
Oracle Database

#oracle

Table of Contents

About 1

Chapter 1: Getting started with Oracle Database 2

Remarks 2

Versions 2

Examples 2

Hello World 2

Hello world! from table 3

Create a simple table 3

Insert values (you can omit target columns if you provide values for all columns) 3

Remember to commit, because Oracle uses transactions 3

Select your data: 3

SQL Query 3

Hello World from PL/SQL 4

Chapter 2: Anonymous PL/SQL Block 5

Remarks 5

Examples 5

An example of an anonymous block 5

Chapter 3: Autonomous Transactions 6

Remarks 6

Examples 6

Using autonomous transaction for logging errors 6

Chapter 4: constraints 8

Examples 8

Update foreign keys with new value in Oracle 8

Disable all related foreign keys in oracle 8

Chapter 5: Creating a Context 9

Syntax 9

Parameters 9

Remarks 9

Examples 9

Create a Context 9

Chapter 6: Data Dictionary 11

Remarks 11

Examples 11

Text source of the stored objects 11

Get list of all tables in Oracle 11

Privilege information 12

Oracle version 12

Describes all objects in the database. 12

To see all the data dictionary views to which you have access 13

Chapter 7: Data Pump 14

Introduction 14

Examples 14

Monitor Datapump jobs 14

Step 3/6 : Create directory 14

Step 7 : Export Commands 14

Step 9 : Import Commands 15

1. Datapump steps 16

Copy tables between different schemas and tablespaces 16

Chapter 8: Database Links 18

Examples 18

Creating a database link 18

Create Database Link 18

Chapter 9: Dates 20

Examples 20

Generating Dates with No Time Component 20

Generating Dates with a Time Component 20

The Format of a Date 21

Converting Dates to a String 21

Setting the Default Date Format Model 22

Changing How SQL/Plus or SQL Developer Display Dates 23

Date Arithmetic - Difference between Dates in Days, Hours, Minutes and/or Seconds 23

Date Arithmetic - Difference between Dates in Months or Years 24

Extract the Year, Month, Day, Hour, Minute or Second Components of a Date 25

Time Zones and Daylight Savings Time 26

Leap Seconds 26

Getting the Day of the Week 26

Chapter 10: Delimiting keywords or special characters 28

Examples 28

Delimit the table or column name with special characters 28

Delimiting table or column name which is a reserved word as well 28

Chapter 11: Different ways to update records 29

Syntax 29

Examples 29

Update Syntax with example 29

Update Using Inline View 29

Update using Merge 29

Merge with sample data 30

Chapter 12: DUAL table 32

Remarks 32

Examples 32

The following example returns the current operating system date and time 32

The following example generates numbers between start_value and end_value 32

Chapter 13: Dynamic SQL 33

Introduction 33

Remarks 33

Examples 33

Select value with dynamic SQL 33

Insert values in dynamic SQL 34

Update values in dynamic SQL 34

Execute DDL statement 34

Execute anonymous block 35

Chapter 14: Error logging 36

Examples 36

Error logging when writing to database 36

Chapter 15: Handling NULL values 37

Introduction 37

Remarks 37

Examples 37

Columns of any data type can contain NULLs 37

Empty strings are NULL 37

Operations containing NULL are NULL, except concatenation 37

NVL to replace null value 38

NVL2 to get a different result if a value is null or not 38

COALESCE to return the first non-NULL value 38

Chapter 16: Hierarchical Retrieval With Oracle Database 12C 40

Introduction 40

Examples 40

Using the CONNECT BY Caluse 40

Specifying the Direction of the Query From the Top Down 40

Chapter 17: Hints 41

Parameters 41

Examples 41

Parallel Hint 41

USE_NL 41

APPEND HINT 42

USE_HASH 42

FULL 42

Result Cache 43

Chapter 18: Indexes 45

Introduction 45

Examples 45

b-tree index 45

Bitmap Index 45

Function Based Index 45

Chapter 19: JOINS 47

Examples 47

CROSS JOIN 47

INNER JOIN 48

LEFT OUTER JOIN 49

RIGHT OUTER JOIN 51

FULL OUTER JOIN 52

ANTIJOIN 53

SEMIJOIN 54

JOIN 55

NATURAL JOIN 55

Chapter 20: level query 57

Remarks 57

Examples 57

Generate N Number of records 57

Few usages of Level Query 57

Chapter 21: Limiting the rows returned by a query (Pagination) 58

Examples 58

Get first N rows with row limiting clause 58

Pagination in SQL 58

Get N numbers of Records from table 58

Get row N through M from many rows (before Oracle 12c) 59

Skipping some rows then taking some 59

Skipping some rows from result 59

Chapter 22: Oracle Advanced Queuing (AQ) 61

Remarks 61

Examples 61

Simple Producer/Consumer 61

Overview 61

Create Queue 61

Start Queue and Send a Message 64

Chapter 23: Oracle MAF 66

Examples 66

To get value from Binding 66

To set value to binding 66

To invoke a method from binding 66

To call a javaScript function 66

Chapter 24: Real Application Security 67

Introduction 67

Examples 67

Application 67

Chapter 25: Recursive Sub-Query Factoring using the WITH Clause (A.K.A. Common Table Expre

70

Remarks 70

Examples 70

A Simple Integer Generator 70

Splitting a Delimited String 70

Chapter 26: Sequences 72

Syntax 72

Parameters 72

Examples 72

Creating a Sequence: Example 72

Chapter 27: Splitting Delimited Strings 74

Examples 74

Splitting Strings using a Recursive Sub-query Factoring Clause 74

Splitting Strings using a PL/SQL Function 75

Splitting Strings using a Correlated Table Expression 76

Splitting Strings using a Hierarchical Query 76

Splitting Strings using XMLTable and FLWOR expressions 77

Splitting Strings using CROSS APPLY (Oracle 12c) 78

Splitting Delimited Strings using XMLTable 79

Chapter 28: Statistical functions 80

Examples 80

Calculating the median of a set of values 80

VARIANCE 80

STDDEV 80

Chapter 29: String Manipulation 82

Examples 82

Concatenation: Operator || or concat() function 82

UPPER 82

INITCAP 83

LOWER 83

Regular expression 83

SUBSTR 84

LTRIM / RTRIM 84

Chapter 30: Table partitioning 85

Introduction 85

Remarks 85

Examples 85

Hash partitioning 85

Range partitioning 85

Select existing partitions 85

List partitioning 86

Drop partition 86

Select data from a partition 86

Truncate a partition 86

Rename a partition 86

Move partition to different tablespace 86

Add new partition 86

Split Partition 87

Merge Partitions 87

Exchange a partition 87

Chapter 31: Update with Joins 89

Introduction 89

Examples 89

Examples: what works and what doesn't 89

Chapter 32: Window Functions 91

Syntax 91

Examples 91

Ratio_To_Report 91

Chapter 33: Working with Dates 92

Examples 92

Date Arithmetic 92

Add_months function 93

Credits 94

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: oracle-database

It is an unofficial and free Oracle Database ebook created for educational purposes. All the
content is extracted from Stack Overflow Documentation, which is written by many hardworking
individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official Oracle
Database.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/oracle-database
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Oracle
Database

Remarks

Oracle is a relational database management system (RDBMS) originally built by Larry Ellison, Bob
Miner, and Ed Oates in the late 70s. It was intended to be compatible with IBM's System R.

Versions

Version Release Date

Version 1 (unreleased) 1978-01-01

Oracle V2 1979-01-01

Oracle Version 3 1983-01-01

Oracle Version 4 1984-01-01

Oracle Version 5 1985-01-01

Oracle Version 6 1988-01-01

Oracle7 1992-01-01

Oracle8 1997-07-01

Oracle8i 1999-02-01

Oracle9i 2001-06-01

Oracle 10g 2003-01-01

Oracle 11g 2007-01-01

Oracle 12c 2013-01-01

Examples

Hello World

SELECT 'Hello world!' FROM dual;

https://riptutorial.com/ 2

https://en.wikipedia.org/wiki/Oracle_Database
https://en.wikipedia.org/wiki/IBM_System_R

In Oracle's flavor of SQL, "dual is just a convienence table". It was originally intended to double
rows via a JOIN, but now contains one row with a DUMMY value of 'X'.

Hello world! from table

Create a simple table

create table MY_table (
 what varchar2(10),
 who varchar2(10),
 mark varchar2(10)
);

Insert values (you can omit target columns if you provide
values for all columns)

insert into my_table (what, who, mark) values ('Hello', 'world', '!');
insert into my_table values ('Bye bye', 'ponies', '?');
insert into my_table (what) values('Hey');

Remember to commit, because Oracle uses transactions

commit;

Select your data:

select what, who, mark from my_table where what='Hello';

SQL Query

List employees earning more than $50000 born this century. List their name, date of birth and
salary, sorted alphabetically by name.

SELECT employee_name, date_of_birth, salary
FROM employees
WHERE salary > 50000
 AND date_of_birth >= DATE '2000-01-01'
ORDER BY employee_name;

Show the number of employees in each department with at least 5 employees. List the largest
departments first.

SELECT department_id, COUNT(*)
FROM employees
GROUP BY department_id

https://riptutorial.com/ 3

https://asktom.oracle.com/pls/asktom/f?p=100:11:::::P11_QUESTION_ID:1562813956388
https://en.wikipedia.org/wiki/DUAL_table#History

HAVING COUNT(*) >= 5
ORDER BY COUNT(*) DESC;

Hello World from PL/SQL

/* PL/SQL is a core Oracle Database technology, allowing you to build clean, secure,
 optimized APIs to SQL and business logic. */

set serveroutput on

BEGIN
 DBMS_OUTPUT.PUT_LINE ('Hello World!');
END;

Read Getting started with Oracle Database online: https://riptutorial.com/oracle/topic/558/getting-
started-with-oracle-database

https://riptutorial.com/ 4

https://riptutorial.com/oracle/topic/558/getting-started-with-oracle-database
https://riptutorial.com/oracle/topic/558/getting-started-with-oracle-database

Chapter 2: Anonymous PL/SQL Block

Remarks

Since they are unnamed, anonymous blocks cannot be referenced by other program units.

Examples

An example of an anonymous block

DECLARE
 -- declare a variable
 message varchar2(20);
BEGIN
 -- assign value to variable
 message := 'HELLO WORLD';

 -- print message to screen
 DBMS_OUTPUT.PUT_LINE(message);
END;
/

Read Anonymous PL/SQL Block online: https://riptutorial.com/oracle/topic/6451/anonymous-pl-
sql-block

https://riptutorial.com/ 5

https://riptutorial.com/oracle/topic/6451/anonymous-pl-sql-block
https://riptutorial.com/oracle/topic/6451/anonymous-pl-sql-block

Chapter 3: Autonomous Transactions

Remarks

Typical use cases for autonomous transaction are.

For building any kind of logging framework like the error logging framework explained in the
above example.

1.

For auditing DML operations in triggers on tables irrespective of the final status of the
transaction (COMMIT or ROLLBACK).

2.

Examples

Using autonomous transaction for logging errors

The following procedure is a generic one which will be used to log all errors in an application to a
common error log table.

CREATE OR REPLACE PROCEDURE log_errors
(
 p_calling_program IN VARCHAR2,
 p_error_code IN INTEGER,
 p_error_description IN VARCHAR2
)
IS
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 INSERT INTO error_log
 VALUES
 (
 p_calling_program,
 p_error_code,
 p_error_description,
 SYSDATE,
 USER
);
 COMMIT;
END log_errors;

The following anonymous PLSQL block shows how to call the log_errors procedure.

BEGIN
 DELETE FROM dept WHERE deptno = 10;
EXCEPTION
 WHEN OTHERS THEN
 log_errors('Delete dept',sqlcode, sqlerrm);
 RAISE;
END;

SELECT * FROM error_log;

https://riptutorial.com/ 6

CALLING_PROGRAM ERROR_CODE ERROR_DESCRIPTION
ERROR_DATETIME DB_USER
Delete dept -2292 ORA-02292: integrity constraint violated - child record found
08/09/2016 APEX_PUBLIC_USER

Read Autonomous Transactions online: https://riptutorial.com/oracle/topic/6103/autonomous-
transactions

https://riptutorial.com/ 7

https://riptutorial.com/oracle/topic/6103/autonomous-transactions
https://riptutorial.com/oracle/topic/6103/autonomous-transactions

Chapter 4: constraints

Examples

Update foreign keys with new value in Oracle

Suppose you have a table and you want to change one of this table primary id. you can use the
following scrpit. primary ID here is "PK_S"

begin
 for i in (select a.table_name, c.column_name
 from user_constraints a, user_cons_columns c
 where a.CONSTRAINT_TYPE = 'R'
 and a.R_CONSTRAINT_NAME = 'PK_S'
 and c.constraint_name = a.constraint_name) loop

 execute immediate 'update ' || i.table_name || ' set ' || i.column_name ||
 '=to_number(''1000'' || ' || i.column_name || ') ';

 end loop;

end;

Disable all related foreign keys in oracle

Suppose you have the table T1 and it has relation with many tables and its primary key constraint
name is "pk_t1" you want to disable these foreign keys you can use:

Begin
 For I in (select table_name, constraint_name from user_constraint t where
r_constraint_name='pk_t1') loop

Execute immediate ' alter table ' || I.table_name || ' disable constraint ' ||
i.constraint_name;

 End loop;
End;

Read constraints online: https://riptutorial.com/oracle/topic/6040/constraints

https://riptutorial.com/ 8

https://riptutorial.com/oracle/topic/6040/constraints

Chapter 5: Creating a Context

Syntax

CREATE [OR REPLACE] CONTEXT namespace USING [schema.]package;•
CREATE [OR REPLACE] CONTEXT namespace USING [schema.]package INITIALIZED
EXTERNALLY;

•

CREATE [OR REPLACE] CONTEXT namespace USING [schema.]package INITIALIZED
GLOBALLY;

•

CREATE [OR REPLACE] CONTEXT namespace USING [schema.]package ACCESSED
GLOBALLY;

•

Parameters

Parameter Details

OR REPLACE Redefine an existing context namespace

namespace Name of the context - this is the namespace for calls to SYS_CONTEXT

schema Owner of the package

package
Database package that sets or resets the context attributes. Note: the
database package doesn't have to exist in order to create the context.

INITIALIZED Specify an entity other than Oracle Database that can set the context.

EXTERNALLY Allow the OCI interface to initialize the context.

GLOBALLY
Allow the LDAP directory to initialize the context when establishing the
session.

ACCESSED
GLOBALLY

Allow the context to be accessible throughout the entire instance - multiple
sessions can share the attribute values as long as they have the same Client
ID.

Remarks

Oracle documentation (12cR1):
http://docs.oracle.com/database/121/SQLRF/statements_5003.htm

Examples

Create a Context

https://riptutorial.com/ 9

http://docs.oracle.com/database/121/SQLRF/statements_5003.htm

CREATE CONTEXT my_ctx USING my_pkg;

This creates a context that can only be set by routines in the database package my_pkg, e.g.:

CREATE PACKAGE my_pkg AS
 PROCEDURE set_ctx;
END my_pkg;

CREATE PACKAGE BODY my_pkg AS
 PROCEDURE set_ctx IS
 BEGIN
 DBMS_SESSION.set_context('MY_CTX','THE KEY','Value');
 DBMS_SESSION.set_context('MY_CTX','ANOTHER','Bla');
 END set_ctx;
END my_pkg;

Now, if a session does this:

my_pkg.set_ctx;

It can now retrieve the value for the key thus:

SELECT SYS_CONTEXT('MY_CTX','THE KEY') FROM dual;

Value

Read Creating a Context online: https://riptutorial.com/oracle/topic/2088/creating-a-context

https://riptutorial.com/ 10

https://riptutorial.com/oracle/topic/2088/creating-a-context

Chapter 6: Data Dictionary

Remarks

The data dictionary views, also known as catalog views, let you monitor the state of the database
in real time:

The views prefixed with USER_, ALL_, and DBA_, show information about schema objects that are
owned by you (USER_), accessible by you (ALL_) or accessible by a user with SYSDBA privilege (
DBA_). For example, the view ALL_TABLES shows all tables that you have privileges on.

The V$ views show performance-related information.

The _PRIVS views show privilege information for different combinations of users, roles, and objects.

Oracle documentation: Catalog Views / Data Dictionary Views

Examples

Text source of the stored objects

USER_SOURCE describes the text source of the stored objects owned by the current user. This view
does not display the OWNER column.

select * from user_source where type='TRIGGER' and lower(text) like '%order%'

ALL_SOURCE describes the text source of the stored objects accessible to the current user.

select * from all_source where owner=:owner

DBA_SOURCE describes the text source of all stored objects in the database.

select * from dba_source

Get list of all tables in Oracle

select owner, table_name
from all_tables

ALL_TAB_COLUMNS describes the columns of the tables, views, and clusters accessible to the current
user. COLS is a synonym for USER_TAB_COLUMNS.

select *
from all_tab_columns
where table_name = :tname

https://riptutorial.com/ 11

http://docs.oracle.com/cd/B28359_01/nav/catalog_views.htm

Privilege information

All roles granted to user.

select *
from dba_role_privs
where grantee= :username

Privileges granted to user:

system privileges1.

select *
from dba_sys_privs
where grantee = :username

object grants2.

select *
from dba_tab_privs
where grantee = :username

Permissions granted to roles.

Roles granted to other roles.

select *
from role_role_privs
where role in (select granted_role from dba_role_privs where grantee= :username)

system privileges1.

select *
from role_sys_privs
where role in (select granted_role from dba_role_privs where grantee= :username)

object grants2.

select *
from role_tab_privs
where role in (select granted_role from dba_role_privs where grantee= :username)

Oracle version

select *
from v$version

Describes all objects in the database.

https://riptutorial.com/ 12

select *
from dba_objects

To see all the data dictionary views to which you have access

select * from dict

Read Data Dictionary online: https://riptutorial.com/oracle/topic/7347/data-dictionary

https://riptutorial.com/ 13

https://riptutorial.com/oracle/topic/7347/data-dictionary

Chapter 7: Data Pump

Introduction

Following are the steps to create a data pump import/export:

Examples

Monitor Datapump jobs

Datapump jobs can be monitored using

1. data dictionary views:

 select * from dba_datapump_jobs;
 SELECT * FROM DBA_DATAPUMP_SESSIONS;
 select username,opname,target_desc,sofar,totalwork,message from V$SESSION_LONGOPS where
username = 'bkpadmin';

2. Datapump status:

Note down the job name from the import/export logs or data dictionary name and•
Run attach command:•
type status in Import/Export prompt•

impdp <bkpadmin>/<bkp123> attach=<SYS_IMPORT_SCHEMA_01>
Import> status

Press press CTRL+C to come out of Import/Export prompt

Step 3/6 : Create directory

create or replace directory DATAPUMP_REMOTE_DIR as '/oracle/scripts/expimp';

Step 7 : Export Commands

Commands:

expdp <bkpadmin>/<bkp123> parfile=<exp.par>

*Please replace the data in <> with appropriate values as per your environment. You can
add/modify parameters as per your requirements. In the above example all the remaining
parameters are added in parameter files as stated below: *

Export Type : User Export•

https://riptutorial.com/ 14

Export entire schema•
Parameter file details [say exp.par] :•

schemas=<schema>
directory= DATAPUMP_REMOTE_DIR
dumpfile=<dbname>_<schema>.dmp
logfile=exp_<dbname>_<schema>.log

Export Type : User Export for large schema•
Export entire schema for large datasets: Here the export dump files will be broken down and
compressed. Parallelism is used here (Note : Adding parallelism will increase the CPU load
on server)

•

Parameter file details [say exp.par] :•

schemas=<schema>
directory= DATAPUMP_REMOTE_DIR
dumpfile=<dbname>_<schema>_%U.dmp
logfile=exp_<dbname>_<schema>.log
compression = all
parallel=5

Export Type : Table Export [Export set of tables]•
Parameter file details [say exp.par] :•

tables= tname1, tname2, tname3
directory= DATAPUMP_REMOTE_DIR
dumpfile=<dbname>_<schema>.dmp
logfile=exp_<dbname>_<schema>.log

Step 9 : Import Commands

Prerequisite:

Prior to user import it is a good practice to drop the schema or table imported.•

Commands:

impdp <bkpadmin>/<bkp123> parfile=<imp.par>

*Please replace the data in <> with appropriate values as per your environment. You can
add/modify parameters as per your requirements. In the above example all the remaining
parameters are added in parameter files as stated below: *

Import Type : User Import•
Import entire schema•
Parameter file details [say imp.par] :•

schemas=<schema>

https://riptutorial.com/ 15

directory= DATAPUMP_REMOTE_DIR
dumpfile=<dbname>_<schema>.dmp
logfile=imp_<dbname>_<schema>.log

Import Type : User Import for large schema•
Import entire schema for large datasets: Parallelism is used here (Note : Adding parallelism
will increase the CPU load on server)

•

Parameter file details [say imp.par] :•

schemas=<schema>
directory= DATAPUMP_REMOTE_DIR
dumpfile=<dbname>_<schema>_%U.dmp
logfile=imp_<dbname>_<schema>.log
parallel=5

Import Type : Table Import [Import set of tables]•
Parameter file details [say imp.par] :•

tables= tname1, tname2, tname3
directory= DATAPUMP_REMOTE_DIR
dumpfile=<dbname>_<schema>.dmp
logfile=exp_<dbname>_<schema>.log
TABLE_EXISTS_ACTION= <APPEND /SKIP /TRUNCATE /REPLACE>

1. Datapump steps

Source Server [Export Data] Target Server [Import Data]

1. Create a datapump folder that will contain
the export dump files

4. Create a datapump folder that will contain
the import dump files

2. Login to database schema that will perform
the export.

5. Login to database schema that will
perform the import.

3. Create directory pointing to step 1. 6. Create directory pointing to step 4.

7. Run Export Statements.

8. Copy/SCP the dump files to Target Server.

9. Run Import statements

10. check data ,compile invalid objects and
provide related grants

Copy tables between different schemas and tablespaces

https://riptutorial.com/ 16

 expdp <bkpadmin>/<bkp123> directory=DATAPUMP_REMOTE_DIR dumpfile=<customer.dmp>

 impdp <bkpadmin>/<bkp123> directory=DATAPUMP_REMOTE_DIR dumpfile=<customer.dmp>
remap_schema=<source schema>:<target schema> remap_tablespace=<source tablespace>:<target
tablespace>

Read Data Pump online: https://riptutorial.com/oracle/topic/9391/data-pump

https://riptutorial.com/ 17

https://riptutorial.com/oracle/topic/9391/data-pump

Chapter 8: Database Links

Examples

Creating a database link

CREATE DATABASE LINK dblink_name
CONNECT TO remote_username
IDENTIFIED BY remote_password
USING 'tns_service_name';

The remote DB will then be accessible in the following way:

SELECT * FROM MY_TABLE@dblink_name;

To test a database link connection without needing to know any of the object names in the linked
database, use the following query:

SELECT * FROM DUAL@dblink_name;

To explicitly specify a domain for the linked database service, the domain name is added to the
USING statement. For example:

USING 'tns_service_name.WORLD'

If no domain name is explicitly specified, Oracle uses the domain of the database in which the link
is being created.

Oracle documentation for database link creation:

10g: https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_5005.htm•
11g: https://docs.oracle.com/cd/B28359_01/server.111/b28310/ds_concepts002.htm•
12g: https://docs.oracle.com/database/121/SQLRF/statements_5006.htm#SQLRF01205•

Create Database Link

Let we assume we have two databases "ORA1" and "ORA2". We can access the objects of
"ORA2" from database "ORA1" using a database link.

Prerequisites: For creating a private Database link you need a CREATE DATABASE LINK privilege. For
creating a private Database link you need a CREATE PUBLIC DATABASE LINK privilege.

*Oracle Net must be present on both the instances.

How to create a database link:

https://riptutorial.com/ 18

https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_5005.htm
https://docs.oracle.com/cd/B28359_01/server.111/b28310/ds_concepts002.htm
https://docs.oracle.com/database/121/SQLRF/statements_5006.htm#SQLRF01205
https://docs.oracle.com/cd/B19306_01/gateways.102/b16223/net.htm#i1153556

From ORA1:

SQL> create <public> database link ora2 connect to user1 identified by pass1 using <tns name
of ora2>;

Database link created.

Now that we have the DB link set up, we can prove that by running the following from ORA1:

SQL> Select name from V$DATABASE@ORA2; -- should return ORA2

You can also access the DB Objects of "ORA2" from "ORA1", given the user user1 has the SELECT
privilege on those objects on ORA2 (such as TABLE1 below):

 SELECT COUNT(*) FROM TABLE1@ORA2;

Pre-requistes:

Both databases must be up and running (opened).•
Both database listeners must be up and running.•
TNS must be configured correctly.•
User user1 must be present in ORA2 database, password must be checked and verified.•
User user1 must have at least the SELECT privilege, or any other required to access the
objects on ORA2.

•

Read Database Links online: https://riptutorial.com/oracle/topic/3859/database-links

https://riptutorial.com/ 19

https://riptutorial.com/oracle/topic/3859/database-links

Chapter 9: Dates

Examples

Generating Dates with No Time Component

All DATEs have a time component; however, it is customary to store dates which do not need to
include time information with the hours/minutes/seconds set to zero (i.e. midnight).

Use an ANSI DATE literal (using ISO 8601 Date format):

SELECT DATE '2000-01-01' FROM DUAL;

Convert it from a string literal using TO_DATE():

SELECT TO_DATE('2001-01-01', 'YYYY-MM-DD') FROM DUAL;

(More information on the date format models can be found in the Oracle documentation.)

or:

SELECT TO_DATE(
 'January 1, 2000, 00:00 A.M.',
 'Month dd, YYYY, HH12:MI A.M.',
 'NLS_DATE_LANGUAGE = American'
)
FROM DUAL;

(If you are converting language specific terms such as month names then it is good practice to
include the 3rd nlsparam parameter to the TO_DATE() function and specify the language to be
expected.)

Generating Dates with a Time Component

Convert it from a string literal using TO_DATE():

SELECT TO_DATE('2000-01-01 12:00:00', 'YYYY-MM-DD HH24:MI:SS') FROM DUAL;

Or use a TIMESTAMP literal:

CREATE TABLE date_table(
 date_value DATE
);

INSERT INTO date_table (date_value) VALUES (TIMESTAMP '2000-01-01 12:00:00');

Oracle will implicitly cast a TIMESTAMP to a DATE when storing it in a DATE column of a table; however

https://riptutorial.com/ 20

https://docs.oracle.com/cd/B19306_01/server.102/b14200/sql_elements003.htm#BABGIGCJ
https://docs.oracle.com/cd/B19306_01/server.102/b14200/sql_elements003.htm#BABGIGCJ
https://docs.oracle.com/cd/B19306_01/server.102/b14200/sql_elements003.htm#BABGIGCJ
https://en.wikipedia.org/wiki/ISO_8601#Calendar_dates
http://docs.oracle.com/cd/B19306_01/server.102/b14200/functions183.htm
http://docs.oracle.com/cd/B19306_01/server.102/b14200/sql_elements004.htm#i34924
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions183.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/sql_elements003.htm#sthref367
https://docs.oracle.com/cd/B19306_01/server.102/b14200/sql_elements003.htm#sthref367

you can explicitly CAST() the value to a DATE:

SELECT CAST(TIMESTAMP '2000-01-01 12:00:00' AS DATE) FROM DUAL;

The Format of a Date

In Oracle a DATE data type does not have a format; when Oracle sends a DATE to the client program
(SQL/Plus, SQL/Developer, Toad, Java, Python, etc) it will send 7- or 8- bytes which represent the
date.

A DATE which is not stored in a table (i.e. generated by SYSDATE and having "type 13" when using the
DUMP() command) has 8-bytes and has the structure (the numbers on the right are the internal
representation of 2012-11-26 16:41:09):

BYTE VALUE EXAMPLE
---- ------------------------------- --------------------------------------
1 Year modulo 256 220
2 Year multiples of 256 7 (7 * 256 + 220 = 2012)
3 Month 11
4 Day 26
5 Hours 16
6 Minutes 41
7 Seconds 9
8 Unused 0

A DATE which is stored in a table ("type 12" when using the DUMP() command) has 7-bytes and has
the structure (the numbers on the right are the internal representation of 2012-11-26 16:41:09):

BYTE VALUE EXAMPLE
---- ------------------------------- --------------------------------------
1 (Year multiples of 100) + 100 120
2 (Year modulo 100) + 100 112 ((120-100)*100 + (112-100) = 2012)
3 Month 11
4 Day 26
5 Hours + 1 17
6 Minutes + 1 42
7 Seconds + 1 10

If you want the date to have a specific format then you will need to convert it to something that has
a format (i.e. a string). The SQL client may implicitly do this or you can explicitly convert the value
to a string using TO_CHAR(date, format_model, nls_params).

Converting Dates to a String

Use TO_CHAR(date [, format_model [, nls_params]]):

(Note: if a format model is not provided then the NLS_DATE_FORMAT session parameter will be used as
the default format model; this can be different for every session so should not be relied on. It is
good practice to always specify the format model.)

CREATE TABLE table_name (

https://riptutorial.com/ 21

https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions016.htm
http://www.riptutorial.com/oracle/example/6849/converting-dates-to-a-string
http://www.riptutorial.com/oracle/example/6849/converting-dates-to-a-string
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions180.htm
http://docs.oracle.com/cd/B19306_01/server.102/b14200/functions180.htm
https://docs.oracle.com/cd/B28359_01/server.111/b28286/sql_elements004.htm#i34924
http://www.riptutorial.com/oracle/example/6850/setting-the-default-date-format-model

 date_value DATE
);

INSERT INTO table_name (date_value) VALUES (DATE '2000-01-01');
INSERT INTO table_name (date_value) VALUES (TIMESTAMP '2016-07-21 08:00:00');
INSERT INTO table_name (date_value) VALUES (SYSDATE);

Then:

SELECT TO_CHAR(date_value, 'YYYY-MM-DD') AS formatted_date FROM table_name;

Outputs:

FORMATTED_DATE

2000-01-01
2016-07-21
2016-07-21

And:

SELECT TO_CHAR(
 date_value,
 'FMMonth d yyyy, hh12:mi:ss AM',
 'NLS_DATE_LANGUAGE = French'
) AS formatted_date
FROM table_name;

Outputs:

FORMATTED_DATE

Janvier 01 2000, 12:00:00 AM
Juillet 21 2016, 08:00:00 AM
Juillet 21 2016, 19:08:31 PM

Setting the Default Date Format Model

When Oracle implicitly converts from a DATE to a string or vice-versa (or when TO_CHAR() or
TO_DATE() are explicitly called without a format model) the NLS_DATE_FORMAT session parameter will
be used as the format model in the conversion. If the literal does not match the format model then
an exception will be raised.

You can review this parameter using:

SELECT VALUE FROM NLS_SESSION_PARAMETERS WHERE PARAMETER = 'NLS_DATE_FORMAT';

You can set this value within your current session using:

ALTER SESSION SET NLS_DATE_FORMAT = 'YYYY-MM-DD HH24:MI:SS';

https://riptutorial.com/ 22

http://docs.oracle.com/cd/B19306_01/server.102/b14200/functions180.htm
http://docs.oracle.com/cd/B19306_01/server.102/b14200/functions183.htm

(Note: this does not change the value for any other users.)

If you rely on the NLS_DATE_FORMAT to provide the format mask in TO_DATE() or TO_CHAR() then you
should not be surprised when your queries break if this value is ever changed.

Changing How SQL/Plus or SQL Developer Display Dates

When SQL/Plus or SQL Developer display dates they will perform an implicit conversion to a string
using the default date format model (see the Setting the Default Date Format Model example).

You can change how a date is displayed by changing the NLS_DATE_FORMAT parameter.

Date Arithmetic - Difference between Dates in Days, Hours, Minutes and/or
Seconds

In oracle, the difference (in days and/or fractions thereof) between two DATEs can be found using
subtraction:

SELECT DATE '2016-03-23' - DATE '2015-12-25' AS difference FROM DUAL;

Outputs the number of days between the two dates:

DIFFERENCE

 89

And:

SELECT TO_DATE('2016-01-02 01:01:12', 'YYYY-MM-DD HH24:MI:SS')
 - TO_DATE('2016-01-01 00:00:00', 'YYYY-MM-DD HH24:MI:SS')
 AS difference
FROM DUAL

Outputs the fraction of days between two dates:

DIFFERENCE

 1.0425

The difference in hours, minutes or seconds can be found by multiplying this number by 24, 24*60
or 24*60*60 respectively.

The previous example can be changed to get the days, hours, minutes and seconds between two
dates using:

SELECT TRUNC(difference) AS days,
 TRUNC(MOD(difference * 24, 24)) AS hours,
 TRUNC(MOD(difference * 24*60, 60)) AS minutes,
 TRUNC(MOD(difference * 24*60*60, 60)) AS seconds
FROM (

https://riptutorial.com/ 23

http://www.riptutorial.com/oracle/example/6850/setting-the-default-date-format-model

 SELECT TO_DATE('2016-01-02 01:01:12', 'YYYY-MM-DD HH24:MI:SS')
 - TO_DATE('2016-01-01 00:00:00', 'YYYY-MM-DD HH24:MI:SS')
 AS difference
 FROM DUAL

);

(Note: TRUNC() is used rather than FLOOR() to correctly handle negative differences.)

Outputs:

DAYS HOURS MINUTES SECONDS
---- ----- ------- -------
 1 1 1 12

The previous example can also be solved by converting the numeric difference to an interval using
NUMTODSINTERVAL():

SELECT EXTRACT(DAY FROM difference) AS days,
 EXTRACT(HOUR FROM difference) AS hours,
 EXTRACT(MINUTE FROM difference) AS minutes,
 EXTRACT(SECOND FROM difference) AS seconds
FROM (
 SELECT NUMTODSINTERVAL(
 TO_DATE('2016-01-02 01:01:12', 'YYYY-MM-DD HH24:MI:SS')
 - TO_DATE('2016-01-01 00:00:00', 'YYYY-MM-DD HH24:MI:SS'),
 'DAY'
) AS difference
 FROM DUAL
);

Date Arithmetic - Difference between Dates in Months or Years

The difference in months between two dates can be found using the MONTHS_BETWEEN(date1, date2
):

SELECT MONTHS_BETWEEN(DATE '2016-03-10', DATE '2015-03-10') AS difference FROM DUAL;

Outputs:

DIFFERENCE

 12

If the difference includes part months then it will return the fraction of the month based on there
being 31 days in each month:

SELECT MONTHS_BETWEEN(DATE '2015-02-15', DATE '2015-01-01') AS difference FROM DUAL;

Outputs:

https://riptutorial.com/ 24

https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions201.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions058.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/sql_elements003.htm#i38598
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions103.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions089.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions089.htm

DIFFERENCE

 1.4516129

Due to MONTHS_BETWEEN assuming 31 days per month when there can be fewer days per month then
this can result in different values for differences spanning the boundaries between months.

Example:

SELECT MONTHS_BETWEEN(DATE'2016-02-01', DATE'2016-02-01' - INTERVAL '1' DAY) AS "JAN-FEB",
 MONTHS_BETWEEN(DATE'2016-03-01', DATE'2016-03-01' - INTERVAL '1' DAY) AS "FEB-MAR",
 MONTHS_BETWEEN(DATE'2016-04-01', DATE'2016-04-01' - INTERVAL '1' DAY) AS "MAR-APR",
 MONTHS_BETWEEN(DATE'2016-05-01', DATE'2016-05-01' - INTERVAL '1' DAY) AS "APR-MAY"
FROM DUAL;

Output:

JAN-FEB FEB-MAR MAR-APR APR-MAY
------- ------- ------- -------
0.03226 0.09677 0.03226 0.06452

The difference in years can be found by dividing the month difference by 12.

Extract the Year, Month, Day, Hour, Minute or Second Components of a Date

The year, month or day components of a DATE data type can be found using the EXTRACT([YEAR |
MONTH | DAY] FROM datevalue)

SELECT EXTRACT (YEAR FROM DATE '2016-07-25') AS YEAR,
 EXTRACT (MONTH FROM DATE '2016-07-25') AS MONTH,
 EXTRACT (DAY FROM DATE '2016-07-25') AS DAY
FROM DUAL;

Outputs:

YEAR MONTH DAY
---- ----- ---
2016 7 25

The time (hour, minute or second) components can be found by either:

Using CAST(datevalue AS TIMESTAMP) to convert the DATE to a TIMESTAMP and then using
EXTRACT([HOUR | MINUTE | SECOND] FROM timestampvalue); or

•

Using TO_CHAR(datevalue, format_model) to get the value as a string.•

For example:

SELECT EXTRACT(HOUR FROM CAST(datetime AS TIMESTAMP)) AS Hours,
 EXTRACT(MINUTE FROM CAST(datetime AS TIMESTAMP)) AS Minutes,
 EXTRACT(SECOND FROM CAST(datetime AS TIMESTAMP)) AS Seconds
FROM (

https://riptutorial.com/ 25

https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions050.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions050.htm
http://docs.oracle.com/cd/B19306_01/server.102/b14200/functions016.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions050.htm
http://docs.oracle.com/cd/B19306_01/server.102/b14200/functions180.htm

 SELECT TO_DATE('2016-01-01 09:42:01', 'YYYY-MM-DD HH24:MI:SS') AS datetime FROM DUAL
);

Outputs:

HOURS MINUTES SECONDS
----- ------- -------
 9 42 1

Time Zones and Daylight Savings Time

The DATE data type does not handle time zones or changes in daylight savings time.

Either:

use the TIMESTAMP WITH TIME ZONE data type; or•
handle the changes in your application logic.•

A DATE can be stored as Coordinated Universal Time (UTC) and converted to the current session
time zone like this:

SELECT FROM_TZ(
 CAST(
 TO_DATE('2016-01-01 12:00:00', 'YYYY-MM-DD HH24:MI:SS')
 AS TIMESTAMP
),
 'UTC'
)
 AT LOCAL AS time
FROM DUAL;

If you run ALTER SESSION SET TIME_ZONE = '+01:00'; then the output is:

TIME

2016-01-01 13:00:00.000000000 +01:00

and ALTER SESSION SET TIME_ZONE = 'PST'; then the output is:

TIME

2016-01-01 04:00:00.000000000 PST

Leap Seconds

Oracle does not handle leap seconds. See My Oracle Support note 2019397.2 and 730795.1 for
more details.

Getting the Day of the Week

https://riptutorial.com/ 26

https://docs.oracle.com/cd/B19306_01/server.102/b14225/ch4datetime.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14225/ch4datetime.htm
http://stackoverflow.com/questions/31136211/how-to-handle-leap-seconds-in-oracle

You can use TO_CHAR(date_value, 'D') to get the day-of-week.

However, this is dependent on the NLS_TERRITORY session parameter:

ALTER SESSION SET NLS_TERRITORY = 'AMERICA'; -- First day of week is Sunday
SELECT TO_CHAR(DATE '1970-01-01', 'D') FROM DUAL;

Outputs 5

ALTER SESSION SET NLS_TERRITORY = 'UNITED KINGDOM'; -- First day of week is Monday
SELECT TO_CHAR(DATE '1970-01-01', 'D') FROM DUAL;

Outputs 4

To do this independent of the NLS settings, you can truncate the date to midnight of the current day
(to remove any fractions of days) and subtract the date truncated to the start of the current iso-
week (which always starts on Monday):

SELECT TRUNC(date_value) - TRUNC(date_value, 'IW') + 1 FROM DUAL

Read Dates online: https://riptutorial.com/oracle/topic/2087/dates

https://riptutorial.com/ 27

https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions180.htm
https://riptutorial.com/oracle/topic/2087/dates

Chapter 10: Delimiting keywords or special
characters

Examples

Delimit the table or column name with special characters

Select * from firm's_address;

Select * from "firm's_address";

Delimiting table or column name which is a reserved word as well

Say you have a table named table or you want to create a table with name which is also a
keyword, You have to include the name table in pair of double quotes "table"

Select * from table; Above query will fail with syntax error, where as below query will run fine.

Select * from "table";

Read Delimiting keywords or special characters online:
https://riptutorial.com/oracle/topic/6553/delimiting-keywords-or-special-characters

https://riptutorial.com/ 28

https://riptutorial.com/oracle/topic/6553/delimiting-keywords-or-special-characters

Chapter 11: Different ways to update records

Syntax

UPDATE table-Name [[AS] correlation-Name] SET column-Name = Value [, column-Name =
Value}]* [WHERE clause]

•

UPDATE table-Name SET column-Name = Value [, column-Name = Value]* WHERE
CURRENT OF

•

Examples

Update Syntax with example

Normal Update

UPDATE
 TESTTABLE
SET
 TEST_COLUMN= 'Testvalue',TEST_COLUMN2= 123
WHERE
 EXISTS
 (SELECT MASTERTABLE.TESTTABLE_ID
 FROM MASTERTABLE
 WHERE ID_NUMBER=11);

Update Using Inline View

Using Inline View (If it is considered updateable by Oracle)

Note: If you face a non key preserved row error add an index to resolve the same to make it
update-able

UPDATE
 (SELECT
 TESTTABLE.TEST_COLUMN AS OLD,
 'Testvalue' AS NEW
 FROM
 TESTTABLE
 INNER JOIN
 MASTERTABLE
 ON TESTTABLE.TESTTABLE_ID = MASTERTABLE.TESTTABLE_ID
 WHERE ID_NUMBER=11) T
SET
 T.OLD = T.NEW;

Update using Merge

Using Merge

https://riptutorial.com/ 29

MERGE INTO
 TESTTABLE
USING
 (SELECT
 T1.ROWID AS RID,
 T2.TESTTABLE_ID
 FROM
 TESTTABLE T1
 INNER JOIN
 MASTERTABLE T2
 ON TESTTABLE.TESTTABLE_ID = MASTERTABLE.TESTTABLE_ID
 WHERE ID_NUMBER=11)
ON
 (ROWID = RID)
WHEN MATCHED
THEN
 UPDATE SET TEST_COLUMN= 'Testvalue';

Merge with sample data

drop table table01;
drop table table02;

create table table01 (
 code int,
 name varchar(50),
 old int
);

create table table02 (
 code int,
 name varchar(50),
 old int
);

truncate table table01;
insert into table01 values (1, 'A', 10);
insert into table01 values (9, 'B', 12);
insert into table01 values (3, 'C', 14);
insert into table01 values (4, 'D', 16);
insert into table01 values (5, 'E', 18);

truncate table table02;
insert into table02 values (1, 'AA', null);
insert into table02 values (2, 'BB', 123);
insert into table02 values (3, 'CC', null);
insert into table02 values (4, 'DD', null);
insert into table02 values (5, 'EE', null);

select * from table01 a order by 2;
select * from table02 a order by 2;

--

merge into table02 a using (
 select b.code, b.old from table01 b
) c on (
 a.code = c.code
)

https://riptutorial.com/ 30

when matched then update set a.old = c.old
;

--

select a.*, b.* from table01 a
inner join table02 b on a.code = b.codetable01;

select * from table01 a
where
 exists
 (
 select 'x' from table02 b where a.code = b.codetable01
);

select * from table01 a where a.code in (select b.codetable01 from table02 b);

--

select * from table01 a
where
 not exists
 (
 select 'x' from table02 b where a.code = b.codetable01
);

select * from table01 a where a.code not in (select b.codetable01 from table02 b);

Read Different ways to update records online: https://riptutorial.com/oracle/topic/4193/different-
ways-to-update-records

https://riptutorial.com/ 31

https://riptutorial.com/oracle/topic/4193/different-ways-to-update-records
https://riptutorial.com/oracle/topic/4193/different-ways-to-update-records

Chapter 12: DUAL table

Remarks

DUAL table has one column DUMMY, defined to be VARCHAR2(1) and only one row with a value x.

DUAL table is automatically created in SYS schema when database is created. You can access it
from any schema.

You can not change DUAL table.

You can use DUAL table to call any function from SQL statement. It is useful because it has only
one row and oracle optimizer knows everything about it.

Examples

The following example returns the current operating system date and time

select sysdate from dual

The following example generates numbers between start_value and
end_value

select :start_value + level -1 n
from dual
connect by level <= :end_value - :start_value + 1

Read DUAL table online: https://riptutorial.com/oracle/topic/7328/dual-table

https://riptutorial.com/ 32

https://riptutorial.com/oracle/topic/7328/dual-table

Chapter 13: Dynamic SQL

Introduction

Dynamic SQL allows you to assemble an SQL query code in the runtime. This technique has
some disadvantages and have to be used very carefully. At the same time, it allows you to
implement more complex logic. PL/SQL requires that all objects, used in the code, have to exist
and to be valid at compilation time. That's why you can't execute DDL statements in PL/SQL
directly, but dynamic SQL allows you to do that.

Remarks

Some important remarks:

Never use string concatenation to add values to query, use parameters instead. This is
wrong:

execute immediate 'select value from my_table where id = ' ||
 id_valiable into result_variable;

And this is right:

execute immediate 'select value from my_table where id = :P '
 using id_valiable into result_variable;

There are two reasons for this. The first is the security. String concatenation allows to make
SQL injection. In the query below, if a variable will contain value 1 or 1 = 1, the UPDATE
statement will update all lines in the table:

execute immediate 'update my_table set value = ''I have bad news for you'' where id = '
|| id;

The second reason is performance. Oracle will parse query without parameters every time
when it executes, while query with parameter will be parsed only once in the session.

1.

Note, that when the database engine executes a DDL statement, it executes implicit commit
before.

2.

Examples

Select value with dynamic SQL

Let's say a user wants to select data from different tables. A table is specified by the user.

 function get_value(p_table_name varchar2, p_id number) return varchar2 is

https://riptutorial.com/ 33

 value varchar2(100);
 begin
 execute immediate 'select column_value from ' || p_table_name ||
 ' where id = :P' into value using p_id;
 return value;
 end;

Call this function as usual:

declare
 table_name varchar2(30) := 'my_table';
 id number := 1;
begin
 dbms_output.put_line(get_value(table_name, id));
end;

Table to test:

create table my_table (id number, column_value varchar2(100));
insert into my_table values (1, 'Hello, world!');

Insert values in dynamic SQL

Example below inserts value into the table from the previous example:

declare
 query_text varchar2(1000) := 'insert into my_table(id, column_value) values (:P_ID,
:P_VAL)';
 id number := 2;
 value varchar2(100) := 'Bonjour!';
begin
 execute immediate query_text using id, value;
end;
/

Update values in dynamic SQL

Let's update table from the first example:

declare
 query_text varchar2(1000) := 'update my_table set column_value = :P_VAL where id = :P_ID';
 id number := 2;
 value varchar2(100) := 'Bonjour le monde!';
begin
 execute immediate query_text using value, id;
end;
/

Execute DDL statement

This code creates the table:

https://riptutorial.com/ 34

begin
 execute immediate 'create table my_table (id number, column_value varchar2(100))';
end;
/

Execute anonymous block

You can execute anonymous block. This example shows also how to return value from dynamic
SQL:

declare
 query_text varchar2(1000) := 'begin :P_OUT := cos(:P_IN); end;';
 in_value number := 0;
 out_value number;
begin
 execute immediate query_text using out out_value, in in_value;
 dbms_output.put_line('Result of anonymous block: ' || to_char(out_value));
end;
/

Read Dynamic SQL online: https://riptutorial.com/oracle/topic/10905/dynamic-sql

https://riptutorial.com/ 35

https://riptutorial.com/oracle/topic/10905/dynamic-sql

Chapter 14: Error logging

Examples

Error logging when writing to database

Create Oracle error log table ERR$_EXAMPLE for existing EXAMPLE table:

EXECUTE DBMS_ERRLOG.CREATE_ERROR_LOG('EXAMPLE', NULL, NULL, NULL, TRUE);

Make writing operation with SQL:

insert into EXAMPLE (COL1) values ('example')
LOG ERRORS INTO ERR$_EXAMPLE reject limit unlimited;

Read Error logging online: https://riptutorial.com/oracle/topic/3505/error-logging

https://riptutorial.com/ 36

https://riptutorial.com/oracle/topic/3505/error-logging

Chapter 15: Handling NULL values

Introduction

A column is NULL when it has no value, regardless of the data type of that column. A column
should never be compared to NULL using this syntax a = NULL as the result would be UNKNOWN.
Instead use a IS NULL or a IS NOT NULL conditions. NULL is not equal to NULL. To compare two
expressions where null can happen, use one of the functions described below. All operators
except concatenation return NULL if one of their operand is NULL. For instance the result of 3 *
NULL + 5 is null.

Remarks

NULL can't appear in columns restricted by a PRIMARY KEY or a NOT NULL constraint.
(Exception is a new constraint with NOVALIDATE clause)

Examples

Columns of any data type can contain NULLs

SELECT 1 NUM_COLUMN, 'foo' VARCHAR2_COLUMN from DUAL
UNION ALL
SELECT NULL, NULL from DUAL;

NUM_COLUMN VARCHAR2_COLUMN

1 foo

(null) (null)

Empty strings are NULL

SELECT 1 a, '' b from DUAL;

A B

1 (null)

Operations containing NULL are NULL, except concatenation

SELECT 3 * NULL + 5, 'Hello ' || NULL || 'world' from DUAL;

https://riptutorial.com/ 37

3*NULL+5 'HELLO'||NULL||'WORLD'

(null) Hello world

NVL to replace null value

SELECT a column_with_null, NVL(a, 'N/A') column_without_null FROM
 (SELECT NULL a FROM DUAL);

COLUMN_WITH_NULL COLUMN_WITHOUT_NULL

(null) N/A

NVL is useful to compare two values which can contain NULLs :

SELECT
 CASE WHEN a = b THEN 1 WHEN a <> b THEN 0 else -1 END comparison_without_nvl,
 CASE WHEN NVL(a, -1) = NVL(b, -1) THEN 1 WHEN NVL(a, -1) <> NVL(b, -1) THEN 0 else -1 END
comparison_with_nvl
 FROM
 (select null a, 3 b FROM DUAL
 UNION ALL
 SELECT NULL, NULL FROM DUAL);

COMPARISON_WITHOUT_NVL COMPARISON_WITH_NVL

-1 0

-1 1

NVL2 to get a different result if a value is null or not

If the first parameter is NOT NULL, NVL2 will return the second parameter. Otherwise it will return
the third one.

SELECT NVL2(null, 'Foo', 'Bar'), NVL2(5, 'Foo', 'Bar') FROM DUAL;

NVL2(NULL,'FOO','BAR') NVL2(5,'FOO','BAR')

Bar Foo

COALESCE to return the first non-NULL value

SELECT COALESCE(a, b, c, d, 5) FROM
 (SELECT NULL A, NULL b, NULL c, 4 d FROM DUAL);

https://riptutorial.com/ 38

COALESCE(A,B,C,D,5)

4

In some case, using COALESCE with two parameters can be faster than using NVL when the
second parameter is not a constant. NVL will always evaluate both parameters. COALESCE will
stop at the first non-NULL value it encounters. It means that if the first value is non-NULL,
COALESCE will be faster.

Read Handling NULL values online: https://riptutorial.com/oracle/topic/8183/handling-null-values

https://riptutorial.com/ 39

https://riptutorial.com/oracle/topic/8183/handling-null-values

Chapter 16: Hierarchical Retrieval With
Oracle Database 12C

Introduction

You can use hierarchical queries to retrieve data based on a natural hierarchical relationship
between rows in a table

Examples

Using the CONNECT BY Caluse

SELECT E.EMPLOYEE_ID,E.LAST_NAME,E.MANAGER_ID FROM HR.EMPLOYEES E
CONNECT BY PRIOR E.EMPLOYEE_ID = E.MANAGER_ID;

The CONNECT BY clause to define the relationship between employees and managers.

Specifying the Direction of the Query From the Top Down

SELECT E.LAST_NAME|| ' reports to ' ||
PRIOR E.LAST_NAME "Walk Top Down"
FROM HR.EMPLOYEES E
START WITH E.MANAGER_ID IS NULL
CONNECT BY PRIOR E.EMPLOYEE_ID = E.MANAGER_ID;

Read Hierarchical Retrieval With Oracle Database 12C online:
https://riptutorial.com/oracle/topic/8777/hierarchical-retrieval-with-oracle-database-12c

https://riptutorial.com/ 40

https://riptutorial.com/oracle/topic/8777/hierarchical-retrieval-with-oracle-database-12c

Chapter 17: Hints

Parameters

Parameters Details

Degree of
Parallelism (DOP)

It is the number of parallel connection/processes which you want your
query to open up. It is usually 2, 4, 8, 16 so on.

Table Name The name of the table on which parallel hint will be applied.

Examples

Parallel Hint

Statement-level parallel hints are the easiest:

SELECT /*+ PARALLEL(8) */ first_name, last_name FROM employee emp;

Object-level parallel hints give more control but are more prone to errors; developers often forget
to use the alias instead of the object name, or they forget to include some objects.

SELECT /*+ PARALLEL(emp,8) */ first_name, last_name FROM employee emp;

SELECT /*+ PARALLEL(table_alias,Degree of Parallelism) */ FROM table_name table_alias;

Let's say a query takes 100 seconds to execute without using parallel hint. If we change DOP to 2
for same query, then ideally the same query with parallel hint will take 50 second. Similarly using
DOP as 4 will take 25 seconds.

In practice, parallel execution depends on many other factors and does not scale linearly. This is
especially true for small run times where the parallel overhead may be larger than the gains from
running in multiple parallel servers.

USE_NL

Use Nested Loops.

Usage : use_nl(A B)

This hint will ask the engine to use nested loop method to join the tables A and B. That is row by
row comparison. The hint does not force the order of the join, just asks for NL.

SELECT /*+use_nl(e d)*/ *
FROM Employees E

https://riptutorial.com/ 41

JOIN Departments D on E.DepartmentID = D.ID

APPEND HINT

"Use DIRECT PATH method for inserting new rows".

The APPEND hint instructs the engine to use direct path load. This means that the engine will not use
a conventional insert using memory structures and standard locks, but will write directly to the
tablespace the data. Always creates new blocks which are appended to the table's segment. This
will be faster, but have some limitations:

You cannot read from the table you appended in the same session until you commmit or
rollback the transaction.

•

If there are triggers defined on the table Oracle will not use direct path(it's a different story for
sqlldr loads).

•

others•

Example.

INSERT /*+append*/ INTO Employees
SELECT *
FROM Employees;

USE_HASH

Instructs the engine to use hash method to join tables in the argument.

Usage : use_hash(TableA [TableB] ... [TableN])

As explained in many places, "in a HASH join, Oracle accesses one table (usually the smaller of
the joined results) and builds a hash table on the join key in memory. It then scans the other table
in the join (usually the larger one) and probes the hash table for matches to it."

It is preferred against Nested Loops method when the tables are big, no indexes are at hand, etc.

Note: The hint does not force the order of the join, just asks for HASH JOIN method.

Example of usage:

SELECT /*+use_hash(e d)*/ *
FROM Employees E
JOIN Departments D on E.DepartmentID = D.ID

FULL

The FULL hint tells Oracle to perform a full table scan on a specified table, no matter if an index
can be used.

create table fullTable(id) as select level from dual connect by level < 100000;

https://riptutorial.com/ 42

http://docs.oracle.com/cd/E11882_01/server.112/e41084/sql_elements006.htm#SQLRF50901
https://asktom.oracle.com/pls/apex/f?p=100:11:0::::P11_QUESTION_ID:1211797200346279484#2096268200346987629
https://jonathanlewis.wordpress.com/2013/09/07/hash-joins/
https://docs.oracle.com/database/121/TGSQL/glossary.htm#GUID-FF45796B-8A90-45C6-8A40-0B308B72AF7C
http://logicalread.solarwinds.com/oracle-11g-hash-joins-mc02/#.V5Wm4_mnoUI

create index idx on fullTable(id);

With no hints, the index is used:

select count(1) from fullTable f where id between 10 and 100;
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		1	13	3 (0)	00:00:01
1	SORT AGGREGATE		1	13		
* 2	INDEX RANGE SCAN	IDX	2	26	3 (0)	00:00:01
--

FULL hint forces a full scan:

select /*+ full(f) */ count(1) from fullTable f where id between 10 and 100;
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		1	13	47 (3)	00:00:01
1	SORT AGGREGATE		1	13		
* 2	TABLE ACCESS FULL	FULLTABLE	2	26	47 (3)	00:00:01
--

Result Cache

Oracle (11g and above) allows the SQL queries to be cached in the SGA and reused to improve
performance. It queries the data from cache rather than database. Subsequent execution of same
query is faster because now the data is being pulled from cache.

SELECT /*+ result_cache */ number FROM main_table;

Output -

Number

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

Elapsed: 00:00:02.20

If I run the same query again now, the time to execute will reduce since the data is now fetched
from cache which was set during the first execution.

Output -

https://riptutorial.com/ 43

https://docs.oracle.com/cd/B19306_01/server.102/b14220/memory.htm#i10093

Number

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

Elapsed: 00:00:00.10

Notice how the elapsed time reduced from 2.20 seconds to 0.10 seconds.

Result Cache holds the cache until the data in database is updated/altered/deleted.
Any change will release the cache.

Read Hints online: https://riptutorial.com/oracle/topic/1490/hints

https://riptutorial.com/ 44

https://riptutorial.com/oracle/topic/1490/hints

Chapter 18: Indexes

Introduction

Here I will explain different index using example, how index increase query performance, how
index decrease DML performance etc

Examples

b-tree index

CREATE INDEX ord_customer_ix ON orders (customer_id);

By default, if we do not mention anything, oracle creates an index as a b-tree index. But we should
know when to use it. B-tree index stores data as binary tree format. As we know that, index is a
schema object which stores some sort of entry for each value for the indexed column. So,
whenever any search happens on those columns, it checks in the index for the exact location of
that record to access fast. Few points about indexing:

To search for entry in the index, some sort of binary search algorithm used.•
When data cardinality is high, b-tree index is perfect to use.•
Index makes DML slow, as for each record, there should be one entry in the index for
indexed column.

•

So, if not necessary, we should avoid creating index.•

Bitmap Index

CREATE BITMAP INDEX
emp_bitmap_idx
ON index_demo (gender);

Bitmap index is used when data cardinality is low.•
Here, Gender has value with low cardinality. Values are may be Male, Female & others.•
So, if we create a binary tree for this 3 values while searching it will have unnecessary
traverse.

•

In bitmap structures, a two-dimensional array is created with one column for every row in the
table being indexed. Each column represents a distinct value within the bitmapped index.
This two-dimensional array represents each value within the index multiplied by the number
of rows in the table.

•

At row retrieval time, Oracle decompresses the bitmap into the RAM data buffers so it can be
rapidly scanned for matching values. These matching values are delivered to Oracle in the
form of a Row-ID list, and these Row-ID values may directly access the required information.

•

Function Based Index

https://riptutorial.com/ 45

CREATE INDEX first_name_idx ON user_data (UPPER(first_name));

SELECT *
FROM user_data
WHERE UPPER(first_name) = 'JOHN2';

Function based index means, creating index based on a function.•
If in search (where clause), frequently any function is used, it's better to create index based
on that function.

•

Here, in the example, for search, Upper() function is being used. So, it's better to create
index using upper function.

•

Read Indexes online: https://riptutorial.com/oracle/topic/9978/indexes

https://riptutorial.com/ 46

https://riptutorial.com/oracle/topic/9978/indexes

Chapter 19: JOINS

Examples

CROSS JOIN

A CROSS JOIN performs a join between two tables that does not use an explicit join clause and
results in the Cartesian product of two tables. A Cartesian product means each row of one table is
combined with each row of the second table in the join. For example, if TABLEA has 20 rows and
TABLEB has 20 rows, the result would be 20*20 = 400 output rows.

Example:

SELECT *
FROM TABLEA CROSS JOIN TABLEB;

This can also be written as:

SELECT *
FROM TABLEA, TABLEB;

Here's an example of cross join in SQL between two tables:

Sample Table: TABLEA

+-------+---------+
| VALUE | NAME |
+-------+---------+
| 1 | ONE |
| 2 | TWO |
+-------+---------+

Sample Table: TABLEB

+-------+--------+
| VALUE | NAME |
+-------+--------+
| 3 | THREE |
| 4 | FOUR |
+-------+--------+

Now, If you execute the query:

SELECT *
FROM TABLEA CROSS JOIN TABLEB;

Output:

https://riptutorial.com/ 47

+-------+--------+-------+--------+
| VALUE | NAME | VALUE | NAME |
+-------+--------+-------+--------+
1	ONE	3	THREE
1	ONE	4	FOUR
2	TWO	3	THREE
2	TWO	4	FOUR
+-------+--------+-------+--------+

This is how cross joining happens between two tables:

More about Cross Join: Oracle documentation

INNER JOIN

An INNER JOIN is a JOIN operation that allows you to specify an explicit join clause.

Syntax

TableExpression [INNER] JOIN TableExpression { ON booleanExpression | USING clause }

You can specify the join clause by specifying ON with a boolean expression.

The scope of expressions in the ON clause includes the current tables and any tables in outer
query blocks to the current SELECT. In the following example, the ON clause refers to the current
tables:

-- Join the EMP_ACT and EMPLOYEE tables
-- select all the columns from the EMP_ACT table and
-- add the employee's surname (LASTNAME) from the EMPLOYEE table
-- to each row of the result
SELECT SAMP.EMP_ACT.*, LASTNAME
 FROM SAMP.EMP_ACT JOIN SAMP.EMPLOYEE
 ON EMP_ACT.EMPNO = EMPLOYEE.EMPNO
-- Join the EMPLOYEE and DEPARTMENT tables,
-- select the employee number (EMPNO),
-- employee surname (LASTNAME),
-- department number (WORKDEPT in the EMPLOYEE table and DEPTNO in the
-- DEPARTMENT table)
-- and department name (DEPTNAME)
-- of all employees who were born (BIRTHDATE) earlier than 1930.
SELECT EMPNO, LASTNAME, WORKDEPT, DEPTNAME
 FROM SAMP.EMPLOYEE JOIN SAMP.DEPARTMENT
 ON WORKDEPT = DEPTNO
 AND YEAR(BIRTHDATE) < 1930

-- Another example of "generating" new data values,
-- using a query which selects from a VALUES clause (which is an
-- alternate form of a fullselect).
-- This query shows how a table can be derived called "X"

https://riptutorial.com/ 48

http://i.stack.imgur.com/fMjRr.jpg
http://docs.oracle.com/javadb/10.10.1.2/ref/rrefsqljcrossjoin.html

-- having 2 columns "R1" and "R2" and 1 row of data
SELECT *
FROM (VALUES (3, 4), (1, 5), (2, 6))
AS VALUESTABLE1(C1, C2)
JOIN (VALUES (3, 2), (1, 2),
(0, 3)) AS VALUESTABLE2(c1, c2)
ON VALUESTABLE1.c1 = VALUESTABLE2.c1
-- This results in:
-- C1 |C2 |C1 |2
-- ---
-- 3 |4 |3 |2
-- 1 |5 |1 |2

-- List every department with the employee number and
-- last name of the manager

SELECT DEPTNO, DEPTNAME, EMPNO, LASTNAME
FROM DEPARTMENT INNER JOIN EMPLOYEE
ON MGRNO = EMPNO

-- List every employee number and last name
-- with the employee number and last name of their manager
SELECT E.EMPNO, E.LASTNAME, M.EMPNO, M.LASTNAME
FROM EMPLOYEE E INNER JOIN
DEPARTMENT INNER JOIN EMPLOYEE M
 ON MGRNO = M.EMPNO
 ON E.WORKDEPT = DEPTNO

LEFT OUTER JOIN

A LEFT OUTER JOIN performs a join between two tables that requires an explicit join clause but does
not exclude unmatched rows from the first table.

Example:

SELECT
 ENAME,
 DNAME,
 EMP.DEPTNO,
 DEPT.DEPTNO
FROM
 SCOTT.EMP LEFT OUTER JOIN SCOTT.DEPT
 ON EMP.DEPTNO = DEPT.DEPTNO;

Even though ANSI syntax is the recommended way, it is likely to encounter legacy syntax very
often. Using (+) within a condition determines which side of the equation to be considered as outer
.

SELECT
 ENAME,
 DNAME,
 EMP.DEPTNO,
 DEPT.DEPTNO
FROM
 SCOTT.EMP,

https://riptutorial.com/ 49

https://docs.oracle.com/cd/B28359_01/server.111/b28286/queries006.htm

 SCOTT.DEPT
WHERE
 EMP.DEPTNO = DEPT.DEPTNO(+);

Here's an example of Left Outer Join between two tables:

Sample Table: EMPLOYEE

+-----------+---------+
| NAME | DEPTNO |
+-----------+---------+
A	2
B	1
C	3
D	2
E	1
F	1
G	4
H	4
+-----------+---------+

Sample Table: DEPT

+---------+--------------+
| DEPTNO | DEPTNAME |
+---------+--------------+
1	ACCOUNTING
2	FINANCE
5	MARKETING
6	HR
+---------+--------------+

Now, If you execute the query:

SELECT
 *
FROM
 EMPLOYEE LEFT OUTER JOIN DEPT
 ON EMPLOYEE.DEPTNO = DEPT.DEPTNO;

Output:

+-----------+---------+---------+--------------+
| NAME | DEPTNO | DEPTNO | DEPTNAME |
+-----------+---------+---------+--------------+
F	1	1	ACCOUNTING
E	1	1	ACCOUNTING
B	1	1	ACCOUNTING
D	2	2	FINANCE
A	2	2	FINANCE
C	3		
H	4		
G	4		
+-----------+---------+---------+--------------+

https://riptutorial.com/ 50

RIGHT OUTER JOIN

A RIGHT OUTER JOIN performs a join between two tables that requires an explicit join clause but does
not exclude unmatched rows from the second table.

Example:

SELECT
 ENAME,
 DNAME,
 EMP.DEPTNO,
 DEPT.DEPTNO
FROM
 SCOTT.EMP RIGHT OUTER JOIN SCOTT.DEPT
 ON EMP.DEPTNO = DEPT.DEPTNO;

As the unmatched rows of SCOTT.DEPT are included, but unmatched rows of SCOTT.EMP are not, the
above is equivalent to the following statement using LEFT OUTER JOIN.

SELECT
 ENAME,
 DNAME,
 EMP.DEPTNO,
 DEPT.DEPTNO
FROM
 SCOTT.DEPT RIGHT OUTER JOIN SCOTT.EMP
 ON DEPT.DEPTNO = EMP.DEPTNO;

Here's an example of Right Outer Join between two tables:

Sample Table: EMPLOYEE

+-----------+---------+
| NAME | DEPTNO |
+-----------+---------+
A	2
B	1
C	3
D	2
E	1
F	1
G	4
H	4
+-----------+---------+

Sample Table: DEPT

+---------+--------------+
| DEPTNO | DEPTNAME |
+---------+--------------+
1	ACCOUNTING
2	FINANCE
5	MARKETING
6	HR

https://riptutorial.com/ 51

+---------+--------------+

Now, If you execute the query:

SELECT
 *
FROM
 EMPLOYEE RIGHT OUTER JOIN DEPT
 ON EMPLOYEE.DEPTNO = DEPT.DEPTNO;

Output:

+-----------+---------+---------+--------------+
| NAME | DEPTNO | DEPTNO | DEPTNAME |
+-----------+---------+---------+--------------+
A	2	2	FINANCE
B	1	1	ACCOUNTING
D	2	2	FINANCE
E	1	1	ACCOUNTING
F	1	1	ACCOUNTING
		5	MARKETING
		6	HR
+-----------+---------+---------+--------------+

Oracle (+) syntax equivalent for the query is:

SELECT *
FROM EMPLOYEE, DEPT
WHERE EMPLOYEE.DEPTNO(+) = DEPT.DEPTNO;

FULL OUTER JOIN

A FULL OUTER JOIN performs a join between two tables that requires an explicit join clause but does
not exclude unmatched rows in either table. In other words, it returns all the rows in each table.

Example:

SELECT
 *
FROM
 EMPLOYEE FULL OUTER JOIN DEPT
 ON EMPLOYEE.DEPTNO = DEPT.DEPTNO;

Here's an example of Full Outer Join between two tables:

Sample Table: EMPLOYEE

+-----------+---------+
| NAME | DEPTNO |
+-----------+---------+
A	2
B	1
C	3

https://riptutorial.com/ 52

D	2
E	1
F	1
G	4
H	4
+-----------+---------+

Sample Table: DEPT

+---------+--------------+
| DEPTNO | DEPTNAME |
+---------+--------------+
1	ACCOUNTING
2	FINANCE
5	MARKETING
6	HR
+---------+--------------+

Now, If you execute the query:

SELECT
 *
FROM
 EMPLOYEE FULL OUTER JOIN DEPT
 ON EMPLOYEE.DEPTNO = DEPT.DEPTNO;

Output

+-----------+---------+---------+--------------+
| NAME | DEPTNO | DEPTNO | DEPTNAME |
+-----------+---------+---------+--------------+
A	2	2	FINANCE
B	1	1	ACCOUNTING
C	3		
D	2	2	FINANCE
E	1	1	ACCOUNTING
F	1	1	ACCOUNTING
G	4		
H	4		
		6	HR
		5	MARKETING
+-----------+---------+---------+--------------+

Here the columns that do not match has been kept NULL.

ANTIJOIN

An antijoin returns rows from the left side of the predicate for which there are no corresponding
rows on the right side of the predicate. It returns rows that fail to match (NOT IN) the subquery on
the right side.

SELECT * FROM employees
 WHERE department_id NOT IN
 (SELECT department_id FROM departments

https://riptutorial.com/ 53

 WHERE location_id = 1700)
 ORDER BY last_name;

Here's an example of Anti Join between two tables:

Sample Table: EMPLOYEE

+-----------+---------+
| NAME | DEPTNO |
+-----------+---------+
A	2
B	1
C	3
D	2
E	1
F	1
G	4
H	4
+-----------+---------+

Sample Table: DEPT

+---------+--------------+
| DEPTNO | DEPTNAME |
+---------+--------------+
1	ACCOUNTING
2	FINANCE
5	MARKETING
6	HR
+---------+--------------+

Now, If you execute the query:

SELECT
 *
FROM
 EMPLOYEE WHERE DEPTNO NOT IN
 (SELECT DEPTNO FROM DEPT);

Output:

+-----------+---------+
| NAME | DEPTNO |
+-----------+---------+
C	3
H	4
G	4
+-----------+---------+

The output shows that only the rows of EMPLOYEE table, of which DEPTNO were not present in
DEPT table.

SEMIJOIN

https://riptutorial.com/ 54

A semijoin query can be used, for example, to find all departments with at least one employee
whose salary exceeds 2500.

SELECT * FROM departments
 WHERE EXISTS
 (SELECT 1 FROM employees
 WHERE departments.department_id = employees.department_id
 AND employees.salary > 2500)
 ORDER BY department_name;

This is more efficient than the full join alternatives, as inner joining on employees then giving a
where clause detailing that the salary has to be greater than 2500 could return the same
department numerous times. Say if the Fire department has n employees all with salary 3000,
select * from departments, employees with the necessary join on ids and our where clause would
return the Fire department n times.

JOIN

The JOIN operation performs a join between two tables, excluding any unmatched rows from the
first table. From Oracle 9i forward, the JOIN is equivalent in function to the INNER JOIN. This
operation requires an explicit join clause, as opposed to the CROSS JOIN and NATURAL JOIN operators.

Example:

select t1.*,
 t2.DeptId
 from table_1 t1
 join table_2 t2 on t2.DeptNo = t1.DeptNo

Oracle documentation:

10g•
11g•
12g•

NATURAL JOIN

NATURAL JOIN requires no explitic join condition; it builds one based on all the fields with the
same name in the joined tables.

create table tab1(id number, descr varchar2(100));
create table tab2(id number, descr varchar2(100));
insert into tab1 values(1, 'one');
insert into tab1 values(2, 'two');
insert into tab1 values(3, 'three');
insert into tab2 values(1, 'ONE');
insert into tab2 values(3, 'three');

The join will be done on the fields ID and DESCR, common to both the tables:

https://riptutorial.com/ 55

http://docs.oracle.com/javadb/10.6.2.1/ref/rrefsqlj29840.html#rrefsqlj29840
https://docs.oracle.com/cd/B28359_01/server.111/b28286/queries006.htm
https://docs.oracle.com/database/121/SQLRF/queries006.htm#SQLRF30046

SQL> select *
 2 from tab1
 3 natural join
 4 tab2;

 ID DESCR
---------- ----------
 3 three

Columns with different names will not be used in the JOIN condition:

SQL> select *
 2 from (select id as id, descr as descr1 from tab1)
 3 natural join
 4 (select id as id, descr as descr2 from tab2);

 ID DESCR1 DESCR2
---------- ---------- ----------
 1 one ONE
 3 three three

If the joined tables have no common columns, a JOIN with no conditions will be done:

SQL> select *
 2 from (select id as id1, descr as descr1 from tab1)
 3 natural join
 4 (select id as id2, descr as descr2 from tab2);

 ID1 DESCR1 ID2 DESCR2
---------- ---------- ---------- ----------
 1 one 1 ONE
 2 two 1 ONE
 3 three 1 ONE
 1 one 3 three
 2 two 3 three
 3 three 3 three

Read JOINS online: https://riptutorial.com/oracle/topic/4192/joins

https://riptutorial.com/ 56

https://riptutorial.com/oracle/topic/4192/joins

Chapter 20: level query

Remarks

level clause is responsible for generating N number of dummy records based on some specific
condition.

Examples

Generate N Number of records

SELECT ROWNUM NO FROM DUAL CONNECT BY LEVEL <= 10

Few usages of Level Query

/* This is a simple query which can generate a sequence of numbers. The following example
generates a sequence of numbers from 1..100 */

select level from dual connect by level <= 100;

/*The above query is useful in various scenarios like generating a sequence of dates from a given
date. The following query generates 10 consecutive dates */

select to_date('01-01-2017','mm-dd-yyyy')+level-1 as dates from dual connect by level <= 10;

01-JAN-17
02-JAN-17
03-JAN-17
04-JAN-17
05-JAN-17
06-JAN-17
07-JAN-17
08-JAN-17
09-JAN-17
10-JAN-17

Read level query online: https://riptutorial.com/oracle/topic/6548/level-query

https://riptutorial.com/ 57

https://riptutorial.com/oracle/topic/6548/level-query

Chapter 21: Limiting the rows returned by a
query (Pagination)

Examples

Get first N rows with row limiting clause

The FETCH clause was introduced in Oracle 12c R1:

SELECT val
FROM mytable
ORDER BY val DESC
FETCH FIRST 5 ROWS ONLY;

An example without FETCH that works also in earlier versions:

SELECT * FROM (
 SELECT val
 FROM mytable
 ORDER BY val DESC
) WHERE ROWNUM <= 5;

Pagination in SQL

SELECT val
FROM (SELECT val, rownum AS rnum
 FROM (SELECT val
 FROM rownum_order_test
 ORDER BY val)
 WHERE rownum <= :upper_limit)
WHERE rnum >= :lower_limit ;

this way we can paginate the table data , just like web serch page

Get N numbers of Records from table

We can limit no of rows from result using rownum clause

select * from
(
 select val from mytable
) where rownum<=5

If we want first or last record then we want order by clause in inner query that will give result based
on order.

Last Five Record :

https://riptutorial.com/ 58

select * from
(
 select val from mytable order by val desc
) where rownum<=5

First Five Record

select * from
(
 select val from mytable order by val
) where rownum<=5

Get row N through M from many rows (before Oracle 12c)

Use the analytical function row_number():

with t as (
 select col1
 , col2
 , row_number() over (order by col1, col2) rn
 from table
)
select col1
, col2
from t
where rn between N and M; -- N and M are both inclusive

Oracle 12c handles this more easily with OFFSET and FETCH.

Skipping some rows then taking some

In Oracle 12g+

SELECT Id, Col1
FROM TableName
ORDER BY Id
OFFSET 20 ROWS FETCH NEXT 20 ROWS ONLY;

In earlier Versions

SELECT Id,
 Col1
 FROM (SELECT Id,
 Col1,
 row_number() over (order by Id) RowNumber
 FROM TableName)
WHERE RowNumber BETWEEN 21 AND 40

Skipping some rows from result

In Oracle 12g+

https://riptutorial.com/ 59

SELECT Id, Col1
FROM TableName
ORDER BY Id
OFFSET 5 ROWS;

In earlier Versions

SELECT Id,
 Col1
 FROM (SELECT Id,
 Col1,
 row_number() over (order by Id) RowNumber
 FROM TableName)
WHERE RowNumber > 20

Read Limiting the rows returned by a query (Pagination) online:
https://riptutorial.com/oracle/topic/4300/limiting-the-rows-returned-by-a-query--pagination-

https://riptutorial.com/ 60

https://riptutorial.com/oracle/topic/4300/limiting-the-rows-returned-by-a-query--pagination-

Chapter 22: Oracle Advanced Queuing (AQ)

Remarks

Never use DDL or DML against tables created by dbms_aqadm.create_queue_table. Only use
dbms_aqadm and dbms_aq to work with these tables. Oracle may make several supporting
tables, indexes, etc that you will not be aware of. Manually running DDL or DML against the
table may lead you to a scenario where Oracle Support will need you to drop and recreate
the table and queues to resolve the situation.

•

It's strongly recommended you do not use dbms_aq.forever for a wait option. This has caused
issues in the past as Oracle may start scheduling an excessive number of worker jobs to
work the queues that are unnecessary (see Oracle Doc ID 2001165.1).

•

It's recommended you do not set the AQ_TM_PROCESSES parameter in version 10.1 and
later. Especially avoid setting this to zero since this will disable the QMON background job
that is necessary to maintain the queues. You can reset this value to the Oracle default using
the following command and restarting the database. alter system reset aq_tm_processes
scope=spfile sid='*';

•

Examples

Simple Producer/Consumer

Overview

Create a queue that we can send a message to. Oracle will notify our stored procedure that a
message has been enqueued and should be worked. We'll also add some subprograms we can
use in an emergency to stop messages from being deqeued, allow dequeuing again, and run a
simple batch job to work through all of the messages.

These examples were tested on Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 -
64bit Production.

Create Queue

We will create a message type, a queue table that can hold the messages, and a queue.
Messages in the queue will be dequeued first by priority then be their enqueue time. If anything
goes wrong working the message and the dequeue is rolled-back AQ will make the message
available for dequeue 3600 seconds later. It will do this 48 times before moving it an exception
queue.

create type message_t as object
 (
 sender varchar2 (50),

https://riptutorial.com/ 61

 message varchar2 (512)
);
/
-- Type MESSAGE_T compiled
begin dbms_aqadm.create_queue_table(
 queue_table => 'MESSAGE_Q_TBL',
 queue_payload_type => 'MESSAGE_T',
 sort_list => 'PRIORITY,ENQ_TIME',
 multiple_consumers => false,
 compatible => '10.0.0');
 end;
/
-- PL/SQL procedure successfully completed.
begin dbms_aqadm.create_queue(
 queue_name => 'MESSAGE_Q',
 queue_table => 'MESSAGE_Q_TBL',
 queue_type => 0,
 max_retries => 48,
 retry_delay => 3600,
 dependency_tracking => false);
 end;
/
-- PL/SQL procedure successfully completed.

Now that we have a place to put the messages lets create a package to manage and work
messages in the queue.

create or replace package message_worker_pkg
is
 queue_name_c constant varchar2(20) := 'MESSAGE_Q';

 -- allows the workers to process messages in the queue
 procedure enable_dequeue;

 -- prevents messages from being worked but will still allow them to be created and enqueued
 procedure disable_dequeue;

 -- called only by Oracle Advanced Queueing. Do not call anywhere else.
 procedure on_message_enqueued (context in raw,
 reginfo in sys.aq$_reg_info,
 descr in sys.aq$_descriptor,
 payload in raw,
 payloadl in number);

 -- allows messages to be worked if we missed the notification (or a retry
 -- is pending)
 procedure work_old_messages;

end;
/

create or replace package body message_worker_pkg
is
 -- raised by Oracle when we try to dequeue but no more messages are ready to
 -- be dequeued at this moment
 no_more_messages_ex exception;
 pragma exception_init (no_more_messages_ex,
 -25228);

 -- allows the workers to process messages in the queue

https://riptutorial.com/ 62

 procedure enable_dequeue
 as
 begin
 dbms_aqadm.start_queue (queue_name => queue_name_c, dequeue => true);
 end enable_dequeue;

 -- prevents messages from being worked but will still allow them to be created and enqueued
 procedure disable_dequeue
 as
 begin
 dbms_aqadm.stop_queue (queue_name => queue_name_c, dequeue => true, enqueue => false);
 end disable_dequeue;

 procedure work_message (message_in in out nocopy message_t)
 as
 begin
 dbms_output.put_line (message_in.sender || ' says ' || message_in.message);
 end work_message;

 -- called only by Oracle Advanced Queueing. Do not call anywhere else.

 procedure on_message_enqueued (context in raw,
 reginfo in sys.aq$_reg_info,
 descr in sys.aq$_descriptor,
 payload in raw,
 payloadl in number)
 as
 pragma autonomous_transaction;
 dequeue_options_l dbms_aq.dequeue_options_t;
 message_id_l raw (16);
 message_l message_t;
 message_properties_l dbms_aq.message_properties_t;
 begin
 dequeue_options_l.msgid := descr.msg_id;
 dequeue_options_l.consumer_name := descr.consumer_name;
 dequeue_options_l.wait := dbms_aq.no_wait;
 dbms_aq.dequeue (queue_name => descr.queue_name,
 dequeue_options => dequeue_options_l,
 message_properties => message_properties_l,
 payload => message_l,
 msgid => message_id_l);
 work_message (message_l);
 commit;
 exception
 when no_more_messages_ex
 then
 -- it's possible work_old_messages already dequeued the message
 commit;
 when others
 then
 -- we don't need to have a raise here. I just wanted to point out that
 -- since this will be called by AQ throwing the exception back to it
 -- will have it put the message back on the queue and retry later
 raise;
 end on_message_enqueued;

 -- allows messages to be worked if we missed the notification (or a retry
 -- is pending)
 procedure work_old_messages
 as
 pragma autonomous_transaction;

https://riptutorial.com/ 63

 dequeue_options_l dbms_aq.dequeue_options_t;
 message_id_l raw (16);
 message_l message_t;
 message_properties_l dbms_aq.message_properties_t;
 begin
 dequeue_options_l.wait := dbms_aq.no_wait;
 dequeue_options_l.navigation := dbms_aq.first_message;

 while (true) loop -- way out is no_more_messages_ex
 dbms_aq.dequeue (queue_name => queue_name_c,
 dequeue_options => dequeue_options_l,
 message_properties => message_properties_l,
 payload => message_l,
 msgid => message_id_l);
 work_message (message_l);
 commit;
 end loop;
 exception
 when no_more_messages_ex
 then
 null;
 end work_old_messages;
end;

Next tell AQ that when a message is enqueued to MESSAGE_Q (and committed) notify our
procedure it has work to do. AQ will start up a job in its own session to handle this.

begin
 dbms_aq.register (
 sys.aq$_reg_info_list (
 sys.aq$_reg_info (user || '.' || message_worker_pkg.queue_name_c,
 dbms_aq.namespace_aq,
 'plsql://' || user || '.message_worker_pkg.on_message_enqueued',
 hextoraw ('FF'))),
 1);
 commit;
end;

Start Queue and Send a Message

declare
 enqueue_options_l dbms_aq.enqueue_options_t;
 message_properties_l dbms_aq.message_properties_t;
 message_id_l raw (16);
 message_l message_t;
begin
 -- only need to do this next line ONCE
 dbms_aqadm.start_queue (queue_name => message_worker_pkg.queue_name_c, enqueue => true ,
dequeue => true);

 message_l := new message_t ('Jon', 'Hello, world!');
 dbms_aq.enqueue (queue_name => message_worker_pkg.queue_name_c,
 enqueue_options => enqueue_options_l,
 message_properties => message_properties_l,
 payload => message_l,
 msgid => message_id_l);
 commit;

https://riptutorial.com/ 64

end;

Read Oracle Advanced Queuing (AQ) online: https://riptutorial.com/oracle/topic/4362/oracle-
advanced-queuing--aq-

https://riptutorial.com/ 65

https://riptutorial.com/oracle/topic/4362/oracle-advanced-queuing--aq-
https://riptutorial.com/oracle/topic/4362/oracle-advanced-queuing--aq-

Chapter 23: Oracle MAF

Examples

To get value from Binding

 ValueExpression ve = AdfmfJavaUtilities.getValueExpression(<binding>, String.class);
 String <variable_name> = (String) ve.getValue(AdfmfJavaUtilities.getELContext());

Here "binding" indicates the EL expression from which the value is to be get.

"variable_name" the parameter to which the value from the binding to be stored

To set value to binding

 ValueExpression ve = AdfmfJavaUtilities.getValueExpression(<binding>, String.class);
 ve.setValue(AdfmfJavaUtilities.getELContext(), <value>);

Here "binding" indicates the EL expression to which the value is to be stored.

"value" is the desired value to be add to the binding

To invoke a method from binding

 AdfELContext adfELContext = AdfmfJavaUtilities.getAdfELContext();
 MethodExpression me;
 me = AdfmfJavaUtilities.getMethodExpression(<binding>, Object.class, new Class[] { });
 me.invoke(adfELContext, new Object[] { });

"binding" indicates the EL expression from which a method to be invoked

To call a javaScript function

AdfmfContainerUtilities.invokeContainerJavaScriptFunction(AdfmfJavaUtilities.getFeatureId(),
<function>, new Object[] {
 });

"function" is the desired js function to be invoked

Read Oracle MAF online: https://riptutorial.com/oracle/topic/6352/oracle-maf

https://riptutorial.com/ 66

https://riptutorial.com/oracle/topic/6352/oracle-maf

Chapter 24: Real Application Security

Introduction

Oracle Real Application Security was introduced in Oracle 12c. It summarize many Security
Topics like User-Role-Model, Access Control, Application vs. Database, End-User-Security or
Row- and Column Level Security

Examples

Application

To associate an Application with something in the Database there are three main parts:

Application Privilege: An Application Privilege describes Privileges like SELECT, INSERT, UPDATE,
DELETE, ... Application Privileges can be summarized as an Aggregate Privilege.

XS$PRIVILEGE(
 name=>'privilege_name'
 [, implied_priv_list=>XS$NAME_LIST('"SELECT"', '"INSERT"', '"UPDATE"', '"DELETE"')]
)

XS$PRIVILEGE_LIST(
 XS$PRIVILEGE(...),
 XS$PRIVILEGE(...),
 ...
);

Application User:

Simple Application User:

BEGIN
 SYS.XS_PRINCIPAL.CREATE_USER('user_name');
END;

Direct Login Application User:

BEGIN
 SYS.XS_PRINCIPAL.CREATE_USER(name => 'user_name', schema => 'schema_name');
END;

BEGIN
 SYS.XS_PRINCIPAL.SET_PASSWORD('user_name', 'password');
END;
CREATE PROFILE prof LIMIT
 PASSWORD_REUSE_TIME 1/4440
 PASSWORD_REUSE_MAX 3
 PASSWORD_VERIFY_FUNCTION Verify_Pass;

https://riptutorial.com/ 67

BEGIN
 SYS.XS_PRINCIPAL.SET_PROFILE('user_name', 'prof');
END;

BEGIN
 SYS.XS_PRINCIPAL.GRANT_ROLES('user_name', 'XSONNCENT');
END;

(optional:)

BEGIN
 SYS.XS_PRINCIPAL.SET_VERIFIER('user_name', '6DFF060084ECE67F', XS_PRINCIPAL.XS_SHA512“);
END;

Application Role:

Regular Application Role:

DECLARE
 st_date TIMESTAMP WITH TIME ZONE;
 ed_date TIMESTAMP WITH TIME ZONE;
BEGIN
 st_date := SYSTIMESTAMP;
 ed_date := TO_TIMESTAMP_TZ('2013-06-18 11:00:00 -5:00','YYYY-MM-DD HH:MI:SS');
 SYS.XS_PRINCIPAL.CREATE_ROLE
 (name => 'app_regular_role',
 enabled => TRUE,
 start_date => st_date,
 end_date => ed_date);
END;

Dynamic Application Role: (gets enabled dynamical based on the authenatication state)

BEGIN
 SYS.XS_PRINCIPAL.CREATE_DYNAMIC_ROLE
 (name => 'app_dynamic_role',
 duration => 40,
 scope => XS_PRINCIPAL.SESSION_SCOPE);
END;

Predefined Application Roles:

Regular:

XSPUBLIC•
XSBYPASS•
XSSESSIONADMIN•
XSNAMESPACEADMIN•
XSPROVISIONER•
XSCACHEADMIN•
XSDISPATCHER•

Dynamic: (depended on the authentication state of application user)

DBMS_AUTH: (direct-logon or other database authentication method)•

https://riptutorial.com/ 68

EXTERNAL_DBMS_AUTH: (direct-logon or other database authentication method and user is
external)

•

DBMS_PASSWD: (direct-logon with password)•
MIDTIER_AUTH: (authentication through middle tier application)•
XSAUTHENTICATED: (direct or middle tier application)•
XSSWITCH: (user switched from proxy user to application user)•

Read Real Application Security online: https://riptutorial.com/oracle/topic/10864/real-application-
security

https://riptutorial.com/ 69

https://riptutorial.com/oracle/topic/10864/real-application-security
https://riptutorial.com/oracle/topic/10864/real-application-security

Chapter 25: Recursive Sub-Query Factoring
using the WITH Clause (A.K.A. Common
Table Expressions)

Remarks

Recursive sub-query factoring is available in Oracle 11g R2.

Examples

A Simple Integer Generator

Query:

WITH generator (value) AS (
 SELECT 1 FROM DUAL
UNION ALL
 SELECT value + 1
 FROM generator
 WHERE value < 10
)
SELECT value
FROM generator;

Output:

VALUE

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

Splitting a Delimited String

Sample Data:

CREATE TABLE table_name (value VARCHAR2(50));

INSERT INTO table_name (value) VALUES ('A,B,C,D,E');

https://riptutorial.com/ 70

Query:

WITH items (list, item, lvl) AS (
 SELECT value,
 REGEXP_SUBSTR(value, '[^,]+', 1, 1),
 1
 FROM table_name
UNION ALL
 SELECT value,
 REGEXP_SUBSTR(value, '[^,]+', 1, lvl + 1),
 lvl + 1
 FROM items
 WHERE lvl < REGEXP_COUNT(value, '[^,]+')
)
SELECT * FROM items;

Output:

LIST ITEM LVL
--------- ---- ---
A,B,C,D,E A 1
A,B,C,D,E B 2
A,B,C,D,E C 3
A,B,C,D,E D 4
A,B,C,D,E E 5

Read Recursive Sub-Query Factoring using the WITH Clause (A.K.A. Common Table
Expressions) online: https://riptutorial.com/oracle/topic/3506/recursive-sub-query-factoring-using-
the-with-clause--a-k-a--common-table-expressions-

https://riptutorial.com/ 71

https://riptutorial.com/oracle/topic/3506/recursive-sub-query-factoring-using-the-with-clause--a-k-a--common-table-expressions-
https://riptutorial.com/oracle/topic/3506/recursive-sub-query-factoring-using-the-with-clause--a-k-a--common-table-expressions-

Chapter 26: Sequences

Syntax

CREATE SEQUENCE SCHEMA.SEQUENCE { INCREMENT BY INTEGER | START WITH
INTEGER | MAXVALUE INTEGER | NOMAXVALUE INTEGER | MINVALUE INTEGER |
NOMINVALUE INTEGER | CYCLE INTEGER | NOCYCLE INTEGER | CACHE | NOCACHE
| ORDER | NOODER }

•

Parameters

Parameter Details

schema schema name

increment by interval between the numbers

start with first number needed

maxvalue Maximum value for the sequence

nomaxvalue Maximum value is defaulted

minvalue minimum value for the sequence

nominvalue minimum value is defaulted

cycle Reset to the start after reaching this value

nocycle Default

cache Preallocation limit

nocache Default

order Guarantee the order of numbers

noorder default

Examples

Creating a Sequence: Example

Purpose

Use the CREATE SEQUENCE statement to create a sequence, which is a database object from

https://riptutorial.com/ 72

which multiple users may generate unique integers. You can use sequences to automatically
generate primary key values.

When a sequence number is generated, the sequence is incremented, independent of the
transaction committing or rolling back. If two users concurrently increment the same sequence,
then the sequence numbers each user acquires may have gaps, because sequence numbers are
being generated by the other user. One user can never acquire the sequence number generated
by another user. After a sequence value is generated by one user, that user can continue to
access that value regardless of whether the sequence is incremented by another user.

Sequence numbers are generated independently of tables, so the same sequence can be used for
one or for multiple tables. It is possible that individual sequence numbers will appear to be
skipped, because they were generated and used in a transaction that ultimately rolled back.
Additionally, a single user may not realize that other users are drawing from the same sequence.

After a sequence is created, you can access its values in SQL statements with the CURRVAL
pseudocolumn, which returns the current value of the sequence, or the NEXTVAL pseudocolumn,
which increments the sequence and returns the new value.

Prerequisites

To create a sequence in your own schema, you must have the CREATE SEQUENCE system
privilege.

To create a sequence in another user's schema, you must have the CREATE ANY SEQUENCE
system privilege.

Creating a Sequence: Example The following statement creates the sequence customers_seq in
the sample schema oe. This sequence could be used to provide customer ID numbers when rows
are added to the customers table.

CREATE SEQUENCE customers_seq
START WITH 1000
INCREMENT BY 1
NOCACHE
NOCYCLE;

The first reference to customers_seq.nextval returns 1000. The second returns 1001. Each
subsequent reference will return a value 1 greater than the previous reference.

Read Sequences online: https://riptutorial.com/oracle/topic/3709/sequences

https://riptutorial.com/ 73

https://riptutorial.com/oracle/topic/3709/sequences

Chapter 27: Splitting Delimited Strings

Examples

Splitting Strings using a Recursive Sub-query Factoring Clause

Sample Data:

CREATE TABLE table_name (id, list) AS
SELECT 1, 'a,b,c,d' FROM DUAL UNION ALL -- Multiple items in the list
SELECT 2, 'e' FROM DUAL UNION ALL -- Single item in the list
SELECT 3, NULL FROM DUAL UNION ALL -- NULL list
SELECT 4, 'f,,g' FROM DUAL; -- NULL item in the list

Query:

WITH bounds (id, list, start_pos, end_pos, lvl) AS (
 SELECT id, list, 1, INSTR(list, ','), 1 FROM table_name
UNION ALL
 SELECT id,
 list,
 end_pos + 1,
 INSTR(list, ',', end_pos + 1),
 lvl + 1
 FROM bounds
 WHERE end_pos > 0
)
SELECT id,
 SUBSTR(
 list,
 start_pos,
 CASE end_pos
 WHEN 0
 THEN LENGTH(list) + 1
 ELSE end_pos
 END - start_pos
) AS item,
 lvl
FROM bounds
ORDER BY id, lvl;

Output:

 ID ITEM LVL
---------- ------- ----------
 1 a 1
 1 b 2
 1 c 3
 1 d 4
 2 e 1
 3 (NULL) 1
 4 f 1
 4 (NULL) 2
 4 g 3

https://riptutorial.com/ 74

Splitting Strings using a PL/SQL Function

PL/SQL Function:

CREATE OR REPLACE FUNCTION split_String(
 i_str IN VARCHAR2,
 i_delim IN VARCHAR2 DEFAULT ','
) RETURN SYS.ODCIVARCHAR2LIST DETERMINISTIC
AS
 p_result SYS.ODCIVARCHAR2LIST := SYS.ODCIVARCHAR2LIST();
 p_start NUMBER(5) := 1;
 p_end NUMBER(5);
 c_len CONSTANT NUMBER(5) := LENGTH(i_str);
 c_ld CONSTANT NUMBER(5) := LENGTH(i_delim);
BEGIN
 IF c_len > 0 THEN
 p_end := INSTR(i_str, i_delim, p_start);
 WHILE p_end > 0 LOOP
 p_result.EXTEND;
 p_result(p_result.COUNT) := SUBSTR(i_str, p_start, p_end - p_start);
 p_start := p_end + c_ld;
 p_end := INSTR(i_str, i_delim, p_start);
 END LOOP;
 IF p_start <= c_len + 1 THEN
 p_result.EXTEND;
 p_result(p_result.COUNT) := SUBSTR(i_str, p_start, c_len - p_start + 1);
 END IF;
 END IF;
 RETURN p_result;
END;
/

Sample Data:

CREATE TABLE table_name (id, list) AS
SELECT 1, 'a,b,c,d' FROM DUAL UNION ALL -- Multiple items in the list
SELECT 2, 'e' FROM DUAL UNION ALL -- Single item in the list
SELECT 3, NULL FROM DUAL UNION ALL -- NULL list
SELECT 4, 'f,,g' FROM DUAL; -- NULL item in the list

Query:

SELECT t.id,
 v.column_value AS value,
 ROW_NUMBER() OVER (PARTITION BY id ORDER BY ROWNUM) AS lvl
FROM table_name t,
 TABLE(split_String(t.list)) (+) v

Output:

 ID ITEM LVL
---------- ------- ----------
 1 a 1
 1 b 2
 1 c 3
 1 d 4

https://riptutorial.com/ 75

 2 e 1
 3 (NULL) 1
 4 f 1
 4 (NULL) 2
 4 g 3

Splitting Strings using a Correlated Table Expression

Sample Data:

CREATE TABLE table_name (id, list) AS
SELECT 1, 'a,b,c,d' FROM DUAL UNION ALL -- Multiple items in the list
SELECT 2, 'e' FROM DUAL UNION ALL -- Single item in the list
SELECT 3, NULL FROM DUAL UNION ALL -- NULL list
SELECT 4, 'f,,g' FROM DUAL; -- NULL item in the list

Query:

SELECT t.id,
 v.COLUMN_VALUE AS value,
 ROW_NUMBER() OVER (PARTITION BY id ORDER BY ROWNUM) AS lvl
FROM table_name t,
 TABLE(
 CAST(
 MULTISET(
 SELECT REGEXP_SUBSTR(t.list, '([^,]*)(,|$)', 1, LEVEL, NULL, 1)
 FROM DUAL
 CONNECT BY LEVEL < REGEXP_COUNT(t.list, '[^,]*(,|$)')
)
 AS SYS.ODCIVARCHAR2LIST
)
) v;

Output:

 ID ITEM LVL
---------- ------- ----------
 1 a 1
 1 b 2
 1 c 3
 1 d 4
 2 e 1
 3 (NULL) 1
 4 f 1
 4 (NULL) 2
 4 g 3

Splitting Strings using a Hierarchical Query

Sample Data:

CREATE TABLE table_name (id, list) AS
SELECT 1, 'a,b,c,d' FROM DUAL UNION ALL -- Multiple items in the list
SELECT 2, 'e' FROM DUAL UNION ALL -- Single item in the list

https://riptutorial.com/ 76

SELECT 3, NULL FROM DUAL UNION ALL -- NULL list
SELECT 4, 'f,,g' FROM DUAL; -- NULL item in the list

Query:

SELECT t.id,
 REGEXP_SUBSTR(list, '([^,]*)(,|$)', 1, LEVEL, NULL, 1) AS value,
 LEVEL AS lvl
FROM table_name t
CONNECT BY
 id = PRIOR id
AND PRIOR SYS_GUID() IS NOT NULL
AND LEVEL < REGEXP_COUNT(list, '([^,]*)(,|$)')

Output:

 ID ITEM LVL
---------- ------- ----------
 1 a 1
 1 b 2
 1 c 3
 1 d 4
 2 e 1
 3 (NULL) 1
 4 f 1
 4 (NULL) 2
 4 g 3

Splitting Strings using XMLTable and FLWOR expressions

This solution uses the ora:tokenize XQuery function that is available from Oracle 11.

Sample Data:

CREATE TABLE table_name (id, list) AS
SELECT 1, 'a,b,c,d' FROM DUAL UNION ALL -- Multiple items in the list
SELECT 2, 'e' FROM DUAL UNION ALL -- Single item in the list
SELECT 3, NULL FROM DUAL UNION ALL -- NULL list
SELECT 4, 'f,,g' FROM DUAL; -- NULL item in the list

Query:

SELECT t.id,
 x.item,
 x.lvl
FROM table_name t,
 XMLTABLE(
 'let $list := ora:tokenize(.,","),
 $cnt := count($list)
 for $val at $r in $list
 where $r < $cnt
 return $val'
 PASSING list||','
 COLUMNS
 item VARCHAR2(100) PATH '.',

https://riptutorial.com/ 77

http://docs.oracle.com/database/121/ADXDB/xdb_xquery.htm#ADXDB-GUID-57984592-3A02-4DB4-9FDA-D5E2CCB3A797
http://docs.oracle.com/database/121/ADXDB/xdb_xquery.htm#ADXDB-GUID-57984592-3A02-4DB4-9FDA-D5E2CCB3A797

 lvl FOR ORDINALITY
) (+) x;

Output:

 ID ITEM LVL
---------- ------- ----------
 1 a 1
 1 b 2
 1 c 3
 1 d 4
 2 e 1
 3 (NULL) (NULL)
 4 f 1
 4 (NULL) 2
 4 g 3

Splitting Strings using CROSS APPLY (Oracle 12c)

Sample Data:

CREATE TABLE table_name (id, list) AS
SELECT 1, 'a,b,c,d' FROM DUAL UNION ALL -- Multiple items in the list
SELECT 2, 'e' FROM DUAL UNION ALL -- Single item in the list
SELECT 3, NULL FROM DUAL UNION ALL -- NULL list
SELECT 4, 'f,,g' FROM DUAL; -- NULL item in the list

Query:

SELECT t.id,
 REGEXP_SUBSTR(t.list, '([^,]*)($|,)', 1, l.lvl, NULL, 1) AS item,
 l.lvl
FROM table_name t
 CROSS APPLY
 (
 SELECT LEVEL AS lvl
 FROM DUAL
 CONNECT BY LEVEL <= REGEXP_COUNT(t.list, ',') + 1
) l;

Output:

 ID ITEM LVL
---------- ------- ----------
 1 a 1
 1 b 2
 1 c 3
 1 d 4
 2 e 1
 3 (NULL) 1
 4 f 1
 4 (NULL) 2
 4 g 3

https://riptutorial.com/ 78

Splitting Delimited Strings using XMLTable

Sample Data:

CREATE TABLE table_name (id, list) AS
SELECT 1, 'a,b,c,d' FROM DUAL UNION ALL -- Multiple items in the list
SELECT 2, 'e' FROM DUAL UNION ALL -- Single item in the list
SELECT 3, NULL FROM DUAL UNION ALL -- NULL list
SELECT 4, 'f,,g' FROM DUAL; -- NULL item in the list

Query:

SELECT t.id,
 SUBSTR(x.item.getStringVal(), 2) AS item,
 x.lvl
FROM table_name t
 CROSS JOIN
 XMLTABLE(
 ('"#' || REPLACE(t.list, ',', '","#') || '"')
 COLUMNS item XMLTYPE PATH '.',
 lvl FOR ORDINALITY
) x;

(Note: the # character is appended to facilitate extracting NULL values; it is later removed using
SUBSTR(item, 2). If NULL values are not required then you can simplify the query and omit this.)

Output:

 ID ITEM LVL
---------- ------- ----------
 1 a 1
 1 b 2
 1 c 3
 1 d 4
 2 e 1
 3 (NULL) 1
 4 f 1
 4 (NULL) 2
 4 g 3

Read Splitting Delimited Strings online: https://riptutorial.com/oracle/topic/1968/splitting-delimited-
strings

https://riptutorial.com/ 79

https://riptutorial.com/oracle/topic/1968/splitting-delimited-strings
https://riptutorial.com/oracle/topic/1968/splitting-delimited-strings

Chapter 28: Statistical functions

Examples

Calculating the median of a set of values

The MEDIAN function since Oracle 10g is an easy to use aggregation function:

SELECT MEDIAN(SAL)
FROM EMP

It returns the median of the values

Works on DATETIME values too.

The result of MEDIAN is computed by first ordering the rows. Using N as the number of
rows in the group, Oracle calculates the row number (RN) of interest with the formula
RN = (1 + (0.5*(N-1)). The final result of the aggregate function is computed by linear
interpolation between the values from rows at row numbers CRN = CEILING(RN) and
FRN = FLOOR(RN).

Since Oracle 9i you can use PERCENTILE_CONT which works the same as MEDIAN function
with percentile value defaults to 0.5

SELECT PERCENTILE_CONT(.5) WITHIN GROUP(order by SAL)
FROM EMP

VARIANCE

Variance measures how far a set numbers is spread out from it's mean. From practical
perspective it is squared distance from its mean (center) - the bigger the number the farther the
point is.

The following example would return variance of salary values

SELECT name, salary, VARIANCE(salary) "Variance"
FROM employees

STDDEV

STDDEV returns the sample standard deviation of expr, a set of numbers. You can use it as both
an aggregate and analytic function. It differs from STDDEV_SAMP in that STDDEV returns zero
when it has only 1 row of input data, whereas STDDEV_SAMP returns null.

Oracle Database calculates the standard deviation as the square root of the variance defined for
the VARIANCE aggregate function.

https://riptutorial.com/ 80

https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions086.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions110.htm
https://en.wikipedia.org/wiki/Variance

This function takes as an argument any numeric datatype or any nonnumeric datatype that can be
implicitly converted to a numeric datatype. The function returns the same datatype as the numeric
datatype of the argument.

If you specify DISTINCT, then you can specify only the query_partition_clause of the
analytic_clause. The order_by_clause and windowing_clause are not allowed.

The following example returns the standard deviation of the salaries in the sample hr.employees
table:

Where hr is Schema and employees is a table name.

SELECT STDDEV(salary) "Deviation"
FROM employees;

Deviation

3909.36575

The query in the following example returns the cumulative standard deviation of the salaries in
Department 80 in the sample table hr.employees, ordered by hire_date:

SELECT last_name, salary,
STDDEV(salary) OVER (ORDER BY hire_date) "StdDev"
FROM employees
WHERE department_id = 30;

LAST_NAME SALARY StdDev
------------------------- ---------- ----------
Raphaely 11000 0
Khoo 3100 5586.14357
Tobias 2800 4650.0896

Read Statistical functions online: https://riptutorial.com/oracle/topic/2283/statistical-functions

https://riptutorial.com/ 81

https://riptutorial.com/oracle/topic/2283/statistical-functions

Chapter 29: String Manipulation

Examples

Concatenation: Operator || or concat() function

The Oracle SQL and PL/SQL || operator allows you to concatenate 2 or more strings together.

Example:

Assuming the following customers table:

 id firstname lastname
--- ----------- ----------
 1 Thomas Woody

Query:

 SELECT firstname || ' ' || lastname || ' is in my database.' as "My Sentence"
 FROM customers;

Output:

My Sentence

Thomas Woody is in my database.

Oracle also supports the standard SQL CONCAT(str1, str2) function:

Example:

Query:

 SELECT CONCAT(firstname, ' is in my database.') from customers;

Output:

Expr1

Thomas is in my database.

UPPER

The UPPER function allows you to convert all lowercase letters in a string to uppercase.

SELECT UPPER('My text 123!') AS result FROM dual;

https://riptutorial.com/ 82

Output:

RESULT

MY TEXT 123!

INITCAP

The INITCAP function converts the case of a string so that each word starts with a capital letter and
all subsequent letters are in lowercase.

SELECT INITCAP('HELLO mr macdonald!') AS NEW FROM dual;

Output

NEW

Hello Mr Macdonald!

LOWER

LOWER converts all uppercase letters in a string to lowercase.

SELECT LOWER('HELLO World123!') text FROM dual;

Outputs:

text

hello world123!

Regular expression

Let's say we want to replace only numbers with 2 digits: regular expression will find them with
(\d\d)

SELECT REGEXP_REPLACE ('2, 5, and 10 are numbers in this example', '(\d\d)', '#')
FROM dual;

Results in:

'2, 5, and # are numbers in this example'

If I want to swap parts of the text, I use \1, \2, \3 to call for the matched strings:

 SELECT REGEXP_REPLACE ('swap around 10 in that one ', '(.*)(\d\d)(.*)', '\3\2\1\3')
 FROM dual;

https://riptutorial.com/ 83

SUBSTR

SUBSTR retrieves part of a string by indicating the starting position and the number of characters to
extract

SELECT SUBSTR('abcdefg',2,3) FROM DUAL;

returns:

bcd

To count from the end of the string, SUBSTR accepts a negative number as the second parameter,
e.g.

SELECT SUBSTR('abcdefg',-4,2) FROM DUAL;

returns:

de

To get the last character in a string: SUBSTR(mystring,-1,1)

LTRIM / RTRIM

LTRIM and RTRIM remove characters from the beginning or the end (respectively) of a string. A set of
one or more characters may be supplied (default is a space) to remove.

For example,

select LTRIM('<===>HELLO<===>', '=<>')
 ,RTRIM('<===>HELLO<===>', '=<>')
from dual;

Returns:

HELLO<===>
<===>HELLO

Read String Manipulation online: https://riptutorial.com/oracle/topic/1518/string-manipulation

https://riptutorial.com/ 84

https://riptutorial.com/oracle/topic/1518/string-manipulation

Chapter 30: Table partitioning

Introduction

Partitioning is a functionality to split tables and indexes into smaller pieces. It is used to improve
performance and to manage the smaller pieces individually. The partition key is a column or a set
of columns that defines in which partition each row is going to be stored. Partitioning Overview in
official Oracle documentation

Remarks

Partitioning is an extra cost option and only available for the Enterprise Edition.

Examples

Hash partitioning

This creates a table partitioned by hash, in this example on store id.

CREATE TABLE orders (
 order_nr NUMBER(15),
 user_id VARCHAR2(2),
 order_value NUMBER(15),
 store_id NUMBER(5)
)
PARTITION BY HASH(store_id) PARTITIONS 8;

You should use a power of 2 for the number of hash partitions, so that you get an even distribution
in partition size.

Range partitioning

This creates a table partitioned by ranges, in this example on order values.

CREATE TABLE orders (
 order_nr NUMBER(15),
 user_id VARCHAR2(2),
 order_value NUMBER(15),
 store_id NUMBER(5)
)
PARTITION BY RANGE(order_value) (
 PARTITION p1 VALUES LESS THAN(10),
 PARTITION p2 VALUES LESS THAN(40),
 PARTITION p3 VALUES LESS THAN(100),
 PARTITION p4 VALUES LESS THAN(MAXVALUE)
);

Select existing partitions

https://riptutorial.com/ 85

http://www.oracle.com/technetwork/database/options/partitioning/overview/index.html
http://www.oracle.com/technetwork/database/options/partitioning/overview/index.html

Check existing partitions on Schema

SELECT * FROM user_tab_partitions;

List partitioning

This creates a table partitioned by lists, in this example on store id.

CREATE TABLE orders (
 order_nr NUMBER(15),
 user_id VARCHAR2(2),
 order_value NUMBER(15),
 store_id NUMBER(5)
)
PARTITION BY LIST(store_id) (
 PARTITION p1 VALUES (1,2,3),
 PARTITION p2 VALUES(4,5,6),
 PARTITION p3 VALUES(7,8,9),
 PARTITION p4 VALUES(10,11)
);

Drop partition

ALTER TABLE table_name DROP PARTITION partition_name;

Select data from a partition

Select data from a partition

SELECT * FROM orders PARTITION(partition_name);

Truncate a partition

ALTER TABLE table_name TRUNCATE PARTITION partition_name;

Rename a partition

ALTER TABLE table_name RENAME PARTITION p3 TO p6;

Move partition to different tablespace

ALTER TABLE table_name
MOVE PARTITION partition_name TABLESPACE tablespace_name;

Add new partition

ALTER TABLE table_name

https://riptutorial.com/ 86

ADD PARTITION new_partition VALUES LESS THAN(400);

Split Partition

Splits some partition into two partitions with another high bound.

ALTER TABLE table_name SPLIT PARTITION old_partition
 AT (new_high_bound) INTO (PARTITION new_partition TABLESPACE new_tablespace,
 PARTITION old_partition)

Merge Partitions

Merge two partitions into single one

ALTER TABLE table_name
 MERGE PARTITIONS first_partition, second_partition
 INTO PARTITION splitted_partition TABLESPACE new_tablespace

Exchange a partition

Exchange/convert a partition to a non-partitioned table and vice versa. This facilitates a fast
"move" of data between the data segments (opposed to doing something like "insert...select" or
"create table...as select") as the operation is DDL (the partition exchange operation is a data
dictionary update without moving the actual data) and not DML (large undo/redo overhead).

Most basic examples :

Convert a non-partitioned table (table "B") to a partition (of table "A") :1.

Table "A" doesn't contain data in partition "OLD_VALUES" and table "B" contains data

ALTER TABLE "A" EXCHANGE PARTITION "OLD_VALUES" WITH TABLE "B";

Result : data is "moved" from table "B" (contains no data after operation) to partition
"OLD_VALUES"

Convert a partition to a non-partitioned table :2.

Table "A" contains data in partition "OLD_VALUES" and table "B" doesn't contain data

ALTER TABLE "A" EXCHANGE PARTITION "OLD_VALUES" WITH TABLE "B";

Result : data is "moved" from partition "OLD_VALUES" (contains no data after operation) to table
"B"

Note : there is a quite a few additional options, features and restrictions for this operation

Further info can be found on this link ---> "

https://riptutorial.com/ 87

https://docs.oracle.com/cd/E11882_01/server.112/e25523/part_admin002.htm#i1107555" (section
"Exchanging Partitions")

Read Table partitioning online: https://riptutorial.com/oracle/topic/3955/table-partitioning

https://riptutorial.com/ 88

https://docs.oracle.com/cd/E11882_01/server.112/e25523/part_admin002.htm#i1107555
https://riptutorial.com/oracle/topic/3955/table-partitioning

Chapter 31: Update with Joins

Introduction

Contrary to widespread misunderstanding (including on SO), Oracle allows updates through joins.
However, there are some (pretty logical) requirements. We illustrate what doesn't work and what
does through a simple example. Another way to achieve the same is the MERGE statement.

Examples

Examples: what works and what doesn't

create table tgt (id, val) as
 select 1, 'a' from dual union all
 select 2, 'b' from dual
;

Table TGT created.

create table src (id, val) as
 select 1, 'x' from dual union all
 select 2, 'y' from dual
;

Table SRC created.

update
 (select t.val as t_val, s.val as s_val
 from tgt t inner join src s on t.id = s.id
)
set t_val = s_val
;

SQL Error: ORA-01779: cannot modify a column which maps to a non key-preserved table
01779. 00000 - "cannot modify a column which maps to a non key-preserved table"
*Cause: An attempt was made to insert or update columns of a join view which
 map to a non-key-preserved table.
*Action: Modify the underlying base tables directly.

Imagine what would happen if we had the value 1 in the column src.id more than once, with
different values for src.val. Obviously, the update would make no sense (in ANY database - that's
a logical issue). Now, we know that there are no duplicates in src.id, but the Oracle engine
doesn't know that - so it's complaining. Perhaps this is why so many practitioners believe Oracle
"doesn't have UPDATE with joins"?

What Oracle expects is that src.id should be unique, and that it, Oracle, would know that
beforehand. Easily fixed! Note that the same works with composite keys (on more than one
column), if the matching for the update needs to use more than one column. In practice, src.id
may be PK and tgt.id may be FK pointing to this PK, but that is not relevant for updates with join;
what is relevant is the unique constraint.

https://riptutorial.com/ 89

alter table src add constraint src_uc unique (id);

Table SRC altered.

update
 (select t.val as t_val, s.val as s_val
 from tgt t inner join src s on t.id = s.id
)
set t_val = s_val
;

2 rows updated.

select * from tgt;

ID VAL
-- ---
 1 x
 2 y

The same result could be achieved with a MERGE statement (which deserves its own
Documentation article), and I personally prefer MERGE in these cases, but the reason is not that
"Oracle doesn't do updates with joins." As this example shows, Oracle does do updates with joins.

Read Update with Joins online: https://riptutorial.com/oracle/topic/8061/update-with-joins

https://riptutorial.com/ 90

https://riptutorial.com/oracle/topic/8061/update-with-joins

Chapter 32: Window Functions

Syntax

Ratio_To_Report (expr) OVER (query_partition_clause)•

Examples

Ratio_To_Report

Provides the ratio of the current rows value to all the values within the window.

--Data
CREATE TABLE Employees (Name Varchar2(30), Salary Number(10));
INSERT INTO Employees Values ('Bob',2500);
INSERT INTO Employees Values ('Alice',3500);
INSERT INTO Employees Values ('Tom',2700);
INSERT INTO Employees Values ('Sue',2000);
--Query
SELECT Name, Salary, Ratio_To_Report(Salary) OVER () As Ratio
FROM Employees
ORDER BY Salary, Name, Ratio;
--Output
NAME SALARY RATIO
------------------------------ ---------- ----------
Sue 2000 .186915888
Bob 2500 .23364486
Tom 2700 .252336449
Alice 3500 .327102804

Read Window Functions online: https://riptutorial.com/oracle/topic/6669/window-functions

https://riptutorial.com/ 91

https://riptutorial.com/oracle/topic/6669/window-functions

Chapter 33: Working with Dates

Examples

Date Arithmetic

Oracle supports DATE (includes time to the nearest second) and TIMESTAMP (includes time to
fractions of a second) datatypes, which allow arithmetic (addition and subtraction) natively. For
example:

To get the next day:

select to_char(sysdate + 1, 'YYYY-MM-DD') as tomorrow from dual;

To get the previous day:

select to_char(sysdate - 1, 'YYYY-MM-DD') as yesterday from dual;

To add 5 days to the current date:

select to_char(sysdate + 5, 'YYYY-MM-DD') as five_days_from_now from dual;

To add 5 hours to the current date:

select to_char(sysdate + (5/24), 'YYYY-MM-DD HH24:MI:SS') as five_hours_from_now from dual;

To add 10 minutes to the current date:

select to_char(sysdate + (10/1440), 'YYYY-MM-DD HH24:MI:SS') as ten_mintues_from_now from
dual;

To add 7 seconds to the current date:

select to_char(sysdate + (7/86400), 'YYYY-MM-DD HH24:MI:SS') as seven_seconds_from_now from
dual;

To select rows where hire_date is 30 days ago or more:

select * from emp where hire_date < sysdate - 30;

To select rows where last_updated column is in the last hour:

select * from logfile where last_updated >= sysdate - (1/24);

Oracle also provides the built-in datatype INTERVAL which represents a duration of time (e.g. 1.5

https://riptutorial.com/ 92

days, 36 hours, 2 months, etc.). These can also be used with arithmetic with DATE and TIMESTAMP
expressions. For example:

select * from logfile where last_updated >= sysdate - interval '1' hour;

Add_months function

Syntax: add_months(p_date, integer) return date;

Add_months function adds amt months to p_date date.

SELECT add_months(date'2015-01-12', 2) m FROM dual;

M

2015-03-12

You can also substract months using a negative amt

SELECT add_months(date'2015-01-12', -2) m FROM dual;

M

2014-11-12

When the calculated month has fewer days as the given date, the last day of the calculated month
will be returned.

SELECT to_char(add_months(date'2015-01-31', 1),'YYYY-MM-DD') m FROM dual;

M

2015-02-28

Read Working with Dates online: https://riptutorial.com/oracle/topic/768/working-with-dates

https://riptutorial.com/ 93

https://riptutorial.com/oracle/topic/768/working-with-dates

Credits

S.
No

Chapters Contributors

1
Getting started with
Oracle Database

Community, J. Chomel, Jeffrey Kemp, Jon Ericson, Kevin
Montrose, Mark Stewart, Sanjay Radadiya, Steven Feuerstein,
tonirush

2
Anonymous PL/SQL
Block

Jon Heller, Skynet, Zohar Elkayam

3
Autonomous
Transactions

phonetic_man

4 constraints SSD

5 Creating a Context Jeffrey Kemp

6 Data Dictionary Mark Stewart, Pancho, Slava Babin

7 Data Pump Vidya Thotangare

8 Database Links carlosb, Daniel Langemann, g00dy, kasi

9 Dates carlosb, MT0, Roman, tonirush

10
Delimiting keywords
or special characters

dev

11
Different ways to
update records

nimour pristou, Nogueira Jr, SriniV

12 DUAL table Slava Babin

13 Dynamic SQL Dmitry

14 Error logging zygimantus

15
Handling NULL
values

Dalex, JeromeFr

16
Hierarchical
Retrieval With Oracle
Database 12C

Muntasir, Vahid

17 Hints Aleksej, Florin Ghita, Jon Heller, Mark Stewart, Pirate X

https://riptutorial.com/ 94

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/6019417/j--chomel
https://riptutorial.com/contributor/103295/jeffrey-kemp
https://riptutorial.com/contributor/1438/jon-ericson
https://riptutorial.com/contributor/80572/kevin-montrose
https://riptutorial.com/contributor/80572/kevin-montrose
https://riptutorial.com/contributor/4178262/mark-stewart
https://riptutorial.com/contributor/6536418/sanjay-radadiya
https://riptutorial.com/contributor/4403757/steven-feuerstein
https://riptutorial.com/contributor/4519426/tonirush
https://riptutorial.com/contributor/409172/jon-heller
https://riptutorial.com/contributor/3892259/skynet
https://riptutorial.com/contributor/5914921/zohar-elkayam
https://riptutorial.com/contributor/6251114/phonetic-man
https://riptutorial.com/contributor/5553632/ssd
https://riptutorial.com/contributor/103295/jeffrey-kemp
https://riptutorial.com/contributor/4178262/mark-stewart
https://riptutorial.com/contributor/3051627/pancho
https://riptutorial.com/contributor/3001523/slava-babin
https://riptutorial.com/contributor/7681590/vidya-thotangare
https://riptutorial.com/contributor/5095669/carlosb
https://riptutorial.com/contributor/2612068/daniel-langemann
https://riptutorial.com/contributor/2053650/g00dy
https://riptutorial.com/contributor/6661047/kasi
https://riptutorial.com/contributor/5095669/carlosb
https://riptutorial.com/contributor/1509264/mt0
https://riptutorial.com/contributor/4006563/roman
https://riptutorial.com/contributor/4519426/tonirush
https://riptutorial.com/contributor/4941794/dev
https://riptutorial.com/contributor/7156202/nimour-pristou
https://riptutorial.com/contributor/4577115/nogueira-jr
https://riptutorial.com/contributor/2772061/sriniv
https://riptutorial.com/contributor/3001523/slava-babin
https://riptutorial.com/contributor/4169008/dmitry
https://riptutorial.com/contributor/1766166/zygimantus
https://riptutorial.com/contributor/544428/dalex
https://riptutorial.com/contributor/3548287/jeromefr
https://riptutorial.com/contributor/5456631/muntasir
https://riptutorial.com/contributor/2213081/vahid
https://riptutorial.com/contributor/5726467/aleksej
https://riptutorial.com/contributor/319875/florin-ghita
https://riptutorial.com/contributor/409172/jon-heller
https://riptutorial.com/contributor/4178262/mark-stewart
https://riptutorial.com/contributor/4046274/pirate-x

18 Indexes smshafiqulislam

19 JOINS
Aleksej, B Samedi, Bakhtiar Hasan, Daniel Langemann, Erkan
Haspulat, Pranav Shah, Robin James, SriniV, Sumner Evans

20 level query Sanjay Radadiya, TechEnthusiast

21
Limiting the rows
returned by a query
(Pagination)

Ahmed Mohamed, Martin Schapendonk, Matas Vaitkevicius,
Sanjay Radadiya, tonirush, trincot

22
Oracle Advanced
Queuing (AQ)

Jon Theriault

23 Oracle MAF Anand Raj

24
Real Application
Security

Ben H

25

Recursive Sub-
Query Factoring
using the WITH
Clause (A.K.A.
Common Table
Expressions)

B Samedi, MT0

26 Sequences Pranav Shah, SriniV

27
Splitting Delimited
Strings

Arkadiusz Łukasiewicz, MT0

28 Statistical functions Evgeniy K., Matas Vaitkevicius, ppeterka, Pranav Shah

29 String Manipulation
carlosb, Eric B., Florin Ghita, Francesco Serra, J. Chomel,
J.Hudler, Jeffrey Kemp, Mark Stewart, SriniV, Thunder, walen,
zhliu03

30 Table partitioning
BobC, carlosb, ivanzg, JeromeFr, Kamil Islamov, Stephen
Leppik, tonirush

31 Update with Joins mathguy

32 Window Functions Leigh Riffel

33 Working with Dates
David Aldridge, Florin Ghita, Jeffrey Kemp, Mark Stewart,
tonirush, zygimantus

https://riptutorial.com/ 95

https://riptutorial.com/contributor/6275152/smshafiqulislam
https://riptutorial.com/contributor/5726467/aleksej
https://riptutorial.com/contributor/2082707/b-samedi
https://riptutorial.com/contributor/6879340/bakhtiar-hasan
https://riptutorial.com/contributor/2612068/daniel-langemann
https://riptutorial.com/contributor/178753/erkan-haspulat
https://riptutorial.com/contributor/178753/erkan-haspulat
https://riptutorial.com/contributor/4357155/pranav-shah
https://riptutorial.com/contributor/4099675/robin-james
https://riptutorial.com/contributor/2772061/sriniv
https://riptutorial.com/contributor/2319844/sumner-evans
https://riptutorial.com/contributor/6536418/sanjay-radadiya
https://riptutorial.com/contributor/7431823/techenthusiast
https://riptutorial.com/contributor/6732329/ahmed-mohamed
https://riptutorial.com/contributor/504547/martin-schapendonk
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/6536418/sanjay-radadiya
https://riptutorial.com/contributor/4519426/tonirush
https://riptutorial.com/contributor/5459839/trincot
https://riptutorial.com/contributor/2463075/jon-theriault
https://riptutorial.com/contributor/4865536/anand-raj
https://riptutorial.com/contributor/7204614/ben-h
https://riptutorial.com/contributor/2082707/b-samedi
https://riptutorial.com/contributor/1509264/mt0
https://riptutorial.com/contributor/4357155/pranav-shah
https://riptutorial.com/contributor/2772061/sriniv
https://riptutorial.com/contributor/5019309/arkadiusz-lukasiewicz
https://riptutorial.com/contributor/5019309/arkadiusz-lukasiewicz
https://riptutorial.com/contributor/1509264/mt0
https://riptutorial.com/contributor/6491834/evgeniy-k-
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/1667004/ppeterka
https://riptutorial.com/contributor/4357155/pranav-shah
https://riptutorial.com/contributor/5095669/carlosb
https://riptutorial.com/contributor/527395/eric-b-
https://riptutorial.com/contributor/319875/florin-ghita
https://riptutorial.com/contributor/5607452/francesco-serra
https://riptutorial.com/contributor/6019417/j--chomel
https://riptutorial.com/contributor/666104/j-hudler
https://riptutorial.com/contributor/103295/jeffrey-kemp
https://riptutorial.com/contributor/4178262/mark-stewart
https://riptutorial.com/contributor/2772061/sriniv
https://riptutorial.com/contributor/232687/thunder
https://riptutorial.com/contributor/6404321/walen
https://riptutorial.com/contributor/1291390/zhliu03
https://riptutorial.com/contributor/7355859/bobc
https://riptutorial.com/contributor/5095669/carlosb
https://riptutorial.com/contributor/5264946/ivanzg
https://riptutorial.com/contributor/3548287/jeromefr
https://riptutorial.com/contributor/4538672/kamil-islamov
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/4519426/tonirush
https://riptutorial.com/contributor/5683823/mathguy
https://riptutorial.com/contributor/27010/leigh-riffel
https://riptutorial.com/contributor/6742/david-aldridge
https://riptutorial.com/contributor/319875/florin-ghita
https://riptutorial.com/contributor/103295/jeffrey-kemp
https://riptutorial.com/contributor/4178262/mark-stewart
https://riptutorial.com/contributor/4519426/tonirush
https://riptutorial.com/contributor/1766166/zygimantus

	About
	Chapter 1: Getting started with Oracle Database
	Remarks
	Versions
	Examples
	Hello World
	Hello world! from table

	Create a simple table
	Insert values (you can omit target columns if you provide values for all columns)
	Remember to commit, because Oracle uses transactions
	Select your data:
	SQL Query
	Hello World from PL/SQL

	Chapter 2: Anonymous PL/SQL Block
	Remarks
	Examples
	An example of an anonymous block

	Chapter 3: Autonomous Transactions
	Remarks
	Examples
	Using autonomous transaction for logging errors

	Chapter 4: constraints
	Examples
	Update foreign keys with new value in Oracle
	Disable all related foreign keys in oracle

	Chapter 5: Creating a Context
	Syntax
	Parameters
	Remarks
	Examples
	Create a Context

	Chapter 6: Data Dictionary
	Remarks
	Examples
	Text source of the stored objects
	Get list of all tables in Oracle
	Privilege information
	Oracle version
	Describes all objects in the database.
	To see all the data dictionary views to which you have access

	Chapter 7: Data Pump
	Introduction
	Examples
	Monitor Datapump jobs
	Step 3/6 : Create directory
	Step 7 : Export Commands
	Step 9 : Import Commands
	1. Datapump steps
	Copy tables between different schemas and tablespaces

	Chapter 8: Database Links
	Examples
	Creating a database link
	Create Database Link

	Chapter 9: Dates
	Examples
	Generating Dates with No Time Component
	Generating Dates with a Time Component
	The Format of a Date
	Converting Dates to a String
	Setting the Default Date Format Model
	Changing How SQL/Plus or SQL Developer Display Dates
	Date Arithmetic - Difference between Dates in Days, Hours, Minutes and/or Seconds
	Date Arithmetic - Difference between Dates in Months or Years
	Extract the Year, Month, Day, Hour, Minute or Second Components of a Date
	Time Zones and Daylight Savings Time
	Leap Seconds
	Getting the Day of the Week

	Chapter 10: Delimiting keywords or special characters
	Examples
	Delimit the table or column name with special characters
	Delimiting table or column name which is a reserved word as well

	Chapter 11: Different ways to update records
	Syntax
	Examples
	Update Syntax with example
	Update Using Inline View
	Update using Merge
	Merge with sample data

	Chapter 12: DUAL table
	Remarks
	Examples
	The following example returns the current operating system date and time
	The following example generates numbers between start_value and end_value

	Chapter 13: Dynamic SQL
	Introduction
	Remarks
	Examples
	Select value with dynamic SQL
	Insert values in dynamic SQL
	Update values in dynamic SQL
	Execute DDL statement
	Execute anonymous block

	Chapter 14: Error logging
	Examples
	Error logging when writing to database

	Chapter 15: Handling NULL values
	Introduction
	Remarks
	Examples
	Columns of any data type can contain NULLs
	Empty strings are NULL
	Operations containing NULL are NULL, except concatenation
	NVL to replace null value
	NVL2 to get a different result if a value is null or not
	COALESCE to return the first non-NULL value

	Chapter 16: Hierarchical Retrieval With Oracle Database 12C
	Introduction
	Examples
	Using the CONNECT BY Caluse
	Specifying the Direction of the Query From the Top Down

	Chapter 17: Hints
	Parameters
	Examples
	Parallel Hint
	USE_NL
	APPEND HINT
	USE_HASH
	FULL
	Result Cache

	Chapter 18: Indexes
	Introduction
	Examples
	b-tree index
	Bitmap Index
	Function Based Index

	Chapter 19: JOINS
	Examples
	CROSS JOIN
	INNER JOIN
	LEFT OUTER JOIN
	RIGHT OUTER JOIN
	FULL OUTER JOIN
	ANTIJOIN
	SEMIJOIN
	JOIN
	NATURAL JOIN

	Chapter 20: level query
	Remarks
	Examples
	Generate N Number of records
	Few usages of Level Query

	Chapter 21: Limiting the rows returned by a query (Pagination)
	Examples
	Get first N rows with row limiting clause
	Pagination in SQL
	Get N numbers of Records from table
	Get row N through M from many rows (before Oracle 12c)
	Skipping some rows then taking some
	Skipping some rows from result

	Chapter 22: Oracle Advanced Queuing (AQ)
	Remarks
	Examples
	Simple Producer/Consumer

	Overview
	Create Queue
	Start Queue and Send a Message

	Chapter 23: Oracle MAF
	Examples
	To get value from Binding
	To set value to binding
	To invoke a method from binding
	To call a javaScript function

	Chapter 24: Real Application Security
	Introduction
	Examples
	Application

	Chapter 25: Recursive Sub-Query Factoring using the WITH Clause (A.K.A. Common Table Expressions)
	Remarks
	Examples
	A Simple Integer Generator
	Splitting a Delimited String

	Chapter 26: Sequences
	Syntax
	Parameters
	Examples
	Creating a Sequence: Example

	Chapter 27: Splitting Delimited Strings
	Examples
	Splitting Strings using a Recursive Sub-query Factoring Clause
	Splitting Strings using a PL/SQL Function
	Splitting Strings using a Correlated Table Expression
	Splitting Strings using a Hierarchical Query
	Splitting Strings using XMLTable and FLWOR expressions
	Splitting Strings using CROSS APPLY (Oracle 12c)
	Splitting Delimited Strings using XMLTable

	Chapter 28: Statistical functions
	Examples
	Calculating the median of a set of values
	VARIANCE
	STDDEV

	Chapter 29: String Manipulation
	Examples
	Concatenation: Operator || or concat() function
	UPPER
	INITCAP
	LOWER
	Regular expression
	SUBSTR
	LTRIM / RTRIM

	Chapter 30: Table partitioning
	Introduction
	Remarks
	Examples
	Hash partitioning
	Range partitioning
	Select existing partitions
	List partitioning
	Drop partition
	Select data from a partition
	Truncate a partition
	Rename a partition
	Move partition to different tablespace
	Add new partition
	Split Partition
	Merge Partitions
	Exchange a partition

	Chapter 31: Update with Joins
	Introduction
	Examples
	Examples: what works and what doesn't

	Chapter 32: Window Functions
	Syntax
	Examples
	Ratio_To_Report

	Chapter 33: Working with Dates
	Examples
	Date Arithmetic
	Add_months function

	Credits

