
PayPal

#paypal

Table of Contents

About 1

Chapter 1: Getting started with PayPal 2

Remarks 2

Versions 2

Examples 2

Creating an application and obtaining client id / secret keys 2

Setting up sandbox user test accounts 4

Chapter 2: Creating Subscriptions / Recurring Payments 5

Parameters 5

Remarks 5

Examples 6

Step 2: Creating a Subscription for a User using a Billing Agreement (Node Sample) 6

Step 1: Creating a Subscription Model using a Billing Plan (Node Sample) 8

Chapter 3: Making a Credit Card Payment (Node) 11

Parameters 11

Remarks 11

Examples 11

Node Sample 11

Making a Payment with a Vaulted Credit Card (Node) 14

Chapter 4: Making a PayPal payment 17

Parameters 17

Remarks 17

Examples 17

Node Express Server Example 17

Chapter 5: Mobile Future Payments (End to End App) 21

Remarks 21

Examples 21

Android Step 1: Layout, Initialization, and Handling Server Response 21

Android Step 2: Async Server Request 23

Android Step 3: Node Server to Get Access Token & Process Payment 24

Chapter 6: Mobile PayPal / Credit Card Payments 27

Parameters 27

Remarks 27

Examples 27

Android: Accepting a PayPal / Credit Card Payment 27

Chapter 7: Webhooks 32

Parameters 32

Remarks 32

Examples 32

Testing Sandbox Webhooks with ngrok and Express (Node) 32

Updating a Webhook with a New URL (Node Sample) 36

Credits 38

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: paypal

It is an unofficial and free PayPal ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official PayPal.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/paypal
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with PayPal

Remarks

These guides will take the user through account setup procedures for applications, accounts, etc.
It will contain everything that is needed for working with the PayPal APIs.

Versions

Version Release Date

1.0.0 2016-04-11

Examples

Creating an application and obtaining client id / secret keys

In order to begin building with PayPal APIs, you have to create an application to obtain a client ID
and secret.

Go to https://developer.paypal.com/developer/applications/, sign in, and click on "Create App", as
shown below:

Next, enter an application name, select the sandbox testing account that you want to use (if it's a
new account, leave the default value), and click "Create App".

https://riptutorial.com/ 2

https://developer.paypal.com/developer/applications/
http://i.stack.imgur.com/b3l0P.jpg

Once the application is created, you will be provided with your sandbox and live client ID and
secret, which will look similar to the following:

These credentials are what you will use when making requests to PayPal APIs in order to
authenticate your application and make requests.

https://riptutorial.com/ 3

http://i.stack.imgur.com/MZGfe.jpg
http://i.stack.imgur.com/7yfrg.jpg

Setting up sandbox user test accounts

When testing you PayPal integration on sandbox, you'll need to have sandbox user accounts set
up to use to go through the payment flow.

Go to https://developer.paypal.com/developer/accounts/, log in using your PayPal account, and
click on "Create Account", as below:

Enter in the accounts details for the new test user, including a unique email, account information,
payment method, balance, etc, and click on "Create Account" at the bottom of the page once
done. This will create the new account for you to begin using.

To see account details for this new user, expand the entry on the accounts page, and click on
"Profile".

Once that profile information loads, clicking on the "Funding" tab will give you payment information
for that account, including credit card information that may be used for direct credit card
processing against sandbox.

NOTE: When using the sandbox API endpoints, you need to use sandbox test account to log in
and pay for the test goods, as your live account information will not work.

Read Getting started with PayPal online: https://riptutorial.com/paypal/topic/406/getting-started-
with-paypal

https://riptutorial.com/ 4

https://developer.paypal.com/developer/accounts/
http://i.stack.imgur.com/mZM5n.jpg
http://i.stack.imgur.com/rVDrx.jpg
https://riptutorial.com/paypal/topic/406/getting-started-with-paypal
https://riptutorial.com/paypal/topic/406/getting-started-with-paypal

Chapter 2: Creating Subscriptions / Recurring
Payments

Parameters

Parameter Details

billingAgreementAttributes Configuration object to create the billing agreement

billingPlan Billing plan ID from the query string

billingPlanAttribs Configuration object to create the billing plan

billingPlanUpdateAttributes Configuration object for changing a billing plan to an active state

clientId Your application client ID (OAuth keys)

http Reference to the http package to set up our simple server

isoDate ISO date for setting the subscription start date

links HATEOAS link object for extracting the redirect URL to PayPal

params Query string parameters

paypal Reference to the PayPal SDK

secret Your application secret (OAuth keys)

token
The billing agreement approval token provided after PayPal
redirect to execute the billing agreement

Remarks

These examples go through the process of creating a subscription / recurring payment system
using PayPal.

The process for creating a subscription is to:

Create a billing plan. This is a reusable model that outlines the details of the subscription.1.
Activate the billing plan.2.
When you want to create a subscription for a user, you create a billing agreement using the
ID of the billing plan that they should be subscribed to.

3.

Once created, you redirect the user to PayPal to confirm the subscription. Once confirmed,
the user is redirected back to the merchant's website.

4.

https://riptutorial.com/ 5

Lastly, you execute the billing agreement to begin the subscription.5.

Examples

Step 2: Creating a Subscription for a User using a Billing Agreement (Node
Sample)

The second step to creating a subscription for a user is to create and execute a billing agreement,
based on an existing activated billing plan. This example assumes that you have already gone
through and activated a billing plan in the previous example, and have an ID for that billing plan to
reference in the example.

When you are setting up a billing agreement to create a subscription for a user, you'll follow 3
steps, which may be reminiscent of processing a PayPal payment:

You create a billing agreement, referencing an underlying billing plan via the ID.1.
Once created, you redirect the user to PayPal (if paying via PayPal) to confirm the
subscription. Once confirmed, PayPal redirects the user back to your site using the redirect
provided in the underlying billing plan.

2.

You then execute the billing agreement using a token provided back via the PayPal redirect.3.

This example is setting up an Express based HTTP server to showcase the billing agreement
process.

To start the example, we first need to set up our configuration. We add four requirements, the
PayPal SDK, body-parser for handling JSON encoded bodies, http for our simple server
integration, and express for the Express framework. We then define our client ID and secret from
creating an application, configure the SDK for the sandbox, then configure bodyParser for
handling JSON bodies.

var paypal = require('paypal-rest-sdk'),
 bodyParser = require('body-parser'),
 http = require('http'),
 app = require('express')();

var clientId = 'YOUR APPLICATION CLIENT ID';
var secret = 'YOUR APPLICATION SECRET';

paypal.configure({
 'mode': 'sandbox', //sandbox or live
 'client_id': clientId,
 'client_secret': secret
});

app.use(bodyParser.json());

Our first step in the billing agreement is to create a route to handle the creation of a billing
agreement, and redirecting the user to PayPal to confirm that subscription. We are assuming that
a billing plan ID is passed as a query string parameter, such as by loading the following URL with
a plan ID from the previous example:

https://riptutorial.com/ 6

http://localhost:3000/createagreement?plan=P-3N543779E9831025ECYGDNVQ

We now need to use that information to create the billing agreement.

app.get('/createagreement', function(req, res){
 var billingPlan = req.query.plan;

 var isoDate = new Date();
 isoDate.setSeconds(isoDate.getSeconds() + 4);
 isoDate.toISOString().slice(0, 19) + 'Z';

 var billingAgreementAttributes = {
 "name": "Standard Membership",
 "description": "Food of the World Club Standard Membership",
 "start_date": isoDate,
 "plan": {
 "id": billingPlan
 },
 "payer": {
 "payment_method": "paypal"
 },
 "shipping_address": {
 "line1": "W 34th St",
 "city": "New York",
 "state": "NY",
 "postal_code": "10001",
 "country_code": "US"
 }
 };

 // Use activated billing plan to create agreement
 paypal.billingAgreement.create(billingAgreementAttributes, function (error,
billingAgreement){
 if (error) {
 console.error(error);
 throw error;
 } else {
 //capture HATEOAS links
 var links = {};
 billingAgreement.links.forEach(function(linkObj){
 links[linkObj.rel] = {
 'href': linkObj.href,
 'method': linkObj.method
 };
 })

 //if redirect url present, redirect user
 if (links.hasOwnProperty('approval_url')){
 res.redirect(links['approval_url'].href);
 } else {
 console.error('no redirect URI present');
 }
 }
 });
});

We start by extracting the billing plan ID from the query string and create the date when the plan
should start.

https://riptutorial.com/ 7

The next object definition, billingAgreementAttributes, consists of information for the subscription.
It contains readable information on the plan, a reference to the billing plan ID, the payment
method, and shipping details (if needed for the subscription).

Next, a call to billingAgreement.create(...) is made, passing in the billingAgreementAttributes
object we just created. If all is successful, we should have a billing agreement object passed back
to us containing details about our newly created subscription. That object also contains a number
of HATEOAS links providing us next steps that can be taken on this newly created agreement.
The one we care about here is labeled as approval_url.

We loop through all provided links to put them into an easily referenced object. If approval_url is
one of those links, we redirect the user to that link, which is PayPal.

At this point the user confirms the subscription on PayPal, and is redirected back to the URL
provided in the underlying billing plan. Along with that URL, PayPal will also pass a token along
the query string. That token is what we're going to use to execute (or start) the subscription.

Let's set up that functionality in the following route.

app.get('/processagreement', function(req, res){
 var token = req.query.token;

 paypal.billingAgreement.execute(token, {}, function (error, billingAgreement) {
 if (error) {
 console.error(error);
 throw error;
 } else {
 console.log(JSON.stringify(billingAgreement));
 res.send('Billing Agreement Created Successfully');
 }
 });
});

We extract the token from the query string, then make a call to billingAgreement.execute, passing
along that token. If all is successful, we now have a valid subscription for the user. The return
object contains information about the active billing agreement.

Lastly, we set up our HTTP server to listen for traffic to our routes.

//create server
http.createServer(app).listen(3000, function () {
 console.log('Server started: Listening on port 3000');
});

Step 1: Creating a Subscription Model using a Billing Plan (Node Sample)

When creating a subscription for a user, you first need to create and activate a billing plan that a
user is then subscribed to using a billing agreement. The full process for creating a subscription is
detailed in the remarks of this topic.

Within this example, we're going to be using the PayPal Node SDK. You can obtain it from NPM

https://riptutorial.com/ 8

https://github.com/paypal/PayPal-node-SDK/

using the following command:

npm install paypal-rest-sdk

Within our .js file, we first set up our SDK configuration, which includes adding a requirement for
the SDK, defining our client ID and secret from creating our application, and then configuring the
SDK for the sandbox environment.

var paypal = require('paypal-rest-sdk');

var clientId = 'YOUR CLIENT ID';
var secret = 'YOUR SECRET';

paypal.configure({
 'mode': 'sandbox', //sandbox or live
 'client_id': clientId,
 'client_secret': secret
});

Next, we need to set up two JSON objects. The billingPlanAttribs object contains the information
and payment breakdown for the billing plan that we can subscribe users to, and the
billingPlanUpdateAttributes object contains values for setting the billing plan to an active state,
allowing it to be used.

var billingPlanAttribs = {
 "name": "Food of the World Club Membership: Standard",
 "description": "Monthly plan for getting the t-shirt of the month.",
 "type": "fixed",
 "payment_definitions": [{
 "name": "Standard Plan",
 "type": "REGULAR",
 "frequency_interval": "1",
 "frequency": "MONTH",
 "cycles": "11",
 "amount": {
 "currency": "USD",
 "value": "19.99"
 }
 }],
 "merchant_preferences": {
 "setup_fee": {
 "currency": "USD",
 "value": "1"
 },
 "cancel_url": "http://localhost:3000/cancel",
 "return_url": "http://localhost:3000/processagreement",
 "max_fail_attempts": "0",
 "auto_bill_amount": "YES",
 "initial_fail_amount_action": "CONTINUE"
 }
};

var billingPlanUpdateAttributes = [{
 "op": "replace",
 "path": "/",
 "value": {

https://riptutorial.com/ 9

http://www.riptutorial.com/paypal/example/1460/creating-an-application-and-obtaining-client-id---secret-keys

 "state": "ACTIVE"
 }
}];

Within the billingPlanAttribs object, there are some relevant pieces of information:

name / description / type: Basic visual information to describe the plan, and the type of
plan.

•

payment_definitions: Information on how the plan should function and be billed. More
details on fields here.

•

merchant_preferences: Additional fee structures, redirect URLs, and settings for the
subscription plan. More details on fields here.

•

With those objects in place, we can now create and activate the billing plan.

paypal.billingPlan.create(billingPlanAttribs, function (error, billingPlan){
 if (error){
 console.log(error);
 throw error;
 } else {
 // Activate the plan by changing status to Active
 paypal.billingPlan.update(billingPlan.id, billingPlanUpdateAttributes, function(error,
response){
 if (error) {
 console.log(error);
 throw error;
 } else {
 console.log(billingPlan.id);
 }
 });
 }
});

We call billingPlan.create(...), passing in the billingPlanAttribs object that we just created. If
that is successful, the return object will contain information about the billing plan. For the sake of
the example, we just need to use the billing plan ID in order to activate the plan for use.

Next, we call billingPlan.update(...), passing in the billing plan ID and the
billingPlanUpdateAttributes object we created earlier. If that is successful, our billing plan is now
active and ready to use.

In order to create a subscription for a user (or multiple users) on this plan, we'll need to reference
the billing plan id (billingPlan.id above), so store that in a place that can be referenced easily.

In the second subscription step, we need to create a billing agreement based on the plan we just
created and execute it to begin processing subscriptions for a user.

Read Creating Subscriptions / Recurring Payments online:
https://riptutorial.com/paypal/topic/467/creating-subscriptions---recurring-payments

https://riptutorial.com/ 10

https://developer.paypal.com/docs/api/#paymentdefinition-object
https://developer.paypal.com/docs/api/#merchantpreferences-object
https://riptutorial.com/paypal/topic/467/creating-subscriptions---recurring-payments

Chapter 3: Making a Credit Card Payment
(Node)

Parameters

Parameter Details

card_data JSON object containing payment information for transaction

credit_card_details
JSON object containing credit card data that is sent to PayPal to be
vaulted

client_id Your PayPal application client ID (OAuth 2 credentials)

paypal PayPal Node SDK reference

secret Your PayPal application secret (OAuth 2 credentials)

uuid Reference to the node-uuid package

Remarks

This sample takes the user through crediting a simple credit card transaction using the PayPal
SDKs.

Examples

Node Sample

Start by installing the PayPal Node module from NPM

npm install paypal-rest-sdk

In your application file, add in the configuration information for the SDK

var paypal = require('paypal-rest-sdk');

var client_id = 'YOUR CLIENT ID';
var secret = 'YOUR SECRET';

paypal.configure({
 'mode': 'sandbox', //sandbox or live
 'client_id': client_id,
 'client_secret': secret
});

https://riptutorial.com/ 11

We add the requirement for the SDK, then set up variables for the client ID and secret that were
obtained when creating an application. We then configure our application using these details, and
specify the environment that we are working in (live or sandbox).

Next, we set up the JSON object that contains the payment information for the payer.

var card_data = {
 "intent": "sale",
 "payer": {
 "payment_method": "credit_card",
 "funding_instruments": [{
 "credit_card": {
 "type": "visa",
 "number": "4417119669820331",
 "expire_month": "11",
 "expire_year": "2018",
 "cvv2": "874",
 "first_name": "Joe",
 "last_name": "Shopper",
 "billing_address": {
 "line1": "52 N Main ST",
 "city": "Johnstown",
 "state": "OH",
 "postal_code": "43210",
 "country_code": "US" }}}]},
 "transactions": [{
 "amount": {
 "total": "7.47",
 "currency": "USD",
 "details": {
 "subtotal": "7.41",
 "tax": "0.03",
 "shipping": "0.03"}},
 "description": "This is the payment transaction description."
}]};

Add an intent of sale, and a payment_method of credit_card. Next, add in the card and address
details for the credit card under funding_instruments, and the amount to be charged under
transactions. Multiple transaction objects can be placed here.

Lastly, we make a request to payment.create(...), passing in our card_data object, in order to
process the payment.

paypal.payment.create(card_data, function(error, payment){
 if(error){
 console.error(error);
 } else {
 console.log(payment);
 }
});

If the transaction was successful, we should see a response object similar to the following:

{
 "id": "PAY-9BS08892W3794812YK4HKFQY",
 "create_time": "2016-04-13T19:49:23Z",

https://riptutorial.com/ 12

http://stackoverflow.com/documentation/improvement-requests/view/406

 "update_time": "2016-04-13T19:50:07Z",
 "state": "approved",
 "intent": "sale",
 "payer": {
 "payment_method": "credit_card",
 "funding_instruments": [
 {
 "credit_card": {
 "type": "visa",
 "number": "xxxxxxxxxxxx0331",
 "expire_month": "11",
 "expire_year": "2018",
 "first_name": "Joe",
 "last_name": "Shopper",
 "billing_address": {
 "line1": "52 N Main ST",
 "city": "Johnstown",
 "state": "OH",
 "postal_code": "43210",
 "country_code": "US"
 }
 }
 }
]
 },
 "transactions": [
 {
 "amount": {
 "total": "7.47",
 "currency": "USD",
 "details": {
 "subtotal": "7.41",
 "tax": "0.03",
 "shipping": "0.03"
 }
 },
 "description": "This is the payment transaction description.",
 "related_resources": [
 {
 "sale": {
 "id": "0LB81696PP288253D",
 "create_time": "2016-04-13T19:49:23Z",
 "update_time": "2016-04-13T19:50:07Z",
 "amount": {
 "total": "7.47",
 "currency": "USD"
 },
 "state": "completed",
 "parent_payment": "PAY-9BS08892W3794812YK4HKFQY",
 "links": [
 {
 "href":
"https:\/\/api.sandbox.paypal.com\/v1\/payments\/sale\/0LB81696PP288253D",
 "rel": "self",
 "method": "GET"
 },
 {
 "href":
"https:\/\/api.sandbox.paypal.com\/v1\/payments\/sale\/0LB81696PP288253D\/refund",
 "rel": "refund",
 "method": "POST"

https://riptutorial.com/ 13

 },
 {
 "href": "https:\/\/api.sandbox.paypal.com\/v1\/payments\/payment\/PAY-
9BS08892W3794812YK4HKFQY",
 "rel": "parent_payment",
 "method": "GET"
 }
],
 "fmf_details": {

 },
 "processor_response": {
 "avs_code": "X",
 "cvv_code": "M"
 }
 }
 }
]
 }
],
 "links": [
 {
 "href": "https:\/\/api.sandbox.paypal.com\/v1\/payments\/payment\/PAY-
9BS08892W3794812YK4HKFQY",
 "rel": "self",
 "method": "GET"
 }
],
 "httpStatusCode": 201
}

In this return object, having a state of approved tells us that the transaction was successful. Under
the links object are a number of HATEOAS links that provide potential next steps that can be
taken on the action that was just performed. In this case, we can retrieve information about the
payment by making a GET request to the self endpoint provided.

Making a Payment with a Vaulted Credit Card (Node)

In this example, we'll be looking at how to store a credit card using the PayPal vault, then
reference that stored credit card to process a credit card transaction for a user.

The reason why we would want to use the vault is so that we don't have to store sensitive credit
card information on our own servers. We simply reference the payment method via a provided
vault ID, meaning that we don't have to deal with many PCI compliance regulations with storing
the credit cards ourselves.

As with previous samples, we start with setting up our environment.

var paypal = require('paypal-rest-sdk'),
 uuid = require('node-uuid');

var client_id = 'YOUR CLIENT ID';
var secret = 'YOUR SECRET';

paypal.configure({
 'mode': 'sandbox', //sandbox or live

https://riptutorial.com/ 14

https://developer.paypal.com/docs/integration/direct/paypal-rest-payment-hateoas-links/

 'client_id': client_id,
 'client_secret': secret
});

The one difference to previous samples here is that we are requiring a new package, node-uuid,
which is to be used to generate unique UUID's for the payers when storing the card. You can
install that package via:

npm install node-uuid

Next, we define the credit card JSON object that will be sent to the PayPal vault for storage. It
contains information from the card, as well as a unique payer ID that we generate using node-uuid.
You should store this unique payer_id in your own database as it will be used when creating a
payment with the vaulted card.

var create_card_details = {
 "type": "visa",
 "number": "4417119669820331",
 "expire_month": "11",
 "expire_year": "2018",
 "first_name": "John",
 "last_name": "Doe",
 "payer_id": uuid.v4()
};

Lastly, we need to store the credit card and process the payment using that card. To vault a credit
card, we call credit_card.create(...), passing in the credit_card_details object that we just
created. If all goes well, we should have an object returned to us with details about the vaulted
card. For the sake of a payment with that card, we only really need two pieces of information: the
payer_id that we already stored, and the vault ID, that should also be stored as a reference in our
own database.

paypal.credit_card.create(create_card_details, function(error, credit_card){
 if(error){
 console.error(error);
 } else {
 var card_data = {
 "intent": "sale",
 "payer": {
 "payment_method": "credit_card",
 "funding_instruments": [{
 "credit_card_token": {
 "credit_card_id": credit_card.id,
 "payer_id": credit_card.payer_id
 }
 }]
 },
 "transactions": [{
 "amount": {
 "total": "7.47",
 "currency": "USD",
 "details": {
 "subtotal": "7.41",
 "tax": "0.03",

https://riptutorial.com/ 15

 "shipping": "0.03"
 }
 },
 "description": "This is the payment transaction description."
 }]
 };

 paypal.payment.create(card_data, function(error, payment){
 if(error){
 console.error(error);
 } else {
 console.log(JSON.stringify(payment));
 }
 });
 }
});

In the section following the successful vaulting of the credit card, we are simply defining the card
details and processing the payment, as we did with the previous credit card processing example.
The main difference in the structure of the card_data object is the funding_instruments section, that
we define under payer. Instead of defining the credit card information, we instead use the following
object that contains the vault ID reference, and the payer ID:

"credit_card_token": {
 "credit_card_id": credit_card.id,
 "payer_id": credit_card.payer_id
}

That is how we use a vaulted card to process a payment.

Read Making a Credit Card Payment (Node) online:
https://riptutorial.com/paypal/topic/444/making-a-credit-card-payment--node-

https://riptutorial.com/ 16

https://riptutorial.com/paypal/topic/444/making-a-credit-card-payment--node-

Chapter 4: Making a PayPal payment

Parameters

Parameter Details

clientId Your PayPal application client ID (OAuth 2 credentials)

links Simple reference object for all return HATEOAS links from PayPal

paymentId The ID of the payment returned from PayPal in order to complete payment

payerId The ID of the payer returned from PayPal in order to complete payment

paypal PayPal Node SDK reference

payReq JSON object containing payment information for transaction

req The request object from the server request

res The response object from the server request

secret Your PayPal application secret (OAuth 2 credentials)

Remarks

These samples cover how to process a payment via PayPal, using the PayPal SDKs. These are
simple request samples that outline the multi-step process for allowing this payment option.

Examples

Node Express Server Example

In this example, we're going to set up an Express server integration to display how to process a
payment with PayPal, using the PayPal Node SDK. We will use a static JSON structure for the
payment details for the sake of brevity.

There are three general steps that we will follow when building out the functions to handle the
PayPal payment:

We create a JSON object containing the payment that we intend to process through PayPal.
We then send that to PayPal to obtain a link to redirect the user to in order to confirm
payment.

1.

Next, we redirect the user to PayPal to confirm the payment. Once confirmed, PayPal
redirects the user back to our application.

2.

https://riptutorial.com/ 17

Once returned to the app, we complete the payment on behalf of the user.3.

Breaking this down as a simple Node app, we start by obtaining the PayPal Node SDK from NPM:

npm install paypal-rest-sdk

Next, we set up the app configuration and packages.

var http = require('http'),
 paypal = require('paypal-rest-sdk'),
 bodyParser = require('body-parser'),
 app = require('express')();

var client_id = 'YOUR APPLICATION CLIENT ID';
var secret = 'YOUR APPLICATION SECRET';

//allow parsing of JSON bodies
app.use(bodyParser.json());

//configure for sandbox environment
paypal.configure({
 'mode': 'sandbox', //sandbox or live
 'client_id': client_id,
 'client_secret': secret
});

We require four requirements for this app:

The HTTP package for our server.1.
The PayPal Node SDK package.2.
The bodyParser package for working with JSON encoded bodies.3.
The Express framework for our server.4.

The next few lines set up variables for the client ID and secret that were obtained when creating
an application. We then set up bodyParser to allow for JSON encoded bodies, then configure our
application using the application details, and specify the environment that we are working in (live
for production or sandbox for testing).

Now let's create the route for creating a payment request with PayPal.

app.get('/create', function(req, res){
 //build PayPal payment request
 var payReq = JSON.stringify({
 'intent':'sale',
 'redirect_urls':{
 'return_url':'http://localhost:3000/process',
 'cancel_url':'http://localhost:3000/cancel'
 },
 'payer':{
 'payment_method':'paypal'
 },
 'transactions':[{
 'amount':{
 'total':'7.47',
 'currency':'USD'

https://riptutorial.com/ 18

http://stackoverflow.com/documentation/improvement-requests/view/406
http://stackoverflow.com/documentation/improvement-requests/view/406

 },
 'description':'This is the payment transaction description.'
 }]
 });

 paypal.payment.create(payReq, function(error, payment){
 if(error){
 console.error(error);
 } else {
 //capture HATEOAS links
 var links = {};
 payment.links.forEach(function(linkObj){
 links[linkObj.rel] = {
 'href': linkObj.href,
 'method': linkObj.method
 };
 })

 //if redirect url present, redirect user
 if (links.hasOwnProperty('approval_url')){
 res.redirect(links['approval_url'].href);
 } else {
 console.error('no redirect URI present');
 }
 }
 });
});

The first thing we do is set up the payment request JSON object, which contains the information
that we need to provide PayPal with to create the payment. We set the intent to sale, specify the
redirect URLs (where PayPal should forward the user to after they confirm / cancel the payment),
add in a payment_method of paypal to signal that we will make a PayPal payment, then specify the
transaction information for the payer to confirm.

We then call payment.create(...), passing in our payReq object. This will send the create payment
request to PayPal. Once that returns, and is successful, we can loop through the provided
HATEOAS links in the return object to extract the URL that we need to redirect the user to, which
is labeled under approval_url.

The format for the HATEOAS links can cause fragile reference code if used directly, so we loop
through all provided links and put them in a better reference object to future proof against
changes. If the approval_url is then found in that object, we redirect the user.

At this point the user is redirected to PayPal to confirm the payment. Once they do, they are
redirected back to the return_url that we specified in the createPayment(...) function.

We now have to provide a route to handle that return, in order to complete the payment.

app.get('/process', function(req, res){
 var paymentId = req.query.paymentId;
 var payerId = { 'payer_id': req.query.PayerID };

 paypal.payment.execute(paymentId, payerId, function(error, payment){
 if(error){
 console.error(error);

https://riptutorial.com/ 19

https://developer.paypal.com/docs/integration/direct/paypal-rest-payment-hateoas-links/

 } else {
 if (payment.state == 'approved'){
 res.send('payment completed successfully');
 } else {
 res.send('payment not successful');
 }
 }
 });
});

When the user is returned back to your app, there will be three query string parameters that will be
sent along as well, the paymentId, PayerID, and token. We only need to deal with the first two.

We extract the parameters, and place the PayerID in a simple object for the need of the payment
execution step. Next, a call is made to payment.execute(...), passing in those two parameters, in
order to complete the payment.

Once that request is made, we see if the payment completed successfully by checking if
payment.state is set to approved. If so, we can store what we need from the payment object that is
returned.

Our last step is to initialize our server and listen for traffic coming to the routes we specified.

//create server
http.createServer(app).listen(3000, function () {
 console.log('Server started: Listening on port 3000');
});

Once the server is initialized, going to http://localhost:3000/create initializes the payment
process.

Read Making a PayPal payment online: https://riptutorial.com/paypal/topic/449/making-a-paypal-
payment

https://riptutorial.com/ 20

https://riptutorial.com/paypal/topic/449/making-a-paypal-payment
https://riptutorial.com/paypal/topic/449/making-a-paypal-payment

Chapter 5: Mobile Future Payments (End to
End App)

Remarks

This example shows a practical end to end example of creating a PayPal future payment from an
Android device, using a Node server.

Examples

Android Step 1: Layout, Initialization, and Handling Server Response

The complete sample code for this application (Android + Node server) is available in the PayPal
Developer Github repository.

The first stage of creating the Android portion of our application is to set up a basic layout and
handle responses that come back from the server that we'll set up in Node.

Start by creating a new PayPalConfiguration object to house your application information.

private static PayPalConfiguration config = new PayPalConfiguration()
 .environment(PayPalConfiguration.ENVIRONMENT_SANDBOX)
 .clientId("YOUR APPLICATION CLIENT ID")
 .merchantName("My Store")
 .merchantPrivacyPolicyUri(Uri.parse("https://www.example.com/privacy"))
 .merchantUserAgreementUri(Uri.parse("https://www.example.com/legal"));

Next, we add a simple button to onCreate(...) to act as our payment initiation. This is simply to
trigger off the action, and should be placed as the initiation process for creating a future payment
for a user (e.g. when they agree upon a subscription).

@Override
protected void onCreate(Bundle savedInstanceState){
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 final Button button = (Button) findViewById(R.id.paypal_button);
}

Under res > layout > activity_main.xml we add the definition for the button with its associated
action, when clicked it calls beginFuturePayment(...), which we'll define in a minute.

<Button android:id="@+id/paypal_button"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:text="@string/paypal_button"
 android:onClick="beginFuturePayment" />

https://riptutorial.com/ 21

https://developer.paypal.com/docs/integration/mobile/make-future-payment/
https://github.com/paypaldev/android-samples/tree/master/future-payment-sample
https://github.com/paypaldev/android-samples/tree/master/future-payment-sample

Under res > values > strings.xml we then add a string reference for the button.

<string name="paypal_button">Process Future Payment</string>

Now we add the button handler, to initiate the call to begin the future payment process when the
user clicks the button. What we are doing here is starting the payment service with the
configuration object we set up at the top of this example.

public void beginFuturePayment(View view){
 Intent serviceConfig = new Intent(this, PayPalService.class);
 serviceConfig.putExtra(PayPalService.EXTRA_PAYPAL_CONFIGURATION, config);
 startService(serviceConfig);

 Intent intent = new Intent(this, PayPalFuturePaymentActivity.class);
 intent.putExtra(PayPalService.EXTRA_PAYPAL_CONFIGURATION, config);
 startActivityForResult(intent, 0);
}

When that call to make a future payment is initiated, we will be given some information that will
need to be sent to our server. We extract this information from the valid future payment request (
authCode and metadataId), then make execute the async request to the server to complete the
future payment (detailed in step 2).

@Override
protected void onActivityResult (int requestCode, int resultCode, Intent data){
 if (resultCode == Activity.RESULT_OK){
 PayPalAuthorization auth =
data.getParcelableExtra(PayPalFuturePaymentActivity.EXTRA_RESULT_AUTHORIZATION);
 if (auth != null){
 try{
 //prepare params to be sent to server
 String authCode = auth.getAuthorizationCode();
 String metadataId = PayPalConfiguration.getClientMetadataId(this);
 String [] params = {authCode, metadataId};

 //process async server request for token + payment
 ServerRequest req = new ServerRequest();
 req.execute(params);

 } catch (JSONException e) {
 Log.e("FPSample", "JSON Exception: ", e);
 }
 }
 } else if (resultCode == Activity.RESULT_CANCELED) {
 Log.i("FPSample", "User canceled.");
 } else if (resultCode == PayPalFuturePaymentActivity.RESULT_EXTRAS_INVALID) {
 Log.i("FPSample", "Invalid configuration");
 }
}

Lastly, we define our onDestroy().

@Override
public void onDestroy(){
 stopService(new Intent(this, PayPalService.class));

https://riptutorial.com/ 22

 super.onDestroy();
}

Android Step 2: Async Server Request

The complete sample code for this application (Android + Node server) is available in the PayPal
Developer Github repository.

At this point the PayPal future payments button has been clicked, we have an auth code and
metadata ID from the PayPal SDK, and we need to pass those on to our server to complete the
future payment process.

In the background process below, we are doing a few things:

We set up the URI that for our server to be http://10.0.2.2:3000/fpstore, which is hitting the
/fpstore endpoint of our server running on localhost.

•

The JSON object that will be sent through is then set up, which contains the auth code and
metadata ID.

•

The connection is then made. In the case of a successful request (200 / 201 range) we can
expect a response back from the server. We read that response and then return it.

•

Lastly, we have a onPostExecute(...) method set up to handle that returned server string. In
the case of this example, it's simply logged.

•

public class ServerRequest extends AsyncTask<String, Void, String> {
 protected String doInBackground(String[] params){
 HttpURLConnection connection = null;
 try{
 //set connection to connect to /fpstore on localhost
 URL u = new URL("http://10.0.2.2:3000/fpstore");
 connection = (HttpURLConnection) u.openConnection();
 connection.setRequestMethod("POST");

 //set configuration details
 connection.setRequestProperty("Content-Type", "application/json");
 connection.setRequestProperty("Accept", "application/json");
 connection.setAllowUserInteraction(false);
 connection.setConnectTimeout(10000);
 connection.setReadTimeout(10000);

 //set server post data needed for obtaining access token
 String json = "{\"code\": \"" + params[0] + "\", \"metadataId\": \"" + params[1] +
"\"}";
 Log.i("JSON string", json);

 //set content length and config details
 connection.setRequestProperty("Content-length", json.getBytes().length + "");
 connection.setDoInput(true);
 connection.setDoOutput(true);
 connection.setUseCaches(false);

 //send json as request body
 OutputStream outputStream = connection.getOutputStream();
 outputStream.write(json.getBytes("UTF-8"));
 outputStream.close();

https://riptutorial.com/ 23

https://github.com/paypaldev/android-samples/tree/master/future-payment-sample
https://github.com/paypaldev/android-samples/tree/master/future-payment-sample

 //connect to server
 connection.connect();

 //look for 200/201 status code for received data from server
 int status = connection.getResponseCode();
 switch (status){
 case 200:
 case 201:
 //read in results sent from the server
 BufferedReader bufferedReader = new BufferedReader(new
InputStreamReader(connection.getInputStream()));
 StringBuilder sb = new StringBuilder();
 String line;
 while ((line = bufferedReader.readLine()) != null){
 sb.append(line + "\n");
 }
 bufferedReader.close();

 //return received string
 return sb.toString();
 }

 } catch (MalformedURLException ex) {
 Log.e("HTTP Client Error", ex.toString());
 } catch (IOException ex) {
 Log.e("HTTP Client Error", ex.toString());
 } catch (Exception ex) {
 Log.e("HTTP Client Error", ex.toString());
 } finally {
 if (connection != null) {
 try{
 connection.disconnect();
 } catch (Exception ex) {
 Log.e("HTTP Client Error", ex.toString());
 }
 }
 }
 return null;
 }

 protected void onPostExecute(String message){
 //log values sent from the server - processed payment
 Log.i("HTTP Client", "Received Return: " + message);
 }
}

Android Step 3: Node Server to Get Access Token & Process Payment

The complete sample code for this application (Android + Node server) is available in the PayPal
Developer Github repository.

From step 2, an async request has been made to our server at the /fpstore endpoint, passing
along the auth code and metadata ID. We now need to exchange those for a token in order to
complete the request and process the future payment.

First we set up our configuration variables and object.

https://riptutorial.com/ 24

https://github.com/paypaldev/android-samples/tree/master/future-payment-sample
https://github.com/paypaldev/android-samples/tree/master/future-payment-sample

var bodyParser = require('body-parser'),
 http = require('http'),
 paypal = require('paypal-rest-sdk'),
 app = require('express')();

var client_id = 'YOUR APPLICATION CLIENT ID';
var secret = 'YOUR APPLICATION SECRET';

paypal.configure({
 'mode': 'sandbox',
 'client_id': client_id,
 'client_secret': secret
});

app.use(bodyParser.urlencoded({ extended: false }))
app.use(bodyParser.json());

Now we set up an Express route that will listen for POST requests sent to the /fpstore endpoint
from our Android code.

We are doing a number of things in this route:

We capture the auth code and metadata ID from the POST body.•
We then make a request to generateToken(), passing through the code object. If successful,
we obtain a token that can be used to create the payment.

•

Next, the config objects are created for the future payment that is to be made, and a request
to payment.create(...) is made, passing along the future payment and payment config
objects. This creates the future payment.

•

app.post('/fpstore', function(req, res){
 var code = {'authorization_code': req.body.code};
 var metadata_id = req.body.metadataId;

 //generate token from provided code
 paypal.generateToken(code, function (error, refresh_token) {
 if (error) {
 console.log(error);
 console.log(error.response);
 } else {
 //create future payments config
 var fp_config = {'client_metadata_id': metadata_id, 'refresh_token':
refresh_token};

 //payment details
 var payment_config = {
 "intent": "sale",
 "payer": {
 "payment_method": "paypal"
 },
 "transactions": [{
 "amount": {
 "currency": "USD",
 "total": "3.50"
 },
 "description": "Mesozoic era monster toy"
 }]
 };

https://riptutorial.com/ 25

 //process future payment
 paypal.payment.create(payment_config, fp_config, function (error, payment) {
 if (error) {
 console.log(error.response);
 throw error;
 } else {
 console.log("Create Payment Response");
 console.log(payment);

 //send payment object back to mobile
 res.send(JSON.stringify(payment));
 }
 });
 }
 });
});

Lastly, we create the server on to listen on port 3000.

//create server
http.createServer(app).listen(3000, function () {
 console.log('Server started: Listening on port 3000');
});

Read Mobile Future Payments (End to End App) online:
https://riptutorial.com/paypal/topic/4537/mobile-future-payments--end-to-end-app-

https://riptutorial.com/ 26

https://riptutorial.com/paypal/topic/4537/mobile-future-payments--end-to-end-app-

Chapter 6: Mobile PayPal / Credit Card
Payments

Parameters

Parameter Details

button Simple payment button

config
PayPal configuration object housing our client ID (from application creation)
and the environment we want to use (sandbox or live)

payment PayPal payment details

paymentConfig Configuration Intent for the payment information and settings

serviceConfig Configuration Intent for the config parameter data

Remarks

Samples related to processing payments on mobile devices

Examples

Android: Accepting a PayPal / Credit Card Payment

In this tutorial we're going to learn how to set up the PayPal Android SDK to process a simple
payment via either a PayPal payment or a credit card purchase. At the end of this example, you
should have a simple button in an application that, when clicked, will forward the user to PayPal to
confirm a set payment, then return the user back to the application and log the confirmation of
payment.

The complete application code for this example is available in the PayPal Developer Github
Repository.

Let's get started.

The first step is to obtain and add the SDK to your project. We add the reference to our
build.gradle dependancies like so:

dependencies {
 compile 'com.paypal.sdk:paypal-android-sdk:2.14.1'
 ...
}

https://riptutorial.com/ 27

https://github.com/paypal/PayPal-Android-SDK
https://github.com/paypaldev/android-samples/tree/master/payment-sample
https://github.com/paypaldev/android-samples/tree/master/payment-sample
https://github.com/paypal/PayPal-Android-SDK#add-the-sdk-to-your-project

Now we head over to our MainActivity.java file (or wherever you'd like to add the PayPal button
integration), and add in a config object for our client ID and the environment (sandbox) that we will
be using.

private static PayPalConfiguration config = new PayPalConfiguration()
 .environment(PayPalConfiguration.ENVIRONMENT_SANDBOX)
 .clientId("YOUR CLIENT ID");

Now we're going to create a button in our onCreate(...) method, which will enable us to process a
payment via PayPal once clicked.

@Override
protected void onCreate(Bundle savedInstanceState){
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 final Button button = (Button) findViewById(R.id.paypal_button);
}

We now need to define the functionality for that button. In your res > layout > main XML file you
can add the following definition for the button, which will define the text and onClick handler for the
button with the paypal_button ID.

<Button android:id="@+id/paypal_button"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:text="@string/paypal_button"
 android:onClick="beginPayment" />

When clicked, the button will call the beginPayment(...) method. We can then add the text for the
button to our strings.xml file, like so:

<string name="paypal_button">Pay with PayPal</string>

With the button in place, we now have to handle the button click in order to begin payment
processing. Add in the following beginPayment(...) method below our previous onCreate(...)
method.

public void beginPayment(View view){
 Intent serviceConfig = new Intent(this, PayPalService.class);
 serviceConfig.putExtra(PayPalService.EXTRA_PAYPAL_CONFIGURATION, config);
 startService(serviceConfig);

 PayPalPayment payment = new PayPalPayment(new BigDecimal("5.65"),
 "USD", "My Awesome Item", PayPalPayment.PAYMENT_INTENT_SALE);

 Intent paymentConfig = new Intent(this, PaymentActivity.class);
 paymentConfig.putExtra(PayPalService.EXTRA_PAYPAL_CONFIGURATION, config);
 paymentConfig.putExtra(PaymentActivity.EXTRA_PAYMENT, payment);
 startActivityForResult(paymentConfig, 0);
}

https://riptutorial.com/ 28

What we are doing here is first setting up the service intent (serviceConfig), using the config that
we had defined previously for our client ID and the sandbox environment. We then specify the
payment object that we want to process. For the sake of this example, we are setting a static
price, currency, and description. In your final application, these values should be obtained from
what the user is trying to buy in the application. Lastly, we set up the paymentConfig, adding in both
the config and payment objects that we had previously defined, and start the activity.

At this point the user will be presented with the PayPal login and payment screens, allowing them
to select whether to pay with PayPal or a credit card (via manual entry or card.io if the camera is
available). That screen will look something like this:

https://riptutorial.com/ 29

Once done, we need to have a handler ready for when PayPal forwards the user back to the appl

@Override

Within the onActivityResult(...) method, we are checking to see if the resultCode

https://riptutorial.com/ 30

that comes back is RESULT_OK (user confirmed payment), RESULT_CANCELED (user
cancelled payment), or RESULT_EXTRAS_INVALID (there was a configuration issue). In the case
of a valid confirmation, we get the object that is returned from the payment and, in this sample, log
it. What will be returned to us should look something like the following:

{
 "client": {
 "environment": "sandbox",
 "paypal_sdk_version": "2.14.1",
 "platform": "Android",
 "product_name": "PayPal-Android-SDK"
 },
 "response": {
 "create_time": "2016-05-02T15:33:43Z",
 "id": "PAY-0PG63447RB821630KK1TXGTY",
 "intent": "sale",
 "state": "approved"
 },
 "response_type": "payment"
}

If we look under the response object, we can see that we have a state of approved, meaning that the
payment was confirmed. At this point, that object should be sent to your server to confirm that a
payment actually went through. For more information on those steps, see these docs.

Our last step is to cleanup in our onDestroy(...).

@Override
public void onDestroy(){
 stopService(new Intent(this, PayPalService.class));
 super.onDestroy();
}

That's all there is to it. In this example we've created a simple button to process a payment with
either PayPal or a credit card. From this point, there are a few next steps for you to expand upon
this sample:

Pulling in payment information dynamically based on user product selection in the
beginPayment(...) method.

•

Sending the payment confirmation to your server and verifying that the payment actually
went through.

•

Handling the error and cancellation user cases within the app.•

Read Mobile PayPal / Credit Card Payments online:
https://riptutorial.com/paypal/topic/608/mobile-paypal---credit-card-payments

https://riptutorial.com/ 31

https://developer.paypal.com/webapps/developer/docs/integration/mobile/verify-mobile-payment/
https://riptutorial.com/paypal/topic/608/mobile-paypal---credit-card-payments

Chapter 7: Webhooks

Parameters

Parameter Details

app Our Express application reference

bodyParser
The body-parser package reference for working with JSON encoded
bodies

clientId The application client ID (OAuth 2 credentials)

http The http package for running the server

paypal The PayPal Node SDK reference object

secret The application secret (OAuth 2 credentials)

webhookId ID of the webhook to be modified

webhookUpdate JSON object containing the webhook details to be updated

Remarks

These samples cover working examples of how to use PayPal webhooks to provide event
monitoring for your application and payments.

Examples

Testing Sandbox Webhooks with ngrok and Express (Node)

In this example we're going to look at testing webhook notifications in sandbox, using ngrok to
provide a tunnel for our Node HTTP listener, running on localhost, to the internet. For this
example, we're going to be using Node to set up notification webhooks for payment events (such
as a payment being made), then set up the server to listen for incoming HTTP POST messages
from the webhook events.

There are a few steps that we're going to follow here to make this happen:

Set up a simple server to listen to incoming POST traffic from the webhooks, which will be
the notification from PayPal, and start listening on localhost.

1.

Then use ngrok to provide a tunnel from localhost to the internet so that PayPal can post
notification through.

2.

Lastly, subscribe our application (based on the credentials provided) to webhook events that 3.

https://riptutorial.com/ 32

https://ngrok.com/

we want to track, providing the public ngrok URI from step 2.

Creating a Webhooks Listener

The first thing that we need to do is create the listener. The reason why we're starting with the
listener is because we need the ngrok live URL to provide to the webhooks when we create or
update them.

var bodyParser = require('body-parser'),
 http = require('http'),
 app = require('express')();

app.use(bodyParser.json());

app.post('/', function(req, res){
 console.log(JSON.stringify(req.body));
});

//create server
http.createServer(app).listen(3001, function () {
 console.log('Server started: Listening on port 3001');
});

Our listener is a simple route using Express. We listen for any incoming POST traffic, then spit out
the POST body to the console. We can use this to do whatever we'd like with the listener when it
comes in.

When we create the HTTP server at the end, we set it up to listen on localhost port 3001. Run that
script now to start listening for traffic.

Using ngrok to Expose the Listener to the Internet

With the listener set up on localhost:3001, our next job is to expose that script to the internet, so
that traffic can be sent to it, which is the job of ngrok.

Run the following command from a terminal window:

ngrok http 3001

That will initiate the process of providing a live tunnel for localhost on port 3001, and will provide
the following information once run:

https://riptutorial.com/ 33

As our can see, the live address that we can use to point the PayPal webhook to our running
listener on localhost is http(s)://055b3480.ngrok.io. That's all we need to know to set up the
listener.

Subscribing to Notifications

Our last step is to create webhooks for our application, which will create notifications when certain
events happen with payments, refunds, etc on our app. We only need to create these webhooks
once to bind them to the application, so they do not need to be run each time you want to use
them.

First we set up the PayPal environment by adding in the requirement for the PayPal Node SDK,
our client ID / secret from creating an application, then configuring the environment for sandbox.

var paypal = require('paypal-rest-sdk');

var clientId = 'YOUR APPLICATION CLIENT ID';
var secret = 'YOUR APPLICATION SECRET';

paypal.configure({
 'mode': 'sandbox', //sandbox or live
 'client_id': clientId,
 'client_secret': secret
});

Next, we set up the JSON structure for our webhooks. webhooks contains two pieces of information,
the url that all webhook events should be sent to, and the event_types that we want to subscribe
to.

In the case of this sample, the url is set to our ngrok live URL, and the events we are listening for

https://riptutorial.com/ 34

http://i.stack.imgur.com/UVwad.jpg

are cases where payments are completed or denied.

For a complete list of potential events, see
https://developer.paypal.com/docs/integration/direct/rest-webhooks-overview/#event-type-support.

Lastly, we pass the webhooks object into the call to create the webhooks,
notification.webhook.create. If successful, PayPal will send notifications to the endpoint we
specified, which is running on localhost.

var webhooks = {
 "url": "https://436e4d13.ngrok.io",
 "event_types": [{
 "name": "PAYMENT.SALE.COMPLETED"
 },{
 "name": "PAYMENT.SALE.DENIED"
 }
]};

paypal.notification.webhook.create(webhooks, function (err, webhook) {
 if (err) {
 console.log(err.response);
 throw error;
 } else {
 console.log("Create webhook Response");
 console.log(webhook);
 }
});

Once we issue a payment using those application credentials, information about the payment state
will be sent to the endpoint that we set up.

An example of the POST body that PayPal sends as the notification might looks like the following,
which was sent after a successful PayPal payment:

{
 "id": "WH-9FE9644311463722U-6TR22899JY792883B",
 "create_time": "2016-04-20T16:51:12Z",
 "resource_type": "sale",
 "event_type": "PAYMENT.SALE.COMPLETED",
 "summary": "Payment completed for $ 7.47 USD",
 "resource": {
 "id": "18169707V5310210W",
 "state": "completed",
 "amount": {
 "total": "7.47",
 "currency": "USD",
 "details": {
 "subtotal": "7.47"
 }
 },
 "payment_mode": "INSTANT_TRANSFER",
 "protection_eligibility": "ELIGIBLE",
 "protection_eligibility_type": "ITEM_NOT_RECEIVED_ELIGIBLE,UNAUTHORIZED_PAYMENT_ELIGIBLE",
 "transaction_fee": {
 "value": "0.52",
 "currency": "USD"
 },

https://riptutorial.com/ 35

https://developer.paypal.com/docs/integration/direct/rest-webhooks-overview/#event-type-support

 "invoice_number": "",
 "custom": "",
 "parent_payment": "PAY-809936371M327284GK4L3FHA",
 "create_time": "2016-04-20T16:47:36Z",
 "update_time": "2016-04-20T16:50:07Z",
 "links": [
 {
 "href": "https:\/\/api.sandbox.paypal.com\/v1\/payments\/sale\/18169707V5310210W",
 "rel": "self",
 "method": "GET"
 },
 {
 "href":
"https:\/\/api.sandbox.paypal.com\/v1\/payments\/sale\/18169707V5310210W\/refund",
 "rel": "refund",
 "method": "POST"
 },
 {
 "href": "https:\/\/api.sandbox.paypal.com\/v1\/payments\/payment\/PAY-
809936371M327284GK4L3FHA",
 "rel": "parent_payment",
 "method": "GET"
 }
]
 },
 "links": [
 {
 "href": "https:\/\/api.sandbox.paypal.com\/v1\/notifications\/webhooks-events\/WH-
9FE9644311463722U-6TR22899JY792883B",
 "rel": "self",
 "method": "GET"
 },
 {
 "href": "https:\/\/api.sandbox.paypal.com\/v1\/notifications\/webhooks-events\/WH-
9FE9644311463722U-6TR22899JY792883B\/resend",
 "rel": "resend",
 "method": "POST"
 }
]
}

Updating a Webhook with a New URL (Node Sample)

This sample will show you how to update an existing webhook forwarding URL (where the
notifications should be POSTed to). To run this, you should have the ID provided back by PayPal
when you first created your webhooks.

First, add the PayPal SDK and configure the environment (sandbox below).

var paypal = require('paypal-rest-sdk');

var clientId = 'YOUR APPLICATION CLIENT ID';
var secret = 'YOUR APPLICATION SECRET';

paypal.configure({
 'mode': 'sandbox', //sandbox or live
 'client_id': clientId,
 'client_secret': secret

https://riptutorial.com/ 36

});

Next, set up the JSON structure and webhook details. Assign the ID for your webhook to webhookId
first. Next, in the webhookUpdate, specify an operation of replace, set the path to /url to specify an
update of that resource, and provide the new URL to replace it with under value.

var webhookId = "YOUR WEBHOOK ID";
var webhookUpdate = [{
 "op": "replace",
 "path": "/url",
 "value": "https://64fb54a2.ngrok.io"
}];

Lastly, call notification.webhook.replace(...), passing in webhookId and webhookUpdate.

paypal.notification.webhook.replace(webhookId, webhookUpdate, function (err, res) { if (err) {
console.log(err); throw err; } else { console.log(JSON.stringify(res)); } });

If all succeeds, an object similar to the following should be provided back from PayPal and, in the
case of this sample, displayed in the terminal with the newly updated information.

{
 "id":"4U496984902512511",
 "url":"https://64fb54a2.ngrok.io",
 "event_types":[{
 "name":"PAYMENT.SALE.DENIED",
 "description":"A sale payment was denied"
 }],
 "links":[{
 "href":"https://api.sandbox.paypal.com/v1/notifications/webhooks/4U496984902512511",
 "rel":"self",
 "method":"GET"
 },{
 "href":"https://api.sandbox.paypal.com/v1/notifications/webhooks/4U496984902512511",
 "rel":"update",
 "method":"PATCH"
 },{
 "href":"https://api.sandbox.paypal.com/v1/notifications/webhooks/4U496984902512511",
 "rel":"delete",
 "method":"DELETE"
 }],
 "httpStatusCode":200
}

Read Webhooks online: https://riptutorial.com/paypal/topic/575/webhooks

https://riptutorial.com/ 37

https://riptutorial.com/paypal/topic/575/webhooks

Credits

S.
No

Chapters Contributors

1
Getting started with
PayPal

Community, Jonathan LeBlanc, Nathan Arthur

2
Creating
Subscriptions /
Recurring Payments

Jonathan LeBlanc

3
Making a Credit Card
Payment (Node)

Jonathan LeBlanc

4
Making a PayPal
payment

Jonathan LeBlanc

5
Mobile Future
Payments (End to
End App)

Jonathan LeBlanc

6
Mobile PayPal /
Credit Card
Payments

Jonathan LeBlanc

7 Webhooks Jonathan LeBlanc

https://riptutorial.com/ 38

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/938730/jonathan-leblanc
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/938730/jonathan-leblanc
https://riptutorial.com/contributor/938730/jonathan-leblanc
https://riptutorial.com/contributor/938730/jonathan-leblanc
https://riptutorial.com/contributor/938730/jonathan-leblanc
https://riptutorial.com/contributor/938730/jonathan-leblanc
https://riptutorial.com/contributor/938730/jonathan-leblanc

	About
	Chapter 1: Getting started with PayPal
	Remarks
	Versions
	Examples
	Creating an application and obtaining client id / secret keys
	Setting up sandbox user test accounts

	Chapter 2: Creating Subscriptions / Recurring Payments
	Parameters
	Remarks
	Examples
	Step 2: Creating a Subscription for a User using a Billing Agreement (Node Sample)
	Step 1: Creating a Subscription Model using a Billing Plan (Node Sample)

	Chapter 3: Making a Credit Card Payment (Node)
	Parameters
	Remarks
	Examples
	Node Sample
	Making a Payment with a Vaulted Credit Card (Node)

	Chapter 4: Making a PayPal payment
	Parameters
	Remarks
	Examples
	Node Express Server Example

	Chapter 5: Mobile Future Payments (End to End App)
	Remarks
	Examples
	Android Step 1: Layout, Initialization, and Handling Server Response
	Android Step 2: Async Server Request
	Android Step 3: Node Server to Get Access Token & Process Payment

	Chapter 6: Mobile PayPal / Credit Card Payments
	Parameters
	Remarks
	Examples
	Android: Accepting a PayPal / Credit Card Payment

	Chapter 7: Webhooks
	Parameters
	Remarks
	Examples
	Testing Sandbox Webhooks with ngrok and Express (Node)
	Updating a Webhook with a New URL (Node Sample)

	Credits

