
parsing

#parsing

Table of Contents

About 1

Chapter 1: Getting started with parsing 2

Remarks 2

Examples 2

What you need for parsing 2

Grammar definitions 2

Lexical Analysis 2

Parsing Techniques 2

Parser Generator Tools 2

Example of Parsing an English sentence 3

A simple parser 3

Credits 6

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: parsing

It is an unofficial and free parsing ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official parsing.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/parsing
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with parsing

Remarks

Parsing, in common usage, refers to analysing a piece of language, such as a sentence, and
using the grammar rules of that language to identify the components pieces and thus learn the
meaning. In computer science it refers to a specific algorithmic process of recognising the
sequence of symbols as a valid one, and permit the meaning (or semantics) of a language
construct to be determined, often in a computer language compiler or interpreter.

Examples

What you need for parsing

In performing parsing, before starting, the grammar for the language needs to be specified. A
source of tokens is also needed for the parser.

The parser could be hand-written code, or a parser generator tool could be used. If a parser
generator tool is used, then that tool will need to be downloaded and installed if it has not already
been included in your platform.

Grammar definitions

A grammar for a parser would normally need to be written in a context free form. A notation like
BNF (Backus-Naur Form) or EBNF (Extended Back-Naur Form) is often used for this. Other
notations commonly used to describe programming languages might be railroad diagrams.

Lexical Analysis

Tokens are normally provided for the parser by a lexical analyser (or scanner). More details can
be found in the documentation for a lexical analyser (TBC).

Parsing Techniques

To hand-code a parser, an appropriate algorithm would need to be chosen that suits both the
language been parsed and the means of implementation. Parsing algorithms are classified into the
two types of top-down parsing and bottom-up parsing. A (recursive) top-down parser is easier for a
beginner to learn when starting to write parsers.

Parser Generator Tools

The most common way of creating a parser is to use a parser generator tool. There are many
such tools, but some of the most commonly used are:

https://riptutorial.com/ 2

https://en.wikipedia.org/wiki/Grammar
https://en.wikipedia.org/wiki/Parser_generator
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_Form
https://en.wikipedia.org/wiki/Syntax_diagram
https://en.wikipedia.org/wiki/Lexical_analysis
https://en.wikipedia.org/wiki/Parsing
https://en.wikipedia.org/wiki/Top-down_parsing
https://en.wikipedia.org/wiki/Bottom-up_parsing

Bison/yacc•
ANTLR•

Example of Parsing an English sentence

For example, in the sentence:

That cake is extremely nice.

The rules of the English language would make cake a noun, extremely an adverb that modifies
the adjective nice, and through this analysis the meaning could be understood.

However, this analysis is dependent on us recognising that the sequence of symbols used are
words. If the characters used were not familiar to us we would not be able to do this. If we
encountered a sentence using an unfamiliar notation, such as Chinese, parsing in this manner
might be difficult. Here is an example Chinese sentence:

。

For anyone who does not read Chinese characters, it would not be clear which symbols combined
to form words. The same could be true for a computer algorithm when processing either English or
Chinese.

Thus parsing must be proceeded by a process known as lexical analysis or scanning, where the
individual characters are grouped together into recognised symbols, which we might commonly
call words, but in parsing algorithms are called tokens.

A simple parser

The simplest way to write a parser is to use the recursive descent technique. This creates a top-
down parser (which may formally be described a LL(1)). To start the example we first have to
establish the grammar rules for our language. In this example we will use simple arithmetic
expression assignments for expressions that can only use the plus operator:

 Assignment --> Identifier := Expression
 Expression --> Expression + Term | Term
 Term --> Identifier | (Expression)
 Identifier --> x | y | z

For each rule of the grammar we can write a procedure to recognise the incoming tokens to the
rule. For the purposes of this example we can assume a routine called NextToken which invokes a
lexical analyser to supply the token, and a routine called error which is used to output an error
message. The language used is based on Pascal.

 var token:char; (* Updated by NextToken *)

 procedure identifier;
 begin
 if token in ['x','y','z']
 then

https://riptutorial.com/ 3

https://www.gnu.org/software/bison/manual/
http://www.antlr.org/

 NextToken
 else
 error('Identifier expected')
 end;

You can see that this code implements the rule for recognising an Identifier. We can then
implement the rule for a Term similarly:

 procedure expression forward;

 procedure term;
 begin
 if token = '('
 then
 begin
 nextToken;
 expression;
 if token <> ')'
 then
 error(') expected')
 else NextToken
 end
 else
 identifier
 end;

When we come to implement the rule for Expression we have a problem; the first element of the
Expression rule is itself an Expression. This would cause us to write the following:

procedure expression;
begin
expression;
...
end;

This is directly self-recursive and thus would loop forever. Grammar parsed by top-down
algorithms cannot be left-recursive for this reason. An easy way out of this problem is to recast the
recursion as iteration in the following way:

Expression --> Term { + Term}*

We can now code up the grammar rule as:

 procedure expression;
 begin
 term;
 while token = '+'
 do
 begin
 NextTerm;
 term
 end
 end;

https://riptutorial.com/ 4

We can now complete the parser with the remaining rule for the assignment:

procedure assignment;
begin
 identifier;
 if token <> '='
 then
 error('= expected')
 else
 begin
 NextToken;
 expression;
 end
 end;

Read Getting started with parsing online: https://riptutorial.com/parsing/topic/4370/getting-started-
with-parsing

https://riptutorial.com/ 5

https://riptutorial.com/parsing/topic/4370/getting-started-with-parsing
https://riptutorial.com/parsing/topic/4370/getting-started-with-parsing

Credits

S.
No

Chapters Contributors

1
Getting started with
parsing

Brian Tompsett - , Community, ShengJie Zhou

https://riptutorial.com/ 6

https://riptutorial.com/contributor/4370109/brian-tompsett------
https://riptutorial.com/contributor/4370109/brian-tompsett------
https://riptutorial.com/contributor/4370109/brian-tompsett------
https://riptutorial.com/contributor/4370109/brian-tompsett------
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/4335785/shengjie-zhou

	About
	Chapter 1: Getting started with parsing
	Remarks
	Examples
	What you need for parsing

	Grammar definitions
	Lexical Analysis
	Parsing Techniques
	Parser Generator Tools
	Example of Parsing an English sentence
	A simple parser

	Credits

