
osx

#osx

Table of Contents

About 1

Chapter 1: Getting started with osx 2

Remarks 2

Examples 2

Overview of Frameworks 2

Chapter 2: File association 3

Examples 3

Set my app as default app for a file type 3

Create association with new/custom file types via Info.plist 3

Chapter 3: NSFont 5

Introduction 5

Examples 5

Creating an NSFont object 5

Objective-C 5

Chapter 4: NSMenuItem 6

Remarks 6

Examples 6

Enabling menu items 6

Manually enabling menu items 6

Automatically enabling menu items 6

Supporting default menu actions 7

Adding and removing items to a menu 7

Chapter 5: NSRunLoop 8

Examples 8

simple daemon application 8

Chapter 6: NSStoryBoard 9

Examples 9

Open a New Window Controller 9

Chapter 7: NSTextView 10

Introduction 10

Examples 10

Creating an NSTextView 10

Graphically 10

Programmatically 13

Objective-C 14

Chapter 8: Prompting the user for a file 16

Introduction 16

Examples 16

Opening files 16

Opening any file 16

Allowing opening multiple files 16

Limiting to specific file types 16

Chapter 9: Set environment variables 18

Introduction 18

Examples 18

Add a path 18

Credits 19

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: osx

It is an unofficial and free osx ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official osx.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/osx
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with osx

Remarks

This tag is for documentation on Apple-created Mac-specific programming APIs, such as AppKit.

Examples

Overview of Frameworks

Apps written for macOS are usually written with Apple's Frameworks. The frameworks that almost
every app will use are:

AppKit - for creating and managing UI elements•
Foundation - for common non-UI objects and operations•

There are other common frameworks that are used in many, but not all apps:

CoreData - for data storage•
Dispatch - for management of multiple threads•
CoreGraphics - for drawing a graphics related tasks•
CoreAnimation - for animation of UI elements•

Read Getting started with osx online: https://riptutorial.com/osx/topic/2818/getting-started-with-osx

https://riptutorial.com/ 2

https://riptutorial.com/osx/topic/2818/getting-started-with-osx

Chapter 2: File association

Examples

Set my app as default app for a file type

- (NSString *) UTIforFileExtension:(NSString *) extension {
 NSString * UTIString = (NSString
*)UTTypeCreatePreferredIdentifierForTag(kUTTagClassFilenameExtension,
 (CFStringRef)extension,

 NULL);

 return [UTIString autorelease];
}

- (BOOL) setMyselfAsDefaultApplicationForFileExtension:(NSString *) fileExtension {
 OSStatus returnStatus = LSSetDefaultRoleHandlerForContentType (
 (CFStringRef) [self
UTIforFileExtension:fileExtension],
 kLSRolesAll,
 (CFStringRef) [[NSBundle
mainBundle] bundleIdentifier]
);

 if (returnStatus != 0) {
 NSLog(@"Got an error when setting default application - %d", returnStatus);
 // Please see the documentation or LSInfo.h
 return NO;
 }

 return YES;
}

source

Create association with new/custom file types via Info.plist

<key>CFBundleDocumentTypes</key>
<array>
 <dict>
 <key>CFBundleTypeIconFile</key>
 <string>Icon file for associated file</string>
 <key>CFBundleTypeName</key>
 <string>My file format</string>
 <key>CFBundleTypeRole</key>
 <string>Viewer</string> <!-- The value can be Editor, Viewer, Shell, or None. This key
is required. -->
 <key>LSItemContentTypes</key>
 <array>
 <string>UTI of the file</string> <!-- Existing UTI or create a UTI for your new
file type -->
 </array>
 <key>LSHandlerRank</key>

https://riptutorial.com/ 3

https://stackoverflow.com/a/8645445/1578528

 <string>Owner</string>
 </dict>
</array>

source

Read File association online: https://riptutorial.com/osx/topic/10926/file-association

https://riptutorial.com/ 4

https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/DocumentInteraction_TopicsForIOS/Articles/RegisteringtheFileTypesYourAppSupports.html
https://riptutorial.com/osx/topic/10926/file-association

Chapter 3: NSFont

Introduction

NSFont is the object that provides Mac applications with glyph information and font characteristics
to be used for primarily for display. You'll learn how to create and use NSFont objects in a variety
of ways, both common and uncommon.

Examples

Creating an NSFont object

The preferred and most common way of making an NSFont object is the following:

Objective-C

// Name is PostScript name of font; size is in points.
NSFont *essayFont = [NSFont fontWithName:@"Times New Roman" size:12.0];

Read NSFont online: https://riptutorial.com/osx/topic/8881/nsfont

https://riptutorial.com/ 5

https://riptutorial.com/osx/topic/8881/nsfont

Chapter 4: NSMenuItem

Remarks

See Apple's Documentation here:
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/ApplicationKit/Classes/NSMenuItem_Class/

Examples

Enabling menu items

Manually enabling menu items

To manually control the enabled state of a menu items the menu that contains it must disable
automatic enabling of its items

Menus can turn off automatic enabling in one of two ways:

In the Interface Builder1.

In code2.

menu.autoenablesItems = false

Both of the mechanisms set the autoenablesItems property on NSMenu.

Once the menu is menu is no longer enabling and disabling menu items the menu items can be
programmatically set in one of two ways

In Interface Builder1.
In code2.

menuItem.enabled = true

https://riptutorial.com/ 6

https://developer.apple.com/library/mac/documentation/Cocoa/Reference/ApplicationKit/Classes/NSMenuItem_Class/
https://i.stack.imgur.com/DsyJn.png
https://developer.apple.com/reference/appkit/nsmenu/1518227-autoenablesitems
https://developer.apple.com/reference/appkit/nsmenu

Automatically enabling menu items

Menu items can be automatically enabled by connecting menu items actions to the first responder
and implementing the delivered action on an object in the responder chain as described by Apple's
docs.

Supporting default menu actions

Menus act like all standard control items. They have an action which is the function to be called
and a target which is the object to send the function to. If the target is set to an object then when a
user selects a menu item it the action method will be sent to the target object. If the menu item has
an action, but not a target then the target will be dynamically selected from the first object from the
following that responds to the action:

The first responder1.
The view hierarchy2.
Window3.
Window controller4.
NSApplication5.
NSApplication.delegate6.
NSApplication.nextResponder7.

Implementing the default Open (O) menu item can be accomplished by implementing the
openDocument method on any object in the above list.

- (IBAction)openDocument:(id)sender {

}

Adding and removing items to a menu

// add an item to a menu
menu.addItem(item)

// remove and item from a menu
menu.removeItem(item)

Read NSMenuItem online: https://riptutorial.com/osx/topic/6038/nsmenuitem

https://riptutorial.com/ 7

https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/MenuList/Articles/EnablingMenuItems.html
https://developer.apple.com/reference/appkit/nscontrol/1428956-action
https://developer.apple.com/reference/appkit/nscontrol/1428885-target
https://riptutorial.com/osx/topic/6038/nsmenuitem

Chapter 5: NSRunLoop

Examples

simple daemon application

A daemon process executes a program in the background, usually without user interaction. The
example below shows how to create a daemon and register a listener, which monitors all open
applications. The main part is the function call NSRunLoop.mainRunLoop().run(), which starts the
daemon.

class MyObserver: NSObject
{
 override init() {
 super.init()

 // app listeners
 NSWorkspace.sharedWorkspace().notificationCenter.addObserver(self, selector:
"SwitchedApp:", name: NSWorkspaceDidActivateApplicationNotification, object: nil)
 }

 func SwitchedApp(notification: NSNotification!)
 {
 print(notification)
 }
}

let observer = MyObserver()

// simply to keep the command line tool alive - as a daemon process
NSRunLoop.mainRunLoop().run()

You can also use this code as a basis for a server process.

Read NSRunLoop online: https://riptutorial.com/osx/topic/6667/nsrunloop

https://riptutorial.com/ 8

https://en.wikipedia.org/wiki/Daemon_(computing)
https://riptutorial.com/osx/topic/6667/nsrunloop

Chapter 6: NSStoryBoard

Examples

Open a New Window Controller

To open a new window, add the following code somewhere where you can keep a reference to the
new window (I.E., the app delegate).

Swift

let storyboard:NSStoryboard = NSStoryboard(name: "Main", bundle: nil)
guard let controller:NSWindowController =
storyboard.instantiateControllerWithIdentifier("myWindowController") as? NSWindowController
else { return /*or handle error*/ }
controller.showWindow(self)

Objective-C

NSStoryboard *storyBoard = [NSStoryboard storyboardWithName:@"Main" bundle:nil]; // get a
reference to the storyboard
myController = [storyBoard instantiateControllerWithIdentifier:@"secondWindowController"]; //
instantiate your window controller
[myController showWindow:self];

Once you create your controller make sure you keep a reference it to somewhere outside of the
function call. This can be done by creating a NSWindowController variable in your app delegate, and
assigning your new controller to the variable.

Read NSStoryBoard online: https://riptutorial.com/osx/topic/4287/nsstoryboard

https://riptutorial.com/ 9

https://riptutorial.com/osx/topic/4287/nsstoryboard

Chapter 7: NSTextView

Introduction

NSTextView is Apple's main handler of AppKit's text system. It contains everything you need to
create a text viewer/editor space in OS X (renamed macOS) applications.

Examples

Creating an NSTextView

Graphically

In XCode a simple NSTextView can be created by dragging and dropping one from the Object
Library.

https://riptutorial.com/ 10

This NSTextView sits inside an NSScrollView

https://riptutorial.com/ 11

https://i.stack.imgur.com/e11Rf.png

that is automatically set to expand vertically with the text view. Make sure when option()-dragging
you make connections to the text view and not the scroll view.

https://riptutorial.com/ 12

Programmatically
Creating an NSTextView programmatically allows for greater control and customization. It is slight

Three other objects are required for a fully functioning NSTextView to work:•

https://riptutorial.com/ 13

https://i.stack.imgur.com/hhBpy.png

An NSLayoutManager - performs glyph/character layout.1.
An NSTextContainer - controls graphical space that glyphs/characters can inhabit.2.
An NSTextStorage - holds the actual string data that NSTextView displays.3.

An NSTextStorage can have many NSLayoutManager's, but an NSLayoutManager can only
have one NSTextStorage. This is useful if you wish to show the same data in different ways
at the same time.

•

NSLayoutManager's can have many NSTextContainer's. Useful for paginated text.•

NSTextView's can only have one NSTextContainer at a time.•

Certain things built into NSTextView are off limits at the time of writing. For example built-in
Find-and-Replace functions are not able to be customized, but can be overridden with
custom functions.

•

More information on ways to use the text system can be found here.

Now for the code. This code will create a simple NSTextView, with not even scrolling. Such things
like scrolling and pagination will be in another example.

Objective-C

// This code resides in an NSDocument object's windowControllerDidLoadNib:(NSWindowController
*)windowController method.
// This is done simply because it is easy and automatically gets called upon.

// This method is also where the following NSRect variable gets size information. We need this
information for this example.
NSRect windowFrame = windowController.window.contentView.frame;
NSTextStorage *textStorage = [[NSTextStorage alloc] initWithString:@"Example text!"];
NSLayoutManager *manager = [[NSLayoutManager alloc] init];
NSTextContainer *container = [[NSTextContainer alloc]
initWithContainerSize:NSMakeSize(windowFrame.size.width, windowFrame.size.height)];
NSTextView *textView = [[NSTextView alloc] initWithFrame:windowFrame textContainer:container];

[textStorage addLayoutManager:manager];
[manager addTextContainer:container];
[windowController.window setContentView:textView];

Congratulations! You have made an NSTextView programmatically!

https://riptutorial.com/ 14

https://developer.apple.com/library/content/documentation/TextFonts/Conceptual/CocoaTextArchitecture/TextSystemArchitecture/ArchitectureOverview.html#//apple_ref/doc/uid/TP40009459-CH7-CJBJHGAG

Read NSTextView online: https://riptutorial.com/osx/topic/8880/nstextview

https://riptutorial.com/ 15

https://i.stack.imgur.com/yJI81.png
https://riptutorial.com/osx/topic/8880/nstextview

Chapter 8: Prompting the user for a file

Introduction

NSOpenPanel provides an API for prompting the user for a file to open. This menu is the standard
UI presented by the Open (O) menu item.

Examples

Opening files

Opening any file

NSOpenPanel *openPanel = [NSOpenPanel openPanel];
[openPanel beginWithCompletionHandler:^(NSInteger result) {
 NSURL *url = openPanel.URL;
 if (result == NSFileHandlingPanelCancelButton || !url) {
 return;
 }
 // do something with a URL
}];

Allowing opening multiple files

NSOpenPanel *openPanel = [NSOpenPanel openPanel];
openPanel.allowsMultipleSelection = YES;
[openPanel beginWithCompletionHandler:^(NSInteger result) {
 NSArray <NSURL *>*urls = openPanel.URLs;
 // do things
}];

Limiting to specific file types

NSOpenPanel *openPanel = [NSOpenPanel openPanel];
openPanel.allowedFileTypes = @[@".png", @".jpg"];
[openPanel beginWithCompletionHandler:^(NSInteger result) {
 NSURL *url = openPanel.URL;
 if (result == NSFileHandlingPanelCancelButton || !url) {
 return;
 }
 // do something with a picture
}];

Read Prompting the user for a file online: https://riptutorial.com/osx/topic/9438/prompting-the-user-

https://riptutorial.com/ 16

https://riptutorial.com/osx/topic/9438/prompting-the-user-for-a-file

for-a-file

https://riptutorial.com/ 17

https://riptutorial.com/osx/topic/9438/prompting-the-user-for-a-file

Chapter 9: Set environment variables

Introduction

In Mac OS X, you can set the environment variables in one of the following files :

~/.bashrc

~/.bash_profile

~/.profile

By default, Mac OS X does not has above files, you need to create it manually.

Examples

Add a path

1.vim ~/.bash_profile

The file may not exist (if not, you can just create it).

2.type in this and save the file:

export PATH=$PATH:YOUR_PATH_HERE

Read Set environment variables online: https://riptutorial.com/osx/topic/10162/set-environment-
variables

https://riptutorial.com/ 18

https://riptutorial.com/osx/topic/10162/set-environment-variables
https://riptutorial.com/osx/topic/10162/set-environment-variables

Credits

S.
No

Chapters Contributors

1
Getting started with
osx

Andrew Hoos, Community, l'L'l, tbodt

2 File association bikram990

3 NSFont malicedShade

4 NSMenuItem Andrew Hoos, Barlow Tucker

5 NSRunLoop Marco Pashkov

6 NSStoryBoard Barlow Tucker

7 NSTextView malicedShade

8
Prompting the user
for a file

Andrew Hoos

9
Set environment
variables

Kuhan

https://riptutorial.com/ 19

https://riptutorial.com/contributor/775825/andrew-hoos
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/499581/l-l-l
https://riptutorial.com/contributor/1455016/tbodt
https://riptutorial.com/contributor/1578528/bikram990
https://riptutorial.com/contributor/2503304/malicedshade
https://riptutorial.com/contributor/775825/andrew-hoos
https://riptutorial.com/contributor/330494/barlow-tucker
https://riptutorial.com/contributor/2210287/marco-pashkov
https://riptutorial.com/contributor/330494/barlow-tucker
https://riptutorial.com/contributor/2503304/malicedshade
https://riptutorial.com/contributor/775825/andrew-hoos
https://riptutorial.com/contributor/3214177/kuhan

	About
	Chapter 1: Getting started with osx
	Remarks
	Examples
	Overview of Frameworks

	Chapter 2: File association
	Examples
	Set my app as default app for a file type
	Create association with new/custom file types via Info.plist

	Chapter 3: NSFont
	Introduction
	Examples
	Creating an NSFont object

	Objective-C

	Chapter 4: NSMenuItem
	Remarks
	Examples
	Enabling menu items

	Manually enabling menu items
	Automatically enabling menu items
	Supporting default menu actions
	Adding and removing items to a menu

	Chapter 5: NSRunLoop
	Examples
	simple daemon application

	Chapter 6: NSStoryBoard
	Examples
	Open a New Window Controller

	Chapter 7: NSTextView
	Introduction
	Examples
	Creating an NSTextView

	Graphically
	Programmatically
	Objective-C

	Chapter 8: Prompting the user for a file
	Introduction
	Examples
	Opening files

	Opening any file
	Allowing opening multiple files
	Limiting to specific file types
	Chapter 9: Set environment variables
	Introduction
	Examples
	Add a path

	Credits

