
Perl Language

#perl

Table of Contents

About 1

Chapter 1: Getting started with Perl Language 2

Remarks 2

Versions 2

Examples 3

Getting started with Perl 3

Chapter 2: Attributed Text 5

Examples 5

Printing colored Text 5

Chapter 3: Best Practices 6

Examples 6

Using Perl::Critic 6

Installation 6

Basic Usage 6

Viewing Policies 7

Ignoring Code 8

Creating Permanent Exceptions 8

Conclusion 9

Chapter 4: Comments 10

Examples 10

Single-line comments 10

Multi-line comments 10

Chapter 5: Compile Perl cpan module sapnwrfc from source code 11

Introduction 11

Remarks 11

Examples 12

Simple example to test the RFC connection 12

Chapter 6: Control Statements 14

Examples 14

Conditionals 14

If-Else Statements 14

Loops 14

Chapter 7: Dancer 16

Introduction 16

Examples 16

Easiest example 16

Chapter 8: Dates and Time 17

Examples 17

Create new DateTime 17

Working with elements of datetime 17

Calculate code execution time 18

Chapter 9: Dates and Time 19

Examples 19

Date formatting 19

Chapter 10: Debug Output 20

Examples 20

Dumping data-structures 20

Dumping with Style 20

Dumping array list 21

Data::Show 22

Chapter 11: Easy way to check installed modules on Mac and Ubuntu 24

Examples 24

Check installed perl modules via terminal 24

Use perldoc to check the Perl package install path 24

How to check Perl corelist modules. 24

How to check the version of a installed module? 24

Chapter 12: Exception handling 25

Examples 25

eval and die 25

Chapter 13: File I/O (reading and writing files) 27

Parameters 27

Remarks 27

Examples 27

Reading from a file 27

Write to a file 28

Opening A FileHandle for Reading 29

Opening Generic ASCII Text Files 29

Opening Binary Files 29

Opening UTF8 Text Files 29

Reading from and writing to a file 29

"use autodie" and you won't need to check file open/close failures 31

autodie allows you to work with files without having to explicitly check for open/close fa 31

Rewind a filehandle 31

Reading and Writing gzip compressed files 32

Writing a gzipped file 32

Reading from a gzipped file 32

Setting the default Encoding for IO 33

Chapter 14: GUI Applications in Perl 34

Remarks 34

Examples 34

GTK Application 34

Chapter 15: Install Perl modules via CPAN 35

Examples 35

Run Perl CPAN in your terminal (Mac and Linux) or command prompt (Windows) 35

Command line 35

Interactive Shell 35

Installing modules manually 35

cpanminus, the lightweight configuration-free replacement for cpan 36

Chapter 16: Installation of Perl 38

Introduction 38

Examples 38

Linux 38

OS X 38

Windows 39

Chapter 17: Interpolation in Perl 40

Examples 40

Basic interpolation 40

What is interpolated 40

Chapter 18: Lists 43

Examples 43

Array as list 43

Assigning a list to a hash 43

Lists can be passed into subroutines 44

Return list from subroutine 45

Using arrayref to pass array to sub 45

Hash as list 46

Chapter 19: Memory usage optimization 47

Examples 47

Reading files: foreach vs. while 47

Processing long lists 47

Chapter 20: Object-oriented Perl 49

Examples 49

Creating Objects 49

Defining Classes 49

Inheritance and methods resolution 50

Class and Object Methods 53

Defining classes in modern Perl 54

Roles 55

Chapter 21: Pack and unpack 57

Examples 57

Manually Converting C Structs to Pack Syntax 57

Constructing an IPv4 header 58

Chapter 22: Packages and modules 60

Syntax 60

Examples 60

Executing the contents of another file 60

Loading a module at runtime 60

Using a module 61

Using a module inside a directory 61

CPAN.pm 62

List all installed modules 63

Chapter 23: Perl commands for Windows Excel with Win32::OLE module 64

Introduction 64

Syntax 64

Parameters 64

Remarks 64

Examples 65

1. Opening and Saving Excel/Workbooks 65

2. Manipulation of Worksheets 66

3. Manipulation of cells 66

4. Manipulation of Rows / Columns 67

Chapter 24: Perl one-liners 69

Examples 69

Execute some Perl code from command line 69

Using double-quoted strings in Windows one-liners 69

Print lines matching a pattern (PCRE grep) 69

Replace a substring with another (PCRE sed) 70

Print only certain fields 70

Print lines 5 to 10 70

Edit file in-place 70

Reading the whole file as a string 70

Upload file into mojolicious 71

Chapter 25: Perl script debugging 72

Examples 72

Run script in debug mode 72

Use a nonstandard debugger 72

Chapter 26: Perl Testing 73

Examples 73

Perl Unit Testing Example 73

Chapter 27: Perlbrew 75

Introduction 75

Remarks 75

Examples 75

Setup perlbrew for the first time 75

Create setup script ~/.perlbrew.sh: 75

Create installation script install_perlbrew.sh: 75

Run installation script: 75

Add to the end of your ~/.bashrc 76

Source ~/.bashrc: 76

Chapter 28: Randomness 77

Remarks 77

Examples 77

Generate a random number between 0 and 100 77

Generate a random integer between 0 and 9 77

Accessing an array element at random 77

Chapter 29: Reading a file's content into a variable 79

Examples 79

The manual way 79

Path::Tiny 79

File::Slurper 80

File::Slurp 80

Slurping a file into an array variable 80

Slurp file in one-liner 80

Chapter 30: Regular Expressions 82

Examples 82

Matching strings 82

Usage of \Q and \E in pattern matching 82

What's between \Q and \E is treated as normal characters 82

Parsing a string with a regex 83

Replace a string using regular expressions 83

Chapter 31: Simple interaction with database via DBI module 85

Parameters 85

Examples 85

DBI module 85

Chapter 32: Sorting 87

Introduction 87

Syntax 87

Examples 87

Basic Lexical Sort 87

Numeric Sort 87

Reverse Sort 88

The Schwartzian Transform 88

Case Insensitive Sort 89

Chapter 33: Special variables 90

Remarks 90

Examples 90

Special variables in perl: 90

Chapter 34: Split a string on unquoted separators 91

Examples 91

parse_line() 91

Text::CSV or Text::CSV_XS 91

NOTES 91

Chapter 35: Strings and quoting methods 93

Remarks 93

Examples 93

String Literal Quoting 93

Double-quoting 93

Heredocs 95

Removing trailing newlines 95

Chapter 36: Subroutines 97

Remarks 97

Examples 97

Creating subroutines 97

Subroutine arguments are passed by reference (except those in signatures) 98

Subroutines 98

Chapter 37: True and false 101

Syntax 101

Remarks 101

The following values are considered false: 101

All other values are true: 101

The following operators are commonly treated to return a boolean in scalar context: 101

Examples 102

List of true and false values 102

Chapter 38: Unicode 103

Remarks 103

A Warning on Filename Encoding 103

:encoding(utf8) vs :utf8 103

UTF-8 vs utf8 vs UTF8 104

More Reading 104

Examples 105

Create filenames 105

Read filenames 105

Command line switches for one-liners 106

Enable utf8 pragma 106

Unicode handling with -C switch 107

Standard I/O 107

Script's arguments 107

Default PerlIO layer 107

Standard I/O 107

File handles 108

Setting encoding with open() 108

Setting encoding with binmode() 108

open pragma 108

Setting encoding with command line -C flag 109

The utf8 pragma: using Unicode in your sources 109

Handling invalid UTF-8 110

Reading invalid UTF-8 110

Chapter 39: Variables 112

Syntax 112

Examples 112

Scalars 112

Arrays 113

Hashes 114

Scalar References 116

You may want a Scalar Reference If: 117

Array References 117

Hash References 118

Typeglobs, typeglob refs, filehandles and constants 120

Sigils 121

Chapter 40: XML Parsing 124

Examples 124

Parsing with XML::Twig 124

Consuming XML with XML::Rabbit 125

Parsing with XML::LibXML 127

Credits 129

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: perl-language

It is an unofficial and free Perl Language ebook created for educational purposes. All the content
is extracted from Stack Overflow Documentation, which is written by many hardworking individuals
at Stack Overflow. It is neither affiliated with Stack Overflow nor official Perl Language.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/perl-language
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Perl Language

Remarks

Perl is the camel of languages: useful, but not always beautiful. It has rather good documentation
of its own which can be accessed using the perldoc command from your shell/command prompt.
It's also available online at perldoc.perl.org.

Versions

Version Release Notes Release Date

1.000 1987-12-18

2.000 1988-06-05

3.000 1989-10-18

4.000 1991-03-21

5.000 1994-10-17

5.001 1995-05-13

5.002 1996-02-29

5.003 1996-06-25

5.004 perl5004delta 1997-05-15

5.005 perl5005delta 1998-07-22

5.6.0 perl56delta 2000-03-22

5.8.0 perl58delta 2002-07-18

5.8.8

perl581delta,
perl582delta,
perl583delta,
perl584delta,
perl585delta,
perl586delta,
perl587delta,
perl588delta

2006-02-01

5.10.0 perl5100delta 2007-12-18

https://riptutorial.com/ 2

http://perldoc.perl.org/
http://perldoc.perl.org/perl5004delta.html
http://perldoc.perl.org/perl5005delta.html
http://perldoc.perl.org/perl56delta.html
http://perldoc.perl.org/perl58delta.html
http://perldoc.perl.org/perl581delta.html
http://perldoc.perl.org/perl582delta.html
http://perldoc.perl.org/perl583delta.html
http://perldoc.perl.org/perl584delta.html
http://perldoc.perl.org/perl585delta.html
http://perldoc.perl.org/perl586delta.html
http://perldoc.perl.org/perl587delta.html
http://perldoc.perl.org/perl588delta.html
http://perldoc.perl.org/perl5100delta.html

Version Release Notes Release Date

5.12.0 perl5120delta 2010-04-12

5.14.0 perl5140delta 2011-05-14

5.16.0 perl5160delta 2012-05-20

5.18.0 perl5180delta 2013-05-18

5.20.0 perl5200delta 2014-05-27

5.22.0 perl5220delta 2015-06-01

5.24.0 perl5240delta 2016-05-09

5.26.0 perl5260delta 2017-05-30

Examples

Getting started with Perl

Perl tries to do what you mean:

print "Hello World\n";

The two tricky bits are the semicolon at the end of the line and the \n, which adds a newline (line
feed). If you have a relatively new version of perl, you can use say instead of print to have the
carriage return added automatically:

5.10.0

use feature 'say';
say "Hello World";

The say feature is also enabled automatically with a use v5.10 (or higher) declaration:

use v5.10;
say "Hello World";

It's pretty common to just use perl on the command line using the -e option:

$ perl -e 'print "Hello World\n"'
Hello World

Adding the -l option is one way to print newlines automatically:

$ perl -le 'print "Hello World"'
Hello World

https://riptutorial.com/ 3

http://perldoc.perl.org/perl5120delta.html
http://perldoc.perl.org/perl5140delta.html
http://perldoc.perl.org/perl5160delta.html
http://perldoc.perl.org/perl5180delta.html
http://perldoc.perl.org/perl5200delta.html
http://perldoc.perl.org/perl5220delta.html
http://perldoc.perl.org/perl5240delta.html
https://metacpan.org/pod/release/XSAWYERX/perl-5.26.0/pod/perldelta.pod
http://perldoc.perl.org/perlrun.html

5.10.0

If you want to enable new features, use the -E option instead:

$ perl -E 'say "Hello World"'
Hello World

You can also, of course, save the script in a file. Just remove the -e command line option and use
the filename of the script: perl script.pl. For programs longer than a line, it's wise to turn on a
couple of options:

use strict;
use warnings;

print "Hello World\n";

There's no real disadvantage other than making the code slightly longer. In exchange, the strict
pragma prevents you from using code that is potentially unsafe and warnings notifies you of many
common errors.

Notice the line-ending semicolon is optional for the last line, but is a good idea in case you later
add to the end of your code.

For more options how to run Perl, see perlrun or type perldoc perlrun at a command prompt. For a
more detailed introduction to Perl, see perlintro or type perldoc perlintro at a command prompt.
For a quirky interactive tutorial, Try Perl.

Read Getting started with Perl Language online: https://riptutorial.com/perl/topic/341/getting-
started-with-perl-language

https://riptutorial.com/ 4

http://perldoc.perl.org/feature.html
http://perldoc.perl.org/perlrun.html
http://perldoc.perl.org/perlintro.html
http://tryperl.pl
https://riptutorial.com/perl/topic/341/getting-started-with-perl-language
https://riptutorial.com/perl/topic/341/getting-started-with-perl-language

Chapter 2: Attributed Text

Examples

Printing colored Text

#!/usr/bin/perl

use Term::ANSIColor;

print color("cyan"), "Hello", color("red"), "\tWorld", color("green"), "\tIt's Me!\n",
color("reset");

Read Attributed Text online: https://riptutorial.com/perl/topic/5922/attributed-text

https://riptutorial.com/ 5

http://i.stack.imgur.com/FXQAm.png
https://riptutorial.com/perl/topic/5922/attributed-text

Chapter 3: Best Practices

Examples

Using Perl::Critic

If you'd like to start implementing best practices, for yourself or your team, then Perl::Critic is the
best place to start. The module is based on the Perl Best Practices book by Damien Conway and
does a fairly good job implementing the suggestions made therein.

Note: I should mention (and Conway himself says in the book) that these are
suggestions. I've found the book provides solid reasoning in most cases, though I
certainly don't agree with all of them. The important thing to remember is that,
whatever practices you decide to adopt, you remain consistent. The more predictable
your code is, the easier it will be to maintain.

You can also try out Perl::Critic through your browser at perlcritic.com.

Installation

cpan Perl::Critic

This will install the basic ruleset and a perlcritic script that can be called from the command line.

Basic Usage

The CPAN doc for perlcritic contains full documentation, so I will only be going over the most
common use cases to get you started. Basic usage is to simply call perlcritic on the file:

 perlcritic -1 /path/to/script.pl

perlcritic works both on scripts and on modules. The -1 refers to the severity level of the rules you
want to run against the script. There are five levels that correspond to how much Perl::Critic will
pick apart your code.

-5 is the most gentle and will only warn about potentially dangerous problems that could cause
unexpected results. -1 is the most brutal and will complain about things as small as your code
being tidy or not. In my experience, keeping code compliant with level 3 is good enough to keep
out of danger without getting too persnickety.

By default, any failures will list the reason and severity the rule triggers on:

perlcritic -3 --verbose 8 /path/to/script.pl

https://riptutorial.com/ 6

https://metacpan.org/pod/Perl::Critic
http://shop.oreilly.com/product/9780596001735.do
http://perlcritic.com/
https://metacpan.org/pod/distribution/Perl-Critic/bin/perlcritic

Debugging module loaded at line 16, column 1. You've loaded Data::Dumper, which probably
shouln't be loaded in production. (Severity: 4)
Private subroutine/method '_sub_name' declared but not used at line 58, column 1. Eliminate
dead code. (Severity: 3)
Backtick operator used at line 230, column 37. Use IPC::Open3 instead. (Severity: 3)
Backtick operator used at line 327, column 22. Use IPC::Open3 instead. (Severity: 3)

Viewing Policies

You can quickly see which rules are being triggered and why by utilizing perlcritic's --verbose
option:

Setting the level to 8 will show you the rule that triggered a warning:

perlcritic -3 --verbose 8 /path/to/script.pl

[Bangs::ProhibitDebuggingModules] Debugging module loaded at line 16, column 1. (Severity: 4)
[Subroutines::ProhibitUnusedPrivateSubroutines] Private subroutine/method '_sub_name' declared
but not used at line 58, column 1. (Severity: 3)
[InputOutput::ProhibitBacktickOperators] Backtick operator used at line 230, column 37.
(Severity: 3)
[InputOutput::ProhibitBacktickOperators] Backtick operator used at line 327, column 22.
(Severity: 3)

While a level of 11 will show the specific reasons why the rule exists:

perlcritic -3 --verbose 11 /path/to/script.pl

Debugging module loaded at line 16, near 'use Data::Dumper;'.
 Bangs::ProhibitDebuggingModules (Severity: 4)
 This policy prohibits loading common debugging modules like the
 Data::Dumper manpage.

 While such modules are incredibly useful during development and
 debugging, they should probably not be loaded in production use. If this
 policy is violated, it probably means you forgot to remove a `use
 Data::Dumper;' line that you had added when you were debugging.
Private subroutine/method '_svn_revisions_differ' declared but not used at line 58, near 'sub
_sub_name {'.
 Subroutines::ProhibitUnusedPrivateSubroutines (Severity: 3)
 By convention Perl authors (like authors in many other languages)
 indicate private methods and variables by inserting a leading underscore
 before the identifier. This policy catches such subroutines which are
 not used in the file which declares them.

 This module defines a 'use' of a subroutine as a subroutine or method
 call to it (other than from inside the subroutine itself), a reference
 to it (i.e. `my $foo = \&_foo'), a `goto' to it outside the subroutine
 itself (i.e. `goto &_foo'), or the use of the subroutine's name as an
 even-numbered argument to `use overload'.
Backtick operator used at line 230, near 'my $filesystem_diff = join q{}, `diff
$trunk_checkout $staging_checkout`;'.
 InputOutput::ProhibitBacktickOperators (Severity: 3)
 Backticks are super-convenient, especially for CGI programs, but I find
 that they make a lot of noise by filling up STDERR with messages when
 they fail. I think its better to use IPC::Open3 to trap all the output

https://riptutorial.com/ 7

 and let the application decide what to do with it.

 use IPC::Open3 'open3';
 $SIG{CHLD} = 'IGNORE';

 @output = `some_command`; #not ok

 my ($writer, $reader, $err);
 open3($writer, $reader, $err, 'some_command'); #ok;
 @output = <$reader>; #Output here
 @errors = <$err>; #Errors here, instead of the console
Backtick operator used at line 327, near 'my $output = `$cmd`;'.
 InputOutput::ProhibitBacktickOperators (Severity: 3)
 Backticks are super-convenient, especially for CGI programs, but I find
 that they make a lot of noise by filling up STDERR with messages when
 they fail. I think its better to use IPC::Open3 to trap all the output
 and let the application decide what to do with it.

 use IPC::Open3 'open3';
 $SIG{CHLD} = 'IGNORE';

 @output = `some_command`; #not ok

 my ($writer, $reader, $err);
 open3($writer, $reader, $err, 'some_command'); #ok;
 @output = <$reader>; #Output here
 @errors = <$err>; #Errors here, instead of the console

Ignoring Code

There will be times when you can't comply with a Perl::Critic policy. In those cases, you can wrap
special comments, "## use critic()" and "## no critic", around your code to make Perl::Critic
ignore them. Simply add the rules you want to ignore in the parentheses (multiples can be
separated by a comma).

##no critic qw(InputOutput::ProhibitBacktickOperator)
my $filesystem_diff = join q{}, `diff $trunk_checkout $staging_checkout`;
use critic

Make sure to wrap the entire code block or Critic may not recognize the ignore statement.

no critic (Subroutines::ProhibitExcessComplexity)
sub no_time_to_refactor_this {
 ...
}
use critic

Note that there are certain policies that are run on the document level and cannot be exempted
this way. However, they can be turned off...

Creating Permanent Exceptions

https://riptutorial.com/ 8

Using ## no critic() is nice, but as you start to adopt coding standards, you will likely want to make
permanent exceptions to certain rules. You can do this by creating a .perlcriticrc configuration
file.

This file will allow you to customize not only which policies are run, but how they are run. Using it
is as simple as placing the file in your home directory (in Linux, unsure if it's the same place on
Windows). Or, you can specify the config file when running the command using the --profile
option:

perlcritic -1 --profile=/path/to/.perlcriticrc /path/to/script.pl

Again, the perlcritic CPAN page has a full list of these options. I will list some examples from my
own config file:

Apply basic settings:

#very very harsh
severity = 1
color-severity-medium = bold yellow
color-severity-low = yellow
color-severity-lowest = bold blue

Disable a rule (note the dash in front of the policy name):

do not require version control numbers
[-Miscellanea::RequireRcsKeywords]

pod spelling is too over-zealous, disabling
[-Documentation::PodSpelling]

Modifying a rule:

do not require checking for print failure (false positives for printing to stdout, not
filehandle)
[InputOutput::RequireCheckedSyscalls]
 functions = open close

Allow specific unused subroutines for moose builders
[Subroutines::ProhibitUnusedPrivateSubroutines]
private_name_regex = _(?!build_)\w+

Conclusion

Properly utilized, Perl::Critic can be an invaluable tool to help teams keep their coding consistent
and easily maintainable no matter what best practice policies you employ.

Read Best Practices online: https://riptutorial.com/perl/topic/5919/best-practices

https://riptutorial.com/ 9

https://metacpan.org/pod/distribution/Perl-Critic/bin/perlcritic
https://riptutorial.com/perl/topic/5919/best-practices

Chapter 4: Comments

Examples

Single-line comments

Single-line comments begin with a pound sign # and go to the end of the line:

This is a comment

my $foo = "bar"; # This is also a comment

Multi-line comments

Multi-line comments start with = and with the =cut statement. These are special comments called
POD (Plain Old Documentation).

Any text between the markers will be commented out:

=begin comment

This is another comment.
And it spans multiple lines!

=end comment

=cut

Read Comments online: https://riptutorial.com/perl/topic/6815/comments

https://riptutorial.com/ 10

https://riptutorial.com/perl/topic/6815/comments

Chapter 5: Compile Perl cpan module
sapnwrfc from source code

Introduction

I'd like to describe the prerequisites and the steps how to build the Perl CPAN module sapnwrfc
with the Strawberry Perl environment under Windows 7 x64. It should work also for all later
Windows versions like 8, 8.1 and 10.

I use Strawberry Perl 5.24.1.1 64 bit but it should also work with older versions.

It took me some hourse to succeed with several tries (32 vs. 64 bit installation of Perl, SAP NW
RFC SDK, MinGW vs. Microsoft C compiler). So I hope some will benefit from my findings.

Remarks

Install a current Strawberry Perl 64 bit package from http://strawberryperl.com. In my case it was
5.24.1.1.

Download the current version of the SAP NW RFC SDK x64 bit from
https://launchpad.support.sap.com/#/softwarecenter

You can find it with the following trace: Support Packages and Patches => By Category =>
Additional Components => SAP NW RFC SDK => SAP NW RFC SDK 7.20

In my case the current version was 7.20 PL42 x64.

Extract the downloaded file with sapcar -xvf NWRFC_42-20004568.SAR

I renamed the folder to C:\nwrfcsdk_x64

Create .def and .a files for the MinGW compiler / linker with the following commands in the
directory C:\nwrfcsdk_x64:

gendef *.dll
dlltool --dllname icuin34.dll --def icuin34.def --output-lib icuin34.a
dlltool --dllname icudt34.dll --def icudt34.def --output-lib icudt34.a
dlltool --dllname icuuc34.dll --def icuuc34.def --output-lib icuuc34.a
dlltool --dllname libsapucum.dll --def libsapucum.def --output-lib libsapucum.a
dlltool --dllname libicudecnumber.dll --def libicudecnumber.def --output-lib libicudecnumber.a
dlltool --dllname sapnwrfc.dll --def sapnwrfc.def --output-lib sapnwrfc.a

In the dircectory C:\nwrfcsdk_x64\lib the following files should exist:

icudt34.a
icudt34.def
icudt34.dll

https://riptutorial.com/ 11

http://strawberryperl.com
https://launchpad.support.sap.com/#/softwarecenter

icuin34.a
icuin34.def
icuin34.dll
icuuc34.a
icuuc34.def
icuuc34.dll
libicudecnumber.a
libicudecnumber.def
libicudecnumber.dll
libsapucum.a
libsapucum.def
libsapucum.dll
libsapucum.lib
sapdecfICUlib.lib
sapnwrfc.a
sapnwrfc.def
sapnwrfc.dll
sapnwrfc.lib

Start command prompt with cmd.exe and start the program cpan.

Start the command get sapnwrfc to download the Perl module sapnwrfc from CPAN.

Leave the cpan environment with the exit command. Change directory to
C:\Strawberry\cpan\build\sapnwrfc-0.37-0.

Build the Makefile(s) with the following command. Adapt the folder names according to your setup.

perl Makefile.PL --source=C:\nwrfcsdk_x64 --addlibs "C:\nwrfcsdk_x64\lib\sapnwrfc.a
C:\nwrfcsdk_x64\lib\libsapucum.a"

Run the commands dmake and dmake install to build and install the module.

Copy the files from C:\nwrfcsdk_x64\lib to C:\Strawberry\perl\site\lib\auto\SAPNW\Connection.

Examples

Simple example to test the RFC connection

Simple example from http://search.cpan.org/dist/sapnwrfc/sapnwrfc-cookbook.pod

use strict;
use warnings;
use utf8;
use sapnwrfc;

SAPNW::Rfc->load_config('sap.yml');
my $conn = SAPNW::Rfc->rfc_connect;

my $rd = $conn->function_lookup("RPY_PROGRAM_READ");
my $rc = $rd->create_function_call;
$rc->PROGRAM_NAME("SAPLGRFC");

eval {

https://riptutorial.com/ 12

http://search.cpan.org/dist/sapnwrfc/sapnwrfc-cookbook.pod

$rc->invoke;
};
if ($@) {
 die "RFC Error: $@\n";
}

print "Program name: ".$rc->PROG_INF->{'PROGNAME'}."\n";
my $cnt_lines_with_text = scalar grep(/LGRFCUXX/, map { $_->{LINE} } @{$rc->SOURCE_EXTENDED});
$conn->disconnect;

Read Compile Perl cpan module sapnwrfc from source code online:
https://riptutorial.com/perl/topic/9775/compile-perl-cpan-module-sapnwrfc-from-source-code

https://riptutorial.com/ 13

https://riptutorial.com/perl/topic/9775/compile-perl-cpan-module-sapnwrfc-from-source-code

Chapter 6: Control Statements

Examples

Conditionals

Perl supports many kinds of conditional statements (statements that are based on boolean
results). The most common conditional statements are if-else, unless, and ternary statements.
given statements are introduced as a switch-like construct from C-derived languages and are
available in versions Perl 5.10 and above.

If-Else Statements

The basic structure of an if-statement is like this:

if (EXPR) BLOCK
if (EXPR) BLOCK else BLOCK
if (EXPR) BLOCK elsif (EXPR) BLOCK ...
if (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK

For simple if-statements, the if can precede or succeed the code to be executed.

$number = 7;
if ($number > 4) { print "$number is greater than four!"; }

Can also be written this way
print "$number is greater than four!" if $number > 4;

Loops

Perl supports many kinds of loop constructs: for/foreach, while/do-while, and until.

@numbers = 1..42;
for (my $i=0; $i <= $#numbers; $i++) {
 print "$numbers[$i]\n";
}

#Can also be written as
foreach my $num (@numbers) {
 print "$num\n";
}

The while loop evaluates the conditional before executing the associated block. So, sometimes the
block is never executed. For example, the following code would never be executed if the filehandle
$fh was the filehandle for an empty file, or if was already exhausted before the conditional.

while (my $line = readline $fh) {
 say $line;
}

https://riptutorial.com/ 14

The do/while and do/until loops, on the other hand, evaluate the conditional after each time the
block is executed. So, a do/while or a do/until loop is always executed at least once.

my $greeting_count = 0;
do {
 say "Hello";
 $greeting_count++;
} until ($greeting_count > 1)

Hello
Hello

Read Control Statements online: https://riptutorial.com/perl/topic/4896/control-statements

https://riptutorial.com/ 15

https://riptutorial.com/perl/topic/4896/control-statements

Chapter 7: Dancer

Introduction

About:

Dancer2 (the successor of Dancer) is a simple but powerful web application framework for Perl.

It is inspired by Sinatra and written by Alexis Sukrieh.

Key features: ••• Dead Simple - Intuitive, minimalist and very expressive syntax. ••• Flexible - PSGI
support, plugins and modular design allow for strong scalability. ••• Few dependencies - Dancer
depends on as few CPAN modules as possible making it easy to install.

Examples

Easiest example

#!/usr/bin/env perl
use Dancer2;

get '/' => sub {
 "Hello World!"
};

dance;

Read Dancer online: https://riptutorial.com/perl/topic/5921/dancer

https://riptutorial.com/ 16

https://riptutorial.com/perl/topic/5921/dancer

Chapter 8: Dates and Time

Examples

Create new DateTime

Install DateTime on your PC and then use it in perl script:

use DateTime;

Create new current datetime

$dt = DateTime->now(time_zone => 'Asia/Ho_Chi_Minh');

Then you can access elements's values of date and time:

$year = $dt->year;
$month = $dt->month;
$day = $dt->day;
$hour = $dt->hour;
$minute = $dt->minute;
$second = $dt->second;

To get only time:

my $time = $dt->hms; #return time with format hh:mm:ss

To get only date:

my $date = $dt->ymd; #return date with format yyyy-mm-dd

Working with elements of datetime

Set single element:

$dt->set(year => 2016);

Set many elements:

$dt->set(year => 2016, 'month' => 8);

Add duration to datetime

$dt->add(hour => 1, month => 2)

Datetime subtraction:

my $dt1 = DateTime->new(
 year => 2016,
 month => 8,
 day => 20,

https://riptutorial.com/ 17

);

my $dt2 = DateTime->new(
 year => 2016,
 month => 8,
 day => 24,
);

my $duration = $dt2->subtract_datetime($dt1);
print $duration->days

You will get the result is 4 days

Calculate code execution time

use Time::HiRes qw(time);

my $start = time();

#Code for which execution time is calculated
sleep(1.2);

my $end = time();

printf("Execution Time: %0.02f s\n", $end - $start);

This will print execution time of Code in seconds

Read Dates and Time online: https://riptutorial.com/perl/topic/5920/dates-and-time

https://riptutorial.com/ 18

https://riptutorial.com/perl/topic/5920/dates-and-time

Chapter 9: Dates and Time

Examples

Date formatting

Time::Piece is available in perl 5 after version 10

use Time::Piece;

my $date = localtime->strftime('%m/%d/%Y');
print $date;

Output
07/26/2016

Read Dates and Time online: https://riptutorial.com/perl/topic/5923/dates-and-time

https://riptutorial.com/ 19

https://riptutorial.com/perl/topic/5923/dates-and-time

Chapter 10: Debug Output

Examples

Dumping data-structures

use Data::Dumper;

my $data_structure = { foo => 'bar' };
print Dumper $data_structure;

Using Data::Dumper is an easy way to look at data structures or variable content at run time. It
ships with Perl and you can load it easily. The Dumper function returns the data structure serialized
in a way that looks like Perl code.

$VAR1 = {
 'foo' => 'bar',
}

That makes it very useful to quickly look at some values in your code. It's one of the most handy
tools you have in your arsenal. Read the full documentation on metacpan.

Dumping with Style

Sometimes Data::Dumper is not enough. Got a Moose object you want to inspect? Huge numbers
of the same structure? Want stuff sorted? Colored? Data::Printer is your friend.

use Data::Printer;

p $data_structure;

Data::Printer writes to STDERR, like warn. That makes it easier to find the output. By default, it
sorts hash keys and looks at objects.

use Data::Printer;
use LWP::UserAgent;

my $ua = LWP::UserAgent->new;
p $ua;

It will look at all the methods of the object, and also list the internals.

LWP::UserAgent {
 Parents LWP::MemberMixin

https://riptutorial.com/ 20

https://metacpan.org/pod/Data::Dumper
https://metacpan.org/pod/Data::Dumper
https://metacpan.org/pod/Data::Printer
http://i.stack.imgur.com/Eoue5.png

 public methods (45) : add_handler, agent, clone, conn_cache, cookie_jar, credentials,
default_header, default_headers, delete, env_proxy, from, get, get_basic_credentials,
get_my_handler, handlers, head, is_online, is_protocol_supported, local_address, max_redirect,
max_size, mirror, new, no_proxy, parse_head, post, prepare_request, progress,
protocols_allowed, protocols_forbidden, proxy, put, redirect_ok, remove_handler, request,
requests_redirectable, run_handlers, send_request, set_my_handler, show_progress,
simple_request, ssl_opts, timeout, use_alarm, use_eval
 private methods (4) : _agent, _need_proxy, _new_response, _process_colonic_headers
 internals: {
 def_headers HTTP::Headers,
 handlers {
 response_header HTTP::Config
 },
 local_address undef,
 max_redirect 7,
 max_size undef,
 no_proxy [],
 protocols_allowed undef,
 protocols_forbidden undef,
 proxy {},
 requests_redirectable [
 [0] "GET",
 [1] "HEAD"
],
 show_progress undef,
 ssl_opts {
 verify_hostname 1
 },
 timeout 180,
 use_eval 1
 }
}

You can configure it further, so it serializes certain objects in a certain way, or to include objects
up to an arbitrary depth. The full configuration is available in the documentation.

Unfortunately Data::Printer does not ship with Perl, so you need to install it from CPAN or through
your package management system.

Dumping array list

my @data_array = (123, 456, 789, 'poi', 'uyt', "rew", "qas");
print Dumper @data_array;

Using Data::Dumper gives an easy access to fetch list values. The Dumper returns the list values
serialized in a way that looks like Perl code.

Output:

$VAR1 = 123;
$VAR2 = 456;
$VAR3 = 789;
$VAR4 = 'poi';
$VAR5 = 'uyt';
$VAR6 = 'rew';
$VAR7 = 'qas';

https://riptutorial.com/ 21

https://metacpan.org/pod/Data::Printer#CUSTOMIZATION
http://stackoverflow.com/questions/65865/whats-the-easiest-way-to-install-a-missing-perl-module

As suggested by user @dgw When dumping arrays or hashes it is better to use an array reference
or a hash reference, those will be shown better fitting to the input.

$ref_data = [23,45,67,'mnb','vcx'];
print Dumper $ref_data;

Output:

$VAR1 = [
 23,
 45,
 67,
 'mnb',
 'vcx'
];

You can also reference the array when printing.

my @data_array = (23,45,67,'mnb','vcx');
print Dumper \@data_array;

Output:

$VAR1 = [
 23,
 45,
 67,
 'mnb',
 'vcx'
];

Data::Show

The function show is automatically exported when use Data::Show; is executed. This function takes
a variable as its sole argument and it outputs:

the name of the variable1.
the contents of that variable (in a readable format)2.
the line of the file that show is run from3.
the file show is run from4.

Assuming that the following is code from the file example.pl:

use strict;
use warnings;
use Data::Show;

my @array = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

my %hash = (foo => 1, bar => { baz => 10, qux => 20 });

my $href = \%hash;

https://riptutorial.com/ 22

show @array;
show %hash;
show $href;

perl example.pl gives the following output:

======(@array)=======================['example.pl', line 11]======

 [1 .. 10]

======(%hash)========================['example.pl', line 12]======

 { bar => { baz => 10, qux => 20 }, foo => 1 }

======($href)========================['example.pl', line 13]======

 { bar => { baz => 10, qux => 20 }, foo => 1 }

See the documentation for Data::Show.

Read Debug Output online: https://riptutorial.com/perl/topic/983/debug-output

https://riptutorial.com/ 23

https://metacpan.org/pod/Data::Show
https://metacpan.org/pod/Data::Show
https://metacpan.org/pod/Data::Show
https://riptutorial.com/perl/topic/983/debug-output

Chapter 11: Easy way to check installed
modules on Mac and Ubuntu

Examples

Check installed perl modules via terminal

Type below command:

instmodsh

It'll show you the guild as below:

Available commands are:
 l - List all installed modules
 m <module> - Select a module
 q - Quit the program
cmd?

Then type l to list all the installed modules, you can also use command m <module> to select the
module and get its information.

After finish, just type q to quit.

Use perldoc to check the Perl package install path

$ perldoc -l Time::Local

How to check Perl corelist modules.

$ corelist -v v5.23.1

How to check the version of a installed module?

$> perl -MFoo::Bar\ 9999
$> Foo::Bar version 9999 required--this is only version 1.1.

Read Easy way to check installed modules on Mac and Ubuntu online:
https://riptutorial.com/perl/topic/5925/easy-way-to-check-installed-modules-on-mac-and-ubuntu

https://riptutorial.com/ 24

https://riptutorial.com/perl/topic/5925/easy-way-to-check-installed-modules-on-mac-and-ubuntu

Chapter 12: Exception handling

Examples

eval and die

This is the built-in way to deal with "exceptions" without relying on third party libraries like Try::Tiny
.

my $ret;

eval {
 $ret = some_function_that_might_die();
 1;
} or do {
 my $eval_error = $@ || "Zombie error!";
 handle_error($eval_error);
};

use $ret

We "abuse" the fact that die has a false return value, and the return value of the overall code block
is the value of the last expression in the code block:

if $ret is assigned to successfully, then the 1; expression is the last thing that happens in the
eval code block. The eval code block thus has a true value, so the or do block does not run.

•

if some_function_that_might_die() does die, then the last thing that happens in the eval code
block is the die. The eval code block thus has a false value and the or do block does run.

•

The first thing you must do in the or do block is read $@. This global variable will hold
whatever argument was passed to die. The || "Zombie Error" guard is popular, but
unnecessary in the general case.

•

This is important to understand because some not all code does fail by calling die, but the same
structure can be used regardless. Consider a database function that returns:

the number of rows affected on success•
'0 but true' if the query is successful but no rows were affected•
0 if the query was not successful.•

In that case you can still use the same idiom, but you have to skip the final 1;, and this function
has to be the last thing in the eval. Something like this:

eval {
 my $value = My::Database::retrieve($my_thing); # dies on fail
 $value->set_status("Completed");
 $value->set_completed_timestamp(time());
 $value->update(); # returns false value on fail
} or do { # handles both the die and the 0 return value
 my $eval_error = $@ || "Zombie error!";

https://riptutorial.com/ 25

http://p3rl.org/Try::Tiny

 handle_error($eval_error);
};

Read Exception handling online: https://riptutorial.com/perl/topic/1894/exception-handling

https://riptutorial.com/ 26

https://riptutorial.com/perl/topic/1894/exception-handling

Chapter 13: File I/O (reading and writing files)

Parameters

Mode Explaination

> Write (trunc). Will overwrite existing files. Creates a new file if no file was found

>>
Write (append). Will not overwrite files but append new content at the end of it. Will
also create a file if used for opening a non existing file.

< Read. Opens the file in read only mode.

+< Read / Write. Will not create or truncate the file.

+> Read / Write (trunc). Will create and truncate the file.

+>> Read / Write (append). Will create but not truncate the file.

Remarks

chomp is often used when reading from a file. By default it trims the newline character, although for
its full functionality refer to the perldocs.

Beware of the difference between characters and bytes: Not all encodings - especially UTF-8 - use
1-byte-characters. While this is handled pretty much flawlessly by PerlIO, there is one potential
pitfall of note:

read uses characters for its length and offset parameters•
seek and tell always use bytes for positioning•

So don't use arithmetics based on these mixed values. Instead use e.g.
Encode::encode('utf8',$value_by_read) to get the octets(bytes) from a readresult, whose count you
can then use with tell and seek.

Examples

Reading from a file

my $filename = '/path/to/file';

open my $fh, '<', $filename or die "Failed to open file: $filename";

You can then either read the file one line at a time...
while(chomp(my $line = <$fh>)) {
 print $line . "\n";

https://riptutorial.com/ 27

http://perldoc.perl.org/functions/chomp.html

}

...or read whole file into an array in one go
chomp(my @fileArray = <$fh>);

If you know that your input file is UTF-8, you can specify the encoding:

open my $fh, '<:encoding(utf8)', $filename or die "Failed to open file: $filename";

After finished reading from the file, the filehandle should be closed:

close $fh or warn "close failed: $!";

See also: Reading a file into a variable

Another and faster way to read a file is to use File::Slurper Module. This is useful if you work with
many files.

use File::Slurper;
my $file = read_text("path/to/file"); # utf8 without CRLF transforms by default
print $file; #Contains the file body

See also: [Reading a file with slurp]

Write to a file

This code opens a file for writing. Returns an error if the file couldn't be opened. Also closes the
file at the end.

#!/usr/bin/perl
use strict;
use warnings;
use open qw(:encoding(UTF-8) :std); # Make UTF-8 default encoding

Open "output.txt" for writing (">") and from now on, refer to it as the variable $fh.
open(my $fh, ">", "output.txt")
In case the action failed, print error message and quit.
or die "Can't open > output.txt: $!";

Now we have an open file ready for writing which we access through $fh (this variable is called a
filehandle). Next we can direct output to that file using the print operator:

Print "Hello" to $fh ("output.txt").
print $fh "Hello";
Don't forget to close the file once we're done!
close $fh or warn "Close failed: $!";

The open operator has a scalar variable ($fh in this case) as its first parameter. Since it is defined
in the open operator it is treated as a filehandle. Second parameter ">" (greater than) defines that
the file is opened for writing. The last parameter is the path of the file to write the data to.

https://riptutorial.com/ 28

http://www.riptutorial.com/perl/topic/1779/reading-a-file-s-content-into-a-variable
https://metacpan.org/pod/File::Slurper

To write the data into the file, the print operator is used along with the filehandle. Notice that in the
print operator there is no comma between the filehandle and the statement itself, just whitespace.

Opening A FileHandle for Reading

Opening Generic ASCII Text Files

5.6.0

open my $filehandle, '<', $name_of_file or die "Can't open $name_of_file, $!";

This is the basic idiom for "default" File IO and makes $filehandle a readable input stream of bytes
, filtered by a default system-specific decoder, which can be locally set with the open pragma

Perl itself does not handle errors in file opening, so you have to handle those yourself by checking
the exit condition of open. $! is populated with the error message that caused open to fail.

On Windows, the default decoder is a "CRLF" filter, which maps any "\r\n" sequences in the input
to "\n"

Opening Binary Files

5.8.0

open my $filehandle, '<:raw', 'path/to/file' or die "Can't open $name_of_file, $!";

This specifies that Perl should not perform a CRLF translation on Windows.

Opening UTF8 Text Files

5.8.0

open my $filehandle, '<:raw:encoding(utf-8)', 'path/to/file'
 or die "Can't open $name_of_file, $!";

This specifies that Perl should both avoid CRLF translation, and then decode the resulting bytes into
strings of characters (internally implemented as arrays of integers which can exceed 255),
instead of strings of bytes

Reading from and writing to a file

Before reading and writing text files you should know what encoding to use. See the Perl Unicode
Documentation for more details on encoding. Here we show the setting of UTF-8 as the default
encoding and decoding for the function open. This is done by using the open pragma near the top of
your code (right after use strict; and use warnings; would be appropriate):

https://riptutorial.com/ 29

http://www.riptutorial.com/perl/example/24140/setting-the-default-encoding-for-io
http://www.riptutorial.com/perl/example/24140/setting-the-default-encoding-for-io
http://www.riptutorial.com/perl/topic/4375/unicode
http://www.riptutorial.com/perl/topic/4375/unicode

use strict;
use warnings;
use open qw(:encoding(UTF-8) :std);

The open function creates a filehandle that is used for reading from and/or writing to a file. The open
function has the signature

open(FILEHANDLE, MODE, FILEPATH) and returns a false value if the operation fails. The error
description is then stored to $!.

Reading

#!/usr/bin/perl
use strict;
use warnings;
use open qw(:encoding(UTF-8) :std); # Make UTF-8 default encoding

my $file_path = "/path/to/file";
open(my $file_handle, '<', $file_path) or die "Could not open file! $!";

while(my $row = <$file_handle>) {
 print chomp($row), "\n";
}

close $file_handle
 or warn "Close failed!";

Writing

#!/usr/bin/perl
use strict;
use warnings;
use open qw(:encoding(UTF-8) :std); # Make UTF-8 default encoding

my $file_path = "/path/to/file";
open(my $file_handle, '>', $file_path) or die "Could not open file! $!";

print $file_handle "Writing to a file";

close $file_handle
 or warn "Close failed!";

Reading chunks

Opening and reading big files can take some time and resources. If only a small part of the content
is required, it might be a good idea to read the content in chunks using the read function which has
the signature

read(FILEHANDLE, SCALAR, LENGTH, OFFSET)

FILEHANDLE must be an opened file handle, SCALAR will hold the read data after the operation. LENGTH
specifies the number of characters to be read starting from the OFFSET. The function returns the
number of characters read, 0 if the end of file was reached and undef in case of an error.

https://riptutorial.com/ 30

read($file_handle, $data, 16, 0);

Reads 16 characters from the beginning of the file into $data.

"use autodie" and you won't need to check file open/close failures

autodie allows you to work with files without having to explicitly
check for open/close failures.

Since Perl 5.10.1, the autodie pragma has been available in core Perl. When used, Perl will
automatically check for errors when opening and closing files.

Here is an example in which all of the lines of one file are read and then written to the end of a log
file.

use 5.010; # 5.010 and later enable "say", which prints arguments, then a newline
use strict; # require declaring variables (avoid silent errors due to typos)
use warnings; # enable helpful syntax-related warnings
use open qw(:encoding(UTF-8) :std); # Make UTF-8 default encoding
use autodie; # Automatically handle errors in opening and closing files

open(my $fh_in, '<', "input.txt"); # check for failure is automatic

open a file for appending (i.e. using ">>")
open(my $fh_log, '>>', "output.log"); # check for failure is automatic

while (my $line = readline $fh_in) # also works: while (my $line = <$fh_in>)
{
 # remove newline
 chomp $line;

 # write to log file
 say $fh_log $line or die "failed to print '$line'"; # autodie doesn't check print
}

Close the file handles (check for failure is automatic)
close $fh_in;
close $fh_log;

By the way, you should technically always check print statements. Many people don't, but perl
(the Perl interpreter) doesn't do this automatically and neither does autodie.

Rewind a filehandle

Sometimes it is needful to backtrack after reading.

identify current position in file, in case the first line isn't a comment
my $current_pos = tell;

while (my $line = readline $fh)
{
 if ($line =~ /$START_OF_COMMENT_LINE/)
 {

https://riptutorial.com/ 31

http://perldoc.perl.org/autodie.html
http://perldoc.perl.org/autodie.html#SYNOPSIS
http://perldoc.perl.org/autodie.html#SYNOPSIS

 push @names, get_name_from_comment($line);
 }
 else {
 last; # break out of the while loop
 }
 $current_pos = tell; # keep track of current position, in case we need to rewind the next
line read
}

Step back a line so that it can be processed later as the first data line
seek $fh, $current_pos, 0;

Reading and Writing gzip compressed files

Writing a gzipped file

To write a gzipped file, use the module IO::Compress::Gzip and create a filehandle by creating a
new instance of IO::Compress::Gzip for the desired output file:

use strict;
use warnings;
use open qw(:encoding(UTF-8) :std); # Make UTF-8 default encoding

use IO::Compress::Gzip;

my $fh_out = IO::Compress::Gzip->new("hello.txt.gz");

print $fh_out "Hello World!\n";

close $fh_out;

use IO::Compress::Gzip;

Reading from a gzipped file

To read from a gzipped file, use the module IO::Uncompress::Gunzip and then create a filehandle by
creating a new instance of IO::Uncompress::Gunzip for the input file:

#!/bin/env perl
use strict;
use warnings;
use open qw(:encoding(UTF-8) :std); # Make UTF-8 default encoding

use IO::Uncompress::Gunzip;

my $fh_in = IO::Uncompress::Gunzip->new("hello.txt.gz");

my $line = readline $fh_in;

print $line;

https://riptutorial.com/ 32

Setting the default Encoding for IO

encode/decode UTF-8 for files and standard input/output
use open qw(:encoding(UTF-8) :std);

This pragma changes the default mode of reading and writing text (files, standard input, standard
output, and standard error) to UTF-8, which is typically what you want when writing new
applications.

ASCII is a subset of UTF-8, so this is not expected to cause any problems with legacy ASCII files
and will help protect you the accidental file corruption that can happen when treating UTF-8 files
as ASCII.

However, it is important that you know what the encoding of your files is that you are dealing with
and handle them accordingly. (Reasons that we should not ignore Unicode.) For more in depth
treatment of Unicode, please see the Perl Unicode topic.

Read File I/O (reading and writing files) online: https://riptutorial.com/perl/topic/1604/file-i-o--
reading-and-writing-files-

https://riptutorial.com/ 33

http://stackoverflow.com/a/6163129/215487
http://www.riptutorial.com/perl/topic/4375/unicode
https://riptutorial.com/perl/topic/1604/file-i-o--reading-and-writing-files-
https://riptutorial.com/perl/topic/1604/file-i-o--reading-and-writing-files-

Chapter 14: GUI Applications in Perl

Remarks

Tk is one of the most commonly used GUI toolkits for Perl. Other common toolkits are GTK+2 & 3,
WxWidgets, and Win32 widgets. Less commonly used are Qt4, XUL, Prima, and FLTK.

Tk, GTK+3, Wx, Win32, Prima, FLTK, and XUL are actively updated. Qt4 and GTK+2 are no
longer developed actively, but may have maintenance releases.

Examples

GTK Application

use strict;
use warnings;

use Gtk2 -init;

my $window = Gtk2::Window->new();
$window->show();

Gtk2->main();

0;

Read GUI Applications in Perl online: https://riptutorial.com/perl/topic/5924/gui-applications-in-perl

https://riptutorial.com/ 34

https://riptutorial.com/perl/topic/5924/gui-applications-in-perl

Chapter 15: Install Perl modules via CPAN

Examples

Run Perl CPAN in your terminal (Mac and Linux) or command prompt
(Windows)

Command line

You can use cpan to install modules directly from the command line:

cpan install DBI

This would be followed by possibly many pages of output describing exactly what it is doing to
install the module. Depending on the modules being installed, it may pause and ask you
questions.

Interactive Shell

You can also enter a "shell" thus:

perl -MCPAN -e "shell"

It will produce output as below:

Terminal does not support AddHistory.

cpan shell -- CPAN exploration and modules installation (v2.00)
Enter 'h' for help.

cpan[1]>

Then you can install the modules which you want by the easy command install <module>.

Example: cpan[1]> install DBI

After installing successfully, type exit to quit.

Installing modules manually

If you don't have permissions to install perl modules, you may still install them manually, indicating
a custom path where you've got writing permissions.

Fist, download and unzip module archive:

https://riptutorial.com/ 35

wget module.tar.gz
tar -xzf module.tar.gz
cd module

Then, if the module distribution contains a Makefile.PL file, run:

perl Makefile.PL INSTALL_BASE=$HOME/perl
make
make test
make install

or if you have Build.PL file instead of a Makefile.PL:

perl Build.PL --install_base $HOME/perl
perl Build
perl Build test
perl Build install

You also have to include the module path in PERL5LIB environment variable in order to use it in your
code:

export PERL5LIB=$HOME/perl

cpanminus, the lightweight configuration-free replacement for cpan

Usage

To install a module (assuming cpanm is already installed):

cpanm Data::Section

cpanm ("cpanminus") strives to be less verbose than cpan but still captures all of the installation
information in a log file in case it is needed. It also handles many "interactive questions" for you,
whereas cpan doesn't.

cpanm is also popular for installing dependencies of a project from, e.g., GitHub. Typical use is to
first cd into the project's root, then run

cpanm --installdeps .

With --installdeps it will:

Scan and install configure_requires dependencies from either
META.json•
META.yml (if META.json is missing)•

1.

Build the project (equivalent to perl Build.PL), generating MYMETA files2.
Scan and install requires dependencies from either

MYMETA.json•
MYMETA.yml (if MYMETA.json is missing)•

3.

https://riptutorial.com/ 36

To specify the file 'some.cpanfile', containing the dependencies, run:

cpanm --installdeps --cpanfile some.cpanfile .

cpanm Installation

There are several ways to install it. Here's installation via cpan:

cpan App::cpanminus

cpanm Configuration

There is no config file for cpanm. Rather, it relies on the following environment variables for its
configuration:

PERL_CPANM_OPT (General cpanm command line options)
export PERL_CPANM_OPT="--prompt" # in .bashrc, to enable prompting, e.g.○

setenv PERL_CPANM_OPT "--prompt" # in .tcshrc○

•

PERL_MM_OPT (ExtUtils::MakeMaker command line options, affects module install target)•
PERL_MB_OPT (Module::Build command line options, affects module install target)•

Read Install Perl modules via CPAN online: https://riptutorial.com/perl/topic/3542/install-perl-
modules-via-cpan

https://riptutorial.com/ 37

https://metacpan.org/pod/App::cpanminus#INSTALLATION
https://riptutorial.com/perl/topic/3542/install-perl-modules-via-cpan
https://riptutorial.com/perl/topic/3542/install-perl-modules-via-cpan

Chapter 16: Installation of Perl

Introduction

I'm going to begin this with the process in Ubuntu, then in OS X and finally in Windows. I haven't
tested it on all perl versions, but it should be a similar process.

Use Perlbrew if you like to switch easily beween different versions of Perl.

I want to state that this tutorial is about Perl in it's open-source version. There are other versions
like activeperl which its advantages and disadvantages, that are not part of this tutorial.

Examples

Linux

There is more than one way to do it:

Using the package manager:

sudo apt install perl

•

Installing from source:

wget http://www.cpan.org/src/5.0/perl-version.tar.gz
tar -xzf perl-version.tar.gz
cd perl-version
./Configure -de
make
make test
make install

•

Installing in your $home directory (not sudo needed) with Perlbrew:

wget -O - https://install.perlbrew.pl | bash

See also Perlbrew

•

OS X

There are several options:

Perlbrew:

You need to install Command Line Tools for Xcode
curl -L https://install.perlbrew.pl | bash

•

https://riptutorial.com/ 38

https://perlbrew.pl
https://perlbrew.pl
http://www.riptutorial.com/perl/topic/9144/perlbrew
https://perlbrew.pl/

Perlbrew with thread support:

You need to install Command Line Tools for Xcode
curl -L https://install.perlbrew.pl | bash

After the install of perlbrew, if you want to install Perl with thread support, just run:

perlbrew install -v perl-5.26.0 -Dusethreads

•

From source:

tar -xzf perl-version.tar.gz
cd perl-version
./Configure -de
make
make test
make install

•

Windows

As we said before, we go with the open-source version. For Windows you can choose
strawberry or DWIM. Here we cover the strawberry version, since DWIM is based on it. The easy
way here is installing from the official executable.

•

See also berrybrew - the perlbrew for Windows Strawberry Perl

Read Installation of Perl online: https://riptutorial.com/perl/topic/9317/installation-of-perl

https://riptutorial.com/ 39

https://perlbrew.pl/
http://strawberryperl.com/
https://github.com/dnmfarrell/berrybrew
https://riptutorial.com/perl/topic/9317/installation-of-perl

Chapter 17: Interpolation in Perl

Examples

Basic interpolation

Interpolation means that Perl interpreter will substitute the values of variables for their name and
some symbols (which are impossible or difficult to type in directly) for special sequences of
characters (it is also known as escaping). The most important distinction is between single and
double quotes: double quotes interpolate the enclosed string, but single quotes do not.

my $name = 'Paul';
my $age = 64;
print "My name is $name.\nI am $age.\n"; # My name is Paul.
 # I am 64.

But:

print 'My name is $name.\nI am $age.\n'; # My name is $name.\nI am $age.\n

You can use q{} (with any delimiter) instead of single quotes and qq{} instead of double quotes.
For example, q{I'm 64} allows to use an apostrophe within a non-interpolated string (otherwise it
would terminate the string).

Statements:

print qq{$name said: "I'm $age".}; # Paul said: "I'm 64".
print "$name said: \"I'm $age\"." # Paul said: "I'm 64".

do the same thing, but in the first one you do not need to escape double quotes within the string.

If your variable name clashes with surrounding text, you can use the syntax ${var} to
disambiguate:

my $decade = 80;
print "I like ${decade}s music!" # I like 80s music!

What is interpolated

Perl interpolates variable names:

my $name = 'Paul';
print "Hello, $name!\n"; # Hello, Paul!

my @char = ('a', 'b', 'c');
print "$char[1]\n"; # b

https://riptutorial.com/ 40

my %map = (a => 125, b => 1080, c => 11);
print "$map{a}\n"; # 125

Arrays may be interpolated as a whole, their elements are separated by spaces:

my @char = ('a', 'b', 'c');
print "My chars are @char\n"; # My chars are a b c

Perl does not interpolate hashes as a whole:

my %map = (a => 125, b => 1080, c => 11);
print "My map is %map\n"; # My map is %map

and function calls (including constants):

use constant {
 PI => '3.1415926'
};
print "I like PI\n"; # I like PI
print "I like " . PI . "\n"; # I like 3.1415926

Perl interpolates escape sequences starting with \:

\t horizontal tab
\n newline
\r return
\f form feed
\b backspace
\a alarm (bell)
\e escape

Interpolation of \n depends on the system where program is working: it will produce a newline
character(s) according to the current system conventions.

Perl does not interpolate \v, which means vertical tab in C and other languages.

Character may be addressed using their codes:

\x{1d11e} � by hexadecimal code
\o{350436} � by octal code
\N{U+1d11e} � by Unicode code point

or Unicode names:

\N{MUSICAL SYMBOL G CLEF}

Character with codes from 0x00 to 0xFF in the native encoding may be addressed in a shorter form:

\x0a hexadecimal
\012 octal

https://riptutorial.com/ 41

Control character may be addressed using special escape sequences:

\c@ chr(0)
\ca chr(1)
\cb chr(2)
...
\cz chr(26)
\c[chr(27)
\c\ chr(28) # Cannot be used at the end of a string
 # since backslash will interpolate the terminating quote
\c] chr(29)
\c^ chr(30)
\c_ chr(31)
\c? chr(127)

Uppercase letters have the same meaning: "\cA" == "\ca".

Interpretation of all escape sequences except for \N{...} may depend on the platform since they
use platform- and encoding-dependent codes.

Read Interpolation in Perl online: https://riptutorial.com/perl/topic/5284/interpolation-in-perl

https://riptutorial.com/ 42

https://riptutorial.com/perl/topic/5284/interpolation-in-perl

Chapter 18: Lists

Examples

Array as list

The array is one of Perl's basic variable types. It contains a list, which is an ordered sequence of
zero or more scalars. The array is the variable holding (and providing access to) the list data, as is
documented in perldata.

You can assign a list to an array:

my @foo = (4, 5, 6);

You can use an array wherever a list is expected:

join '-', (4, 5, 6);
join '-', @foo;

Some operators only work with arrays since they mutate the list an array contains:

shift @array;
unshift @array, (1, 2, 3);
pop @array;
push @array, (7, 8, 9);

Assigning a list to a hash

Lists can also be assigned to hash variables. When creating a list that will be assigned to a hash
variable, it is recommended to use the fat comma => between keys and values to show their
relationship:

my %hash = (foo => 42, bar => 43, baz => 44);

The => is really only a special comma that automatically quotes the operand to its left. So, you
could use normal commas, but the relationship is not as clear:

my %hash = ('foo', 42, 'bar', 43, 'baz', 44);

You can also use quoted strings for the left hand operand of the fat comma =>, which is especially
useful for keys containing spaces.

my %hash = ('foo bar' => 42, 'baz qux' => 43);

For details see Comma operator at perldoc perlop.

https://riptutorial.com/ 43

http://perldoc.perl.org/perldata.html
http://perldoc.perl.org/perlop.html#Comma-Operator

Lists can be passed into subroutines

As to pass list into a subroutine, you specify the subroutine's name and then supply the list to it:

test_subroutine('item1', 'item2');
test_subroutine 'item1', 'item2'; # same

Internally Perl makes aliases to those arguments and put them into the array @_ which is available
within the subroutine:

@_ = ('item1', 'item2'); # Done internally by perl

You access subroutine arguments like this:

sub test_subroutine {
 print $_[0]; # item1
 print $_[1]; # item2
}

Aliasing gives you the ability to change the original value of argument passed to subroutine:

sub test_subroutine {
 $_[0] += 2;
}

my $x = 7;
test_subroutine($x);
print $x; # 9

To prevent inadvertent changes of original values passed into your subroutine, you should copy
them:

sub test_subroutine {
 my($copy_arg1, $copy_arg2) = @_;
 $copy_arg1 += 2;
}

my $x = 7;
test_subroutine $x; # in this case $copy_arg2 will have `undef` value
print $x; # 7

To test how many arguments were passed into the subroutine, check the size of @_

sub test_subroutine {
 print scalar @_, ' argument(s) passed into subroutine';
}

If you pass array arguments into a subroutine they all will be flattened:

my @x = (1, 2, 3);
my @y = qw/ a b c /; # ('a', 'b', 'c')

https://riptutorial.com/ 44

test_some_subroutine @x, 'hi', @y; # 7 argument(s) passed into subroutine
@_ = (1, 2, 3, 'hi', 'a', 'b', 'c') # Done internally for this call

If your test_some_subroutine contains the statement $_[4] = 'd', for the above call it will cause
$y[0] to have value d afterwards:

print "@y"; # d b c

Return list from subroutine

You can, of course, return lists from subs:

sub foo {
 my @list1 = (1, 2, 3);
 my @list2 = (4, 5);

 return (@list1, @list2);
}

my @list = foo();
print @list; # 12345

But it is not the recommended way to do that unless you know what you are doing.

While this is OK when the result is in LIST context, in SCALAR context things are unclear. Let's
take a look at the next line:

print scalar foo(); # 2

Why 2? What is going on?

Because foo() evaluated in SCALAR context, this list (@list1, @list2) also evaluated in
SCALAR context

1.

In SCALAR context, LIST returns its last element. Here it is @list22.
Again in SCALAR context, array @list2 returns the number of its elements. Here it is 2.3.

In most cases the right strategy will return references to data structures.
So in our case we should do the following instead:

 return (\@list1, \@list2);

Then the caller does something like this to receive the two returned arrayrefs:

 my ($list1, $list2) = foo(...);

Using arrayref to pass array to sub

The arrayref for @foo is \@foo. This is handy if you need to pass an array and other things to a
subroutine. Passing @foo is like passing multiple scalars. But passing \@foo is a single scalar.

https://riptutorial.com/ 45

Inside the subroutine:

xyz(\@foo, 123);
...
sub xyz {
 my ($arr, $etc) = @_;
 print $arr->[0]; # using the first item in $arr. It is like $foo[0]

Hash as list

In list context hash is flattened.

my @bar = (%hash, %hash);

The array @bar is initialized by list of two %hash hashes

both %hash are flattened•
new list is created from flattened items•
@bar array is initialized by that list•

It is guaranteed that key-value pairs goes together. Keys are always even indexed, values - odd. It
is not guaranteed that key-value pairs are always flattened in same order:

my %hash = (a => 1, b => 2);
print %hash; # Maybe 'a1b2' or 'b2a1'

Read Lists online: https://riptutorial.com/perl/topic/4553/lists

https://riptutorial.com/ 46

https://riptutorial.com/perl/topic/4553/lists

Chapter 19: Memory usage optimization

Examples

Reading files: foreach vs. while

When reading a potentially large file, a while loop has a significant memory advantage over
foreach. The following will read the file record by record (by default, "record" means "a line", as
specified by $/), assigning each one to $_ as it is read:

while(<$fh>) {
 print;
}

The diamond operator does some magic here to make sure the loop only terminates at end-of-file
and not e.g. on lines that contain only a "0" character.

The following loop seems to work just the same, however it evaluates the diamond operator in list
context, causing the entire file to be read in one go:

foreach(<$fh>) {
 print;
}

If you are operating on one record at a time anyway, this can result in a huge waste of memory
and should thus be avoided.

Processing long lists

If you have a list in memory already, the straightforward and usually sufficient way to process it is
a simple foreach loop:

foreach my $item (@items) {
 ...
}

This is fine e.g. for the common case of doing some processing on $item and then writing it out to
a file without keeping the data around. However, if you build up some other data structure from the
items, a while loop is more memory efficient:

my @result;
while(@items) {
 my $item = shift @items;
 push @result, process_item($item);
}

Unless a reference to $item directly ends up in your result list, items you shifted off the @items array

https://riptutorial.com/ 47

can be freed and the memory reused by the interpreter when you enter the next loop iteration.

Read Memory usage optimization online: https://riptutorial.com/perl/topic/6327/memory-usage-
optimization

https://riptutorial.com/ 48

https://riptutorial.com/perl/topic/6327/memory-usage-optimization
https://riptutorial.com/perl/topic/6327/memory-usage-optimization

Chapter 20: Object-oriented Perl

Examples

Creating Objects

Unlike many other languages, Perl does not have constructors that allocate memory for your
objects. Instead, one should write a class method that both create a data structure and populate it
with data (you may know it as the Factory Method design pattern).

package Point;
use strict;

sub new {
 my ($class, $x, $y) = @_;
 my $self = { x => $x, y => $y }; # store object data in a hash
 bless $self, $class; # bind the hash to the class
 return $self;
}

This method can be used as follows:

my $point = Point->new(1, 2.5);

Whenever the arrow operator -> is used with methods, its left operand is prepended to the given
argument list. So, @_ in new will contain values ('Point', 1, 2.5).

There is nothing special in the name new. You can call the factory methods as you prefer.

There is nothing special in hashes. You could do the same in the following way:

package Point;
use strict;

sub new {
 my ($class, @coord) = @_;
 my $self = \@coord;
 bless $self, $class;
 return $self;
}

In general, any reference may be an object, even a scalar reference. But most often, hashes are
the most convenient way to represent object data.

Defining Classes

In general, classes in Perl are just packages. They can contain data and methods, as usual
packages.

https://riptutorial.com/ 49

package Point;
use strict;

my $CANVAS_SIZE = [1000, 1000];

sub new {
 ...
}

sub polar_coordinates {
 ...
}

1;

It is important to note that the variables declared in a package are class variables, not object
(instance) variables. Changing of a package-level variable affects all objects of the class. How to
store object-specific data, see in "Creating Objects".

What makes class packages specific, is the arrow operator ->. It may be used after a bare word:

Point->new(...);

or after a scalar variable (usually holding a reference):

my @polar = $point->polar_coordinates;

What is to the left of the arrow is prepended to the given argument list of the method. For example,
after call

Point->new(1, 2);

array @_ in new will contain three arguments: ('Point', 1, 2).

Packages representing classes should take this convention into account and expect that all their
methods will have one extra argument.

Inheritance and methods resolution

To make a class a subclass of another class, use parent pragma:

package Point;
use strict;
...
1;

package Point2D;
use strict;
use parent qw(Point);
...
1;

package Point3D;

https://riptutorial.com/ 50

use strict;
use parent qw(Point);
...
1;

Perl allows for multiple inheritance:

package Point2D;
use strict;
use parent qw(Point PlanarObject);
...
1;

Inheritance is all about resolution which method is to be called in a particular situation. Since pure
Perl does not prescribe any rules about the data structure used to store object data, inheritance
has nothing to do with that.

Consider the following class hierarchy:

package GeometryObject;
use strict;

sub transpose { ...}

1;

package Point;
use strict;
use parent qw(GeometryObject);

sub new { ... };

1;

package PlanarObject;
use strict;
use parent qw(GeometryObject);

sub transpose { ... }

1;

package Point2D;
use strict;
use parent qw(Point PlanarObject);

sub new { ... }

sub polar_coordinates { ... }

1;

The method resolution works as follows:

The starting point is defined by the left operand of the arrow operator.1.

https://riptutorial.com/ 51

If it is a bare word:

Point2D->new(...);

...or a scalar variable holding a string:

my $class = 'Point2D';
$class->new(...);

...then the starting point is the package with the corresponding name (Point2D in both
examples).

•

If the left operand is a scalar variable holding a blessed reference:

my $point = {...};
bless $point, 'Point2D'; # typically, it is encapsulated into class methods
my @coord = $point->polar_coordinates;

then the starting point is the class of the reference (again, Point2D). The arrow operator
cannot be used to call methods for unblessed references.

•

If the starting point contains the required method, it is simply called.

Thus, since Point2D::new exists,

Point2D->new(...);

will simply call it.

2.

If the starting point does not contain the required method, depth-first search in the parent
classes is performed. In the example above, the search order will be as follows:

Point2D•
Point (first parent of Point2D)•
GeometryObject (parent of Point)•
PlanarObject (second parent of Point2D)•

For example, in the following code:

my $point = Point2D->new(...);
$point->transpose(...);

the method that will be called is GeometryObject::transpose, even though it would be
overridden in PlanarObject::transpose.

3.

You can set the starting point explicitly.

In the previous example, you can explicitly call PlanarObject::transpose like so:

4.

https://riptutorial.com/ 52

my $point = Point2D->new(...);
$point->PlanarObject::transpose(...);

In a similar manner, SUPER:: performs method search in parent classes of the current class.

For example,

package Point2D;
use strict;
use parent qw(Point PlanarObject);

sub new {
 (my $class, $x, $y) = @_;
 my $self = $class->SUPER::new;
 ...
}

1;

will call Point::new in the course of the Point2D::new execution.

5.

Class and Object Methods

In Perl, the difference between class (static) and object (instance) methods is not so strong as in
some other languages, but it still exists.

The left operand of the arrow operator -> becomes the first argument of the method to be called. It
may be either a string:

the first argument of new is string 'Point' in both cases
Point->new(...);

my $class = 'Point';
$class->new(...);

or an object reference:

reference contained in $point is the first argument of polar_coordinates
my $point = Point->new(...);
my @coord = $point->polar_coordinates;

Class methods are just the ones that expect their first argument to be a string, and object methods
are the ones that expect their first argument to be an object reference.

Class methods typically do not do anything with their first argument, which is just a name of the
class. Generally, it is only used by Perl itself for method resolution. Therefore, a typical class
method can be called for an object as well:

my $width = Point->canvas_width;

my $point = Point->new(...);
my $width = $point->canvas_width;

https://riptutorial.com/ 53

Although this syntax is allowed, it is often misleading, so it is better to avoid it.

Object methods receive an object reference as the first argument, so they can address the object
data (unlike class methods):

package Point;
use strict;

sub polar_coordinates {
 my ($point) = @_;
 my $x = $point->{x};
 my $y = $point->{y};
 return (sqrt($x * $x + $y * $y), atan2($y, $x));
}

1;

The same method can track both cases: when it is called as a class or an object method:

sub universal_method {
 my $self = shift;
 if (ref $self) {
 # object logic
 ...
 }
 else {
 # class logic
 ...
 }
}

Defining classes in modern Perl

Although available, defining a class from scratch is not recommended in modern Perl. Use one of
helper OO systems which provide more features and convenience. Among these systems are:

Moose - inspired by Perl 6 OO design•

Class::Accessor - a lightweight alternative to Moose•

Class::Tiny - truly minimal class builder•

Moose

package Foo;
use Moose;

has bar => (is => 'ro'); # a read-only property
has baz => (is => 'rw', isa => 'Bool'); # a read-write boolean property

sub qux {
 my $self = shift;
 my $barIsBaz = $self->bar eq 'baz'; # property getter
 $self->baz($barIsBaz); # property setter
}

https://riptutorial.com/ 54

http://www.riptutorial.com/perl/example/9897/defining-classes
http://search.cpan.org/perldoc?Moose
http://search.cpan.org/perldoc?Class%3A%3AAccessor
http://search.cpan.org/perldoc?Class%3A%3ATiny

Class::Accessor (Moose syntax)

package Foo;
use Class::Accessor 'antlers';

has bar => (is => 'ro'); # a read-only property
has baz => (is => 'rw', isa => 'Bool'); # a read-write property (only 'is' supported, the
type is ignored)

Class::Accessor (native syntax)

package Foo;
use base qw(Class::Accessor);

Foo->mk_accessors(qw(bar baz)); # some read-write properties
Foo->mk_accessors(qw(qux)); # a read-only property

Class::Tiny

package Foo;
use Class::Tiny qw(bar baz); # just props

Roles

A role in Perl is essentially

a set of methods and attributes which•
injected into a class directly.•

A role provides a piece of functionality which can be composed into (or applied to) any class
(which is said to consume the role). A role cannot be inherited but may be consumed by another
role.

A role may also require consuming classes to implement some methods instead of implementing
the methods itself (just like interfaces in Java or C#).

Perl does not have built-in support for roles but there are CPAN classes which provide such
support.

Moose::Role

package Chatty;
use Moose::Role;

requires 'introduce'; # a method consuming classes must implement

sub greet { # a method already implemented in the role
 print "Hi!\n";
}

package Parrot;

https://riptutorial.com/ 55

https://metacpan.org/pod/Moose::Role

use Moose;

with 'Chatty';

sub introduce {
 print "I'm Buddy.\n";
}

Role::Tiny

Use if your OO system does not provide support for roles (e.g. Class::Accessor or Class::Tiny).
Does not support attributes.

package Chatty;
use Role::Tiny;

requires 'introduce'; # a method consuming classes must implement

sub greet { # a method already implemented in the role
 print "Hi!\n";
}

package Parrot;
use Class::Tiny;
use Role::Tiny::With;

with 'Chatty';

sub introduce {
 print "I'm Buddy.\n";
}

Read Object-oriented Perl online: https://riptutorial.com/perl/topic/2920/object-oriented-perl

https://riptutorial.com/ 56

https://metacpan.org/pod/Role::Tiny
https://riptutorial.com/perl/topic/2920/object-oriented-perl

Chapter 21: Pack and unpack

Examples

Manually Converting C Structs to Pack Syntax

If you're ever dealing with C Binary API's from Perl Code, via the syscall, ioctl, or fcntl functions,
you need to know how to construct memory in a C Compatible way.

For instance, if you were ever dealing with some function that expected a timespec, you'd look into
/usr/include/time.h and find:

struct timespec
{
 __time_t tv_sec; /* Seconds. */
 __syscall_slong_t tv_nsec; /* Nanoseconds. */
};

You do a dance with cpp to find what that really means:

cpp -E /usr/include/time.h -o /dev/stdout | grep __time_t
typedef long int __time_t;
cpp -E /usr/include/time.h -o /dev/stdout | grep __syscall_slong_t
typedef long int __syscall_slong_t

So its a (signed) int

echo 'void main(){ printf("%#lx\n", sizeof(__syscall_slong_t)); }' |
 gcc -x c -include stdio.h -include time.h - -o /tmp/a.out && /tmp/a.out
0x8

And it takes 8 bytes. So 64bit signed int. And I'm on a 64Bit Processor. =)

Perldoc pack says

 q A signed quad (64-bit) value.

So to pack a timespec:

sub packtime {
 my ($config) = @_;
 return pack 'qq', @{$config}{qw(tv_sec tv_nsec)};
}

And to unpack a timespec:

sub unpacktime {
 my ($buf) = @_;

https://riptutorial.com/ 57

 my $out = {};
 @{$out}{qw(tv_sec tv_nsec)} = unpack 'qq', $buf;
 return $out;
}

Now you can just use those functions instead.

my $timespec = packtime({ tv_sec => 0, tv_nsec => 0 });
syscall(..., $timespec); # some syscall that reads timespec

later ...
syscall(..., $timespec); # some syscall that writes timespec
print Dumper(unpacktime($timespec));

Constructing an IPv4 header

Sometimes you have to deal with structures defined in terms of C data types from Perl. One such
application is the creation of raw network packets, in case you want to do something fancier than
what the regular socket API has to offer. This is just what pack() (and unpack() of course) is there
for.

The obligatory part of an IP header is 20 octets (AKA "bytes") long. As you can see behind this
link, source and destination IP address make up the last two 32-bit values in the header. Among
the other fields are some with 16 bits, some with 8 bits, and a few smaller chunks between 2 and
13 bits.

Assuming we have the following variables to stuff into our header:

my ($dscp, $ecn, $length,
 $id, $flags, $frag_off,
 $ttl, $proto,
 $src_ip,
 $dst_ip);

Note that three fields from the header are missing:

The version is always 4 (it's IPv4 after all)•
IHL is 5 in our example as we don't have an options field; length is specified in units of 4
octets so 20 octets gives a length of 5.

•

The checksum can be left at 0. Actually we'd have to calculate it but the code to do this
doesn't concern us here.

•

We could try and use bit operations to construct e.g. the first 32 bits:

my $hdr = 4 << 28 | 5 << 24 | $dscp << 18 | $ecn << 16 | $length;

This approach only works up to the size of an integer though, which is usually 64 bits but can be
as low as 32. Worse, it depends on the CPU's endianness so it will work on some CPUs and fail
on others. Let's try pack():

https://riptutorial.com/ 58

https://en.wikipedia.org/wiki/IPv4#Header
https://en.wikipedia.org/wiki/Endianness

my $hdr = pack('H2B8n', '45', sprintf("%06b%02b", $dscp, $ecn), $length);

The template first specifies H2, a 2-character hex string, high nybble first. The corresponding
argument to pack is "45"—version 4, length 5. The next template is B8, an 8-bit bit string,
descending bit order inside each byte. We need to use bit strings to control layout down to chunks
smaller than a nybble (4 bits), so the sprintf() is used to construct such a bit string from 6 bits
from $dscp and 2 from $ecn. The last one is n, an unsigned 16-bit value in Network Byte Order, i.e.
always big-endian no matter what your CPU's native integer format is, and it is filled from $length.

That's the first 32 bits of the header. The rest can be built similarly:

Template Argument Remarks

n $id

B16 sprintf("%03b%013b",
$flags, $frag_off) Same as DSCP/ECN

C2 $ttl, $proto Two consecutive unsigned octets

n 0 / $checksum
x could be used to insert a null byte but n lets us
specify an argument should we choose to calculate
a checksum

N2 $src_ip, $dst_ip
use a4a4 to pack the result of two gethostbyname()
calls as it is in Network Byte Order already!

So the complete call to pack an IPv4 header would be:

my $hdr = pack('H2B8n2B16C2nN2',
 '45', sprintf("%06b%02b", $dscp, $ecn), $length,
 $id, sprintf("%03b%013b", $flags, $frag_off),
 $ttl, $proto, 0,
 $src_ip, $dst_ip
);

Read Pack and unpack online: https://riptutorial.com/perl/topic/1983/pack-and-unpack

https://riptutorial.com/ 59

https://riptutorial.com/perl/topic/1983/pack-and-unpack

Chapter 22: Packages and modules

Syntax

require Module::Name; # Require by name from @INC•
require "path/to/file.pm"; # Require by relative path from @INC•
use Module::Name; # require and default import at BEGIN•
use Module::Name (); # require and no import at BEGIN•
use Module::Name (@ARGS); # require and import with args at BEGIN•
use Module::Name VERSION; # require, version check, and default import at BEGIN•
use Module::Name VERSION (); # require, version check, and no import at BEGIN•
use Module::Name VERSION (@ARGS); # require, version check, import with args at
BEGIN

•

do "path/to/file.pl"; # load and eval the given file•

Examples

Executing the contents of another file

do './config.pl';

This will read in the contents of the config.pl file and execute it. (See also: perldoc -f do.)

N.B.: Avoid do unless golfing or something as there is no error checking. For including library
modules, use require or use.

Loading a module at runtime

require Exporter;

This will ensure that the Exporter module is loaded at runtime if it hasn't already been imported.
(See also: perldoc -f require.)

N.B.: Most users should use modules rather than require them. Unlike use, require does not call
the module's import method and is executed at runtime, not during the compile.

This way of loading modules is useful if you can't decide what modules you need before runtime,
such as with a plugin system:

package My::Module;
my @plugins = qw(One Two);
foreach my $plugin (@plugins) {
 my $module = __PACKAGE__ . "::Plugins::$plugin";
 $module =~ s!::!/!g;
 require "$module.pm";
}

https://riptutorial.com/ 60

http://perldoc.perl.org/functions/do.html
http://perldoc.perl.org/functions/require.html

This would try to load My::Package::Plugins::One and My::Package::Plugins::Two. @plugins should of
course come from some user input or a config file for this to make sense. Note the substitution
operator s!::!/!g that replaces each pair of colons with a slash. This is because you can load
modules using the familiar module name syntax from use only if the module name is a bareword. If
you pass a string or a variable, it must contain a file name.

Using a module

use Cwd;

This will import the Cwd module at compile time and import its default symbols, i.e. make some of
the module's variables and functions available to the code using it. (See also: perldoc -f use.)

Generally this is will do the right thing. Sometimes, however, you will want to control which
symbols are imported. Add a list of symbols after the module name to export:

use Cwd 'abs_path';

If you do this, only the symbols you specify will be imported (ie, the default set will not be
imported).

When importing multiple symbols, it is idiomatic to use the qw() list-building construct:

use Cwd qw(abs_path realpath);

Some modules export a subset of their symbols, but can be told to export everything with :all:

use Benchmark ':all';

(Note that not all modules recognize or use the :all tag).

Using a module inside a directory

use lib 'includes';
use MySuperCoolModule;

use lib 'includes'; adds the relative directory includes/ as another module search path in @INC. So
assume that you have a module file MySyperCoolModule.pm inside includes/, which contains:

package MySuperCoolModule;

If you want, you can group as many modules of your own inside a single directory and make them
findable with one use lib statement.

At this point, using the subroutines in the module will require prefixing the subroutine name with
the package name:

https://riptutorial.com/ 61

http://perldoc.perl.org/functions/use.html

MySuperCoolModule::SuperCoolSub_1("Super Cool String");

To be able to use the subroutines without the prefix, you need to export the subroutine names so
that they are recognised by the program calling them. Exporting can be set up to be automatic,
thus:

package MySuperCoolModule;
use base 'Exporter';
our @EXPORT = ('SuperCoolSub_1', 'SuperCoolSub_2');

Then in the file that uses the module, those subroutines will be automatically available:

use MySuperCoolModule;
SuperCoolSub_1("Super Cool String");

Or you can set up the module to conditionally export subroutines, thus:

package MySuperCoolModule;
use base 'Exporter';
our @EXPORT_OK = ('SuperCoolSub_1', 'SuperCoolSub_2');

In which case, you need to explicitly request the desired subroutines to be exported in the script
that uses the module:

use MySuperCoolModule 'SuperCoolSub_1';
SuperCoolSub_1("Super Cool String");

CPAN.pm

CPAN.pm is a Perl module which allows to query and install modules from CPAN sites.

It supports interactive mode invoked with

cpan

or

perl -MCPAN -e shell

Querying modules

By name:

cpan> m MooseX::YAML

By a regex against module name:

cpan> m /^XML::/

https://riptutorial.com/ 62

https://metacpan.org/pod/CPAN

Note: to enable a pager or redirecting to a file use | or > shell redirection (spaces are mandatory
around the | and >), e.g.: m /^XML::/ | less.

By distribution:

cpan> d LMC/Net-Squid-Auth-Engine-0.04.tar.gz

Installing modules

By name:

cpan> install MooseX::YAML

By distribution:

cpan> install LMC/Net-Squid-Auth-Engine-0.04.tar.gz

List all installed modules

From command line:

cpan -l

From a Perl script:

use ExtUtils::Installed;
my $inst = ExtUtils::Installed->new();
my @modules = $inst->modules();

Read Packages and modules online: https://riptutorial.com/perl/topic/451/packages-and-modules

https://riptutorial.com/ 63

https://riptutorial.com/perl/topic/451/packages-and-modules

Chapter 23: Perl commands for Windows
Excel with Win32::OLE module

Introduction

These examples introduce the most used commands of Perl to manipulate Excel via Win32::OLE
module.

Syntax

$Sheet->Range(Cell1,[Cell2]) #Select a cell or a range of cells•
$Sheet->Cells(rowIndex, columnIndex) #Select a cell by index of row and column•

Parameters

Parameters Details

Cell1
(required)

The name of the range. This must be an A1-style reference in the language of
the macro. It can include the range operator (a colon), the intersection
operator (a space), or the union operator (a comma).

Cell2
(optional)

If specified, Cell1 corresponds to the upper-left corner of the range and Cell2
corresponds to the lower-right corner of the range

Remarks

Link for information about Colors on Excel: http://dmcritchie.mvps.org/excel/colors.htm

https://riptutorial.com/ 64

http://dmcritchie.mvps.org/excel/colors.htm

Link for information about Excel constants: http://msdn.microsoft.com/en-
us/library/aa221100%28office.11%29.aspx

Links from Win32::OLE module: http://search.cpan.org/~jdb/Win32-OLE-
0.1712/lib/Win32/OLE.pm#EXAMPLES

Useful information about usage of Excel can be found at this address

Examples

1. Opening and Saving Excel/Workbooks

#Modules to use
use Cwd 'abs_path';
use Win32::OLE;
use Win32::OLE qw(in with);
use Win32::OLE::Const "Microsoft Excel";
$Win32::OLE::Warn = 3;

#Need to use absolute path for Excel files
my $excel_file = abs_path("$Excel_path") or die "Error: the file $Excel_path has not been
found\n";

Open Excel application
my $Excel = Win32::OLE->GetActiveObject('Excel.Application')

https://riptutorial.com/ 65

http://msdn.microsoft.com/en-us/library/aa221100%28office.11%29.aspx
http://msdn.microsoft.com/en-us/library/aa221100%28office.11%29.aspx
http://search.cpan.org/~jdb/Win32-OLE-0.1712/lib/Win32/OLE.pm#EXAMPLES
http://search.cpan.org/~jdb/Win32-OLE-0.1712/lib/Win32/OLE.pm#EXAMPLES
http://www.perlmonks.org/?node_id=153486

 || Win32::OLE->new('Excel.Application', 'Quit');

Open Excel file
my $Book = $Excel->Workbooks->Open($excel_file);

#Make Excel visible
$Excel->{Visible} = 1;

#___ ADD NEW WORKBOOK
my $Book = $Excel->Workbooks->Add;
my $Sheet = $Book->Worksheets("Sheet1");
$Sheet->Activate;

#Save Excel file
$Excel->{DisplayAlerts}=0; # This turns off the "This file already exists" message.
$Book->Save; #Or $Book->SaveAs("C:\\file_name.xls");
$Book->Close; #or $Excel->Quit;

2. Manipulation of Worksheets

#Get the active Worksheet
my $Book = $Excel->Activewindow;
my $Sheet = $Book->Activesheet;

#List of Worksheet names
my @list_Sheet = map { $_->{'Name'} } (in $Book->{Worksheets});

#Access a given Worksheet
my $Sheet = $Book->Worksheets($list_Sheet[0]);

#Add new Worksheet
$Book->Worksheets->Add({After => $workbook->Worksheets($workbook->Worksheets->{Count})});

#Change Worksheet Name
$Sheet->{Name} = "Name of Worksheet";

#Freeze Pane
$Excel -> ActiveWindow -> {FreezePanes} = "True";

#Delete Sheet
$Sheet -> Delete;

3. Manipulation of cells

#Edit the value of a cell (2 methods)
$Sheet->Range("A1")->{Value} = 1234;
$Sheet->Cells(1,1)->{Value} = 1234;

#Edit the values in a range of cells
$Sheet->Range("A8:C9")->{Value} = [[undef, 'Xyzzy', 'Plugh'],
 [42, 'Perl', 3.1415]];

#Edit the formula in a cell (2 types)
$Sheet->Range("A1")->{Formula} = "=A1*9.81";
$Sheet->Range("A3")->{FormulaR1C1} = "=SUM(R[-2]C:R[-1]C)"; # Sum of rows
$Sheet->Range("C1")->{FormulaR1C1} = "=SUM(RC[-2]:RC[-1])"; # Sum of columns

https://riptutorial.com/ 66

#Edit the format of the text (font)
$Sheet->Range("G7:H7")->Font->{Bold} = "True";
$Sheet->Range("G7:H7")->Font->{Italic} = "True";
$Sheet->Range("G7:H7")->Font->{Underline} = xlUnderlineStyleSingle;
$Sheet->Range("G7:H7")->Font->{Size} = 8;
$Sheet->Range("G7:H7")->Font->{Name} = "Arial";
$Sheet->Range("G7:H7")->Font->{ColorIndex} = 4;

#Edit the number format
$Sheet -> Range("G7:H7") -> {NumberFormat} = "\@"; # Text
$Sheet -> Range("A1:H7") -> {NumberFormat} = "\$#,##0.00"; # Currency
$Sheet -> Range("G7:H7") -> {NumberFormat} = "\$#,##0.00_);[Red](\$#,##0.00)"; # Currency
- red negatives
$Sheet -> Range("G7:H7") -> {NumberFormat} = "0.00_);[Red](0.00)"; # Numbers
with decimals
$Sheet -> Range("G7:H7") -> {NumberFormat} = "#,##0"; # Numbers
with commas
$Sheet -> Range("G7:H7") -> {NumberFormat} = "#,##0_);[Red](#,##0)"; # Numbers
with commas - red negatives
$Sheet -> Range("G7:H7") -> {NumberFormat} = "0.00%"; # Percents
$Sheet -> Range("G7:H7") -> {NumberFormat} = "m/d/yyyy" # Dates

#Align text
$Sheet -> Range("G7:H7") -> {HorizontalAlignment} = xlHAlignCenter; # Center
text;
$Sheet -> Range("A1:A2") -> {Orientation} = 90; # Rotate
text

#Activate Cell
$Sheet -> Range("A2") -> Activate;

$Sheet->Hyperlinks->Add({
 Anchor => $range, #Range of cells with the hyperlink; e.g. $Sheet->Range("A1")
 Address => $adr, #File path, http address, etc.
 TextToDisplay => $txt, #Text in the cell
 ScreenTip => $tip, #Tip while hovering the mouse over the hyperlink
});

N.B: to retrieve the list of hyperlinks, have a look at the following post Getting list of hyperlinks
from an Excel worksheet with Perl Win32::OLE

4. Manipulation of Rows / Columns

#Insert a row before/after line 22
$Sheet->Rows("22:22")->Insert(xlUp, xlFormatFromRightOrBelow);
$Sheet->Rows("23:23")->Insert(-4121,0); #xlDown is -4121 and that xlFormatFromLeftOrAbove
is 0

#Delete a row
$Sheet->Rows("22:22")->Delete();

#Set column width and row height
$Sheet -> Range('A:A') -> {ColumnWidth} = 9.14;
$Sheet -> Range("8:8") -> {RowHeight} = 30;
$Sheet -> Range("G:H") -> {Columns} -> Autofit;

Get the last row/column
my $last_row = $Sheet -> UsedRange -> Find({What => "*", SearchDirection => xlPrevious,
SearchOrder => xlByRows}) -> {Row};

https://riptutorial.com/ 67

http://stackoverflow.com/questions/10756490/getting-list-of-hyperlinks-from-an-excel-worksheet-with-perl-win32ole
http://stackoverflow.com/questions/10756490/getting-list-of-hyperlinks-from-an-excel-worksheet-with-perl-win32ole

my $last_col = $Sheet -> UsedRange -> Find({What => "*", SearchDirection => xlPrevious,
SearchOrder => xlByColumns}) -> {Column};

#Add borders (method 1)
$Sheet -> Range("A3:H3") -> Borders(xlEdgeBottom) -> {LineStyle} = xlDouble;
$Sheet -> Range("A3:H3") -> Borders(xlEdgeBottom) -> {Weight} = xlThick;
$Sheet -> Range("A3:H3") -> Borders(xlEdgeBottom) -> {ColorIndex} = 1;
$Sheet -> Range("A3:H3") -> Borders(xlEdgeLeft) -> {LineStyle} = xlContinuous;
$Sheet -> Range("A3:H3") -> Borders(xlEdgeLeft) -> {Weight} = xlThin;
$Sheet -> Range("A3:H3") -> Borders(xlEdgeTop) -> {LineStyle} = xlContinuous;
$Sheet -> Range("A3:H3") -> Borders(xlEdgeTop) -> {Weight} = xlThin;
$Sheet -> Range("A3:H3") -> Borders(xlEdgeBottom) -> {LineStyle} = xlContinuous;
$Sheet -> Range("A3:H3") -> Borders(xlEdgeBottom) -> {Weight} = xlThin;
$Sheet -> Range("A3:H3") -> Borders(xlEdgeRight) -> {LineStyle} = xlContinuous;
$Sheet -> Range("A3:H3") -> Borders(xlEdgeRight) -> {Weight} = xlThin;
$Sheet -> Range("A3:H3") -> Borders(xlInsideVertical) -> {LineStyle} = xlDashDot
$Sheet -> Range("A3:H3") -> Borders(xlInsideVertical) -> {Weight} = xlMedium;
$Sheet -> Range("A3:I3") -> Borders(xlInsideHorizontal) -> {LineStyle} = xlContinuous;
$Sheet -> Range("A3:I3") -> Borders(xlInsideHorizontal) -> {Weight} = xlThin;

#Add borders (method 2)
my @edges = qw (xlInsideHorizontal xlInsideVertical xlEdgeBottom xlEdgeTop xlEdgeRight);
foreach my $edge (@edges)

Read Perl commands for Windows Excel with Win32::OLE module online:
https://riptutorial.com/perl/topic/3420/perl-commands-for-windows-excel-with-win32--ole-module

https://riptutorial.com/ 68

https://riptutorial.com/perl/topic/3420/perl-commands-for-windows-excel-with-win32--ole-module

Chapter 24: Perl one-liners

Examples

Execute some Perl code from command line

Simple one-liners may be specified as command line arguments to perl using the -e switch (think
"execute"):

perl -e'print "Hello, World!\n"'

Due to Windows quoting rules you can't use single-quoted strings but have to use one of these
variants:

perl -e"print qq(Hello, World!\n)"
perl -e"print \"Hello, World!\n\""

Note that to avoid breaking old code, only syntax available up to Perl 5.8.x can be used with -e. To
use anything newer your perl version may support, use -E instead. E.g. to use say available from
5.10.0 on plus Unicode 6.0 from >=v5.14.0 (also uses -CO to make sure STDOUT prints UTF-8):

5.14.0

perl -CO -E'say "\N{PILE OF POO}"'

Using double-quoted strings in Windows one-liners

Windows uses only double quotes to wrap command line parameters. In order to use double
quotes in perl one-liner (i.e. to print a string with an interpolated variable), you have to escape
them with backslashes:

perl -e "my $greeting = 'Hello'; print \"$greeting, world!\n\""

To improve readability, you may use a qq() operator:

perl -e "my $greeting = 'Hello'; print qq($greeting, world!\n)"

Print lines matching a pattern (PCRE grep)

perl -ne'print if /foo/' file.txt

Case-insensitive:

perl -ne'print if /foo/i' file.txt

https://riptutorial.com/ 69

Replace a substring with another (PCRE sed)

perl -pe"s/foo/bar/g" file.txt

Or in-place:

perl -i -pe's/foo/bar/g' file.txt

On Windows:

perl -i.bak -pe"s/foo/bar/g" file.txt

Print only certain fields

perl -lane'print "$F[0] $F[-1]"' data.txt
prints the first and the last fields of a space delimited record

CSV example:

perl -F, -lane'print "$F[0] $F[-1]"' data.csv

Print lines 5 to 10

perl -ne'print if 5..10' file.txt

Edit file in-place

Without a backup copy (not supported on Windows)

perl -i -pe's/foo/bar/g' file.txt

With a backup copy file.txt.bak

perl -i.bak -pe's/foo/bar/g' file.txt

With a backup copy old_file.txt.orig in the backup subdirectory (provided the latter exists):

perl -i'backup/old_*.orig' -pe's/foo/bar/g' file.txt

Reading the whole file as a string

perl -0777 -ne'print "The whole file as a string: --->$_<---\n"'

Note: The -0777 is just a convention. Any -0400 and above would de the same.

https://riptutorial.com/ 70

http://stackoverflow.com/a/2616900/1529709

Upload file into mojolicious

perl -Mojo -E 'p("http://localhost:3000" => form => {Input_Type => "XML", Input_File => {file
=> "d:/xml/test.xml"}})'

File d:/xml/test.xml will be uploaded to server which listen connections on localhost:3000 (Source)

In this example:

-Mmodule executes use module; before executing your program
-E commandline is used to enter one line of program
If you have no ojo module you can use cpanm ojo command to install it

To read more about how to run perl use perldoc perlrun command or read here

Read Perl one-liners online: https://riptutorial.com/perl/topic/3696/perl-one-liners

https://riptutorial.com/ 71

http://stackoverflow.com/a/37675542/4632019
http://perldoc.perl.org/perlrun.html
https://riptutorial.com/perl/topic/3696/perl-one-liners

Chapter 25: Perl script debugging

Examples

Run script in debug mode

To run script in debug mode you should add -d option in the command line:

$perl -d script.pl

If t is specified, it indicates to the debugger that threads will be used in the code being debugged:

$perl -dt script.pl

Additional info at perldocperlrun

Use a nonstandard debugger

$perl -d:MOD script.pl runs the program under the control of a debugging, profiling, or tracing
module installed as Devel::MOD.

For example, -d:NYTProf executes the program using the Devel::NYTProf profiler.

See all available Devel modules here

Recommended modules:

Devel::NYTProf -- Powerful fast feature-rich Perl source code profiler•
Devel::Trepan -- A modular gdb-like Perl debugger•
Devel::MAT -- Perl Memory Analysis Tool•
Devel::hdb -- Perl debugger as a web page and REST service•
Devel::DebugHooks::KillPrint -- Allows to forget about debugging by print statement•
Devel::REPL -- A modern perl interactive shell•
Devel::Cover -- Code coverage metrics for Perl•

Read Perl script debugging online: https://riptutorial.com/perl/topic/6769/perl-script-debugging

https://riptutorial.com/ 72

http://perldoc.perl.org/perlrun.html#*-dt*
http://perldoc.perl.org/perlrun.html#*-d%3a*_MOD%5B%3dbar%2cbaz%5D_
http://perldoc.perl.org/perlrun.html#*-d%3a*_MOD%5B%3dbar%2cbaz%5D_
https://metacpan.org/search?q=Devel%3A%3A&search_type=modules
https://metacpan.org/pod/Devel::NYTProf
https://metacpan.org/pod/Devel::Trepan
https://metacpan.org/pod/Devel::MAT
https://metacpan.org/pod/Devel::hdb
https://metacpan.org/pod/release/KES/Devel-DebugHooks-0.02_16/lib/Devel/DebugHooks.pm
https://metacpan.org/pod/Devel::REPL
https://metacpan.org/pod/Devel::Cover
https://riptutorial.com/perl/topic/6769/perl-script-debugging

Chapter 26: Perl Testing

Examples

Perl Unit Testing Example

The following is a simple example Perl test script, that gives some structure to allow for testing of
other methods in the class/package under test. The script produces standard output with simple
"ok" / "not ok" text, which is called TAP (Test Anything Protocol).

Typically the prove command runs the script(s) and summarises the test results.

#!/bin/env perl
CPAN
use Modern::Perl;
use Carp;
use Test::More;
use Test::Exception;
use Const::Fast;

Custom
BEGIN { use_ok('Local::MyPackage'); }

const my $PACKAGE_UNDER_TEST => 'Local::MyPackage';

Example test of method 'file_type_build'
sub test_file_type_build {
 my %arg = @_;
 my $label = 'file_type_build';
 my $got_file_type;
 my $filename = '/etc/passwd';

 # Check the method call lives
 lives_ok(
 sub {
 $got_file_type = $PACKAGE_UNDER_TEST->file_type_build(
 filename => $filename
);
 },
 "$label - lives"
);

 # Check the result of the method call matches our expected result.
 like($got_file_type, qr{ASCII[]text}ix, "$label - result");
 return;
} ## end sub test_file_type_build

More tests can be added here for method 'file_type_build', or other methods.

MAIN: {

 subtest 'file_type_build' => sub {
 test_file_type_build();
 # More tests of the method can be added here.

https://riptutorial.com/ 73

http://perldoc.perl.org/prove.html

 done_testing();
 };

 # Tests of other methods can be added here, just like above.

 done_testing();
} ## end MAIN:

Best Practice

A test script should only test one package/class, but there many scripts may be used to test a
package/class.

Further Reading

Test::More - The basic test operations.•
Test::Exception - Testing thrown exceptions.•
Test::Differences - Comparing test results that have complex data structures.•
Test::Class - Class based testing rather than script. Similarities to JUnit.•
Perl Testing Tutorials - Further reading.•

Read Perl Testing online: https://riptutorial.com/perl/topic/5918/perl-testing

https://riptutorial.com/ 74

http://perldoc.perl.org/Test/More.html
http://search.cpan.org/~adie/Test-Exception/lib/Test/Exception.pm
http://search.cpan.org/~dcantrell/Test-Differences/lib/Test/Differences.pm
http://search.cpan.org/~ether/Test-Class/lib/Test/Class.pm
http://sqa.fyicenter.com/Perl_Test_Tutorial/
https://riptutorial.com/perl/topic/5918/perl-testing

Chapter 27: Perlbrew

Introduction

Perlbrew is a tool to manage multiple perl installations in your $HOME directory.

Remarks

See also

Official homepage for perlbrew•
CPAN documentation for perlbrew•

Examples

Setup perlbrew for the first time

Create setup script ~/.perlbrew.sh:

Reset any environment variables that could confuse `perlbrew`:
export PERL_LOCAL_LIB_ROOT=
export PERL_MB_OPT=
export PERL_MM_OPT=

decide where you want to install perlbrew:
export PERLBREW_ROOT=~/perlbrew
[[-f "$PERLBREW_ROOT/etc/bashrc"]] && source "$PERLBREW_ROOT/etc/bashrc"

Create installation script install_perlbrew.sh:

source ~/.perlbrew.sh
curl -L https://install.perlbrew.pl | bash
source "$PERLBREW_ROOT/etc/bashrc"

Decide which version you would like to install:
version=perl-5.24.1
perlbrew install "$version"
perlbrew install-cpanm
perlbrew switch "$version"

Run installation script:

./install_perlbrew.sh

https://riptutorial.com/ 75

https://perlbrew.pl/
https://metacpan.org/pod/perlbrew

Add to the end of your ~/.bashrc

[[-f ~/.perlbrew.sh]] && source ~/.perlbrew.sh

Source ~/.bashrc:

source ~/.bashrc

Read Perlbrew online: https://riptutorial.com/perl/topic/9144/perlbrew

https://riptutorial.com/ 76

https://riptutorial.com/perl/topic/9144/perlbrew

Chapter 28: Randomness

Remarks

Documentation for perl's rand() function: http://perldoc.perl.org/functions/rand.html

Examples

Generate a random number between 0 and 100

Pass an upper limit as an argument to the rand() function.

Input:

my $upper_limit = 100;
my $random = rand($upper_limit);

print $random . "\n";

Output:

A random floating-point number, like...

45.8733038119139

Generate a random integer between 0 and 9

Cast your random floating-point number as an int.

Input:

my $range = 10;

create random integer as low as 0 and as high as 9
my $random = int(rand($range)); # max value is up to but not equal to $range

print $random . "\n";

Output:

A random integer, like...

0

See also the perldoc for rand.

Accessing an array element at random

https://riptutorial.com/ 77

http://perldoc.perl.org/functions/rand.html
http://perldoc.perl.org/functions/rand.html

my @letters = ('a' .. 'z'); # English ascii-bet

print $letters[rand @letters] for 1 .. 5; # prints 5 letters at random

How it works

rand EXPR expects a scalar value, so @letters is evaluated in scalar context•
An array in scalar context returns the number of elements it contains (26 in this case)•
rand 26 returns a random fractional number in the interval 0 ≤ VALUE < 26. (It can never be 26)•
Array indices are always integers, so $letters[rand @letters] ≡ $letters[int rand @letters]•
Perl arrays are zero-indexed, so $array[rand @array] returns $array[0], $array[$#array] or an
element in between

•

(The same principle applies to hashes)

my %colors = (red => 0xFF0000,
 green => 0x00FF00,
 blue => 0x0000FF,
);

print (values %colors)[rand keys %colors];

Read Randomness online: https://riptutorial.com/perl/topic/6905/randomness

https://riptutorial.com/ 78

http://perldoc.perl.org/functions/rand.html
https://riptutorial.com/perl/topic/6905/randomness

Chapter 29: Reading a file's content into a
variable

Examples

The manual way

open my $fh, '<', $filename
 or die "Could not open $filename for reading: $!";
my $contents = do { local $/; <$fh> };

After opening the file (read man perlio if you want to read specific file encodings instead of raw
bytes), the trick is in the do block: <$fh>, the file handle in a diamond operator, returns a single
record from the file. The "input record separator" variable $/ specifies what a "record" is—by
default it is set to a newline character so "a record" means "a single line". As $/ is a global
variable, local does two things: it creates a temporary local copy of $/ that will vanish at the end of
the block, and gives it the (non-)value undef (the "value" which Perl gives to uninitialized variables).
When the input record separator has that (non-)value, the diamond operator will return the entire
file. (It considers the entire file to be a single line.)

Using do, you can even get around manually opening a file. For repeated reading of files,

sub readfile { do { local(@ARGV,$/) = $_[0]; <> } }
my $content = readfile($filename);

can be used. Here, another global variable(@ARGV) is localized to simulate the same process used
when starting a perl script with parameters. $/ is still undef, since the array in front of it "eats" all
incoming arguments. Next, the diamond operator <> again delivers one record defined by $/ (the
whole file) and returns from the do block, which in turn return from the sub.

The sub has no explicit error handling, which is bad practice! If an error occurs while reading the
file, you will receive undef as return value, as opposed to an empty string from an empty file.

Another disadvantage of the last code is the fact that you cannot use PerlIO for different file
encodings—you always get raw bytes.

Path::Tiny

Using the idiom from The Manual Way several times in a script soon gets tedious so you might
want to try a module.

use Path::Tiny;
my $contents = path($filename)->slurp;

You can pass a binmode option if you need control over file encodings, line endings etc. - see man

https://riptutorial.com/ 79

http://www.riptutorial.com/perl/example/5786/the-manual-way

perlio:

my $contents = path($filename)->slurp({binmode => ":encoding(UTF-8)"});

Path::Tiny also has a lot of other functions for dealing with files so it may be a good choice.

File::Slurper

This is a minimalist module that only slurps files into variables, nothing else.

use File::Slurper 'read_text';
my $contents = read_text($filename);

read_text() takes two optional parameters to specify the file encoding and whether line endings
should be translated between the unixish LF or DOSish CRLF standards:

my $contents = read_text($filename, 'UTF-8', 1);

File::Slurp

Don't use it. Although it has been around for a long time and is still the module most programmers
will suggest, it is broken and not likely to be fixed.

Slurping a file into an array variable

open(my $fh, '<', "/some/path") or die $!;
my @ary = <$fh>;

When evaluated in list context, the diamond operator returns a list consisting of all the lines in the
file (in this case, assigning the result to an array supplies list context). The line terminator is
retained, and can be removed by chomping:

chomp(@ary); #removes line terminators from all the array elements.

Slurp file in one-liner

Input record separator can be specified with -0 switch (zero, not capital O). It takes an octal or
hexadecimal number as value. Any value 0400 or above will cause Perl to slurp files, but by
convention, the value used for this purpose is 0777.

perl -0777 -e 'my $file = <>; print length($file)' input.txt

Going further with minimalism, specifying -n switch causes Perl to automatically read each line (in
our case — the whole file) into variable $_.

perl -0777 -ne 'print length($_)' input.txt

https://riptutorial.com/ 80

http://search.cpan.org/~dagolden/Path-Tiny-0.096/lib/Path/Tiny.pm
http://blogs.perl.org/users/leon_timmermans/2015/08/fileslurp-is-broken-and-wrong.html

Read Reading a file's content into a variable online: https://riptutorial.com/perl/topic/1779/reading-
a-file-s-content-into-a-variable

https://riptutorial.com/ 81

https://riptutorial.com/perl/topic/1779/reading-a-file-s-content-into-a-variable
https://riptutorial.com/perl/topic/1779/reading-a-file-s-content-into-a-variable

Chapter 30: Regular Expressions

Examples

Matching strings

The =~ operator attempts to match a regular expression (set apart by /) to a string:

my $str = "hello world";
print "Hi, yourself!\n" if $str =~ /^hello/;

/^hello/ is the actual regular expression. The ^ is a special character that tells the regular
expression to start with the beginning of the string and not match in the middle somewhere. Then
the regex tries to find the following letters in order h, e, l, l, and o.

Regular expressions attempt to match the default variable ($_) if bare:

$_ = "hello world";

print "Ahoy!\n" if /^hello/;

You can also use different delimiters is you precede the regular expression with the m operator:

m~^hello~;
m{^hello};
m|^hello|;

This is useful when matching strings that include the / character:

print "user directory" if m|^/usr|;

Usage of \Q and \E in pattern matching

What's between \Q and \E is treated as normal characters

#!/usr/bin/perl

my $str = "hello.it's.me";

my @test = (
 "hello.it's.me",
 "hello/it's!me",
);

sub ismatched($) { $_[0] ? "MATCHED!" : "DID NOT MATCH!" }

my @match = (
 [general_match=> sub { ismatched /$str/ }],

https://riptutorial.com/ 82

 [qe_match => sub { ismatched /\Q$str\E/ }],
);

for (@test) {
 print "\String = '$_':\n";

foreach my $method (@match) {
 my($name,$match) = @$method;
 print " - $name: ", $match->(), "\n";
}

}

Output

String = 'hello.it's.me':
 - general_match: MATCHED!
 - qe_match: MATCHED!
String = 'hello/it's!me':
 - general_match: MATCHED!
 - qe_match: DID NOT MATCH!

Parsing a string with a regex

Generally, it's not a good idea to use a regular expression to parse a complex structure. But it can
be done. For instance, you might want to load data into hive table and fields are separated by
comma but complex types like array are separated by a "|". Files contain records with all fields
separated by comma and complex type are inside square bracket. In that case, this bit of
disposable Perl might be sufficient:

echo "1,2,[3,4,5],5,6,[7,8],[1,2,34],5" | \
 perl -ne \
 'while(/\[[^,\]]+\,.*\]/){
 if(/\[([^\]\|]+)\]/){
 $text = $1;
 $text_to_replace = $text;
 $text =~ s/\,/\|/g;
 s/$text_to_replace/$text/;
 }
 } print'

You'll want to spot check the output:

1,2,[3|4|5],5,6,[7|8],[1|2|34],5

Replace a string using regular expressions

s/foo/bar/; # replace "foo" with "bar" in $_
my $foo = "foo";
$foo =~ s/foo/bar/; # do the above on a different variable using the binding operator =~
s~ foo ~ bar ~; # using ~ as a delimiter
$foo = s/foo/bar/r; # non-destructive r flag: returns the replacement string without modifying
the variable it's bound to

https://riptutorial.com/ 83

http://stackoverflow.com/a/1732454/1438

s/foo/bar/g; # replace all instances

Read Regular Expressions online: https://riptutorial.com/perl/topic/3108/regular-expressions

https://riptutorial.com/ 84

https://riptutorial.com/perl/topic/3108/regular-expressions

Chapter 31: Simple interaction with database
via DBI module

Parameters

Column Column

$driver Driver for DB, "Pg" for Postgresql and "mysql" for MySQL

$database your database name

$userid your database id

$password your database password

$query put your query here, ex: "select * from $your_table"

Examples

DBI module

You should make sure that module DBI has been installed on your pc, then follow the bellow
steps:

use DBI module in your perl script1.

use DBI;

Declare some primary parameters2.

my $driver = "MyDriver";

my $database = "DB_name";

my $dsn = "DBI:$driver:dbname=$database";

my $userid = "your_user_ID";

my $password = "your_password";

my $tablename = "your_table";

Connect to your database3.

my $dbh = DBI->connect($dsn, $userid, $password);

Prepare your query4.

my $query = $dbh->prepare("Your DB query");

https://riptutorial.com/ 85

Ex:

$my_query = qq/SELECT * FROM table WHERE column1 = 2/;

my $query = $dbh->prepare($my_query);

We can also use variable in the query, like below:

my $table_name = "table";

my $filter_value = 2;

$my_query = qq/SELECT * FROM $table_name WHERE column1 = $filter_value/;

Execute your query5.

$query->execute();

*Note: To avoid injection attack, you should use placeholders ? instead of put your variable in the
query.

Ex: you want to show the all data from 'table' where column1=$value1 and column2=$value2:

my $query = $dbh->prepare("SELECT * FROM table WHERE column1 = ? AND column2 = ?;");

$query->execute($value1, $value2);

Fletch your data6.

my @row = $query->fetchrow_array(); store data as array

or

my $ref = $sth->fetchrow_hashref(); store data as hash reference

Finish and disconnect DB7.

$sth->finish;

$dbh->disconnect();

Read Simple interaction with database via DBI module online:
https://riptutorial.com/perl/topic/5917/simple-interaction-with-database-via-dbi-module

https://riptutorial.com/ 86

https://riptutorial.com/perl/topic/5917/simple-interaction-with-database-via-dbi-module

Chapter 32: Sorting

Introduction

For sorting lists of things, Perl has only a single function, unsurprisingly called sort. It is flexible
enough to sort all kinds of items: numbers, strings in any number of encodings, nested data
structures or objects. However, due to its flexibility, there are quite a few tricks and idioms to be
learned for its use.

Syntax

sort SUBNAME LIST•
sort BLOCK LIST•
sort LIST•

Examples

Basic Lexical Sort

@sorted = sort @list;

@sorted = sort { $a cmp $b } @list;

sub compare { $a cmp $b }
@sorted = sort compare @list;

The three examples above do exactly the same thing. If you don't supply any comparator function
or block, sort assumes you want the list on its right sorted lexically. This is usually the form you
want if you just need your data in some predictable order and don't care about linguistic
correctness.

sort passes pairs of items in @list to the comparator function, which tells sort which item is larger.
The cmp operator does this for strings while <=> does the same thing for numbers. The comparator
is called quite often, on average n*log(n) times with n being the number of elements to be sorted,
so it's important it be fast. This is the reason sort uses predefined package global variables ($a
and $b) to pass the elements to be compared to the block or function, instead of proper function
parameters.

If you use locale, cmp takes locale specific collation order into account, e.g. it will sort Å like A under
a Danish locale but after Z under an English or German one. However, it doesn't take the more
complex Unicode sorting rules into account nor does it offer any control over the order—for
example phone books are often sorted differently from dictionaries. For those cases, the
Unicode::Collate and particularly Unicode::Collate::Locale modules are recommended.

Numeric Sort

https://riptutorial.com/ 87

@sorted = sort { $a <=> $b } @list;

Comparing $a and $b with the <=> operator ensures they are compared numerically and not
textually as per default.

Reverse Sort

@sorted = sort { $b <=> $a } @list;
@sorted = reverse sort { $a <=> $b } @list;

Sorting items in descending order can simply be achieved by swapping $a and $b in the
comparator block. However, some people prefer the clarity of a separate reverse even though it is
slightly slower.

The Schwartzian Transform

This is probably the most famous example of a sort optimization making use of Perl's functional
programming facilities, to be used where the sort order of items depend on an expensive function.

What you would usually do
@sorted = sort { slow($a) <=> slow($b) } @list;

What you do to make it faster
@sorted =
map { $_->[0] }
sort { $a->[1] <=> $b->[1] }
map { [$_, slow($_)] }
@list;

The trouble with the first example is that the comparator is called very often and keeps
recalculating values using a slow function over and over. A typical example would be sorting file
names by their file size:

use File::stat;
@sorted = sort { stat($a)->size <=> stat($b)->size } glob "*";

This works, but at best it incurs the overhead of two system calls per comparison, at worst it has to
go to the disk, twice, for every single comparison, and that disk may be in an overloaded file
server on the other side of the planet.

Enter Randall Schwartz's trick.

The Schwartzian Transform basically shoves @list through three functions, bottom-to-top. The first
map turns each entry into a two-element list of the original item and the result of the slow function
as a sort key, so at the end of this we have called slow() exactly once for each element. The
following sort can then simply access the sort key by looking in the list. As we don't care about the
sort keys but only need the original elements in sorted order, the final map throws away the two-
element lists from the already-sorted list it receives from @sort and returns a list of only their first
members.

https://riptutorial.com/ 88

Case Insensitive Sort

The traditional technique to make sort ignore case is to pass strings to lc or uc for comparison:

@sorted = sort { lc($a) cmp lc($b) } @list;

This works on all versions of Perl 5 and is completely sufficient for English; it doesn't matter
whether you use uc or lc. However, it presents a problem for languages like Greek or Turkish
where there is no 1:1 correspondence between upper- and lowercase letters so you get different
results depending on whether you use uc or lc. Therefore, Perl 5.16 and higher have a case
folding function called fc that avoids this problem, so modern multi-lingual sorting should use this:

@sorted = sort { fc($a) cmp fc($b) } @list;

Read Sorting online: https://riptutorial.com/perl/topic/8958/sorting

https://riptutorial.com/ 89

https://riptutorial.com/perl/topic/8958/sorting

Chapter 33: Special variables

Remarks

TO DO : Add more contents.

Examples

Special variables in perl:

1. $_ : The default input and pattern-searching space.

Example 1:

my @array_variable = (1 2 3 4);
foreach (@array_variable){
 print $_."\n"; # $_ will get the value 1,2,3,4 in loop, if no other variable is
supplied.
}

Example 2:

while (<FH>){
 chomp($_); # $_ refers to the iterating lines in the loop.
}

The following functions use $_ as a default argument:

abs, alarm, chomp, chop, chr, chroot, cos, defined, eval,
evalbytes, exp, fc, glob, hex, int, lc, lcfirst, length, log,
lstat, mkdir, oct, ord, pos, print, printf, quotemeta, readlink,
readpipe, ref, require, reverse (in scalar context only), rmdir,
say, sin, split (for its second argument), sqrt, stat, study,
uc, ucfirst, unlink, unpack.

2. @_ : This array contains the arguments passed to subroutine.

Example 1:

example_sub($test1, $test2, $test3);

sub example_sub {
 my ($test1, $test2, $test3) = @_;
}

Within a subroutine the array @_ contains the arguments passed to that subroutine. Inside a
subroutine, @_ is the default array for the array operators pop and shift.

Read Special variables online: https://riptutorial.com/perl/topic/7962/special-variables

https://riptutorial.com/ 90

https://riptutorial.com/perl/topic/7962/special-variables

Chapter 34: Split a string on unquoted
separators

Examples

parse_line()

Using parse_line() of Text::ParseWords:

use 5.010;
use Text::ParseWords;

my $line = q{"a quoted, comma", word1, word2};
my @parsed = parse_line(',', 1, $line);
say for @parsed;

Output:

"a quoted, comma"
 word1
 word2

Text::CSV or Text::CSV_XS

use Text::CSV; # Can use Text::CSV which will switch to _XS if installed
$sep_char = ",";
my $csv = Text::CSV->new({sep_char => $sep_char});
my $line = q{"a quoted, comma", word1, word2};
$csv->parse($line);
my @fields = $csv->fields();
print join("\n", @fields)."\n";

Output:

a quoted, comma
 word1
 word2

NOTES

By default, Text::CSV does not strip whitespace around separator character, the way
Text::ParseWords does. However, adding allow_whitespace=>1 to constructor attributes
achieves that effect.

my $csv = Text::CSV_XS->new({sep_char => $sep_char, allow_whitespace=>1});

•

https://riptutorial.com/ 91

http://perldoc.perl.org/Text/ParseWords.html

Output:

a quoted, comma
word1
word2

The library supports escaping special characters (quotes, separators)•

The library supports configurable separator character, quote character, and escape
character

•

Documentatoin: http://search.cpan.org/perldoc/Text::CSV

Read Split a string on unquoted separators online: https://riptutorial.com/perl/topic/2115/split-a-
string-on-unquoted-separators

https://riptutorial.com/ 92

http://search.cpan.org/perldoc/Text::CSV
https://riptutorial.com/perl/topic/2115/split-a-string-on-unquoted-separators
https://riptutorial.com/perl/topic/2115/split-a-string-on-unquoted-separators

Chapter 35: Strings and quoting methods

Remarks

The version syntax doesn't allow us to guard off versions that don't exist yet, so this is a reminder
for somebody to go back and edit them in once it lands(RE: Perl 5.26). The version guards rather
need to have a "future" classification for tentative features that might be available to people brave
enough to do a source checkout.

Examples

String Literal Quoting

String literals imply no escaping or interpolation (with the exception of quoting string terminators)

print 'This is a string literal\n'; # emits a literal \ and n to terminal

print 'This literal contains a \'postraphe '; # emits the ' but not its preceding \

You can use alternative quoting mechanisms to avoid clashes:

print q/This is is a literal \' <-- 2 characters /; # prints both \ and '
print q^This is is a literal \' <-- 2 characters ^; # also

Certain chosen quote characters are "balanced"

print q{ This is a literal and I contain { parens! } }; # prints inner { }

Double-quoting

Double-quoted strings use interpolation and escaping – unlike single-quoted strings. To double-
quote a string, use either double quotes " or the qq operator.

my $greeting = "Hello!\n";
print $greeting;
=> Hello! (followed by a linefeed)

my $bush = "They misunderestimated me."
print qq/As Bush once said: "$bush"\n/;
=> As Bush once said: "They misunderestimated me." (with linefeed)

The qq is useful here, to avoid having to escape the quotation marks. Without it, we would have to
write...

print "As Bush once said: \"$bush\"\n";

https://riptutorial.com/ 93

... which just isn't as nice.

Perl doesn't limit you to using a slash / with qq; you can use any (visible) character.

use feature 'say';

say qq/You can use slashes.../;
say qq{...or braces...};
say qq^...or hats...^;
say qq|...or pipes...|;
say qq ...but not whitespace. ;

You can also interpolate arrays into strings.

use feature 'say';

my @letters = ('a', 'b', 'c');
say "I like these letters: @letters.";
=> I like these letters: a b c.

By default the values are space-separated – because the special variable $" defaults to a single
space. This can, of course, be changed.

use feature 'say';

my @letters = ('a', 'b', 'c');
{local $" = ", "; say "@letters"; } # a, b, c

If you prefer, you have the option to use English and change $LIST_SEPARATOR instead:

use v5.18; # English should be avoided on older Perls
use English;

my @letters = ('a', 'b', 'c');
{ local $LIST_SEPARATOR = "\n"; say "My favourite letters:\n\n@letters" }

For anything more complex than this, you should use a loop instead.

say "My favourite letters:";
say;
for my $letter (@letters) {
 say " - $letter";
}

Interpolation does not work with hashes.

use feature 'say';

my %hash = ('a', 'b', 'c', 'd');
say "This doesn't work: %hash" # This doesn't work: %hash

Some code abuses interpolation of references – avoid it.

https://riptutorial.com/ 94

use feature 'say';

say "2 + 2 == @{[2 + 2]}"; # 2 + 2 = 4 (avoid this)
say "2 + 2 == ${\(2 + 2)}"; # 2 + 2 = 4 (avoid this)

The so-called "cart operator" causes perl to dereference @{ ... } the array reference [...] that
contains the expression that you want to interpolate, 2 + 2. When you use this trick, Perl builds an
anonymous array, then dereferences it and discards it.

The ${\(...)} version is somewhat less wasteful, but it still requires allocating memory and it is
even harder to read.

Instead, consider writing:

say "2 + 2 == " . 2 + 2;•
my $result = 2 + 2; say "2 + 2 == $result"•

Heredocs

Large Multi-Line strings are burdensome to write.

my $variable = <<'EOF';
this block of text is interpreted literally,
no \'quotes matter, they're just text
only the trailing left-aligned EOF matters.
EOF

NB: Make sure you ignore stack-overflows syntax highlighter: It is very wrong.

And Interpolated Heredocs work the same way.

my $variable = <<"I Want it to End";
this block of text is interpreted.
quotes\nare interpreted, and $interpolations
get interpolated...
but still, left-aligned "I Want it to End" matters.
I Want it to End

Pending in 5.26.0* is an "Indented Heredoc" Syntax which trims left-padding off for you

5.26.0

my $variable = <<~"MuchNicer";
 this block of text is interpreted.
 quotes\nare interpreted, and $interpolations
 get interpolated...
 but still, left-aligned "I Want it to End" matters.
MuchNicer

Removing trailing newlines

The function chomp will remove one newline character, if present, from each scalar passed to it.

https://riptutorial.com/ 95

chomp will mutate the original string and will return the number of characters removed

my $str = "Hello World\n\n";
my $removed = chomp($str);
print $str; # "Hello World\n"
print $removed; # 1

chomp again, removing another newline
$removed = chomp $str;
print $str; # "Hello World"
print $removed; # 1

chomp again, but no newline to remove
$removed = chomp $str;
print $str; # "Hello World"
print $removed; # 0

You can also chomp more than one string at once:

my @strs = ("Hello\n", "World!\n\n"); # one newline in first string, two in second

my $removed = chomp(@strs); # @strs is now ("Hello", "World!\n")
print $removed; # 2

$removed = chomp(@strs); # @strs is now ("Hello", "World!")
print $removed; # 1

$removed = chomp(@strs); # @strs is still ("Hello", "World!")
print $removed; # 0

But usually, no one worries about how many newlines were removed, so chomp is usually seen in
void context, and usually due to having read lines from a file:

while (my $line = readline $fh)
{
 chomp $line;

 # now do something with $line
}

my @lines = readline $fh2;

chomp (@lines); # remove newline from end of each line

Read Strings and quoting methods online: https://riptutorial.com/perl/topic/1984/strings-and-
quoting-methods

https://riptutorial.com/ 96

https://riptutorial.com/perl/topic/1984/strings-and-quoting-methods
https://riptutorial.com/perl/topic/1984/strings-and-quoting-methods

Chapter 36: Subroutines

Remarks

Subroutines get their arguments to magic variable called @_. While it doesn't have to be unpacked,
it's recommended, as it helps readability, and prevents accidental changes as arguments of @_ are
passed by reference (can be modified).

Examples

Creating subroutines

Subroutines are created by using the keyword sub followed by an identifier and a code block
enclosed in braces.

You can access the arguments by using the special variable @_, which contains all arguments as
an array.

sub function_name {
 my ($arg1, $arg2, @more_args) = @_;
 # ...
}

Since the function shift defaults to shifting @_ when used inside a subroutine, it's a common
pattern to extract the arguments sequentially into local variables at the beginning of a subroutine:

sub function_name {
 my $arg1 = shift;
 my $arg2 = shift;
 my @more_args = @_;
 # ...
}

emulate named parameters (instead of positional)
sub function_name {
 my %args = (arg1 => 'default', @_);
 my $arg1 = delete $args{arg1};
 my $arg2 = delete $args{arg2};
 # ...
}

sub {
 my $arg1 = shift;
 # ...
}->($arg);

5.20.0

Alternatively, the experimental feature "signatures" can be used to unpack parameters, which are
passed by value (not by reference).

https://riptutorial.com/ 97

use feature "signatures";

sub function_name($arg1, $arg2, @more_args) {
 # ...
}

Default values can be used for the parameters.

use feature "signatures";

sub function_name($arg1=1, $arg2=2) {
 # ...
}

You can use any expression to give a default value to a parameter – including other parameters.

sub function_name($arg1=1, $arg2=$arg1+1) {
 # ...
}

Note that you can't reference parameters which are defined after the current parameter – hence
the following code doesn't work quite as expected.

sub function_name($arg1=$arg2, $arg2=1) {
 print $arg1; # => <nothing>
 print $arg2; # => 1
}

Subroutine arguments are passed by reference (except those in signatures)

Subroutine arguments in Perl are passed by reference, unless they are in the signature. This
means that the members of the @_ array inside the sub are just aliases to the actual arguments. In
the following example, $text in the main program is left modified after the subroutine call because
$_[0] inside the sub is actually just a different name for the same variable. The second invocation
throws an error because a string literal is not a variable and therefore can't be modified.

use feature 'say';

sub edit {
 $_[0] =~ s/world/sub/;
}

my $text = "Hello, world!";
edit($text);
say $text; # Hello, sub!

edit("Hello, world!"); # Error: Modification of a read-only value attempted

To avoid clobbering your caller's variables it is therefore important to copy @_ to locally scoped
variables (my ...) as described under "Creating subroutines".

Subroutines

https://riptutorial.com/ 98

Subroutines hold code. Unless specified otherwise, they are globally defined.

Functions do not (have to) specify their argument list
sub returns_one {
 # Functions return the value of the last expression by default
 # The return keyword here is unnecessary, but helps readability.
 return 1;
}

Its arguments are available in @_, however
sub sum {
 my $ret = 0;
 for my $value (@_) {
 $ret += $value
 }
 return $ret;
}

Perl makes an effort to make parens around argument list optional
say sum 1..3; # 6

If you treat functions as variables, the & sigil is mandatory.
say defined ∑ # 1

Some builtins such as print or say are keywords, not functions, so e.g. &say is undefined. It also
does mean that you can define them, but you will have to specify the package name to actually
call them

This defines the function under the default package, 'main'
sub say {
 # This is instead the say keyword
 say "I say, @_";
}

...so you can call it like this:
main::say('wow'); # I say, wow.

5.18.0

Since Perl 5.18, you can also have non-global functions:

use feature 'lexical_subs';
my $value;
{
 # Nasty code ahead
 my sub prod {
 my $ret = 1;
 $ret *= $_ for @_;
 $ret;
 }
 $value = prod 1..6; # 720
 say defined ∏ # 1
}
say defined ∏ # 0

5.20.0

https://riptutorial.com/ 99

http://learn.perl.org/docs/keywords.html

Since 5.20, you can also have named parameters.

use feature 'signatures';
sub greet($name) {
 say "Hello, $name";
}

This should not be confused with prototypes, a facility Perl has to let you define functions that
behave like built-ins. Function prototypes must be visible at compile time and its effects can be
ignored by specifying the & sigil. Prototypes are generally considered to be an advanced feature
that is best used with great care.

This prototype makes it a compilation error to call this function with anything
that isn't an array. Additionally, arrays are automatically turned into arrayrefs
sub receives_arrayrefs(\@\@) {
 my $x = shift;
 my $y = shift;
}

my @a = (1..3);
my @b = (1..4);
receives_arrayrefs(@a, @b); # okay, $x = \@a, $y = \@b, @_ = ();
receives_arrayrefs(\@a, \@b); # compilation error, "Type … must be array …"
BEGIN { receives_arrayrefs(\@a, \@b); }

Specify the sigil to ignore the prototypes.
&receives_arrayrefs(\@a, \@b); # okay, $x = \@a, $y = \@b, @_ = ();
&receives_arrayrefs(@a, @b); # ok, but $x = 1, $y = 2, @_ = (3,1,2,3,4);

Read Subroutines online: https://riptutorial.com/perl/topic/711/subroutines

https://riptutorial.com/ 100

https://riptutorial.com/perl/topic/711/subroutines

Chapter 37: True and false

Syntax

undef # False•
'' # Defined, False•
0 # Defined, Has Length, False•
'0' # Defined, Has Length, False•

Remarks

Perl does not have a boolean data type, nor does it have any true and false keywords like many
other languages. However, every scalar value will evaluate to true or false when evaluated in a
boolean context (the condition in an if statement or a while loop, for example).

The following values are considered false:

'', the empty string. This is what the built-in comparison operators return (e.g. 0 == 1)•
0, the number 0, even if you write it as 000 or 0.0•
'0', the string that contains a single 0 digit•
undef, the undefined value•
Objects that use overloading to numify/stringify into false values, such as JSON::false•

All other values are true:

any non-zero number such as 1, 3.14, 'NaN' or 'Inf'•
any string that is numerically 0 but not literally the string '0', such as '00', '0e0', "0\n" and
"abc".
If you are intentionally returning a true numerically 0 value, prefer '0E0' (used by well known
modules) or '0 but true' (used by Perl functions)

•

any other string that is not empty, such as ' ', 'false'•
all references, even if they reference false values, such as \'', [], or {}•
an array or hash of false values•

The following operators are commonly treated to return a
boolean in scalar context:

@a returns whether the array is empty or not•

%h returns whether the hash is empty or not•

grep returns whether any matching items were found or not•

@a = LIST•

https://riptutorial.com/ 101

http://perldoc.perl.org/overload.html
http://search.cpan.org/~makamaka/JSON-2.90/lib/JSON.pm#JSON::false
http://www.learning-perl.com/2015/05/perls-special-not-a-numbers/
http://www.learning-perl.com/2015/05/perls-special-not-a-numbers/
http://www.learning-perl.com/2015/05/perls-special-not-a-numbers/

and (LIST) = LIST return whether the right-hand side LIST produced any scalars or not

Examples

List of true and false values

use feature qw(say);

Numbers are true if they're not equal to 0.
say 0 ? 'true' : 'false'; # false
say 1 ? 'true' : 'false'; # true
say 2 ? 'true' : 'false'; # true
say -1 ? 'true' : 'false'; # true
say 1-1 ? 'true' : 'false'; # false
say 0e7 ? 'true' : 'false'; # false
say -0.00 ? 'true' : 'false'; # false

Strings are true if they're not empty.
say 'a' ? 'true' : 'false'; # true
say 'false' ? 'true' : 'false'; # true
say '' ? 'true' : 'false'; # false

Even if a string would be treated as 0 in numeric context, it's true if nonempty.
The only exception is the string "0", which is false.
To force numeric context add 0 to the string
say '0' ? 'true' : 'false'; # false
say '0.0' ? 'true' : 'false'; # true
say '0e0' ? 'true' : 'false'; # true
say '0 but true' ? 'true' : 'false'; # true
say '0 whargarbl' ? 'true' : 'false'; # true
say 0+'0 argarbl' ? 'true' : 'false'; # false

Things that become numbers in scalar context are treated as numbers.
my @c = ();
my @d = (0);
say @c ? 'true' : 'false'; # false
say @d ? 'true' : 'false'; # true

Anything undefined is false.
say undef ? 'true' : 'false'; # false

References are always true, even if they point at something false
my @c = ();
my $d = 0;
say \@c ? 'true' : 'false'; # true
say \$d ? 'true' : 'false'; # true
say \0 ? 'true' : 'false'; # true
say \'' ? 'true' : 'false'; # true

Read True and false online: https://riptutorial.com/perl/topic/649/true-and-false

https://riptutorial.com/ 102

https://riptutorial.com/perl/topic/649/true-and-false

Chapter 38: Unicode

Remarks

A Warning on Filename Encoding

It should be worth mentioning that Filename Encoding is not only platform specific but also
filesystem specific.

It is never entirely safe to assume (but often usually is) that just because you can encode and
write to a given filename, that when you later try to open that same filename for reading, it will still
be called the same thing.

For instance, if you write to a filesystem such as FAT16 which doesn't support unicode, your
filenames might silently get translated into ASCII-compatible forms.

But it is even less safe to assume that a file you can create, read and write to by explicit naming
will be called the same thing when queried through other calls, for instance, readdir might return
different bytes for your filename than you specified to open.

On some systems such as VAX, you can't even always assume that readdir will return the same
filename you specified with open for filenames as simple as foo.bar, because filename extensions
can be mangled by the OS.

Also, on UNIX, there is a very liberal set of legal characters for filenames that the OS permits,
excluding only / and \0, where as on Windows, there are specific ranges of characters that are
forbidden in filenames and will cause errors.

Exercise much caution here, avoid fancy tricks with filenames if you have a choice, and
always have tests to make sure any fancy tricks you do use are consistent.

Exercise doubly as much caution if you're writing code intended to be run on platforms outside
your control, such as if you're writing code that is intended for CPAN, and assume at least 5% of
your user base will be stuck using some ancient or broken technology, either by choice, by
accident, or by powers outside their control, and that these will conspire to create bugs for them.

:encoding(utf8) vs :utf8

Since UTF-8 is one of the internal formats for representation of strings in Perl, the
encoding/decoding step may often be skipped. Instead of :encoding(utf-8), you can simply use
:utf8, if your data is already in UTF-8. :utf8 can be used safely with output streams, whereas for
input stream it can be dangerous, because it causes internal inconsistency when you have invalid

https://riptutorial.com/ 103

byte sequences. Also, using :utf8 for input may result in security breaches, so the use of
:encoding(utf-8) is advisable.

More details: What is the difference between :encoding and :utf8

UTF-8 vs utf8 vs UTF8

As of Perl v5.8.7, "UTF-8" (with dash) means UTF-8 in its strict and security-conscious form,
whereas "utf8" means UTF-8 in its liberal and loose form.

For example, "utf8" can be used for code points that don't exist in Unicode, like 0xFFFFFFFF.
Correspondingly, invalid UTF-8 byte sequences like "\x{FE}\x{83}\x{BF}\x{BF}\x{BF}\x{BF}\x{BF}"
will decode into an invalid Unicode (but valid Perl) codepoint (0xFFFFFFFF) when using "utf8",
whereas the "UTF-8" encoding would not allow decoding to codepoints outside the range of valid
Unicode and would give you a substitution character (0xFFFD) instead.

Since encoding names are case insensitive, "UTF8" is the same as "utf8" (i.e. non-strict variant).

More details: UTF-8 vs. utf8 vs. UTF8

More Reading

Details about Perl's Unicode handling is described in more detail in the following sources:

perlunicode•
perlunitut•
perluniintro•
perlunifaq•
perlunicook•
utf8 pragma•
unicode_strings feature•
open pragma•
PerlIO•
PerlIO::encoding•
open function•
Encode•
perlrun - command line switches•
Chapter 6, Programming Perl•

Posts from stackoverflow.com (caveat: might not be up-to-date):

Why does modern Perl avoid UTF-8 by default?•

Youtube videos:

https://riptutorial.com/ 104

http://perldoc.perl.org/perlunifaq.html#What-is-the-difference-between-%3aencoding-and-%3autf8%3f
http://perldoc.perl.org/Encode.html#UTF-8-vs.-utf8-vs.-UTF8
https://metacpan.org/pod/perlunicode
https://metacpan.org/pod/distribution/perl/pod/perlunitut.pod
https://metacpan.org/pod/distribution/perl/pod/perluniintro.pod
https://metacpan.org/pod/distribution/perl/pod/perlunifaq.pod
https://metacpan.org/pod/distribution/perl/pod/perlunicook.pod
http://perldoc.perl.org/utf8.html
http://perldoc.perl.org/feature.html#The-%27unicode_strings%27-feature
http://perldoc.perl.org/open.html
http://perldoc.perl.org/PerlIO.html
http://perldoc.perl.org/PerlIO/encoding.html
http://perldoc.perl.org/functions/open.html
https://metacpan.org/pod/Encode
http://perldoc.perl.org/perlrun.html#Command-Switches
http://shop.oreilly.com/product/9780596004927.do
http://stackoverflow.com/q/6162484/2173773

A Million Billion Squiggly Characters by Ricardo Signes at YAPC NA 2016.•

Examples

Create filenames

The following examples use the UTF-8 encoding to represent filenames (and directory names) on
disk. If you want to use another encoding, you should use Encode::encode(...).

use v5.14;
Make Perl recognize UTF-8 encoded characters in literal strings.
For this to work: Make sure your text-editor is using UTF-8, so
that bytes on disk are really UTF-8 encoded.
use utf8;

Ensure that possible error messages printed to screen are converted to UTF-8.
For this to work: Check that your terminal emulator is using UTF-8.
binmode STDOUT, ':utf8';
binmode STDERR, ':utf8';

my $filename = 'æ€'; # $filename is now an internally UTF-8 encoded string.

Note: in the following it is assumed that $filename has the internal UTF-8
flag set, if $filename is pure ASCII, it will also work since its encoding
overlaps with UTF-8. However, if it has another encoding like extended ASCII,
$filename will be written with that encoding and not UTF-8.
Note: it is not necessary to encode $filename as UTF-8 here
since Perl is using UTF-8 as its internal encoding of $filename already

Example1 -- using open()
open (my $fh, '>', $filename) or die "Could not open '$filename': $!";
close $fh;

Example2 -- using qx() and touch
qx{touch $filename};

Example3 -- using system() and touch
system 'touch', $filename;

Example4 -- using File::Touch
use File::Touch;
eval { touch($filename) }; die "Could not create file '$filename': $!" if $@;

Read filenames

Perl does not attempt to decode filenames returned by builtin functions or modules. Such strings
representing filenames should always be decoded explicitly, in order for Perl to recognize them as
Unicode.

use v5.14;
use Encode qw(decode_utf8);

Ensure that possible error messages printed to screen are converted to UTF-8.
For this to work: Check that you terminal emulator is using UTF-8.
binmode STDOUT, ':utf8';

https://riptutorial.com/ 105

https://www.youtube.com/watch?v=TmTeXcEixEg
https://metacpan.org/pod/Encode#encode

binmode STDERR, ':utf8';

Example1 -- using readdir()
my $dir = '.';
opendir(my $dh, $dir) or die "Could not open directory '$dir': $!";
while (my $filename = decode_utf8(readdir $dh)) {
 # Do something with $filename
}
close $dh;

Example2 -- using getcwd()
use Cwd qw(getcwd);
my $dir = decode_utf8(getcwd());

Example3 -- using abs2rel()
use File::Spec;
use utf8;
my $base = 'ø';
my $path = "$base/b/æ";
my $relpath = decode_utf8(File::Spec->abs2rel($path, $base));
Note: If you omit $base, you need to encode $path first:
use Encode qw(encode_utf8);
my $relpath = decode_utf8(File::Spec->abs2rel(encode_utf8($path)));

Example4 -- using File::Find::Rule (part1 matching a filename)
use File::Find::Rule;
use utf8;
use Encode qw(encode_utf8);
my $filename = 'æ';
File::Find::Rule needs $filename to be encoded
my @files = File::Find::Rule->new->name(encode_utf8($filename))->in('.');
$_ = decode_utf8($_) for @files;

Example5 -- using File::Find::Rule (part2 matching a regular expression)
use File::Find::Rule;
use utf8;
my $pat = '[æ].$'; # Unicode pattern
Note: In this case: File::Find::Rule->new->name(qr/$pat/)->in('.')
will not work since $pat is Unicode and filenames are bytes
Also encoding $pat first will not work correctly
my @files;
File::Find::Rule->new->exec(sub { wanted($pat, \@files) })->in('.');
$_ = decode_utf8($_) for @files;
sub wanted {
 my ($pat, $files) = @_;
 my $name = decode_utf8($_);
 my $full_name = decode_utf8($File::Find::name);
 push @$files, $full_name if $name =~ /$pat/;
}

Note: if you are concerned about invalid UTF-8 in the filenames, the use of decode_utf8(...) in
the above examples should probably be replaced by decode('utf-8', ...). This is because
decode_utf8(...) is a synonym for decode('utf8', ...) and there is a difference between the
encodings utf-8 and utf8 (see Remarks below for more information) where utf-8 is more strict on
what is acceptable than utf8.

Command line switches for one-liners

https://riptutorial.com/ 106

http://www.riptutorial.com/perl/topic/4375/unicode

Enable utf8 pragma

In order to enable utf8 pragma in one-liner, perl interpreter should be called with -Mutf8 option:

perl -Mutf8 -E 'my $� = "human"; say $�'

Unicode handling with -C switch

The -C command line flag lets you control Unicode features. It can be followed by a list of option
letters.

Standard I/O

I - STDIN will be in UTF-8•
O - STDOUT will be in UTF-8•
E - STDERR will be in UTF-8•
S - shorthand for IOE, standard I/O streams will be in UTF-8•

echo "Ματαιότης ματαιοτήτων" | perl -CS -Mutf8 -nE 'say "ok" if /Ματαιότης/'

Script's arguments

A - treats @ARGV as an array of UTF-8 encoded strings•

perl -CA -Mutf8 -E 'my $arg = shift; say "anteater" if $arg eq "муравьед"' муравьед

Default PerlIO layer

i - UTF-8 is the default PerlIO layer for input streams•
o - UTF-8 is the default PerlIO layer for output streams•
D - shorthand for io•

perl -CD -Mutf8 -e 'open my $fh, ">", "utf8.txt" or die $!; print $fh "�� ���"'

-M and -C switches may be combined:

perl -CASD -Mutf8 -E 'say "Ματαιότης ματαιοτήτων\n"';

Standard I/O

The encoding to be used for the standard I/O filehandles (STDIN, STDOUT, and STDERR), can be set

https://riptutorial.com/ 107

separately for each handle using binmode:

binmode STDIN, ':encoding(utf-8)';
binmode STDOUT, ':utf8';
binmode STDERR, ':utf8';

Note: when reading one would in general prefer :encoding(utf-8) over :utf8, see Remarks for
more information.

Alternatively, you can use the open pragma.

Setup such that all subsequently opened input streams will use ':encoding(utf-8)'
and all subsequently opened output streams will use ':utf8'
by default
use open (IN => ':encoding(utf-8)', OUT => ':utf8');
Make the (already opened) standard file handles inherit the setting
given by the IO settings for the open pragma
use open (:std);
Now, STDIN has been converted to ':encoding(utf-8)', and
STDOUT and STDERR have ':utf8'

Alternatively, to set all filehandles (both those yet to be opened and also the standard ones) to use
:encoding(utf-8):

use open qw(:encoding(utf-8) :std);

File handles

Setting encoding with open()

When opening a text file, you may specify it's encoding explicitly with a three-argument open().
This en-/decoder attached to a file handle is called an "I/O layer":

my $filename = '/path/to/file';
open my $fh, '<:encoding(utf-8)', $filename or die "Failed to open $filename: $!";

See Remarks for a discussion of the differences between :utf8 and :encoding(utf-8).

Setting encoding with binmode()

Alternatively, you may use binmode() to set the encoding for individual file handle:

my $filename = '/path/to/file';
open my $fh, '<', $filename or die "Failed to open $filename: $!";
binmode $fh, ':encoding(utf-8)';

https://riptutorial.com/ 108

http://perldoc.perl.org/functions/binmode.html
http://www.riptutorial.com/perl/topic/4375/unicode
http://perldoc.perl.org/open.html
http://perldoc.perl.org/functions/open.html
http://www.riptutorial.com/perl/topic/4375/unicode

open pragma

To avoid setting encoding for each file handle separately, you may use the open pragma to set a
default I/O layer used by all subsequent calls to the open() function and similar operators within the
lexical scope of this pragma:

Set input streams to ':encoding(utf-8)' and output streams to ':utf8'
use open (IN => ':encoding(utf-8)', OUT => ':utf8');
Or to set all input and output streams to ':encoding(utf-8)'
use open ':encoding(utf-8)';

Setting encoding with command line -C flag

Finally, it is also possible to run the perl interpreter with a -CD flag that applies UTF-8 as the default
I/O layer. However, this option should be avoided since it relies on specific user behaviour which
cannot be predicted nor controlled.

The utf8 pragma: using Unicode in your sources

The utf8 pragma indicates that the source code will be interpreted as UTF-8. Of course, this will
only work if your text editor is also saving the source as UTF-8 encoded.

Now, string literals can contain arbitrary Unicode characters; identifiers can also contain Unicode
but only word-like characters (see perldata and perlrecharclass for more information):

use utf8;
my $var1 = '§я§©�'; # works fine
my $я = 4; # works since я is a word (matches \w) character
my $p§2 = 3; # does not work since § is not a word character.
say "ya" if $var1 =~ /я§/; # works fine (prints "ya")

Note: When printing text to the terminal, make sure it supports UTF-8.*

There may be complex and counter-intuitive relationships between output and source encoding.
Running on a UTF-8 terminal, you may find that adding the utf8 pragma seems to break things:

$ perl -e 'print "Møøse\n"'
Møøse
$ perl -Mutf8 -e 'print "Møøse\n"'
M��se
$ perl -Mutf8 -CO -e 'print "Møøse\n"'
Møøse

In the first case, Perl treats the string as raw bytes and prints them like that. As these bytes
happen to be valid UTF-8, they look correct even though Perl doesn't really know what characters
they are (e.g. length("Møøse") will return 7, not 5). Once you add -Mutf8, Perl correctly decodes the
UTF-8 source to characters, but output is in Latin-1 mode by default and printing Latin-1 to a UTF-

https://riptutorial.com/ 109

http://perldoc.perl.org/open.html
http://perldoc.perl.org/utf8.html
http://perldoc.perl.org/perldata.html#Identifier-parsing
http://perldoc.perl.org/perlrecharclass.html#Backslash-sequences

8 terminal doesn't work. Only when you switch STDOUT to UTF-8 using -CO will the output be correct.

use utf8 doesn't affect standard I/O encoding nor file handles!

Handling invalid UTF-8

Reading invalid UTF-8

When reading UTF-8 encoded data, it is important to be aware of the fact the UTF-8 encoded data
can be invalid or malformed. Such data should usually not be accepted by your program (unless
you know what you are doing). When unexpectedly encountering malformed data, different actions
can be considered:

Print stacktrace or error message, and abort program gracefully, or•
Insert a substitution character at the place where the malformed byte sequence appeared,
print a warning message to STDERR and continue reading as nothing happened.

•

By default, Perl will warn you about encoding glitches, but it will not abort your program. You can
make your program abort by making UTF-8 warnings fatal, but be aware of the caveats in Fatal
Warnings.

The following example writes 3 bytes in encoding ISO 8859-1 to disk. It then tries to read the bytes
back again as UTF-8 encoded data. One of the bytes, 0xE5, is an invalid UTF-8 one byte
sequence:

use strict;
use warnings;
use warnings FATAL => 'utf8';

binmode STDOUT, ':utf8';
binmode STDERR, ':utf8';
my $bytes = "\x{61}\x{E5}\x{61}"; # 3 bytes in iso 8859-1: aåa
my $fn = 'test.txt';
open (my $fh, '>:raw', $fn) or die "Could not open file '$fn': $!";
print $fh $bytes;
close $fh;
open ($fh, "<:encoding(utf-8)", $fn) or die "Could not open file '$fn': $!";
my $str = do { local $/; <$fh> };
close $fh;
print "Read string: '$str'\n";

The program will abort with a fatal warning:

utf8 "\xE5" does not map to Unicode at ./test.pl line 10.

Line 10 is here the second last line, and the error occurs in the part of the line with <$fh> when
trying to read a line from the file.

If you don't make warnings fatal in the above program, Perl will still print the warning. However, in
this case it will try to recover from the malformed byte 0xE5 by inserting the four characters \xE5

https://riptutorial.com/ 110

http://perldoc.perl.org/functions/warn.html
http://perldoc.perl.org/warnings.html#Fatal-Warnings
http://perldoc.perl.org/warnings.html#Fatal-Warnings

into the stream, and then continue with the next byte. As a result, the program will print:

Read string: 'a\xE5a'

Read Unicode online: https://riptutorial.com/perl/topic/4375/unicode

https://riptutorial.com/ 111

https://riptutorial.com/perl/topic/4375/unicode

Chapter 39: Variables

Syntax

my # Lexical declaration•
our # Global declaration•
$foo # Scalar•
@foo # Array•
$#foo # Array Last-Index•
%foo # Hash•
${$foo} # Scalar De-Reference•
@{$foo} # Array De-Reference•
$#{$foo} # Array-DeRef Last-Index•
%{$foo} # Hash De-Reference•
$foo[$index] # Array get indexed•
${$foo}[$index] # Array De-Reference and get indexed.•
$foo->[$index] # Array De-Reference and get indexed (Simplified)•
$foo{$key} # Hash get value for key•
${$foo}{$key} # Hash Dereference and get value for key•
$foo->{$key} # Hash Dereference and get value for key (Simplified)•
\$x # Reference to Scalar•
\@x # Reference to Array•
\%x # Reference to Hash•
=[] # Reference to Anonymous Array (Inline)•
={ } # Reference to Anonymous Hash (Inline)•

Examples

Scalars

Scalars are Perl's most basic data type. They're marked with the sigil $ and hold a single value of
one of three types:

a number (3, 42, 3.141, etc.)•
a string ('hi', "abc", etc.)•
a reference to a variable (see other examples).•

my $integer = 3; # number
my $string = "Hello World"; # string
my $reference = \$string; # reference to $string

Perl converts between numbers and strings on the fly, based on what a particular operator
expects.

my $number = '41'; # string '41'

https://riptutorial.com/ 112

my $meaning = $number + 1; # number 42
my $sadness = '20 apples'; # string '20 apples'
my $danger = $sadness * 2; # number '40', raises warning

When converting a string into a number, Perl takes as many digits from the front of a string as it
can – hence why 20 apples is converted into 20 in the last line.

Based on whether you want to treat the contents of a scalar as a string or a number, you need to
use different operators. Do not mix them.

String comparison # Number comparison
'Potato' eq 'Potato'; 42 == 42;
'Potato' ne 'Pomato'; 42 != 24;
'Camel' lt 'Potato'; 41 < 42;
'Zombie' gt 'Potato'; 43 > 42;

String concatenation # Number summation
'Banana' . 'phone'; 23 + 19;

String repetition # Number multiplication
'nan' x 3; 6 * 7;

Attempting to use string operations on numbers will not raise warnings; attempting to use number
operations on non-numeric strings will. Do be aware that some non-digit strings such as 'inf',
'nan', '0 but true' count as numbers.

Arrays

Arrays store an ordered sequence of values. You can access the contents by index, or iterate over
them. The values will stay in the order you filled them in.

my @numbers_to_ten = (1,2,3,4,5,6,7,8,9,10); # More conveniently: (1..10)
my @chars_of_hello = ('h','e','l','l','o');
my @word_list = ('Hello','World');

Note the sigil: access an @array item with $array[index]
my $second_char_of_hello = $chars_of_hello[1]; # 'e'

Use negative indices to count from the end (with -1 being last)
my $last_char_of_hello = $chars_of_hello[-1];

Assign an array to a scalar to get the length of the array
my $length_of_array = @chars_of_hello; # 5

You can use $# to get the last index of an array, and confuse Stack Overflow
my $last_index_of_array = $#chars_of_hello; # 4

You can also access multiple elements of an array at the same time
This is called "array slice"
Since this returns multiple values, the sigil to use here on the RHS is @
my @some_chars_of_hello = @chars_of_hello[1..3]; # ('H', 'e', 'l')
my @out_of_order_chars = @chars_of_hello[1,4,2]; # ('e', 'o', 'l')

In Python you can say array[1:-1] to get all elements but first and last
Not so in Perl: (1..-1) is an empty list. Use $# instead

https://riptutorial.com/ 113

my @empty_list = @chars_of_hello[1..-1]; # ()
my @inner_chars_of_hello = @chars_of_hello[1..$#chars_of_hello-1]; # ('e','l','l')

Access beyond the end of the array yields undef, not an error
my $undef = $chars_of_hello[6]; # undef

Arrays are mutable:

use utf8; # necessary because this snippet is utf-8
$chars_of_hello[1] = 'u'; # ('h','u','l','l','o')
push @chars_of_hello, ('!', '!'); # ('h','u','l','l','o','!','!')
pop @chars_of_hello; # ('h','u','l','l','o','!')
shift @chars_of_hello; # ('u','l','l','o','!')
unshift @chars_of_hello, ('¡', 'H'); # ('¡','H','u','l','l','o','!')
@chars_of_hello[2..5] = ('O','L','A'); # ('¡','H','O','L','A',undef,'!') whoops!
delete $chars_of_hello[-2]; # ('¡','H','O','L','A', '!')

Setting elements beyond the end of an array does not result in an error
The array is extended with undef's as necessary. This is "autovivification."
my @array; # ()
my @array[3] = 'x'; # (undef, undef, undef, 'x')

Finally, you can loop over the contents of an array:

use v5.10; # necessary for 'say'
for my $number (@numbers_to_ten) {
 say $number ** 2;
}

When used as booleans, arrays are true if they are not empty.

Hashes

Hashes can be understood as lookup-tables. You can access its contents by specifiying a key for
each of them. Keys must be strings. If they're not, they will be converted to strings.

If you give the hash simply a known key, it will serve you its value.

Elements are in (key, value, key, value) sequence
my %inhabitants_of = ("London", 8674000, "Paris", 2244000);

You can save some typing and gain in clarity by using the "fat comma"
syntactical sugar. It behaves like a comma and quotes what's on the left.
my %translations_of_hello = (spanish => 'Hola', german => 'Hallo', swedish => 'Hej');

In the following example, note the brackets and sigil: you access an element of %hash using
$hash{key} because the value you want is a scalar. Some consider it good practice to quote the
key while others find this style visually noisy. Quoting is only required for keys that could be
mistaken for expressions like $hash{'some-key'}

my $greeting = $translations_of_hello{'spanish'};

https://riptutorial.com/ 114

While Perl by default will try to use barewords as strings, + modifier can also be used to indicate to
Perl that key should not be interpolated but executed with result of execution being used as a key:

my %employee = (name => 'John Doe', shift => 'night');
this example will print 'night'
print $employee{shift};

but this one will execute [shift][1], extracting first element from @_,
and use result as a key
print $employee{+shift};

Like with arrays, you can access multiple hash elements at the same time. This is called a hash
slice. The resulting value is a list, so use the @ sigil:

my @words = @translations_of_hello{'spanish', 'german'}; # ('Hola', 'Hallo')

Iterate over the keys of an hash with keys keys will return items in a random order. Combine with
sort if you wish.

for my $lang (sort keys %translations_of_hello) {
 say $translations_of_hello{$lang};
}

If you do not actually need the keys like in the previous example, values returns the hash's values
directly:

for my $translation (values %translations_of_hello) {
 say $translation;
}

You can also use a while loop with each to iterate over the hash. This way, you will get both the
key and the value at the same time, without a separate value lookup. Its use is however
discouraged, as each can break in mistifying ways.

DISCOURAGED
while (my ($lang, $translation) = each %translations_of_hello) {
 say $translation;
}

Access to unset elements returns undef, not an error:

my $italian = $translations_of_hello{'italian'}; # undef

map and list flattening can be used to create hashes out of arrays. This is a popular way to create a
'set' of values, e.g. to quickly check whether a value is in @elems. This operation usually takes O(n)
time (i.e. proportional to the number of elements) but can be done in constant time (O(1)) by
turning the list into a hash:

@elems = qw(x y x z t);
my %set = map { $_ => 1 } @elems; # (x, 1, y, 1, t, 1)

https://riptutorial.com/ 115

http://blogs.perl.org/users/rurban/2014/04/do-not-use-each.html
http://blogs.perl.org/users/rurban/2014/04/do-not-use-each.html

my $y_membership = $set{'y'}; # 1
my $w_membership = $set{'w'}; # undef

This requires some explanation. The contents of @elems get read into a list, which is processed by
map. map accepts a code block that gets called for each value of its input list; the value of the
element is available for use in $_. Our code block returns two list elements for each input element:
$_, the input element, and 1, just some value. Once you account for list flattening, the outcome is
that map { $_ => 1 } @elems turns qw(x y x z t) into (x => 1, y => 1, x => 1, z => 1, t => 1).

As those elements get assigned into the hash, odd elements become hash keys and even
elements become hash values. When a key is specified multiple times in a list to be assigned to a
hash, the last value wins. This effectively discards duplicates.

A faster way to turn a list into a hash uses assignment to a hash slice. It uses the x operator to
multiply the single-element list (1) by the size of @elems, so there is a 1 value for each of the keys in
the slice on the left hand side:

@elems = qw(x y x z t);
my %set;
@set{@elems} = (1) x @elems;

The following application of hashes also exploits the fact that hashes and lists can often be used
interchangeably to implement named function args:

sub hash_args {
 my %args = @_;
 my %defaults = (foo => 1, bar => 0);
 my %overrides = (__unsafe => 0);
 my %settings = (%defaults, %args, %overrides);
}

This function can then be called like this:
hash_args(foo => 5, bar => 3); # (foo => 5, bar => 3, __unsafe ==> 0)
hash_args(); # (foo => 1, bar => 0, __unsafe ==> 0)
hash_args(__unsafe => 1) # (foo => 1, bar => 0, __unsafe ==> 0)

When used as booleans, hashes are true if they are not empty.

Scalar References

A reference is a scalar variable (one prefixed by $) which “refers to” some other data.

my $value = "Hello";
my $reference = \$value;
print $value; # => Hello
print $reference; # => SCALAR(0x2683310)

To get the referred-to data, you de-reference it.

say ${$reference}; # Explicit prefix syntax
say $$reference; # The braces can be left out (confusing)

https://riptutorial.com/ 116

5.24.0

New postfix dereference syntax, available by default from v5.24

use v5.24;
say $reference->$*; # New postfix notation

This "de-referenced value" can then be changed like it was the original variable.

${$reference} =~ s/Hello/World/;
print ${$reference}; # => World
print $value; # => World

A reference is always truthy – even if the value it refers to is falsy (like 0 or "").

You may want a Scalar Reference If:

You want to pass a string to a function, and have it modify that string for you without it being
a return value.

•

You wish to explicitly avoid Perl implicitly copying the contents of a large string at some point
in your function passing (especially relevant on older Perls without copy-on-write strings)

•

You wish to disambiguate string-like values with specific meaning, from strings that convey
content, for example:

Disambiguate a file name from file content○

Disambiguate returned content from a returned error string○

•

You wish to implement a lightweight inside out object model, where objects handed to calling
code don't carry user visible metadata:

our %objects;
my $next_id = 0;
sub new {
 my $object_id = $next_id++;
 $objects{ $object_id } = { ... }; # Assign data for object
 my $ref = \$object_id;
 return bless($ref, "MyClass");
}

•

Array References

Array References are scalars ($) which refer to Arrays.

my @array = ("Hello"); # Creating array, assigning value from a list
my $array_reference = \@array;

These can be created more short-hand as follows:

https://riptutorial.com/ 117

my $other_array_reference = ["Hello"];

Modifying / Using array references require dereferencing them first.

my @contents = @{ $array_reference }; # Prefix notation
my @contents = @$array_reference; # Braces can be left out

5.24.0

New postfix dereference syntax, available by default from v5.24

use v5.24;
my @contents = $array_reference->@*; # New postfix notation

When accessing an arrayref's contents by index you can use the -> syntactical sugar.

my @array = qw(one two three); my $arrayref = [qw(one two three)]
my $one = $array[0]; my $one = $arrayref->[0];

Unlike arrays, arrayrefs can be nested:

my @array = ((1, 0), (0, 1)) # ONE array of FOUR elements: (1, 0, 0, 1)
my @matrix = ([1, 0], [0, 1]) # an array of two arrayrefs
my $matrix = [[0, 1], [1, 0]] # an arrayref of arrayrefs
There is no namespace conflict between scalars, arrays and hashes
so @matrix and $matrix _both_ exist at this point and hold different values.

my @diagonal_1 = ($matrix[0]->[1], $matrix[1]->[0]) # uses @matrix
my @diagonal_2 = ($matrix->[0]->[1], $matrix->[1]->[0]) # uses $matrix
Since chained []- and {}-access can only happen on references, you can
omit some of those arrows.
my $corner_1 = $matrix[0][1]; # uses @matrix;
my $corner_2 = $matrix->[0][1]; # uses $matrix;

When used as Boolean, references are always true.

Hash References

Hash references are scalars which contain a pointer to the memory location containing the data of
a hash. Because the scalar points directly to the hash itself, when it is passed to a subroutine,
changes made to the hash are not local to the subroutine as with a regular hash, but instead are
global.

First, let's examine what happens when you pass a normal hash to a subroutine and modify it
within there:

use strict;
use warnings;
use Data::Dumper;

sub modify
{

https://riptutorial.com/ 118

 my %hash = @_;

 $hash{new_value} = 2;

 print Dumper("Within the subroutine");
 print Dumper(\%hash);

 return;
}

my %example_hash = (
 old_value => 1,
);

modify(%example_hash);

print Dumper("After exiting the subroutine");
print Dumper(\%example_hash);

Which results in:

$VAR1 = 'Within the subroutine';
$VAR1 = {
 'new_value' => 2,
 'old_value' => 1
 };
$VAR1 = 'After exiting the subroutine';
$VAR1 = {
 'old_value' => 1
 };

Notice that after we exit the subroutine, the hash remains unaltered; all changes to it were local to
the modify subroutine, because we passed a copy of the hash, not the hash itself.

In comparison, when you pass a hashref, you are passing the address to the original hash, so any
changes made within the subroutine will be made to the original hash:

use strict;
use warnings;
use Data::Dumper;

sub modify
{
 my $hashref = shift;

 # De-reference the hash to add a new value
 $hashref->{new_value} = 2;

 print Dumper("Within the subroutine");
 print Dumper($hashref);

 return;
}

Create a hashref
my $example_ref = {
 old_value => 1,
};

https://riptutorial.com/ 119

Pass a hashref to a subroutine
modify($example_ref);

print Dumper("After exiting the subroutine");
print Dumper($example_ref);

This will result in:

$VAR1 = 'Within the subroutine';
$VAR1 = {
 'new_value' => 2,
 'old_value' => 1
 };
$VAR1 = 'After exiting the subroutine';
$VAR1 = {
 'new_value' => 2,
 'old_value' => 1
 };

Typeglobs, typeglob refs, filehandles and constants

A typeglob *foo holds references to the contents of global variables with that name: $foo, @foo, $foo
, &foo, etc. You can access it like an hash and assign to manipulate the symbol tables directly
(evil!).

use v5.10; # necessary for say
our $foo = "foo";
our $bar;
say ref *foo{SCALAR}; # SCALAR
say ${ *foo{SCALAR} }; # bar
*bar = *foo;
say $bar; # bar
$bar = 'egg';
say $foo; # egg

Typeglobs are more commonly handled when dealing with files. open, for example, produces a
reference to a typeglob when asked to create a non-global filehandle:

use v5.10; # necessary for say
open(my $log, '> utf-8', '/tmp/log') or die $!; # open for writing with encoding
say $log 'Log opened';

You can dereference this globref, but it's not very useful.
say ref $log; # GLOB
say (*{$log}->{IO} // 'undef'); # undef

close $log or die $!;

Typeglobs can also be used to make global read-only variables, though use constant is in broader
use.

Global constant creation
*TRUE = \('1');

https://riptutorial.com/ 120

http://perldoc.perl.org/constant.html

our $TRUE;
say $TRUE; # 1
$TRUE = ''; # dies, "Modification of a read-only value attempted"

use constant instead defines a parameterless function, therefore it's not global,
can be used without sigils, can be imported, but does not interpolate easily.
use constant (FALSE => 0);
say FALSE; # 0
say &FALSE; # 0
say "${\FALSE}"; # 0 (ugh)
say *FALSE{CODE}; # CODE(0xMA1DBABE)

Of course, neither is truly constant when you can manipulate the symbol table...
*TRUE = \('');
use constant (EVIL => 1);
*FALSE = *EVIL;

Sigils

Perl has a number of sigils:

$scalar = 1; # individual value
@array = (1, 2, 3, 4, 5); # sequence of values
%hash = ('it', 'ciao', 'en', 'hello', 'fr', 'salut'); # unordered key-value pairs
&function('arguments'); # subroutine
*typeglob; # symbol table entry

These look like sigils, but aren't:

\@array; # \ returns the reference of what's on the right (so, a reference to @array)
$#array; # this is the index of the last element of @array

You can use braces after the sigil if you should be so inclined. Occasionally, this improves
readability.

say ${value} = 5;

While you use different sigils to define variables of different types, the same variable can be
accessed in different ways based on what sigils you use.

%hash; # we use % because we are looking at an entire hash
$hash{it}; # we want a single value, however, that's singular, so we use $
$array[0]; # likewise for an array. notice the change in brackets.
@array[0,3]; # we want multiple values of an array, so we instead use @
@hash{'it','en'}; # similarly for hashes (this gives the values: 'ciao', 'hello')
%hash{'it','fr'}; # we want an hash with just some of the keys, so we use %
 # (this gives key-value pairs: 'it', 'ciao', 'fr', 'salut')

This is especially true of references. In order to use a referenced value you can combine sigils
together.

my @array = 1..5; # This is an array
my $reference_to_an_array = \@array; # A reference to an array is a singular value

https://riptutorial.com/ 121

push @array, 6; # push expects an array
push @$reference_to_an_array, 7; # the @ sigil means what's on the right is an array
 # and what's on the right is $reference_to_an_array
 # hence: first a @, then a $

Here's a perhaps less confusing way to think about it. As we saw earlier, you can use braces to
wrap what's on the right of a sigil. So you can think of @{} as something that takes an array
reference and gives you the referenced array.

pop does not like array references
pop $reference_to_an_array; # ERROR in Perl 5.20+
but if we use @{}, then...
pop @{ $reference_to_an_array }; # this works!

As it turns out, @{} actually accepts an expression:

my $values = undef;
say pop @{ $values }; # ERROR: can't use undef as an array reference
say pop @{ $values // [5] } # undef // [5] gives [5], so this prints 5

...and the same trick works for other sigils, too.

This is not an example of good Perl. It is merely a demonstration of this language feature
my $hashref = undef;
for my $key (%{ $hashref // {} }) {
 "This doesn't crash";
}

...but if the "argument" to a sigil is simple, you can leave the braces away.

say $$scalar_reference;
say pop @$array_reference;
for keys (%$hash_reference) { ... };

Things can get excessively extravagant. This works, but please Perl responsibly.

my %hash = (it => 'ciao', en => 'hi', fr => 'salut');
my $reference = \%hash;
my $reference_to_a_reference = \$reference;

my $italian = $hash{it}; # Direct access
my @greets = @$reference{'it', 'en'}; # Dereference, then access as array
my %subhash = %$$reference_to_a_reference{'en', 'fr'} # Dereference ×2 then access as hash

For most normal use, you can just use subroutine names without a sigil. (Variables without a sigil
are typically called "barewords".) The & sigil is only useful in a limited number of cases.

Making a reference to a subroutine:

sub many_bars { 'bar' x $_[0] }
my $reference = \&many_bars;
say $reference->(3); # barbarbar

•

https://riptutorial.com/ 122

Calling a function ignoring its prototype.•

Combined with goto, as a slightly weird function call that has the current call frame replaced
with the caller. Think the linux exec() API call, but for functions.

•

Read Variables online: https://riptutorial.com/perl/topic/1566/variables

https://riptutorial.com/ 123

https://riptutorial.com/perl/topic/1566/variables

Chapter 40: XML Parsing

Examples

Parsing with XML::Twig

#!/usr/bin/env perl

use strict;
use warnings 'all';

use XML::Twig;

my $twig = XML::Twig->parse(*DATA);

#we can use the 'root' method to find the root of the XML.
my $root = $twig->root;

#first_child finds the first child element matching a value.
my $title = $root->first_child('title');

#text reads the text of the element.
my $title_text = $title->text;

print "Title is: ", $title_text, "\n";

#The above could be combined:
print $twig ->root->first_child_text('title'), "\n";

You can use the 'children' method to iterate multiple items:
my $list = $twig->root->first_child('list');

#children can optionally take an element 'tag' - otherwise it just returns all of them.
foreach my $element ($list->children) {

 #the 'att' method reads an attribute
 print "Element with ID: ", $element->att('id') // 'none here', " is ", $element->text,
 "\n";
}

#And if we need to do something more complicated, we an use 'xpath'.
#get_xpath or findnodes do the same thing:
#return a list of matches, or if you specify a second numeric argument, just that numbered
match.

#xpath syntax is fairly extensive, but in this one - we search:
anywhere in the tree: //
#nodes called 'item'
#with an id attribute [@id]
#and with that id attribute equal to "1000".
#by specifying '0' we say 'return just the first match'.

print "Item 1000 is: ", $twig->get_xpath('//item[@id="1000"]', 0)->text, "\n";

#this combines quite well with `map` to e.g. do the same thing on multiple items
print "All IDs:\n", join ("\n", map { $_ -> att('id') } $twig -> get_xpath('//item'));
#note how this also finds the item under 'summary', because of //

https://riptutorial.com/ 124

__DATA__
<?xml version="1.0" encoding="utf-8"?>
<root>
 <title>some sample xml</title>
 <first key="value" key2="value2">
 <second>Some text</second>
 </first>
 <third>
 <fourth key3="value">Text here too</fourth>
 </third>
 <list>
 <item id="1">Item1</item>
 <item id="2">Item2</item>
 <item id="3">Item3</item>
 <item id="66">Item66</item>
 <item id="88">Item88</item>
 <item id="100">Item100</item>
 <item id="1000">Item1000</item>
 <notanitem>Not an item at all really.</notanitem>
 </list>
 <summary>
 <item id="no_id">Test</item>
 </summary>
</root>

Consuming XML with XML::Rabbit

With XML::Rabbit it is possible to consume XML files easily. You define in a declarative way and
with an XPath syntax what you are looking for in the XML and XML::Rabbit will return objects
according to the given definition.

Definition:

package Bookstore;
use XML::Rabbit::Root;
has_xpath_object_list books => './book' => 'Bookstore::Book';
finalize_class();

package Bookstore::Book;
use XML::Rabbit;
has_xpath_value bookid => './@id';
has_xpath_value author => './author';
has_xpath_value title => './title';
has_xpath_value genre => './genre';
has_xpath_value price => './price';
has_xpath_value publish_date => './publish_date';
has_xpath_value description => './description';
has_xpath_object purchase_data => './purchase_data' => 'Bookstore::Purchase';
finalize_class();

package Bookstore::Purchase;
use XML::Rabbit;
has_xpath_value price => './price';
has_xpath_value date => './date';
finalize_class();

https://riptutorial.com/ 125

http://search.cpan.org/~robins/XML-Rabbit/lib/XML/Rabbit.pm

XML Consumption:

use strict;
use warnings;
use utf8;

package Library;
use feature qw(say);
use Carp;
use autodie;

say "Showing data information";
my $bookstore = Bookstore->new(file => './sample.xml');

foreach my $book(@{$bookstore->books}) {
 say "ID: " . $book->bookid;
 say "Title: " . $book->title;
 say "Author: " . $book->author, "\n";
}

Notes:

Please be careful with the following:

The first class has to be XML::Rabbit::Root. It will place you inside the main tag of the XML
document. In our case it will place us inside <catalog>

1.

Nested classes which are optional. Those classes need to be accessed via a try/catch (or
eval / $@ check) block. Optional fields will simply return null. For example, for purchase_data
the loop would be:

2.

foreach my $book(@{$bookstore->books}) {
 say "ID: " . $book->bookid;
 say "Title: " . $book->title;
 say "Author: " . $book->author;
 try {
 say "Purchase price: ". $book->purchase_data->price, "\n";
 } catch {
 say "No purchase price available\n";
 }
}

sample.xml

<?xml version="1.0"?>
<catalog>
 <book id="bk101">
 <author>Gambardella, Matthew</author>
 <title>XML Developer's Guide</title>
 <genre>Computer</genre>
 <price>44.95</price>
 <publish_date>2000-10-01</publish_date>
 <description>An in-depth look at creating applications
 with XML.</description>
 </book>
 <book id="bk102">

https://riptutorial.com/ 126

 <author>Ralls, Kim</author>
 <title>Midnight Rain</title>
 <genre>Fantasy</genre>
 <price>5.95</price>
 <publish_date>2000-12-16</publish_date>
 <description>A former architect battles corporate zombies,
 an evil sorceress, and her own childhood to become queen
 of the world.</description>
 </book>
 <book id="bk103">
 <author>Corets, Eva</author>
 <title>Maeve Ascendant</title>
 <genre>Fantasy</genre>
 <price>5.95</price>
 <publish_date>2000-11-17</publish_date>
 <description>After the collapse of a nanotechnology
 society in England, the young survivors lay the
 foundation for a new society.</description>
 </book>
 <book id="bk104">
 <author>Corets, Eva</author>
 <title>Oberon's Legacy</title>
 <genre>Fantasy</genre>
 <price>5.95</price>
 <publish_date>2001-03-10</publish_date>
 <description>In post-apocalypse England, the mysterious
 agent known only as Oberon helps to create a new life
 for the inhabitants of London. Sequel to Maeve
 Ascendant.</description>
 <purchase_data>
 <date>2001-12-21</date>
 <price>20</price>
 </purchase_data>
 </book>
</catalog>

Parsing with XML::LibXML

This uses the 'sample.xml' given in the XML::Twig example.

Module requirements (1.70 and above for use of load_xml)
use XML::LibXML '1.70';

let's be a good perl dev
use strict;
use warnings 'all';

Create the LibXML Document Object
my $xml = XML::LibXML->new();

Where we are retrieving the XML from
my $file = 'sample.xml';

Load the XML from the file
my $dom = XML::LibXML->load_xml(
 location => $file
);

get the docroot

https://riptutorial.com/ 127

my $root = $dom->getDocumentElement;

if the document has children
if($root->hasChildNodes) {

 # getElementsByLocalName returns a node list of all elements who's
 # localname matches 'title', and we want the first occurrence
 # (via get_node(1))
 my $title = $root->getElementsByLocalName('title');

 if(defined $title) {
 # Get the first matched node out of the nodeList
 my $node = $title->get_node(1);

 # Get the text of the target node
 my $title_text = $node->textContent;

 print "The first node with name 'title' contains: $title_text\n";
 }

 # The above calls can be combined, but is possibly prone to errors
 # (if the getElementsByLocalName() failed to match a node).
 #
 # my $title_text = $root->getElementsByLocalName('title')->get_node(1)->textContent;
}

Using Xpath, get the price of the book with id 'bk104'

Set our xpath
my $xpath = q!/catalog/book[@id='bk104']/price!;

Does that xpath exist?
if($root->exists($xpath)) {

 # Pull in the twig
 my $match = $root->find($xpath);

 if(defined $match) {
 # Get the first matched node out of the nodeList
 my $node = $match->get_node(1);

 # pull in the text of that node
 my $match_text = $node->textContent;

 print "The price of the book with id bk104 is: $match_text\n";
 }
}

Read XML Parsing online: https://riptutorial.com/perl/topic/3590/xml-parsing

https://riptutorial.com/ 128

https://riptutorial.com/perl/topic/3590/xml-parsing

Credits

S.
No

Chapters Contributors

1
Getting started with
Perl Language

Alan Haggai Alavi, choroba, Christopher Bottoms, Community,
datageist, Denis Ibaev, eddy85br, Eugen Konkov, Jon Ericson,
Leon Timmermans, oals, Pro Q, rlandster, xfix

2 Attributed Text SajithP

3 Best Practices fifaltra, interduo

4 Comments 4444, Christopher Bottoms, lanti, Rebecca Close

5
Compile Perl cpan
module sapnwrfc
from source code

flotux

6 Control Statements callyalater, Christopher Bottoms, oals, Stephen Leppik

7 Dancer Chankey Pathak, vanHoesel

8 Dates and Time Ngoan Tran, waghso

9 Debug Output Ataul Haque, Christopher Bottoms, Joe, simbabque, waghso

10
Easy way to check
installed modules on
Mac and Ubuntu

fanlim, Ngoan Tran,

11 Exception handling badp, simbabque

12
File I/O (reading and
writing files)

Christopher Bottoms, Denis Ibaev, Håkon Hægland, Kemi, Kent
Fredric, matt freake, Nagaraju, rbennett485, SajithP, Sebi,
SREagle, Tim Hallyburton, yonyon100

13
GUI Applications in
Perl

oldtechaa

14
Install Perl modules
via CPAN

Christopher Bottoms, Kemi, luistm, Ngoan Tran, Peter
Mortensen, Randall

15 Installation of Perl fanlim, flamey, Håkon Hægland, Iván Rodríguez Torres, luistm

16 Interpolation in Perl oals, Ruslan Batdalov

brian d foy, Christopher Bottoms, David Mertens, Denis Ibaev, 17 Lists

https://riptutorial.com/ 129

https://riptutorial.com/contributor/66353/alan-haggai-alavi
https://riptutorial.com/contributor/1030675/choroba
https://riptutorial.com/contributor/215487/christopher-bottoms
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/274129/datageist
https://riptutorial.com/contributor/1186729/denis-ibaev
https://riptutorial.com/contributor/3175566/eddy85br
https://riptutorial.com/contributor/4632019/eugen-konkov
https://riptutorial.com/contributor/1438/jon-ericson
https://riptutorial.com/contributor/4727/leon-timmermans
https://riptutorial.com/contributor/5185210/oals
https://riptutorial.com/contributor/5049813/pro-q
https://riptutorial.com/contributor/268847/rlandster
https://riptutorial.com/contributor/736054/xfix
https://riptutorial.com/contributor/3073378/sajithp
https://riptutorial.com/contributor/3134778/fifaltra
https://riptutorial.com/contributor/3380064/interduo
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/215487/christopher-bottoms
https://riptutorial.com/contributor/3414053/lanti
https://riptutorial.com/contributor/6828657/rebecca-close
https://riptutorial.com/contributor/7890117/flotux
https://riptutorial.com/contributor/4975646/callyalater
https://riptutorial.com/contributor/215487/christopher-bottoms
https://riptutorial.com/contributor/5185210/oals
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/257635/chankey-pathak
https://riptutorial.com/contributor/1765406/vanhoesel
https://riptutorial.com/contributor/6318325/ngoan-tran
https://riptutorial.com/contributor/3109685/waghso
https://riptutorial.com/contributor/4569149/ataul-haque
https://riptutorial.com/contributor/215487/christopher-bottoms
https://riptutorial.com/contributor/143791/joe
https://riptutorial.com/contributor/1331451/simbabque
https://riptutorial.com/contributor/3109685/waghso
https://riptutorial.com/contributor/1049666/fanlim
https://riptutorial.com/contributor/6318325/ngoan-tran
https://riptutorial.com/contributor/7408563/---
https://riptutorial.com/contributor/7408563/---
https://riptutorial.com/contributor/7408563/---
https://riptutorial.com/contributor/13992/badp
https://riptutorial.com/contributor/1331451/simbabque
https://riptutorial.com/contributor/215487/christopher-bottoms
https://riptutorial.com/contributor/1186729/denis-ibaev
https://riptutorial.com/contributor/2173773/hakon-hagland
https://riptutorial.com/contributor/5168448/kemi
https://riptutorial.com/contributor/15614/kent-fredric
https://riptutorial.com/contributor/15614/kent-fredric
https://riptutorial.com/contributor/1168884/matt-freake
https://riptutorial.com/contributor/1848140/nagaraju
https://riptutorial.com/contributor/2066474/rbennett485
https://riptutorial.com/contributor/3073378/sajithp
https://riptutorial.com/contributor/1463584/sebi
https://riptutorial.com/contributor/7095760/sreagle
https://riptutorial.com/contributor/3586288/tim-hallyburton
https://riptutorial.com/contributor/4819884/yonyon100
https://riptutorial.com/contributor/6062567/oldtechaa
https://riptutorial.com/contributor/215487/christopher-bottoms
https://riptutorial.com/contributor/5168448/kemi
https://riptutorial.com/contributor/982292/luistm
https://riptutorial.com/contributor/6318325/ngoan-tran
https://riptutorial.com/contributor/63550/peter-mortensen
https://riptutorial.com/contributor/63550/peter-mortensen
https://riptutorial.com/contributor/584940/randall
https://riptutorial.com/contributor/1049666/fanlim
https://riptutorial.com/contributor/72234/flamey
https://riptutorial.com/contributor/2173773/hakon-hagland
https://riptutorial.com/contributor/2127296/ivan-rodriguez-torres
https://riptutorial.com/contributor/982292/luistm
https://riptutorial.com/contributor/5185210/oals
https://riptutorial.com/contributor/4651679/ruslan-batdalov
https://riptutorial.com/contributor/2766176/brian-d-foy
https://riptutorial.com/contributor/215487/christopher-bottoms
https://riptutorial.com/contributor/1196074/david-mertens
https://riptutorial.com/contributor/1186729/denis-ibaev

DVK, Eugen Konkov, Muaaz Rafi, pwes, reflective_mind, Rick
James, Wolf

18
Memory usage
optimization

mbethke

19 Object-oriented Perl badp, Dmitry Egorov, Ruslan Batdalov, simbabque

20 Pack and unpack Denis Ibaev, Kent Fredric, mbethke

21
Packages and
modules

AntonH, Christopher Bottoms, John Hart, Jon Ericson, Kemi,
Kent Fredric, lepe, mbethke

22
Perl commands for
Windows Excel with
Win32::OLE module

Jean-Francois T.

23 Perl one-liners Dmitry Egorov, Eugen Konkov, Kemi, mbethke, zb226

24 Perl script debugging 4444, Eugen Konkov

25 Perl Testing nslntmnx

26 Perlbrew Håkon Hægland

27 Randomness Christopher Bottoms, Rebecca Close, Zaid

28
Reading a file's
content into a
variable

Alien Life Form, Christopher Bottoms, digitalis_, Jeff Y, Kemi,
mbethke, mob, pwes, rlandster, SREagle

29 Regular Expressions
Al.G., Jon Ericson, rlandster, SajithP, Sarwesh Suman, Stephen
Leppik

30
Simple interaction
with database via
DBI module

Ngoan Tran

31 Sorting Jon Ericson, kjpires, mbethke

32 Special variables AbhiNickz, Denis Ibaev, oals

33
Split a string on
unquoted separators

DVK, Ian Praxil, serenesat

34
Strings and quoting
methods

badp, Christopher Bottoms, Denis Ibaev, digitalis_, Kent Fredric,
mbethke, svarog

35 Subroutines
badp, Christopher Bottoms, dave, digitalis_, interduo, mbethke,
Michael Carman, msh210, Wolf, xfix, xtreak

https://riptutorial.com/ 130

https://riptutorial.com/contributor/119280/dvk
https://riptutorial.com/contributor/4632019/eugen-konkov
https://riptutorial.com/contributor/5224982/muaaz-rafi
https://riptutorial.com/contributor/283519/pwes
https://riptutorial.com/contributor/1379631/reflective-mind
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/1766831/rick-james
https://riptutorial.com/contributor/2932052/wolf
https://riptutorial.com/contributor/5403907/mbethke
https://riptutorial.com/contributor/13992/badp
https://riptutorial.com/contributor/4295017/dmitry-egorov
https://riptutorial.com/contributor/4651679/ruslan-batdalov
https://riptutorial.com/contributor/1331451/simbabque
https://riptutorial.com/contributor/1186729/denis-ibaev
https://riptutorial.com/contributor/15614/kent-fredric
https://riptutorial.com/contributor/5403907/mbethke
https://riptutorial.com/contributor/2261424/antonh
https://riptutorial.com/contributor/215487/christopher-bottoms
https://riptutorial.com/contributor/260371/john-hart
https://riptutorial.com/contributor/1438/jon-ericson
https://riptutorial.com/contributor/5168448/kemi
https://riptutorial.com/contributor/15614/kent-fredric
https://riptutorial.com/contributor/196507/lepe
https://riptutorial.com/contributor/5403907/mbethke
https://riptutorial.com/contributor/1603480/jean-francois-t-
https://riptutorial.com/contributor/4295017/dmitry-egorov
https://riptutorial.com/contributor/4632019/eugen-konkov
https://riptutorial.com/contributor/5168448/kemi
https://riptutorial.com/contributor/5403907/mbethke
https://riptutorial.com/contributor/1529709/zb226
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/4632019/eugen-konkov
https://riptutorial.com/contributor/1647851/nslntmnx
https://riptutorial.com/contributor/2173773/hakon-hagland
https://riptutorial.com/contributor/215487/christopher-bottoms
https://riptutorial.com/contributor/6828657/rebecca-close
https://riptutorial.com/contributor/133939/zaid
https://riptutorial.com/contributor/279600/alien-life-form
https://riptutorial.com/contributor/215487/christopher-bottoms
https://riptutorial.com/contributor/4355151/digitalis-
https://riptutorial.com/contributor/5379657/jeff-y
https://riptutorial.com/contributor/5168448/kemi
https://riptutorial.com/contributor/5403907/mbethke
https://riptutorial.com/contributor/168657/mob
https://riptutorial.com/contributor/283519/pwes
https://riptutorial.com/contributor/268847/rlandster
https://riptutorial.com/contributor/7095760/sreagle
https://riptutorial.com/contributor/3132718/al-g-
https://riptutorial.com/contributor/1438/jon-ericson
https://riptutorial.com/contributor/268847/rlandster
https://riptutorial.com/contributor/3073378/sajithp
https://riptutorial.com/contributor/5950149/sarwesh-suman
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/6318325/ngoan-tran
https://riptutorial.com/contributor/1438/jon-ericson
https://riptutorial.com/contributor/1713351/kjpires
https://riptutorial.com/contributor/5403907/mbethke
https://riptutorial.com/contributor/3014263/abhinickz
https://riptutorial.com/contributor/1186729/denis-ibaev
https://riptutorial.com/contributor/5185210/oals
https://riptutorial.com/contributor/119280/dvk
https://riptutorial.com/contributor/5932126/ian-praxil
https://riptutorial.com/contributor/4248931/serenesat
https://riptutorial.com/contributor/13992/badp
https://riptutorial.com/contributor/215487/christopher-bottoms
https://riptutorial.com/contributor/1186729/denis-ibaev
https://riptutorial.com/contributor/4355151/digitalis-
https://riptutorial.com/contributor/15614/kent-fredric
https://riptutorial.com/contributor/5403907/mbethke
https://riptutorial.com/contributor/1410465/svarog
https://riptutorial.com/contributor/13992/badp
https://riptutorial.com/contributor/215487/christopher-bottoms
https://riptutorial.com/contributor/135351/dave
https://riptutorial.com/contributor/4355151/digitalis-
https://riptutorial.com/contributor/3380064/interduo
https://riptutorial.com/contributor/5403907/mbethke
https://riptutorial.com/contributor/8233/michael-carman
https://riptutorial.com/contributor/552647/msh210
https://riptutorial.com/contributor/2932052/wolf
https://riptutorial.com/contributor/736054/xfix
https://riptutorial.com/contributor/2610955/xtreak

36 True and false
badp, Bill the Lizard, Christopher Bottoms, ikegami, Kent Fredric
, mbethke, msh210, Ole Tange, xfix

37 Unicode Håkon Hægland, Kemi, Kent Fredric, mbethke

38 Variables
Ataul Haque, badp, digitalis_, dmvrtx, Eugen Konkov, Håkon
Hægland, interduo, Jon Ericson, Kent Fredric, mbethke, Mik,
nfanta, oals, Otterbein, zb226

39 XML Parsing cbmckay, Drav Sloan, eballes, Sobrique

https://riptutorial.com/ 131

https://riptutorial.com/contributor/13992/badp
https://riptutorial.com/contributor/1288/bill-the-lizard
https://riptutorial.com/contributor/215487/christopher-bottoms
https://riptutorial.com/contributor/589924/ikegami
https://riptutorial.com/contributor/15614/kent-fredric
https://riptutorial.com/contributor/5403907/mbethke
https://riptutorial.com/contributor/552647/msh210
https://riptutorial.com/contributor/363028/ole-tange
https://riptutorial.com/contributor/736054/xfix
https://riptutorial.com/contributor/2173773/hakon-hagland
https://riptutorial.com/contributor/5168448/kemi
https://riptutorial.com/contributor/15614/kent-fredric
https://riptutorial.com/contributor/5403907/mbethke
https://riptutorial.com/contributor/4569149/ataul-haque
https://riptutorial.com/contributor/13992/badp
https://riptutorial.com/contributor/4355151/digitalis-
https://riptutorial.com/contributor/957457/dmvrtx
https://riptutorial.com/contributor/4632019/eugen-konkov
https://riptutorial.com/contributor/2173773/hakon-hagland
https://riptutorial.com/contributor/2173773/hakon-hagland
https://riptutorial.com/contributor/3380064/interduo
https://riptutorial.com/contributor/1438/jon-ericson
https://riptutorial.com/contributor/15614/kent-fredric
https://riptutorial.com/contributor/5403907/mbethke
https://riptutorial.com/contributor/4146954/mik
https://riptutorial.com/contributor/3763926/nfanta
https://riptutorial.com/contributor/5185210/oals
https://riptutorial.com/contributor/6356910/otterbein
https://riptutorial.com/contributor/1529709/zb226
https://riptutorial.com/contributor/3054046/cbmckay
https://riptutorial.com/contributor/791908/drav-sloan
https://riptutorial.com/contributor/2185890/eballes
https://riptutorial.com/contributor/2566198/sobrique

	About
	Chapter 1: Getting started with Perl Language
	Remarks
	Versions
	Examples
	Getting started with Perl

	Chapter 2: Attributed Text
	Examples
	Printing colored Text

	Chapter 3: Best Practices
	Examples
	Using Perl::Critic

	Installation
	Basic Usage
	Viewing Policies
	Ignoring Code
	Creating Permanent Exceptions
	Conclusion

	Chapter 4: Comments
	Examples
	Single-line comments
	Multi-line comments

	Chapter 5: Compile Perl cpan module sapnwrfc from source code
	Introduction
	Remarks
	Examples
	Simple example to test the RFC connection

	Chapter 6: Control Statements
	Examples
	Conditionals
	If-Else Statements
	Loops

	Chapter 7: Dancer
	Introduction
	Examples
	Easiest example

	Chapter 8: Dates and Time
	Examples
	Create new DateTime
	Working with elements of datetime
	Calculate code execution time

	Chapter 9: Dates and Time
	Examples
	Date formatting

	Chapter 10: Debug Output
	Examples
	Dumping data-structures
	Dumping with Style
	Dumping array list
	Data::Show

	Chapter 11: Easy way to check installed modules on Mac and Ubuntu
	Examples
	Check installed perl modules via terminal
	Use perldoc to check the Perl package install path
	How to check Perl corelist modules.
	How to check the version of a installed module?

	Chapter 12: Exception handling
	Examples
	eval and die

	Chapter 13: File I/O (reading and writing files)
	Parameters
	Remarks
	Examples
	Reading from a file
	Write to a file
	Opening A FileHandle for Reading

	Opening Generic ASCII Text Files
	Opening Binary Files
	Opening UTF8 Text Files
	Reading from and writing to a file
	"use autodie" and you won't need to check file open/close failures

	autodie allows you to work with files without having to explicitly check for open/close failures.
	Rewind a filehandle
	Reading and Writing gzip compressed files

	Writing a gzipped file
	Reading from a gzipped file
	Setting the default Encoding for IO

	Chapter 14: GUI Applications in Perl
	Remarks
	Examples
	GTK Application

	Chapter 15: Install Perl modules via CPAN
	Examples
	Run Perl CPAN in your terminal (Mac and Linux) or command prompt (Windows)

	Command line
	Interactive Shell
	Installing modules manually
	cpanminus, the lightweight configuration-free replacement for cpan

	Chapter 16: Installation of Perl
	Introduction
	Examples
	Linux
	OS X
	Windows

	Chapter 17: Interpolation in Perl
	Examples
	Basic interpolation
	What is interpolated

	Chapter 18: Lists
	Examples
	Array as list
	Assigning a list to a hash
	Lists can be passed into subroutines
	Return list from subroutine
	Using arrayref to pass array to sub
	Hash as list

	Chapter 19: Memory usage optimization
	Examples
	Reading files: foreach vs. while
	Processing long lists

	Chapter 20: Object-oriented Perl
	Examples
	Creating Objects
	Defining Classes
	Inheritance and methods resolution
	Class and Object Methods
	Defining classes in modern Perl
	Roles

	Chapter 21: Pack and unpack
	Examples
	Manually Converting C Structs to Pack Syntax
	Constructing an IPv4 header

	Chapter 22: Packages and modules
	Syntax
	Examples
	Executing the contents of another file
	Loading a module at runtime
	Using a module
	Using a module inside a directory
	CPAN.pm
	List all installed modules

	Chapter 23: Perl commands for Windows Excel with Win32::OLE module
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	1. Opening and Saving Excel/Workbooks
	2. Manipulation of Worksheets
	3. Manipulation of cells
	4. Manipulation of Rows / Columns

	Chapter 24: Perl one-liners
	Examples
	Execute some Perl code from command line
	Using double-quoted strings in Windows one-liners
	Print lines matching a pattern (PCRE grep)
	Replace a substring with another (PCRE sed)
	Print only certain fields
	Print lines 5 to 10
	Edit file in-place
	Reading the whole file as a string
	Upload file into mojolicious

	Chapter 25: Perl script debugging
	Examples
	Run script in debug mode
	Use a nonstandard debugger

	Chapter 26: Perl Testing
	Examples
	Perl Unit Testing Example

	Chapter 27: Perlbrew
	Introduction
	Remarks
	Examples
	Setup perlbrew for the first time

	Create setup script ~/.perlbrew.sh:
	Create installation script install_perlbrew.sh:
	Run installation script:
	Add to the end of your ~/.bashrc
	Source ~/.bashrc:

	Chapter 28: Randomness
	Remarks
	Examples
	Generate a random number between 0 and 100
	Generate a random integer between 0 and 9
	Accessing an array element at random

	Chapter 29: Reading a file's content into a variable
	Examples
	The manual way
	Path::Tiny
	File::Slurper
	File::Slurp
	Slurping a file into an array variable
	Slurp file in one-liner

	Chapter 30: Regular Expressions
	Examples
	Matching strings
	Usage of \Q and \E in pattern matching

	What's between \Q and \E is treated as normal characters
	Parsing a string with a regex
	Replace a string using regular expressions

	Chapter 31: Simple interaction with database via DBI module
	Parameters
	Examples
	DBI module

	Chapter 32: Sorting
	Introduction
	Syntax
	Examples
	Basic Lexical Sort
	Numeric Sort
	Reverse Sort
	The Schwartzian Transform
	Case Insensitive Sort

	Chapter 33: Special variables
	Remarks
	Examples
	Special variables in perl:

	Chapter 34: Split a string on unquoted separators
	Examples
	parse_line()
	Text::CSV or Text::CSV_XS

	NOTES
	Chapter 35: Strings and quoting methods
	Remarks
	Examples
	String Literal Quoting
	Double-quoting
	Heredocs
	Removing trailing newlines

	Chapter 36: Subroutines
	Remarks
	Examples
	Creating subroutines
	Subroutine arguments are passed by reference (except those in signatures)
	Subroutines

	Chapter 37: True and false
	Syntax
	Remarks
	The following values are considered false:
	All other values are true:
	The following operators are commonly treated to return a boolean in scalar context:
	Examples
	List of true and false values

	Chapter 38: Unicode
	Remarks

	A Warning on Filename Encoding
	:encoding(utf8) vs :utf8
	UTF-8 vs utf8 vs UTF8
	More Reading
	Examples
	Create filenames
	Read filenames
	Command line switches for one-liners

	Enable utf8 pragma
	Unicode handling with -C switch
	Standard I/O
	Script's arguments
	Default PerlIO layer
	Standard I/O
	File handles

	Setting encoding with open()
	Setting encoding with binmode()
	open pragma
	Setting encoding with command line -C flag
	The utf8 pragma: using Unicode in your sources
	Handling invalid UTF-8

	Reading invalid UTF-8
	Chapter 39: Variables
	Syntax
	Examples
	Scalars
	Arrays
	Hashes
	Scalar References

	You may want a Scalar Reference If:
	Array References
	Hash References
	Typeglobs, typeglob refs, filehandles and constants
	Sigils

	Chapter 40: XML Parsing
	Examples
	Parsing with XML::Twig
	Consuming XML with XML::Rabbit
	Parsing with XML::LibXML

	Credits

