
openmp

#openmp

Table of Contents

About 1

Chapter 1: Getting started with openmp 2

Remarks 2

Versions 2

Examples 2

Compilation 2

Parallel hello world using OpenMP 3

Work Sharing construct - Example of For loop 3

Reduction Example 4

Chapter 2: Conditional parallel execution 5

Examples 5

Conditional clauses in OpenMP parallel regions 5

Chapter 3: Irregular OpenMP parallelism 6

Remarks 6

Examples 6

Parallel processing of a c++ list container using OpenMP tasks 6

Recursive calculation for pi using OpenMP tasks 7

Chapter 4: Loop parallelism in OpenMP 9

Parameters 9

Remarks 9

Examples 10

Typical example in C 10

Same example in Fortran 10

Compiling and running the examples 11

Addition of two vectors using OpenMP parallel for construct 11

Chapter 5: OpenMP reductions 13

Remarks 13

Examples 13

Approximation of PI hand-crafting the #pragma omp reduction 13

Approximation of PI using reductions based on #pragma atomic 13

Approximation of PI using reductions based on #pragma omp critical 14

Approximation of PI using #pragma omp reduction clause 14

Chapter 6: OpenMP reductions 15

Examples 15

Approximation of PI using #pragma omp reduction clause 15

Approximation of PI using reductions based on #pragma omp critical 15

Approximation of PI using reductions based on #pragma atomic 15

Approximation of PI hand-crafting the #pragma omp reduction 16

Chapter 7: Simple parallel example 17

Syntax 17

Remarks 17

Examples 17

Parallel hello world using OpenMP 17

Credits 19

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: openmp

It is an unofficial and free openmp ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official openmp.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/openmp
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with openmp

Remarks

OpenMP (Open MultiProcessing) is a parallel programming model based on compiler directives
which allows application developers to incrementally add parallelism to their application codes.

OpenMP API specification for parallel programming provides an application programming interface
(API) that supports multi-platform shared memory multiprocessing programming in C, C++, and
Fortran, on most platforms. It consists of a set of compiler directives, library routines, and
environment variables that influence run-time behavior.

Since OpenMP focuses on the parallelism within a node (shared memory multiprocessing) it can
be combined with message-passing programming models, such as MPI, to execute on multiple
nodes.

Versions

Version Language Release date

4.5 C/C++/Fortran 2015-11-01

4.0 C/C++/Fortran 2013-07-01

3.1 C/C++/Fortran 2011-07-01

3.0 C/C++/Fortran 2008-05-01

2.5 C/C++/Fortran 2005-05-01

2.0c C/C++ 2002-03-01

2.0f Fortran 2000-11-01

1.0c C/C++ 1998-10-01

1.0f Fortran 1997-10-01

Examples

Compilation

There are many compilers that support different versions of the OpenMP specification. OpenMP
maintains a list here with the compiler that support it and the supported version. In general, to
compile (and link) an application with OpenMP support you need only to add a compile flag and if

https://riptutorial.com/ 2

http://www.openmp.org/mp-documents/openmp-4.5.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec25.pdf
http://www.openmp.org/mp-documents/cspec20.pdf
http://www.openmp.org/mp-documents/fspec20.pdf
http://www.openmp.org/mp-documents/cspec10.pdf
http://www.openmp.org/mp-documents/fspec10.pdf
http://openmp.org/wp/openmp-compilers

you use the OpenMP API you need to include the OpenMP header (omp.h). While the header file
has a fixed name, the compile flag depends on the compiler. The following is a non-exhaustive list
of compilers and the flag that enables OpenMP.

GCC (including gcc, g++ and gfortran) : -fopenmp•
LLVM: -fopenmp•
Intel compiler-suite (including icc, icpc and ifort) : -qopenmp (and -fopenmp for compatibility with
GCC/LLVM)

•

IBM XL compiler-suite (including xlc, xlC and xlf) : -xlsmp=omp•
PGI compiler-suite (including pgcc pgc++ pgfortran) : '-mp'•

Parallel hello world using OpenMP

#include <omp.h>
#include <stdio.h>

int main (int argc, char *argv[])
{
 #pragma omp parallel
 {
 printf ("Hello world! I'm thread %d out of %d threads.\n",
 omp_get_thread_num(), omp_get_num_threads());
 }
 return 0;
}

This code simply creates a team of threads (according to the environment variable OMP_NUM_THREADS
- and if not defined will create one per logical core on the system) and each thread will identify
itself besides printing the typical Hello world message.

Work Sharing construct - Example of For loop

double res[MAX]; int i;
#pragma omp parallel
{
 #pragma omp for
 for (i=0;i< MAX; i++) {
 res[i] = huge();
 }
}

The for loop will be executed in parallel. huge() is some method which can take too long to get
execute. OpenMP supports a shortcut to write the above code as :

double res[MAX]; int i;
#pragma omp parallel for
for (i=0;i< MAX; i++) {
 res[i] = huge();
}

We can also have a schedule clause which effects how loop iterations are mapped to threads. For
example:

https://riptutorial.com/ 3

#pragma omp parallel
#pragma omp for schedule(static)
for(i=0;I<N;i++) {
 a[i] = a[i] + b[i];
}

Different styles of scheduling are:

schedule(static [,chunk])
Deal-out blocks of iterations of size “chunk” to each thread.
If not specified: allocate as evenly as possible to the available threads

schedule(dynamic[,chunk])
Each thread grabs “chunk” iterations off a queue until all iterations have been handled.

schedule(guided[,chunk])
Threads dynamically grab blocks of iterations. The size of the block starts large and shrinks down
to size “chunk” as the calculation proceeds.

schedule(runtime)
Schedule and chunk size taken from the OMP_SCHEDULE environment variable.

Reduction Example

#include <omp.h>
void main ()
{
 int i;
 double ZZ, func(), res=0.0;

 #pragma omp parallel for reduction(+:res) private(ZZ)
 for (i=0; i< 1000; i++){
 ZZ = func(I);
 res = res + ZZ;
 }
}

In the last line: Actually added to a private copy, then combined after the loop. Compiler takes care
of the details.

Read Getting started with openmp online: https://riptutorial.com/openmp/topic/4354/getting-
started-with-openmp

https://riptutorial.com/ 4

https://riptutorial.com/openmp/topic/4354/getting-started-with-openmp
https://riptutorial.com/openmp/topic/4354/getting-started-with-openmp

Chapter 2: Conditional parallel execution

Examples

Conditional clauses in OpenMP parallel regions

#include <omp.h>
#include <stdio.h>

int main (void)
{
 int t = (0 == 0); // true value
 int f = (1 == 0); // false value

 #pragma omp parallel if (f)
 { printf ("FALSE: I am thread %d\n", omp_get_thread_num()); }

 #pragma omp parallel if (t)
 { printf ("TRUE : I am thread %d\n", omp_get_thread_num()); }

 return 0;
}

Its output is:

$ OMP_NUM_THREADS=4 ./test
FALSE: I am thread 0
TRUE : I am thread 0
TRUE : I am thread 1
TRUE : I am thread 3
TRUE : I am thread 2

Read Conditional parallel execution online: https://riptutorial.com/openmp/topic/6928/conditional-
parallel-execution

https://riptutorial.com/ 5

https://riptutorial.com/openmp/topic/6928/conditional-parallel-execution
https://riptutorial.com/openmp/topic/6928/conditional-parallel-execution

Chapter 3: Irregular OpenMP parallelism

Remarks

A common pitfall is to believe that all threads of a parallel region should instantiate (create) tasks
but this is not typically the case unless you want to create as many tasks as the number of threads
times the number of elements to process. Therefore, in OpenMP task codes you'll find something
similar to

#pragma omp parallel
#pragma omp single
...
 #pragma omp task
 { code for a given task; }
...

Examples

Parallel processing of a c++ list container using OpenMP tasks

#include <omp.h>
#include <unistd.h>
#include <iostream>
#include <list>

static void processElement (unsigned n)
{
 // Tell who am I. The #pragma omp critical ensures that
 // only one thread sends data to std::cout
 #pragma omp critical
 std::cout <<
 "Thread " << omp_get_thread_num() << " processing element " << n
 << std::endl;

 // Simulate some work
 usleep (n*1000);
}

int main (void)
{
 std::list<unsigned> lst;

 // Fill the list
 for (unsigned u = 0; u < 16; ++u)
 lst.push_back (1+u);

 // Now process each element of the list in parallel

 #pragma omp parallel // Create a parallel region
 #pragma omp single // Only one thread will instantiate tasks
 {
 for (auto element : lst)
 {

https://riptutorial.com/ 6

 #pragma omp task firstprivate (element)
 processElement (element);
 }

 // Wait for all tasks to be finished
 #pragma omp taskwait
 }

 return 0;
}

This example simulates the processing of a STL list (named lst in the code) in parallel through the
OpenMP task constructs (using the #pragma omp task directive). The example creates/instantiates
one OpenMP task for each element in lst and the OpenMP threads execute the tasks as soon as
they're ready to run.

$ OMP_NUM_THREADS=4 ./a.out
Thread 0 processing element 16
Thread 3 processing element 3
Thread 2 processing element 1
Thread 1 processing element 2
Thread 2 processing element 4
Thread 1 processing element 5
Thread 3 processing element 6
Thread 2 processing element 7
Thread 1 processing element 8
Thread 3 processing element 9
Thread 2 processing element 10
Thread 1 processing element 11
Thread 0 processing element 15
Thread 3 processing element 12
Thread 2 processing element 13
Thread 1 processing element 14

Recursive calculation for pi using OpenMP tasks

The code below calculates the value of PI using a recursive approach. Modify the
MAX_PARALLEL_RECURSIVE_LEVEL value to determine at which recursion depth stop creating tasks. With
this approach to create parallelism out of recursive applications: the more tasks you create, the
more parallel tasks created but also the lesser work per task. So it is convenient to experiment
with the application to understand at which level it creating further tasks do not benefit in terms of
performance.

#include <stdio.h>
#include <omp.h>

double pi_r (double h, unsigned depth, unsigned maxdepth, unsigned long long begin, unsigned
long long niters)
{
 if (depth < maxdepth)
 {
 double area1, area2;

 // Process first half
 #pragma omp task shared(area1)

https://riptutorial.com/ 7

 area1 = pi_r (h, depth+1, maxdepth, begin, niters/2-1);

 // Process second half
 #pragma omp task shared(area2)
 area2 = pi_r (h, depth+1, maxdepth, begin+niters/2, niters/2);

 #pragma omp taskwait

 return area1+area2;
 }
 else
 {

 unsigned long long i;
 double area = 0.0;

 for (i = begin; i <= begin+niters; i++)
 {
 double x = h * (i - 0.5);
 area += (4.0 / (1.0 + x*x));
 }

 return area;
 }
}

double pi (unsigned long long niters)
{
 double res;
 double h = 1.0 / (double) niters;

 #pragma omp parallel shared(res)
 {
#define MAX_PARALLEL_RECURSIVE_LEVEL 4

 #pragma omp single
 res = pi_r (h, 0, MAX_PARALLEL_RECURSIVE_LEVEL, 1, niters);
 }
 return res * h;
}

int main (int argc, char *argv[])
{
#define NITERS (100*1000*1000ULL)

 printf ("PI (w/%d iters) is %lf\n", NITERS, pi(NITERS));

 return 0;
}

Read Irregular OpenMP parallelism online: https://riptutorial.com/openmp/topic/6930/irregular-
openmp-parallelism

https://riptutorial.com/ 8

https://riptutorial.com/openmp/topic/6930/irregular-openmp-parallelism
https://riptutorial.com/openmp/topic/6930/irregular-openmp-parallelism

Chapter 4: Loop parallelism in OpenMP

Parameters

Clause Parameter

private Comma-separated list of private variables

firstprivate Like private, but initialized to the value of the variable before entering the loop

lastprivate
Like private, but the variable will get the value corresponding to the last
iteration of the loop upon exit

reduction
reduction operator : comma-separated list of corresponding reduction
variables

schedule
static, dynamic, guided, auto or runtime with an optional chunk size after a coma
for the 3 former

collapse Number of perfectly nested loops to collapse and parallelize together

ordered
Tells that some parts of the loop will need to be kept in-order (these parts will
be specifically identified with some ordered clauses inside the loop body)

nowait Remove the implicit barrier existing by default at the end of the loop construct

Remarks

The meaning of the schedule clause is as follows:

static[,chunk]: Distribute statically (meaning that the distribution is done before entering the
loop) the loop iterations in batched of chunk size in a round-robin fashion. If chunk isn't
specified, then the chunks are as even as possible and each thread gets at most one of
them.

•

dynamic[,chunk]: Distribute the loop iterations among the threads by batches of chunk size
with a first-come-first-served policy, until no batch remains. If not specified, chunk is set to 1

•

guided[,chunk]: Like dynamic but with batches which sizes get smaller and smaller, down to 1•
auto: Let the compiler and/or run time library decide what is best suited•
runtime: Deffer the decision at run time by mean of the OMP_SCHEDULE environment variable. If
at run time the environment variable is not defined, the default scheduling will be used

•

The default for schedule is implementation define. On many environments it is static, but can
also be dynamic or could very well be auto. Therefore, be careful that your implementation doesn't
implicitly rely on it without explicitly setting it.

In the above examples, we used the fused form parallel for or parallel do. However, the loop

https://riptutorial.com/ 9

construct can be used without fusing it with the parallel directive, in the form of a #pragma omp for
[...] or !$omp do [...] standalone directive within a parallel region.

For the Fortran version only, the loop index variable(s) of the parallized loop(s) is (are) always
private by default. There is therefore no need of explicitly declaring them private (although doing
so isn't a error).
For the C and C++ version, the loop indexes are just like any other variables. Therefore, if their
scope extends outside of the parallelized loop(s) (meaning if they are not declared like for (int i
= ...) but rather like int i; ... for (i = ...) then they have to be declared private.

Examples

Typical example in C

#include <stdio.h>
#include <math.h>
#include <omp.h>

#define N 1000000

int main() {
 double sum = 0;

 double tbegin = omp_get_wtime();
 #pragma omp parallel for reduction(+: sum)
 for (int i = 0; i < N; i++) {
 sum += cos(i);
 }
 double wtime = omp_get_wtime() - tbegin;

 printf("Computing %d cosines and summing them with %d threads took %fs\n",
 N, omp_get_max_threads(), wtime);

 return sum;
}

In this example, we just compute 1 million cosines and sum their values in parallel. We also time
the execution to see whether the parallelization has any effect on the performance. Finally, since
we do measure the time, we have to make sure that the compiler won't optimize away the work
we've done, so we pretend using the result by just returning it.

Same example in Fortran

program typical_loop
 use omp_lib
 implicit none
 integer, parameter :: N = 1000000, kd = kind(1.d0)
 real(kind = kd) :: sum, tbegin, wtime
 integer :: i

 sum = 0

 tbegin = omp_get_wtime()

https://riptutorial.com/ 10

 !$omp parallel do reduction(+: sum)
 do i = 1, N
 sum = sum + cos(1.d0 * i)
 end do
 !$omp end parallel do
 wtime = omp_get_wtime() - tbegin

 print "('Computing ', i7, ' cosines and summing them with ', i2, &
 & ' threads took ', f6.4,'s')", N, omp_get_max_threads(), wtime

 if (sum > N) then
 print *, "we only pretend using sum"
 end if
end program typical_loop

Here again we compute and accumulate 1 million cosines. We time the loop and to avoid
unwanted compiler optimization-away of it, we pretend using the result.

Compiling and running the examples

On a 8 cores Linux machine using GCC version 4.4, the C codes can be compiled and run the
following way:

$ gcc -std=c99 -O3 -fopenmp loop.c -o loopc -lm
$ OMP_NUM_THREADS=1 ./loopc
Computing 1000000 cosines and summing them with 1 threads took 0.095832s
$ OMP_NUM_THREADS=2 ./loopc
Computing 1000000 cosines and summing them with 2 threads took 0.047637s
$ OMP_NUM_THREADS=4 ./loopc
Computing 1000000 cosines and summing them with 4 threads took 0.024498s
$ OMP_NUM_THREADS=8 ./loopc
Computing 1000000 cosines and summing them with 8 threads took 0.011785s

For the Fortran version, it gives:

$ gfortran -O3 -fopenmp loop.f90 -o loopf
$ OMP_NUM_THREADS=1 ./loopf
Computing 1000000 cosines and summing them with 1 threads took 0.0915s
$ OMP_NUM_THREADS=2 ./loopf
Computing 1000000 cosines and summing them with 2 threads took 0.0472s
$ OMP_NUM_THREADS=4 ./loopf
Computing 1000000 cosines and summing them with 4 threads took 0.0236s
$ OMP_NUM_THREADS=8 ./loopf
Computing 1000000 cosines and summing them with 8 threads took 0.0118s

Addition of two vectors using OpenMP parallel for construct

void parallelAddition (unsigned N, const double *A, const double *B, double *C)
{
 unsigned i;

 #pragma omp parallel for shared (A,B,C,N) private(i) schedule(static)
 for (i = 0; i < N; ++i)
 {
 C[i] = A[i] + B[i];

https://riptutorial.com/ 11

 }
}

This example adds two vector (A and B into C) by spawning a team of threads (specified by the
OMP_NUM_THREADS environtment variable, for instance) and assigning each thread a chunk of work (in
this example, assigned statically through the schedule(static) expression).

See remarks section with respect to the private(i) optionality.

Read Loop parallelism in OpenMP online: https://riptutorial.com/openmp/topic/5657/loop-
parallelism-in-openmp

https://riptutorial.com/ 12

https://riptutorial.com/openmp/topic/5657/loop-parallelism-in-openmp
https://riptutorial.com/openmp/topic/5657/loop-parallelism-in-openmp

Chapter 5: OpenMP reductions

Remarks

All 4 version are valid, but they exemplify different aspects of a reduction.

By default, the first construct using the reduction clause must be preferred. This is only if some
issues are explicitly identified that any of the 3 alternatives might be explored.

Examples

Approximation of PI hand-crafting the #pragma omp reduction

int i;
int n = 1000000;
double area = 0;
double h = 1.0 / n;

#pragma omp parallel shared(n, h)
{
 double thread_area = 0; // Private / local variable

 #pragma omp for
 for (i = 1; i <= n; i++)
 {
 double x = h * (i - 0.5);
 thread_area += (4.0 / (1.0 + x*x));
 }

 #pragma omp atomic // Applies the reduction manually
 area += thread_area; // All threads aggregate into area
}
double pi = h * area;

The threads are spawned in the #pragma omp parallel. Each thread will have an
independent/private thread_area that stores its partial addition. The following loop is distributed
among threads using #pragma omp for. In this loop, each thread calculates its own thread_area
and after this loop, the code sequentially aggregates the area atomically through

Approximation of PI using reductions based on #pragma atomic

double area;
double h = 1.0 / n;
#pragma omp parallel for shared(n, h, area)
for (i = 1; i <= n; i++)
{
 double x = h * (i - 0.5);
 #pragma atomic
 area += (4.0 / (1.0 + x*x));
}
pi = h * area;

https://riptutorial.com/ 13

In this example, each threads execute a subset of the iteration count and they accumulate
atomically into the shared variable area, which ensures that there are no lost updates. We can use
the #pragma atomic in here because the given operation (+=) can be done atomically, which
simplifies the readability compared to the usage of the #pragma omp critical.

Approximation of PI using reductions based on #pragma omp critical

double area;
double h = 1.0 / n;
#pragma omp parallel for shared(n, h, area)
for (i = 1; i <= n; i++)
{
 double x = h * (i - 0.5);
 #pragma omp critical
 {
 area += (4.0 / (1.0 + x*x));
 }
}
double pi = h * area;

In this example, each threads execute a subset of the iteration count and they accumulate
atomically into the shared variable area, which ensures that there are no lost updates.

Approximation of PI using #pragma omp reduction clause

int i;
int n = 1000000;
double area = 0;
double h = 1.0 / n;
#pragma omp parallel for shared(n, h) reduction(+:area)
for (i = 1; i <= n; i++)
{
 double x = h * (i - 0.5);
 area += (4.0 / (1.0 + x*x));
}
pi = h * area;

In this example, each threads execute a subset of the iteration count. Each thread has its local
private copy of area and at the end of the parallel region they all apply the addition operation (+)
so as to generate the final value for area.

Read OpenMP reductions online: https://riptutorial.com/openmp/topic/5653/openmp-reductions

https://riptutorial.com/ 14

https://riptutorial.com/openmp/topic/5653/openmp-reductions

Chapter 6: OpenMP reductions

Examples

Approximation of PI using #pragma omp reduction clause

h = 1.0 / n;
#pragma omp parallel for private(x) shared(n, h) reduction(+:area)
for (i = 1; i <= n; i++)
{
 x = h * (i - 0.5);
 area += (4.0 / (1.0 + x*x));
}
pi = h * area;

In this example, each threads execute a subset of the iteration count. Each thread has its local
private copy of area and at the end of the parallel region they all apply the addition operation (+) so
as to generate the final value for area.

Approximation of PI using reductions based on #pragma omp critical

h = 1.0 / n;
#pragma omp parallel for private(x) shared(n, h, area)
for (i = 1; i <= n; i++)
{
 x = h * (i - 0.5);
 #pragma omp critical
 {
 area += (4.0 / (1.0 + x*x));
 }
}
pi = h * area;

In this example, each threads execute a subset of the iteration count and they accumulate
atomically into the shared variable area, which ensures that there are no lost updates.

Approximation of PI using reductions based on #pragma atomic

h = 1.0 / n;
#pragma omp parallel for private(x) shared(n, h, area)
for (i = 1; i <= n; i++)
{
 x = h * (i - 0.5);
 #pragma atomic
 area += (4.0 / (1.0 + x*x));
}
pi = h * area;

In this example, each threads execute a subset of the iteration count and they accumulate
atomically into the shared variable area, which ensures that there are no lost updates. We can use

https://riptutorial.com/ 15

the #pragma atomic in here because the given operation (+=) can be done atomically, which
simplifies the readability compared to the usage of the #pragma omp critical.

Approximation of PI hand-crafting the #pragma omp reduction

h = 1.0 / n;

#pragma omp parallel private(x) shared(n, h)
{
 double thread_area = 0; // Private / local variable

 #pragma omp for
 for (i = 1; i <= n; i++)
 {
 x = h * (i - 0.5);
 thread_area += (4.0 / (1.0 + x*x));
 }

 #pragma omp atomic // Applies the reduction manually
 area += thread_area; // All threads aggregate into area
}

pi = h * area;

The threads are spawned in the #pragma omp parallel. Each thread will have an
independent/private thread_area that stores its partial addition. The following loop is distributed
among threads using #pragma omp for. In this loop, each thread calculates its own thread_area and
after this loop, the code sequentially aggregates the area atomically through #pragma omp atomic.

Read OpenMP reductions online: https://riptutorial.com/openmp/topic/5967/openmp-reductions

https://riptutorial.com/ 16

https://riptutorial.com/openmp/topic/5967/openmp-reductions

Chapter 7: Simple parallel example

Syntax

#pragma omp parallel indicates that the following block shall be executed by all the threads.•

int omp_get_num_threads (void) : returns the number of the threads working on the parallel
region (aka team of threads).

•

int omp_get_thread_num (void) : returns the identifier of the calling thread (ranges from 0 to N-
1 where N is bounded to omp_get_num_threads()).

•

Remarks

You can use the OMP_NUM_THREADS environment variable or the num_threads directive within the
#pragma parallel to indicate the number of executing threads for the whole application or for the
specified region, respectively.

Examples

Parallel hello world using OpenMP

The following C code uses the OpenMP parallel programming model to write the thread ID and
number of threads to stdout using multiple threads.

#include <omp.h>
#include <stdio.h>

int main ()
{
 #pragma omp parallel
 {
 // ID of the thread in the current team
 int thread_id = omp_get_thread_num();
 // Number of threads in the current team
 int nthreads = omp_get_num_threads();

 printf("I'm thread %d out of %d threads.\n", thread_id, nthreads);
 }
 return 0;
}

In Fortran 90+ the equivalent program looks like:

program Hello
 use omp_lib, only: omp_get_thread_num, omp_get_num_threads

 implicit none

https://riptutorial.com/ 17

 integer :: thread_id
 integer :: nthreads

 !$omp parallel private(thread_id, nthreads)

 ! ID of the thread in the current team
 thread_id = omp_get_thread_num()
 ! Number of threads in the current team
 nthreads = omp_get_num_threads()

 print *, "I'm thread", thread_id, "out of", nthreads, "threads."
 !$omp end parallel
end program Hello

Read Simple parallel example online: https://riptutorial.com/openmp/topic/4959/simple-parallel-
example

https://riptutorial.com/ 18

https://riptutorial.com/openmp/topic/4959/simple-parallel-example
https://riptutorial.com/openmp/topic/4959/simple-parallel-example

Credits

S.
No

Chapters Contributors

1
Getting started with
openmp

Ani Menon, Community, Gilles, Harald, M. Chinoune,
Massimiliano, takirala

2
Conditional parallel
execution

Harald

3
Irregular OpenMP
parallelism

Harald

4
Loop parallelism in
OpenMP

Gilles, Harald, NoseKnowsAll

5 OpenMP reductions Gilles, Harald, meJustAndrew

6
Simple parallel
example

Gilles, Harald, Massimiliano, NoseKnowsAll, Vladimir F

https://riptutorial.com/ 19

https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5239503/gilles
https://riptutorial.com/contributor/1747493/harald
https://riptutorial.com/contributor/8038786/m--chinoune
https://riptutorial.com/contributor/771663/massimiliano
https://riptutorial.com/contributor/1517133/takirala
https://riptutorial.com/contributor/1747493/harald
https://riptutorial.com/contributor/1747493/harald
https://riptutorial.com/contributor/5239503/gilles
https://riptutorial.com/contributor/1747493/harald
https://riptutorial.com/contributor/4056099/noseknowsall
https://riptutorial.com/contributor/5239503/gilles
https://riptutorial.com/contributor/1747493/harald
https://riptutorial.com/contributor/6357360/mejustandrew
https://riptutorial.com/contributor/5239503/gilles
https://riptutorial.com/contributor/1747493/harald
https://riptutorial.com/contributor/771663/massimiliano
https://riptutorial.com/contributor/4056099/noseknowsall
https://riptutorial.com/contributor/721644/vladimir-f

	About
	Chapter 1: Getting started with openmp
	Remarks
	Versions
	Examples
	Compilation
	Parallel hello world using OpenMP
	Work Sharing construct - Example of For loop
	Reduction Example

	Chapter 2: Conditional parallel execution
	Examples
	Conditional clauses in OpenMP parallel regions

	Chapter 3: Irregular OpenMP parallelism
	Remarks
	Examples
	Parallel processing of a c++ list container using OpenMP tasks
	Recursive calculation for pi using OpenMP tasks

	Chapter 4: Loop parallelism in OpenMP
	Parameters
	Remarks
	Examples
	Typical example in C
	Same example in Fortran
	Compiling and running the examples
	Addition of two vectors using OpenMP parallel for construct

	Chapter 5: OpenMP reductions
	Remarks
	Examples
	Approximation of PI hand-crafting the #pragma omp reduction
	Approximation of PI using reductions based on #pragma atomic
	Approximation of PI using reductions based on #pragma omp critical
	Approximation of PI using #pragma omp reduction clause

	Chapter 6: OpenMP reductions
	Examples
	Approximation of PI using #pragma omp reduction clause
	Approximation of PI using reductions based on #pragma omp critical
	Approximation of PI using reductions based on #pragma atomic
	Approximation of PI hand-crafting the #pragma omp reduction

	Chapter 7: Simple parallel example
	Syntax
	Remarks
	Examples
	Parallel hello world using OpenMP

	Credits

