
phalcon

#phalcon

Table of Contents

About 1

Chapter 1: Getting started with phalcon 2

Remarks 2

Useful links: 2

Versions 2

Examples 3

Installation 3

Windows 3

Linux platforms 3

Ubuntu users 4

Mac OS X 4

Homebrew 4

Chapter 2: Database Management 6

Examples 6

Using standard SQL directly with models 6

Database management using Phalcon Model 6

Setting up default connection service 7

Caching Models Meta-Data. 8

Chapter 3: Events Manager 10

Examples 10

Dynamic ACL check 10

Chapter 4: Filtering and Sanitizing 11

Examples 11

Convenient in-model sanitizing 11

Chapter 5: Incubator 12

Examples 12

Introduction 12

Installation 12

Installation via Composer 12

Installation via Github 13

Installation via the manual way 13

Usage 14

Loading the Incubator into your project 14

Chapter 6: Routing and dispatching 15

Examples 15

RESTful API Routes for Multi Module Application 15

Dynamically set module routes 15

Chapter 7: Validation 17

Remarks 17

Examples 17

Built in Validators 17

Google reCaptcha custom validation component 18

Chapter 8: Working with ACL 20

Syntax 20

Remarks 20

Examples 20

Creating an ACL 20

Defining Access Control and querying an ACL 20

Additional condition in ACL 21

Objects as roles and resources 21

Credits 24

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: phalcon

It is an unofficial and free phalcon ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official phalcon.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/phalcon
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with phalcon

Remarks

Phalcon is an open source, full stack framework for PHP.

Functionality is exposed as PHP classes ready to be used. Written as a C extension, it is
optimized for extremely high performance, being the fastest possible framework available for PHP
developers.

 Useful links:

Resource Link

Team https://phalconphp.com/en/team

Documentation https://docs.phalconphp.com/

Download & Installation instructions https://phalconphp.com/en/download

Forum https://forum.phalconphp.com/

Blog https://blog.phalconphp.com/

GitHub https://github.com/phalcon/cphalcon

Roadmap https://github.com/phalcon/cphalcon/wiki/Roadmap

Built with Phalcon https://builtwith.phalconphp.com/

Versions

Version Release Date

2.0.0 2014-04-17

2.0.1 2015-05-08

2.0.2 2015-05-25

2.0.3 2015-06-10

2.0.4 2015-07-07

https://riptutorial.com/ 2

https://phalconphp.com/en/team
https://docs.phalconphp.com/
https://phalconphp.com/en/download
https://forum.phalconphp.com/
https://blog.phalconphp.com/
https://github.com/phalcon/cphalcon
https://github.com/phalcon/cphalcon/wiki/Roadmap
https://builtwith.phalconphp.com/
https://github.com/phalcon/cphalcon/tree/2.0.0
https://github.com/phalcon/cphalcon/tree/phalcon-v2.0.1
https://github.com/phalcon/cphalcon/tree/phalcon-v2.0.2
https://github.com/phalcon/cphalcon/tree/phalcon-v2.0.3
https://github.com/phalcon/cphalcon/tree/phalcon-v2.0.4

Version Release Date

2.0.5 2015-07-14

2.0.6 2015-07-21

2.0.7 2015-08-17

2.0.8 2015-09-25

2.0.9 2015-11-23

2.0.10 2016-02-04

2.0.11 2016-05-04

2.0.12 2016-05-16

2.0.13 2016-05-24

3.0.0 2016-07-29

3.0.1 2016-08-24

Examples

Installation

Download installation files from Phalcon dedicated download page, as well as finding manuals on
making Phalcon work with popular platforms.

Windows

Put the actual DLL files in a directory proper to extend PHP functionality. For XAMPP use
xampp\php\ext\ - and for WAMP use wamp\bin\php\php*\ext\ derectory. Then enable Phalcon by
adding extension=php_phalcon.dll to the appropriate php.ini file. Restart the web server and
Phalcon should become available.

Linux platforms

To compile the desired version of Phalcon, first install PHP sources along with some other
necessary tools:

#Ubuntu
 sudo apt-get install php5-dev php5-mysql gcc libpcre3-dev

https://riptutorial.com/ 3

https://github.com/phalcon/cphalcon/tree/phalcon-v2.0.5
https://github.com/phalcon/cphalcon/tree/phalcon-v2.0.6
https://github.com/phalcon/cphalcon/tree/phalcon-v2.0.7
https://github.com/phalcon/cphalcon/tree/phalcon-v2.0.8
https://github.com/phalcon/cphalcon/tree/phalcon-v2.0.9
https://github.com/phalcon/cphalcon/tree/phalcon-v2.0.10
https://github.com/phalcon/cphalcon/tree/phalcon-v2.0.11
https://github.com/phalcon/cphalcon/tree/phalcon-v2.0.12
https://github.com/phalcon/cphalcon/tree/2.0.x
https://github.com/phalcon/cphalcon/tree/v3.0.0
https://github.com/phalcon/cphalcon/tree/v3.0.1
https://phalconphp.com/en/download
https://phalconphp.com/en/download/windows

#Fedora
 sudo yum install php-devel php-mysqlnd gcc libtool

#RHEL
 sudo yum install php-devel php-mysql gcc libtool

#Suse
 yast2 -i php5-pear php5-devel php5-mysql gcc

#OS X (Using Homebrew)
 brew tap homebrew/dupes
 brew tap homebrew/versions
 brew tap homebrew/php
 brew install php5x php5x-phalcon # Where "x" - minor number of PHP

After they are all properly installed, Phalcon can be compiled:

git clone --depth=1 git://github.com/phalcon/cphalcon.git
cd cphalcon/build
sudo ./install

(Pick the desired version instead of using just git://github.com/phalcon/cphalcon.git) Afterwards
the Phalcon extension should be available in the PHP directories. All that's left is to include
extension=phalcon.so in the desired php.ini file. Restart the web server and it should be available.

Ubuntu users

It is possible to install Phalcon directly from repositories using following commands:

sudo apt-add-repository ppa:phalcon/stable
sudo apt-get update
sudo apt-get install php5-phalcon

Mac OS X

Homebrew

If you have brew installed you first need to tap homebrew-php:

brew tap homebrew/homebrew-php

After that you need to determine your PHP version. This can be done via the command:

php -v

The command will output something similar to PHP 5.6.22 you want the first and second numbers,
which are 5 and 6 in this case. Then you run the following command to install the proper version
(replacing 5 and 6 with the version you have):

https://riptutorial.com/ 4

brew install php56-phalcon

Sources:

https://docs.phalconphp.com/en/latest/reference/install.html#mac-os-x•

Read Getting started with phalcon online: https://riptutorial.com/phalcon/topic/4559/getting-started-
with-phalcon

https://riptutorial.com/ 5

https://docs.phalconphp.com/en/latest/reference/install.html#mac-os-x
https://riptutorial.com/phalcon/topic/4559/getting-started-with-phalcon
https://riptutorial.com/phalcon/topic/4559/getting-started-with-phalcon

Chapter 2: Database Management

Examples

Using standard SQL directly with models

To use SQL syntax with model, that would transfer result to proper instantions, you should use
directly one of Phalcon\Mvc\Model\Resultset classes:

$users = new \Application\Models\Users();

// bitwise operation on `flag` field
$sql = 'SELECT * FROM phorum.users WHERE
 (15 & (1 << (flag - 1))) > 0 ORDER BY login DESC';

// as a result you will have a Resultset\Simple with Models\Users instances.
$result = new \Phalcon\Mvc\Model\Resultset\Simple(
 null,

 // what model to use for data returned from SQL
 $users,

 // setting result via "read connection" proper for this model.
 $users->getReadConnection()->query($sql)
);

Database management using Phalcon Model

A model for a new table can be created by running the following commend from the terminal root
location:

phalcon model <table-name>

Let us take the Model Users.

SELECT

There are two default functions to do select operation in phalcon, find() and findFirst()

findFirst() is used to get the first row which satisfies the conditions that we are passing. It returns
a single object with the data in first row.

Example:

$user = Users::findFirst("active=1 AND verified=1 AND email='a@a.com'");

This returns the user with the given email and the value of the column verified and active is 1

find() is used to get all rows which satisfies the conditions we are passing.

https://riptutorial.com/ 6

Example:

$users = Users::find("active=1 AND verified=1");

This returns the users with the value of the column verified and active is 1

INSERT

Insert can be done using the following code:

$user = new Users();

$user->name = "Arun";
$user->email = "abc@gmail.com";
$user->verified = 1;
$user->active = 1;

$user->save();

A new row with the these values will be inserted.

UPDATE

Update can be done using the following code:

First we have to select the row we have to update using findFirst()

$user = Users::findFirst("email='a@a.com'");

$user->verified = 0;
$user->active = 0;

$user->save();

This will change the values for the column verified and active for the row with given email.

DELETE Delete can also be done using the findFirst()

Example:

Users::findFirst("email='a@a.com'")->delete();

This will delete the row with given email.

You can also execute custom sql commands with models using the following code:

$query = $this->modelsManager->createQuery("SELECT * FROM Users WHERE email='a@a.com'");

$user = $query->execute();

Setting up default connection service

https://riptutorial.com/ 7

Phalcon uses db service by default to obtain connection to databases.

Assuming you have an conguration file with database field set up, you can include or autoload
following code to obtain connection with database for your project:

$di->set('db', function () use ($config) {
 $dbconf = $config->database;
 switch(strtolower($dbconf->adapter)) {

 case 'mysql':
 return new \Phalcon\Db\Adapter\Pdo\Mysql(array(
 'host' => $dbconf->host,
 'username' => $dbconf->username,
 'password' => $dbconf->password,
 // default database to work with
 'dbname' => $dbconf->dbname,
 // default character set
 'charset' => $dbconf->charset,
 // connection warm-up commands for PDO
 'options' => array(
 PDO::MYSQL_ATTR_INIT_COMMAND => 'SET NAMES "' . $dbconf->charset . '"',
 PDO::ATTR_CASE => PDO::CASE_LOWER
)
));

 case 'postgresql':
 return new \Phalcon\Db\Adapter\Pdo\Postgresql(array(
 'host' => $dbconf->host,
 'username' => $dbconf->username,
 'password' => $dbconf->password,
 'dbname' => $dbconf->dbname,
 'options' => array(
)
));

 default:
 throw new \Exception('Unimplemented database::adapter in config.ini');
 }
});

Caching Models Meta-Data.

Phalcon builds up some information about tables it is using, so it is possible to validate data being
inserted to them without implementing everything by hand. Those are meta data for models. To
speed up and prevent Phalcon from building Meta Data every time page is refreshed, it is possible
to cache them. To do so, you need to implement metaData service for it to use:

$di->set('modelsMetadata', function() use ($config)
{
 // assuming that you have a $config var with
 // models.metadata.adapter field declared
 switch (strtolower($config->models->metadata->adapter)) {
 case 'apc':
 $metaData = new MetaDataApcAdapter([
 'lifetime' => $config->models->metadata->lifetime,
 'suffix' => $config->models->metadata->suffix,
]);

https://riptutorial.com/ 8

 break;
 case 'xcache':
 $metaData = new MetaDataXCacheAdapter([
 'lifetime' => $config->models->metadata->lifetime,
 'prefix' => $config->models->metadata->suffix,
]);
 break;
 case 'memory':
 $metaData = new MetaDataMemoryAdapter();
 break;
 default:
 throw new \Exception('Unimplemented models::metadata.adapter in config.ini');
 }

 return $metaData;
});

Further documentation available at Phalcons' dedicated page.

Read Database Management online: https://riptutorial.com/phalcon/topic/5294/database-
management

https://riptutorial.com/ 9

https://docs.phalconphp.com/pl/latest/reference/models-metadata.html
https://riptutorial.com/phalcon/topic/5294/database-management
https://riptutorial.com/phalcon/topic/5294/database-management

Chapter 3: Events Manager

Examples

Dynamic ACL check

Create a Security class to run your ACL logic.

<?php

namespace Plugins;

use Phalcon\Events\Event;
use Phalcon\Mvc\Dispatcher;
use Phalcon\Acl;
use Phalcon\Acl\Role;
use Phalcon\Acl\Resource;
use Phalcon\Acl\Adapter\Memory as AclList;

class Security extends \Phalcon\Mvc\User\Plugin
{
 public function beforeExecuteRoute(Event $event, Dispatcher $dispatcher)
 {
 // your acl logic here
 }
}

Hook the Security class to the dispatcher, to run on beforeExecuteRoute.

$di = new \Phalcon\DI\FactoryDefault();
$eventsManager = $di['eventsManager'];

$di->setShared('dispatcher', function() use ($eventsManager) {
 $eventsManager->attach('dispatch:beforeExecuteRoute', new \Plugins\Security);
 $dispatcher = new \Phalcon\Mvc\Dispatcher;
 $dispatcher->setEventsManager($eventsManager);
 return $dispatcher;
});

Read Events Manager online: https://riptutorial.com/phalcon/topic/5293/events-manager

https://riptutorial.com/ 10

https://riptutorial.com/phalcon/topic/5293/events-manager

Chapter 4: Filtering and Sanitizing

Examples

Convenient in-model sanitizing

Set a convenience method in your base model

namespace Base;

class Model extends \Phalcon\Mvc\Model
{
 public function sanitize($attr, $filterName)
 {
 $filter = $this->getDI()->get('filter');
 $this->$attr = $filter->sanitize($this->$attr, $filterName);
 }
}

Then use like so

class User extends \Base\Model
{
 public function beforeValidation()
 {
 $this->sanitize('id', 'int');
 // input $this->id: 123abc
 // output: 123

 $this->sanitize('email', 'email');
 // input $this->email: youre(-)mail@dom/ain.com
 // output: youremail@domain.com

 $this->sanitize('wage', 'float');
 // input $this->wage: +1234ab.56cd
 // output: 1234.56

 $this->sanitize('name', 'string');
 // input $this->name: <john>
 // output: john
 }
}

Read Filtering and Sanitizing online: https://riptutorial.com/phalcon/topic/4917/filtering-and-
sanitizing

https://riptutorial.com/ 11

https://riptutorial.com/phalcon/topic/4917/filtering-and-sanitizing
https://riptutorial.com/phalcon/topic/4917/filtering-and-sanitizing

Chapter 5: Incubator

Examples

Introduction

The Phalcon Incubator can be used by the community to experiment with new features or expand
onto the existing Phalcon adapters, prototypes or functionalities.

Anything in the Incubator can be potentially corporated into the framework.

Github repository: https://github.com/phalcon/incubator

Installation

Installation via Composer

The easiest way to install the Incubator is by using Composer.

Install Composer and create a new composer.json file in the root of your project.

|-- app
|-- public
| `-- index.php
|-- vendor
|-- composer.json

Add the following content to the composer.json file. If you are still using Phalcon 2.0.x

{
 "require": {
 "phalcon/incubator": "^2.0"
 }
}

If you are using Phalcon 3.0.0

{
 "require": {
 "phalcon/incubator": "~3.0"
 }
}

After altering the composer.json file, you need to run the following command, from the root of your
project.

$ php composer.phar install

https://riptutorial.com/ 12

https://github.com/phalcon/incubator
https://github.com/phalcon/incubator
http://www.riptutorial.com/composer-php/topic/3267/getting-started-with-composer-php

If you already installed your files and you would like to update them instead. Then use update
instead of install.
By default Composer will create a new folder named vendor in your project root and download all
the requested files into this directory.

After composer has been installed, your document structure should look something like this:

|-- app
|-- public
| `-- index.php
|-- vendor
| `-- phalcon
| `-- incubator
| `-- docs
| `-- Library
| `-- tests
|-- composer.json

Installation via Github

Create a folder named vendor in your project root directory. And also create the folder phalcon
inside this folder.

|-- app
|-- public
| `-- index.php
|-- vendor
| `-- phalcon

Now navigate inside the phalcon folder and clone the Incubator from the Github repository.

git clone https://github.com/phalcon/incubator.git

By default, the above command will download the latest version of Phalcon. If you'd like to
download an earlier version you can simply add the --branch parameter to the command, followed
by the required branch version.

git clone https://github.com/phalcon/incubator.git --branch 2.0.9

Installation via the manual way

If the above methods are confusing for you and you like to do stuff manually, you can easily
download the repository from Github and place the files inside the vendor/phalcon/, in your project
root.

|-- app
|-- public
| `-- index.php

https://riptutorial.com/ 13

https://github.com/phalcon/incubator/archive/master.zip

|-- vendor
| `-- phalcon

Usage

Loading the Incubator into your project

Add the following lines of code to your loader file

$loader = new Phalcon\Loader();

$loader->registerNamespaces([
 'Phalcon' => '/path/to/your/vendor/phalcon/incubator/Library/Phalcon/',
 // any other namespaces you have loaded
 // ...
]);

$loader->register();

Now you can access all the Incubator functionalities by using the normal Phalcon namespaces:

\Phalcon\Acl\Adapter\Database;

Read Incubator online: https://riptutorial.com/phalcon/topic/5354/incubator

https://riptutorial.com/ 14

https://riptutorial.com/phalcon/topic/5354/incubator

Chapter 6: Routing and dispatching

Examples

RESTful API Routes for Multi Module Application

// Define new router group
$api = new \Phalcon\Mvc\Router\Group([
 'module' => 'api',
]);
$api->setPrefix('/api/v1');

// API routes (Maps to Cotnroller::Action)
$api->addGet('/users', 'Users::index');
$api->addGet('/users/search/{query}', 'Users::search');
$api->addGet('/users/{id:[0-9]+}', 'Users::fetch');
$api->addPost('/users', 'Users::add');
$api->addPut('/users/{id:[0-9]+}', 'Users::edit');
$api->addDelete('/users/{id:[0-9]+}', 'Users::delete');

// Add API routes to main router
$router->mount($api);

Example of creating a user:

curl -i -X POST -d
 '{"name": "John Snow", "title": "King of the North"}'
 http://example.com/api/v1/users

Dynamically set module routes

$router = new \Phalcon\Mvc\Router(false);
$router->removeExtraSlashes(true);
$request = new \Phalcon\Http\Request();
$action = strtolower($request->getMethod()); // get, post, etc.
$modules = ['calendar', 'main', 'user']; // names of the modules you create

// you can define other static routes here

foreach ($modules as $module) {
 // must match what you register with the Loader service
 $namespace = 'App\\' . ucfirst($module) . '\Controllers';

 // make a group to avoid setting namespace and module for every route definition
 $moduleGroup = new \Phalcon\Mvc\Router\Group([
 'namespace' => $namespace,
 'module' => $module
]);

 // this will match a route like /calendar/index/save
 $moduleGroup->add("/{$module}/:controller/:action", [
 'controller' => 1,
 'action' => 2

https://riptutorial.com/ 15

]);

 // setting a prefix will apply it to all routes below
 $moduleGroup->setPrefix('/api');

 // this will match a route like /api/calendar/index/save
 $moduleGroup->add("/{$module}/([a-zA-Z_]+)/:action", [
 'controller' => 1,
 'action' => 2
]);

 // this will match a route like /api/calendar/123
 $moduleGroup->add("/{$module}/:int", [
 'moduleId' => 1,
 'controller' => 'index',
 'action' => $action // defined at the top of example
]);

 $router->mount($moduleGroup);
}

// you can define other static routes here

return $router;

Read Routing and dispatching online: https://riptutorial.com/phalcon/topic/5035/routing-and-
dispatching

https://riptutorial.com/ 16

https://riptutorial.com/phalcon/topic/5035/routing-and-dispatching
https://riptutorial.com/phalcon/topic/5035/routing-and-dispatching

Chapter 7: Validation

Remarks

API reference to the validation class can be found here:
https://docs.phalconphp.com/en/latest/api/Phalcon_Validation.html

•

If there is entity provided in \Phalcon\Validation you don't need to pass model key in
\Phalcon\Validation\Validator\Uniqueness

•

Examples

Built in Validators

PresenceOf - Validates that a value is not null or empty string

$validator->add('name', new \Phalcon\Validation\Validator\PresenceOf([
 'message' => 'The name is required'
]));

Email - Checks if a value has a correct e-mail format

$validator->add('email', new \Phalcon\Validation\Validator\Email([
 'message' => 'The e-mail is not valid'
]));

Identical - Checks if a value is identical to other

$validator->add('terms', new \Phalcon\Validation\Validator\Identical([
 'accepted' => 'yes',
 'message' => 'Terms and conditions must be accepted'
]));

Url - Checks if a value has a url format

$validator->add('url', new \Phalcon\Validation\Validator\Url([
 'message' => ':field must be a url'
]));

Confirmation - Checks that two values have the same value

$validator->add('password', new \Phalcon\Validation\Validator\Confirmation([
 'message' => 'Password doesn\'t match confirmation',
 'with' => 'confirmPassword'
]));

StringLength - Validates that a string has the specified maximum and minimum constraints The
test is passed if for a string’s length L, min<=L<=max, i.e. L must be at least min, and at most max.

https://riptutorial.com/ 17

https://docs.phalconphp.com/en/latest/api/Phalcon_Validation.html

$validation->add('name_last', new \Phalcon\Validation\Validator\StringLength([
 'max' => 50,
 'min' => 2,
 'messageMaximum' => 'We don\'t like really long names',
 'messageMinimum' => 'We want more than just their initials'
]));

Regex - Allows validate if the value of a field matches a regular expression

$validator->add('created_at', new \Phalcon\Validation\Validator\Regex([
 'pattern' => '/^[0-9]{4}[-\/](0[1-9]|1[12])[-\/](0[1-9]|[12][0-9]|3[01])$/',
 'message' => 'The creation date is invalid'
]));

CreditCard - Checks if a value has a valid creditcard number

$validator->add('creditcard', new \Phalcon\Validation\Validator\CreditCard([
 'message' => 'The credit card number is not valid'
]));

Between - Validates that a value is between an inclusive range of two values. For a value x, the
test is passed if minimum<=x<=maximum.

$validator->add('name', new \Phalcon\Validation\Validator\Between([
 'minimum' => 0,
 'maximum' => 100,
 'message' => 'The price must be between 0 and 100'
]));

ExclusionIn - Check if a value is not included into a list of values

$validator->add('status', new \Phalcon\Validation\Validator\ExclusionIn([
 'message' => 'The status must not be A or B',
 'domain' => ['A', 'B']
]));

InclusionIn - Check if a value is included into a list of values

$validator->add('status', new \Phalcon\Validation\Validator\InclusionIn([
 'message' => 'The status must be A or B',
 'domain' => ['A', 'B']
]));

Uniqueness - Check if a value is uniqueness

$validator->add('login', new \Phalcon\Validation\Validator\Uniqueness([
 'message' => 'The login must be unique',
 'model' => new Users()
]));

Google reCaptcha custom validation component

https://riptutorial.com/ 18

The class

use Phalcon\Validation\Validator;
use Phalcon\Validation\ValidatorInterface;
use Phalcon\Validation\Message;

class RecaptchaValidator extends Validator implements ValidatorInterface
{
 public function validate(\Phalcon\Validation $validation, $attribute)
 {
 $value = $validation->getValue('g-recaptcha-response');
 $ip = $validation->request->getClientAddress();
 if (!$this->verify($value, $ip)) {
 $validation->appendMessage(new Message($this->getOption('message'), $attribute,
'Recaptcha'));
 return false;
 }
 return true;
 }

 protected function verify($value, $ip)
 {
 $params = [
 'secret' => 'YOUR_RECAPTCHA_SECRET_KEY',
 'response' => $value,
 'remoteip' => $ip
];
 $response =
json_decode(file_get_contents('https://www.google.com/recaptcha/api/siteverify?' .
http_build_query($params)));
 return (bool) $response->success;
 }
}

Example usage in a Phalcon form:

$reCaptchaField->addValidator(new \RecaptchaValidator([
 'message' => 'Your reCaptcha error message'
]));

Read Validation online: https://riptutorial.com/phalcon/topic/4722/validation

https://riptutorial.com/ 19

https://riptutorial.com/phalcon/topic/4722/validation

Chapter 8: Working with ACL

Syntax

You can use '*' as second and third parameter in Phalcon\Acl::allow and Phalcon\Acl::deny
methods. This will mean any resource and action respectively.

•

Second argument in Phalcon\Acl::addRole tells from which role inheritance access.•

Remarks

You should serialize your ACL to some file or cache backend instead of creating it on each
request.

•

Also it's good idea to keep acl in seperated file.•
Phalcon\Acl is able to send events to event manager, there are two events -
beforeCheckAccess and afterCheckAccess.

•

You can use Phalcon\Acl\AdapterInterface to implement your own acl adapter.•
You can protect your routes using acl with combination of proper listener in dispatcher•

Examples

Creating an ACL

You can create ACL by using Phalcon\Acl\Adapter\Memory class:

$acl = new Phalcon\Acl\Adapter\Memory();

By default phalcon allows action to resource which has not been defined, to change this you can
use:

$acl->setDefaultAction(Phalcon\Acl::DENY);

Roles can be added in two ways - using Phalcon\Acl\Role or just plain string:

$roleAdministrator = new Phalcon\Acl\Role('Administrator');
$acl->addRole($roleAdministrator);
$acl->addRole('Customer');

Resources can be added in two ways too, you can add actions as single action or as array:

$resourceCategories = new Phalcon\Acl\Resource('categories');
$acl->addResource($resourceCategories, 'create');
$acl->addResource('products', ['create', 'update']);

Defining Access Control and querying an ACL

https://riptutorial.com/ 20

You can allow role to access some action on resource by:

$acl->allow('Administrator', 'products', 'create');

You can deny role to access some action on resource by:

$acl->deny('Customer', 'categories', 'create');

You can check if role is allowed to some action on resource by using:

$acl->isAllowed('Administrator', 'products', 'create');

Additional condition in ACL

You can add also add some more logic which has to be checked to your ACL using anonymous
functions. They will be executed when using Phalcon\Acl\Adapter\Memory::allow() or
Phalcon\Acl\Adapter\Memory::deny(), if they will return true, they role will be allowed to access
certain action on resource.

$acl->allow('Customer', 'products', 'create', function($parameter) {
 return $parameter % 2 == 0;
});
$acl->isAllowed('Customer', 'products', 'create', ['parameter' => 1]); // this will return
false
$acl->isAllowed('Customer', 'products', 'create', ['parameter' => 2]); // this will return
true

Notice how parameters are passed to function. Your key in array needs to have the same name as
in function. Also default parameters parameters can be passed, as well as objects.

Objects as roles and resources

By implementing Phalcon\Acl\RoleAware or Phalcon\Acl\ResourceAware you can use them as objects
in Phalcon\Acl\Adapter\Memory::isAllowed().

// Create our class which will be used as roleName
class UserRole implements Phalcon\Acl\RoleAware
{
 protected $id;
 protected $roleName;

 public function __construct($id, $roleName)
 {
 $this->id = $id;
 $this->roleName = $roleName;
 }

 public function getId()
 {
 return $this->id;
 }

https://riptutorial.com/ 21

 // Implemented function from RoleAware Interface
 public function getRoleName()
 {
 return $this->roleName;
 }
}

// Create our class which will be used as resourceName
class ModelResource implements Phalcon\Acl\ResourceAware
{
 protected $id;
 protected $resourceName;
 protected $userId;

 public function __construct($id, $resourceName, $userId)
 {
 $this->id = $id;
 $this->resourceName = $resourceName;
 $this->userId = $userId;
 }

 public function getId()
 {
 return $this->id;
 }

 public function getUserId()
 {
 return $this->userId;
 }

 // Implemented function from ResourceAware Interface
 public function getResourceName()
 {
 return $this->resourceName;
 }
}

$customer = new ModelResource(1, "products", 2);
$administrator = new UserRole(1, "Administrator");
$acl->isAllowed($administrator, $customer, 'create');

Also ability to use objects can be combined with additional condition in acl:

$acl->allow('Administrator', 'products', 'update', function(UserRole $user, ModelResource
$model) {
 return $user->getId == $model->getUserId();
});
$product = new ModelResource(1, 'products', 2);
$administrator = new UserRole(1, 'Administrator');
$anotherAdministrator = new UserRole(2, 'Administrator');
$acl->isAllowed($administrator, $product, 'update'); // this will return false
$acl->isAllowed($anotherAdministrator, $product, 'update'); // this will return true

Notice that with additional condition and using objects in isAllowed method you don't need to pass
those objects as arguments. They are passed automatically only if there are correct types before
arguments in function. This gives you huge ability to control if certain users can edit for example

https://riptutorial.com/ 22

certain models in your application and when they can do it.

Read Working with ACL online: https://riptutorial.com/phalcon/topic/5202/working-with-acl

https://riptutorial.com/ 23

https://riptutorial.com/phalcon/topic/5202/working-with-acl

Credits

S.
No

Chapters Contributors

1
Getting started with
phalcon

4444, Community, Goke Obasa, Magnie Mozios, Nikolay
Mihaylov, Timothy, yergo

2
Database
Management

Arun D Nambissan, yergo

3 Events Manager galki

4
Filtering and
Sanitizing

galki, Timothy

5 Incubator Timothy

6
Routing and
dispatching

galki, Nikolay Mihaylov, Timothy

7 Validation Juri, Nikolay Mihaylov, Timothy

8 Working with ACL Juri

https://riptutorial.com/ 24

https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2930323/goke-obasa
https://riptutorial.com/contributor/6055465/magnie-mozios
https://riptutorial.com/contributor/4509457/nikolay-mihaylov
https://riptutorial.com/contributor/4509457/nikolay-mihaylov
https://riptutorial.com/contributor/4497805/timothy
https://riptutorial.com/contributor/4615331/yergo
https://riptutorial.com/contributor/3898364/arun-d-nambissan
https://riptutorial.com/contributor/4615331/yergo
https://riptutorial.com/contributor/4823555/galki
https://riptutorial.com/contributor/4823555/galki
https://riptutorial.com/contributor/4497805/timothy
https://riptutorial.com/contributor/4497805/timothy
https://riptutorial.com/contributor/4823555/galki
https://riptutorial.com/contributor/4509457/nikolay-mihaylov
https://riptutorial.com/contributor/4497805/timothy
https://riptutorial.com/contributor/4035199/juri
https://riptutorial.com/contributor/4509457/nikolay-mihaylov
https://riptutorial.com/contributor/4497805/timothy
https://riptutorial.com/contributor/4035199/juri

	About
	Chapter 1: Getting started with phalcon
	Remarks
	Useful links:
	Versions
	Examples
	Installation

	Windows
	Linux platforms
	Ubuntu users

	Mac OS X
	Homebrew

	Chapter 2: Database Management
	Examples
	Using standard SQL directly with models
	Database management using Phalcon Model
	Setting up default connection service
	Caching Models Meta-Data.

	Chapter 3: Events Manager
	Examples
	Dynamic ACL check

	Chapter 4: Filtering and Sanitizing
	Examples
	Convenient in-model sanitizing

	Chapter 5: Incubator
	Examples
	Introduction
	Installation

	Installation via Composer
	Installation via Github
	Installation via the manual way
	Usage

	Loading the Incubator into your project
	Chapter 6: Routing and dispatching
	Examples
	RESTful API Routes for Multi Module Application
	Dynamically set module routes

	Chapter 7: Validation
	Remarks
	Examples
	Built in Validators
	Google reCaptcha custom validation component

	Chapter 8: Working with ACL
	Syntax
	Remarks
	Examples
	Creating an ACL
	Defining Access Control and querying an ACL
	Additional condition in ACL
	Objects as roles and resources

	Credits

