
phoenix-framework

#phoenix-

framework

Table of Contents

About 1

Chapter 1: Getting started with phoenix-framework 2

Remarks 2

Versions 2

Examples 4

Installation 4

Skeleton Installation 6

Creating Phoenix project 6

Running Elixir/Phoenix on OSX 8

Generating resources for a model 8

Chapter 2: Ecto models usage in phoenix 10

Introduction 10

Examples 10

Generate User model from command line 10

Migrations of ecto model 10

Chapter 3: Generate project documentation 11

Examples 11

Rationale 11

Credits 13

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: phoenix-framework

It is an unofficial and free phoenix-framework ebook created for educational purposes. All the
content is extracted from Stack Overflow Documentation, which is written by many hardworking
individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official phoenix-
framework.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/phoenix-framework
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with phoenix-
framework

Remarks

This section provides an overview of what phoenix-framework is, and why a developer might want
to use it.

It should also mention any large subjects within phoenix-framework, and link out to the related
topics. Since the Documentation for phoenix-framework is new, you may need to create initial
versions of those related topics.

Versions

Version Release Date

0.1.1 2014-05-01

0.2.0 2014-05-01

0.2.1 2014-05-01

0.2.2 2014-06-05

0.2.3 2014-05-05

0.2.10 2014-05-22

0.2.11 2014-06-30

0.3.0 2014-07-01

0.3.1 2014-07-05

0.4.0 2014-08-31

0.4.1 2014-09-09

0.5.0 2014-10-14

0.6.0 2014-11-22

0.6.1 2014-11-30

0.6.2 2014-12-08

0.7.0 2014-12-10

https://riptutorial.com/ 2

Version Release Date

0.7.1 2014-12-10

0.7.2 2014-12-11

0.8.0 2015-01-11

0.9.0 2015-02-12

0.10.0 2015-03-08

0.11.0 2015-04-08

0.12.0 2015-05-01

0.13.0 2015-11-15

0.13.1 2015-05-17

0.14.0 2015-06-30

0.15.0 2015-07-27

0.16.0 2015-08-06

0.16.1 2015-08-06

0.17.1 2015-08-27

1.0.0 2015-08-28

1.0.1 2015-09-03

1.0.2 2015-09-07

1.0.3 2015-09-29

1.0.4 2015-12-15

1.1.0 2015-09-16

1.1.1 2015-09-27

1.1.2 2016-01-09

1.1.3 2016-01-20

v1.2.0-rc.0 2016-04-29

v1.2.0-rc.1 2016-05-25

https://riptutorial.com/ 3

Version Release Date

1.2.0 2016-06-23

1.2.2 2017-03-14

1.2.3 2017-03-15

1.2.4 2017-05-16

1.3.0-rc.1 2017-03-15

1.3.0-rc.2 2017-05-16

Examples

Installation

Phoenix framework is written in Elixir, and Elixir itself is based on Erlang language and leverages
the Erlang VM, known for running low-latency, distributed and fault-tolerant systems. Both
languages are required for using phoenix framework. Following following step to install phoenix
framework:

1. Install Elixir on your machine. See Elixir Installation and how to install Elixir guide.

2. Install Hex package manager. Hex is a necessary tool to get a Phoenix app running and to
install any extra dependencies we might need along the way. From your terminal or command
control window, type:

$ mix local.hex

This command will install or update Hex, if you already have.

3. Install Erlang on your machine. Without Erlang, Elixir code will not compile because Elixir use
Erlang's VM for code compilation. When you will install Elixir, you have probably installed Erlang
too, but if it is not the case then follow these instruction on Elixir guide to install Erlang. However, If
you are have Debian-based system, you may need to explicitly install Erlang.

$ wget https://packages.erlang-solutions.com/erlang-solutions_1.0_all.deb && sudo dpkg -i
erlang-solutions_1.0_all.deb
$ sudo apt-get update
$ sudo apt-get install esl-erlang

4. Install phoenix framework on your machine. Once we have Elixir and Erlang, we are ready to
install the Phoenix Mix archive. A Mix archive is a Zip file which contains an application as well as
its compiled BEAM files. It is tied to a specific version of the application. The archive is what we
will use to generate a new, base Phoenix application which we can build from. Here's the
command to install the Phoenix archive:

https://riptutorial.com/ 4

http://www.phoenixframework.org/
http://elixir-lang.org/
https://www.erlang.org/
http://www.riptutorial.com/elixir/topic/4208/installation
http://elixir-lang.org/getting-started/introduction.html#installation
https://hex.pm/
http://elixir-lang.org/install.html#installing-erlang

$ mix archive.install https://github.com/phoenixframework/archives/raw/master/phoenix_new.ez

Your can download packages manually, if above command doesn't work properly for you.
Download packages to your file system Phoenix archives and run following command

mix archive.install /path/to/local/phoenix_new.ez

5 Plug, Cowboy, and Ecto are components of Phoenix framework, they will be installed
automatically by mix, if you let mix install its dependencies, when you will first create Phoenix
projects. Furthermore, if you don't allow mix to download these components then mix will tell you
how how to do so later.

6. Install Node.js (not less then v5.0.0) on your machine. This is an optional dependency.
Node.js is required to install brunch.io dependencies. Brunch.io is used by Phoenix for compiling
static assets (javascript, css, etc), by default.

We can get node.js from the download page. When selecting a package to download, it's
important to note that Phoenix requires version 5.0.0 or greater.

Mac OS X users can also install node.js via homebrew.

Note: io.js, which is an npm compatible platform originally based on Node.js, is not known to work
with Phoenix.

Debian/Ubuntu users might see an error that looks like this:

sh: 1: node: not found
npm WARN This failure might be due to the use of legacy binary "node"

This is due to Debian having conflicting binaries for node: see discussion on following SO question

Cannot install packages using node package manager in Ubuntu

There are two options to fix this problem, either:

install nodejs-legacy:

$ apt-get install nodejs-legacy

or create a symlink

$ ln -s /usr/bin/nodejs /usr/bin/node

7 Install Database (PostgreSQL) on your machine. Phoenix configures applications to use it by
default, but we can switch to MySQL by passing the --database mysql flag when creating a new
application. The PostgreSQL wiki has installation guides for a number of different systems.

Postgrex is a direct Phoenix dependency and it will be used to create models. Postgrex will be
automatically installed along with the rest of dependencies when you will create and start Phoenix

https://riptutorial.com/ 5

https://github.com/phoenixframework/archives
https://nodejs.org/en/
http://brunch.io/
https://nodejs.org/en/download/
http://brew.sh/
http://stackoverflow.com/questions/21168141/cannot-install-packages-using-node-package-manager-in-ubuntu
https://www.postgresql.org/
https://www.mysql.com/
https://wiki.postgresql.org/wiki/Detailed_installation_guides

project.

8 inotify-tools (for linux users) This is a Linux-only filesystem watcher that Phoenix uses for live
code reloading. (Mac OS X or Windows users can safely ignore it.)

Linux users need to install this dependency. Please consult the inotify-tools wiki for distribution-
specific installation instructions.

Skeleton Installation

Sometimes you want an installation without anything except the bare minimum phoenix setup. The
follow command will give you that.

mix phoenix.new web --no-brunch --no-ecto

Note: You must have installed Elixir, Erlang, Hex, Mix and the Phoenix archive for skeleton
installation

Creating Phoenix project

For creating your first project in Phoenix framework at this point you should have, Elixir, Erlang,
Hex, and the Phoenix archive installed. You should also have PostgreSQL and node.js installed to
build a default application.

Open terminal or command prompt and go to location on your file system where you want to
create application. phoenix.new is the mix command which will create new project for you.
Assuming that the name of our application is hello_phoenix_world, then type

$ mix phoenix.new hello_phoenix_world

Alternately, We can run mix phoenix.new from any directory in order to bootstrap our Phoenix
application. Phoenix will accept either an absolute or relative path for the directory of our new
project

$ mix phoenix.new /Users/username/work/elixir-projects/hello_phoenix_world

Output

mix phoenix.new hello_phoenix_world
* creating hello_phoenix_world/config/config.exs
* creating hello_phoenix_world/config/dev.exs
* creating hello_phoenix_world/config/prod.exs
...
* creating hello_phoenix_world/web/views/layout_view.ex
* creating hello_phoenix_world/web/views/page_view.ex

Fetch and install dependencies? [Yn]

Phoenix will generate the directory structure for your project and it will create all the files required

https://riptutorial.com/ 6

https://github.com/rvoicilas/inotify-tools/wiki

for application. Mix will ask you if you want it to install other required dependencies. Let's say
yes to that.

Fetch and install dependencies? [Yn] Y
* running mix deps.get
* running npm install && node node_modules/brunch/bin/brunch build

Once dependencies are installed, the task will prompt you to change into our project directory
and start application.

Move into your new project folder:

 $cd hello_phoenix_world

You now need to setup the postgres username and password unless its already setup with the
default postgres useranme and postgres password. Edit your config/dev.exs file and set the
username and password:

config/dev.exs
config :hello_phoenix_world, HelloPhoenixWorld.Repo,
 adapter: Ecto.Adapters.Postgres,
 username: "postgres",
 password: "postgres",
 database: "hello_phoenix_world_dev",
 hostname: "localhost",
 pool_size: 10

Now, create the database with the ecto mix task:

 $ mix ecto.create

We have a working application! Run your Phoenix application:

 $ mix phoenix.server

You can also run your app inside IEx (Interactive Elixir) as:

 $ iex -S mix phoenix.server

Load `http://localhost:4000` into your browser and you will see the default landing page of
your application.

Now, lets add hello world to the Phoenix application. Open the web/templates/page/index.html.eex
file and replace the contents with the following and save the file:

<h2>Hello World</h2>

If you have not quit the server, the new code will be automatically compiled and your browser
should now display your "Hello World" message.

You can now create CRUD resource.

Finally, to exit out of the server, type ctrl-c crtl-c (press the control key and the c key together)

https://riptutorial.com/ 7

http://www.riptutorial.com/phoenix-framework/example/26768/generating-resources-for-a-model

twice in a row.

Running Elixir/Phoenix on OSX

Elixir / Phoenix

Install Homebrew first:

/usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

Then running brew install elixir will install both Elixir and it's dependency - Erlang.

Install mix with mix local.hex.

Install Phoenix as per instructions:

mix archive.install https://github.com/phoenixframework/archives/raw/master/phoenix_new.ez

Node.js

You can install and manage your Node.js versions with NVM. Install nvm with:

curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.31.4/install.sh | bash

If curl is not available, you can install it with brew install curl. Then run:

nvm install node

to download and compile and latest version of Node.js.

Database

Download Postgres.app and run it. When you create your Phoenix project, in your config/dev.exs
file, you just need to supply a name for your database - the adapter will use default values for the
rest:

config :myphoenixapp, MyPhoenixApp.Repo,
 adapter: Ecto.Adapters.Postgres,
 database: "myphoenixapp_dev",
 hostname: "localhost",
 pool_size: 10

Generating resources for a model

To generate schema, view, controller, migration file for the repository, default CRUD templates
and test files for a model (like a scaffolding in Rails) one can use phoenix.gen.html mix task like
this:

https://riptutorial.com/ 8

http://brew.sh/
https://github.com/creationix/nvm
http://postgresapp.com/

mix phoenix.gen.html Book books title note:text pages:integer author_id:references:authors

Where Book is the module name, books is plural form used for schema, followed by resource fields:
title (string by default), note (text field), pages (integer), author_id which creates a belongs_to
association with the Author model.

Read Getting started with phoenix-framework online: https://riptutorial.com/phoenix-
framework/topic/4996/getting-started-with-phoenix-framework

https://riptutorial.com/ 9

https://riptutorial.com/phoenix-framework/topic/4996/getting-started-with-phoenix-framework
https://riptutorial.com/phoenix-framework/topic/4996/getting-started-with-phoenix-framework

Chapter 2: Ecto models usage in phoenix

Introduction

How to generate, edit and use ecto models in the phoenix frameworks.

Examples

Generate User model from command line

To generate json user model with username, password_hash, email_id, created_at, updated_at, type

mix phoenix.gen.json User users username:string email_id:string password_hash:string
timestamps()

Migrations of ecto model

When you run mix phoenix.gen.html or mix phoenix.gen.json from command line, migrations are
created in priv -> repo -> migrations in your project folder.

To run migrations type mix ecto.migrate.

To generate migrations for your project mix ecto.gen migrations <model_name>

To generate migrations for a different repository than default one run mix ecto.gen migrations
<model_name> -r <repo_name>

Read Ecto models usage in phoenix online: https://riptutorial.com/phoenix-
framework/topic/10890/ecto-models-usage-in-phoenix

https://riptutorial.com/ 10

https://riptutorial.com/phoenix-framework/topic/10890/ecto-models-usage-in-phoenix
https://riptutorial.com/phoenix-framework/topic/10890/ecto-models-usage-in-phoenix

Chapter 3: Generate project documentation

Examples

Rationale

The correct invocation of helper modules and functions can be intimidating because

these are generated dynamically (e.g., when creating a new project or adding a new resource
)

•

they are not documented explicitly (e.g., MyApp.ErrorHelpers.error_tag)•
the documentation does not cover all examples (e.g., MyApp.Router.Helpers.*_path in
Phoenix.Router).

•

Although the created helpers are scattered all over your project but their location follows a solid
logic. You can get used to them pretty quick and fortunately, when you generate a project with
Phoenix, the code is shipped with documentation via Elixir's @doc and @moduledoc module attributes.

These docs are not limited to helpers only but you can also

see your project broken down by submodules/functions/macros•
add your own documentation•
look up any functions that were generated under the namespace of your project (e.g.,
MyApp.Repo contains callback function implementations from Ecto.Repo)

•

Generating the docs

To generate documentation from your source code, add ex_doc as dependency into your mix.exs
file:

config/mix.exs

def deps do
 [{:ex_doc, "~> 0.11", only: :dev}]
end

You can use Markdown within Elixir @doc and @moduledoc attributes.

Then, run mix deps.get to fetch and compile the new modules and generate the project
documentation with mix docs. An example output is the official Elixir Docs.

To serve them immediately use mix docs --output priv/static/doc and navigate to
my_app_url_or_ip/doc/index.html.

Additional reading:

ex_doc•
Version requirement operators (Elixir.Version)•

https://riptutorial.com/ 11

http://elixir-lang.org/docs/stable/elixir/
https://github.com/elixir-lang/ex_doc
http://elixir-lang.org/docs/stable/elixir/Version.html
http://elixir-lang.org/docs/stable/elixir/Version.html
http://elixir-lang.org/docs/stable/elixir/Version.html

The bulk of this guide is referenced from Elixir Recipes.

Read Generate project documentation online: https://riptutorial.com/phoenix-
framework/topic/5868/generate-project-documentation

https://riptutorial.com/ 12

http://elixir-recipes.github.io/documentation/documentation-with-exdoc/
https://riptutorial.com/phoenix-framework/topic/5868/generate-project-documentation
https://riptutorial.com/phoenix-framework/topic/5868/generate-project-documentation

Credits

S.
No

Chapters Contributors

1
Getting started with
phoenix-framework

Community, helcim, penguin, Steve Pallen, SURAJ KUMAR,
Svilen

2
Ecto models usage
in phoenix

Faizan Ali

3
Generate project
documentation

toraritte

https://riptutorial.com/ 13

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/446557/helcim
https://riptutorial.com/contributor/4774371/penguin
https://riptutorial.com/contributor/7863380/steve-pallen
https://riptutorial.com/contributor/7430888/suraj-kumar
https://riptutorial.com/contributor/213388/svilen
https://riptutorial.com/contributor/2429475/faizan-ali
https://riptutorial.com/contributor/1498178/toraritte

	About
	Chapter 1: Getting started with phoenix-framework
	Remarks
	Versions
	Examples
	Installation
	Skeleton Installation
	Creating Phoenix project
	Running Elixir/Phoenix on OSX
	Generating resources for a model

	Chapter 2: Ecto models usage in phoenix
	Introduction
	Examples
	Generate User model from command line
	Migrations of ecto model

	Chapter 3: Generate project documentation
	Examples
	Rationale

	Credits

