
phpunit

#phpunit

Table of Contents

About 1

Chapter 1: Getting started with phpunit 2

Remarks 2

Versions 2

Examples 2

Create first PHPUnit test for our class 2

The simplest test 3

Using dataProviders 3

Test exceptions 4

SetUp and TearDown 5

More info 6

Minimal example test 6

Mocking classes 7

Example of PHPUNIT with APItest using Stub And Mock 8

Chapter 2: Assertions 10

Examples 10

Assert an Object is an Instance of a Class 10

Assert an Exception is Thrown 11

Assert the Value of a Public, Protected and Private property 12

Chapter 3: Getting Started with PHPUnit 14

Examples 14

Installation on Linux or MacOSX 14

Global installation using the PHP Archive 14

Global installation using Composer 14

Local installation using Composer 14

Chapter 4: Test Doubles (Mocks and Stubs) 15

Examples 15

Simple mocking 15

Introduction 15

Setup 15

Unit Testing with Mocking 16

Simple stubbing 16

Credits 18

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: phpunit

It is an unofficial and free phpunit ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official phpunit.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/phpunit
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with phpunit

Remarks

This section provides an overview of what phpunit is, and why a developer might want to use it.

It should also mention any large subjects within phpunit, and link out to the related topics. Since
the Documentation for phpunit is new, you may need to create initial versions of those related
topics.

Versions

Version Support ends Supported in those PHP versions Release date

5.4 2016-08-05 PHP 5.6, PHP 7. 2016-06-03

4.8 2017-02-03 PHP 5.3, PHP 5.4, PHP 5.5, and PHP 5.6. 2015-08-07

Examples

Create first PHPUnit test for our class

Imagine that we have a class Math.php with logic of calculating of fiobanacci and factorial numbers.
Something like this:

<?php
class Math {
 public function fibonacci($n) {
 if (is_int($n) && $n > 0) {
 $elements = array();
 $elements[1] = 1;
 $elements[2] = 1;
 for ($i = 3; $i <= $n; $i++) {
 $elements[$i] = bcadd($elements[$i-1], $elements[$i-2]);
 }
 return $elements[$n];
 } else {
 throw new
 InvalidArgumentException('You should pass integer greater than 0');
 }
 }

 public function factorial($n) {
 if (is_int($n) && $n >= 0) {
 $factorial = 1;
 for ($i = 2; $i <= $n; $i++) {
 $factorial *= $i;
 }
 return $factorial;

https://riptutorial.com/ 2

 } else {
 throw new
 InvalidArgumentException('You should pass non-negative integer');
 }
 }
}

The simplest test

We want to test logic of methods fibonacci and factorial. Let's create file MathTest.php into the
same directory with Math.php. In our code we can use different assertions. The simplest code will
be something like this (we use only assertEquals and assertTrue):

<?php
require 'Math.php';

use PHPUNIT_Framework_TestCase as TestCase;
// sometimes it can be
// use PHPUnit\Framework\TestCase as TestCase;

class MathTest extends TestCase{
 public function testFibonacci() {
 $math = new Math();
 $this->assertEquals(34, $math->fibonacci(9));
 }

 public function testFactorial() {
 $math = new Math();
 $this->assertEquals(120, $math->factorial(5));
 }

 public function testFactorialGreaterThanFibonacci() {
 $math = new Math();
 $this->assertTrue($math->factorial(6) > $math->fibonacci(6));
 }
}

We can run this test from console with command phpunit MathTest and output will be:

 PHPUnit 5.3.2 by Sebastian Bergmann and contributors.

... 3 / 3 (100%)

Time: 88 ms, Memory: 10.50Mb

OK (3 tests, 3 assertions)

Using dataProviders

A test method can accept arbitrary arguments. These arguments are to be provided by a data

https://riptutorial.com/ 3

https://phpunit.de/manual/current/en/appendixes.assertions.html
https://phpunit.de/manual/current/en/writing-tests-for-phpunit.html

provider method. The data provider method to be used is specified using the @dataProvider
annotation. :

<?php
require 'Math.php';

use PHPUNIT_Framework_TestCase as TestCase;
// sometimes it can be
// use PHPUnit\Framework\TestCase as TestCase;

class MathTest extends TestCase {
 /**
 * test with data from dataProvider
 * @dataProvider providerFibonacci
 */
 public function testFibonacciWithDataProvider($n, $result) {
 $math = new Math();
 $this->assertEquals($result, $math->fibonacci($n));
 }

 public function providerFibonacci() {
 return array(
 array(1, 1),
 array(2, 1),
 array(3, 2),
 array(4, 3),
 array(5, 5),
 array(6, 8),
);
 }
}

We can run this test from console with command phpunit MathTest and output will be:

 PHPUnit 5.3.2 by Sebastian Bergmann and contributors.

...... 6 / 6 (100%)

Time: 97 ms, Memory: 10.50Mb

OK (6 tests, 6 assertions)

<?php
require 'Math.php';
use PHPUNIT_Framework_TestCase as TestCase;
// sometimes it can be
// use PHPUnit\Framework\TestCase as TestCase;

Test exceptions

We can test whether an exception is thrown by the code under test using method
expectException(). Also in this example we add one failed test to show console output for failed
tests.

https://riptutorial.com/ 4

https://phpunit.de/manual/current/en/writing-tests-for-phpunit.html

<?php
require 'Math.php';
use PHPUNIT_Framework_TestCase as TestCase;
// sometimes it can be
// use PHPUnit\Framework\TestCase as TestCase;

class MathTest extends TestCase {
 public function testExceptionsForNegativeNumbers() {
 $this->expectException(InvalidArgumentException::class);
 $math = new Math();
 $math->fibonacci(-1);
 }

 public function testFailedForZero() {
 $this->expectException(InvalidArgumentException::class);
 $math = new Math();
 $math->factorial(0);
 }
}

We can run this test from console with command phpunit MathTest and output will be:

 PHPUnit 5.3.2 by Sebastian Bergmann and contributors.

.F 2 / 2 (100%)

Time: 114 ms, Memory: 10.50Mb

There was 1 failure:

1) MathTest::testFailedForZero
Failed asserting that exception of type "InvalidArgumentException" is thrown.

FAILURES!
Tests: 2, Assertions: 2, Failures: 1.

SetUp and TearDown

Also PHPUnit supports sharing the setup code. Before a test method is run, a template method
called setUp() is invoked. setUp() is where you create the objects against which you will test. Once
the test method has finished running, whether it succeeded or failed, another template method
called tearDown() is invoked. tearDown() is where you clean up the objects against which you
tested.

<?php
require 'Math.php';

use PHPUNIT_Framework_TestCase as TestCase;
// sometimes it can be
// use PHPUnit\Framework\TestCase as TestCase;

class MathTest extends TestCase {
 public $fixtures;
 protected function setUp() {

https://riptutorial.com/ 5

 $this->fixtures = [];
 }

 protected function tearDown() {
 $this->fixtures = NULL;
 }

 public function testEmpty() {
 $this->assertTrue($this->fixtures == []);
 }
}

More info

There are much more great opportunities of PHPUnit which you can use in your test. For more info
see in official manual

Minimal example test

Given a simple PHP class:

class Car
{
 private $speed = 0;

 public getSpeed() {
 return $this->speed;
 }

 public function accelerate($howMuch) {
 $this->speed += $howMuch;
 }
}

You can write a PHPUnit test which tests the behavior of the class under test by calling the public
methods and check whether they function as expected:

class CarTest extends PHPUnit_Framework_TestCase
{
 public function testThatInitalSpeedIsZero() {
 $car = new Car();
 $this->assertSame(0, $car->getSpeed());
 }

 public function testThatItAccelerates() {
 $car = new Car();
 $car->accelerate(20);
 $this->assertSame(20, $car->getSpeed());
 }

 public function testThatSpeedSumsUp() {
 $car = new Car();
 $car->accelerate(30);

https://riptutorial.com/ 6

https://phpunit.de/manual/current/en/

 $car->accelerate(50);
 $this->assertSame(80, $car->getSpeed());
 }
}

Important parts:

Test class needs to derive from PHPUnit_Framework_TestCase.1.
Each test function name should start with the prefix 'test'2.
Use $this->assert... functions to check expected values.3.

Mocking classes

The practice of replacing an object with a test double that verifies expectations, for instance
asserting that a method has been called, is referred to as mocking.

Lets assume we have SomeService to test.

class SomeService
{
 private $repository;
 public function __construct(Repository $repository)
 {
 $this->repository = $repository;
 }

 public function methodToTest()
 {
 $this->repository->save('somedata');
 }
}

And we want to test if methodToTest really calls save method of repository. But we don't want to
actually instantiate repository (or maybe Repository is just an interface).

In this case we can mock Repository.

use PHPUnit\Framework\TestCase as TestCase;

class SomeServiceTest extends TestCase
{
 /**
 * @test
 */
 public function testItShouldCallRepositorySavemethod()
 {
 // create an actual mock
 $repositoryMock = $this->createMock(Repository::class);

 $repositoryMock->expects($this->once()) // test if method is called only once
 ->method('save') // and method name is 'save'
 ->with('somedata'); // and it is called with 'somedata' as a
parameter

 $service = new SomeService($repositoryMock);

https://riptutorial.com/ 7

 $service->someMethod();
 }
}

Example of PHPUNIT with APItest using Stub And Mock

Class for which you will create unit test case. class Authorization {

/* Observer so that mock object can work. */
 public function attach(Curl $observer)
{
 $this->observers = $observer;
}

/* Method for which we will create test */
public function postAuthorization($url, $method) {

 return $this->observers->callAPI($url, $method);
}

}

Now we did not want any external interaction of our test code thus we need to create a mock
object for callAPI function as this function is actually calling external url via curl. class
AuthorizationTest extends PHPUnit_Framework_TestCase {

protected $Authorization;

/**
 * This method call every time before any method call.
 */
protected function setUp() {
 $this->Authorization = new Authorization();
}

/**
 * Test Login with invalid user credential
 */
function testFailedLogin() {

 /*creating mock object of Curl class which is having callAPI function*/
 $observer = $this->getMockBuilder('Curl')
 ->setMethods(array('callAPI'))
 ->getMock();

 /* setting the result to call API. Thus by default whenver call api is called via this
function it will return invalid user message*/
 $observer->method('callAPI')
 ->will($this->returnValue('"Invalid user credentials"'));

 /* attach the observer/mock object so that our return value is used */
 $this->Authorization->attach($observer);

 /* finally making an assertion*/
 $this->assertEquals('"Invalid user credentials"', $this->Authorization-
>postAuthorization('/authorizations', 'POST'));
}

https://riptutorial.com/ 8

}

Below is the code for curl class(just a sample) class Curl{ function callAPI($url, $method){

 //sending curl req
}

}

Read Getting started with phpunit online: https://riptutorial.com/phpunit/topic/3268/getting-started-
with-phpunit

https://riptutorial.com/ 9

https://riptutorial.com/phpunit/topic/3268/getting-started-with-phpunit
https://riptutorial.com/phpunit/topic/3268/getting-started-with-phpunit

Chapter 2: Assertions

Examples

Assert an Object is an Instance of a Class

PHPUnit provides the following function to assert whether an object is an instance of a class:

assertInstanceOf($expected, $actual[, $message = ''])

The first parameter $expected is the name of a class (string). The second parameter $actual is the
object to be tested. $message is an optional string you can provide in case it fails.

Let's start with a simple Foo class:

class Foo {

}

Somewhere else in a namespace Crazy, there is a Bar class.

namespace Crazy

class Bar {

}

Now, let's write a basic test case that would check an object for these classes

use Crazy\Bar;

class sampleTestClass extends PHPUnit_Framework_TestCase
{

 public function test_instanceOf() {

 $foo = new Foo();
 $bar = new Bar();

 // this would pass
 $this->assertInstanceOf("Foo",$foo);

 // this would pass
 $this->assertInstanceOf("\\Crazy\\Bar",$bar);

 // you can also use the ::class static function that returns the class name
 $this->assertInstanceOf(Bar::class, $bar);

 // this would fail
 $this->assertInstanceOf("Foo", $bar, "Bar is not a Foo");

 }

https://riptutorial.com/ 10

}

Note that PHPUnit gets grumpy if you send in a classname that doesn't exist.

Assert an Exception is Thrown

PHPUnit provides the following functions to watch for thrown exceptions, which were released with
5.2.0:

expectException($exception)•
expectExceptionMessage($message)•
expectExceptionCode($code)•
expectExceptionMessageRegExp($messageRegExp)•

These are used to watch for an exception to be thrown and inspect the properties of that
exception.

Let's start with a math function that divides (just for simplicity). It will raise an exception if the
denominator is zero.

function divide($numerator, $denominator) {

 if ($denominator !== 0) {
 return $numerator/$denominator;
 } else {
 throw new \Exception("Cannot divide by zero", 100);
 }

}

Now for the test code.

class DivideTest extends PHPUnit_Framework_TestCase
{

 public function test_divide() {

 $this->assertSame(2,divide(4,2));

 $this->expectException("Exception");
 $this->expectExceptionCode(100);
 $this->expectExceptionMessage("Cannot divide by zero");
 $this->expectExceptionMessageRegExp('/divide by zero$/');

 // the expectations have been set up, now run the code
 // that should throw the exception
 divide(4,0);

 // The following code will not execute, the method has exited
 $this->assertSame(0,1);

 }

}

https://riptutorial.com/ 11

https://phpunit.de/manual/current/en/writing-tests-for-phpunit.html#writing-tests-for-phpunit.exceptions

The test_divide() function starts by asserting that the function correctly divided 4 by 2 and
answered 2. This assertion will pass.

Next, the expectations for the upcoming exception are set. Notice, they are set before the code
that will throw the exception. All four assertions are shown for demonstration purposes, but this is
normally not necessary.

The divide(4,0) will then throw the expected exception and all the expect* function will pass.

But note that the code $this->assertSame(0,1) will not be executed, the fact that it is a failure
doesn't matter, because it will not run. The divide by zero exception causes the test method
to exit. This can be a source of confusion while debugging.

Assert the Value of a Public, Protected and Private property

PHPUnit has two assertions to check values of class properties:

assertAttributeSame($expected, $actualAttributeName, $actualClassOrObject, $message = '')
assertAttributeNotSame($expected, $actualAttributeName, $actualClassOrObject, $message = '')

These methods will check the value of a object property regardless of the visibility.

Let's start with a class to be tested. It is a simplified class that has three properties, each with a
different visibility:

class Color {

 public $publicColor = "red";
 protected $protectedColor = "green";
 private $privateColor = "blue";

}

Now, to test the value of each property:

class ColorTest extends PHPUnit_Framework_TestCase
{
 public function test_assertAttributeSame() {

 $hasColor = new Color();

 $this->assertAttributeSame("red","publicColor",$hasColor);
 $this->assertAttributeSame("green","protectedColor",$hasColor);
 $this->assertAttributeSame("blue","privateColor",$hasColor);

 $this->assertAttributeNotSame("wrong","privateColor",$hasColor);
 }

}

As you can see, the assertion works for any visibility, making it easy to peer into protected and
private methods.

https://riptutorial.com/ 12

In addition, there is assertAttributeEquals, assertAttributeContains, assertAttributeContainsOnly,
assertAttributeEmpty...etc, matching most assertions involving comparison.

Read Assertions online: https://riptutorial.com/phpunit/topic/6525/assertions

https://riptutorial.com/ 13

https://riptutorial.com/phpunit/topic/6525/assertions

Chapter 3: Getting Started with PHPUnit

Examples

Installation on Linux or MacOSX

Global installation using the PHP Archive

wget https://phar.phpunit.de/phpunit.phar # download the archive file
chmod +x phpunit.phar # make it executable
sudo mv phpunit.phar /usr/local/bin/phpunit # move it to /usr/local/bin
phpunit --version # show installed version number

Global installation using Composer

If you have composer installed system wide
composer global require phpunit/phpunit # set PHPUnit as a global dependency
phpunit --version # show installed version number

If you have the .phar file of composer
php composer.phar global require phpunit/phpunit # set PHPUnit as a global dependency
phpunit --version # show installed version number

Local installation using Composer

If you have composer installed system wide
composer require phpunit/phpunit # set PHPUnit as a local dependency
./vendor/bin/phpunit --version # show installed version number

If you have the .phar file of composer
php composer.phar require phpunit/phpunit # set PHPUnit as a local dependency
./vendor/bin/phpunit --version # show installed version number

Read Getting Started with PHPUnit online: https://riptutorial.com/phpunit/topic/3982/getting-
started-with-phpunit

https://riptutorial.com/ 14

https://riptutorial.com/phpunit/topic/3982/getting-started-with-phpunit
https://riptutorial.com/phpunit/topic/3982/getting-started-with-phpunit

Chapter 4: Test Doubles (Mocks and Stubs)

Examples

Simple mocking

Introduction

The PHPUnit Manual describes mocking as such:

The practice of replacing an object with a test double that verifies expectations, for
instance asserting that a method has been called, is referred to as mocking.

So instead of stubbing out code, an observer is created that not only replaces the code that needs
to be silenced, but observes that a specific activity would have happened in the real world.

Setup

Let's start with a simple logger class that for the sake of clarity, simply displays the text sent into
the parameter (normally it would do something that can be problematic to unit testing, such as
updating a database):

class Logger {
 public function log($text) {
 echo $text;
 }
}

Now, let's create an Application class. It accepts a Logger object as a parameter to the run
method, which in turn invokes the Logger's log method to capture that the application has started.

class Application {
 public function run(Logger $logger) {
 // some code that starts up the application

 // send out a log that the application has started
 $logger->log('Application has started');
 }
}

If the following code was executed as written:

$logger = new Logger();
$app = new Application();
$app->run($logger);

https://riptutorial.com/ 15

https://phpunit.de/manual/current/en/test-doubles.html#test-doubles.mock-objects

Then the text "Application has started" would be displayed as per the log method inside of the
Logger.

Unit Testing with Mocking

The Application class unit testing does not need to verify what happens within the Logger log
method, it only needs to verify that it was called.

In the PHPUnit test, an observer is created to replace the Logger class. That observer is set up to
ensure that the log method is invoked only once, with the parameter value "Application has
started".

Then, the observer is sent into the run method, which verifies that in fact the log method was
called just once and the test case passes, but no text was displayed.

class ApplicationTest extends \PHPUnit_Framework_TestCase {

 public function testThatRunLogsApplicationStart() {

 // create the observer
 $mock = $this->createMock(Logger::class);
 $mock->expects($this->once())
 ->method('log')
 ->with('Application has started');

 // run the application with the observer which ensures the log method was called
 $app = new Application();
 $app->run($mock);

 }
}

Simple stubbing

Sometimes there are sections of code that are difficult to test, such as accessing a database, or
interacting with the user. You can stub out those sections of code, allowing the rest of the code to
be tested.

Let's start with a class that prompts the user. For simplicity, it has only two methods, one that
actually prompts the user (which would be used by all the other methods) and the one we are
going to test, which prompts and filters out only yes and no answers. Please note this code is
overly simplistic for demonstration purposes.

class Answer
{
 // prompt the user and check if the answer is yes or no, anything else, return null
 public function getYesNoAnswer($prompt) {

 $answer = $this->readUserInput($prompt);

 $answer = strtolower($answer);

https://riptutorial.com/ 16

 if (($answer === "yes") || ($answer === "no")) {
 return $answer;
 } else {
 return null;
 }

 }

 // Simply prompt the user and return the answer
 public function readUserInput($prompt) {
 return readline($prompt);
 }

}

To test getYesNoAnswer, the readUserInput needs to be stubbed out to mimic answers from a user.

class AnswerTest extends PHPUnit_Framework_TestCase
{

 public function test_yes_no_answer() {

 $stub = $this->getMockBuilder(Answer::class)
 ->setMethods(["readUserInput"])
 ->getMock();

 $stub->method('readUserInput')
 ->will($this->onConsecutiveCalls("yes","junk"));

 // stub will return "yes"
 $answer = $stub->getYesNoAnswer("Student? (yes/no)");
 $this->assertSame("yes",$answer);

 // stub will return "junk"
 $answer = $stub->getYesNoAnswer("Student? (yes/no)");
 $this->assertNull($answer);

 }

}

The first line of code creates the stub and it uses getMockBuilder instead of createMock. createMock is
a shortcut for calling getMockBuilder with defaults. One of these defaults is to stub out all the
methods. For this example, we want to test getYesNoAnswer, so it can't be stubbed out. The
getMockBuilder invokes setMethods to request that only readUserInput be stubbed out.

The second line of code creates the stubbing behavior. It stubs out readUserInput method and sets
up two return values upon subsequent calls, "yes" followed by "junk".

The third and fourth lines of code test getYesNoAnswer. The first time, the fake person responds with
"yes" and the tested code correctly returns "yes", since it is a valid selection. The second time, the
fake person responds with "junk" and the tested code correctly returns null.

Read Test Doubles (Mocks and Stubs) online: https://riptutorial.com/phpunit/topic/4979/test-
doubles--mocks-and-stubs-

https://riptutorial.com/ 17

https://riptutorial.com/phpunit/topic/4979/test-doubles--mocks-and-stubs-
https://riptutorial.com/phpunit/topic/4979/test-doubles--mocks-and-stubs-

Credits

S.
No

Chapters Contributors

1
Getting started with
phpunit

alexander.polomodov, arushi, Community, eskwayrd, Gerard
Roche, Joachim Schirrmacher, Katie, Martin GOYOT, Xavi
Montero, Ziumin

2 Assertions Katie

3
Getting Started with
PHPUnit

alexander.polomodov, Joachim Schirrmacher, Katie, Martin
GOYOT, Ziumin

4
Test Doubles (Mocks
and Stubs)

Joachim Schirrmacher, Katie, olvlvl, Xavi Montero

https://riptutorial.com/ 18

https://riptutorial.com/contributor/2253302/alexander-polomodov
https://riptutorial.com/contributor/3235559/arushi
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/4023764/eskwayrd
https://riptutorial.com/contributor/934739/gerard-roche
https://riptutorial.com/contributor/934739/gerard-roche
https://riptutorial.com/contributor/1950957/joachim-schirrmacher
https://riptutorial.com/contributor/6499439/katie
https://riptutorial.com/contributor/835499/martin-goyot
https://riptutorial.com/contributor/1315009/xavi-montero
https://riptutorial.com/contributor/1315009/xavi-montero
https://riptutorial.com/contributor/1478372/ziumin
https://riptutorial.com/contributor/6499439/katie
https://riptutorial.com/contributor/2253302/alexander-polomodov
https://riptutorial.com/contributor/1950957/joachim-schirrmacher
https://riptutorial.com/contributor/6499439/katie
https://riptutorial.com/contributor/835499/martin-goyot
https://riptutorial.com/contributor/835499/martin-goyot
https://riptutorial.com/contributor/1478372/ziumin
https://riptutorial.com/contributor/1950957/joachim-schirrmacher
https://riptutorial.com/contributor/6499439/katie
https://riptutorial.com/contributor/1818741/olvlvl
https://riptutorial.com/contributor/1315009/xavi-montero

	About
	Chapter 1: Getting started with phpunit
	Remarks
	Versions
	Examples
	Create first PHPUnit test for our class

	The simplest test
	Using dataProviders
	Test exceptions
	SetUp and TearDown
	More info
	Minimal example test
	Mocking classes
	Example of PHPUNIT with APItest using Stub And Mock

	Chapter 2: Assertions
	Examples
	Assert an Object is an Instance of a Class
	Assert an Exception is Thrown
	Assert the Value of a Public, Protected and Private property

	Chapter 3: Getting Started with PHPUnit
	Examples
	Installation on Linux or MacOSX

	Global installation using the PHP Archive
	Global installation using Composer
	Local installation using Composer
	Chapter 4: Test Doubles (Mocks and Stubs)
	Examples
	Simple mocking

	Introduction
	Setup
	Unit Testing with Mocking
	Simple stubbing

	Credits

