
playframework

#playframe

work

Table of Contents

About 1

Chapter 1: Getting started with playframework 2

Remarks 2

Examples 2

Play 1 Installation 2

Prerequisites 2

Installation from the binary package 2

Generic instructions 2

Mac OS X 2

Linux 3

Windows 3

Installing through `sbt` 3

Getting started with Play 2.4.x/2.5.x - Windows, Java 4

Installations 4

Play 2.5 installation fix 5

Creating a new application with CLI 5

Running activator on a different port 6

Chapter 2: Building and packaging 7

Syntax 7

Examples 7

Add a directory to the distribution 7

Chapter 3: Dependency injection - Java 8

Examples 8

Dependency injection with Guice - Play 2.4, 2.5 8

Injection of Play API-s 8

Custom injection binding 8

Injection with @ImplementedBy annotation 9

Injection binding with a default Play module 9

Flexible injection binding with a default Play module 10

Injection binding with a custom module 11

Chapter 4: Dependency Injection - Scala 12

Syntax 12

Examples 12

Basic usage 12

Injecting Play classes 12

Defining custom bindings in a Module 13

Chapter 5: Java - Hello World 15

Remarks 15

Examples 15

Create your first project 15

Get Activator 15

The first run 15

The "Hello World" in the Hello World 17

Chapter 6: Java - Working with JSON 19

Remarks 19

Examples 19

Manual creating JSON 19

Loading json from string/file 19

Loading a file from your public folder 19

Load from a string 19

Transversing a JSON document 19

Get the name of some user (unsafe) 20

Get the user name (safe way) 20

Get the country where first user works 20

Get every countries 20

Find every user that contains the attribute "active" 20

Conversion between JSON and Java objects (basic) 21

Create Java object from JSON 21

Create JSON object from Java object 21

Creating a JSON string from a JSON object 21

JSON pretty printing 21

Chapter 7: Setting up your preferred IDE 23

Examples 23

IntelliJ IDEA 23

Prerequisites 23

Opening the project 23

Running the applications from Intellij 23

Auto-import option 23

Eclipse as Play IDE - Java, Play 2.4, 2.5 24

Introduction 24

Setting eclipse IDE per project 24

How to attach Play source to eclipse 25

Setting eclipse IDE globally 25

Debugging from eclipse 26

Eclipse IDE 26

Prerequisites 26

Installing Scala in Eclipse 26

Setup sbteclipse 26

Importing project 27

Chapter 8: Slick 28

Examples 28

Slick getting started code 28

Output DDL 29

Chapter 9: Unit Testing 30

Examples 30

Unit testing - Java, Play 2.4,2.5 30

Helpers and fakeApplication 30

Testing controllers 30

Controller tests example 31

Mocking with PowerMock 31

Mocking of a controller action 31

Mocking of an action with JSON body 32

Mocking of an action with Base authentication header 33

Mocking of an action with session 33

Chapter 10: Webservice usage with play WSClient 34

Remarks 34

Examples 34

Basic usage (Scala) 34

Chapter 11: Working with JSON - Scala 35

Remarks 35

Examples 35

Creating a JSON manually 35

Java: Accepting JSON requests 36

Java: Accepting JSON requests with BodyParser 36

Scala: Reading a JSON manually 36

Useful methods 37

Mapping automatically to/from case classes 37

Converting to Json 37

Converting from Json 38

Credits 39

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: playframework

It is an unofficial and free playframework ebook created for educational purposes. All the content
is extracted from Stack Overflow Documentation, which is written by many hardworking individuals
at Stack Overflow. It is neither affiliated with Stack Overflow nor official playframework.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/playframework
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with
playframework

Remarks

This section provides an overview of what playframework is, and why a developer might want to
use it.

It should also mention any large subjects within playframework, and link out to the related topics.
Since the Documentation for playframework is new, you may need to create initial versions of
those related topics.

Examples

Play 1 Installation

Prerequisites

To run the Play framework, you need Java 6 or later. If you wish to build Play from source, you will
need the Git source control client to fetch the source code and Ant to build it.

Be sure to have Java in the current path (enter java --version to check)

Play will use the default Java or the one available at the $JAVA_HOME path if defined.

The play command line utility uses Python. So it should work out of the box on any UNIX system
(however it requires at least Python 2.5).

Installation from the binary package

Generic instructions

In general, the installation instructions are as follows.

Install Java.1.
Download the latest Play binary package and extract the archive.2.
Add the ‘play’ command to your system path and make sure it is executable.3.

Mac OS X

Java is built-in, or installed automatically, so you can skip the first step.

https://riptutorial.com/ 2

https://git-scm.com/
http://ant.apache.org/
http://download.playframework.com/

Download the latest Play binary package and extract it in /Applications.1.
Edit /etc/paths and add the line /Applications/play-1.2.5 (for example).2.

An alternative on OS X is:

Install HomeBrew1.
Run brew install play2.

Linux

To install Java, make sure to use either the Sun-JDK or OpenJDK (and not gcj which is the default
Java command on many Linux distros)

Windows

To install Java, just download and install the latest JDK package. You do not need to install
Python separately, because a Python runtime is bundled with the framework.

Installing through `sbt`

If you already have sbt installed I find it easier to create a minimal Play project without activator.
Here's how.

create a new folder
mkdir myNewProject
launch sbt
sbt

When previous steps are completed, edit build.sbt and add the following lines

name := """myProjectName"""

version := "1.0-SNAPSHOT"

offline := true

lazy val root = (project in file(".")).enablePlugins(PlayScala)
scalaVersion := "2.11.6"
add required dependencies here .. below a list of dependencies I use
libraryDependencies ++= Seq(
 jdbc,
 cache,
 ws,
 filters,
 specs2 % Test,
 "com.github.nscala-time" %% "nscala-time" % "2.0.0",
 "javax.ws.rs" % "jsr311-api" % "1.0",
 "commons-io" % "commons-io" % "2.3",
 "org.asynchttpclient" % "async-http-client" % "2.0.4",
 cache
)

https://riptutorial.com/ 3

http://mxcl.github.com/homebrew/

resolvers += "scalaz-bintray" at "http://dl.bintray.com/scalaz/releases"

resolvers ++= Seq("snapshots", "releases").map(Resolver.sonatypeRepo)

resolvers += "Typesafe Releases" at "http://repo.typesafe.com/typesafe/maven-releases/"

Finally, create a folder project and inside create a file build.properties with the reference to the
version of Play you would like to use

 addSbtPlugin("com.typesafe.play" % "sbt-plugin" % "2.4.3")

That's it! Your project is ready. You can launch it with sbt. From within sbt you have access to the
same commands as with activator.

Getting started with Play 2.4.x/2.5.x - Windows, Java

Installations

Download and install:

Java 8 - download the relevant installation from Oracle site.1.

Activator - download zip from www.playframework.com/download and extract files to the
target Play folder, for example to:

c:\Play-2.4.2\activator-dist-1.3.5

2.

sbt - download from www.scala-sbt.org.3.

Define environment variables:

JAVA_HOME, for example:

c:\Program Files\Java\jdk1.8.0_45

1.

PLAY_HOME, for example:

c:\Play-2.4.2\activator-dist-1.3.5;

2.

SBT_HOME for example:

c:\Program Files (x86)\sbt\bin;

3.

Add path to all three installed programs to the path variables:

 %JAVA_HOME%\bin;%PLAY_HOME%;%SBT_HOME%;

https://riptutorial.com/ 4

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.playframework.com/download
http://www.scala-sbt.org/

Play 2.5 installation fix

Installation of Play 2.5.3 (the last 2.5 stable release) comes with a minor problem. To fix it:

Edit the file activator-dist-1.3.10\bin\activator.bat and add the "%" character at the end of line
55. The proper line should be like this: set SBT_HOME=%BIN_DIRECTORY%

1.

Create sub-directory conf under the activator root directory activator-dist-1.3.10.2.
Create in the conf directory an empty file named sbtconfig.txt.3.

Creating a new application with CLI

Start the cmd from the directory, where a new application should be created. The shortest way to
create a new application via CLI is to provide an application name and template as CLI arguments:

 activator new my-play-app play-java

It is possible to run just:

 activator new

In this case you will be prompted to select the desired template and an application name.

For Play 2.4 add manually to project/plugins.sbt:

// Use the Play sbt plugin for Play projects
addSbtPlugin("com.typesafe.play" % "sbt-plugin" % "2.4.x")

Be sure to replace 2.4.x here by the exact version you want to use. Play 2.5 generates this line
automatically.

Make sure that the proper sbt version is mentioned in project/build.properties. It should match to
sbt version, installed on your machine. For example, for Play2.4.x it should be:

sbt.version=0.13.8

That's it, a new application now may be started:

 cd my-play-app
 activator run

After a while the server will start and the following prompt should appear on the console:

 [info] p.c.s.NettyServer - Listening for HTTP on /0:0:0:0:0:0:0:0:9000
 (Server started, use Ctrl+D to stop and go back to the console...)

The server by default is listening on port 9000. You can request it from a browser by the URL

https://riptutorial.com/ 5

http://localhost:9000. You will get something like this:

Running activator on a different port

By default the activator runs an application on port 9000 for http or 443 for https. To run an
application on the different port (http):

activator "run 9005"

Read Getting started with playframework online:
https://riptutorial.com/playframework/topic/1052/getting-started-with-playframework

https://riptutorial.com/ 6

http://localhost:9000
http://i.stack.imgur.com/D0dgS.png
https://riptutorial.com/playframework/topic/1052/getting-started-with-playframework

Chapter 2: Building and packaging

Syntax

activator dist•

Examples

Add a directory to the distribution

To add for instance a directory scripts to the distribution package:

Add to the project a folder scripts1.

On top of the build.sbt, add:

import NativePackagerHelper._

2.

In build.sbt, add a mapping to the new directory:

mappings in Universal ++= directory("scripts")

3.

Build the distribution package with activator dist. The newly created archive in
target/universal/ should contain the new directory.

4.

Read Building and packaging online: https://riptutorial.com/playframework/topic/6642/building-and-
packaging

https://riptutorial.com/ 7

https://riptutorial.com/playframework/topic/6642/building-and-packaging
https://riptutorial.com/playframework/topic/6642/building-and-packaging

Chapter 3: Dependency injection - Java

Examples

Dependency injection with Guice - Play 2.4, 2.5

Guice is the default dependency injection (further DI) framework of Play. Other frameworks may
be used as well, but using Guice makes development efforts easier, since Play takes care for
things under the veil.

Injection of Play API-s

Starting from Play 2.5 several API-s, which were static in the earlier versions, should be created
with DI. These are, for example, Configuration, JPAApi, CacheApi, etc.

Injecting method of Play API-s is different for a class, which is automatically injected by Play and
for a custom class. Injection in an automatically injected class is just as simple as putting
appropriate @Inject annotation on either field or constructor. For example, to inject Configuration
in a controller with property injection:

@Inject
private Configuration configuration;

or with constructor injection:

private Configuration configuration;
@Inject
public MyController(Configuration configuration) {
 this.configuration = configuration;
}

Injection in a custom class, which is registered for DI, should be done just like it is done for
automatically injected class - with @Inject annotation.

Injection from a custom class, which is not bound for DI, should be done by explicit call to an
injector with Play.current().injector(). For example, to inject Configuration in a custom class define
a configuration data member like this:

private Configuration configuration =
Play.current().injector().instanceOf(Configuration.class);

Custom injection binding

Custom injection binding may be done with @ImplementedBy annotation or in a programmatic

https://riptutorial.com/ 8

way with Guice module.

Injection with @ImplementedBy annotation

Injection with @ImplementedBy annotation is the simplest way. The example below shows a
service, which provides a facade to cache.

The service is defined by an interface CacheProvider as following:

@ImplementedBy(RunTimeCacheProvider.class)
public interface CacheProvider {
 CacheApi getCache();
}

1.

The service is implemented by a class RunTimeCacheProvider:

public class RunTimeCacheProvider implements CacheProvider {
 @Inject
 private CacheApi appCache;
 @Override
 public public CacheApi getCache() {
 return appCache;
 }
}

2.

Note: the appCache data member is injected upon creation of a RunTimeCacheProvider instance.

Cache inspector is defined as a member of a controller with @Inject annotation and is called
from the controller:

3.

public class HomeController extends Controller {
 @Inject
 private CacheProvider cacheProvider;
 ...
 public Result getCacheData() {
 Object cacheData = cacheProvider.getCache().get("DEMO-KEY");
 return ok(String.format("Cache content:%s", cacheData));
 }

Injection with @ImplementedBy annotation creates the fixed binding: CacheProvider in the above
example is always instantiated with RunTimeCacheProvider. Such method fits only for a case,
when there is an interface with a single implementation. It cannot help for an interface with several
implementations or a class implemented as a singleton without abstract interface. Honestly
speaking, @ImplementedBy will be used in rare cases if it all. It is more likely to use programmatic
binding with Guice module.

Injection binding with a default Play module

The default Play module is a class named Module in the root project directory defined like this:

https://riptutorial.com/ 9

import com.google.inject.AbstractModule;
public class Module extends AbstractModule {
 @Override
 protected void configure() {
 // bindings are here
 }
}

Note: The snippet above shows binding inside configure, but of course any other binding method
will be respected.

For programmatic binding of CacheProvider to RunTimeCacheProvider:

Remove @ImplementedBy annotation from the definition of CacheProvider:1.

public interface CacheProvider {
 CacheApi getCache();
}

Implement Module configure as following:2.

public class Module extends AbstractModule {
 @Override
 protected void configure() {
 bind(CacheProvider.class).to(RunTimeCacheProvider.class);
 }
}

Flexible injection binding with a default Play module

RunTimeCacheProvider does not work well in JUnit tests with fake application (see unit tests
topic). So, the different implementation of CacheProvider is demanded for unit tests. Injection
binding should be done according to the environment.

Let's see an example.

The class FakeCache provides a stub implementation of CacheApi to be used while running
tests (its implementation is not such interesting - it is just a map).

1.

The class FakeCacheProvider implements CacheProvider to be used while running tests:2.

public class FakeCacheProvider implements CacheProvider {
 private final CacheApi fakeCache = new FakeCache();
 @Override
 public CacheApi getCache() {
 return fakeCache;
 }
}

Module is implemented as following:2.

public class Module extends AbstractModule {

https://riptutorial.com/ 10

 private final Environment environment;
 public Module(Environment environment, Configuration configuration) {
 this.environment = environment;
 }
 @Override
 protected void configure() {
 if (environment.isTest()) {
 bind(CacheProvider.class).to(FakeCacheProvider.class);
 }
 else {
 bind(CacheProvider.class).to(RuntimeCacheProvider.class);
 }
 }
}

The example is good only for educational purpose. Binding for tests inside the module is not the
best practice, since this couples between application and tests. Binding for tests should be done
rather by tests itself and module should not be aware on test-specific implementation. See how to
do this better in

Injection binding with a custom module

A custom module is very similar to the default Play module. The difference is that it may have
whatever name and belong to whatever package. For example, a module OnStartupModule
belongs to the package modules.

package modules;
import com.google.inject.AbstractModule;
public class OnStartupModule extends AbstractModule {
 @Override
 protected void configure() {
 ...
 }
}

A custom module should be explicitly enabled for invocation by Play. For the module
OnStartupModule the following should be added into application.conf:

play.modules.enabled += "modules.OnStartupModule"

Read Dependency injection - Java online:
https://riptutorial.com/playframework/topic/6060/dependency-injection---java

https://riptutorial.com/ 11

https://riptutorial.com/playframework/topic/6060/dependency-injection---java

Chapter 4: Dependency Injection - Scala

Syntax

class MyClassUsingAnother @Inject() (myOtherClassInjected: MyOtherClass) { (...) }•
@Singleton class MyClassThatShouldBeASingleton (...)•

Examples

Basic usage

A typical singleton class :

import javax.inject._
@Singleton
class BurgersRepository {
 // implementation goes here
}

Another class, requiring access to the first one.

import javax.inject._
class FastFoodService @Inject() (burgersRepository: BurgersRepository){
 // implementation goes here
 // burgersRepository can be used
}

Finally a controller using the last one. Note since we didn't mark the FastFoodService as a
singleton, a new instance of it is created each time it is injected.

import javax.inject._
import play.api.mvc._
@Singleton
class EatingController @Inject() (fastFoodService: FastFoodService) extends Controller {
 // implementation goes here
 // fastFoodService can be used
}

Injecting Play classes

You will often need to access instances of classes from the framework itself (like the WSClient, or
the Configuration). You can inject them in your own classes :

class ComplexService @Inject()(
 configuration: Configuration,
 wsClient: WSClient,
 applicationLifecycle: ApplicationLifecycle,
 cacheApi: CacheApi,
 actorSystem: ActorSystem,

https://riptutorial.com/ 12

 executionContext: ExecutionContext
) {
 // Implementation goes here
 // you can use all the injected classes :
 //
 // configuration to read your .conf files
 // wsClient to make HTTP requests
 // applicationLifecycle to register stuff to do when the app shutdowns
 // cacheApi to use a cache system
 // actorSystem to use AKKA
 // executionContext to work with Futures
}

Some, like the ExecutionContext, will likely more easy to use if they're imported as implicit. Just
add them in a second parameter list in the constructor :

class ComplexService @Inject()(
 configuration: Configuration,
 wsClient: WSClient
)(implicit executionContext: ExecutionContext) {
 // Implementation goes here
 // you can still use the injected classes
 // and executionContext is imported as an implicit argument for the whole class
}

Defining custom bindings in a Module

Basic usage of dependency injection is done by the annotations. When you need to tweak things a
little bit, you need custom code to further specify how you want some classes to be instantiated
and injected. This code goes in what is called a Module.

import com.google.inject.AbstractModule
// Play will automatically use any class called `Module` that is in the root package
class Module extends AbstractModule {

 override def configure() = {
 // Here you can put your customisation code.
 // The annotations are still used, but you can override or complete them.

 // Bind a class to a manual instantiation of it
 // i.e. the FunkService needs not to have any annotation, but can still
 // be injected in other classes
 bind(classOf[FunkService]).toInstance(new FunkService)

 // Bind an interface to a class implementing it
 // i.e. the DiscoService interface can be injected into another class
 // the DiscoServiceImplementation is the concrete class that will
 // be actually injected.
 bind(classOf[DiscoService]).to(classOf[DiscoServiceImplementation])

 // Bind a class to itself, but instantiates it when the application starts
 // Useful to executes code on startup
 bind(classOf[HouseMusicService]).asEagerSingleton()
 }

}

https://riptutorial.com/ 13

Read Dependency Injection - Scala online:
https://riptutorial.com/playframework/topic/3020/dependency-injection---scala

https://riptutorial.com/ 14

https://riptutorial.com/playframework/topic/3020/dependency-injection---scala

Chapter 5: Java - Hello World

Remarks

This tutorial is targeted to run Play in a Linux/MacOS system•

Examples

Create your first project

To create a new project use the following command (HelloWorld is the name of the project and
play-java is the template)

 $ ~/activator-1.3.10-minimal/bin/activator new HelloWorld play-java

You should get an output similar to this one

Fetching the latest list of templates...

OK, application "HelloWorld" is being created using the "play-java" template.

To run "HelloWorld" from the command line, "cd HelloWorld" then:
/home/YourUserName/HelloWorld/activator run

To run the test for "HelloWorld" from the command line, "cd HelloWorld" then:
/home/YourUserName/HelloWorld/activator test

To run the Activator UI for "HelloWorld" from the command line, "cd HelloWorld" then:
/home/YourUserName/HelloWorld/activator ui

The project will be created in the current directory (in this case it was my home folder)

We are now ready to start our application

Get Activator

The first step in you journey in the Play Framework world is to download Activator. Activator is a
tool used to create, build and distribute Play Framework applications.

Activator can be downloaded from Play downloads section (here I will be using version 1.3.10)

After you downloaded the file, extract the contents to some directory you have write access and
we are ready to go

In this tutotial I will assume Activator was extracted to your home folder

The first run

https://riptutorial.com/ 15

https://www.playframework.com/download

When we created our project, Activator told us how we can run our application

To run "HelloWorld" from the command line, "cd HelloWorld" then:
 /home/YourUserName/HelloWorld/activator run

There is a small pitfall here: activator executable is not in our project root, but in bin/activator.
Also, if you changed your current directory to your project directory, you can just run

bin/activator

Activator will now download the required dependencies to compile and run your project.
Depending on your connection speed, this can take some time. Hopefully, you will be presented
with a prompt

[HelloWorld] $

We can now run our project using ~run: this will tell Activator to run our project and watch for
changes. If something changes, it will recompile the needed parts and restart our application. You
can stop this process pressing Ctrl+D (goes back to Activator shell) or Ctrl+D (goes to your OS
shell)

[HelloWorld] $ ~run

Play will now download more dependencies. After this process is done, your app should be ready
to use:

-- (Running the application, auto-reloading is enabled) ---

[info] p.c.s.NettyServer - Listening for HTTP on /0:0:0:0:0:0:0:0:9000

(Server started, use Ctrl+D to stop and go back to the console...)

When you navigate to localhost:9000 in your browser you should see the Play framework starting
page

https://riptutorial.com/ 16

http://localhost:9000

Congratulations, you are now ready to make some changes in your application!

The "Hello World" in the Hello World

An "Hello World" doesn't deserve this name if it does not provide a Hello World message. So let's
make one.

In the file app/controllers/HomeController.java add the following method:

public Result hello() {
 return ok("Hello world!");
}

And in your conf/routes file add the following at the end of the file:

GET /hello controllers.HomeController.hello

If you take a look at your terminal, you should notice Play is compiling your application while you
make the changes and reloading the app:

[info] Compiling 4 Scala sources and 1 Java source to
/home/YourUserName/HelloWorld/target/scala-2.11/classes...
[success] Compiled in 4s

Navigating to localhost:9000/hello, we finally get our hello world message

https://riptutorial.com/ 17

http://i.stack.imgur.com/ep79L.png
http://localhost:9000/hello

Read Java - Hello World online: https://riptutorial.com/playframework/topic/5887/java---hello-world

https://riptutorial.com/ 18

http://i.stack.imgur.com/ACER1.png
https://riptutorial.com/playframework/topic/5887/java---hello-world

Chapter 6: Java - Working with JSON

Remarks

Play documentation: https://www.playframework.com/documentation/2.5.x/JavaJsonActions

Examples

Manual creating JSON

import play.libs.Json;

public JsonNode createJson() {
 // {"id": 33, "values": [3, 4, 5]}
 ObjectNode rootNode = Json.newObject();
 ArrayNode listNode = Json.newArray();

 long values[] = {3, 4, 5};
 for (long val: values) {
 listNode.add(val);
 }

 rootNode.put("id", 33);
 rootNode.set("values", listNode);
 return rootNode;
}

Loading json from string/file

import play.libs.Json;
// (...)

Loading a file from your public folder

// Note: "app" is an play.Application instance
JsonNode node = Json.parse(app.resourceAsStream("public/myjson.json"));

Load from a string

String myStr = "{\"name\": \"John Doe\"}";
JsonNode node = Json.parse(myStr);

Transversing a JSON document

In the following examples, json contains a JSON object with the following data:

https://riptutorial.com/ 19

https://www.playframework.com/documentation/2.5.x/JavaJsonActions

[
 {
 "name": "John Doe",
 "work": {
 "company": {
 "name": "ASDF INC",
 "country": "USA"
 },
 "cargo": "Programmer"
 },
 "tags": ["java", "jvm", "play"]
 },
 {
 "name": "Bob Doe",
 "work": {
 "company": {
 "name": "NOPE INC",
 "country": "AUSTRALIA"
 },
 "cargo": "SysAdmin"
 },
 "tags": ["puppet", "ssh", "networking"],
 "active": true
 }
]

Get the name of some user (unsafe)

JsonNode node = json.get(0).get("name"); // --> "John Doe"
// This will throw a NullPointerException, because there is only two elements
JsonNode node = json.get(2).get("name"); // --> *crash*

Get the user name (safe way)

JsonNode node1 = json.at("/0/name"); // --> TextNode("John Doe")
JsonNode node2 = json.at("/2/name"); // --> MissingNode instance
if (! node2.isMissingNode()) {
 String name = node2.asText();
}

Get the country where first user works

JsonNode node2 = json.at("/0/work/company/country"); // TextNode("USA")

Get every countries

List<JsonNode> d = json.findValues("country"); // List(TextNode("USA"), TextNode("AUSTRALIA"))

Find every user that contains the attribute "active"

https://riptutorial.com/ 20

List<JsonNode> e = json.findParents("active"); // List(ObjectNode("Bob Doe"))

Conversion between JSON and Java objects (basic)

By default, Jackson (the library Play JSON uses) will try to map every public field to a json field
with the same name. If the object has getters/setters, it will infer the name from them. So, if you
have a Book class with a private field to store the ISBN and have get/set methods named
getISBN/setISBN, Jackson will

Create a JSON object with the field "ISBN" when converting from Java to JSON•
Use the setISBN method to define the isbn field in the Java object (if the JSON object has a
"ISBN" field).

•

Create Java object from JSON

public class Person {
 String id, name;
}

JsonNode node = Json.parse("{\"id\": \"3S2F\", \"name\", \"Salem\"}");
Person person = Json.fromJson(node, Person.class);
System.out.println("Hi " + person.name); // Hi Salem

Create JSON object from Java object

// "person" is the object from the previous example
JsonNode personNode = Json.toJson(person)

Creating a JSON string from a JSON object

// personNode comes from the previous example
String json = personNode.toString();
// or
String json = Json.stringify(json);

JSON pretty printing

System.out.println(personNode.toString());
/* Prints:
{"id":"3S2F","name":"Salem"}
*/

System.out.println(Json.prettyPrint(personNode));
/* Prints:
{
 "id" : "3S2F",
 "name" : "Salem"
}

https://riptutorial.com/ 21

*/

Read Java - Working with JSON online: https://riptutorial.com/playframework/topic/6318/java---
working-with-json

https://riptutorial.com/ 22

https://riptutorial.com/playframework/topic/6318/java---working-with-json
https://riptutorial.com/playframework/topic/6318/java---working-with-json

Chapter 7: Setting up your preferred IDE

Examples

IntelliJ IDEA

Prerequisites

Intellij IDEA installed (Community or Ultimate edition)1.
Scala Plugin installed in IntelliJ2.
A standard Play project, created for instance with Activator (activator new [nameoftheproject]
play-scala).

3.

Opening the project

Open IntelliJ IDEA1.
Go to menu File > Open ... > click the whole folder [nameoftheproject] > OK2.
A popup opens with a few options. The default values are good enough in most cases, and if
you don't like them you can change them somewhere else later. Click OK

3.

Intellij IDEA will think a bit, then propose another popup to select which modules to select in
the project. There should be two modules root and root-build selected by default. Don't
change anything and click OK.

4.

IntelliJ will open the project. You can start viewing the files while IntelliJ keep thinking a bit as
you should see in the status bar in the bottom, then it should finally be fully ready.

5.

Running the applications from Intellij

From there some people use the IDE just to view/edit the project, while using the sbt command
line to compile/run/launch tests. Others prefer to launch those from within Intellij. It is required if
you want to use the debug mode. Steps :

Menu Run > Edit configurations...1.
In the popup, click the + in the top left > Choose Play 2 App in the list2.
Name the configuration, for instance [nameofyourproject]. Leave the default options and hit
OK.

3.

From the Run menu, or the buttons in the UI, you can now Run or Debug using this
configuration. Run will just launch the app, as if you did sbt run from the command line. Debug
will do the same thing but allow you to place breakpoints in the code to interrupt the
execution and analyze what's happening.

4.

https://riptutorial.com/ 23

Auto-import option

This is an option global to the project, that is available at creation time and afterwards can be
changed in the menu Intellij IDEA > Preferences > Build, Execution, Deployment > Build tools >
SBT > Project-level settings > Use auto-import.

This option has nothing to do with the import statements in the Scala code. It dictates what Intellij
IDEA should do when you edit the build.sbt file. If auto-import is activated, Intellij IDEA will parse
the new build file immediately and refresh the project configuration automatically. It gets annoying
quickly as this operation is expensive and tends to slow Intellij when you're still working on the
build file. When auto-import is desactivated, you have to indicate manually to Intellij that you edited
the build.sbt and would like the project configuration to be refreshed. In most cases a temporary
popup will appear to ask you if you would like to do so. Otherwise go to the SBT panel in the UI,
and click the blue circling arrows sign to force the refresh.

Eclipse as Play IDE - Java, Play 2.4, 2.5

Introduction

Play has several plugins for different IDE-s. The eclipse plugin allows to transform a Play
application into a working eclipse project with the command activator eclipse. Eclipse plugin may
be set per project or globally per sbt user. It depends on team work, which approach should be
used. If the whole team is using eclipse IDE, plugin may be set on a project level. You need to
download eclipse version supporting Scala and Java 8: luna or mars - from http://scala-
ide.org/download/sdk.html.

Setting eclipse IDE per project

To import Play application into eclipse:

Add eclipse plugin into project/plugins.sbt:1.

//Support Play in Eclipse
addSbtPlugin("com.typesafe.sbteclipse" % "sbteclipse-plugin" % "4.0.0")

Add into build.sbt a flag that forces compilation to happen when the eclipse command is run:2.

EclipseKeys.preTasks := Seq(compile in Compile)

Make sure, that a user repository path in the file {user root}.sbt\repositories has the proper
format. The proper values for properties activator-launcher-local and activator-local should
have at least three slashes like in the example:

3.

activator-local: file:////${activator.local.repository-C:/Play-2.5.3/activator-dist-

https://riptutorial.com/ 24

http://scala-ide.org/download/sdk.html
http://scala-ide.org/download/sdk.html

1.3.10//repository},
[organization]/[module]/(scala_[scalaVersion]/)(sbt_[sbtVersion]/)[revision]/[type]s/[artifact](-
[classifier]).[ext]
activator-launcher-local: file:////${activator.local.repository-${activator.home-
${user.home}/.activator}/repository},
[organization]/[module]/(scala_[scalaVersion]/)(sbt_[sbtVersion]/)[revision]/[type]s/[artifact](-
[classifier]).[ext]

Compile the application:4.

activator compile

Prepare an eclipse project for the new application with:5.

activator eclipse

Now the project is ready to be imported into eclipse via Existing Projects into Workspace.

How to attach Play source to eclipse

Add to the build.sbt:1.

EclipseKeys.withSource := true

Compile the project2.

Setting eclipse IDE globally

Add the sbt user setting:

Create under the user root directory a folder .sbt\0.13\plugins and a file plugins.sbt. For
example for Windows user asch:

1.

c:\asch\.sbt\0.13\plugins\plugins.sbt

Add eclipse plugin into plugins.sbt:2.

//Support Play in Eclipse
addSbtPlugin("com.typesafe.sbteclipse" % "sbteclipse-plugin" % "4.0.0")

Create in user .sbt directory a file sbteclipse.sbt. For example for Windows user asch:3.

c:\asch\.sbt\0.13\sbteclipse.sbt

Put into sbteclipse.sbt a flag that forces compilation to happen when the activator eclipse
command is run:

4.

https://riptutorial.com/ 25

import com.typesafe.sbteclipse.plugin.EclipsePlugin.EclipseKeys
EclipseKeys.preTasks := Seq(compile in Compile)

Add optionally other EclipseKeys settings.5.

Debugging from eclipse

To debug, start the application with the default port 9999:

activator -jvm-debug run

or with the different port:

activator -jvm-debug [port] run

In eclipse:

Right-click on the project and select Debug As, Debug Configurations.1.
In the Debug Configurations dialog, right-click on Remote Java Application and select
New.

2.

Change Port to relevant (9999 if the default debug port was used) and click Apply.3.

From now on you can click on Debug to connect to the running application. Stopping the
debugging session will not stop the server.

Eclipse IDE

Prerequisites

Java8 (1.8.0_91)1.
Eclipse neon (JavaScript and Web Developer)2.
Play Framework 2.5.43.

Installing Scala in Eclipse

Launch the Eclipse1.
Open Help > Eclipse Marketplace2.
Type Scala in Find3.
Install Scala IDE4.

Setup sbteclipse

Open play project .\project\ plugins.sbt1.
Add following command in plugins.sbt to convert eclipse project2.

https://riptutorial.com/ 26

addSbtPlugin("com.typesafe.sbteclipse" % "sbteclipse-plugin" % "4.0.0")

Open command and go to play project e.g. cd C:\play\play-scala. Type following at
command line

3.

activator eclipse

Importing project

Go to menu File > Importin Eclipse1.
Select Existing Projects into Workspace2.
Select root directory3.

Now your project is ready to view and edit at Eclipse IDE.

Read Setting up your preferred IDE online:
https://riptutorial.com/playframework/topic/4437/setting-up-your-preferred-ide

https://riptutorial.com/ 27

https://riptutorial.com/playframework/topic/4437/setting-up-your-preferred-ide

Chapter 8: Slick

Examples

Slick getting started code

In build.sbt, make sure you include (here for Mysql and PostGreSQL):

 "mysql" % "mysql-connector-java" % "5.1.20",
 "org.postgresql" % "postgresql" % "9.3-1100-jdbc4",
 "com.typesafe.slick" %% "slick" % "3.1.1",
 "com.typesafe.play" %% "play-slick" % "1.1.1"

In your application.conf, add:

mydb.driverjava="slick.driver.MySQLDriver$"
mydb.driver="com.mysql.jdbc.Driver"
mydb.url="jdbc:mysql://hostaddress:3306/dbname?zeroDateTimeBehavior=convertToNull"
mydb.user="username"
mydb.password="password"

To have a RDBMS independent architecture create an object like the following

package mypackage

import slick.driver.MySQLDriver
import slick.driver.PostgresDriver

object SlickDBDriver{
 val env = "something here"
 val driver = env match{
 case "postGreCondition" => PostgresDriver
 case _ => MySQLDriver
 }
}

when creating a new new model:

import mypackage.SlickDBDriver.driver.api._
import slick.lifted.{TableQuery, Tag}
import slick.model.ForeignKeyAction

case class MyModel(
 id: Option[Long],
 name: String
) extends Unique

class MyModelDB(tag: Tag) extends IndexedTable[MyModel](tag, "my_table"){
 def id = column[Long]("id", O.PrimaryKey, O.AutoInc)
 def name = column[String]("name")

https://riptutorial.com/ 28

 def * = (id.? , name) <> ((MyModel.apply _).tupled, MyModel.unapply _)
}

class MyModelCrud{
 import play.api.Play.current

 val dbConfig = DatabaseConfigProvider.get[JdbcProfile](Play.current)
 val db = dbConfig.db

 val query = TableQuery[MyModelDB]

 // SELECT * FROM my_table;
 def list = db.run{query.result}
}

Output DDL

The whole point of using slick is to write as little SQL code as possible. After you have written your
table definition, you will want to create the table in your database.

If you have val table = TableQuery[MyModel] You can get the table definition (SQL code - DDL)
running the following command:

import mypackage.SlickDBDriver.driver.api._
table.schema.createStatements

Read Slick online: https://riptutorial.com/playframework/topic/4604/slick

https://riptutorial.com/ 29

https://riptutorial.com/playframework/topic/4604/slick

Chapter 9: Unit Testing

Examples

Unit testing - Java, Play 2.4,2.5

Helpers and fakeApplication

Class Helpers is used a lot for unit tests. It imitates a Play application, fakes HTTP requests and
responses, session, cookies - all whatever may be needed for tests. A controller under the test
should be executed in a context of a Play application. The Helpers method fakeApplication
provides an application for running tests. In order to use Helpers and fakeApplication a test class
should derive from WithApplication.

The following Helpers API-s should be used:

Helpers.running(Application application, final Runnable block);
Helpers.fakeApplication();

Test with Helpers looks like this:

public class TestController extends WithApplication {
 @Test
 public void testSomething() {
 Helpers.running(Helpers.fakeApplication(), () -> {
 // put test stuff
 // put asserts
 });
 }
}

Adding import statements for Helpers methods makes code more compact:

 import static play.test.Helpers.fakeApplication;
 import static play.test.Helpers.running;
 ...
 @Test
 public void testSomething() {
 running(fakeApplication(), () -> {
 // put test stuff
 // put asserts
 });
 }

}

Testing controllers

https://riptutorial.com/ 30

Let's call a controller method, which is bound to the particular URL in the routes as a routed
method. An invocation of a routed method is called a controller action and has a Java type Call.
Play builds so-called reverse route to each action. Call to a reverse route creates an appropriate
Call object. This reverse routing mechanism is used for testing controllers.

To invoke a controller action from test the following Helpers API should be used:

Result result = Helpers.route(Helpers.fakeRequest(Call action));

Controller tests example

The routes:1.

GET /conference/:confId controllers.ConferenceController.getConfId(confId: String)
POST /conference/:confId/participant
controllers.ConferenceController.addParticipant(confId:String)

Generated reverse routes:

controllers.routes.ConferenceController.getConfId(conferenceId)
controllers.routes.ConferenceController.addParticipant(conferenceId)

2.

The method getConfId is bound to GET and does not receive a body in a request. It may be
invoked for test with:

Result result =
Helpers.route(Helpers.fakeRequest(controllers.routes.ConferenceController.getConfId(conferenceId)));

3.

The method addParticipant is bound to POST. It expects to receive a body in a request. Its
invocation in test should be done like this:

ParticipantDetails inputData = DataSimulator.createParticipantDetails();
Call action = controllers.routes.ConferenceController.addParticipant(conferenceId);
Result result = route(Helpers.fakeRequest(action).bodyJson(Json.toJson(inputData));

4.

Mocking with PowerMock

To enable mocking a test class should be annotated as following:

@RunWith(PowerMockRunner.class)
@PowerMockIgnore({"javax.management.*", "javax.crypto.*"})
public class TestController extends WithApplication {
....

Mocking of a controller action

https://riptutorial.com/ 31

A controller call is mocked with RequestBuilder:

RequestBuilder fakeRequest = Helpers.fakeRequest(action);

For the above addParticipant an action is mocked with:

RequestBuilder mockActionRequest =
Helpers.fakeRequest(controllers.routes.ConferenceController.addParticipant(conferenceId));

To invoke the controller method:

Result result = Helpers.route(mockActionRequest);

The whole test:

@Test
public void testLoginOK() {
 running(fakeApplication(), () -> {
 ///*whatever mocking*/Mockito.when(...).thenReturn(...);
 RequestBuilder mockActionRequest = Helpers.fakeRequest(
 controllers.routes.LoginController.loginAdmin());
 Result result = route(mockActionRequest);
 assertEquals(OK, result.status());
 });
}

Mocking of an action with JSON body

Let's suppose, that an input is an object of type T. The action request mocking may be done in
several ways.

Option 1:

public static <T> RequestBuilder fakeRequestWithJson(T input, String method, String url) {
 JsonNode jsonNode = Json.toJson(input);
 RequestBuilder fakeRequest = Helpers.fakeRequest(method, url).bodyJson(jsonNode);
 System.out.println("Created fakeRequest="+fakeRequest +",
body="+fakeRequest.body().asJson());
 return fakeRequest;
}

Option 2:

public static <T> RequestBuilder fakeActionRequestWithJson(Call action, T input) {
 JsonNode jsonNode = Json.toJson(input);
 RequestBuilder fakeRequest = Helpers.fakeRequest(action).bodyJson(jsonNode);
 System.out.println("Created fakeRequest="+fakeRequest +",
body="+fakeRequest.body().asJson());
 return fakeRequest;
}

https://riptutorial.com/ 32

Mocking of an action with Base authentication header

The action request mocking:

public static final String BASIC_AUTH_VALUE = "dummy@com.com:12345";
public static RequestBuilder fakeActionRequestWithBaseAuthHeader(Call action) {
 String encoded = Base64.getEncoder().encodeToString(BASIC_AUTH_VALUE.getBytes());
 RequestBuilder fakeRequest =
Helpers.fakeRequest(action).header(Http.HeaderNames.AUTHORIZATION,
 "Basic " + encoded);
 System.out.println("Created fakeRequest="+fakeRequest.toString());
 return fakeRequest;
}

Mocking of an action with session

The action request mocking:

public static final String FAKE_SESSION_ID = "12345";
public static RequestBuilder fakeActionRequestWithSession(Call action) {
 RequestBuilder fakeRequest = RequestBuilder fakeRequest =
Helpers.fakeRequest(action).session("sessionId", FAKE_SESSION_ID);
 System.out.println("Created fakeRequest="+fakeRequest.toString());
 return fakeRequest;
}

The Play Session class is just an extension of the HashMap<String, String>. It may be mocked
with simple code:

public static Http.Session fakeSession() {
 return new Http.Session(new HashMap<String, String>());
}

Read Unit Testing online: https://riptutorial.com/playframework/topic/6192/unit-testing

https://riptutorial.com/ 33

https://riptutorial.com/playframework/topic/6192/unit-testing

Chapter 10: Webservice usage with play
WSClient

Remarks

Link to official documentation: https://www.playframework.com/documentation/2.5.x/ScalaWS

Examples

Basic usage (Scala)

HTTP requests are made through the WSClient class, which you can use as an injected
parameter into your own classes.

import javax.inject.Inject

import play.api.libs.ws.WSClient

import scala.concurrent.{ExecutionContext, Future}

class MyClass @Inject() (
 wsClient: WSClient
)(implicit ec: ExecutionContext){

 def doGetRequest(): Future[String] = {
 wsClient
 .url("http://www.google.com")
 .get()
 .map { response =>
 // Play won't check the response status,
 // you have to do it manually
 if ((200 to 299).contains(response.status)) {
 println("We got a good response")
 // response.body returns the raw string
 // response.json could be used if you know the response is JSON
 response.body
 } else
 throw new IllegalStateException(s"We received status ${response.status}")
 }
 }
}

Read Webservice usage with play WSClient online:
https://riptutorial.com/playframework/topic/2981/webservice-usage-with-play-wsclient

https://riptutorial.com/ 34

https://www.playframework.com/documentation/2.5.x/ScalaWS
https://riptutorial.com/playframework/topic/2981/webservice-usage-with-play-wsclient

Chapter 11: Working with JSON - Scala

Remarks

Official documentation Package documentation

You can use the play json package independently from Play by including

"com.typesafe.play" % "play-json_2.11" % "2.5.3" in your build.sbt, see

https://mvnrepository.com/artifact/com.typesafe.play/play-json_2.11•
Adding Play JSON Library to sbt•

Examples

Creating a JSON manually

You can build a JSON object tree (a JsValue) manually

import play.api.libs.json._

val json = JsObject(Map(
 "name" -> JsString("Jsony McJsonface"),
 "age" -> JsNumber(18),
 "hobbies" -> JsArray(Seq(
 JsString("Fishing"),
 JsString("Hunting"),
 JsString("Camping")
))
))

Or with the shorter equivalent syntax, based on a few implicit conversions :

import play.api.libs.json._

val json = Json.obj(
 "name" -> "Jsony McJsonface",
 "age" -> 18,
 "hobbies" -> Seq(
 "Fishing",
 "Hunting",
 "Camping"
)
)

To get the JSON string :

json.toString
// {"name":"Jsony McJsonface","age":18,"hobbies":["Fishing","Hunting","Camping"]}
Json.prettyPrint(json)

https://riptutorial.com/ 35

https://www.playframework.com/documentation/2.5.x/ScalaJson
https://www.playframework.com/documentation/2.5.x/api/scala/index.html#play.api.libs.package
https://mvnrepository.com/artifact/com.typesafe.play/play-json_2.11
http://stackoverflow.com/questions/19436069/adding-play-json-library-to-sbt

// {
// "name" : "Jsony McJsonface",
// "age" : 18,
// "hobbies" : ["Fishing", "Hunting", "Camping"]
// }

Java: Accepting JSON requests

public Result sayHello() {
 JsonNode json = request().body().asJson();
 if(json == null) {
 return badRequest("Expecting Json data");
 } else {
 String name = json.findPath("name").textValue();
 if(name == null) {
 return badRequest("Missing parameter [name]");
 } else {
 return ok("Hello " + name);
 }
 }
}

Java: Accepting JSON requests with BodyParser

@BodyParser.Of(BodyParser.Json.class)
public Result sayHello() {
 JsonNode json = request().body().asJson();
 String name = json.findPath("name").textValue();
 if(name == null) {
 return badRequest("Missing parameter [name]");
 } else {
 return ok("Hello " + name);
 }
}

Hint: The advantage of this way is that Play will automatically respond with an HTTP status code
400 if the request was not a valid one (Content-type was set to application/json but no JSON was
provided)

Scala: Reading a JSON manually

If you are given a JSON string :

val str =
 """{
 | "name" : "Jsony McJsonface",
 | "age" : 18,
 | "hobbies" : ["Fishing", "Hunting", "Camping"],
 | "pet" : {
 | "name" : "Doggy",
 | "type" : "dog"
 | }
 |}""".stripMargin

https://riptutorial.com/ 36

You can parse it to get a JsValue, representing the JSON tree

val json = Json.parse(str)

And traverse the tree to lookup specific values :

(json \ "name").as[String] // "Jsony McJsonface"

Useful methods

\ to go to a specific key in a JSON object•
\\ to go to all occurences of a specific key in a JSON object, searching recursively in nested
objects

•

.apply(idx) (i.e. (idx)) to go to a index in an array•

.as[T] to cast to a precise subtype•

.asOpt[T] to attempt to cast to a precise subtype, returning None if it's the wrong type•

.validate[T] to attempt to cast a JSON value to a precise subtype, returning a JsSuccess or
a JsError

•

(json \ "name").as[String] // "Jsony McJsonface"
(json \ "pet" \ "name").as[String] // "Doggy"
(json \\ "name").map(_.as[String]) // List("Jsony McJsonface", "Doggy")
(json \\ "type")(0).as[String] // "dog"
(json \ "wrongkey").as[String] // throws JsResultException
(json \ "age").as[Int] // 18
(json \ "hobbies").as[Seq[String]] // List("Fishing", "Hunting", "Camping")
(json \ "hobbies")(2).as[String] // "Camping"
(json \ "age").asOpt[String] // None
(json \ "age").validate[String] // JsError containing some error detail

Mapping automatically to/from case classes

Overall the easiest way to work with JSON is to have a case class mapping directly to the JSON
(same fields name, equivalent types, etc.).

case class Person(
 name: String,
 age: Int,
 hobbies: Seq[String],
 pet: Pet
)

case class Pet(
 name: String,
 `type`: String
)

// these macros will define automatically the conversion to/from JSON
// based on the cases classes definition
implicit val petFormat = Json.format[Pet]
implicit val personFormat = Json.format[Person]

https://riptutorial.com/ 37

Converting to Json

val person = Person(
 "Jsony McJsonface",
 18,
 Seq("Fishing", "Hunting", "Camping"),
 Pet("Doggy", "dog")
)

Json.toJson(person).toString
// {"name":"Jsony
McJsonface","age":18,"hobbies":["Fishing","Hunting","Camping"],"pet":{"name":"Doggy","type":"dog"}}

Converting from Json

val str =
 """{
 | "name" : "Jsony McJsonface",
 | "age" : 18,
 | "hobbies" : ["Fishing", "Hunting", "Camping"],
 | "pet" : {
 | "name" : "Doggy",
 | "type" : "dog"
 | }
 |}""".stripMargin

Json.parse(str).as[Person]
// Person(Jsony McJsonface,18,List(Fishing, Hunting, Camping),Pet(Doggy,dog))

Read Working with JSON - Scala online: https://riptutorial.com/playframework/topic/2983/working-
with-json---scala

https://riptutorial.com/ 38

https://riptutorial.com/playframework/topic/2983/working-with-json---scala
https://riptutorial.com/playframework/topic/2983/working-with-json---scala

Credits

S.
No

Chapters Contributors

1
Getting started with
playframework

Abhinab Kanrar, Anton, asch, Community, implicitdef, James,
John, robguinness

2
Building and
packaging

JulienD

3
Dependency
injection - Java

asch

4
Dependency
Injection - Scala

asch, implicitdef

5 Java - Hello World Salem

6
Java - Working with
JSON

Salem

7
Setting up your
preferred IDE

Alice, asch, implicitdef

8 Slick John

9 Unit Testing asch

10
Webservice usage
with play WSClient

implicitdef, John, Salem

11
Working with JSON -
Scala

Anton, asch, implicitdef, John, Salem

https://riptutorial.com/ 39

https://riptutorial.com/contributor/3159714/abhinab-kanrar
https://riptutorial.com/contributor/2097228/anton
https://riptutorial.com/contributor/6383273/asch
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/4686622/implicitdef
https://riptutorial.com/contributor/359034/james
https://riptutorial.com/contributor/1659569/john
https://riptutorial.com/contributor/896660/robguinness
https://riptutorial.com/contributor/2197181/juliend
https://riptutorial.com/contributor/6383273/asch
https://riptutorial.com/contributor/6383273/asch
https://riptutorial.com/contributor/4686622/implicitdef
https://riptutorial.com/contributor/1205368/salem
https://riptutorial.com/contributor/1205368/salem
https://riptutorial.com/contributor/3268354/alice
https://riptutorial.com/contributor/6383273/asch
https://riptutorial.com/contributor/4686622/implicitdef
https://riptutorial.com/contributor/1659569/john
https://riptutorial.com/contributor/6383273/asch
https://riptutorial.com/contributor/4686622/implicitdef
https://riptutorial.com/contributor/1659569/john
https://riptutorial.com/contributor/1205368/salem
https://riptutorial.com/contributor/2097228/anton
https://riptutorial.com/contributor/6383273/asch
https://riptutorial.com/contributor/4686622/implicitdef
https://riptutorial.com/contributor/1659569/john
https://riptutorial.com/contributor/1205368/salem

	About
	Chapter 1: Getting started with playframework
	Remarks
	Examples
	Play 1 Installation

	Prerequisites
	Installation from the binary package
	Generic instructions
	Mac OS X
	Linux
	Windows
	Installing through `sbt`
	Getting started with Play 2.4.x/2.5.x - Windows, Java

	Installations
	Play 2.5 installation fix

	Creating a new application with CLI
	Running activator on a different port

	Chapter 2: Building and packaging
	Syntax
	Examples
	Add a directory to the distribution

	Chapter 3: Dependency injection - Java
	Examples
	Dependency injection with Guice - Play 2.4, 2.5

	Injection of Play API-s
	Custom injection binding
	Injection with @ImplementedBy annotation
	Injection binding with a default Play module
	Flexible injection binding with a default Play module
	Injection binding with a custom module

	Chapter 4: Dependency Injection - Scala
	Syntax
	Examples
	Basic usage
	Injecting Play classes
	Defining custom bindings in a Module

	Chapter 5: Java - Hello World
	Remarks
	Examples
	Create your first project
	Get Activator
	The first run
	The "Hello World" in the Hello World

	Chapter 6: Java - Working with JSON
	Remarks
	Examples
	Manual creating JSON
	Loading json from string/file

	Loading a file from your public folder
	Load from a string
	Transversing a JSON document

	Get the name of some user (unsafe)
	Get the user name (safe way)
	Get the country where first user works
	Get every countries
	Find every user that contains the attribute "active"
	Conversion between JSON and Java objects (basic)

	Create Java object from JSON
	Create JSON object from Java object
	Creating a JSON string from a JSON object
	JSON pretty printing

	Chapter 7: Setting up your preferred IDE
	Examples
	IntelliJ IDEA

	Prerequisites
	Opening the project
	Running the applications from Intellij
	Auto-import option
	Eclipse as Play IDE - Java, Play 2.4, 2.5

	Introduction
	Setting eclipse IDE per project
	How to attach Play source to eclipse

	Setting eclipse IDE globally
	Debugging from eclipse
	Eclipse IDE
	Prerequisites
	Installing Scala in Eclipse
	Setup sbteclipse
	Importing project

	Chapter 8: Slick
	Examples
	Slick getting started code
	Output DDL

	Chapter 9: Unit Testing
	Examples
	Unit testing - Java, Play 2.4,2.5

	Helpers and fakeApplication
	Testing controllers
	Controller tests example

	Mocking with PowerMock
	Mocking of a controller action
	Mocking of an action with JSON body
	Mocking of an action with Base authentication header
	Mocking of an action with session

	Chapter 10: Webservice usage with play WSClient
	Remarks
	Examples
	Basic usage (Scala)

	Chapter 11: Working with JSON - Scala
	Remarks
	Examples
	Creating a JSON manually
	Java: Accepting JSON requests
	Java: Accepting JSON requests with BodyParser
	Scala: Reading a JSON manually

	Useful methods
	Mapping automatically to/from case classes

	Converting to Json
	Converting from Json
	Credits

