
plsql

#plsql

Table of Contents

About 1

Chapter 1: Getting started with plsql 2

Remarks 2

Examples 2

Definition of PLSQL 2

Hello World 3

About PLSQL 3

Difference between %TYPE and %ROWTYPE. 4

Create or replace a view 4

Create a table 5

Chapter 2: Assignments model and language 6

Examples 6

Assignments model in PL/SQL 6

Chapter 3: Bulk collect 8

Examples 8

Bulk data Processing 8

Chapter 4: Collections and Records 9

Examples 9

Use a collection as a return type for a split function 9

Chapter 5: Cursors 10

Syntax 10

Remarks 10

Examples 10

Parameterized "FOR loop" Cursor 10

Implicit "FOR loop" cursor 10

Working with SYS_REFCURSOR 11

function returning a cursor 11

and how to use it: 11

Handling a CURSOR 12

Chapter 6: Exception Handling 13

Introduction 13

Examples 13

Exception handling 13

Syntax 13

Internally defined exceptions 14

Predefined exceptions 15

User defined exceptions 16

Define custom exception, raise it and see where it comes from 16

Handling connexion error exceptions 18

Chapter 7: Exception Handling 19

Introduction 19

Examples 19

Handling connexion error exceptions 19

Define custom exception, raise it and see where it comes from 20

Chapter 8: Functions 22

Syntax 22

Examples 22

Generate GUID 22

Calling Functions 22

Chapter 9: IF-THEN-ELSE Statement 24

Syntax 24

Examples 24

IF-THEN 24

IF-THEN-ELSE 24

IF-THEN-ELSIF-ELSE 25

Chapter 10: Loop 26

Syntax 26

Examples 26

Simple Loop 26

WHILE Loop 26

FOR Loop 27

Chapter 11: Object Types 29

Remarks 29

Examples 29

BASE_TYPE 29

MID_TYPE 30

LEAF_TYPE 31

Accessing stored objects 32

Chapter 12: Packages 34

Syntax 34

Examples 35

Package Usage 36

Overloading 36

Restrictions on Overloading 37

Define a Package header and body with a function. 37

Chapter 13: PLSQL procedure 39

Introduction 39

Examples 39

Syntax 39

Hello World 39

In/Out Parameters 40

Chapter 14: Triggers 41

Introduction 41

Syntax 41

Examples 41

Before INSERT or UPDATE trigger 41

Credits 43

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: plsql

It is an unofficial and free plsql ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official plsql.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/plsql
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with plsql

Remarks

This section provides an overview of what plsql is, and why a developer might want to use it.

It should also mention any large subjects within plsql, and link out to the related topics. Since the
Documentation for plsql is new, you may need to create initial versions of those related topics.

Examples

Definition of PLSQL

PL/SQL (Procedural Language/Structured Query Language) is Oracle Corporation's procedural
extension for SQL and the Oracle relational database. PL/SQL is available in Oracle Database
(since version 7), TimesTen in-memory database (since version 11.2.1), and IBM DB2 (since
version 9.7).

The basic unit in PL/SQL is called a block, which is made up of three parts: a declarative part, an
executable part, and an exception-building part.

DECLARE
 <declarations section>
BEGIN
 <executable command(s)>
EXCEPTION
 <exception handling>
END;

Declarations - This section starts with the keyword DECLARE. It is an optional section and
defines all variables, cursors, subprograms, and other elements to be used in the program.

Executable Commands - This section is enclosed between the keywords BEGIN and END and it
is a mandatory section. It consists of the executable PL/SQL statements of the program. It should
have at least one executable line of code, which may be just a NULL command to indicate that
nothing should be executed.

Exception Handling - This section starts with the keyword EXCEPTION. This section is again
optional and contains exception(s) that handle errors in the program.

Every PL/SQL statement ends with a semicolon (;). PL/SQL blocks can be nested within other
PL/SQL blocks using BEGIN and END.

In anonymous block, only executable part of block is required, other parts are not nessesary.
Below is example of simple anonymous code, which does not do anything but perform without
error reporting.

https://riptutorial.com/ 2

BEGIN
 NULL;
END;
/

Missing excecutable instruction leads to an error, becouse PL/SQL does not support empty
blocks. For example, excecution of code below leads to an error:

BEGIN
END;
/

Application will raise error:

END;
*
ERROR at line 2:
ORA-06550: line 2, column 1:
PLS-00103: Encountered the symbol "END" when expecting one of the following:
(begin case declare exit for goto if loop mod null pragma
raise return select update while with <an identifier>
<a double-quoted delimited-identifier> <a bind variable> <<
continue close current delete fetch lock insert open rollback
savepoint set sql execute commit forall merge pipe purge

Symbol " * " in line below keyword "END;" means, that the block which ends with this block is
empty or bad constructed. Every execution block needs instructions to do, even if it does nothing,
like in our example.

Hello World

set serveroutput on

DECLARE
 message constant varchar2(32767):= 'Hello, World!';
BEGIN
 dbms_output.put_line(message);
END;
/

Command set serveroutput on is required in SQL*Plus and SQL Developer clients to enable the
output of dbms_output. Without the command nothing is displayed.

The end; line signals the end of the anonymous PL/SQL block. To run the code from SQL
command line, you may need to type / at the beginning of the first blank line after the last line of
the code. When the above code is executed at SQL prompt, it produces the following result:

Hello, World!

PL/SQL procedure successfully completed.

About PLSQL

https://riptutorial.com/ 3

PL/SQL stands for Procedural Language extensions to SQL. PL/SQL is available only as an
"enabling technology" within other software products; it does not exist as a standalone language.
You can use PL/SQL in the Oracle relational database, in the Oracle Server, and in client-side
application development tools, such as Oracle Forms. Here are some of the ways you might use
PL/SQL:

To build stored procedures. .1.
To create database triggers.2.
To implement client-side logic in your Oracle Forms application.3.
To link a World Wide Web home page to an Oracle database.4.

Difference between %TYPE and %ROWTYPE.

%TYPE: Used to declare a field with the same type as that of a specified table's column.

DECLARE
 vEmployeeName Employee.Name%TYPE;
BEGIN
 SELECT Name
 INTO vEmployeeName
 FROM Employee
 WHERE RowNum = 1;

 DBMS_OUTPUT.PUT_LINE(vEmployeeName);
END;
/

%ROWTYPE: Used to declare a record with the same types as found in the specified table, view
or cursor (= multiple columns).

DECLARE
 rEmployee Employee%ROWTYPE;
BEGIN
 rEmployee.Name := 'Matt';
 rEmployee.Age := 31;

 DBMS_OUTPUT.PUT_LINE(rEmployee.Name);
 DBMS_OUTPUT.PUT_LINE(rEmployee.Age);
END;
/

Create or replace a view

In this example we are going to create a view.
A view is mostly used as a simple way of fetching data from multiple tables.

Example 1:
View with a select on one table.

CREATE OR REPLACE VIEW LessonView AS
 SELECT L.*
 FROM Lesson L;

https://riptutorial.com/ 4

Example 2:
View with a select on multiple tables.

CREATE OR REPLACE VIEW ClassRoomLessonView AS
 SELECT C.Id,
 C.Name,
 L.Subject,
 L.Teacher
 FROM ClassRoom C,
 Lesson L
 WHERE C.Id = L.ClassRoomId;

To call this views in a query you can use a select statement.

SELECT * FROM LessonView;
SELECT * FROM ClassRoomLessonView;

Create a table

Below we are going to create a table with 3 columns.
The column Id must be filled is, so we define it NOT NULL.
On the column Contract we also add a check so that the only value allowed is 'Y' or 'N'. If an insert
in done and this column is not specified during the insert then default a 'N' is inserted.

CREATE TABLE Employee (
 Id NUMBER NOT NULL,
 Name VARCHAR2(60),
 Contract CHAR DEFAULT 'N' NOT NULL,

 CONSTRAINT p_Id PRIMARY KEY(Id),
 CONSTRAINT c_Contract CHECK (Contract IN('Y','N'))
);

Read Getting started with plsql online: https://riptutorial.com/plsql/topic/1962/getting-started-with-
plsql

https://riptutorial.com/ 5

https://riptutorial.com/plsql/topic/1962/getting-started-with-plsql
https://riptutorial.com/plsql/topic/1962/getting-started-with-plsql

Chapter 2: Assignments model and language

Examples

Assignments model in PL/SQL

All programming languages allow us to assign values to variables. Usually, a value is assigned to
variable, standing on left side. The prototype of the overall assignment operations in any
contemporary programming language looks like this:

left_operand assignment_operand right_operand instructions_of_stop

This will assign right operand to the left operand. In PL/SQL this operation looks like this:

left_operand := right_operand;

Left operand must be always a variable. Right operand can be value, variable or function:

set serveroutput on
declare
 v_hello1 varchar2(32767);
 v_hello2 varchar2(32767);
 v_hello3 varchar2(32767);
 function hello return varchar2 is begin return 'Hello from a function!'; end;
begin
 -- from a value (string literal)
 v_hello1 := 'Hello from a value!';
 -- from variable
 v_hello2 := v_hello1;
 -- from function
 v_hello3 := hello;

 dbms_output.put_line(v_hello1);
 dbms_output.put_line(v_hello2);
 dbms_output.put_line(v_hello3);
end;
/

When the code block is executed in SQL*Plus the following output is printed in console:

Hello from a value!
Hello from a value!
Hello from a function!

There is a feature in PL/SQL that allow us to assign "from right to the left". It's possible to do in
SELECT INTO statement. Prototype of this instrunction you will find below:

SELECT [literal | column_value]

INTO local_variable

https://riptutorial.com/ 6

FROM [table_name | aliastable_name]

WHERE comparison_instructions;

This code will assign character literal to a local variable:

set serveroutput on
declare
 v_hello varchar2(32767);
begin
 select 'Hello world!'
 into v_hello
 from dual;

 dbms_output.put_line(v_hello);
end;
/

When the code block is executed in SQL*Plus the following output is printed in console:

Hello world!

Asignment "from right to the left" is not a standard, but it's valuable feature for programmers and
users. Generally it's used when programmer is using cursors in PL/SQL - this technique is used,
when we want to return a single scalar value or set of columns in the one line of cursor from SQL
cursor.

Further Reading:

Assigning Values to Variables•

Read Assignments model and language online:
https://riptutorial.com/plsql/topic/6959/assignments-model-and-language

https://riptutorial.com/ 7

http://docs.oracle.com/cd/E11882_01/appdev.112/e25519/fundamentals.htm#LNPLS00205
https://riptutorial.com/plsql/topic/6959/assignments-model-and-language

Chapter 3: Bulk collect

Examples

Bulk data Processing

local collections are not allowed in select statements. Hence the first step is to create a schema
level collection. If the collection is not schema level and being used in SELECT statements then it
would cause "PLS-00642: local collection types not allowed in SQL statements"

CREATE OR REPLACE TYPE table1_t IS OBJECT (
a_1 INTEGER,
a_2 VARCHAR2(10)
);

--Grant permissions on collection so that it could be used publically in database

 GRANT EXECUTE ON table1_t TO PUBLIC;
 CREATE OR REPLACE TYPE table1_tbl_typ IS TABLE OF table1_t;
 GRANT EXECUTE ON table1_tbl_typ TO PUBLIC;

--fetching data from table into collection and then loop through the collection and print the data.

 DECLARE
 table1_tbl table1_tbl_typ;
 BEGIN
 table1_tbl := table1_tbl_typ();
 SELECT table1_t(a_1,a_2)
 BULK COLLECT INTO table1_tbl
 FROM table1 WHERE ROWNUM<10;

 FOR rec IN (SELECT a_1 FROM TABLE(table1_tbl))--table(table1_tbl) won't give error)
 LOOP
 dbms_output.put_line('a_1'||rec.a_1);
 dbms_output.put_line('a_2'||rec.a_2);
 END LOOP;
 END;
/

Read Bulk collect online: https://riptutorial.com/plsql/topic/6855/bulk-collect

https://riptutorial.com/ 8

https://riptutorial.com/plsql/topic/6855/bulk-collect

Chapter 4: Collections and Records

Examples

Use a collection as a return type for a split function

It's necessary to declare the type; here t_my_list; a collection is a TABLE OF something

CREATE OR REPLACE TYPE t_my_list AS TABLE OF VARCHAR2(100);

Here's the function. Notice the () used as a kind of constructor, and the COUNT and EXTEND keywords
that help you create and grow your collection;

CREATE OR REPLACE
FUNCTION cto_table(p_sep in Varchar2, p_list IN VARCHAR2)
 RETURN t_my_list
AS
--- this function takes a string list, element being separated by p_sep
-- as separator
 l_string VARCHAR2(4000) := p_list || p_sep;
 l_sep_index PLS_INTEGER;
 l_index PLS_INTEGER := 1;
 l_tab t_my_list := t_my_list();
BEGIN
 LOOP
 l_sep_index := INSTR(l_string, p_sep, l_index);
 EXIT
 WHEN l_sep_index = 0;
 l_tab.EXTEND;
 l_tab(l_tab.COUNT) := TRIM(SUBSTR(l_string,l_index,l_sep_index - l_index));
 l_index := l_sep_index + 1;
 END LOOP;
 RETURN l_tab;
END cto_table;
/

Then you can see the content of the collection with the TABLE() function from SQL; it can be used
as a list inside a SQL IN (..) statement:

select * from A_TABLE
 where A_COLUMN in (TABLE(cto_table('|','a|b|c|d')))
--- gives the records where A_COLUMN in ('a', 'b', 'c', 'd') --

Read Collections and Records online: https://riptutorial.com/plsql/topic/9779/collections-and-
records

https://riptutorial.com/ 9

https://riptutorial.com/plsql/topic/9779/collections-and-records
https://riptutorial.com/plsql/topic/9779/collections-and-records

Chapter 5: Cursors

Syntax

Cursor cursor_name Is your_select_statement•
Cursor cursor_name(param TYPE) Is your_select_statement_using_param•
FOR x in (your_select_statement) LOOP ...•

Remarks

Declared Cursors are difficult to use, and you should prefer FOR loops in most cases. What's very
interesting in cursors compared to simple FOR loops, is that you can parameterize them.

It's better to avoid doing loops with PL/SQL and cursors instead of using Oracle SQL anyway.
However, For people accustomed to procedural language, it can be far easier to understand.

If you want to check if a record exists, and then do different things depending on whether the
record exists or not, then it makes sense to use MERGE statements in pure ORACLE SQL queries
instead of using cursor loops. (Please note that MERGE is only available in Oracle releases >= 9i).

Examples

Parameterized "FOR loop" Cursor

DECLARE
 CURSOR c_emp_to_be_raised(p_sal emp.sal%TYPE) IS
 SELECT * FROM emp WHERE sal < p_sal;
BEGIN
 FOR cRowEmp IN c_emp_to_be_raised(1000) LOOP
 dbms_Output.Put_Line(cRowEmp .eName ||' ' ||cRowEmp.sal||'... should be raised ;)');
 END LOOP;
END;
/

Implicit "FOR loop" cursor

BEGIN
 FOR x IN (SELECT * FROM emp WHERE sal < 100) LOOP
 dbms_Output.Put_Line(x.eName ||' '||x.sal||'... should REALLY be raised :D');
 END LOOP;
END;
/

First advantage is there is no tedious declaration to do (think of this horrible "CURSOR" thing
you had in previous versions)

•

second advantage is you first build your select query, then when you have what you want,
you immediately can access the fields of your query (x.<myfield>) in your PL/SQL loop

•

https://riptutorial.com/ 10

http://www.riptutorial.com/oracle/example/14689/update-using-merge
http://www.riptutorial.com/oracle/example/14689/update-using-merge
http://www.riptutorial.com/oracle/example/14689/update-using-merge

The loop opens the cursor and fetches one record at a time for every loop. At the end of the
loop the cursor is closed.

•

Implicit cursors are faster because the interpreter's work grows as the code gets longer. The
less code the less work the interpreter has to do.

•

Working with SYS_REFCURSOR

SYS_REFCURSOR can be used as a return type when you need to easily handle a list returned not from
a table, but more specifically from a function:

function returning a cursor

CREATE OR REPLACE FUNCTION list_of (required_type_in IN VARCHAR2)
 RETURN SYS_REFCURSOR
IS
 v_ SYS_REFCURSOR;
BEGIN
 CASE required_type_in
 WHEN 'CATS'
 THEN
 OPEN v_ FOR
 SELECT nickname FROM (
 select 'minou' nickname from dual
 union all select 'minâ' from dual
 union all select 'minon' from dual
);
 WHEN 'DOGS'
 THEN
 OPEN v_ FOR
 SELECT dog_call FROM (
 select 'bill' dog_call from dual
 union all select 'nestor' from dual
 union all select 'raoul' from dual
);
 END CASE;
 -- Whit this use, you must not close the cursor.
 RETURN v_;
END list_of;
/

and how to use it:

DECLARE
 v_names SYS_REFCURSOR;
 v_ VARCHAR2 (32767);
BEGIN
 v_names := list_of('CATS');
 LOOP
 FETCH v_names INTO v_;
 EXIT WHEN v_names%NOTFOUND;
 DBMS_OUTPUT.put_line(v_);
 END LOOP;

https://riptutorial.com/ 11

 -- here you close it
 CLOSE v_names;
END;
/

Handling a CURSOR

Declare the cursor to scan a list of records•
Open it•
Fetch current record into variables (this increments position)•
Use %notfound to detect end of list•
Don't forget to close the cursor to limit resources consumption in current context•

--

DECLARE
 CURSOR curCols IS -- select column name and type from a given table
 SELECT column_name, data_type FROM all_tab_columns where table_name='MY_TABLE';
 v_tab_column all_tab_columns.column_name%TYPE;
 v_data_type all_tab_columns.data_type%TYPE;
 v_ INTEGER := 1;
BEGIN
 OPEN curCols;
 LOOP
 FETCH curCols INTO v_tab_column, v_data_type;
 IF curCols%notfound OR v_ > 2000 THEN
 EXIT;
 END IF;
 dbms_output.put_line(v_||':Column '||v_tab_column||' is of '|| v_data_type||' Type.');
 v_:= v_ + 1;
 END LOOP;

 -- Close in any case
 IF curCols%ISOPEN THEN
 CLOSE curCols;
 END IF;
END;
/

Read Cursors online: https://riptutorial.com/plsql/topic/5303/cursors

https://riptutorial.com/ 12

https://riptutorial.com/plsql/topic/5303/cursors

Chapter 6: Exception Handling

Introduction

Oracle produces a variety of exceptions. You may be surprised how tedious it can be to have your
code stop with some unclear message. To improve your PL/SQL code's ability to get fixed easily it
is necessary to handle exceptions at the lowest level. Never hide an exception "under the carpet",
unless you're here to keep your piece of code for you only and for no one else to maintain.

The predefined errors.

Examples

Exception handling

What is an exception?

Exception in PL/SQL is an error created during a program execution.

We have three types of exceptions:

Internally defined exceptions•
Predefined exceptions•
User-defined exceptions•

1.

What is an exception handling?

Exception handling is a possibility to keep our program running even if appear runtime error
resulting from for example coding mistakes, hardware failures.We avoid it from exiting
abruptly.

2.

Syntax

The general syntax for exception section:

declare
 declaration Section
begin
 some statements

exception
 when exception_one then
 do something
 when exception_two then
 do something
 when exception_three then
 do something
 when others then
 do something

https://riptutorial.com/ 13

https://docs.oracle.com/database/122/LNPLS/plsql-error-handling.htm#LNPLS00703

end;

An exception section has to be on the end of the PL/SQL block. PL/SQL gives us the opportunity
to nest blocks, then each block may have its own exception section for example:

create or replace procedure nested_blocks
is
begin
 some statements
 begin
 some statements

 exception
 when exception_one then
 do something
 end;
exception
 when exception_two then
 do something
end;

If exception will be raised in the nested block it should be handled in the inner exception section,
but if inner exception section does not handle this exception then this exception will go to
exception section of the external block.

Internally defined exceptions

An internally defined exception doesn't have a name, but it has its own code.

When to use it?

If you know that your database operation might raise specific exceptions those which don't have
names, then you can give them names so that you can write exception handlers specifically for
them. Otherwise, you can use them only with others exception handlers.

Syntax

declare
 my_name_exc exception;
 pragma exception_init(my_name_exc,-37);
begin
 ...
exception
 when my_name_exc then
 do something
end;

my_name_exc exception; that is the exception name declaration.

pragma exception_init(my_name_exc,-37); assign name to the error code of internally defined
exception.

Example

https://riptutorial.com/ 14

We have an emp_id which is a primary key in emp table and a foreign key in dept table. If we try to
remove emp_id when it has child records, it will be thrown an exception with code -2292.

create or replace procedure remove_employee
is
 emp_exception exception;
 pragma exception_init(emp_exception,-2292);
begin
 delete from emp where emp_id = 3;
exception
 when emp_exception then
 dbms_output.put_line('You can not do that!');
end;
/

Oracle documentation says: "An internally defined exception with a user-declared
name is still an internally defined exception, not a user-defined exception."

Predefined exceptions

Predefined exceptions are internally defined exceptions but they have names. Oracle database
raise this type of exceptions automatically.

Example

create or replace procedure insert_emp
is
begin
 insert into emp (emp_id, ename) values ('1','Jon');

exception
 when dup_val_on_index then
 dbms_output.put_line('Duplicate value on index!');
end;
/

Below are examples exceptions name with theirs codes:

Exception Name Error Code

NO_DATA_FOUND -1403

ACCESS_INTO_NULL -6530

CASE_NOT_FOUND -6592

ROWTYPE_MISMATCH -6504

TOO_MANY_ROWS -1422

ZERO_DIVIDE -1476

https://riptutorial.com/ 15

Full list of exception names and their codes on Oracle web-site.

User defined exceptions

As the name suggest user defined exceptions are created by users. If you want to create your own
exception you have to:

Declare the exception1.
Raise it from your program2.
Create suitable exception handler to catch him.3.

Example

I want to update all salaries of workers. But if there are no workers, raise an exception.

create or replace procedure update_salary
is
 no_workers exception;
 v_counter number := 0;
begin
 select count(*) into v_counter from emp;
 if v_counter = 0 then
 raise no_workers;
 else
 update emp set salary = 3000;
 end if;

 exception
 when no_workers then
 raise_application_error(-20991,'We don''t have workers!');
end;
/

What does it mean raise?

Exceptions are raised by database server automatically when there is a need, but if you want, you
can raise explicitly any exception using raise.

Procedure raise_application_error(error_number,error_message);

error_number must be between -20000 and -20999•
error_message message to display when error occurs.•

Define custom exception, raise it and see where it comes from

To illustrate this, here is a function that has 3 different "wrong" behaviors

the parameter is completely stupid: we use a user-defined expression•
the parameter has a typo: we use Oracle standard NO_DATA_FOUND error•
another, but not handled case•

Feel free to adapt it to your standards:

https://riptutorial.com/ 16

DECLARE
 this_is_not_acceptable EXCEPTION;
 PRAGMA EXCEPTION_INIT(this_is_not_acceptable, -20077);
 g_err varchar2 (200) := 'to-be-defined';
 w_schema all_tables.OWNER%Type;

 PROCEDURE get_schema(p_table in Varchar2, p_schema out Varchar2)
 Is
 w_err varchar2 (200) := 'to-be-defined';
 BEGIN
 w_err := 'get_schema-step-1:';
 If (p_table = 'Delivery-Manager-Is-Silly') Then
 raise this_is_not_acceptable;
 end if;
 w_err := 'get_schema-step-2:';
 Select owner Into p_schema
 From all_tables
 where table_name like(p_table||'%');
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 -- handle Oracle-defined exception
 dbms_output.put_line('[WARN]'||w_err||'This can happen. Check the table name you
entered.');
 WHEN this_is_not_acceptable THEN
 -- handle your custom error
 dbms_output.put_line('[WARN]'||w_err||'Please don''t make fun of the delivery manager.');
 When others then
 dbms_output.put_line('[ERR]'||w_err||'unhandled exception:'||sqlerrm);
 raise;
 END Get_schema;

BEGIN
 g_err := 'Global; first call:';
 get_schema('Delivery-Manager-Is-Silly', w_schema);
 g_err := 'Global; second call:';
 get_schema('AAA', w_schema);
 g_err := 'Global; third call:';
 get_schema('', w_schema);
 g_err := 'Global; 4th call:';
 get_schema('Can''t reach this point due to previous error.', w_schema);

EXCEPTION
 When others then
 dbms_output.put_line('[ERR]'||g_err||'unhandled exception:'||sqlerrm);
 -- you may raise this again to the caller if error log isn't enough.
-- raise;
END;
/

Giving on a regular database:

[WARN]get_schema-step-1:Please don't make fun of the delivery manager.
[WARN]get_schema-step-2:This can happen. Check the table name you entered.
[ERR]get_schema-step-2:unhandled exception:ORA-01422: exact fetch returns more than requested
number of rows
[ERR]Global; third call:unhandled exception:ORA-01422: exact fetch returns more than requested
number of rows

Remember that exception are here to handle rare cases. I saw applications who raised an

https://riptutorial.com/ 17

exception at every access, just to ask for the user password, saying "not connected"... so much
computation waste.

Handling connexion error exceptions

Each standard Oracle error is associated with an error number. It's important to anticipate what
could go wrong in your code. Here for a connection to another database, it can be:

-28000 account is locked•
-28001 password expired•
-28002 grace period•
-1017 wrong user / password•

Here is a way to test what goes wrong with the user used by the database link:

declare
 v_dummy number;
begin
 -- testing db link
 execute immediate 'select COUNT(1) from dba_users@pass.world' into v_dummy ;
 -- if we get here, exception wasn't raised: display COUNT's result
 dbms_output.put_line(v_dummy||' users on PASS db');

EXCEPTION
 -- exception can be referred by their name in the predefined Oracle's list
 When LOGIN_DENIED
 then
 dbms_output.put_line('ORA-1017 / USERNAME OR PASSWORD INVALID, TRY AGAIN');
 When Others
 then
 -- or referred by their number: stored automatically in reserved variable SQLCODE
 If SQLCODE = '-2019'
 Then
 dbms_output.put_line('ORA-2019 / Invalid db_link name');
 Elsif SQLCODE = '-1035'
 Then
 dbms_output.put_line('ORA-1035 / DATABASE IS ON RESTRICTED SESSION, CONTACT YOUR
DBA');
 Elsif SQLCODE = '-28000'
 Then
 dbms_output.put_line('ORA-28000 / ACCOUNT IS LOCKED. CONTACT YOUR DBA');
 Elsif SQLCODE = '-28001'
 Then
 dbms_output.put_line('ORA-28001 / PASSWORD EXPIRED. CONTACT YOUR DBA FOR CHANGE');
 Elsif SQLCODE = '-28002'
 Then
 dbms_output.put_line('ORA-28002 / PASSWORD IS EXPIRED, CHANGED IT');
 Else
 -- and if it's not one of the exception you expected
 dbms_output.put_line('Exception not specifically handled');
 dbms_output.put_line('Oracle Said'||SQLCODE||':'||SQLERRM);
 End if;
END;
/

Read Exception Handling online: https://riptutorial.com/plsql/topic/6050/exception-handling

https://riptutorial.com/ 18

https://riptutorial.com/plsql/topic/6050/exception-handling

Chapter 7: Exception Handling

Introduction

Oracle produces a variety of exceptions. You may be surprised how tedious it can be to have your
code stop with some unclear message. To improve your PL/SQL code's ability to get fixed easily it
is necessary to handle exceptions at the lowest level. Never hide an exception "under the carpet",
unless you're here to keep your piece of code for you only and for no one else to maintain.

The predefined errors.

Examples

Handling connexion error exceptions

Each standard Oracle error is associated with an error number. Its important to anticipate what
could go wrong in your code. Here for a connection to another database it can be:

-28000 account is locked•
-28001 password expired•
-28002 grace period•
-1017 wrong user / password•

Here is a way to test what goes wrong with the user used by the database link:

declare
 v_dummy number;
begin
 -- testing db link
 execute immediate 'select COUNT(1) from dba_users@pass.world' into v_dummy ;
 -- if we get here, exception wasn't raised: display COUNT's result
 dbms_output.put_line(v_dummy||' users on PASS db');

EXCEPTION
 -- exception can be referred by their name in the predefined Oracle's list
 When LOGIN_DENIED
 then
 dbms_output.put_line('ORA-1017 / USERNAME OR PASSWORD INVALID, TRY AGAIN');
 When Others
 then
 -- or referred by their number: stored automatically in reserved variable SQLCODE
 If SQLCODE = '-2019'
 Then
 dbms_output.put_line('ORA-2019 / Invalid db_link name');
 Elsif SQLCODE = '-1035'
 Then
 dbms_output.put_line('ORA-1035 / DATABASE IS ON RESTRICTED SESSION, CONTACT YOUR
DBA');
 Elsif SQLCODE = '-28000'
 Then
 dbms_output.put_line('ORA-28000 / ACCOUNT IS LOCKED. CONTACT YOUR DBA');

https://riptutorial.com/ 19

https://docs.oracle.com/database/122/LNPLS/plsql-error-handling.htm#LNPLS00703

 Elsif SQLCODE = '-28001'
 Then
 dbms_output.put_line('ORA-28001 / PASSWORD EXPIRED. CONTACT YOUR DBA FOR CHANGE');
 Elsif SQLCODE = '-28002'
 Then
 dbms_output.put_line('ORA-28002 / PASSWORD IS EXPIRED, CHANGED IT');
 Else
 -- and if it's not one of the exception you expected
 dbms_output.put_line('Exception not specifically handled');
 dbms_output.put_line('Oracle Said'||SQLCODE||':'||SQLERRM);
 End if;
END;
/

Define custom exception, raise it and see where it comes from

To illustrate this, here is a function that has 3 different "wrong" behaviors

parameter is completely stupid: we use a user-defined expression•
parameter has a typo: we use Oracle standard NO_DATA_FOUND error•
another, but not handled case•

Feel free to adapt it to your standards:

DECLARE
 this_is_not_acceptable EXCEPTION;
 PRAGMA EXCEPTION_INIT(this_is_not_acceptable, -20077);
 g_err varchar2 (200) := 'to-be-defined';
 w_schema all_tables.OWNER%Type;

 PROCEDURE get_schema(p_table in Varchar2, p_schema out Varchar2)
 Is
 w_err varchar2 (200) := 'to-be-defined';
 BEGIN
 w_err := 'get_schema-step-1:';
 If (p_table = 'Delivery-Manager-Is-Silly') Then
 raise this_is_not_acceptable;
 end if;
 w_err := 'get_schema-step-2:';
 Select owner Into p_schema
 From all_tables
 where table_name like(p_table||'%');
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 -- handle Oracle-defined exception
 dbms_output.put_line('[WARN]'||w_err||'This can happen. Check the table name you
entered.');
 WHEN this_is_not_acceptable THEN
 -- handle your custom error
 dbms_output.put_line('[WARN]'||w_err||'Please don''t make fun of the delivery manager.');
 When others then
 dbms_output.put_line('[ERR]'||w_err||'unhandled exception:'||sqlerrm);
 raise;
 END Get_schema;

BEGIN
 g_err := 'Global; first call:';
 get_schema('Delivery-Manager-Is-Silly', w_schema);

https://riptutorial.com/ 20

 g_err := 'Global; second call:';
 get_schema('AAA', w_schema);
 g_err := 'Global; third call:';
 get_schema('', w_schema);
 g_err := 'Global; 4th call:';
 get_schema('Can''t reach this point due to previous error.', w_schema);

EXCEPTION
 When others then
 dbms_output.put_line('[ERR]'||g_err||'unhandled exception:'||sqlerrm);
 -- you may raise this again to the caller if error log isn't enough.
-- raise;
END;
/

Giving on a regular database:

[WARN]get_schema-step-1:Please don't make fun of the delivery manager.
[WARN]get_schema-step-2:This can happen. Check the table name you entered.
[ERR]get_schema-step-2:unhandled exception:ORA-01422: exact fetch returns more than requested
number of rows
[ERR]Global; third call:unhandled exception:ORA-01422: exact fetch returns more than requested
number of rows

Remember that exception are here to handle rare cases. I saw applications who raised an
exception at every access, just to ask for user password, saying "not connected"... so much
computation waste.

Read Exception Handling online: https://riptutorial.com/plsql/topic/9480/exception-handling

https://riptutorial.com/ 21

https://riptutorial.com/plsql/topic/9480/exception-handling

Chapter 8: Functions

Syntax

CREATE [OR REPLACE] FUNCTION function_name [(parameter [,parameter])]

RETURN return_datatype

IS | AS

[declaration_section]

BEGIN executable_section

[EXCEPTION exception_section]

END [function_name];

•

Examples

Generate GUID

Create Or Replace Function Generateguid
Return Char Is
 V_Guid Char(40);
Begin
 Select Substr(Sys_Guid(),1,8)||'-'||Substr(Sys_Guid(),9,4)||'-'
 ||Substr(Sys_Guid(),13,4)||'-'||Substr(Sys_Guid(),17,4)||'-'
 ||Substr(Sys_Guid(),21) Into V_Guid
 From Dual;
 Return V_Guid;
Exception
 When Others Then
 dbms_output.put_line('Error '|| SQLERRM);
End Generateguid;

Calling Functions

There are a few ways to use functions.

Calling a function with an assignment statement

DECLARE
 x NUMBER := functionName(); --functions can be called in declaration section
BEGIN
 x := functionName();
END;

Calling a function in IF statement

https://riptutorial.com/ 22

IF functionName() = 100 THEN
 Null;
END IF;

Calling a function in a SELECT statement

SELECT functionName() FROM DUAL;

Read Functions online: https://riptutorial.com/plsql/topic/4005/functions

https://riptutorial.com/ 23

https://riptutorial.com/plsql/topic/4005/functions

Chapter 9: IF-THEN-ELSE Statement

Syntax

IF [condition 1] THEN•

[statements to execute when condition 1 is TRUE];•

ELSIF [condition 2] THEN•

[statements to execute when condition 2 is TRUE];•

ELSE•

[statements to execute when both condition 1 & condition 2 are FALSE];•

END IF;•

Examples

IF-THEN

DECLARE
v_num1 NUMBER(10);
v_num2 NUMBER(10);

BEGIN
 v_num1 := 2;
 v_num2 := 1;

 IF v_num1 > v_num2 THEN
 dbms_output.put_line('v_num1 is bigger than v_num2');
 END IF;
END;

IF-THEN-ELSE

DECLARE
v_num1 NUMBER(10);
v_num2 NUMBER(10);

BEGIN
 v_num1 := 2;
 v_num2 := 10;

 IF v_num1 > v_num2 THEN
 dbms_output.put_line('v_num1 is bigger than v_num2');
 ELSE
 dbms_output.put_line('v_num1 is NOT bigger than v_num2');
 END IF;
END;

https://riptutorial.com/ 24

IF-THEN-ELSIF-ELSE

DECLARE
v_num1 NUMBER(10);
v_num2 NUMBER(10);

BEGIN
 v_num1 := 2;
 v_num2 := 2;

 IF v_num1 > v_num2 THEN
 dbms_output.put_line('v_num1 is bigger than v_num2');
 ELSIF v_num1 < v_num2 THEN
 dbms_output.put_line('v_num1 is NOT bigger than v_num2');
 ELSE
 dbms_output.put_line('v_num1 is EQUAL to v_num2');
 END IF;
END;

Read IF-THEN-ELSE Statement online: https://riptutorial.com/plsql/topic/5871/if-then-else-
statement

https://riptutorial.com/ 25

https://riptutorial.com/plsql/topic/5871/if-then-else-statement
https://riptutorial.com/plsql/topic/5871/if-then-else-statement

Chapter 10: Loop

Syntax

LOOP1.
[statements];2.
EXIT WHEN [condition for exit loop];3.
END LOOP;4.

Examples

Simple Loop

DECLARE
v_counter NUMBER(2);

BEGIN
 v_counter := 0;
 LOOP
 v_counter := v_counter + 1;
 dbms_output.put_line('Line number' || v_counter);

 EXIT WHEN v_counter = 10;
 END LOOP;
END;

WHILE Loop

The WHILE loop is executed untill the condition of end is fulfilled. Simple example:

DECLARE
v_counter NUMBER(2); --declaration of counter variable

BEGIN
 v_counter := 0; --point of start, first value of our iteration

 WHILE v_counter < 10 LOOP --exit condition

 dbms_output.put_line('Current iteration of loop is ' || v_counter); --show current
iteration number in dbms script output
 v_counter := v_counter + 1; --incrementation of counter value, very important step

 END LOOP; --end of loop declaration
END;

This loop will be executed untill current value of variable v_counter will be less than ten.

The result:

Current iteration of loop is 0

https://riptutorial.com/ 26

Current iteration of loop is 1
Current iteration of loop is 2
Current iteration of loop is 3
Current iteration of loop is 4
Current iteration of loop is 5
Current iteration of loop is 6
Current iteration of loop is 7
Current iteration of loop is 8
Current iteration of loop is 9

The most important thing is, that our loop starts with '0' value, so first line of results is 'Current
iteration of loop is 0'.

FOR Loop

Loop FOR works on similar rules as other loops. FOR loop is executed exact number of times and
this number is known at the beginning - lower and upper limits are directly set in code. In every
step in this example, loop is increment by 1.

Simple example:

DECLARE
v_counter NUMBER(2); --declaration of counter variable

BEGIN
 v_counter := 0; --point of start, first value of our iteration, execute of variable

 FOR v_counter IN 1..10 LOOP --The point, where lower and upper point of loop statement is
declared - in this example, loop will be executed 10 times, start with value of 1

 dbms_output.put_line('Current iteration of loop is ' || v_counter); --show current
iteration number in dbms script output

 END LOOP; --end of loop declaration
END;

And the result is:

Current iteration of loop is 1
Current iteration of loop is 2
Current iteration of loop is 3
Current iteration of loop is 4
Current iteration of loop is 5
Current iteration of loop is 6
Current iteration of loop is 7
Current iteration of loop is 8
Current iteration of loop is 9
Current iteration of loop is 10

Loop FOR has additional property, which is working in reverse. Using additional word 'REVERSE'
in declaration of lower and upper limit of loop allow to do that. Every execution of loop decrement
value of v_counter by 1.

Example:

https://riptutorial.com/ 27

DECLARE
v_counter NUMBER(2); --declaration of counter variable

BEGIN
 v_counter := 0; --point of start

 FOR v_counter IN REVERSE 1..10 LOOP

 dbms_output.put_line('Current iteration of loop is ' || v_counter); --show current
iteration number in dbms script output

 END LOOP; --end of loop declaration
END;

And the result:

Current iteration of loop is 10
Current iteration of loop is 9
Current iteration of loop is 8
Current iteration of loop is 7
Current iteration of loop is 6
Current iteration of loop is 5
Current iteration of loop is 4
Current iteration of loop is 3
Current iteration of loop is 2
Current iteration of loop is 1

Read Loop online: https://riptutorial.com/plsql/topic/6157/loop

https://riptutorial.com/ 28

https://riptutorial.com/plsql/topic/6157/loop

Chapter 11: Object Types

Remarks

It is important to note that an object body may not always be necessary. If the default constructor
is sufficient, and no other functionality needs to be implemented then it should not be created.

A default constructor is the Oracle supplied constructor, which consists of all attributes listed in
order of declaration. For example, an instance of BASE_TYPE could be constructed by the
following call, even though we do not explicitly declare it.

l_obj := BASE_TYPE(1, 'Default', 1);

Examples

BASE_TYPE

Type declaration:

CREATE OR REPLACE TYPE base_type AS OBJECT
(
 base_id INTEGER,
 base_attr VARCHAR2(400),
 null_attr INTEGER, -- Present only to demonstrate non-default constructors
 CONSTRUCTOR FUNCTION base_type
 (
 i_base_id INTEGER,
 i_base_attr VARCHAR2
) RETURN SELF AS RESULT,
 MEMBER FUNCTION get_base_id RETURN INTEGER,
 MEMBER FUNCTION get_base_attr RETURN VARCHAR2,
 MEMBER PROCEDURE set_base_id(i_base_id INTEGER),
 MEMBER PROCEDURE set_base_attr(i_base_attr VARCHAR2),
 MEMBER FUNCTION to_string RETURN VARCHAR2
) INSTANTIABLE NOT FINAL

Type body:

CREATE OR REPLACE TYPE BODY base_type AS
 CONSTRUCTOR FUNCTION base_type
 (
 i_base_id INTEGER,
 i_base_attr VARCHAR2
) RETURN SELF AS RESULT
 IS
 BEGIN
 self.base_id := i_base_id;
 self.base_attr := i_base_attr;
 RETURN;
 END base_type;

https://riptutorial.com/ 29

 MEMBER FUNCTION get_base_id RETURN INTEGER IS
 BEGIN
 RETURN self.base_id;
 END get_base_id;

 MEMBER FUNCTION get_base_attr RETURN VARCHAR2 IS
 BEGIN
 RETURN self.base_attr;
 END get_base_attr;

 MEMBER PROCEDURE set_base_id(i_base_id INTEGER) IS
 BEGIN
 self.base_id := i_base_id;
 END set_base_id;

 MEMBER PROCEDURE set_base_attr(i_base_attr VARCHAR2) IS
 BEGIN
 self.base_attr := i_base_attr;
 END set_base_attr;

 MEMBER FUNCTION to_string RETURN VARCHAR2 IS
 BEGIN
 RETURN 'BASE_ID ['||self.base_id||']; BASE_ATTR ['||self.base_attr||']';
 END to_string;
END;

MID_TYPE

Type declaration:

CREATE OR REPLACE TYPE mid_type UNDER base_type
(
 mid_attr DATE,
 CONSTRUCTOR FUNCTION mid_type
 (
 i_base_id INTEGER,
 i_base_attr VARCHAR2,
 i_mid_attr DATE
) RETURN SELF AS RESULT,
 MEMBER FUNCTION get_mid_attr RETURN DATE,
 MEMBER PROCEDURE set_mid_attr(i_mid_attr DATE),
 OVERRIDING MEMBER FUNCTION to_string RETURN VARCHAR2
) INSTANTIABLE NOT FINAL

Type body:

CREATE OR REPLACE TYPE BODY mid_type AS
 CONSTRUCTOR FUNCTION mid_type
 (
 i_base_id INTEGER,
 i_base_attr VARCHAR2,
 i_mid_attr DATE
) RETURN SELF AS RESULT
 IS
 BEGIN
 self.base_id := i_base_id;
 self.base_attr := i_base_attr;
 self.mid_attr := i_mid_attr;

https://riptutorial.com/ 30

 RETURN;
 END mid_type;

 MEMBER FUNCTION get_mid_attr RETURN DATE IS
 BEGIN
 RETURN self.mid_attr;
 END get_mid_attr;

 MEMBER PROCEDURE set_mid_attr(i_mid_attr DATE) IS
 BEGIN
 self.mid_attr := i_mid_attr;
 END set_mid_attr;

 OVERRIDING MEMBER FUNCTION to_string RETURN VARCHAR2
 IS
 BEGIN
 RETURN (SELF AS base_type).to_string || '; MID_ATTR [' || self.mid_attr || ']';
 END to_string;
END;

LEAF_TYPE

Type declaration:

CREATE OR REPLACE TYPE leaf_type UNDER mid_type
(
 leaf_attr VARCHAR2(1000),
 CONSTRUCTOR FUNCTION leaf_type
 (
 i_base_id INTEGER,
 i_base_attr VARCHAR2,
 i_mid_attr DATE,
 i_leaf_attr VARCHAR2
) RETURN SELF AS RESULT,
 MEMBER FUNCTION get_leaf_attr RETURN VARCHAR2,
 MEMBER PROCEDURE set_leaf_attr(i_leaf_attr VARCHAR2),
 OVERRIDING MEMBER FUNCTION to_string RETURN VARCHAR2
) INSTANTIABLE FINAL

Type Body:

CREATE OR REPLACE TYPE BODY leaf_type AS
 CONSTRUCTOR FUNCTION leaf_type
 (
 i_base_id INTEGER,
 i_base_attr VARCHAR2,
 i_mid_attr DATE,
 i_leaf_attr VARCHAR2
) RETURN SELF AS RESULT
 IS
 BEGIN
 self.base_id := i_base_id;
 self.base_attr := i_base_attr;
 self.mid_attr := i_mid_attr;
 self.leaf_attr := i_leaf_attr;
 RETURN;
 END leaf_type;

https://riptutorial.com/ 31

 MEMBER FUNCTION get_leaf_attr RETURN VARCHAR2 IS
 BEGIN
 RETURN self.leaf_attr;
 END get_leaf_attr;

 MEMBER PROCEDURE set_leaf_attr(i_leaf_attr VARCHAR2) IS
 BEGIN
 self.leaf_attr := i_leaf_attr;
 END set_leaf_attr;

 OVERRIDING MEMBER FUNCTION to_string RETURN VARCHAR2 IS
 BEGIN
 RETURN (SELF AS mid_type).to_string || '; LEAF_ATTR [' || self.leaf_attr || ']';
 END to_string;
END;

Accessing stored objects

CREATE SEQUENCE test_seq START WITH 1001;

CREATE TABLE test_tab
(
 test_id INTEGER,
 test_obj base_type,
 PRIMARY KEY (test_id)
);

INSERT INTO test_tab (test_id, test_obj)
VALUES (test_seq.nextval, base_type(1,'BASE_TYPE'));
INSERT INTO test_tab (test_id, test_obj)
VALUES (test_seq.nextval, base_type(2,'BASE_TYPE'));
INSERT INTO test_tab (test_id, test_obj)
VALUES (test_seq.nextval, mid_type(3, 'MID_TYPE',SYSDATE - 1));
INSERT INTO test_tab (test_id, test_obj)
VALUES (test_seq.nextval, mid_type(4, 'MID_TYPE',SYSDATE + 1));
INSERT INTO test_tab (test_id, test_obj)
VALUES (test_seq.nextval, leaf_type(5, 'LEAF_TYPE',SYSDATE - 20,'Maple'));
INSERT INTO test_tab (test_id, test_obj)
VALUES (test_seq.nextval, leaf_type(6, 'LEAF_TYPE',SYSDATE + 20,'Oak'));

Returns object reference:

SELECT test_id
 ,test_obj
 FROM test_tab;

Returns object reference, pushing all to subtype

SELECT test_id
 ,TREAT(test_obj AS mid_type) AS obj
 FROM test_tab;

Returns a string descriptor of each object, by type

SELECT test_id

https://riptutorial.com/ 32

 ,TREAT(test_obj AS base_type).to_string() AS to_string -- Parenthesis are needed after
the function name, or Oracle will look for an attribute of this name.
 FROM test_tab;

Read Object Types online: https://riptutorial.com/plsql/topic/7699/object-types

https://riptutorial.com/ 33

https://riptutorial.com/plsql/topic/7699/object-types

Chapter 12: Packages

Syntax

CREATE [OR REPLACE] PACKAGE package_name

[AUTHID {CURRENT_USER | DEFINER}]

{IS | AS}

[PRAGMA SERIALLY_REUSABLE;]

[collection_type_definition ...]

[record_type_definition ...]

[subtype_definition ...]

[collection_declaration ...]

[constant_declaration ...]

[exception_declaration ...]

[object_declaration ...]

[record_declaration ...]

[variable_declaration ...]

[cursor_spec ...]

[function_spec ...]

[procedure_spec ...]

[call_spec ...]

[PRAGMA RESTRICT_REFERENCES(assertions) ...]

END [package_name];

•

CREATE OR REPLACE PACKAGE PackageName IS

FUNCTION FunctionName(parameter1 IN VARCHAR2, paramter2 IN NUMBER) RETURN
VARCHAR2;

END PackageName;

•

CREATE [OR REPLACE] PACKAGE BODY package_name•

https://riptutorial.com/ 34

{IS | AS}

[PRAGMA SERIALLY_REUSABLE;]

[collection_type_definition ...]

[record_type_definition ...]

[subtype_definition ...]

[collection_declaration ...]

[constant_declaration ...]

[exception_declaration ...]

[object_declaration ...]

[record_declaration ...]

[variable_declaration ...]

[cursor_body ...]

[function_spec ...]

[procedure_spec ...]

[call_spec ...]

END [package_name];

CREATE OR REPLACE PACKAGE BODY PackageName IS

FUNCTION FunctionName(parameter1 IN VARCHAR2, paramter2 IN NUMBER) RETURN
VARCHAR2 IS

declarations

BEGIN

statements to execute

RETURN varchar2 variable

END FunctionName;

END PackageName;

•

Examples

https://riptutorial.com/ 35

Package Usage

Packages in PLSQL are a collection of procedures, functions, variables, exceptions, constants,
and data structures. Generally the resources in a package are related to each other and
accomplish similar tasks.

Why Use Packages

Modularity•
Better Performance/ Funtionality•

Parts of a Package

Specification - Sometimes called a package header. Contains variable and type declarations and
the signatures of the functions and procedures that are in the package which are public to be
called from outside the package.

Package Body - Contains the code and private declarations.

The package specification must be compiled before the package body, otherwise the package
body compilation will report an error.

Overloading

Functions and procedures in packages can be overloaded. The following package TEST has two
procedures called print_number, which behave differently depending on parameters they are
called with.

create or replace package TEST is
 procedure print_number(p_number in integer);
 procedure print_number(p_number in varchar2);
end TEST;
/
create or replace package body TEST is

 procedure print_number(p_number in integer) is
 begin
 dbms_output.put_line('Digit: ' || p_number);
 end;

 procedure print_number(p_number in varchar2) is
 begin
 dbms_output.put_line('String: ' || p_number);
 end;

end TEST;
/

We call both procedures. The first with integer parameter, the second with varchar2.

set serveroutput on;
-- call the first procedure
exec test.print_number(3);

https://riptutorial.com/ 36

-- call the second procedure
exec test.print_number('three');

The output of the above script is:

SQL>
Digit: 3
PL/SQL procedure successfully completed
String: three
PL/SQL procedure successfully completed

Restrictions on Overloading

Only local or packaged subprograms, or type methods, can be overloaded. Therefore, you cannot
overload standalone subprograms. Also, you cannot overload two subprograms if their formal
parameters differ only in name or parameter mode

Define a Package header and body with a function.

In this example we define a package header and a package body wit a function.
After that we are calling a function from the package that return a return value.

Package header:

CREATE OR REPLACE PACKAGE SkyPkg AS

 FUNCTION GetSkyColour(vPlanet IN VARCHAR2)
 RETURN VARCHAR2;

END;
/

Package body:

CREATE OR REPLACE PACKAGE BODY SkyPkg AS

 FUNCTION GetSkyColour(vPlanet IN VARCHAR2)
 RETURN VARCHAR2
 AS
 vColour VARCHAR2(100) := NULL;
 BEGIN
 IF vPlanet = 'Earth' THEN
 vColour := 'Blue';
 ELSIF vPlanet = 'Mars' THEN
 vColour := 'Red';
 END IF;

 RETURN vColour;
 END;

END;
/

https://riptutorial.com/ 37

Calling the function from the package body:

DECLARE
 vColour VARCHAR2(100);
BEGIN
 vColour := SkyPkg.GetSkyColour(vPlanet => 'Earth');
 DBMS_OUTPUT.PUT_LINE(vColour);
END;
/

Read Packages online: https://riptutorial.com/plsql/topic/4764/packages

https://riptutorial.com/ 38

https://riptutorial.com/plsql/topic/4764/packages

Chapter 13: PLSQL procedure

Introduction

PLSQL procedure is a group of SQL statements stored on the server for reuse. It increases the
performance because the SQL statements do not have to be recompiled every time it is executed.

Stored procedures are useful when same code is required by multiple applications. Having stored
procedures eliminates redundancy, and introduces simplicity to the code. When data transfer is
required between the client and server, procedures can reduce communication cost in certain
situations.

Examples

Syntax

CREATE [OR REPLACE] PROCEDURE procedure_name
[(parameter_name [IN | OUT | IN OUT] type [, ...])]
{IS | AS}
 < declarations >
BEGIN
 < procedure_body >
EXCEPTION -- Exception-handling part begins
 <exception handling goes here >
 WHEN exception1 THEN
 exception1-handling-statements
END procedure_name;

procedure-name specifies the name of the procedure.•
[OR REPLACE] option allows modifying an existing procedure.•
The optional parameter list contains name, mode and types of the parameters. IN represents
that value will be passed from outside and OUT represents that this parameter will be used
to return a value outside of the procedure. If no mode is specified, parameter is assumed to
be of IN mode.

•

In the declaration section we can declare variables which will be used in the body part.•
procedure-body contains the executable part.•
The AS keyword is used instead of the IS keyword for creating a standalone procedure.•
exception section will handle the exceptions from the procedure. This section is optional.•

Hello World

The following simple procedure displays the text "Hello World" in a client that supports dbms_output.

CREATE OR REPLACE PROCEDURE helloworld
AS
BEGIN
 dbms_output.put_line('Hello World!');
END;

https://riptutorial.com/ 39

https://docs.oracle.com/database/121/ARPLS/d_output.htm

/

You need to execute this at the SQL prompt to create the procedure in the database, or you can
run the query below to get the same result:

SELECT 'Hello World!' from dual;

In/Out Parameters

PL/SQL uses IN, OUT, IN OUT keywords to define what can happen to a passed parameter.

IN specifies that the parameter is read only and the value cannot be changed by the procedure.

OUT specifies the parameter is write only and a procedure can assign a value to it, but not
reference the value.

IN OUT specifies the parameter is available for reference and modification.

PROCEDURE procedureName(x IN INT, strVar IN VARCHAR2, ans OUT VARCHAR2)
...
...
END procedureName;

procedureName(firstvar, secondvar, thirdvar);

The variables passed in the above example need to be typed as they are defined in the procedure
parameter section.

Read PLSQL procedure online: https://riptutorial.com/plsql/topic/2580/plsql-procedure

https://riptutorial.com/ 40

https://riptutorial.com/plsql/topic/2580/plsql-procedure

Chapter 14: Triggers

Introduction

Introduction:

Triggers are a useful concept in PL/SQL. A trigger is a special type of stored procedure which
does not require to be explicitly called by the user. It is a group of instructions, which is
automatically fired in response to a specific data modification action on a specific table or relation,
or when certain specified conditions are satisfied. Triggers help maintain the integrity, and security
of data. They make the job convenient by taking the required action automatically.

Syntax

CREATE [OR REPLACE] TRIGGER trigger_name•
BEFORE UPDATE [or INSERT] [or DELETE]•
ON table_name•
[FOR EACH ROW]•
DECLARE•
-- variable declarations•
BEGIN•
-- trigger code•
EXCEPTION•
WHEN ...•
-- exception handling•
END;•

Examples

Before INSERT or UPDATE trigger

CREATE OR REPLACE TRIGGER CORE_MANUAL_BIUR
 BEFORE INSERT OR UPDATE ON CORE_MANUAL
 FOR EACH ROW
BEGIN
 if inserting then
 -- only set the current date if it is not specified
 if :new.created is null then
 :new.created := sysdate;
 end if;
 end if;

 -- always set the modified date to now
 if inserting or updating then
 :new.modified := sysdate;
 end if;
end;
/

https://riptutorial.com/ 41

Read Triggers online: https://riptutorial.com/plsql/topic/7674/triggers

https://riptutorial.com/ 42

https://riptutorial.com/plsql/topic/7674/triggers

Credits

S.
No

Chapters Contributors

1
Getting started with
plsql

Community, Dinidu, JDro04, m.misiorny, Prashant Mishra,
Tenzin, user272735

2
Assignments model
and language

m.misiorny, user272735

3 Bulk collect Prashant Mishra

4
Collections and
Records

J. Chomel

5 Cursors dipdapdop, J. Chomel, Jucan

6 Exception Handling Ice, J. Chomel, jiri.hofman, Tony Andrews, Zug Zwang

7 Functions JDro04, Jon Clements, user3216906

8
IF-THEN-ELSE
Statement

massko

9 Loop m.misiorny, massko

10 Object Types HepC

11 Packages JDro04, jiri.hofman, StewS2, Tenzin

12 PLSQL procedure Dinidu, Doruk, Harjot, JDro04, Kekar, William Robertson

13 Triggers Harjot, jiri.hofman

https://riptutorial.com/ 43

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1615830/dinidu
https://riptutorial.com/contributor/6499306/jdro04
https://riptutorial.com/contributor/6709550/m-misiorny
https://riptutorial.com/contributor/4534585/prashant-mishra
https://riptutorial.com/contributor/4453200/tenzin
https://riptutorial.com/contributor/272735/user272735
https://riptutorial.com/contributor/6709550/m-misiorny
https://riptutorial.com/contributor/272735/user272735
https://riptutorial.com/contributor/4534585/prashant-mishra
https://riptutorial.com/contributor/6019417/j--chomel
https://riptutorial.com/contributor/474391/dipdapdop
https://riptutorial.com/contributor/6019417/j--chomel
https://riptutorial.com/contributor/6761296/jucan
https://riptutorial.com/contributor/5771474/ice
https://riptutorial.com/contributor/6019417/j--chomel
https://riptutorial.com/contributor/2542096/jiri-hofman
https://riptutorial.com/contributor/18747/tony-andrews
https://riptutorial.com/contributor/2001698/zug-zwang
https://riptutorial.com/contributor/6499306/jdro04
https://riptutorial.com/contributor/1252759/jon-clements
https://riptutorial.com/contributor/3216906/user3216906
https://riptutorial.com/contributor/6756033/massko
https://riptutorial.com/contributor/6709550/m-misiorny
https://riptutorial.com/contributor/6756033/massko
https://riptutorial.com/contributor/3268128/hepc
https://riptutorial.com/contributor/6499306/jdro04
https://riptutorial.com/contributor/2542096/jiri-hofman
https://riptutorial.com/contributor/1529154/stews2
https://riptutorial.com/contributor/4453200/tenzin
https://riptutorial.com/contributor/1615830/dinidu
https://riptutorial.com/contributor/1397858/doruk
https://riptutorial.com/contributor/7003682/harjot
https://riptutorial.com/contributor/6499306/jdro04
https://riptutorial.com/contributor/3474861/kekar
https://riptutorial.com/contributor/230471/william-robertson
https://riptutorial.com/contributor/7003682/harjot
https://riptutorial.com/contributor/2542096/jiri-hofman

	About
	Chapter 1: Getting started with plsql
	Remarks
	Examples
	Definition of PLSQL
	Hello World
	About PLSQL
	Difference between %TYPE and %ROWTYPE.
	Create or replace a view
	Create a table

	Chapter 2: Assignments model and language
	Examples
	Assignments model in PL/SQL

	Chapter 3: Bulk collect
	Examples
	Bulk data Processing

	Chapter 4: Collections and Records
	Examples
	Use a collection as a return type for a split function

	Chapter 5: Cursors
	Syntax
	Remarks
	Examples
	Parameterized "FOR loop" Cursor
	Implicit "FOR loop" cursor
	Working with SYS_REFCURSOR

	function returning a cursor
	and how to use it:
	Handling a CURSOR

	Chapter 6: Exception Handling
	Introduction
	Examples
	Exception handling
	Syntax
	Internally defined exceptions
	Predefined exceptions
	User defined exceptions
	Define custom exception, raise it and see where it comes from
	Handling connexion error exceptions

	Chapter 7: Exception Handling
	Introduction
	Examples
	Handling connexion error exceptions
	Define custom exception, raise it and see where it comes from

	Chapter 8: Functions
	Syntax
	Examples
	Generate GUID
	Calling Functions

	Chapter 9: IF-THEN-ELSE Statement
	Syntax
	Examples
	IF-THEN
	IF-THEN-ELSE
	IF-THEN-ELSIF-ELSE

	Chapter 10: Loop
	Syntax
	Examples
	Simple Loop
	WHILE Loop
	FOR Loop

	Chapter 11: Object Types
	Remarks
	Examples
	BASE_TYPE
	MID_TYPE
	LEAF_TYPE
	Accessing stored objects

	Chapter 12: Packages
	Syntax
	Examples
	Package Usage
	Overloading

	Restrictions on Overloading
	Define a Package header and body with a function.

	Chapter 13: PLSQL procedure
	Introduction
	Examples
	Syntax
	Hello World
	In/Out Parameters

	Chapter 14: Triggers
	Introduction
	Syntax
	Examples
	Before INSERT or UPDATE trigger

	Credits

