
oop

#oop

Table of Contents

About 1

Chapter 1: Getting started with oop 2

Remarks 2

Examples 2

Introduction 2

OOP Introduction 2

Intoduction 2

OOP Terminology 3

Java 3

C++ 3

Python 3

Java 4

C++ 4

Python 4

Functions vs Methods 4

Using the state of a class 5

Interfaces and Inheritance 6

Abstract Class 7

Chapter 2: Abstraction 9

Examples 9

Abstraction - Introduction 9

Access Modifiers 9

Chapter 3: Class 11

Examples 11

Introduction 11

Chapter 4: Diamond problem 12

Examples 12

Diamond Problem - Example 12

Chapter 5: Encapsulation 13

Examples 13

Information hiding 13

Chapter 6: Inheritance 14

Remarks 14

Examples 14

Inheritance - Definition 14

Inheritance Example - Consider below two classes 15

Chapter 7: Object 17

Examples 17

Introduction 17

Chapter 8: Polymorphism 18

Examples 18

Introduction 18

Method Overloading 18

Method Overriding 19

Credits 21

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: oop

It is an unofficial and free oop ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official oop.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/oop
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with oop

Remarks

Object-oriented programming (OOP) is a programming paradigm based on the concept of
"objects", which may contain data, in the form of fields, often known as attributes; and code, in the
form of procedures, often known as methods.

Examples

Introduction

OOP - Object Oriented Programming is a vastly used programming paradigm in these days. In
OOP, we model real world problems using Objects and there behaviors, in order to solve them,
programmatically.

There are four main OOP Concepts

Inheritance1.
Polymorphism2.
Abstraction3.
Encapsulation4.

These four concepts together are used to develop programs in OOP.

There are various languages which supprots Object Oriented Programming. Most popular
languages are

C++•
Java•
C#•
Python (Python isn't fully Object Oriented, but has most of the OOP features of it)•

OOP Introduction

Intoduction

Object Oriented Programming (mostly referred as OOP) is a programming paradigm for solving
problems.
The beauty an OO (object oriented) program, is that we think about the program as a bunch of
objects communicating with each other, instead of as a sequential script following specific orders.

There are lots of programming languages which support OOP, some of the popular are:

Java•

https://riptutorial.com/ 2

C++•
c#•

Python is also known to support OOP but it lacks a few properties.

OOP Terminology

The most basic term in OOP is a class.
A class is basically an object, which has a state and it works according to its state.

Another important term is an instance.
Think of a class as a template used to create instances of itself. The class is a template and the
instance(s) is the concrete objects.

An instance created from the class A is usually referred to as from the 'type A', exactly like the
type of 5 is int and the type of "abcd" is a string.

An example of creating an instance named insance1 of type (class) ClassA:

Java

ClassA instance1 = new ClassA();

C++

ClassA instance1;

or

ClassA *instance1 = new ClassA(); # On the heap

Python

instance1 = ClassA()

As you can see in the example above, in all cases the name of the class was mentioned and after
it there was empty parentheses (except for the C++ where if they are empty the parentheses can
be dropped). In these parentheses we can pass arguments to the constructor of our class.

A constructor is a method of a class which is called every time an instance is created. It can either
take arguments or not. If the programmer does not specify any constructor for a class they build,
an empty constructor will be created (a constructor which does nothing).
In most languages the constructor is defined as a method without defining its return type and with
the same name of the class (example in a few sections).

https://riptutorial.com/ 3

An example of creating an instance named b1 of type (class) ClassB. The constructor
of ClassB takes one argument of type int:

Java

ClassA instance1 = new ClassA(5);

or

int i = 5;
ClassA instance1 = new ClassA(i);

C++

ClassA instance1(5);

Python

instance1 = ClassA(5)

As you can see, the process of creating an instance is very similar to the process of calling a
function.

Functions vs Methods

Both functions and methods are very similar, but in Object Oriented Design (OOD) they each have
their own meaning.
A method is an operation performed on an instance of a class. The method itself usually uses the
state of the instance to operate.
Meanwhile, a function belongs to a class and not to a specific instance. This means it does not
use the state of the class or any data stored in an instance.

From now on we will show our examples only in Java since OOP is very clear in this language, but
the same principles work in any other OOP language.

In Java, a function has the word static in its definition, like so:

// File's name is ClassA
public static int add(int a, int b) {
 return a + b;
}

This means you can call it from anywhere in the script.

// From the same file

https://riptutorial.com/ 4

System.out.println(add(3, 5));

// From another file in the same package (or after imported)
System.out.println(ClassA.add(3, 5));

When we call the function from another file we use the name of the class (in Java this is also the
name of the file) it belongs to, this gives the intuition that the function belongs to the class and not
any of its instances.

In contrast, we can define a mehod in ClassA like so:

// File's name is ClassA
public int subtract(int a, int b){
 return a - b;
}

After this decleration we can call this method like so:

ClassA a = new ClassA();
System.out.println(a.subtract(3, 5));

Here we needed to create an instance of ClassA in order to call its method subtract. Notice we
CAN'T do the following:

System.out.println(ClassA.subtract(3, 5));

This line will produce a compilation error complaining we called this non-static method without an
instance.

Using the state of a class

Let's suppose we want to implement our subtract method again, but this time we always want to
subtract the same number (for each instance). We can create the following class:

class ClassB {

 private int sub_amount;

 public ClassB(int sub_amount) {
 this.sub_amount = sub_amount;
 }

 public int subtract(int a) {
 return a - sub_amount;
 }

 public static void main(String[] args) {
 ClassB b = new ClassB(5);
 System.out.println(b.subtract(3)); // Ouput is -2
 }

https://riptutorial.com/ 5

}

When we run this code, a new instance named b of class ClassB is created and its constructor is
fed with the value 5.
The constructor now takes the given sub_amount and stores it as its own private field, also called
sub_amount (this convention is very known in Java, to name the arguments the same as the
fields).
After that, we print to the console the result of calling the method subtract on b with the value of 3.

Notice that in the implementation of subtract we don't use this. like in the constructor.
In Java, this only needs to be written when there is another variable with the same name defined
in that scope. The same works with Python's self.
So when we use sub_amount in subtract, we reference the private field which is different for each
class.

Another example to emphasize.
Let's just change the main function in the above code to the following:

ClassB b1 = new ClassB(1);
ClassB b2 = new ClassB(2);

System.out.println(b1.subtract(10)); // Output is 9
System.out.println(b2.subtract(10)); // Output is 8

As we can see, b1 and b2 are independent and each have their own state.

Interfaces and Inheritance

An interface is a contract, it defines which methods a class will have and therefore its capabilities.
An interface does not have an implementation, it only defined what needs to be done.
An example in Java would be:

interface Printalbe {
 public void print();
}

The Printalbe interface defines a method called print but it doesn't give its implementation (pretty
weird for Java). Every class which declares itself as implementing this interface must provide an
implementation to the draw method. For example:

class Person implements Printalbe {

 private String name;

 public Person(String name) {
 this.name = name;
 }

https://riptutorial.com/ 6

 public void print() {
 System.out.println(name);
 }
}

If Person would declare itself as implementing Drawable but didn't provide an implementation to
print, there would be a compilation error and the program wouldn't compile.

Inheritance is a term which points to a class extending another class. For example, let's say we
now have a person who has an age. One way to implement a person like that would be to copy
the Person class and write a new class called AgedPerson which has the same fields and
methods but it has another property -age.
This would be awful since we duplicate our entire code just to add a simple feature to our class.
We can use inheritance to inherit from Person and thus get all of its features, then enhance them
with our new feature, like so:

class AgedPerson extends Person {

 private int age;

 public AgedPerson(String name, int age) {
 super(name);
 this.age = age;
 }

 public void print() {
 System.out.println("Name: " + name + ", age:" + age);
 }
}

There are a few new things going on:

We used the saved word extends to indicate we are inheriting from Person (and also its
implementation to Printable, so we do not need to declare implementing Printable again).

•

We used the save word super to call Person's constructor.•
We overridden the print method of Person with a new one.•

This is getting pretty Java technical so I will not go any deeper into this topic. But I will mention
that there a lot of extreme cases that should be learned about inheritance and interfaces before
starting to use them. For example which methods and functions are inherited? What happens to
private/public/protected fields when inheriting from a class? and so on.

Abstract Class

An abstract class is pretty advanced term in OOP which describes a combination of both
interfaces and inheritance. It lets you write a class which has both implemented and
unimplemented methods/functions in. In Java this is done by using the keyword abstract and I
won't explain it more that a quick example:

abstract class AbstractIntStack {

https://riptutorial.com/ 7

 abstract public void push(int element);

 abstract public void pop();

 abstract public int top();

 final public void replaceTop(int element) {
 pop();
 push(element);
 }
}

Note: the final keyword states that you can't override this method when you inherit from this class.
If a class is declared final, then no class can inherit from it at all.

Read Getting started with oop online: https://riptutorial.com/oop/topic/5081/getting-started-with-
oop

https://riptutorial.com/ 8

https://riptutorial.com/oop/topic/5081/getting-started-with-oop
https://riptutorial.com/oop/topic/5081/getting-started-with-oop

Chapter 2: Abstraction

Examples

Abstraction - Introduction

Abstraction is one of the main concepts in Object Oriented Programming (OOP). This is the
process of hiding the implementation details for the outsiders while showing only essential details.
In another words, Abstraction is a technique to arrange the complexity of a program.

There are two basic type of abstraction:

Control abstraction

This is done using sub-routines and control flow. We can call another
function/method/routine (sub-routine) from a function/method to do a specific task, where
that sub-routine is abstract.

1.

Data abstraction

This is done through various data structures and their implementations. We can create our
own data structures to store our data, while keeping the implementation abstract.

2.

In OOP we use mix of control and function abstraction.

Access Modifiers

Access modifiers are used to control the access to an object or to a function/method. This is a
main part of the concept of Abstraction.

Different programming languages use different access modifiers. Here are some examples:

Java

Java has 4 access modifiers.

private - These attributes can be accessed only inside the class.1.
protected - These attributes can be accessed by sub classes and classes from the
same package.

2.

package - These attributes can be accessed by the classes within the same package
only.

3.

public - These attributes can be accessed by everybody.4.

•

C++

C++ has 3 access modifiers.

private - These attributes can be accessed only inside the class.1.

•

https://riptutorial.com/ 9

protected - These attributes can be accessed by derived classes.2.
public - These attributes can be accessed by everybody.3.

C#

C# has 5 access modifiers

private - These attributes can be accessed only inside the class.1.
protected internal - These attributes can be accessed by same assembly and derived
classes.

2.

protected - These attributes can be accessed by derived classes.3.
public internal - These attributes can be accessed by the classes within the same
assembly.

4.

public - These attributes can be accessed by everybody.5.

•

Read Abstraction online: https://riptutorial.com/oop/topic/7324/abstraction

https://riptutorial.com/ 10

https://riptutorial.com/oop/topic/7324/abstraction

Chapter 3: Class

Examples

Introduction

Class is the piece of code where we define the attributes and/or behaviors of an object. You can
define variables, constants, methods and constructors to the object, inside the class. In another
words, class is the blueprint of an object.

Let's see a sample class in Java, which defines a (simple) Car:

public class Car {
 private Engine engine;
 private Body body;
 private Tire [] tire;
 private Interior interior;

 // Constructor
 public Car (Engine engine, Body body, Tire[] tires, Interior interior) {

 }

 // Another constructor
 public Car () {

 }

 public void drive(Direction d) {
 // Method to drive
 }

 public void start(Key key) {
 // Start
 }
}

This is just for an example. You can model real world object like this, as per your requirement.

Read Class online: https://riptutorial.com/oop/topic/7374/class

https://riptutorial.com/ 11

https://riptutorial.com/oop/topic/7374/class

Chapter 4: Diamond problem

Examples

Diamond Problem - Example

Diamond problem is a common problem occurred in Object Oriented Programming, while using
multiple-inheritance.

Consider the case where class C, is inherited from class A and class B. Suppose that both class A
and class B have a method called foo().

Then when we are calling the method foo(), compiler cannot identify the exact method we are
trying to use

foo() from class A•
foo() from class B•

This is called the diamond problem basically. There are some variants of this problem. To avoid
this, there are multiple approaches. Java doesn't allow multiple inheritance. Hence the problem is
avoided. But C++ is allowing multiple inheritance, therefore you must be careful to use of multiple
inheritance.

Read Diamond problem online: https://riptutorial.com/oop/topic/7319/diamond-problem

https://riptutorial.com/ 12

https://riptutorial.com/oop/topic/7319/diamond-problem

Chapter 5: Encapsulation

Examples

Information hiding

The state of an object at a given time is represented by the information that it holds at that point. In
an OO language, the state is implemented as member variables.

In a properly designed object, the state can be changed only by means of calls to its methods and
not by direct manipulation of its member variables. This is achieved by providing public methods
that operate on the values of private member variables. The hiding of information in this manner is
known as encapsulation.

Therefore, encapsulation ensures that private information is not exposed and cannot be modified
except through calls to accessors and methods, respectively.

In the following example, you cannot set an Animal to be no longer hungry by changing the hungry
private field; instead, you have to invoke the method eat(), which alters the state of the Animal by
setting the hungry flag to false.

public class Animal {
 private boolean hungry;

 public boolean isHungry() {
 return this.hungry;
 }

 public void eat() {
 this.hungry = false;
 }
}

Read Encapsulation online: https://riptutorial.com/oop/topic/5958/encapsulation

https://riptutorial.com/ 13

https://riptutorial.com/oop/topic/5958/encapsulation

Chapter 6: Inheritance

Remarks

Note: Multi-level inheritance is allowed in Java but not multiple inheritance. Find out more at
http://beginnersbook.com/2013/04/oops-concepts/

Examples

Inheritance - Definition

Inheritance is one of the main concepts in Object Oriented Programming (OOP). Using
inheritance, we can model a problem properly and we can reduce the number of lines we have to
write. Let's see inheritance using a popular example.

Consider you have to model animal kingdom (Simplified animal kingdom, of course. Biologists,
pardon me) using OOP. There are a lots of species of animals, some have unique features, while
some share same features.

There a are main families of animals. Let's say, Mammals, Reptiles.

Then we have children of those families. For an example,

Cat, Dog, and Lion are mammals.•
Cobra and Python are reptiles.•

Every animal shares some basic features like eat, drink, move. Hence we can say that we can have
a parent called Animal from which they can inherit those basic features.

Then those families also shares some features. For an example reptiles use crawling to move.
Every mammal is fed milk at early stages of life.

Then there are some unique features for each and every animal.

Consider if we are to create these animal species separately. We have to write same code again
and again in every animal species. Instead of that, we use inheritance. We can model the Animal
Kingdom as follows:

We can have parent Object called Animal, which have basic features of all the animals.•
Mammal and Reptile (of course the other animal families also) objects with their common
features while inheriting the basic features from parent object, Animal.

•

Animal species objects: Cat and Dog inherits from Mammalobject, Cobra and Python inherits from
Reptile object, and so on.

•

In this form we can reduce the code we write, as we do not need to define basic features of
Animals in each animal species, as we can define them in the Animal object and then inherit them.
Same thing goes with the animal families.

https://riptutorial.com/ 14

http://beginnersbook.com/2013/04/oops-concepts/

Inheritance Example - Consider below two classes

Teacher Class:

class Teacher {
 private String name;
 private double salary;
 private String subject;
 public Teacher (String tname) {
 name = tname;
 }
 public String getName() {
 return name;
 }
 private double getSalary() {
 return salary;
 }
 private String getSubject() {
 return subject;
 }
 }

OfficeStaff Class:

class OfficeStaff{
 private String name;
 private double salary;
 private String dept;
 public OfficeStaff (String sname) {
 name = sname;
 }
 public String getName() {
 return name;
 }
 private double getSalary() {
 return salary;
 }
 private String getDept () {
 return dept;
 }
}

Both the classes share few common properties and methods. Thus repetition of code.1.
Creating a class which contains the common methods and properties.2.
The classes Teacher and OfficeStaff can inherit the all the common properties and methods
from below Employee class.

3.

Employee Class:

class Employee{
 private String name;
 private double salary;
 public Employee(String ename){
 name=ename;
 }
 public String getName(){

https://riptutorial.com/ 15

 return name;
 }
 private double getSalary(){
 return salary;
 }
}

Add individual methods and properties to it Once we have created a super class that defines
the attributes common to a set of objects, it can be used to create any number of more
specific subclasses

4.

Any similar classes like Engineer, Principal can be generated as subclasses from the
Employee class.

5.

The parent class is termed super class and the inherited class is the sub class6.
A sub class is the specialized version of a super class – It inherits all of the instance
variables and methods defined by the super class and adds its own, unique elements.

7.

Although a sub class includes all of the members of its super class it can not access those
members of the super class that have been declared as private.

8.

A reference variable of a super class can be assigned to a reference to any sub class
derived from that super class i.e. Employee emp = new Teacher();

9.

Read Inheritance online: https://riptutorial.com/oop/topic/7321/inheritance

https://riptutorial.com/ 16

https://riptutorial.com/oop/topic/7321/inheritance

Chapter 7: Object

Examples

Introduction

Object is the base module in the Object Oriented Programming (OOP). An Object can be a
variable, data structure (like an array, map, etc), or even a function or method. In OOP, we model
real world objects like animals, vehicles, etc.

An object can be defined in a class, which can be defined as the blueprint of the object. Then we
can create instances of that class, which we call objects. We can use these objects, their methods
and variables in our code after.

Read Object online: https://riptutorial.com/oop/topic/7377/object

https://riptutorial.com/ 17

https://riptutorial.com/oop/topic/7377/object

Chapter 8: Polymorphism

Examples

Introduction

Polymorphism is one of the basic concepts in OOP (Object Oriented Programming). Main idea
of the polymorphism is that an object have the ability to take on different forms. To achieve that
(polymorphism), we have two main approaches.

Method overloading

Occures when there are two or more methods with the same name, with different input
parameters. The return type should be the same for all the methods with the
same name

•

1.

Method overriding

Occures when child object uses same method definition (same name with same
parameters), but have different implementations.

•

2.

Using these two approaches we can use the same method/function to behave differently. Let's see
more details on this in following examples.

Method Overloading

Method overloading is the way of using polymorphism inside a class. We can have two or more
methods inside the same class, with different input parameters.

Difference of input parameters can be either:

Number of parameters•
Type of parameters (Data type)•
Order of the parameters•

Let's take a look at them separately (These examples in java, as I am more familiar with it - Sorry
about that):

Number of Parameters

 public class Mathematics {
 public int add (int a, int b) {
 return (a + b);
 }

 public int add (int a, int b, int c) {
 return (a + b + c);
 }

1.

https://riptutorial.com/ 18

 public int add (int a, int b, int c, int c) {
 return (a + b + c + d);
 }
 }

Look carefully, you can see the method's return type is the same - int, but theree of these
methods having different number of inputs. This is called as method over loading with
different number of parameters.

PS: This is a just an example, there's no need to define add functions like this.

Type of parameters

public class Mathematics {
 public void display (int a) {
 System.out.println("" + a);
 }

 public void display (double a) {
 System.out.println("" + a);
 }

 public void display (float a) {
 System.out.println("" + a);
 }
}

Note that every method has the same name and same return type, while they have different
input data types.

PS: This example is only for explaining purpose only.

2.

Order of the parameters

public class Mathematics {
 public void display (int a, double b) {
 System.out.println("Numbers are " + a + " and " + b);
 }

 public void display (double a, int b) {
 System.out.println("Numbers are " + a + " and " + b);
 }
}

PS: This example is also for explaining purpose only.

3.

Method Overriding

Method overriding is the way of using polymorphism between classes. if one class is inherited
from another, the former (sub class) can override the latter's (super class's) methods, and change
the implementation.

https://riptutorial.com/ 19

this is used where the super class defines the more general implementation of the method while
the sub class uses a more specific one.

Consider following example:

We have a class for Mammals:

class Mammal {
 void whoIam () {
 System.out.println("I am a Mammal");
 }
}

Then we have a class for Dog, which is a Mammal:

class Dog extends Mammal {
 @Override
 void whoIam () {
 super.whoIam();
 System.out.println("I am a Dog!");
 }
}

In this example, we define whoIam() method in Mammal class, where the mammal say it is a Mammal.
But this is a general term, as there are a lot of Mammals out there. Then we can inherit Dog class
from Mammal class, as Dog is a Mammal. But, to be more specific, Dog is a Dog as well as a
Mammal. Hence, Dog should say, I am a Mammal and also I am a Dog. Hence we can Override the
whoIam() method in super class (Mammal class, that is) from sub class (the Dog class).

We can also call the super class's method using super.whoIam() in Java. Then, the Dog will behave
like a Dog, while also behaving like a Mammal.

Read Polymorphism online: https://riptutorial.com/oop/topic/7323/polymorphism

https://riptutorial.com/ 20

https://riptutorial.com/oop/topic/7323/polymorphism

Credits

S.
No

Chapters Contributors

1
Getting started with
oop

Alon Alexander, Community, James, Thisaru Guruge

2 Abstraction davioooh, Thisaru Guruge

3 Class Thisaru Guruge

4 Diamond problem Thisaru Guruge

5 Encapsulation davioooh, jeyoung

6 Inheritance SRENG Khorn, Thisaru Guruge

7 Object Thisaru Guruge

8 Polymorphism Fantasy Pollock, murthy, Thisaru Guruge

https://riptutorial.com/ 21

https://riptutorial.com/contributor/6338083/alon-alexander
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/359034/james
https://riptutorial.com/contributor/3615862/thisaru-guruge
https://riptutorial.com/contributor/1061499/davioooh
https://riptutorial.com/contributor/3615862/thisaru-guruge
https://riptutorial.com/contributor/3615862/thisaru-guruge
https://riptutorial.com/contributor/3615862/thisaru-guruge
https://riptutorial.com/contributor/1061499/davioooh
https://riptutorial.com/contributor/1342582/jeyoung
https://riptutorial.com/contributor/2925028/sreng-khorn
https://riptutorial.com/contributor/3615862/thisaru-guruge
https://riptutorial.com/contributor/3615862/thisaru-guruge
https://riptutorial.com/contributor/4784634/fantasy-pollock
https://riptutorial.com/contributor/6067915/murthy
https://riptutorial.com/contributor/3615862/thisaru-guruge

	About
	Chapter 1: Getting started with oop
	Remarks
	Examples
	Introduction
	OOP Introduction

	Intoduction
	OOP Terminology
	Java
	C++
	Python
	Java
	C++
	Python

	Functions vs Methods
	Using the state of a class
	Interfaces and Inheritance
	Abstract Class

	Chapter 2: Abstraction
	Examples
	Abstraction - Introduction
	Access Modifiers

	Chapter 3: Class
	Examples
	Introduction

	Chapter 4: Diamond problem
	Examples
	Diamond Problem - Example

	Chapter 5: Encapsulation
	Examples
	Information hiding

	Chapter 6: Inheritance
	Remarks
	Examples
	Inheritance - Definition
	Inheritance Example - Consider below two classes

	Chapter 7: Object
	Examples
	Introduction

	Chapter 8: Polymorphism
	Examples
	Introduction
	Method Overloading
	Method Overriding

	Credits

