

 instance.your_module_name.custom_widget_name = instance.web.list.Column.extend({
 _format: function (row_data, options) {
 res = this._super.apply(this, arguments);
 var amount = parseFloat(res);
 if (amount < 0){
 return ""+(-amount)+"";
 }
 return res
 }
 });
 //
 //here you can add more widgets if you need, as above...
 //
};

the above example widget can be used in a list view for field of type float and it applies custom
rules as follows:

Negative numbers:•

https://riptutorial.com/ 15

http://www.riptutorial.com/odoo-8/topic/3401/add-css-and-javascript-files-to-odoo-module

Are shown in red.○

Minus symbol (a '-' character) is "hidden".○

For positive numbers default layout is used.•

This example widget can be applied to a field in a tree view of Odoo. You can use widget like this
for a column you need to apply the custom rules to:

. . .
<tree >
 . . .
 <field name="some_field" widget="my_widget" />
 . . .
</tree>
. . .

Read Custom widgets for fields online: https://riptutorial.com/odoo-8/topic/6198/custom-widgets-
for-fields

https://riptutorial.com/ 16

https://riptutorial.com/odoo-8/topic/6198/custom-widgets-for-fields
https://riptutorial.com/odoo-8/topic/6198/custom-widgets-for-fields

Chapter 6: Fields used in Odoo 8

Introduction

This is section where you can find the details about the fields that is being used in Odoo 8

Parameters

Parameters Description

string="Name" Optional label of the field

compute="_compute_name_custom" Transform the fields into computed fields

store=True If computed it will store the result

select=True Force index on field

readonly=True Field will be readonly in views

inverse="_write_name" On update trigger

required=True Mandatory field

translate=True Translation enable

help='blabla' Help tooltip text

comodel_name="model.name" Name of the related model

inverse_name="field_name" relational column of the opposite model

relation='many2many_table_name' relational table name for many2many

columns1='left_column_name' relational table left column name

column2='right_column_name' relational table right column name

Remarks

Odoo and ORM: Odoo uses ORM(Object Relational Mapping) technique to interact with
database. ORM will help to create a virtual object database that can be used within from the
Python. In ORM technique each model is represented by a class that subclasses Models.model.

Models.model is the main super class for regular database persisted Odoo models. Odoo models
are created by inheriting from this class.

https://riptutorial.com/ 17

Example:

class Employee(Models.model):
 _name = 'module.employee'

 #Rest of the code goes here

Here _name is a structural attribute, which tells the system about the name of the database table
to be created.

Each model has a number of class variables, each of which represents a database field in the
model. Each field is represented by an instance of a openerp.fields.Field class. Fields in Odoo are
listed below..

1 Boolean Field

ex: flag = fields.Boolean()

2 Char Field

ex: flag = fields.Char()

3 Text

ex: flag = fields.Text()

4 Html

ex: flag = fields.Html()

5 Integer

ex: flag = fields.Integer()

6 Float

ex: flag = fields.Float()

7 Date

ex: flag = fields.Date()

8 Datetime

ex: flag = fields.Datetime()

9 Selection

https://riptutorial.com/ 18

ex: flag = fields.Selection()

10 Many2one

ex: flag = fields.Many2one()

11 One2many

ex: flag = fields.One2many()

12 Many2many

ex: flag = fields.Many2many()

Examples

Examples fields of Odoo 8

Odoo uses ORM(Object Relational Mapping) technique to interact with database. ORM will help to
create a virtual object database that can be used within from the Python. In ORM technique each
model is represented by a class that sub-classes Models.model. Models.model is the main super
class for regular database persisted Odoo models. Odoo models are created by inheriting from
this class

name = fields.Char(string='New Value')

flag = fields.Boolean(string='Flag',default=False)

amount = fields.Float(string='Amount',digits=(32, 32))

code = fields.Selection(string='Code',selection=[('a', 'A'),('b','B')])

customer = fields.Many2one(comodel_name='res.users')

sale_order_line = fields.One2many(comodel_name='res.users', inverse_name='rel_id')

tags = fields.Many2many(comodel_name='res.users',
 relation='table_name',
 column1='col_name',
 column2='other_col_name')

Read Fields used in Odoo 8 online: https://riptutorial.com/odoo-8/topic/8152/fields-used-in-odoo-8

https://riptutorial.com/ 19

https://riptutorial.com/odoo-8/topic/8152/fields-used-in-odoo-8

Chapter 7: How to activate OpenERP
Developer Mode

Remarks

Developer Mode

Odoo developer mode allows you to make substantial modifications to the Odoo database such as
adding fields to your documents and views. You change the default views of your actions and can
even create dynamic forms based on other fields within your models.

Advantage

While Odoo is a powerful application framework the development cycle can be brutal to test
changes to your application. By utilizing the developer mode you can test expressions and solve
many functional problems without having to restart the server over and over to test simple
changes.

Additionally the Odoo developer tool is great for looking at the architecture of forms and views to
see how fields are tied to modules, their domains, contexts and other attributes. In this video we
explore exactly how we put these tools to use in modifying and creating Odoo applications.

Limitations

While it can be very tempting to use developer mode to make a great deal of changes to your
application there are some drawbacks. Depending on what you modify and change you can lose
these changes with future module updates or when you install additional applications into Odoo.
This is particularly true for changes to views.

To activate developer mode you just simply write down

for version v7

&debug=

before # sign you just add it.

http://localhost:8069/?db=test_db&debug=#

for version > v7

http://localhost:8069/web?debug=

You may not see About Odoo menu because there might be odoo debranding module installed.

Examples

https://riptutorial.com/ 20

http://localhost:8069/?db=test_db&debug=#
http://localhost:8069/web?debug=

Activate developer mode

To activate the developer mode:

Log in to the ODOO front end1.
Click on the User Name drop down at the top-right side2.
Select 'About'3.
Click on 'Activate developer mode' from the pop-up window.4.

https://riptutorial.com/ 21

http://i.stack.imgur.com/uYtrP.png

Activating developer mode in Odoo 8

When you logged into Odoo application you will find an option to see who is the current logged in
person in the top right corner. This user information have a dropdown button. Click on the
dropdown, then you will find a list. In that list select about Odoo.com option. Clicking on that will
open a About popup window. In that window, over the top right corner you will find an option like
Acivate developer mode. Clicking on that link will reload the webpage.

After reloading it will be in Developer mode. Then the link will change to something like this
http://localhost:8069/web?debug=#id=23&view_type=form&model=res.partner

Activate developer mode in Odoo 10

Activate Developer Mode:

Login to odoo application.1.
After login user may see several odoo menu's. Click on setting menu.2.

https://riptutorial.com/ 22

http://i.stack.imgur.com/GIXrV.png
http://localhost:8069/web?debug=#id=23&view_type=form&model=res.partner

Click on 'Activate the developer mode' which is located at right-bottom corner of settings
page.

1.

Developer mode now activated.2.

Read How to activate OpenERP Developer Mode online: https://riptutorial.com/odoo-
8/topic/3311/how-to-activate-openerp-developer-mode

https://riptutorial.com/ 23

https://i.stack.imgur.com/JjM8R.png
https://i.stack.imgur.com/Wj01f.png
https://riptutorial.com/odoo-8/topic/3311/how-to-activate-openerp-developer-mode
https://riptutorial.com/odoo-8/topic/3311/how-to-activate-openerp-developer-mode

Chapter 8: RPC using Odoo v8 API (Call
Python function from JavaScript)

Remarks

If you are considering to add new methods in Python to use them in RPC from JavaScript, then
consider the following options of method decorators: if you've to deal with ids/recordsets then for
python method definition choose decorator:

@api.multi - to get recordset in your method•
@api.one - to get browse_records one by one in your method in above examples @api.multi
is used, but @api.one also may be used to deal with ids, depending on requirements
(However, it's strongly recommended to use @api.multi instead of @api.one for performance
reasons).

•

Or if it's simple function that does not have to deal with records/ids then for python method choose
decorator:

@api.model - Allows to be polite with old style API.•
@api.multi - Again, you can use it here as well, just pass [] (empty array) as first argument
in javascript...

•

References: Odoo RPC documentation, Odoo 8 API method decorators

Examples

An example Odoo model to call methods from

class my_model(models.Model):
 _name = "my.model"

 name = fields.Char('Name')

 @api.multi
 def foo_manipulate_records_1(self):
 """ function returns list of tuples (id,name) """
 return [(i.id,i.name) for i in self]

 @api.multi
 def foo_manipulate_records_2(self, arg1, arg2)
 #here you can take advantage of "self" recordset and same time use aditional arguments
"arg1", "arg2"
 pass

 @api.model
 def bar_no_deal_with_ids(self, arg1, arg2):

https://riptutorial.com/ 24

https://www.odoo.com/documentation/8.0/reference/javascript.html#rpc
https://www.odoo.com/documentation/8.0/reference/orm.html#module-openerp.api

 """ concatenate arg1 and arg2 """
 return unicode(arg1) + unicode(arg2)

Odoo RPC examples

Examples below demonstrate how to call Python function from JavaScript in Odoo 8. In the
examples we call methods of my_model described early on this page.
We assume that in the following examples "list_of_ids" variable contains list(array) of ids of
existing records of "my.model" model.

Call of method foo_manipulate_records_1 decorated with @api.multi:•

 new instance.web.Model("my.model")
 .call("foo_manipulate_records_1", [list_of_ids])
 .then(function (result) {
 // do something with result
 });

Call of method foo_manipulate_records_2 decorated with @api.multi:•

 new instance.web.Model("my.model")
 .call("foo_manipulate_records_2", [list_of_ids, arg1, arg2])
 .then(function (result) {
 // do something with result
 });

Call of method bar_no_deal_with_ids decorated with @api.model:•

 new instance.web.Model("my.model")
 .call("bar_no_deal_with_ids", [arg1, arg2])
 .then(function (result) {
 // do something with result
 });

Also if it has some sense depending on implementation, then you can call function decorated with
@api.multi even if you have not to deal with ids (just pass empty array in place of ids, as first
element of argument list):

 new instance.web.Model("my.model")
 .call("foo_manipulate_records_2", [[], arg1, arg2])
 .then(function (result) {
 // do something with result
 });

this way may be useful in some cases, as undecorated function in v8.0 api is considered as
@api.multi (as @api.multi is a default decorator)

https://riptutorial.com/ 25

Cxcept of two parameters to RPC call that are used in the above examples (the function name and
argument list), you can use third parameter - a dictionary of keyword arguments. It's highly
recommended to turn around a context (in some cases it might be even necessary), as it may
change behavior of remote procedure (localization, etc.). See below the example with context
argument in RPC call (same may be applied to all examples above)

var self = this;
new instance.web.Model("my.model")
 .call("foo_manipulate_records_2", [[], arg1, arg2], {'context':self.session.user_context})
 .then(function (result) {
 // do something with result
 });

Of course you can use custom context as well, if necessary, instead of turning around the existing
one as in this example.

Read RPC using Odoo v8 API (Call Python function from JavaScript) online:
https://riptutorial.com/odoo-8/topic/6613/rpc-using-odoo-v8-api--call-python-function-from-
javascript-

https://riptutorial.com/ 26

https://riptutorial.com/odoo-8/topic/6613/rpc-using-odoo-v8-api--call-python-function-from-javascript-
https://riptutorial.com/odoo-8/topic/6613/rpc-using-odoo-v8-api--call-python-function-from-javascript-

Chapter 9: What are the ORM Methods and
details?

Remarks

Create method: Create new record with specified value. Takes a number of field values, and
returns a recordset containing the record created

def create(self,vals):
 return super(class_name, self).create(vals)

Write Method: Update records with given ids with the given field values.Takes a number of field
values, writes them to all the records in its recordset. Does not return anything

def write(self,vals):
 return super(class_name, self).write(vals)

Search method: Search for records based on a search domain.Takes a search domain, returns a
recordset of matching records. Can return a subset of matching records (offset and limit
parameters) and be ordered (order parameter)

self.search([('customer','=',True)])
self.env['res.partner'].search(['partner','=',True])

Browse method: Fetch records as objects allowing to use dot notation to browse fields and
relations.Takes a database id or a list of ids and returns a recordset, useful when record ids are
obtained from outside Odoo (e.g. round-trip through external system) or when calling methods in
the old API.

self.browse([7,8,9])
self.env['res.partner'].browse([7,8,9])

Exists methods: Returns a new recordset containing only the records which exist in the
database. Can be used to check whether a record (e.g. obtained externally) still exists.

records = records.exists()

ref method: Environment method returning the record matching a provided external id

self.env.ref('base.group_public')

ensure_one method: checks that the recordset is a singleton (only contains a single record),
raises an error otherwise

https://riptutorial.com/ 27

records.ensure_one()

Examples

Different types of ORM Methods

create()1.
write()2.
search()3.
browse()4.
exists()5.
ref()6.
ensure_one()7.

Read What are the ORM Methods and details? online: https://riptutorial.com/odoo-
8/topic/6150/what-are-the-orm-methods-and-details-

https://riptutorial.com/ 28

https://riptutorial.com/odoo-8/topic/6150/what-are-the-orm-methods-and-details-
https://riptutorial.com/odoo-8/topic/6150/what-are-the-orm-methods-and-details-

Credits

S.
No

Chapters Contributors

1
Getting started with
odoo-8

4444, Community, danidee, T.V.

2
Add CSS and
Javascript files to
Odoo module

George Daramouskas, T.V.

3
Configure Email -
Office 365 in Odoo

Don Chakkappan

4
Create Automated
Functions For Model

Dachi Darchiashvili

5
Custom widgets for
fields

T.V.

6
Fields used in Odoo
8

AKHIL MATHEW

7
How to activate
OpenERP Developer
Mode

AKHIL MATHEW, Emipro Technologies Pvt. Ltd., Gopakumar N
G, Mehedi Hasan

8

RPC using Odoo v8
API (Call Python
function from
JavaScript)

T.V.

9
What are the ORM
Methods and
details?

AKHIL MATHEW, Mani

https://riptutorial.com/ 29

https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3734244/danidee
https://riptutorial.com/contributor/6483386/t-v-
https://riptutorial.com/contributor/2583086/george-daramouskas
https://riptutorial.com/contributor/6483386/t-v-
https://riptutorial.com/contributor/2221895/don-chakkappan
https://riptutorial.com/contributor/6048944/dachi-darchiashvili
https://riptutorial.com/contributor/6483386/t-v-
https://riptutorial.com/contributor/5424153/akhil-mathew
https://riptutorial.com/contributor/5424153/akhil-mathew
https://riptutorial.com/contributor/4093735/emipro-technologies-pvt--ltd-
https://riptutorial.com/contributor/2341993/gopakumar-n-g
https://riptutorial.com/contributor/2341993/gopakumar-n-g
https://riptutorial.com/contributor/2176115/mehedi-hasan
https://riptutorial.com/contributor/6483386/t-v-
https://riptutorial.com/contributor/5424153/akhil-mathew
https://riptutorial.com/contributor/4178767/mani

	About
	Chapter 1: Getting started with odoo-8
	Remarks
	Versions
	Examples
	Setup

	Configuration:
	What is Odoo?

	Chapter 2: Add CSS and Javascript files to Odoo module
	Syntax
	Parameters
	Remarks
	Examples
	Store CSS and JS files correctly in Odoo module
	Option 1: [BACKEND] Add CSS and Javascript files to use in internal pages
	Option 2: [FRONTEND] Add CSS and Javascript files to use in a public website
	Option 3: [COMMON] Add CSS and Javascript files to use in all pages (backend & frontend)

	Chapter 3: Configure Email - Office 365 in Odoo
	Examples
	Configure E-Mail

	Chapter 4: Create Automated Functions For Model
	Introduction
	Examples
	First of all you need to create xml file for make function call
	Corresponding Python file

	Chapter 5: Custom widgets for fields
	Remarks
	Examples
	Custom widget for numeric fields to use in TreeView

	Chapter 6: Fields used in Odoo 8
	Introduction
	Parameters
	Remarks
	Examples
	Examples fields of Odoo 8

	Chapter 7: How to activate OpenERP Developer Mode
	Remarks
	Examples
	Activate developer mode
	Activating developer mode in Odoo 8
	Activate developer mode in Odoo 10

	Chapter 8: RPC using Odoo v8 API (Call Python function from JavaScript)
	Remarks
	Examples
	An example Odoo model to call methods from
	Odoo RPC examples

	Chapter 9: What are the ORM Methods and details?
	Remarks
	Examples
	Different types of ORM Methods

	Credits

