
outlook-vba

#outlook-

vba

Table of Contents

About 1

Chapter 1: Getting started with outlook-vba 2

Remarks 2

Examples 2

Introduction 2

Outlook Visual Basic for Applications 3

Advanced topics 3

Chapter 2: Introduction Part 1: Gaining access to Outlook's Visual Basic Editor 4

Introduction 4

Examples 4

1.1 Gaining access to Outlook 2003's Visual Basic Editor 4

1.2 Gaining access to the Visual Basic Editor in Outlook 2007 and later 4

1.3 Getting started with the Visual Basic Editor 8

1.4 What you should remember from this part of the tutorial 13

Chapter 3: Introduction Part 2: Stores and top-level folders 14

Introduction 14

Examples 14

2.1 Expected prior knowledge 14

2.2 Stores 14

2.3 Top level folders 16

2.4 What you should remember from this tutorial 17

Chapter 4: Introduction Part 3: Stores and all their folders 18

Introduction 18

Examples 18

3. 0 Contents 18

3.1 Function GetFldrNames() which is needed for several of the demonstration macros 18

3.2 Referencing a default folder 19

3.3 Referencing any folder within any accessible store 20

3.4 Listing the names of every folder within every accessible store 21

3.5 Moving a folder from one parent folder to another 22

3.6 What you should remember from this part of the tutorial 22

Credits 24

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: outlook-vba

It is an unofficial and free outlook-vba ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official outlook-vba.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/outlook-vba
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with outlook-vba

Remarks

This section provides an overview of what outlook-vba is, and why a developer might want to use
it.

It should also mention any large subjects within outlook-vba, and link out to the related topics.
Since the Documentation for outlook-vba is new, you may need to create initial versions of those
related topics.

Examples

Introduction

There are currently three topics introducing Outlook VBA and at least three more are planned.

Part 1 describes how to get access to the Visual Basic Editor.

If you are a user of Outlook 2003 and a user of Excel VBA, you will learn little for this part since
accessing the Outlook Visual Basic Editor is the same as accessing the Excel Visual Basic Editor.

With Outlook 2007 and later, the Developer tab. which gives access to the Visual Basic Editor, is
not displayed for a new installation. To display the Developer tab, you must perform an number of
steps which are described in this part. There is no code in this part.

Parts 2 and 3 describe stores and folders which are where Outlook stores data. You could think of
them as the equivalent of Excel's workbooks and worksheets. The division between part 2 and 3 is
somewhat arbitrary. Part 2 describes stores and folders and includes macros to display the names
of all accessible stores and the top level folders within those stores. Part 3 includes macro for
accessing lower level folders. One pair of macros uses recursion which a new programmer may
find difficult to understand. The reader should aim to understand all the code in Part 2. It would
however be legitimate to understand what that pair of macros does but not understand how they
achieve their objective.

Part 4, the next part to be written, will introduce MailItems which hold emails. Part 3 includes a
macro to move a folder from one parent to another but most macros operate on the objects
contained within folders not folders themselves. Judging from the questions on Stack overflow,
MailItems are of most interest to programmers.

Part 5 will introduce CalendarItems which hold appointments. Part 6 will introduce the creation of
new Excel workbooks from Outlook and the reading and updating of existing workbooks. Part 7
will introduce Events unless some more immediately important topic is identified.

It is important to understand this is an introduction to Outlook VBA not an introduction to VBA. Part
2 gives some guidance on where to get information on VBA but since the language is the same

https://riptutorial.com/ 2

across all Office products, a description of it belongs outside this introduction to Outlook VBA.

Outlook Visual Basic for Applications

Visual Basic for Applications (VBA) is the macro language behind all Microsoft Office products and
is essentially identical across all Office products. What differs from product to product is the Object
model. Excel has workbooks, worksheets and cells. Access has tables and attributes. Outlook has
folders, emails and appointments. It is the Object Model that makes Excel VBA different from
Outlook VBA.

Advanced topics

The various parts of the introduction aim to give the information that any programmer new to
Outlook VBA would need. Much of the code was originally developed with Outlook 2003 and has
been tested with Outlook 2016. It should work unchanged with any intermediate version.

New functionality has been introduced since Outlook 2003 which programmers will wish/need to
access. It is envisaged that "advanced topics" will be written to describe this functionality.

Read Getting started with outlook-vba online: https://riptutorial.com/outlook-vba/topic/8111/getting-
started-with-outlook-vba

https://riptutorial.com/ 3

https://riptutorial.com/outlook-vba/topic/8111/getting-started-with-outlook-vba
https://riptutorial.com/outlook-vba/topic/8111/getting-started-with-outlook-vba

Chapter 2: Introduction Part 1: Gaining
access to Outlook's Visual Basic Editor

Introduction

Gaining access to Outlook's Visual Basic Editor, inserting your first module and renaming that
module.

Expected prior knowledge: You are an Outlook user.

With Outlook 2003, you can immediately select the Visual Basic Editor. With later versions, you
must add the Developer tab before you can select the Visual Basic Editor.

Examples

1.1 Gaining access to Outlook 2003's Visual Basic Editor

All images are from UK versions of Outlook. I know that some names are translated into the local
language for other versions and I assume that most of the names for the tabs are translated.
Probably the sequence of tabs is unchanged in non-English versions. Alternatively, you will need
to look at your tabs and decide which would be equivalent of, for example, “Tools”

With Outlook 2003 open, the top of the window might look like:

Click Tools and move the cursor down to Macros to see:

Move the cursor right then down and click Visual Basic Editor. Alternatively, exit the selections
and click Alt+F11.

1.2 Gaining access to the Visual Basic Editor in Outlook 2007 and later

https://riptutorial.com/ 4

https://i.stack.imgur.com/brDHk.png
https://i.stack.imgur.com/0riBk.png

All images in this section are from the UK version of Outlook 2016. I know that some names are
translated into the local language for other versions and I assume that most of the names for the
tabs are translated. Probably the sequence of tabs is unchanged in non-English versions.
Alternatively, you will need to look at your tabs and decide which would be equivalent of, for
example, “Tools”

Outlook 2010 windows are formatted differently but are essentially identical. I understand other
versions are also essentially identical to Outlook 2016.

The top of the main window might look like:

Click File, on the left, to get the following on the left of the window:

Click Options, near the bottom, to get the following on the left of the window:

https://riptutorial.com/ 5

https://i.stack.imgur.com/OM58e.png
https://i.stack.imgur.com/wfzPq.png

Click Customize Ribbon, half way down. to get the following on the right of the window:

https://riptutorial.com/ 6

https://i.stack.imgur.com/tPURF.png

Click the box next to “Developer”, near the bottom, to get a tick then click OK, at the bottom. The
main window will reappear but will have changed to:

Click the new Developer tab to get:

https://riptutorial.com/ 7

https://i.stack.imgur.com/Aasvy.png
https://i.stack.imgur.com/EXPKy.png

Click Visual Basic, on the left, to select the Visual Basic Editor.

1.3 Getting started with the Visual Basic Editor

The images in this section are all from Outlook 2016 but they could have come from Outlook 2003.
Outlook VBA may have changed over the years but to my eyes the VBA Editor has not. Whichever
version you have you will see something like:

https://riptutorial.com/ 8

https://i.stack.imgur.com/DEqjB.png

Above there is a “+” against "Project1". If you have a “+” click it and then the “+” against "Microsoft
Outlook Objects" to get:

https://riptutorial.com/ 9

https://i.stack.imgur.com/pmWlq.png

The Properties window may not be present or, if present, may be positioned elsewhere within the
VB Editor window. We do not need it for the moment. You can close it by clicked the cross and
can use F4 to make it visible again at any time. I do not normally have it visible because I do not
need access to Properties most of the time and my Project Explorer list occupies most of the left
side. I suggest you keep it visible until it becomes a nuisance.

If you click ThisOutlookSession, either the grey area will turn white or, as in the image below, a code
window will appear within the grey area:

https://riptutorial.com/ 10

https://i.stack.imgur.com/5JGfd.png

You can type any code into this code window. However, event routines (which are discussed
towards the end of this tutorial) must be typed into this code window. I recommend you reserve the
ThisOutlookSession code area for event routines.

Instead, click Insert to get:

https://riptutorial.com/ 11

https://i.stack.imgur.com/KqL9T.png

Click on Module to add a module:

https://riptutorial.com/ 12

https://i.stack.imgur.com/YI3SI.png
https://i.stack.imgur.com/4C6Oy.png

My new module is named “Module1”. If your version of Outlook is a non-English version, your
module will have an equivalent name in your language. You can add more modules which will be
named "Module2", "Module3" and so on.

If I am creating an Excel workbook, for which I only need one module, I might leave the name as
“Module1”. But with Outlook, all my macros have to go here so I have lots of modules. Over the
years I have written many routines which I reuse repeatedly. I have one module for general VBA
routines, another for routines to access Excel, another for Outlook VBA routines and then one
module per Outlook task I perform with macros. If you look at the Properties window you will see
the only property of a module is its name. Click on the “Module1” against “Name” and you can
change it to any valid (starts with a letter, contains letters and number only, etc.) name. You get
strange errors if a module and a procedure have the same name so I start all my module names
with “Mod” and I do not use this prefix for my procedures. Why not rename this module “ModIntro”
or similar ready for the next part of this tutorial?

These code areas and like the data entry areas of any editor. Click on the code area to select it
and type your code or paste in code copied from elsewhere such as the next section of this
tutorial.

1.4 What you should remember from this part of the tutorial

Did your version of Outlook need you to add the Development tab? If so, you will not need to
repeat this process until you next have a new Outlook installation. Come back here when
that happens.

•

Remember how to enter the Visual Basic Editor.•
Remember how to create and rename a module.•

Read Introduction Part 1: Gaining access to Outlook's Visual Basic Editor online:
https://riptutorial.com/outlook-vba/topic/8877/introduction-part-1--gaining-access-to-outlook-s-
visual-basic-editor

https://riptutorial.com/ 13

https://riptutorial.com/outlook-vba/topic/8877/introduction-part-1--gaining-access-to-outlook-s-visual-basic-editor
https://riptutorial.com/outlook-vba/topic/8877/introduction-part-1--gaining-access-to-outlook-s-visual-basic-editor

Chapter 3: Introduction Part 2: Stores and
top-level folders

Introduction

First part of an introduction to stores and the folders they contain. Contains macros to display (1)
the names of accessible stores and (2) the names of accessible stores and the top level folders
within them.

Examples

2.1 Expected prior knowledge

You are an Outlook user and understand terms such as “email”, “received time”, “subject”
and “Folder Pane”.

•

You know how to access Outlook’s Visual Basic Editor and create a module. See
Introduction Part 1 if necessary.

•

You have at least a basic knowledge of VBA. I declare Subroutines and variables without
explanation. I use Withs, Ifs and Loops without explanation. I tell you something is a
collection. I tell you to copy code to a module and run it. There are many online tutorials
although most are for Excel VBA and concentrate more on using the language with Excel
than on the language. Searching for “VBA tutorial” brings up some that concentrate on the
language more than the application that look satisfactory.

•

You are not required to know the Outlook Object Model; this tutorial introduces you to a
small part of it.

•

2.2 Stores

Outlook stores emails, calendar items, notes, tasks and so on in files known as Stores. If you look
at your Folder Pane you will see something like:

Aaaaaaaaaa
 Inbox
 Drafts
 Deleted Items
 : :

Bbbbbbbbbb
 Inbox
 Drafts
 Deleted Items
 : :

Cccccccccc
: :

https://riptutorial.com/ 14

"Aaaaaaaaaa", "Bbbbbbbbbb" and "Cccccccccc" are the user or display names of Stores. I have
always accepted Outlook defaults for these names which have changed over the years. Once the
default was my name now it is my email address. The filename for these stores may be the same
but with an extension such as PST or OST or may be something completely different. A VBA
macro needs the user name to access a store and is not concerned with the file names or the
extension.

You can have as many stores as you wish. I have “Outlook data file” which was created for me
when I installed Outlook. When I added accounts for my email addresses, Outlook created new
stores named for the email address such as “JohnDoe@hotmail.com” and “DoeJohn@gmail.com”.
To reduce the size of my main store I save old emails in stores with names such “Archive 2015”.

If you are a business user, you may have access to shared stores or to the stores of colleagues.

The macros below show three different ways of listing the stores you can access. I suggest you
create a new module to hold the code below and to use F4 to access the module’s properties so
you can be name it as “ModIntro” or some other name of your choice. If you completed Part 1 of
this series, you will already have such a module.

Copy these macros to a module and test that each gives the same output.

Sub ListStores1()

 Dim InxStoreCrnt As Integer
 Dim NS As NameSpace
 Dim StoresColl As Folders

 Set NS = CreateObject("Outlook.Application").GetNamespace("MAPI")
 Set StoresColl = NS.Folders

 For InxStoreCrnt = 1 To StoresColl.Count
 Debug.Print StoresColl(InxStoreCrnt).Name
 Next

End Sub
Sub ListStores2()

 Dim StoresColl As Stores
 Dim StoreCrnt As Store

 Set StoresColl = Session.Stores

 For Each StoreCrnt In StoresColl
 Debug.Print StoreCrnt.DisplayName
 Next

End Sub
Sub ListStores3()

 Dim InxStoreCrnt As Long

 With Application.Session
 For InxStoreCrnt = 1 To .Folders.Count
 Debug.Print .Folders(InxStoreCrnt).Name
 Next
 End With

https://riptutorial.com/ 15

End Sub

You will find with VBA that there are often several methods of achieving the same effect. Above I
have shown three methods of accessing the stores. You do not need to remember them all – pick
your own favourite – but you do need to be aware that there are several methods because other
people, whose code you may need to study, will have different favourites.

The variables StoresColl in macros ListStores1() and ListStores2() are both collections but hold
different types of object: Store and Folder. A Store object can only reference a file on your disc. A
Folder can reference a file on disc but can also reference folders within a store such as “Inbox”
and “Sent Items”. Stores, Folders, Store and Folder are all part of the Outlook Object Model. This
tutorial series introduces you to the model but it is not a formal definition. If you want a formal
definition, type “outlook vba object model” into your favourite search engine. Make sure you look at
the VBA version of the model.

2.3 Top level folders

In my Folder Pane example above, I only list three standard folders: “Inbox”, “Drafts” and “Deleted
Items”. There are other standard folders and you can create as many folders of your own as you
wish. Some people create folders under Inbox but I prefer to create new folders at the same level
as Inbox. Your folders can have sub-folders which can have their own sub-folders to any depth.

The following macro will produce a listing of the form:

A
 A1
 A2
 A3
B
 B1
 B2
C
 C1
 C2
 C3
 C4

where A, B and C are stores and A1, B1, C1 and so on are folders within A, B and C. If A1, B1, C1
and so on have sub-folders, they will not be listed by this macro. Accessing more deeply nested
folders will be covered in the next part of this tutorial.

Sub ListStoresAndTopLevelFolders()

 Dim FldrCrnt As Folder
 Dim InxFldrCrnt As Long
 Dim InxStoreCrnt As Long
 Dim StoreCrnt As Folder

 With Application.Session
 For InxStoreCrnt = 1 To .Folders.Count
 Set StoreCrnt = .Folders(InxStoreCrnt)

https://riptutorial.com/ 16

 With StoreCrnt
 Debug.Print .Name
 For InxFldrCrnt = .Folders.Count To 1 Step -1
 Set FldrCrnt = .Folders(InxFldrCrnt)
 With FldrCrnt
 Debug.Print " " & .Name
 End With
 Next
 End With
 Next
 End With

End Sub

2.4 What you should remember from this tutorial

A store is a file in which Outlook stores emails, calendar items, notes, tasks and so on.•
A store may contain Outlook standard folders such as “Inbox” and “Sent Items”.•
A store may also contain user created folders.•
Both Outlook standard folders and user created folders may contain user created sub-
folders, sub-sub-folders and so on to any depth.

•

How to list stores.•
How to list stores and the top level folders within those stores.•

Confession: I do not remember either of the “Hows”. I have subroutines and functions that
remember for me.

Read Introduction Part 2: Stores and top-level folders online: https://riptutorial.com/outlook-
vba/topic/8876/introduction-part-2--stores-and-top-level-folders

https://riptutorial.com/ 17

https://riptutorial.com/outlook-vba/topic/8876/introduction-part-2--stores-and-top-level-folders
https://riptutorial.com/outlook-vba/topic/8876/introduction-part-2--stores-and-top-level-folders

Chapter 4: Introduction Part 3: Stores and all
their folders

Introduction

Completes the introduction to stores and folders started in part 2 of this tutorial

Expected prior knowledge: You have studied part 2 of this tutorial or are already familiar with its
contents.

Examples

3. 0 Contents

How to reference any accessible folder.•
How to get the full name of a referenced folder.•
A pair of routines that together will list every folder within every accessible store.•
A routine to move a folder from one parent folder to another.•

3.1 Function GetFldrNames() which is needed for several of the demonstration
macros

A number of the demonstration macros within this part requires a function which I will explain later.
For the moment, please just copy GetFldrNames() to a suitable module. I use this function
frequently and keep it, and other like it that I use in many different macros, in a module named
“ModGlobalOutlook”. You might like to do the same. Alternatively, you might prefer to keep the
macro with all the other macros within this tutorial series; you can move it later if you change your
mind.

Public Function GetFldrNames(ByRef Fldr As Folder) As String()

 ' * Fldr is a folder. It could be a store, the child of a store,
 ' the grandchild of a store or more deeply nested.
 ' * Return the name of that folder as a string array in the sequence:
 ' (0)=StoreName (1)=Level1FolderName (2)=Level2FolderName ...

 ' 12Oct16 Coded
 ' 20Oct16 Renamed from GetFldrNameStr and amended to return a string array
 ' rather than a string

 Dim FldrCrnt As Folder
 Dim FldrNameCrnt As String
 Dim FldrNames() As String
 Dim FldrNamesRev() As String
 Dim FldrPrnt As Folder
 Dim InxFN As Long
 Dim InxFnR As Long

https://riptutorial.com/ 18

 Set FldrCrnt = Fldr
 FldrNameCrnt = FldrCrnt.Name
 ReDim FldrNamesRev(0 To 0)
 FldrNamesRev(0) = Fldr.Name
 ' Loop getting parents until FldrCrnt has no parent.
 ' Add names of Fldr and all its parents to FldrName as they are found
 Do While True
 Set FldrPrnt = Nothing
 On Error Resume Next
 Set FldrPrnt = Nothing ' Ensure value is Nothing if following statement fails
 Set FldrPrnt = FldrCrnt.Parent
 On Error GoTo 0
 If FldrPrnt Is Nothing Then
 ' FldrCrnt has no parent
 Exit Do
 End If
 ReDim Preserve FldrNamesRev(0 To UBound(FldrNamesRev) + 1)
 FldrNamesRev(UBound(FldrNamesRev)) = FldrPrnt.Name
 Set FldrCrnt = FldrPrnt
 Loop

 ' Copy names to FldrNames in reverse sequence so they end up in the correct sequence
 ReDim FldrNames(0 To UBound(FldrNamesRev))
 InxFN = 0
 For InxFnR = UBound(FldrNamesRev) To 0 Step -1
 FldrNames(InxFN) = FldrNamesRev(InxFnR)
 InxFN = InxFN + 1
 Next

 GetFldrNames = FldrNames

End Function

3.2 Referencing a default folder

In TestDefaultFldr() I set Fldr to the default Inbox. The constant olFolderInbox can be replaced by
other values giving access to any of the default folders. If you type Set Fldr =
Session.GetDefaultFolder(, the VB editor will display a drop down list of all the possible values.

Sub TestDefaultFldr()

 Dim Fldr As Folder

 Set Fldr = Session.GetDefaultFolder(olFolderInbox)

 Debug.Print Join(GetFldrNames(Fldr), "|")

End Sub

On my laptop, TestDefaultFldr() displays Outlook data file|Inbox which came as a surprise. I
wrote GetFldrNames(Fldr) to make sure that the folder I had referenced was the one I wanted. I had
accessed the default Inbox and found it was empty! Store “Output data file” came with the default
installation and I had ignored it since Outlook had created a store for each of my email accounts. It
was only after discovering my empty default Inbox that I thought about how Outlook would know
which of my email accounts was the account I would want as the default. Of the standard Outlook
folders, there is either no default or the default is within “Output data file”. It may be possible to

https://riptutorial.com/ 19

change which Inbox is the default Inbox but I have not investigated because I am not sure which of
my email accounts I would make the default if I did change. Just remember that all your Calendar
Items, Tasks and so on are within “Outlook data file” and make sure you include “Outlook.pst” in
your archive list.

Most Outlook objects have the property Parent. GetFldrNames(Fldr) records the name of the folder
in an array before trying to access its parent. It loops adding names to the end of the array until it
reaches the store. The store does not have a parent so the attempt to access it fails. The
sequence of names in the array is reversed and then returned to the caller. I have used Join to
turn the array of names into a displayable string.

3.3 Referencing any folder within any accessible store

TestFldrChain() demonstrates how to reference any folder within any accessible store:

Sub TestFldrChain()

 Dim Fldr As Folder

 Set Fldr = Session.Folders("A").Folders("A2"). _
 Folders("A21").Folders("A213")

 Debug.Print Join(GetFldrNames(Fldr), "|")

End Sub

In TestFldrChain(): A is the name of a store; A2 is the name of a folder within A; A21 is the name
of a folder within A2 and A213 is the name of a folder within A21.

What is happening here?

Session has a property Folders which is a list of all accessible stores.

Session.Folders(integer), which I used in Part 2 of this tutorial, allows me to step through the
stores in sequence when I do not know their names. Session.Folders("A") allows me to access a
folder when I know its name.

Session.Folders("A") is a folder and it too has a property Folders.

Session.Folders("A").Folders("A2") gives me access to folder “A2” within store “A”.

I can chain as many Folders("x")s as necessary to reach any folder. If the chain is too long for one
line, you can split the statement across several lines as I have.

Look for the most deeply nested folder within your installation and replace A, A2, A21 and A213 by
the names of your store and folders. Increase or decrease the number of Folders in the chain as
necessary.

If you update and run TestFldrChain(), it will output the following except that A, A2 and so on will
have been replaced by your folder names:

https://riptutorial.com/ 20

A|A2|A21|A213

3.4 Listing the names of every folder within every accessible store

In Part 2, you were shown how to list every accessible store and the top level folders within each
store. This involved a loop through the stores and then a loop for each store through its folders
Above you have seen how to reference a known folder at any depth within the hierarchy of folders.
This involved chaining together as many Folders("x")s as necessary to reach the folder.

I now want to list every folder, at any depth, within every store. The easiest coding technique for
solving this type of problem where you must move down chains of varying lengths is recursion. If
you are a serious programmer in another language or tool, you may already know about recursion.
If you have ambitions to be a serious programmer, you will need to understand recursion
eventually but not necessarily today. “Recursion” is one of those concepts that many find difficult
to grasp at first. You can type “Recursion” into your favourite search engine and read the various
attempts at explaining this concept. Alternatively, you can accept these macro work but not worry
how they work.

Note the comment in ListStoresAndAllFolders(): these macros need a reference to “Microsoft
Scripting Runtime”. Click Tools in the tab bar at the top of the VB Editor window then click
References. You will get a list of all the available references (libraries). Some at the top will already
be ticked. The remainder are in alphabetic order. Scroll down the list and click the box to the left of
“Microsoft Scripting Runtime” to get a tick. Then click OK

 Sub ListStoresAndAllFolders()

 ' Displays the name of every accessible store
 ' Under each store, displays an indented list of all its folders

 ' Technique for locating desktop from answer by Kyle:
 ' http://stackoverflow.com/a/17551579/973283

 ' Needs reference to “Microsoft Scripting Runtime” if "TextStream"
 ' and "FileSystemObject" are to be recognised

 Dim FileOut As TextStream
 Dim FldrCrnt As Folder
 Dim Fso As FileSystemObject
 Dim InxFldrCrnt As Long
 Dim InxStoreCrnt As Long
 Dim Path As String
 Dim StoreCrnt As Folder

 Path = CreateObject("WScript.Shell").SpecialFolders("Desktop")

 Set Fso = CreateObject("Scripting.FileSystemObject")
 Set FileOut = Fso.CreateTextFile(Path & "\ListStoresAndAllFolders.txt", True)

 With Application.Session
 For InxStoreCrnt = 1 To .Folders.Count
 Set StoreCrnt = .Folders(InxStoreCrnt)
 With StoreCrnt
 FileOut.WriteLine .Name
 For InxFldrCrnt = .Folders.Count To 1 Step -1

https://riptutorial.com/ 21

 Set FldrCrnt = .Folders(InxFldrCrnt)
 Call ListAllFolders(FldrCrnt, 1, FileOut)
 Next
 End With
 Next
 End With

 FileOut.Close

End Sub
Sub ListAllFolders(ByRef Fldr As Folder, ByVal Level As Long, ByRef FileOut As TextStream)

 ' This routine:
 ' 1. Output name of Fldr
 ' 2. Calls itself for each child of Fldr
 ' It is designed to be called by ListStoresAndAllFolders()

 Dim InxFldrCrnt As Long

 With Fldr
 FileOut.WriteLine Space(Level * 2) & .Name
 For InxFldrCrnt = .Folders.Count To 1 Step -1
 Call ListAllFolders(.Folders(InxFldrCrnt), Level + 1, FileOut)
 Next
 End With

End Sub

After you have run ListStoresAndAllFolders, there will be a new file on your DeskTop named
“ListStoresAndAllFolders.txt” which will contain the promised list of stores and folders.

3.5 Moving a folder from one parent folder to another

Why do I want to reference a folder? In the next part I will show you how to access emails within a
referenced folder. Here I will show you how to move a folder. I created a folder named “Test”
within my Inbox. In TestMoveFolder(), I replaced “A” with the name of the store containing my Inbox.
Running TestMoveFolder() moved “Test” to “Deleted Items”.

Sub TestMoveFolder()

 Dim FldrDest As Folder
 Dim FldrToMove As Folder

 Set FldrToMove = Session.Folders("A").Folders("Inbox").Folders("Test")
 Set FldrDest = Session.Folders("A").Folders("Deleted Items")

 FldrToMove.MoveTo FldrDest

End Sub

3.6 What you should remember from this part of the tutorial

How to reference a default folder and the possible limitations of this technique.•
How to reference any single folder at any depth within any accessible store.•
How to display the full name of a referenced folder.•

https://riptutorial.com/ 22

How to reference one of the many, many available libraries that provide functionality beyond
the default set of subroutines and functions.

•

How to display the name of every folder within every accessible store.•
How to move a folder from one parent folder to another.•

Read Introduction Part 3: Stores and all their folders online: https://riptutorial.com/outlook-
vba/topic/8874/introduction-part-3--stores-and-all-their-folders

https://riptutorial.com/ 23

https://riptutorial.com/outlook-vba/topic/8874/introduction-part-3--stores-and-all-their-folders
https://riptutorial.com/outlook-vba/topic/8874/introduction-part-3--stores-and-all-their-folders

Credits

S.
No

Chapters Contributors

1
Getting started with
outlook-vba

Community, Tony Dallimore

2

Introduction Part 1:
Gaining access to
Outlook's Visual
Basic Editor

Tony Dallimore

3
Introduction Part 2:
Stores and top-level
folders

Tony Dallimore

4
Introduction Part 3:
Stores and all their
folders

Tony Dallimore

https://riptutorial.com/ 24

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/973283/tony-dallimore
https://riptutorial.com/contributor/973283/tony-dallimore
https://riptutorial.com/contributor/973283/tony-dallimore
https://riptutorial.com/contributor/973283/tony-dallimore

	About
	Chapter 1: Getting started with outlook-vba
	Remarks
	Examples
	Introduction
	Outlook Visual Basic for Applications
	Advanced topics

	Chapter 2: Introduction Part 1: Gaining access to Outlook's Visual Basic Editor
	Introduction
	Examples
	1.1 Gaining access to Outlook 2003's Visual Basic Editor
	1.2 Gaining access to the Visual Basic Editor in Outlook 2007 and later
	1.3 Getting started with the Visual Basic Editor
	1.4 What you should remember from this part of the tutorial

	Chapter 3: Introduction Part 2: Stores and top-level folders
	Introduction
	Examples
	2.1 Expected prior knowledge
	2.2 Stores
	2.3 Top level folders
	2.4 What you should remember from this tutorial

	Chapter 4: Introduction Part 3: Stores and all their folders
	Introduction
	Examples
	3. 0 Contents
	3.1 Function GetFldrNames() which is needed for several of the demonstration macros
	3.2 Referencing a default folder
	3.3 Referencing any folder within any accessible store
	3.4 Listing the names of every folder within every accessible store
	3.5 Moving a folder from one parent folder to another
	3.6 What you should remember from this part of the tutorial

	Credits

