
plone

#plone

Table of Contents

About 1

Chapter 1: Getting started with plone 2

Remarks 2

Examples 2

Installation or Setup 2

Chapter 2: Create add-on 3

Examples 3

Overview file-structure 3

Minimum skeleton 3

Optional components 3

A tale about creating a Plone add-on 3

Preamble 3

Structure of a minimal Plone-Add-on 4

Python-module 4

Python-egg 4

Python-interpreter 5

Making an addon installable within a Plone-site 5

Credits 7

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: plone

It is an unofficial and free plone ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official plone.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/plone
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with plone

Remarks

This section provides an overview of what plone is, and why a developer might want to use it.

It should also mention any large subjects within plone, and link out to the related topics. Since the
Documentation for plone is new, you may need to create initial versions of those related topics.

Examples

Installation or Setup

Detailed instructions on getting plone set up or installed.

Read Getting started with plone online: https://riptutorial.com/plone/topic/8657/getting-started-with-
plone

https://riptutorial.com/ 2

https://riptutorial.com/plone/topic/8657/getting-started-with-plone
https://riptutorial.com/plone/topic/8657/getting-started-with-plone

Chapter 2: Create add-on

Examples

Overview file-structure

Minimum skeleton

mynamespace.myaddon | The container-directory of the add-on.

 setup.py | Register this directory to the Python-interpreter of
 | the ZOPE-instance.

 mynamespace | The namespace-directory of the add-on.

 __init__.py | Makes this directory a Python-module and contains
 | the lines for the namespace-magic.

 myaddon | The base-directory of the add-on.

 __init__.py | Empty file, make this directory a Python-module.

 myfile.py | Example-file: If it contained a method called
 | 'myMethod', it would be importable of any other
 | registered egg like this:
 | from mynamespace.myaddon.myfile import myMethod

Optional components

The 'mynamespace.myaddon/mynamespace/myaddon'-directory can contain:

configure.zcml | Register all following files and directories, here.

setuphandlers.py | Make an addon available to ZOPE-instance.

profiles | Make an addon installable to Plone-site and generally
 | hold GenericSetup-xml-files.

skins | The "old-school"-way, where resources like templates,
 | stylesheets, etc., live.

browser | The "new-school"-way, where resources live.

content | Holds the Python-files for defining custom content-types.

subscriber.py | Subscribers listen to events, describe here what to do
 | when an event happens, e.g.: "An item has been added to the
 | site, notify admin about it via e-mail-notifica."

A tale about creating a Plone add-on

https://riptutorial.com/ 3

Preamble

TL;TR: For illustration-purposes the lines of this document beginning with 'TL;TR:' are followed by
commandline refering to Plone-helper-scripts of the egg 'adi.devgen'. If you execute the command
given after 'TL;TR:', it will create all the files explained of the following chapter. There are many
alternative helper-script-tools, however in case you want to use this tool, you can install it quickly
like this of the commandline:

pip install adi.devgen

Structure of a minimal Plone-Add-on

TL;TR: devgen addBase mynamespace.myaddon

Just like Plone consists of more than 200 Python-eggs, a Plone-Add-On is also a Python-egg and
an egg is a namespaced Python-module. Any egg will be available to the Python-interpreter of
ZOPE. To make an egg installable in a Plone-site, it also needs a so called 'profile'. The following
will explain these terms.

Python-module

A Python module is a directory which contains at least one file which must be named __init__.py.
The name is a flag for the Python-interpreter to recognize this directory as a module, meaning its
path can be imported of other Python-scripts, e.g. assuming we have a directory called 'myaddon',
which contains a file called 'myfile' and that file contains a defintion called 'myDefinition', you can
import the definition of another Python-file like this:

from myaddon.myfile import myDefinition

Python-egg

A Python-egg is a namespaced Python-module, a namespace can be any name, but it should
better not be taken already, in case you want to share your add-on with the world.

The reason for namespacing is foremost to exclude the possibility that two or more modules could
have the same name (in this example called 'myaddon'), as it would result in conflicts when a
Python-script tries to import the path, being not unique anymore.

Here is an overview of the directory-structure and files involved, before we continue to explain
their purposes in detail furtheron:

mynamespace.myaddon
 setup.py
 mynamespace

https://riptutorial.com/ 4

 __init__.py
 myaddon
 __init__.py
 myfile.py

To namespace an add-on firstly create a directory named 'mynamespace.myaddon'.

This directory must contain the 'setup.py'-file, it makes the egg registrable to the Python-interpreter
of the ZOPE-instance, this is further explained in the next chapter[TODO].

Then, in that directory, create another directory named after your namespace: 'mynamespace'
Now, we make this directory an importable module-path, by adding the keyword-named file
__init__.py in it. It also must contain the following lines, which make the namespace-magic
happen, explained in the last paragraph:

[TODO: namespace-magic-lines]

Phew almost done, lastly in this new directory we put the module of the previous chapter: The
directory 'myaddon', containing the 'init.py' and 'myfile.py' with the 'myDefinition'.

Now we have an registrable egg for the ZOPE-instance and could reference its methods of any
other registered egg, using this path-notation:

from mynamespace.myaddon.myfile import myDefinition

You might see the magic, the first two directories are omitted, it is not:

from mynamespace.myaddon.mynamespace.myaddon.myfile import myDefinition

Python-interpreter

[TODO:

Explain setup.py•
Add a previous chapter about buildout (=installing Plone) for reference.]•

Making an addon installable within a Plone-site

A 'profile' will make the add-on show up in the add-ons-controlpanel of a site, so an admin can
(de-)activate it there for the site.

Additionally, as a Plone-site is always a child of ZOPE-instance and a ZOPE-instance can contain
several sites, we might not want to have unintendendly components of our add-on installed in
other Plone-sites, therefore we bind them to a 'profile'.

TL;TR: devgen addProfile mynamespace.myaddon

This leads us to the really interesting parts, the ZOPE-Component-Architecture, controlled by the

https://riptutorial.com/ 5

files ending with '.zcml', which stands for 'ZOPE-Component- Markup-Language'. With it you can
register a profile, bind views to interfaces and much more. In fact, it deserves an own major
chapter and a subchapter for each of the directories called "profile", "skins", "browser" and
"content".

Read Create add-on online: https://riptutorial.com/plone/topic/8751/create-add-on

https://riptutorial.com/ 6

https://riptutorial.com/plone/topic/8751/create-add-on

Credits

S.
No

Chapters Contributors

1
Getting started with
plone

Community

2 Create add-on Ida Ebkes

https://riptutorial.com/ 7

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/954189/ida-ebkes

	About
	Chapter 1: Getting started with plone
	Remarks
	Examples
	Installation or Setup

	Chapter 2: Create add-on
	Examples
	Overview file-structure

	Minimum skeleton
	Optional components
	A tale about creating a Plone add-on

	Preamble
	Structure of a minimal Plone-Add-on
	Python-module
	Python-egg
	Python-interpreter
	Making an addon installable within a Plone-site

	Credits

