
postgresql

#postgresql

Table of Contents

About 1

Chapter 1: Getting started with postgresql 2

Remarks 2

Versions 2

Examples 2

Installation on GNU+Linux 2

Red Hat family 2

Debian family 3

How to install PostgreSQL via MacPorts on OSX 3

Postgres.app for Mac OSX 5

Installing PostgreSQL on Windows 5

Install postgresql with brew on Mac 7

Install PostgreSQL from Source on Linux 8

Chapter 2: Accessing Data Programmatically 10

Examples 10

Accessing Postgresql from .NET using the Npgsql provider 10

Accessing PostgreSQL with the C-API 11

Compilation and linking 11

Sample program 11

Accessing PostgreSQL from python using psycopg2 14

Accessing PostgreSQL from PHP using Pomm2 14

Chapter 3: Aggregate Functions 16

Examples 16

Simple statistics: min(), max(), avg() 16

string_agg(expression, delimiter) 16

regr_slope(Y, X) : slope of the least-squares-fit linear equation determined by the (X, Y) 17

Chapter 4: Backup and Restore 19

Remarks 19

Backing up the filesystem instead of using pg_dumpall and pg_dump 19

Examples 19

Backing up one database 19

Restoring backups 19

Backing up the whole cluster 20

Using Copy to import 20

To Copy Data from a CSV file to a table 20

To Copy data from pipe separated file to table 20

To ignore header line while importing file 21

Using Copy to export 21

To Copy table to standard o/p 21

To Copy table to file 21

To Copy the output of SQL statement to file 21

To Copy into a compressed file 21

Using psql to export data 22

Chapter 5: Backup script for a production DB 23

Syntax 23

Parameters 23

Remarks 23

Examples 24

saveProdDb.sh 24

Chapter 6: COALESCE 25

Introduction 25

Examples 25

Single non null argument 25

Multiple non null arguments 25

All null arguments 25

Chapter 7: Comments in postgresql 26

Introduction 26

Syntax 26

Remarks 26

Examples 26

COMMENT on Table 26

Remove Comment 26

Chapter 8: Common Table Expressions (WITH) 27

Examples 27

Common Table Expressions in SELECT Queries 27

Traversing tree using WITH RECURSIVE 27

Chapter 9: Connect to PostgreSQL from Java 29

Introduction 29

Remarks 29

Examples 30

Connecting with java.sql.DriverManager 30

Connecting with java.sql.DriverManager and Properties 30

Connecting with javax.sql.DataSource using a connection pool 31

Chapter 10: Data Types 33

Introduction 33

Examples 33

Numeric Types 33

Date/ Time Types 34

Geometric Types 35

Network Adress Types 35

Character Types 35

Arrays 35

Declaring an Array 35

Creating an Array 36

Accessing an Array 36

Getting information about an array 36

Array functions 37

Chapter 11: Dates, Timestamps, and Intervals 38

Examples 38

Cast a timestamp or interval to a string 38

SELECT the last day of month 38

Count the number of records per week 38

Chapter 12: Event Triggers 39

Introduction 39

Remarks 39

Examples 39

Logging DDL Command Start Events 39

Chapter 13: Export PostgreSQL database table header and data to CSV file 40

Introduction 40

Examples 40

Export PostgreSQL table to csv with header for some column(s) 40

Full table backup to csv with header 40

copy from query 40

Chapter 14: EXTENSION dblink and postgres_fdw 41

Syntax 41

Examples 41

Extention dblink 41

Extention FDW 41

Foreign Data Wrapper 42

Chapter 15: Find String Length / Character Length 44

Introduction 44

Examples 44

Example to get length of a character varying field 44

Chapter 16: Inheritance 45

Remarks 45

Examples 45

Creating children tables 45

users 45

simple_users 45

users_with_password 45

Altering tables 46

Adding columns 46

simple_users 46

Dropping columns 46

users 46

simple_users 47

Chapter 17: INSERT 48

Examples 48

Basic INSERT 48

Inserting multiple rows 48

Insert from select 48

Insert data using COPY 48

INSERT data and RETURING values 49

SELECT data into file. 50

UPSERT - INSERT ... ON CONFLICT DO UPDATE... 50

Chapter 18: JSON Support 52

Introduction 52

Examples 52

Creating a pure JSON table 52

Querying complex JSON documents 52

Performance of @> compared to -> and ->> 53

Using JSONb operators 53

Creating a DB and a Table 53

Populating the DB 54

-> operator returns values out of JSON columns 54

-> vs ->> 55

Return NESTED objects 55

Filtering 55

Nested filtering 56

A real world example 56

JSON operators + PostgreSQL aggregate functions 57

Chapter 19: Postgres cryptographic functions 59

Introduction 59

Examples 59

digest 59

Chapter 20: Postgres Tip and Tricks 60

Examples 60

DATEADD alternative in Postgres 60

Comma seperated values of a column 60

Delete duplicate records from postgres table 60

Update query with join between two tables alternative since Postresql does not support joi 60

Difference between two date timestamps month wise and year wise 60

Query to Copy/Move/Transafer table data from one database to other database table with sam 61

Chapter 21: PostgreSQL High Availability 62

Examples 62

Replication in PostgreSQL 62

Chapter 22: Programming with PL/pgSQL 65

Remarks 65

Examples 65

Basic PL/pgSQL Function 65

PL/pgSQL Syntax 66

RETURNS Block 66

custom exceptions 66

Chapter 23: Recursive queries 68

Introduction 68

Examples 68

Sum of Integers 68

Chapter 24: Role Management 69

Syntax 69

Examples 69

Create a user with a password 69

Create Role and matching database 69

Grant and Revoke Privileges. 70

Alter default search_path of user 70

Grant access privileges on objects created in the future. 71

Create Read Only User 72

Chapter 25: SELECT 73

Examples 73

SELECT using WHERE 73

Chapter 26: Table Creation 74

Examples 74

Table creation with Primary Key 74

Show table definition 74

Create table from select 74

Create unlogged table 75

Create a table that references other table. 75

Chapter 27: Triggers and Trigger Functions 76

Introduction 76

Remarks 76

Examples 76

Basic PL/pgSQL Trigger Function 76

Type of triggers 77

Trigger can be specified to fire: 77

Trigger that is marked: 77

Preparing to execute examples 77

Single insert trigger 77

Step 1: create your function 77

Step 2: create your trigger 78

Step 3: test it 78

Trigger for multiple purpose 78

Step 1: create your function 78

Step 2: create your trigger 79

Step 3: test it 79

Chapter 28: UPDATE 80

Examples 80

Update all rows in a table 80

Update all rows meeting a condition 80

Updating multiple columns in table 80

Updating a table based on joining another table 80

Chapter 29: Window Functions 81

Examples 81

generic example 81

column values vs dense_rank vs rank vs row_number 82

Credits 83

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: postgresql

It is an unofficial and free postgresql ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official postgresql.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/postgresql
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with postgresql

Remarks

This section provides an overview of what postgresql is, and why a developer might want to use it.

It should also mention any large subjects within postgresql, and link out to the related topics. Since
the Documentation for postgresql is new, you may need to create initial versions of those related
topics.

Versions

Version Release date EOL date

9.6 2016-09-29 2021-09-01

9.5 2016-01-07 2021-01-01

9.4 2014-12-18 2019-12-01

9.3 2013-09-09 2018-09-01

9.2 2012-09-10 2017-09-01

9.1 2011-09-12 2016-09-01

9.0 2010-09-20 2015-09-01

8.4 2009-07-01 2014-07-01

Examples

Installation on GNU+Linux

On most GNU+Linux operating systems, PostgreSQL can easily be installed using the operating
system package manager.

Red Hat family

Respositories can be found here: https://yum.postgresql.org/repopackages.php

Download the repository to local machine with the command

yum -y install https://download.postgresql.org/pub/repos/yum/X.X/redhat/rhel-7-x86_64/pgdg-
redhatXX-X.X-X.noarch.rpm

https://riptutorial.com/ 2

https://www.postgresql.org/docs/9.6/static/release-9-6.html
https://www.postgresql.org/docs/9.5/static/release-9-5.html
https://www.postgresql.org/docs/9.4/static/release-9-4.html
https://www.postgresql.org/docs/9.3/static/release-9-3.html
https://www.postgresql.org/docs/9.2/static/release-9-2.html
https://www.postgresql.org/docs/9.1/static/release-9-1.html
https://www.postgresql.org/docs/9.0/static/release-9-0.html
https://www.postgresql.org/docs/8.4/static/release-8-4.html
https://yum.postgresql.org/repopackages.php

View available packages:

yum list available | grep postgres*

Neccesary packages are: postgresqlXX postgresqlXX-server postgresqlXX-libs postgresqlXX-
contrib

These are installed with the following command: yum -y install postgresqlXX postgresqlXX-server
postgresqlXX-libs postgresqlXX-contrib

Once installed you will need to start the database service as the service owner (Default is
postgres). This is done with the pg_ctl command.

sudo -su postgres
./usr/pgsql-X.X/bin/pg_ctl -D /var/lib/pgsql/X.X/data start

To access the DB in CLI enter psql

Debian family

On Debian and derived operating systems, type:

sudo apt-get install postgresql

This will install the PostgreSQL server package, at the default version offered by the operating
system's package repositories.

If the version that's installed by default is not the one that you want, you can use the package
manager to search for specific versions which may simultaneously be offered.

You can also use the Yum repository provided by the PostgreSQL project (known as PGDG) to
get a different version. This may allow versions not yet offered by operating system package
repositories.

How to install PostgreSQL via MacPorts on OSX

In order to install PostgreSQL on OSX, you need to know which versions are currently supported.

Use this command to see what versions you have available.

sudo port list | grep "^postgresql[[:digit:]]\{2\}[[:space:]]"

You should get a list that looks something like the following:

postgresql80 @8.0.26 databases/postgresql80
postgresql81 @8.1.23 databases/postgresql81
postgresql82 @8.2.23 databases/postgresql82
postgresql83 @8.3.23 databases/postgresql83

https://riptutorial.com/ 3

https://www.postgresql.org/download/linux/ubuntu/
http://yum.postgresql.org/repopackages.php

postgresql84 @8.4.22 databases/postgresql84
postgresql90 @9.0.23 databases/postgresql90
postgresql91 @9.1.22 databases/postgresql91
postgresql92 @9.2.17 databases/postgresql92
postgresql93 @9.3.13 databases/postgresql93
postgresql94 @9.4.8 databases/postgresql94
postgresql95 @9.5.3 databases/postgresql95
postgresql96 @9.6beta2 databases/postgresql96

In this example, the most recent version of PostgreSQL that is supported in 9.6, so we will install
that.

sudo port install postgresql96-server postgresql96

You will see an installation log like this:

---> Computing dependencies for postgresql96-server
---> Dependencies to be installed: postgresql96
---> Fetching archive for postgresql96
---> Attempting to fetch postgresql96-9.6beta2_0.darwin_15.x86_64.tbz2 from
https://packages.macports.org/postgresql96
---> Attempting to fetch postgresql96-9.6beta2_0.darwin_15.x86_64.tbz2.rmd160 from
https://packages.macports.org/postgresql96
---> Installing postgresql96 @9.6beta2_0
---> Activating postgresql96 @9.6beta2_0

To use the postgresql server, install the postgresql96-server port

---> Cleaning postgresql96
---> Fetching archive for postgresql96-server
---> Attempting to fetch postgresql96-server-9.6beta2_0.darwin_15.x86_64.tbz2 from
https://packages.macports.org/postgresql96-server
---> Attempting to fetch postgresql96-server-9.6beta2_0.darwin_15.x86_64.tbz2.rmd160 from
https://packages.macports.org/postgresql96-server
---> Installing postgresql96-server @9.6beta2_0
---> Activating postgresql96-server @9.6beta2_0

To create a database instance, after install do
 sudo mkdir -p /opt/local/var/db/postgresql96/defaultdb
 sudo chown postgres:postgres /opt/local/var/db/postgresql96/defaultdb
 sudo su postgres -c '/opt/local/lib/postgresql96/bin/initdb -D
/opt/local/var/db/postgresql96/defaultdb'

---> Cleaning postgresql96-server
---> Computing dependencies for postgresql96
---> Cleaning postgresql96
---> Updating database of binaries
---> Scanning binaries for linking errors
---> No broken files found.

The log provides instructions on the rest of the steps for installation, so we do that next.

sudo mkdir -p /opt/local/var/db/postgresql96/defaultdb
sudo chown postgres:postgres /opt/local/var/db/postgresql96/defaultdb
sudo su postgres -c '/opt/local/lib/postgresql96/bin/initdb -D
/opt/local/var/db/postgresql96/defaultdb'

https://riptutorial.com/ 4

Now we start the server:

sudo port load -w postgresql96-server

Verify that we can connect to the server:

su postgres -c psql

You will see a prompt from postgres:

psql (9.6.1)
Type "help" for help.

postgres=#

Here you can type a query to see that the server is running.

postgres=#SELECT setting FROM pg_settings WHERE name='data_directory';

And see the response:

 setting
--
/opt/local/var/db/postgresql96/defaultdb
(1 row)
postgres=#

Type \q to quit:

postgres=#\q

And you will be back at your shell prompt.

Congratulations! You now have a running PostgreSQL instance on OS/X.

Postgres.app for Mac OSX

An extremely simple tool for installing PostgreSQL on a Mac is available by downloading
Postgres.app.
You can change preferences to have PostgreSQL run in the background or only when the
application is running.

Installing PostgreSQL on Windows

While it's good practice to use a Unix based operating system (ex. Linux or BSD) as a production
server you can easily install PostgreSQL on Windows (hopefully only as a development server).

Download the Windows installation binaries from EnterpriseDB:
http://www.enterprisedb.com/products-services-training/pgdownload This is a third-party company

https://riptutorial.com/ 5

http://postgresapp.com/
http://www.enterprisedb.com/products-services-training/pgdownload

started by core contributors to the PostgreSQL project who have optimized the binaries for
Windows.

Select the latest stable (non-Beta) version (9.5.3 at the time of writing). You will most likely want
the Win x86-64 package, but if you are running a 32 bit version of Windows, which is common on
older computers, select Win x86-32 instead.

Note: Switching between Beta and Stable versions will involve complex tasks like dump and
restore. Upgrading within beta or stable version only needs a service restart.

You can check if your version of Windows is 32 or 64 bit by going to Control Panel -> System and
Security -> System -> System type, which will say "##-bit Operating System". This is the path for
Windows 7, it may be slightly different on other versions of Windows.

In the installer select the packages you would like to use. For example:

pgAdmin (https://www.pgadmin.org) is a free GUI for managing your database and I highly
recommend it. In 9.6 this will be installed by default .

•

PostGIS (http://postgis.net) provides geospatial analysis features on GPS coordinates,
distances etc. very popular among GIS developers.

•

The Language Package provides required libraries for officially supported procedural
language PL/Python, PL/Perl and PL/Tcl.

•

Other packages like pgAgent, pgBouncer and Slony are useful for larger production servers,
only checked as needed.

•

All those optional packages can be later installed through "Application Stack Builder".

Note: There are also other non-officially supported language such as PL/V8, PL/Lua PL/Java
available.

Open pgAdmin and connect to your server by double clicking on its name, ex. "PostgreSQL 9.5
(localhost:5432).

From this point you can follow guides such as the excellent book PostgreSQL: Up and Running,
2nd Edition (http://shop.oreilly.com/product/0636920032144.do).

Optional: Manual Service Startup Type

PostgreSQL runs as a service in the background which is slightly different than most programs.
This is common for databases and web servers. Its default Startup Type is Automatic which
means it will always run without any input from you.

Why would you want to manually control the PostgreSQL service? If you're using your PC as a
development server some of the time and but also use it to play video games for example,
PostegreSQL could slow down your system a bit while its running.

Why wouldn't you want manual control? Starting and stopping the service can be a hassle if you
do it often.

If you don't notice any difference in speed and prefer avoiding the hassle then leave its Startup

https://riptutorial.com/ 6

https://www.pgadmin.org
http://postgis.net
http://www.postgresonline.com/journal/archives/360-PLV8-binaries-for-PostgreSQL-9.5-windows-both-32-bit-and-64-bit.html
https://github.com/pllua/pllua
http://shop.oreilly.com/product/0636920032144.do

Type as Automatic and ignore the rest of this guide. Otherwise...

Go to Control Panel -> System and Security -> Administrative Tools.

Select "Services" from the list, right click on its icon, and select Send To -> Desktop to create a
desktop icon for more convenient access.

Close the Administrative Tools window then launch Services from the desktop icon you just
created.

Scroll down until you see a service with a name like postgresql-x##-9.# (ex. "postgresql-x64-9.5").

Right click on the postgres service, select Properties -> Startup type -> Manual -> Apply -> OK.
You can change it back to automatic just as easily.

If you see other PostgreSQL related services in the list such "pgbouncer" or "PostgreSQL
Scheduling Agent - pgAgent" you can also change their Startup Type to Manual because they're
not much use if PostgreSQL isn't running. Although this will mean more hassle each time you start
and stop so it's up to you. They don't use as many resources as PostgreSQL itself and may not
have any noticeable impact on your systems performance.

If the service is running its Status will say Started, otherwise it isn't running.

To start it right click and select Start. A loading prompt will be displayed and should disappear on
its own soon after. If it gives you an error try a second time. If that doesn't work then there was
some problem with the installation, possibly because you changed some setting in Windows most
people don't change, so finding the problem might require some sleuthing.

To stop postgres right click on the service and select Stop.

If you ever get an error while attempting to connect to your database check Services to make sure
its running.

For other very specific details about the EDB PostgreSQL installation, e.g. the python runtime
version in the official language pack of a specific PostgreSQL version, always refer to the official
EBD installation guide , change the version in link to your installer's major version.

Install postgresql with brew on Mac

Homebrew calls itself 'the missing package manager for macOS'. It can be used to build and
install applications and libraries. Once installed, you can use the brew command to install
PostgreSQL and it's dependencies as follows:

brew update
brew install postgresql

Homebrew generally installs the latest stable version. If you need a different one then brew search
postgresql will list the versions available. If you need PostgreSQL built with particular options then
brew info postgresql will list which options are supported. If you require an unsupported build

https://riptutorial.com/ 7

https://www.enterprisedb.com/docs/en/9.6/instguide/toc.html
https://www.enterprisedb.com/docs/en/9.6/instguide/toc.html
http://brew.sh

option, you may have to do the build yourself, but can still use Homebrew to install the common
dependencies.

Start the server:

brew services start postgresql

Open the PostgreSQL prompt

psql

If psql complains that there's no corresponding database for your user, run createdb.

Install PostgreSQL from Source on Linux

Dependencies:

GNU Make Version > 3.80•
an ISO/ ANSI C-Compiler (e.g. gcc)•
an extractor like tar or gzip•
zlib-devel•
readline-devel oder libedit-devel•

Sources: Link to the latest source (9.6.3)

Now you can extract the source files:

tar -xzvf postgresql-9.6.3.tar.gz

There are a large number of different options for the configuration of PostgreSQL:

Full Link to the full installation procedure

Small list of available options:

--prefix=PATH path for all files•
--exec-prefix=PATH path for architectur-dependet file•
--bindir=PATH path for executable programs•
--sysconfdir=PATH path for configuration files•
--with-pgport=NUMBER specify a port for your server•
--with-perl add perl support•
--with-python add python support•
--with-openssl add openssl support•
--with-ldap add ldap support•
--with-blocksize=BLOCKSIZE set pagesize in KB

BLOCKSIZE must a power of 2 and between 1 and 32○

•

--with-wal-segsize=SEGSIZE set size of WAL-Segment size in MB
SEGSIZE must be a power of 2 between 1 and 64○

•

https://riptutorial.com/ 8

https://ftp.postgresql.org/pub/source/v9.6.3/postgresql-9.6.3.tar.gz
https://www.postgresql.org/docs/9.6/static/install-procedure.html

Go into the new created folder and run the cofigure script with the desired options:

./configure --exec=/usr/local/pgsql

Run make to create the objectfiles

Run make install to install PostgreSQL from the built files

Run make clean to tidy up

For the extension switch the directory cd contrib, run make and make install

Read Getting started with postgresql online: https://riptutorial.com/postgresql/topic/885/getting-
started-with-postgresql

https://riptutorial.com/ 9

https://riptutorial.com/postgresql/topic/885/getting-started-with-postgresql
https://riptutorial.com/postgresql/topic/885/getting-started-with-postgresql

Chapter 2: Accessing Data Programmatically

Examples

Accessing Postgresql from .NET using the Npgsql provider

One of the more popular .NET providers for Postgresql is Npgsql, which is ADO.NET compatible
and is used nearly identically as other .NET database providers.

A typical query is performed by creating a command, binding parameters, and then executing the
command. In C#:

var connString = "Host=myserv;Username=myuser;Password=mypass;Database=mydb";
using (var conn = new NpgsqlConnection(connString))
{
 var querystring = "INSERT INTO data (some_field) VALUES (@content)";

 conn.Open();
 // Create a new command with CommandText and Connection constructor
 using (var cmd = new NpgsqlCommand(querystring, conn))
 {
 // Add a parameter and set its type with the NpgsqlDbType enum
 var contentString = "Hello World!";
 cmd.Parameters.Add("@content", NpgsqlDbType.Text).Value = contentString;

 // Execute a query that returns no results
 cmd.ExecuteNonQuery();

 /* It is possible to reuse a command object and open connection instead of creating
new ones */

 // Create a new query and set its parameters
 int keyId = 101;
 cmd.CommandText = "SELECT primary_key, some_field FROM data WHERE primary_key =
@keyId";
 cmd.Parameters.Clear();
 cmd.Parameters.Add("@keyId", NpgsqlDbType.Integer).Value = keyId;

 // Execute the command and read through the rows one by one
 using (NpgsqlDataReader reader = cmd.ExecuteReader())
 {
 while (reader.Read()) // Returns false for 0 rows, or after reading the last row
of the results
 {
 // read an integer value
 int primaryKey = reader.GetInt32(0);
 // or
 primaryKey = Convert.ToInt32(reader["primary_key"]);

 // read a text value
 string someFieldText = reader["some_field"].ToString();
 }
 }
 }

https://riptutorial.com/ 10

http://www.npgsql.org/

} // the C# 'using' directive calls conn.Close() and conn.Dispose() for us

Accessing PostgreSQL with the C-API

The C-API is the most powerful way to access PostgreSQL and it is surprisingly comfortable.

Compilation and linking

During compilation, you have to add the PostgreSQL include directory, which can be found with
pg_config --includedir, to the include path.
You must link with the PostgreSQL client shared library (libpq.so on UNIX, libpq.dll on
Windows). This library is in the PostgreSQL library directory, which can be found with pg_config --
libdir.

Note: For historical reason, the library is called libpq.soand not libpg.so, which is a popular trap
for beginners.

Given that the below code sample is in file coltype.c, compilation and linking would be done with

gcc -Wall -I "$(pg_config --includedir)" -L "$(pg_config --libdir)" -o coltype coltype.c -lpq

with the GNU C compiler (consider adding -Wl,-rpath,"$(pg_config --libdir)" to add the library
search path) or with

cl /MT /W4 /I <include directory> coltype.c <path to libpq.lib>

on Windows with Microsoft Visual C.

Sample program

/* necessary for all PostgreSQL client programs, should be first */
#include <libpq-fe.h>

#include <stdio.h>
#include <string.h>

#ifdef TRACE
#define TRACEFILE "trace.out"
#endif

int main(int argc, char **argv) {
#ifdef TRACE
 FILE *trc;
#endif
 PGconn *conn;
 PGresult *res;
 int rowcount, colcount, i, j, firstcol;
 /* parameter type should be guessed by PostgreSQL */
 const Oid paramTypes[1] = { 0 };

https://riptutorial.com/ 11

 /* parameter value */
 const char * const paramValues[1] = { "pg_database" };

 /*
 * Using an empty connectstring will use default values for everything.
 * If set, the environment variables PGHOST, PGDATABASE, PGPORT and
 * PGUSER will be used.
 */
 conn = PQconnectdb("");

 /*
 * This can only happen if there is not enough memory
 * to allocate the PGconn structure.
 */
 if (conn == NULL)
 {
 fprintf(stderr, "Out of memory connecting to PostgreSQL.\n");
 return 1;
 }

 /* check if the connection attempt worked */
 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "%s\n", PQerrorMessage(conn));
 /*
 * Even if the connection failed, the PGconn structure has been
 * allocated and must be freed.
 */
 PQfinish(conn);
 return 1;
 }

#ifdef TRACE
 if (NULL == (trc = fopen(TRACEFILE, "w")))
 {
 fprintf(stderr, "Error opening trace file \"%s\"!\n", TRACEFILE);
 PQfinish(conn);
 return 1;
 }

 /* tracing for client-server communication */
 PQtrace(conn, trc);
#endif

 /* this program expects the database to return data in UTF-8 */
 PQsetClientEncoding(conn, "UTF8");

 /* perform a query with parameters */
 res = PQexecParams(
 conn,
 "SELECT column_name, data_type "
 "FROM information_schema.columns "
 "WHERE table_name = $1",
 1, /* one parameter */
 paramTypes,
 paramValues,
 NULL, /* parameter lengths are not required for strings */
 NULL, /* all parameters are in text format */
 0 /* result shall be in text format */
);

https://riptutorial.com/ 12

 /* out of memory or sever communication broken */
 if (NULL == res)
 {
 fprintf(stderr, "%s\n", PQerrorMessage(conn));
 PQfinish(conn);
#ifdef TRACE
 fclose(trc);
#endif
 return 1;
 }

 /* SQL statement should return results */
 if (PGRES_TUPLES_OK != PQresultStatus(res))
 {
 fprintf(stderr, "%s\n", PQerrorMessage(conn));
 PQfinish(conn);
#ifdef TRACE
 fclose(trc);
#endif
 return 1;
 }

 /* get count of result rows and columns */
 rowcount = PQntuples(res);
 colcount = PQnfields(res);

 /* print column headings */
 firstcol = 1;

 printf("Description of the table \"pg_database\"\n");

 for (j=0; j<colcount; ++j)
 {
 if (firstcol)
 firstcol = 0;
 else
 printf(": ");

 printf(PQfname(res, j));
 }

 printf("\n\n");

 /* loop through rosult rows */
 for (i=0; i<rowcount; ++i)
 {
 /* print all column data */
 firstcol = 1;

 for (j=0; j<colcount; ++j)
 {
 if (firstcol)
 firstcol = 0;
 else
 printf(": ");

 printf(PQgetvalue(res, i, j));
 }

 printf("\n");
 }

https://riptutorial.com/ 13

 /* this must be done after every statement to avoid memory leaks */
 PQclear(res);
 /* close the database connection and release memory */
 PQfinish(conn);
#ifdef TRACE
 fclose(trc);
#endif
 return 0;
}

Accessing PostgreSQL from python using psycopg2

You can find description of the driver here.

The quick example is:

import psycopg2

db_host = 'postgres.server.com'
db_port = '5432'
db_un = 'user'
db_pw = 'password'
db_name = 'testdb'

conn = psycopg2.connect("dbname={} host={} user={} password={}".format(
 db_name, db_host, db_un, db_pw),
 cursor_factory=RealDictCursor)
cur = conn.cursor()
sql = 'select * from testtable where id > %s and id < %s'
args = (1, 4)
cur.execute(sql, args)

print(cur.fetchall())

Will result:

[{'id': 2, 'fruit': 'apple'}, {'id': 3, 'fruit': 'orange'}]

Accessing PostgreSQL from PHP using Pomm2

On the shoulders of the low level drivers, there is pomm. It proposes a modular approach, data
converters, listen/notify support, database inspector and much more.

Assuming, Pomm has been installed using composer, here is a complete example:

<?php
use PommProject\Foundation\Pomm;
$loader = require __DIR__ . '/vendor/autoload.php';
$pomm = new Pomm(['my_db' => ['dsn' => 'pgsql://user:pass@host:5432/db_name']]);

// TABLE comment (
// comment_id uuid PK, created_at timestamptz NN,
// is_moderated bool NN default false,

https://riptutorial.com/ 14

http://initd.org/psycopg/docs/
http://www.pomm-project.org/

// content text NN CHECK (content !~ '^\s+$'), author_email text NN)
$sql = <<<SQL
SELECT
 comment_id,
 created_at,
 is_moderated,
 content,
 author_email
FROM comment
 INNER JOIN author USING (author_email)
WHERE
 age(now(), created_at) < $*::interval
ORDER BY created_at ASC
SQL;

// the argument will be converted as it is cast in the query above
$comments = $pomm['my_db']
 ->getQueryManager()
 ->query($sql, [DateInterval::createFromDateString('1 day')]);

if ($comments->isEmpty()) {
 printf("There are no new comments since yesterday.");
} else {
 foreach ($comments as $comment) {
 printf(
 "%s has posted at %s. %s\n",
 $comment['author_email'],
 $comment['created_at']->format("Y-m-d H:i:s"),
 $comment['is_moderated'] ? '[OK]' : '');
 }
}

Pomm’s query manager module escapes query arguments to prevent SQL injection. When the
arguments are cast, it also converts them from a PHP representation to valid Postgres values. The
result is an iterator, it uses a cursor internally. Every row is converted on the fly, booleans to
booleans, timestamps to \DateTime etc.

Read Accessing Data Programmatically online:
https://riptutorial.com/postgresql/topic/2014/accessing-data-programmatically

https://riptutorial.com/ 15

https://riptutorial.com/postgresql/topic/2014/accessing-data-programmatically

Chapter 3: Aggregate Functions

Examples

Simple statistics: min(), max(), avg()

In order to determine some simple statistics of a value in a column of a table, you can use an
aggregate function.

If your individuals table is:

Name Age

Allie 17

Amanda 14

Alana 20

You could write this statement to get the minimum, maximum and average value:

SELECT min(age), max(age), avg(age)
FROM individuals;

Result:

min max avg

14 20 17

string_agg(expression, delimiter)

You can concatenate strings separated by delimiter using the string_agg() function.

If your individuals table is:

Name Age Country

Allie 15 USA

Amanda 14 USA

Alana 20 Russia

You could write SELECT ... GROUP BY statement to get names from each country:

https://riptutorial.com/ 16

SELECT string_agg(name, ', ') AS names, country
FROM individuals
GROUP BY country;

Note that you need to use a GROUP BY clause because string_agg() is an aggregate function.

Result:

names country

Allie, Amanda USA

Alana Russia

More PostgreSQL aggregate function described here

regr_slope(Y, X) : slope of the least-squares-fit linear equation determined by
the (X, Y) pairs

To illustrate how to use regr_slope(Y,X), I applied it to a real world problem. In Java, if you don't
clean up memory properly, the garbage can get stuck and fill up the memory. You dump statistics
every hour about memory utilization of different classes and load it into a postgres database for
analysis.

All memory leak candidates will have a trend of consuming more memory as more time passes. If
you plot this trend, you would imagine a line going up and to the left:

 ^
 |
s | Legend:
i | * - data point
z | -- - trend
e |
(|
b | *
y | --
t | --
e | * -- *
s | --
) | *-- *
 | -- *
 | -- *
 --------------------------------------->
 time

Suppose you have a table containing heap dump histogram data (a mapping of classes to how
much memory they consume):

CREATE TABLE heap_histogram (
 -- when the heap histogram was taken
 histwhen timestamp without time zone NOT NULL,
 -- the object type bytes are referring to

https://riptutorial.com/ 17

https://www.postgresql.org/docs/devel/static/functions-aggregate.html

 -- ex: java.util.String
 class character varying NOT NULL,
 -- the size in bytes used by the above class
 bytes integer NOT NULL
);

To compute the slope for each class, we group by over the class. The HAVING clause > 0
ensures that we get only candidates with a positive slop (a line going up and to the left). We sort
by the slope descending so that we get the classes with the largest rate of memory increase at the
top.

-- epoch returns seconds
SELECT class, REGR_SLOPE(bytes,extract(epoch from histwhen)) as slope
 FROM public.heap_histogram
 GROUP BY class
 HAVING REGR_SLOPE(bytes,extract(epoch from histwhen)) > 0
 ORDER BY slope DESC ;

Output:

 class | slope
---------------------------+----------------------
 java.util.ArrayList | 71.7993806279174
 java.util.HashMap | 49.0324576155785
 java.lang.String | 31.7770770326123
 joe.schmoe.BusinessObject | 23.2036817108056
 java.lang.ThreadLocal | 20.9013528767851

From the output we see that java.util.ArrayList's memory consumption is increasing the fastest at
71.799 bytes per second and is potentially part of the memory leak.

Read Aggregate Functions online: https://riptutorial.com/postgresql/topic/4803/aggregate-functions

https://riptutorial.com/ 18

https://riptutorial.com/postgresql/topic/4803/aggregate-functions

Chapter 4: Backup and Restore

Remarks

Backing up the filesystem instead of using pg_dumpall and pg_dump

It's very important that if you use this, you call the pg_start_backup() function before and
pg_stop_backup() function after. Doing filesystem backups is not safe otherwise; even a ZFS or
FreeBSD snapshot of the filesystem backed up without those function calls will place the database
in recovery mode and may lose transactions.

I would avoid doing filesystem backups instead of regular Postgres backups, both for this reason,
and because Postgres backup files (especially in the custom format) are extremely versatile in
supporting alternate restores. Since they're single files, they're also less hassle to manage.

Examples

Backing up one database

pg_dump -Fc -f DATABASE.pgsql DATABASE

The -Fc selects the "custom backup format" which gives you more power than raw SQL; see
pg_restore for more details. If you want a vanilla SQL file, you can do this instead:

pg_dump -f DATABASE.sql DATABASE

or even

pg_dump DATABASE > DATABASE.sql

Restoring backups

psql < backup.sql

A safer alternative uses -1 to wrap the restore in a transaction. The -f specifies the filename rather
than using shell redirection.

psql -1f backup.sql

Custom format files must be restored using pg_restore with the -d option to specify the database:

pg_restore -d DATABASE DATABASE.pgsql

https://riptutorial.com/ 19

The custom format can also be converted back to SQL:

pg_restore backup.pgsql > backup.sql

Usage of the custom format is recommended because you can choose which things to restore and
optionally enable parallel processing.

You may need to do a pg_dump followed by a pg_restore if you upgrade from one postgresql
release to a newer one.

Backing up the whole cluster

$ pg_dumpall -f backup.sql

This works behind the scenes by making multiple connections to the server once for each
database and executing pg_dump on it.

Sometimes, you might be tempted to set this up as a cron job, so you want to see the date the
backup was taken as part of the filename:

$ postgres-backup-$(date +%Y-%m-%d).sql

However, please note that this could produce large files on a daily basis. Postgresql has a much
better mechanism for regular backups - WAL archives

The output from pg_dumpall is sufficient to restore to an identically-configured Postgres instance,
but the configuration files in $PGDATA (pg_hba.conf and postgresql.conf) are not part of the backup,
so you'll have to back them up separately.

postgres=# SELECT pg_start_backup('my-backup');
postgres=# SELECT pg_stop_backup();

To take a filesystem backup, you must use these functions to help ensure that Postgres is in a
consistent state while the backup is prepared.

Using Copy to import

To Copy Data from a CSV file to a table

COPY <tablename> FROM '<filename with path>';

To insert into table user from a file named user_data.csv placed inside /home/user/:

COPY user FROM '/home/user/user_data.csv';

https://riptutorial.com/ 20

https://www.postgresql.org/docs/9.2/static/continuous-archiving.html

To Copy data from pipe separated file to table

COPY user FROM '/home/user/user_data' WITH DELIMITER '|';

Note: In absence of the option with delimiter, the default delimiter is comma ,

To ignore header line while importing file

Use the Header option:

COPY user FROM '/home/user/user_data' WITH DELIMITER '|' HEADER;

Note: If data is quoted, by default data quoting characters are double quote. If the data is quoted
using any other character use the QUOTE option; however, this option is allowed only when using
CSV format.

Using Copy to export

To Copy table to standard o/p

COPY <tablename> TO STDOUT (DELIMITER '|');

To export table user to Standard ouput:

COPY user TO STDOUT (DELIMITER '|');

To Copy table to file

COPY user FROM '/home/user/user_data' WITH DELIMITER '|';

To Copy the output of SQL statement to file

COPY (sql statement) TO '<filename with path>';

COPY (SELECT * FROM user WHERE user_name LIKE 'A%') TO '/home/user/user_data';

To Copy into a compressed file

COPY user TO PROGRAM 'gzip > /home/user/user_data.gz';

https://riptutorial.com/ 21

Here program gzip is executed to compress user table data.

Using psql to export data

Data can be exported using copy command or by taking use of command line options of psql
command.

To Export csv data from table user to csv file:

psql -p \<port> -U \<username> -d \<database> -A -F<delimiter> -c\<sql to execute> \> \<output
filename with path>

psql -p 5432 -U postgres -d test_database -A -F, -c "select * from user" >
/home/user/user_data.csv

Here combination of -A and -F does the trick.

-F is to specify delimiter

-A or --no-align

Switches to unaligned output mode. (The default output mode is otherwise aligned.)

Read Backup and Restore online: https://riptutorial.com/postgresql/topic/2291/backup-and-restore

https://riptutorial.com/ 22

https://riptutorial.com/postgresql/topic/2291/backup-and-restore

Chapter 5: Backup script for a production DB

Syntax

The script allows you to create a backup directory for each execution with the following
syntax : Name of database backup directory + date and time of execution

•

Example : prodDir22-11-2016-19h55•
After it's created, it creates two backup files with the following syntax : Name of database +
date and time of execution

•

Example :•
dbprod22-11-2016-19h55.backup (dump file)•
dbprod22-11-2016-19h55.sql (sql file)•
At the end of one execution at 22-11-2016 @ 19h55, we get :•
/save_bd/prodDir22-11-2016-19h55/dbprod22-11-2016-19h55.backup•
/save_bd/prodDir22-11-2016-19h55/dbprod22-11-2016-19h55.sql•

Parameters

parameter details

save_db The main backup directory

dbProd The secondary backup directory

DATE The date of the backup in the specified format

dbprod The name of the database to be saved

/opt/postgres/9.0/bin/pg_dump The path to the pg_dump binary

-h
Specifies the host name of the machine on which the server
is running, Example : localhost

-p
Specifies the TCP port or local Unix domain socket file
extension on which the server is listening for connections,
Example 5432

-U User name to connect as.

Remarks

If there is a backup tool such as HDPS, or Symantec Backup, ... It is necessary to empty the
backup directory before each launch.

1.

To avoid cluttering the backup tool because the backup of old files is supposed to be done.

https://riptutorial.com/ 23

https://www.hds.com/en-us/products-solutions/data-protection/data-protection-suite.html
https://www.symantec.com/fr/fr/page.jsp?id=introducing-backup-exec-15

To enable this feature please uncomment line N° 3.

rm -R / save_db / *

In the case where the budget does not allow to have a tool of backup, one can always use
the tasks planner (cron command).

2.

The following command is used to edit the cron table for the current user.

crontab -e

Schedule the launch of the script with the calendar at 11pm.

0 23 * * * /saveProdDb.sh

Examples

saveProdDb.sh

In general, we tend to back up the DB with the pgAdmin client. The following is a sh script used to
save the database (under linux) in two formats:

SQL file: for a possible resume of data on any version of PostgreSQL.•

Dump file: for a higher version than the current version.•

#!/bin/sh
cd /save_db
#rm -R /save_db/*
DATE=$(date +%d-%m-%Y-%Hh%M)
echo -e "Sauvegarde de la base du ${DATE}"
mkdir prodDir${DATE}
cd prodDir${DATE}

#dump file
/opt/postgres/9.0/bin/pg_dump -i -h localhost -p 5432 -U postgres -F c -b -w -v -f
"dbprod${DATE}.backup" dbprod

#SQL file
/opt/postgres/9.0/bin/pg_dump -i -h localhost -p 5432 -U postgres --format plain --verbose -f
"dbprod${DATE}.sql" dbprod

Read Backup script for a production DB online:
https://riptutorial.com/postgresql/topic/7974/backup-script-for-a-production-db

https://riptutorial.com/ 24

https://fr.wikipedia.org/wiki/Cron
https://riptutorial.com/postgresql/topic/7974/backup-script-for-a-production-db

Chapter 6: COALESCE

Introduction

Coalesce returns the first none null argument from a set of arguments. Only the first non null
argument is return, all subsequent arguments are ignored. The function will evaluate to null if all
arguments are null.

Examples

Single non null argument

PGSQL> SELECT COALESCE(NULL, NULL, 'HELLO WORLD');

coalesce

'HELLO WORLD'

Multiple non null arguments

PGSQL> SELECT COALESCE(NULL, NULL, 'first non null', null, null, 'second non null');

coalesce

'first non null'

All null arguments

PGSQL> SELECT COALESCE(NULL, NULL, NULL);

coalesce

Read COALESCE online: https://riptutorial.com/postgresql/topic/10576/coalesce

https://riptutorial.com/ 25

https://riptutorial.com/postgresql/topic/10576/coalesce

Chapter 7: Comments in postgresql

Introduction

COMMMENT main purpose is to define or change a comment on database object.

Only a single comment(string) can be given on any database object.COMMENT will help us to
know what for the particular database object has been defined whats its actual purpose is.

The rule for COMMENT ON ROLE is that you must be superuser to comment on a superuser role,
or have the CREATEROLE privilege to comment on non-superuser roles. Of course, a superuser
can comment on anything

Syntax

COMMENT ON database_object object_name IS 'Text';•

Remarks

Full syntax see: http://www.postgresql.org/docs/current/static/sql-comment.html

Examples

COMMENT on Table

COMMENT ON TABLE table_name IS 'this is student details table';

Remove Comment

COMMENT on TABLE student IS NULL;

Comment will be removed with above statement execution.

Read Comments in postgresql online: https://riptutorial.com/postgresql/topic/8191/comments-in-
postgresql

https://riptutorial.com/ 26

http://www.postgresql.org/docs/current/static/sql-comment.html
https://riptutorial.com/postgresql/topic/8191/comments-in-postgresql
https://riptutorial.com/postgresql/topic/8191/comments-in-postgresql

Chapter 8: Common Table Expressions
(WITH)

Examples

Common Table Expressions in SELECT Queries

Common table expressions support extracting portions of larger queries. For example:

WITH sales AS (
 SELECT
 orders.ordered_at,
 orders.user_id,
 SUM(orders.amount) AS total
 FROM orders
 GROUP BY orders.ordered_at, orders.user_id
)
SELECT
 sales.ordered_at,
 sales.total,
 users.name
FROM sales
JOIN users USING (user_id)

Traversing tree using WITH RECURSIVE

create table empl (
 name text primary key,
 boss text null
 references name
 on update cascade
 on delete cascade
 default null
);

insert into empl values ('Paul',null);
insert into empl values ('Luke','Paul');
insert into empl values ('Kate','Paul');
insert into empl values ('Marge','Kate');
insert into empl values ('Edith','Kate');
insert into empl values ('Pam','Kate');
insert into empl values ('Carol','Luke');
insert into empl values ('John','Luke');
insert into empl values ('Jack','Carol');
insert into empl values ('Alex','Carol');

with recursive t(level,path,boss,name) as (
 select 0,name,boss,name from empl where boss is null
 union
 select
 level + 1,
 path || ' > ' || empl.name,
 empl.boss,

https://riptutorial.com/ 27

 empl.name
 from
 empl join t
 on empl.boss = t.name
) select * from t order by path;

Read Common Table Expressions (WITH) online:
https://riptutorial.com/postgresql/topic/1973/common-table-expressions--with-

https://riptutorial.com/ 28

https://riptutorial.com/postgresql/topic/1973/common-table-expressions--with-

Chapter 9: Connect to PostgreSQL from Java

Introduction

The API to use a relational database from Java is JDBC.

This API is implemented by a JDBC driver.

To use it, put the JAR-file with the driver on the JAVA class path.

This documentation shows samples how to use the JDBC driver to connect to a database.

Remarks

JDBC URL

The JDBC URL can take one of these forms:

jdbc:postgresql://host[:port]/[database][parameters]

host defaults to localhost, port to 5432.
If host is an IPv6 address, it must be enclosed in square brackets.
The default database name is the same as the name of the connecting user.

To implement failover, it is possible to have several host[:port] entries separated by a
comma.
They are tried in turn until a connection succeeds.

•

jdbc:postgresql:database[parameters]•

jdbc:postgresql:/[parameters]

These forms are for connections to localhost.

•

parameters is a list of key[=value] pairs, headed by ? and separated by &. If the value is missing, it is
assumed to be true.

An example:

jdbc:postgresql://localhost/test?user=fred&password=secret&ssl&sslfactory=org.postgresql.ssl.NonValidatingFactory

References

JDBC specification: http://download.oracle.com/otndocs/jcp/jdbc-4_2-mrel2-eval-spec/•
PostgreSQL JDBC driver: https://jdbc.postgresql.org/•
PostgreSQL JDBC driver documentation:
https://jdbc.postgresql.org/documentation/head/index.html

•

https://riptutorial.com/ 29

http://download.oracle.com/otndocs/jcp/jdbc-4_2-mrel2-eval-spec/
https://jdbc.postgresql.org/
https://jdbc.postgresql.org/documentation/head/index.html

Examples

Connecting with java.sql.DriverManager

This is the simplest way to connect.

First, the driver has to be registered with java.sql.DriverManager so that it knows which class to
use.
This is done by loading the driver class, typically with java.lang.Class.forname(<driver class name>)
.

/**
 * Connect to a PostgreSQL database.
 * @param url the JDBC URL to connect to; must start with "jdbc:postgresql:"
 * @param user the username for the connection
 * @param password the password for the connection
 * @return a connection object for the established connection
 * @throws ClassNotFoundException if the driver class cannot be found on the Java class path
 * @throws java.sql.SQLException if the connection to the database fails
 */
private static java.sql.Connection connect(String url, String user, String password)
 throws ClassNotFoundException, java.sql.SQLException
{
 /*
 * Register the PostgreSQL JDBC driver.
 * This may throw a ClassNotFoundException.
 */
 Class.forName("org.postgresql.Driver");
 /*
 * Tell the driver manager to connect to the database specified with the URL.
 * This may throw an SQLException.
 */
 return java.sql.DriverManager.getConnection(url, user, password);
}

Not that user and password can also be included in the JDBC URL, in which case you don't have
to specify them in the getConnection method call.

Connecting with java.sql.DriverManager and Properties

Instead of specifying connection parameters like user and password (see a complete list here) in
the URL or a separate parameters, you can pack them into a java.util.Properties object:

/**
 * Connect to a PostgreSQL database.
 * @param url the JDBC URL to connect to. Must start with "jdbc:postgresql:"
 * @param user the username for the connection
 * @param password the password for the connection
 * @return a connection object for the established connection
 * @throws ClassNotFoundException if the driver class cannot be found on the Java class path
 * @throws java.sql.SQLException if the connection to the database fails
 */
private static java.sql.Connection connect(String url, String user, String password)
 throws ClassNotFoundException, java.sql.SQLException

https://riptutorial.com/ 30

https://jdbc.postgresql.org/documentation/head/connect.html#connection-parameters

{
 /*
 * Register the PostgreSQL JDBC driver.
 * This may throw a ClassNotFoundException.
 */
 Class.forName("org.postgresql.Driver");
 java.util.Properties props = new java.util.Properties();
 props.setProperty("user", user);
 props.setProperty("password", password);
 /* don't use server prepared statements */
 props.setProperty("prepareThreshold", "0");
 /*
 * Tell the driver manager to connect to the database specified with the URL.
 * This may throw an SQLException.
 */
 return java.sql.DriverManager.getConnection(url, props);
}

Connecting with javax.sql.DataSource using a connection pool

It is common to use javax.sql.DataSource with JNDI in application server containers, where you
register a data source under a name and look it up whenever you need a connection.

This is code that demonstrates how data sources work:

/**
 * Create a data source with connection pool for PostgreSQL connections
 * @param url the JDBC URL to connect to. Must start with "jdbc:postgresql:"
 * @param user the username for the connection
 * @param password the password for the connection
 * @return a data source with the correct properties set
 */
private static javax.sql.DataSource createDataSource(String url, String user, String password)
{
 /* use a data source with connection pooling */
 org.postgresql.ds.PGPoolingDataSource ds = new org.postgresql.ds.PGPoolingDataSource();
 ds.setUrl(url);
 ds.setUser(user);
 ds.setPassword(password);
 /* the connection pool will have 10 to 20 connections */
 ds.setInitialConnections(10);
 ds.setMaxConnections(20);
 /* use SSL connections without checking server certificate */
 ds.setSslMode("require");
 ds.setSslfactory("org.postgresql.ssl.NonValidatingFactory");

 return ds;
}

Once you have created a data source by calling this function, you would use it like this:

/* get a connection from the connection pool */
java.sql.Connection conn = ds.getConnection();

/* do some work */

/* hand the connection back to the pool - it will not be closed */

https://riptutorial.com/ 31

conn.close();

Read Connect to PostgreSQL from Java online:
https://riptutorial.com/postgresql/topic/9633/connect-to-postgresql-from-java

https://riptutorial.com/ 32

https://riptutorial.com/postgresql/topic/9633/connect-to-postgresql-from-java

Chapter 10: Data Types

Introduction

PostgreSQL has a rich set of native data types available to users. Users can add new types to
PostgreSQL using the CREATE TYPE command.

https://www.postgresql.org/docs/9.6/static/datatype.html

Examples

Numeric Types

Name
Storage
Size

Description Range

smallint 2 bytes small-range integer -32768 to +32767

integer 4 bytes
ypical choice for
integer

-2147483648 to +2147483647

bigint 8 bytes large-range integer
-9223372036854775808 to
+9223372036854775807

decimal variable
user-specified
precision, exact

up to 131072 digits before the decimal
point; up to 16383 digits after the decimal
point

numeric variable
user-specified
precision, exact

up to 131072 digits before the decimal
point; up to 16383 digits after the decimal
point

real 4 bytes
variable-precision,
inexact

6 decimal digits precision

double
precision 8 bytes

variable-precision,
inexact

15 decimal digits precision

smallserial 2 bytes
small
autoincrementing
integer

1 to 32767

serial 4 bytes
autoincrementing
integer

1 to 2147483647

large bigserial 8 bytes 1 to 9223372036854775807

https://riptutorial.com/ 33

https://www.postgresql.org/docs/9.6/static/datatype.html

Name
Storage
Size

Description Range

autoincrementing
integer

int4range Range of integer

int8range Range of bigint

numrange Range of numeric

Date/ Time Types

Name
Storage
Size

Description Low Value High Value Resolution

timestamp
(without
time zone)

8 bytes
both date and
time (no time
zone)

4713 BC 294276 AD
1 microsecond
/ 14 digits

timestamp
(with time
zone)

8 bytes
both date and
time, with time
zone

4713 BC 294276 AD
1 microsecond
/ 14 digits

date 4 bytes
date (no time of
day)

4713 BC
5874897
AD

1 day

time
(without
time zone)

8 bytes
time of day (no
date)

00:00:00 24:00:00
1 microsecond
/ 14 digits

time (with
time zone)

12 bytes
times of day
only, with time
zone

00:00:00+1459
24:00:00-
1459

1 microsecond
/ 14 digits

interval 16 bytes time interval
-178000000
years

178000000
years

1 microsecond
/ 14 digits

tsrange

range of
timestamp
without time
zone

tstzrange
range of
timestamp with
time zone

daterange range of date

https://riptutorial.com/ 34

Geometric Types

Name Storage Size Description Representation

point 16 bytes Point on a plane (x,y)

line 32 bytes Infinite line {A,B,C}

lseg 32 bytes Finite line segment ((x1,y1),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

path 16+16n bytes Closed path (similar to polygon) ((x1,y1),...)

path 16+16n bytes Open path [(x1,y1),...]

polygon 40+16n bytes Polygon (similar to closed path) ((x1,y1),...)

circle 24 bytes Circle <(x,y),r> (center point and radius)

Network Adress Types

Name Storage Size Description

cidr 7 or 19 bytes IPv4 and IPv6 networks

inet 7 or 19 bytes IPv4 and IPv6 hosts and networks

macaddr 6 bytes MAC addresses

Character Types

Name Description

character varying(n), varchar(n) variable-length with limit

character(n), char(n) fixed-length, blank padded

text variable unlimited length

Arrays

In PostgreSQL you can create Arrays of any built-in, user-defined or enum type. In default there is
no limit to an Array, but you can specify it.

Declaring an Array

https://riptutorial.com/ 35

SELECT integer[];
SELECT integer[3];
SELECT integer[][];
SELECT integer[3][3];
SELECT integer ARRAY;
SELECT integer ARRAY[3];

Creating an Array

SELECT '{0,1,2}';
SELECT '{{0,1},{1,2}}';
SELECT ARRAY[0,1,2];
SELECT ARRAY[ARRAY[0,1],ARRAY[1,2]];

Accessing an Array

By default PostgreSQL uses a one-based numbering convention for arrays, that is, an array of n
elements starts with array[1] and ends with array[n].

--accesing a spefific element
WITH arr AS (SELECT ARRAY[0,1,2] int_arr) SELECT int_arr[1] FROM arr;

int_arr

 0
(1 row)

--sclicing an array
WITH arr AS (SELECT ARRAY[0,1,2] int_arr) SELECT int_arr[1:2] FROM arr;

int_arr

 {0,1}
(1 row)

Getting information about an array

--array dimensions (as text)
with arr as (select ARRAY[0,1,2] int_arr) select array_dims(int_arr) from arr;

array_dims

 [1:3]
(1 row)

--length of an array dimension
 WITH arr AS (SELECT ARRAY[0,1,2] int_arr) SELECT array_length(int_arr,1) FROM arr;

 array_length

 3
 (1 row)

https://riptutorial.com/ 36

--total number of elements across all dimensions
 WITH arr AS (SELECT ARRAY[0,1,2] int_arr) SELECT cardinality(int_arr) FROM arr;

 cardinality

 3
 (1 row)

Array functions

will be added

Read Data Types online: https://riptutorial.com/postgresql/topic/8976/data-types

https://riptutorial.com/ 37

https://riptutorial.com/postgresql/topic/8976/data-types

Chapter 11: Dates, Timestamps, and Intervals

Examples

Cast a timestamp or interval to a string

You can convert a timestamp or interval value to a string with the to_char() function:

SELECT to_char('2016-08-12 16:40:32'::timestamp, 'DD Mon YYYY HH:MI:SSPM');

This statement will produce the string "12 Aug 2016 04:40:32PM". The formatting string can be
modified in many different ways; the full list of template patterns can be found here.

Note that you can also insert plain text into the formatting string and you can use the template
patterns in any order:

SELECT to_char('2016-08-12 16:40:32'::timestamp,
 '"Today is "FMDay", the "DDth" day of the month of "FMMonth" of "YYYY');

This will produce the string "Today is Saturday, the 12th day of the month of August of 2016". You
should keep in mind, though, that any template patterns - even the single letter ones like "I", "D",
"W" - are converted, unless the plain text is in double quotes. As a safety measure, you should put
all plain text in double quotes, as done above.

You can localize the string to your language of choice (day and month names) by using the TM
(translation mode) modifier. This option uses the localization setting of the server running
PostgreSQL or the client connecting to it.

SELECT to_char('2016-08-12 16:40:32'::timestamp, 'TMDay, DD" de "TMMonth" del año "YYYY');

With a Spanish locale setting this produces "Sábado, 12 de Agosto del año 2016".

SELECT the last day of month

You can select the last day of month.

SELECT (date_trunc('MONTH', ('201608'||'01')::date) + INTERVAL '1 MONTH - 1 day')::DATE;

201608 is replaceable with a variable.

Count the number of records per week

SELECT date_trunc('week', <>) AS "Week" , count(*) FROM <> GROUP BY 1 ORDER BY 1;

Read Dates, Timestamps, and Intervals online: https://riptutorial.com/postgresql/topic/4227/dates--
timestamps--and-intervals

https://riptutorial.com/ 38

https://www.postgresql.org/docs/current/static/functions-formatting.html
https://riptutorial.com/postgresql/topic/4227/dates--timestamps--and-intervals
https://riptutorial.com/postgresql/topic/4227/dates--timestamps--and-intervals

Chapter 12: Event Triggers

Introduction

Event Triggers will be fired whenever event associated with them occurs in database.

Remarks

Please use below link for complete overview of Event Triggers in PostgreSQL

https://www.postgresql.org/docs/9.3/static/event-trigger-definition.html

Examples

Logging DDL Command Start Events

Event Type-

DDL_COMMAND_START•
DDL_COMMAND_END•
SQL_DROP•

This is example for creating an Event Trigger and logging DDL_COMMAND_START events.

CREATE TABLE TAB_EVENT_LOGS(
 DATE_TIME TIMESTAMP,
 EVENT_NAME TEXT,
 REMARKS TEXT
);

CREATE OR REPLACE FUNCTION FN_LOG_EVENT()
 RETURNS EVENT_TRIGGER
 LANGUAGE SQL
 AS
 $main$
 INSERT INTO TAB_EVENT_LOGS(DATE_TIME,EVENT_NAME,REMARKS)
 VALUES(NOW(),TG_TAG,'Event Logging');
 $main$;

CREATE EVENT TRIGGER TRG_LOG_EVENT ON DDL_COMMAND_START
 EXECUTE PROCEDURE FN_LOG_EVENT();

Read Event Triggers online: https://riptutorial.com/postgresql/topic/9255/event-triggers

https://riptutorial.com/ 39

https://www.postgresql.org/docs/9.3/static/event-trigger-definition.html
https://riptutorial.com/postgresql/topic/9255/event-triggers

Chapter 13: Export PostgreSQL database
table header and data to CSV file

Introduction

From Adminer management tool it's has export to csv file option for mysql database But not
available for postgresql database. Here I will show the command to export CSV for postgresql
database.

Examples

Export PostgreSQL table to csv with header for some column(s)

COPY products(is_public, title, discount) TO 'D:\csv_backup\products_db.csv' DELIMITER ',' CSV
HEADER;

COPY categories(name) TO 'D:\csv_backup\categories_db.csv' DELIMITER ',' CSV HEADER;

Full table backup to csv with header

COPY products TO 'D:\csv_backup\products_db.csv' DELIMITER ',' CSV HEADER;

COPY categories TO 'D:\csv_backup\categories_db.csv' DELIMITER ',' CSV HEADER;

copy from query

copy (select oid,relname from pg_class limit 5) to stdout;

Read Export PostgreSQL database table header and data to CSV file online:
https://riptutorial.com/postgresql/topic/8643/export-postgresql-database-table-header-and-data-to-
csv-file

https://riptutorial.com/ 40

https://riptutorial.com/postgresql/topic/8643/export-postgresql-database-table-header-and-data-to-csv-file
https://riptutorial.com/postgresql/topic/8643/export-postgresql-database-table-header-and-data-to-csv-file

Chapter 14: EXTENSION dblink and
postgres_fdw

Syntax

dblink ('dbname = name_db_distance port = PortOfDB host = HostOfDB user = usernameDB
password = passwordDB', 'MY QUESRY')

•

dbname = name of the database•

port = Port Of the database•

host = Host Of the database•

user = username of the database•

password = password of the database',•

MY QUESRY = this can be any operation i want to do SELECT, INSERT, ...•

Examples

Extention dblink

dblink EXTENSION is a technique to connect another database and make operation of this
database so to do that you need:

1-Create a dblink extention:

CREATE EXTENSION dblink;

2-Make your operation:

For exemple Select some attribute from another table in another database:

SELECT * FROM
dblink ('dbname = bd_distance port = 5432 host = 10.6.6.6 user = username
password = passw@rd', 'SELECT id, code FROM schema.table')
AS newTable(id INTEGER, code character varying);

Extention FDW

FDW is an implimentation of dblink it is more helpful, so to use it:

1-Create an extention:

https://riptutorial.com/ 41

CREATE EXTENSION postgres_fdw;

2-Create SERVER:

CREATE SERVER name_srv FOREIGN DATA WRAPPER postgres_fdw OPTIONS (host 'hostname',
dbname 'bd_name', port '5432');

3-Create user mapping for postgres server

CREATE USER MAPPING FOR postgres SERVER name_srv OPTIONS(user 'postgres', password
'password');

4-Create foreign table:

CREATE FOREIGN TABLE table_foreign (id INTEGER, code character varying)
SERVER name_srv OPTIONS(schema_name 'schema', table_name 'table');

5-use this foreign table like it is in your database:

SELECT * FROM table_foreign;

Foreign Data Wrapper

To access complete schema of server db instead of single table. Follow below steps:

Create EXTENSION :1.

 CREATE EXTENSION postgres_fdw;

Create SERVER :2.

 CREATE SERVER server_name FOREIGN DATA WRAPPER postgres_fdw OPTIONS (host 'host_ip',
 dbname 'db_name', port 'port_number');

Create USER MAPPING:3.

 CREATE USER MAPPING FOR CURRENT_USER
 SERVER server_name
 OPTIONS (user 'user_name', password 'password');

Create new schema to access schema of server DB:4.

 CREATE SCHEMA schema_name;

Import server schema:5.

 IMPORT FOREIGN SCHEMA schema_name_to_import_from_remote_db
 FROM SERVER server_name

https://riptutorial.com/ 42

 INTO schema_name;

Access any table of server schema:6.

 SELECT * FROM schema_name.table_name;

This can be used to access multiple schema of remote DB.

Read EXTENSION dblink and postgres_fdw online:
https://riptutorial.com/postgresql/topic/6970/extension-dblink-and-postgres-fdw

https://riptutorial.com/ 43

https://riptutorial.com/postgresql/topic/6970/extension-dblink-and-postgres-fdw

Chapter 15: Find String Length / Character
Length

Introduction

To get length of "character varying", "text" fields, Use char_length() or character_length().

Examples

Example to get length of a character varying field

Example 1, Query: SELECT char_length('ABCDE')

Result:

5

Example 2, Query: SELECT character_length('ABCDE')

Result:

5

Read Find String Length / Character Length online:
https://riptutorial.com/postgresql/topic/9695/find-string-length---character-length

https://riptutorial.com/ 44

https://riptutorial.com/postgresql/topic/9695/find-string-length---character-length

Chapter 16: Inheritance

Remarks

An explanation as to why you would want to use inheritance in PostgreSQL is available here:
http://stackoverflow.com/a/3075248/653378

Examples

Creating children tables

CREATE TABLE users (username text, email text);
CREATE TABLE simple_users () INHERITS (users);
CREATE TABLE users_with_password (password text) INHERITS (users);

Our three tables look like this:

users

Column Type

username text

email text

simple_users

Column Type

username text

email text

users_with_password

Column Type

username text

email text

password text

https://riptutorial.com/ 45

http://stackoverflow.com/a/3075248/653378

Altering tables

Let's create two simple tables:

CREATE TABLE users (username text, email text);
CREATE TABLE simple_users () INHERITS (users);

Adding columns

ALTER TABLE simple_users ADD COLUMN password text;

simple_users

Column Type

username text

email text

password text

Adding the same column to the parent table will merge the definition of both columns:

ALTER TABLE users ADD COLUMN password text;

NOTICE: merging definition of column "password" for child "simple_users"

Dropping columns

Using our altered tables:

ALTER TABLE users DROP COLUMN password;

users

Column Type

username text

email text

https://riptutorial.com/ 46

simple_users

Column Type

username text

email text

password text

Since we first added the column to simple_users, PostgreSQL makes sure this column isn't
dropped.

Now if we had another child table, its password column would, of course, have been dropped.

Read Inheritance online: https://riptutorial.com/postgresql/topic/5429/inheritance

https://riptutorial.com/ 47

https://riptutorial.com/postgresql/topic/5429/inheritance

Chapter 17: INSERT

Examples

Basic INSERT

Let's say we have a simple table called person:

CREATE TABLE person (
 person_id BIGINT,
 name VARCHAR(255).
 age INT,
 city VARCHAR(255)
);

The most basic insert involves inserting all values in the table:

INSERT INTO person VALUES (1, 'john doe', 25, 'new york');

If you want to insert only specific columns, you need to explicitly indicate which columns:

INSERT INTO person (name, age) VALUES ('john doe', 25);

Note that if any constraints exist on the table , such as NOT NULL, you will be required to include
those columns in either case.

Inserting multiple rows

You can insert multiple rows in the database at the same time:

INSERT INTO person (name, age) VALUES
 ('john doe', 25),
 ('jane doe', 20);

Insert from select

You can insert data in a table as the result of a select statement:

INSERT INTO person SELECT * FROM tmp_person WHERE age < 30;

Note that the projection of the select must match the columns required for the insert. In this case,
the tmp_person table has the same columns as person.

Insert data using COPY

COPY is PostgreSQL's bulk-insert mechanism. It's a convenient way to transfer data between files

https://riptutorial.com/ 48

and tables, but it's also far faster than INSERT when adding more than a few thousand rows at a
time.

Let's begin by creating sample data file.

cat > samplet_data.csv

1,Yogesh
2,Raunak
3,Varun
4,Kamal
5,Hari
6,Amit

And we need a two column table into which this data can be imported into.

CREATE TABLE copy_test(id int, name varchar(8));

Now the actual copy operation, this will create six records in the table.

COPY copy_test FROM '/path/to/file/sample_data.csv' DELIMITER ',';

Instead of using a file on disk, can insert data from stdin

COPY copy_test FROM stdin DELIMITER ',';
Enter data to be copied followed by a newline.
End with a backslash and a period on a line by itself.
>> 7,Amol
>> 8,Amar
>> \.
Time: 85254.306 ms

SELECT * FROM copy_test ;
 id | name
----+--------
 1 | Yogesh
 3 | Varun
 5 | Hari
 7 | Amol
 2 | Raunak
 4 | Kamal
 6 | Amit
 8 | Amar

Also you can copy data from a table to file as below:

COPY copy_test TO 'path/to/file/sample_data.csv' DELIMITER ',';

For more details on COPY you can check here

INSERT data and RETURING values

If you are inserting data into a table with an auto increment column and if you want to get the value

https://riptutorial.com/ 49

https://www.postgresql.org/docs/9.2/static/sql-copy.html

of the auto increment column.

Say you have a table called my_table:

CREATE TABLE my_table
(
id serial NOT NULL, -- serial data type is auto incrementing four-byte integer
name character varying,
contact_number integer,
CONSTRAINT my_table_pkey PRIMARY KEY (id)
);

If you want to insert data into my_table and get the id of that row:

INSERT INTO my_table(name, contact_number) VALUES ('USER', 8542621) RETURNING id;

Above query will return the id of the row where the new record was inserted.

SELECT data into file.

You can COPY table and paste it into a file.

postgres=# select * from my_table;
 c1 | c2 | c3
----+----+----
 1 | 1 | 1
 2 | 2 | 2
 3 | 3 | 3
 4 | 4 | 4
 5 | 5 |
(5 rows)

postgres=# copy my_table to '/home/postgres/my_table.txt' using delimiters '|' with null as
'null_string' csv header;
COPY 5
postgres=# \! cat my_table.txt
c1|c2|c3
1|1|1
2|2|2
3|3|3
4|4|4
5|5|null_string

UPSERT - INSERT ... ON CONFLICT DO UPDATE...

since version 9.5 postgres offers UPSERT functionality with INSERT statement.

Say you have a table called my_table, created in several previous examples. We insert a row,
returning PK value of inserted row:

b=# INSERT INTO my_table (name,contact_number) values ('one',333) RETURNING id;
 id

 2

https://riptutorial.com/ 50

https://www.postgresql.org/docs/9.5/static/sql-insert.html

(1 row)

INSERT 0 1

Now if we try to insert row with existing unique key it will raise an exception:

b=# INSERT INTO my_table values (2,'one',333);
ERROR: duplicate key value violates unique constraint "my_table_pkey"
DETAIL: Key (id)=(2) already exists.

Upsert functionality offers ability to insert it anyway, solving the conflict:

b=# INSERT INTO my_table values (2,'one',333) ON CONFLICT (id) DO UPDATE SET name =
my_table.name||' changed to: "two" at '||now() returning *;
 id | name | contact_number
----+---
------------------+----------------
 2 | one changed to: "two" at 2016-11-23 08:32:17.105179+00 | 333
(1 row)

INSERT 0 1

Read INSERT online: https://riptutorial.com/postgresql/topic/2561/insert

https://riptutorial.com/ 51

https://riptutorial.com/postgresql/topic/2561/insert

Chapter 18: JSON Support

Introduction

JSON - Java Script Object Notation , Postgresql support JSON Data type since 9.2 version. There
are some predefined function and operators to access the JSON data. The -> operator returns the
key of JSON column. The ->> operator returns the value of JSON Column.

Examples

Creating a pure JSON table

To create a pure JSON table you need to provide a single field with the type JSONB:

CREATE TABLE mytable (data JSONB NOT NULL);

You should also create a basic index:

CREATE INDEX mytable_idx ON mytable USING gin (data jsonb_path_ops);

At this point you can insert data in to the table and query it efficiently.

Querying complex JSON documents

Taking a complex JSON document in a table:

CREATE TABLE mytable (data JSONB NOT NULL);
CREATE INDEX mytable_idx ON mytable USING gin (data jsonb_path_ops);
INSERT INTO mytable VALUES($$
{
 "name": "Alice",
 "emails": [
 "alice1@test.com",
 "alice2@test.com"
],
 "events": [
 {
 "type": "birthday",
 "date": "1970-01-01"
 },
 {
 "type": "anniversary",
 "date": "2001-05-05"
 }
],
 "locations": {
 "home": {
 "city": "London",
 "country": "United Kingdom"
 },

https://riptutorial.com/ 52

 "work": {
 "city": "Edinburgh",
 "country": "United Kingdom"
 }
 }
}
$$);

Query for a top-level element:

SELECT data->>'name' FROM mytable WHERE data @> '{"name":"Alice"}';

Query for a simple item in an array:

SELECT data->>'name' FROM mytable WHERE data @> '{"emails":["alice1@test.com"]}';

Query for an object in an array:

SELECT data->>'name' FROM mytable WHERE data @> '{"events":[{"type":"anniversary"}]}';

Query for a nested object:

SELECT data->>'name' FROM mytable WHERE data @> '{"locations":{"home":{"city":"London"}}}';

Performance of @> compared to -> and ->>

It is important to understand the performance difference between using @>, -> and ->> in the WHERE
part of the query. Although these two queries appear to be broadly equivalent:

SELECT data FROM mytable WHERE data @> '{"name":"Alice"}';
SELECT data FROM mytable WHERE data->'name' = '"Alice"';
SELECT data FROM mytable WHERE data->>'name' = 'Alice';

the first statement will use the index created above whereas the latter two will not, requiring a
complete table scan.

It is still allowable to use the -> operator when obtaining resultant data, so the following queries
will also use the index:

SELECT data->'locations'->'work' FROM mytable WHERE data @> '{"name":"Alice"}';
SELECT data->'locations'->'work'->>'city' FROM mytable WHERE data @> '{"name":"Alice"}';

Using JSONb operators

Creating a DB and a Table

https://riptutorial.com/ 53

DROP DATABASE IF EXISTS books_db;
CREATE DATABASE books_db WITH ENCODING='UTF8' TEMPLATE template0;

DROP TABLE IF EXISTS books;

CREATE TABLE books (
 id SERIAL PRIMARY KEY,
 client TEXT NOT NULL,
 data JSONb NOT NULL
);

Populating the DB

INSERT INTO books(client, data) values (
 'Joe',
 '{ "title": "Siddhartha", "author": { "first_name": "Herman", "last_name": "Hesse" } }'
),(
 'Jenny',
 '{ "title": "Dharma Bums", "author": { "first_name": "Jack", "last_name": "Kerouac" } }'
),(
 'Jenny',
 '{ "title": "100 años de soledad", "author": { "first_name": "Gabo", "last_name":
"Marquéz" } }'
);

Lets see everything inside the table books:

SELECT * FROM books;

Output:

-> operator returns values out of JSON
columns

Selecting 1 column:

SELECT client,
 data->'title' AS title
 FROM books;

Output:

https://riptutorial.com/ 54

Selecting 2 columns:

SELECT client,
 data->'title' AS title, data->'author' AS author
 FROM books;

Output:

-> vs ->>

The -> operator returns the original JSON type (which might be an object), whereas ->> returns
text.

Return NESTED objects

You can use the -> to return a nested object and thus chain the operators:

SELECT client,
 data->'author'->'last_name' AS author
 FROM books;

Output:

Filtering

Select rows based on a value inside your JSON:

 SELECT
 client,

https://riptutorial.com/ 55

 data->'title' AS title
 FROM books
 WHERE data->'title' = '"Dharma Bums"';

Notice WHERE uses -> so we must compare to JSON '"Dharma Bums"'

Or we could use ->> and compare to 'Dharma Bums'

Output:

Nested filtering

Find rows based on the value of a nested JSON object:

SELECT
 client,
 data->'title' AS title
 FROM books
 WHERE data->'author'->>'last_name' = 'Kerouac';

Output:

A real world example

CREATE TABLE events (
 name varchar(200),
 visitor_id varchar(200),
 properties json,
 browser json
);

We’re going to store events in this table, like pageviews. Each event has properties, which could
be anything (e.g. current page) and also sends information about the browser (like OS, screen
resolution, etc). Both of these are completely free form and could change over time (as we think of
extra stuff to track).

INSERT INTO events (name, visitor_id, properties, browser) VALUES
(
 'pageview', '1',
 '{ "page": "/" }',
 '{ "name": "Chrome", "os": "Mac", "resolution": { "x": 1440, "y": 900 } }'
),(

https://riptutorial.com/ 56

 'pageview', '2',
 '{ "page": "/" }',
 '{ "name": "Firefox", "os": "Windows", "resolution": { "x": 1920, "y": 1200 } }'
),(
 'pageview', '1',
 '{ "page": "/account" }',
 '{ "name": "Chrome", "os": "Mac", "resolution": { "x": 1440, "y": 900 } }'
),(
 'purchase', '5',
 '{ "amount": 10 }',
 '{ "name": "Firefox", "os": "Windows", "resolution": { "x": 1024, "y": 768 } }'
),(
 'purchase', '15',
 '{ "amount": 200 }',
 '{ "name": "Firefox", "os": "Windows", "resolution": { "x": 1280, "y": 800 } }'
),(
 'purchase', '15',
 '{ "amount": 500 }',
 '{ "name": "Firefox", "os": "Windows", "resolution": { "x": 1280, "y": 800 } }'
);

Now lets select everything:

SELECT * FROM events;

Output:

JSON operators + PostgreSQL aggregate
functions

Using the JSON operators, combined with traditional PostgreSQL aggregate functions, we can pull
out whatever we want. You have the full might of an RDBMS at your disposal.

Lets see browser usage:

 SELECT browser->>'name' AS browser,
 count(browser)
 FROM events
 GROUP BY browser->>'name';

•

Output:

https://riptutorial.com/ 57

Total revenue per visitor:

 SELECT visitor_id, SUM(CAST(properties->>'amount' AS integer)) AS total
 FROM events
 WHERE CAST(properties->>'amount' AS integer) > 0
 GROUP BY visitor_id;

•

Output:

Average screen resolution

 SELECT AVG(CAST(browser->'resolution'->>'x' AS integer)) AS width,
 AVG(CAST(browser->'resolution'->>'y' AS integer)) AS height
 FROM events;

•

Output:

More examples and documentation here and here.

Read JSON Support online: https://riptutorial.com/postgresql/topic/1034/json-support

https://riptutorial.com/ 58

http://schinckel.net/2014/05/25/querying-json-in-postgres/
http://clarkdave.net/2013/06/what-can-you-do-with-postgresql-and-json/
https://riptutorial.com/postgresql/topic/1034/json-support

Chapter 19: Postgres cryptographic functions

Introduction

In Postgres, cryptographic functions can be unlocked by using pgcrypto module. CREATE
EXTENSION pgcrypto;

Examples

digest

DIGEST() functions generate a binary hash of the given data. This can be used to create a random
hash.

Usage: digest(data text, type text) returns bytea

Or: digest(data bytea, type text) returns bytea

Examples:

SELECT DIGEST('1', 'sha1')•

SELECT DIGEST(CONCAT(CAST(current_timestamp AS TEXT), RANDOM()::TEXT), 'sha1')•

Read Postgres cryptographic functions online:
https://riptutorial.com/postgresql/topic/9230/postgres-cryptographic-functions

https://riptutorial.com/ 59

https://riptutorial.com/postgresql/topic/9230/postgres-cryptographic-functions

Chapter 20: Postgres Tip and Tricks

Examples

DATEADD alternative in Postgres

SELECT CURRENT_DATE + '1 day'::INTERVAL•
SELECT '1999-12-11'::TIMESTAMP + '19 days'::INTERVAL•
SELECT '1 month'::INTERVAL + '1 month 3 days'::INTERVAL•

Comma seperated values of a column

SELECT
 string_agg(<TABLE_NAME>.<COLUMN_NAME>, ',')
FROM
 <SCHEMA_NAME>.<TABLE_NAME> T

Delete duplicate records from postgres table

DELETE
 FROM <SCHEMA_NAME>.<Table_NAME>
WHERE
 ctid NOT IN
 (
 SELECT
 MAX(ctid)
 FROM
 <SCHEMA_NAME>.<TABLE_NAME>
 GROUP BY
 <SCHEMA_NAME>.<TABLE_NAME>.*
)
;

Update query with join between two tables alternative since Postresql does
not support join in update query.

 update <SCHEMA_NAME>.<TABLE_NAME_1> AS A
 SET <COLUMN_1> = True
 FROM <SCHEMA_NAME>.<TABLE_NAME_2> AS B
 WHERE
 A.<COLUMN_2> = B.<COLUMN_2> AND
 A.<COLUMN_3> = B.<COLUMN_3>

Difference between two date timestamps month wise and year wise

Monthwise difference between two dates(timestamp)

select
 (

https://riptutorial.com/ 60

 (DATE_PART('year', AgeonDate) - DATE_PART('year', tmpdate)) * 12
 +
 (DATE_PART('month', AgeonDate) - DATE_PART('month', tmpdate))
)
from dbo."Table1"

Yearwise difference between two dates(timestamp)

select (DATE_PART('year', AgeonDate) - DATE_PART('year', tmpdate)) from dbo."Table1"

Query to Copy/Move/Transafer table data from one database to other
database table with same schema

First Execute

CREATE EXTENSION DBLINK;

Then

INSERT INTO
 <SCHEMA_NAME>.<TABLE_NAME_1>
SELECT *
FROM
 DBLINK(
 'HOST=<IP-ADDRESS> USER=<USERNAME> PASSWORD=<PASSWORD> DBNAME=<DATABASE>',
 'SELECT * FROM <SCHEMA_NAME>.<TABLE_NAME_2>')
 AS <TABLE_NAME>
 (
 <COLUMN_1> <DATATYPE_1>,
 <COLUMN_1> <DATATYPE_2>,
 <COLUMN_1> <DATATYPE_3>
);

Read Postgres Tip and Tricks online: https://riptutorial.com/postgresql/topic/7433/postgres-tip-and-
tricks

https://riptutorial.com/ 61

https://riptutorial.com/postgresql/topic/7433/postgres-tip-and-tricks
https://riptutorial.com/postgresql/topic/7433/postgres-tip-and-tricks

Chapter 21: PostgreSQL High Availability

Examples

Replication in PostgreSQL

Configuring the Primary Server

Requirements:

Replication User for replication activities○

Directory to store the WAL archives○

○

Create Replication user

createuser -U postgres replication -P -c 5 --replication

 + option -P will prompt you for new password
 + option -c is for maximum connections. 5 connections are enough for replication
 + -replication will grant replication privileges to the user

○

Create a archive directory in data directory

mkdir $PGDATA/archive

○

Edit the pg_hba.conf file

This is host base authentication file, contains the setting for client autherntication. Add
below entry:

 #hosttype database_name user_name hostname/IP method
 host replication replication <slave-IP>/32 md5

○

Edit the postgresql.conf file

This is the configuration file of PostgreSQL.

wal_level = hot_standby

This parameter decides the behavior of slave server.

 `hot_standby` logs what is required to accept read only queries on slave server.

 `streaming` logs what is required to just apply the WAL's on slave.

 `archive` which logs what is required for archiving.

archive_mode=on

This parameters allows to send WAL segments to archive location using

○

•

https://riptutorial.com/ 62

archive_command parameter.

archive_command = 'test ! -f /path/to/archivedir/%f && cp %p /path/to/archivedir/%f'

Basically what above archive_command does is it copies the WAL segments to archive
directory.

wal_senders = 5 This is maximum number of WAL sender processes.

Now restart the primary server.

Backing up the primay server to the slave server

Before making changes on the server stop the primary server.

•

Important: Don't start the service again until all configuration and backup steps are
complete. You must bring up the standby server in a state where it is ready to be a
backup server. This means that all configuration settings must be in place and the
databases must be already synchronized. Otherwise, streaming replication will fail to
start`

Now run the pg_basebackup utility

pg_basebackup utility copies the data from primary server data directory to slave data
directory.

$ pg_basebackup -h <primary IP> -D /var/lib/postgresql/<version>/main -U replication -v -P
--xlog-method=stream

•

 -D: This is tells pg_basebackup where to the initial backup

 -h: Specifies the system where to look for the primary server

 -xlog-method=stream: This will force the pg_basebackup to open another connection and
stream enough xlog while backup is running.
 It also ensures that fresh backup can be started without failing back
to using an archive.

Configuring the standby server

To configure the standby server, you'll edit postgresql.conf and create a new configuration
file named recovery.conf.

hot_standby = on

This specifies whether you are allowed to run queries while recovering

Creating recovery.conf file

standby_mode = on

Set the connection string to the primary server. Replace with the external IP address of
the primary server. Replace with the password for the user named replication

○

•

https://riptutorial.com/ 63

`primary_conninfo = 'host= port=5432 user=replication password='

(Optional) Set the trigger file location:

trigger_file = '/tmp/postgresql.trigger.5432'

The trigger_file path that you specify is the location where you can add a file when
you want the system to fail over to the standby server. The presence of the file
"triggers" the failover. Alternatively, you can use the pg_ctl promote command to
trigger failover.

Start the standby server

You now have everything in place and are ready to bring up the standby server

•

Attribution

This article is substantially derived from and attributed to How to Set Up PostgreSQL for High
Availability and Replication with Hot Standby, with minor changes in formatting and examples and
some text deleted. The source was published under the Creative Commons Public License 3.0,
which is maintained here.

Read PostgreSQL High Availability online: https://riptutorial.com/postgresql/topic/5478/postgresql-
high-availability

https://riptutorial.com/ 64

https://cloud.google.com/solutions/setup-postgres-hot-standby#create_a_user_for_replication
https://cloud.google.com/solutions/setup-postgres-hot-standby#create_a_user_for_replication
https://creativecommons.org/licenses/by/3.0/
https://riptutorial.com/postgresql/topic/5478/postgresql-high-availability
https://riptutorial.com/postgresql/topic/5478/postgresql-high-availability

Chapter 22: Programming with PL/pgSQL

Remarks

PL/pgSQL is PostgreSQL's built-in programming language for writing functions which run within
the database itself, known as stored procedures in other databases. It extends SQL with loops,
conditionals, and return types. Though its syntax may be strange to many developers it is much
faster than anything running on the application server because the overhead of connecting to the
database is eliminated, which is particularly useful when you would otherwise need to execute a
query, wait for the result, and submit another query.

Though many other procedural languages exist for PostgreSQL, such as PL/Python, PL/Perl, and
PLV8, PL/pgSQL is a common starting point for developers who want to write their first
PostgreSQL function because its syntax builds on SQL. It is also similar to PL/SQL, Oracle's
native procedural language, so any developer familiar with PL/SQL will find the language familiar,
and any developer who intends to develop Oracle applications in the future but wants to start with
a free database can transition from PL/pgSQL to PL/SQL with relative ease.

It should be emphasized that other procedural languages exist and PL/pgSQL is not necessarily
superior to them in any way, including speed, but examples in PL/pgSQL can serve as a common
reference point for other languages used for writing PostgreSQL functions. PL/pgSQL has the
most tutorials and books of all the PLs and can be a springboard to learning the languages with
less documentation.

Here are links to some free guides and books on PL/pgSQL:

The official documentation: https://www.postgresql.org/docs/current/static/plpgsql.html•
w3resource.com tutorial: http://www.w3resource.com/PostgreSQL/pl-pgsql-tutorial.php•
postgres.cz tutorial: http://postgres.cz/wiki/PL/pgSQL_(en)•
PostgreSQL Server Programming, 2nd Edition: https://www.packtpub.com/big-data-and-
business-intelligence/postgresql-server-programming-second-edition

•

PostgreSQL Developer's Guide: https://www.packtpub.com/big-data-and-business-
intelligence/postgresql-developers-guide

•

Examples

Basic PL/pgSQL Function

A simple PL/pgSQL function:

CREATE FUNCTION active_subscribers() RETURNS bigint AS $$
DECLARE
 -- variable for the following BEGIN ... END block
 subscribers integer;
BEGIN
 -- SELECT must always be used with INTO

https://riptutorial.com/ 65

https://www.postgresql.org/docs/current/static/plpgsql.html
http://www.w3resource.com/PostgreSQL/pl-pgsql-tutorial.php
http://postgres.cz/wiki/PL/pgSQL_(en)
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-server-programming-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-server-programming-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-developers-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-developers-guide

 SELECT COUNT(user_id) INTO subscribers FROM users WHERE subscribed;
 -- function result
 RETURN subscribers;
EXCEPTION
 -- return NULL if table "users" does not exist
 WHEN undefined_table
 THEN RETURN NULL;
END;
$$ LANGUAGE plpgsql;

This could have been achieved with just the SQL statement but demonstrates the basic structure
of a function.

To execute the function do:

select active_subscribers();

PL/pgSQL Syntax

CREATE [OR REPLACE] FUNCTION functionName (someParameter 'parameterType')
RETURNS 'DATATYPE'
AS $_block_name_$
DECLARE
 --declare something
BEGIN
 --do something
 --return something
END;
$_block_name_$
LANGUAGE plpgsql;

RETURNS Block

Options for returning in a PL/pgSQL function:

Datatype List of all datatypes•
Table(column_name column_type, ...)•
Setof 'Datatype' or 'table_column'•

custom exceptions

creating custom exception 'P2222':

create or replace function s164() returns void as
$$
begin
raise exception using message = 'S 164', detail = 'D 164', hint = 'H 164', errcode = 'P2222';
end;
$$ language plpgsql
;

creating custom exception not assigning errm:

https://riptutorial.com/ 66

https://www.postgresql.org/docs/9.6/static/datatype.html

create or replace function s165() returns void as
$$
begin
raise exception '%','nothing specified';
end;
$$ language plpgsql
;

calling:

t=# do
$$
declare
 _t text;
begin
 perform s165();
 exception when SQLSTATE 'P0001' then raise info '%','state P0001 caught: '||SQLERRM;
 perform s164();

end;
$$
;
INFO: state P0001 caught: nothing specified
ERROR: S 164
DETAIL: D 164
HINT: H 164
CONTEXT: SQL statement "SELECT s164()"
PL/pgSQL function inline_code_block line 7 at PERFORM

here custom P0001 processed, and P2222, not, aborting the execution.

Also it makes huge sense to keep a table of exceptions, like here:
http://stackoverflow.com/a/2700312/5315974

Read Programming with PL/pgSQL online:
https://riptutorial.com/postgresql/topic/5299/programming-with-pl-pgsql

https://riptutorial.com/ 67

http://stackoverflow.com/a/2700312/5315974
https://riptutorial.com/postgresql/topic/5299/programming-with-pl-pgsql

Chapter 23: Recursive queries

Introduction

There are no real recursive querys!

Examples

Sum of Integers

WITH RECURSIVE t(n) AS (
 VALUES (1)
 UNION ALL
 SELECT n+1 FROM t WHERE n < 100
)
SELECT sum(n) FROM t;

Link to Documentation

Read Recursive queries online: https://riptutorial.com/postgresql/topic/9025/recursive-queries

https://riptutorial.com/ 68

https://www.postgresql.org/docs/9.6/static/queries-with.html
https://riptutorial.com/postgresql/topic/9025/recursive-queries

Chapter 24: Role Management

Syntax

CREATE ROLE name [[WITH] option [...]]•

CREATE USER name [[WITH] option [...]]•

where option can be: SUPERUSER | NOSUPERUSER | CREATEDB | NOCREATEDB | CREATEROLE |
NOCREATEROLE | CREATEUSER | NOCREATEUSER | INHERIT | NOINHERIT | LOGIN | NOLOGIN |
CONNECTION LIMIT connlimit | [ENCRYPTED | UNENCRYPTED] PASSWORD 'password' | VALID UNTIL
'timestamp' | IN ROLE role_name [, ...] | IN GROUP role_name [, ...] | ROLE role_name [,
...] | ADMIN role_name [, ...] | USER role_name [, ...] | SYSID uid

•

Examples

Create a user with a password

Generally you should avoid using the default database role (often postgres) in your application.
You should instead create a user with lower levels of privileges. Here we make one called
niceusername and give it a password very-strong-password

CREATE ROLE niceusername with PASSWORD 'very-strong-password' LOGIN;

The problem with that is that queries typed into the psql console get saved in a history file
.psql_history in the user's home directory and may as well be logged to the PostgreSQL database
server log, thus exposing the password.

To avoid this, use the \password command to set the user password. If the user issuing the
command is a superuser, the current password will not be asked. (Must be superuser to alter
passwords of superusers)

CREATE ROLE niceusername with LOGIN;
\password niceusername

Create Role and matching database

To support a given application, you often create a new role and database to match.

The shell commands to run would be these:

$ createuser -P blogger
Enter password for the new role: ********
Enter it again: ********

$ createdb -O blogger blogger

This assumes that pg_hba.conf has been properly configured, which probably looks like this:

https://riptutorial.com/ 69

TYPE DATABASE USER ADDRESS METHOD
host sameuser all localhost md5
local sameuser all md5

Grant and Revoke Privileges.

Suppose, that we have three users :

The Administrator of the database > admin1.
The application with a full access for her data > read_write2.
The read only access > read_only3.

--ACCESS DB
REVOKE CONNECT ON DATABASE nova FROM PUBLIC;
GRANT CONNECT ON DATABASE nova TO user;

With the above queries, untrusted users can no longer connect to the database.

--ACCESS SCHEMA
REVOKE ALL ON SCHEMA public FROM PUBLIC;
GRANT USAGE ON SCHEMA public TO user;

The next set of queries revoke all privileges from unauthenticated users and provide limited set of
privileges for the read_write user.

--ACCESS TABLES
REVOKE ALL ON ALL TABLES IN SCHEMA public FROM PUBLIC ;
GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only ;
GRANT SELECT, INSERT, UPDATE, DELETE ON ALL TABLES IN SCHEMA public TO read_write ;
GRANT ALL ON ALL TABLES IN SCHEMA public TO admin ;

--ACCESS SEQUENCES
REVOKE ALL ON ALL SEQUENCES IN SCHEMA public FROM PUBLIC;
GRANT SELECT ON ALL SEQUENCES IN SCHEMA public TO read_only; -- allows the use of CURRVAL
GRANT UPDATE ON ALL SEQUENCES IN SCHEMA public TO read_write; -- allows the use of NEXTVAL and
SETVAL
GRANT USAGE ON ALL SEQUENCES IN SCHEMA public TO read_write; -- allows the use of CURRVAL and
NEXTVAL
GRANT ALL ON ALL SEQUENCES IN SCHEMA public TO admin;

Alter default search_path of user

With the below commands, user's default search_path can be set.

Check search path before set default schema.1.

postgres=# \c postgres user1
You are now connected to database "postgres" as user "user1".
postgres=> show search_path;
 search_path

 "$user",public

https://riptutorial.com/ 70

(1 row)

Set search_path with alter user command to append a new schema my_schema2.

postgres=> \c postgres postgres
You are now connected to database "postgres" as user "postgres".
postgres=# alter user user1 set search_path='my_schema, "$user", public';
ALTER ROLE

Check result after execution.3.

postgres=# \c postgres user1
Password for user user1:
You are now connected to database "postgres" as user "user1".
postgres=> show search_path;
 search_path

 my_schema, "$user", public
(1 row)

Alternative:

postgres=# set role user1;
postgres=# show search_path;
 search_path

 my_schema, "$user", public
(1 row)

Grant access privileges on objects created in the future.

Suppose, that we have three users :

The Administrator of the database > admin1.
The application with a full access for her data > read_write2.
The read only access > read_only3.

With below queries, you can set access privileges on objects created in the future in specified
schema.

ALTER DEFAULT PRIVILEGES IN SCHEMA myschema GRANT SELECT ON TABLES TO
read_only;
ALTER DEFAULT PRIVILEGES IN SCHEMA myschema GRANT SELECT,INSERT,DELETE,UPDATE ON TABLES TO
read_write;
ALTER DEFAULT PRIVILEGES IN SCHEMA myschema GRANT ALL ON TABLES TO
admin;

Or, you can set access privileges on objects created in the future by specified user.

ALTER DEFAULT PRIVILEGES FOR ROLE admin GRANT SELECT ON TABLES TO read_only;

https://riptutorial.com/ 71

Create Read Only User

CREATE USER readonly WITH ENCRYPTED PASSWORD 'yourpassword';
GRANT CONNECT ON DATABASE <database_name> to readonly;

GRANT USAGE ON SCHEMA public to readonly;
GRANT SELECT ON ALL SEQUENCES IN SCHEMA public TO readonly;
GRANT SELECT ON ALL TABLES IN SCHEMA public TO readonly;

Read Role Management online: https://riptutorial.com/postgresql/topic/1572/role-management

https://riptutorial.com/ 72

https://riptutorial.com/postgresql/topic/1572/role-management

Chapter 25: SELECT

Examples

SELECT using WHERE

In this topic we will base on this table of users :

CREATE TABLE sch_test.user_table
(
 id serial NOT NULL,
 username character varying,
 pass character varying,
 first_name character varying(30),
 last_name character varying(30),
 CONSTRAINT user_table_pkey PRIMARY KEY (id)
)

+----+------------+-----------+----------+------+
| id | first_name | last_name | username | pass |
+----+------------+-----------+----------+------+
| 1 | hello | world | hello | word |
+----+------------+-----------+----------+------+
| 2 | root | me | root | toor |
+----+------------+-----------+----------+------+

Syntax

Select every thing:

SELECT * FROM schema_name.table_name WHERE <condition>;

Select some fields :

SELECT field1, field2 FROM schema_name.table_name WHERE <condition>;

Examples

-- SELECT every thing where id = 1
SELECT * FROM schema_name.table_name WHERE id = 1;

-- SELECT id where username = ? and pass = ?
SELECT id FROM schema_name.table_name WHERE username = 'root' AND pass = 'toor';

-- SELECT first_name where id not equal 1
SELECT first_name FROM schema_name.table_name WHERE id != 1;

Read SELECT online: https://riptutorial.com/postgresql/topic/9528/select

https://riptutorial.com/ 73

https://riptutorial.com/postgresql/topic/9528/select

Chapter 26: Table Creation

Examples

Table creation with Primary Key

CREATE TABLE person (
 person_id BIGINT NOT NULL,
 last_name VARCHAR(255) NOT NULL,
 first_name VARCHAR(255),
 address VARCHAR(255),
 city VARCHAR(255),
 PRIMARY KEY (person_id)
);

Alternatively, you can place the PRIMARY KEY constraint directly in the column definition:

CREATE TABLE person (
 person_id BIGINT NOT NULL PRIMARY KEY,
 last_name VARCHAR(255) NOT NULL,
 first_name VARCHAR(255),
 address VARCHAR(255),
 city VARCHAR(255)
);

It is recommended that you use lower case names for the table and as well as all the columns. If
you use upper case names such as Person you would have to wrap that name in double quotes (
"Person") in each and every query because PostgreSQL enforces case folding.

Show table definition

Open the psql command line tool connected to the database where your table is. Then type the
following command:

\d tablename

To get extended information type

\d+ tablename

If you have forgotten the name of the table, just type \d into psql to obtain a list of tables and views
in the current database.

Create table from select

Let's say you have a table called person:

CREATE TABLE person (

https://riptutorial.com/ 74

 person_id BIGINT NOT NULL,
 last_name VARCHAR(255) NOT NULL,
 first_name VARCHAR(255),
 age INT NOT NULL,
 PRIMARY KEY (person_id)
);

You can create a new table of people over 30 like this:

CREATE TABLE people_over_30 AS SELECT * FROM person WHERE age > 30;

Create unlogged table

You can create unlogged tables so that you can make the tables considerably faster. Unlogged
table skips writing write-ahead log which means it's not crash-safe and unable to replicate.

CREATE UNLOGGED TABLE person (
 person_id BIGINT NOT NULL PRIMARY KEY,
 last_name VARCHAR(255) NOT NULL,
 first_name VARCHAR(255),
 address VARCHAR(255),
 city VARCHAR(255)
);

Create a table that references other table.

In this example, User Table will have a column that references the Agency table.

CREATE TABLE agencies (-- first create the agency table
 id SERIAL PRIMARY KEY,
 name TEXT NOT NULL
)

CREATE TABLE users (
 id SERIAL PRIMARY KEY,
 agency_id NOT NULL INTEGER REFERENCES agencies(id) DEFERRABLE INITIALLY DEFERRED -- this is
going to references your agency table.
)

Read Table Creation online: https://riptutorial.com/postgresql/topic/2430/table-creation

https://riptutorial.com/ 75

https://riptutorial.com/postgresql/topic/2430/table-creation

Chapter 27: Triggers and Trigger Functions

Introduction

The trigger will be associated with the specified table or view and will execute the specified
function function_name when certain events occur.

Remarks

Please use below link for complete overview of:

Triggers: https://www.postgresql.org/docs/current/static/sql-createtrigger.html•
Trigger Functions: https://www.postgresql.org/docs/current/static/plpgsql-trigger.html•

Examples

Basic PL/pgSQL Trigger Function

This is a simple trigger function.

CREATE OR REPLACE FUNCTION my_simple_trigger_function()
RETURNS trigger AS
$BODY$

BEGIN
 -- TG_TABLE_NAME :name of the table that caused the trigger invocation
IF (TG_TABLE_NAME = 'users') THEN

 --TG_OP : operation the trigger was fired
 IF (TG_OP = 'INSERT') THEN
 --NEW.id is holding the new database row value (in here id is the id column in users
table)
 --NEW will return null for DELETE operations
 INSERT INTO log_table (date_and_time, description) VALUES (now(), 'New user inserted. User
ID: '|| NEW.id);
 RETURN NEW;

 ELSIF (TG_OP = 'DELETE') THEN
 --OLD.id is holding the old database row value (in here id is the id column in users
table)
 --OLD will return null for INSERT operations
 INSERT INTO log_table (date_and_time, description) VALUES (now(), 'User deleted.. User ID:
' || OLD.id);
 RETURN OLD;

 END IF;

RETURN null;
END IF;

END;
$BODY$

https://riptutorial.com/ 76

https://www.postgresql.org/docs/current/static/sql-createtrigger.html
https://www.postgresql.org/docs/current/static/plpgsql-trigger.html

LANGUAGE plpgsql VOLATILE
COST 100;

Adding this trigger function to the users table

CREATE TRIGGER my_trigger
AFTER INSERT OR DELETE
ON users
FOR EACH ROW
EXECUTE PROCEDURE my_simple_trigger_function();

Type of triggers

Trigger can be specified to fire:

BEFORE the operation is attempted on a row - insert, update or delete;•
AFTER the operation has completed - insert, update or delete;•
INSTEAD OF the operation in the case of inserts, updates or deletes on a view.•

Trigger that is marked:

FOR EACH ROW is called once for every row that the operation modifies;•
FOR EACH STATEMENT is called onde for any given operation.•

Preparing to execute examples

CREATE TABLE company (
 id SERIAL PRIMARY KEY NOT NULL,
 name TEXT NOT NULL,
 created_at TIMESTAMP,
 modified_at TIMESTAMP DEFAULT NOW()
)

CREATE TABLE log (
 id SERIAL PRIMARY KEY NOT NULL,
 table_name TEXT NOT NULL,
 table_id TEXT NOT NULL,
 description TEXT NOT NULL,
 created_at TIMESTAMP DEFAULT NOW()
)

Single insert trigger

Step 1: create your function

https://riptutorial.com/ 77

CREATE OR REPLACE FUNCTION add_created_at_function()
 RETURNS trigger AS $BODY$
BEGIN
 NEW.created_at := NOW();
 RETURN NEW;
END $BODY$
LANGUAGE plpgsql;

Step 2: create your trigger

CREATE TRIGGER add_created_at_trigger
BEFORE INSERT
ON company
FOR EACH ROW
EXECUTE PROCEDURE add_created_at_function();

Step 3: test it

INSERT INTO company (name) VALUES ('My company');
SELECT * FROM company;

Trigger for multiple purpose

Step 1: create your function

CREATE OR REPLACE FUNCTION add_log_function()
 RETURNS trigger AS $BODY$
DECLARE
 vDescription TEXT;
 vId INT;
 vReturn RECORD;
BEGIN
 vDescription := TG_TABLE_NAME || ' ';
 IF (TG_OP = 'INSERT') THEN
 vId := NEW.id;
 vDescription := vDescription || 'added. Id: ' || vId;
 vReturn := NEW;
 ELSIF (TG_OP = 'UPDATE') THEN
 vId := NEW.id;
 vDescription := vDescription || 'updated. Id: ' || vId;
 vReturn := NEW;
 ELSIF (TG_OP = 'DELETE') THEN
 vId := OLD.id;
 vDescription := vDescription || 'deleted. Id: ' || vId;
 vReturn := OLD;
 END IF;

 RAISE NOTICE 'TRIGER called on % - Log: %', TG_TABLE_NAME, vDescription;

 INSERT INTO log
 (table_name, table_id, description, created_at)
 VALUES

https://riptutorial.com/ 78

 (TG_TABLE_NAME, vId, vDescription, NOW());

 RETURN vReturn;
END $BODY$
 LANGUAGE plpgsql;

Step 2: create your trigger

CREATE TRIGGER add_log_trigger
AFTER INSERT OR UPDATE OR DELETE
ON company
FOR EACH ROW
EXECUTE PROCEDURE add_log_function();

Step 3: test it

INSERT INTO company (name) VALUES ('Company 1');
INSERT INTO company (name) VALUES ('Company 2');
INSERT INTO company (name) VALUES ('Company 3');
UPDATE company SET name='Company new 2' WHERE name='Company 2';
DELETE FROM company WHERE name='Company 1';
SELECT * FROM log;

Read Triggers and Trigger Functions online: https://riptutorial.com/postgresql/topic/6957/triggers-
and-trigger-functions

https://riptutorial.com/ 79

https://riptutorial.com/postgresql/topic/6957/triggers-and-trigger-functions
https://riptutorial.com/postgresql/topic/6957/triggers-and-trigger-functions

Chapter 28: UPDATE

Examples

Update all rows in a table

You update all rows in table by simply providing a column_name = value:

UPDATE person SET planet = 'Earth';

Update all rows meeting a condition

UPDATE person SET state = 'NY' WHERE city = 'New York';

Updating multiple columns in table

You can update multiple columns in a table in the same statement, separating col=val pairs with
commas:

UPDATE person
 SET country = 'USA',
 state = 'NY'
WHERE city = 'New York';

Updating a table based on joining another table

You can also update data in a table based on data from another table:

UPDATE person
SET state_code = cities.state_code
FROM cities
WHERE cities.city = city;

Here we are joining the person city column to the cities city column in order to get the city's state
code. This is then used to update the state_code column in the person table.

Read UPDATE online: https://riptutorial.com/postgresql/topic/3136/update

https://riptutorial.com/ 80

https://riptutorial.com/postgresql/topic/3136/update

Chapter 29: Window Functions

Examples

generic example

Preparing data:

create table wf_example(i int, t text,ts timestamptz,b boolean);
insert into wf_example select 1,'a','1970.01.01',true;
insert into wf_example select 1,'a','1970.01.01',false;
insert into wf_example select 1,'b','1970.01.01',false;
insert into wf_example select 2,'b','1970.01.01',false;
insert into wf_example select 3,'b','1970.01.01',false;
insert into wf_example select 4,'b','1970.02.01',false;
insert into wf_example select 5,'b','1970.03.01',false;
insert into wf_example select 2,'c','1970.03.01',true;

Running:

select *
 , dense_rank() over (order by i) dist_by_i
 , lag(t) over () prev_t
 , nth_value(i, 6) over () nth
 , count(true) over (partition by i) num_by_i
 , count(true) over () num_all
 , ntile(3) over() ntile
from wf_example
;

Result:

 i | t | ts | b | dist_by_i | prev_t | nth | num_by_i | num_all | ntile
---+---+------------------------+---+-----------+--------+-----+----------+---------+-------
 1 | a | 1970-01-01 00:00:00+01 | f | 1 | | 3 | 3 | 8 | 1
 1 | a | 1970-01-01 00:00:00+01 | t | 1 | a | 3 | 3 | 8 | 1
 1 | b | 1970-01-01 00:00:00+01 | f | 1 | a | 3 | 3 | 8 | 1
 2 | c | 1970-03-01 00:00:00+01 | t | 2 | b | 3 | 2 | 8 | 2
 2 | b | 1970-01-01 00:00:00+01 | f | 2 | c | 3 | 2 | 8 | 2
 3 | b | 1970-01-01 00:00:00+01 | f | 3 | b | 3 | 1 | 8 | 2
 4 | b | 1970-02-01 00:00:00+01 | f | 4 | b | 3 | 1 | 8 | 3
 5 | b | 1970-03-01 00:00:00+01 | f | 5 | b | 3 | 1 | 8 | 3
(8 rows)

Explanation:

dist_by_i: dense_rank() over (order by i) is like a row_number per distinct values. Can be used for
the number of distinct values of i (count(DISTINCT i) wold not work). Just use the maximum value.

prev_t: lag(t) over () is a previous value of t over the whole window. mind that it is null for the first
row.

https://riptutorial.com/ 81

nth: nth_value(i, 6) over () is the value of sixth rows column i over the whole window

num_by_i: count(true) over (partition by i) is an amount of rows for each value of i

num_all: count(true) over () is an amount of rows over a whole window

ntile: ntile(3) over() splits the whole window to 3 (as much as possible) equal in quantity parts

column values vs dense_rank vs rank vs row_number

here you can find the functions.

With the table wf_example created in previous example, run:

select i
 , dense_rank() over (order by i)
 , row_number() over ()
 , rank() over (order by i)
from wf_example

The result is:

 i | dense_rank | row_number | rank
---+------------+------------+------
 1 | 1 | 1 | 1
 1 | 1 | 2 | 1
 1 | 1 | 3 | 1
 2 | 2 | 4 | 4
 2 | 2 | 5 | 4
 3 | 3 | 6 | 6
 4 | 4 | 7 | 7
 5 | 5 | 8 | 8

dense_rank orders VALUES of i by appearance in window. i=1 appears, so first row has
dense_rank, next and third i value does not change, so it is dense_rank shows 1 - FIRST
value not changed. fourth row i=2, it is second value of i met, so dense_rank shows 2, andso
for the next row. Then it meets value i=3 at 6th row, so it show 3. Same for the rest two
values of i. So the last value of dense_rank is the number of distinct values of i.

•

row_number orders ROWS as they are listed.•

rank Not to confuse with dense_rank this function orders ROW NUMBER of i values. So it
starts same with three ones, but has next value 4, which means i=2 (new value) was met at
row 4. Same i=3 was met at row 6. Etc..

•

Read Window Functions online: https://riptutorial.com/postgresql/topic/7421/window-functions

https://riptutorial.com/ 82

https://www.postgresql.org/docs/current/static/functions-window.html
https://riptutorial.com/postgresql/topic/7421/window-functions

Credits

S.
No

Chapters Contributors

1
Getting started with
postgresql

a_horse_with_no_name, Alison S, AndrewCichocki, Ben, Ben H
, bignose, Community, Dakota Wagner, DeadEye, Demircan
Celebi, Dmitri Goldring, e4c5, , jasonszhao, Kirk Roybal, Marek
Skiba, Mokadillion, Patrick, user_0

2
Accessing Data
Programmatically

AstraSerg, brichins, greg, Laurenz Albe

3 Aggregate Functions Alison S, joseph, Kirill Sokolov, Patrick

4 Backup and Restore ankidaemon, Ben H, Daniel Lyons, e4c5, Laurel, mnoronha

5
Backup script for a
production DB

bilelovitch

6 COALESCE Mokadillion

7
Comments in
postgresql

Ben, KIRAN KUMAR MATAM

8
Common Table
Expressions (WITH)

Daniel Lyons, Jakub Fedyczak, Kevin Sylvestre

9
Connect to
PostgreSQL from
Java

Laurenz Albe

10 Data Types Ben H, user_0

11
Dates, Timestamps,
and Intervals

KIM, Nuri Tasdemir, Patrick, Tom Gerken

12 Event Triggers Ben H, Tajinder, Udlei Nati

13

Export PostgreSQL
database table
header and data to
CSV file

Vao Tsun, wOwhOw

14
EXTENSION dblink
and postgres_fdw

Riya Bansal, YCF_L

Find String Length / 15 Mohamed Navas

https://riptutorial.com/ 83

https://riptutorial.com/contributor/330315/a-horse-with-no-name
https://riptutorial.com/contributor/1807668/alison-s
https://riptutorial.com/contributor/6506283/andrewcichocki
https://riptutorial.com/contributor/6754957/ben
https://riptutorial.com/contributor/7204614/ben-h
https://riptutorial.com/contributor/70157/bignose
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/6494551/dakota-wagner
https://riptutorial.com/contributor/4719679/deadeye
https://riptutorial.com/contributor/1778395/demircan-celebi
https://riptutorial.com/contributor/1778395/demircan-celebi
https://riptutorial.com/contributor/2061590/dmitri-goldring
https://riptutorial.com/contributor/267540/e4c5
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/389099/-----
https://riptutorial.com/contributor/2486953/jasonszhao
https://riptutorial.com/contributor/681084/kirk-roybal
https://riptutorial.com/contributor/6729812/marek-skiba
https://riptutorial.com/contributor/6729812/marek-skiba
https://riptutorial.com/contributor/4432541/mokadillion
https://riptutorial.com/contributor/3304426/patrick
https://riptutorial.com/contributor/3182456/user-0
https://riptutorial.com/contributor/2733113/astraserg
https://riptutorial.com/contributor/957950/brichins
https://riptutorial.com/contributor/1222135/greg
https://riptutorial.com/contributor/6464308/laurenz-albe
https://riptutorial.com/contributor/1807668/alison-s
https://riptutorial.com/contributor/1810962/joseph
https://riptutorial.com/contributor/6625678/kirill-sokolov
https://riptutorial.com/contributor/3304426/patrick
https://riptutorial.com/contributor/5850195/ankidaemon
https://riptutorial.com/contributor/7204614/ben-h
https://riptutorial.com/contributor/812818/daniel-lyons
https://riptutorial.com/contributor/267540/e4c5
https://riptutorial.com/contributor/6083675/laurel
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/3426010/bilelovitch
https://riptutorial.com/contributor/4432541/mokadillion
https://riptutorial.com/contributor/6754957/ben
https://riptutorial.com/contributor/1940824/kiran-kumar-matam
https://riptutorial.com/contributor/812818/daniel-lyons
https://riptutorial.com/contributor/3443194/jakub-fedyczak
https://riptutorial.com/contributor/259900/kevin-sylvestre
https://riptutorial.com/contributor/6464308/laurenz-albe
https://riptutorial.com/contributor/7204614/ben-h
https://riptutorial.com/contributor/3182456/user-0
https://riptutorial.com/contributor/206698/kim
https://riptutorial.com/contributor/1519458/nuri-tasdemir
https://riptutorial.com/contributor/3304426/patrick
https://riptutorial.com/contributor/2495063/tom-gerken
https://riptutorial.com/contributor/7204614/ben-h
https://riptutorial.com/contributor/2598316/tajinder
https://riptutorial.com/contributor/3583600/udlei-nati
https://riptutorial.com/contributor/5315974/vao-tsun
https://riptutorial.com/contributor/5860233/wowhow
https://riptutorial.com/contributor/6721338/riya-bansal
https://riptutorial.com/contributor/5558072/ycf-l
https://riptutorial.com/contributor/1621638/mohamed-navas

Character Length

16 Inheritance evuez

17 INSERT
chalitha geekiyanage, e4c5, gpdude_, KIM, lamorach, leeor,
Nathaniel Waisbrot, Patrick, Vao Tsun

18 JSON Support
Clodoaldo Neto, commonSenseCode, jgm, KIRAN KUMAR
MATAM, mnoronha, Peter Krauss

19
Postgres
cryptographic
functions

Ben H, skj123

20
Postgres Tip and
Tricks

Ben H, skj123, user_0, YCF_L

21
PostgreSQL High
Availability

gpdude_, Patrick

22
Programming with
PL/pgSQL

AndrewCichocki, Ben H, Goerman, Laurenz Albe, Vao Tsun

23 Recursive queries Ben H

24 Role Management
Ben, Ben H, bilelovitch, Blackus, Daniel Lyons, e4c5, greg, KIM,
Laurenz Albe, mnoronha, Reboot

25 SELECT YCF_L

26 Table Creation e4c5, Jefferson, KIM, leeor, Patrick

27
Triggers and Trigger
Functions

chalitha geekiyanage, mnoronha, Udlei Nati

28 UPDATE frlan, leeor

29 Window Functions mnoronha, Vao Tsun

https://riptutorial.com/ 84

https://riptutorial.com/contributor/653378/evuez
https://riptutorial.com/contributor/4172500/chalitha-geekiyanage
https://riptutorial.com/contributor/267540/e4c5
https://riptutorial.com/contributor/4851021/gpdude-
https://riptutorial.com/contributor/206698/kim
https://riptutorial.com/contributor/2924543/lamorach
https://riptutorial.com/contributor/3166303/leeor
https://riptutorial.com/contributor/1220269/nathaniel-waisbrot
https://riptutorial.com/contributor/3304426/patrick
https://riptutorial.com/contributor/5315974/vao-tsun
https://riptutorial.com/contributor/131874/clodoaldo-neto
https://riptutorial.com/contributor/4031815/commonsensecode
https://riptutorial.com/contributor/1596371/jgm
https://riptutorial.com/contributor/1940824/kiran-kumar-matam
https://riptutorial.com/contributor/1940824/kiran-kumar-matam
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/287948/peter-krauss
https://riptutorial.com/contributor/7204614/ben-h
https://riptutorial.com/contributor/6038797/skj123
https://riptutorial.com/contributor/7204614/ben-h
https://riptutorial.com/contributor/6038797/skj123
https://riptutorial.com/contributor/3182456/user-0
https://riptutorial.com/contributor/5558072/ycf-l
https://riptutorial.com/contributor/4851021/gpdude-
https://riptutorial.com/contributor/3304426/patrick
https://riptutorial.com/contributor/6506283/andrewcichocki
https://riptutorial.com/contributor/7204614/ben-h
https://riptutorial.com/contributor/4564845/goerman
https://riptutorial.com/contributor/6464308/laurenz-albe
https://riptutorial.com/contributor/5315974/vao-tsun
https://riptutorial.com/contributor/7204614/ben-h
https://riptutorial.com/contributor/6754957/ben
https://riptutorial.com/contributor/7204614/ben-h
https://riptutorial.com/contributor/3426010/bilelovitch
https://riptutorial.com/contributor/1919388/blackus
https://riptutorial.com/contributor/812818/daniel-lyons
https://riptutorial.com/contributor/267540/e4c5
https://riptutorial.com/contributor/1222135/greg
https://riptutorial.com/contributor/206698/kim
https://riptutorial.com/contributor/6464308/laurenz-albe
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/2680864/reboot
https://riptutorial.com/contributor/5558072/ycf-l
https://riptutorial.com/contributor/267540/e4c5
https://riptutorial.com/contributor/5666004/jefferson
https://riptutorial.com/contributor/206698/kim
https://riptutorial.com/contributor/3166303/leeor
https://riptutorial.com/contributor/3304426/patrick
https://riptutorial.com/contributor/4172500/chalitha-geekiyanage
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/3583600/udlei-nati
https://riptutorial.com/contributor/2915834/frlan
https://riptutorial.com/contributor/3166303/leeor
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/5315974/vao-tsun

	About
	Chapter 1: Getting started with postgresql
	Remarks
	Versions
	Examples
	Installation on GNU+Linux

	Red Hat family
	Debian family
	How to install PostgreSQL via MacPorts on OSX
	Postgres.app for Mac OSX
	Installing PostgreSQL on Windows
	Install postgresql with brew on Mac
	Install PostgreSQL from Source on Linux

	Chapter 2: Accessing Data Programmatically
	Examples
	Accessing Postgresql from .NET using the Npgsql provider
	Accessing PostgreSQL with the C-API

	Compilation and linking
	Sample program
	Accessing PostgreSQL from python using psycopg2
	Accessing PostgreSQL from PHP using Pomm2

	Chapter 3: Aggregate Functions
	Examples
	Simple statistics: min(), max(), avg()
	string_agg(expression, delimiter)
	regr_slope(Y, X) : slope of the least-squares-fit linear equation determined by the (X, Y) pairs

	Chapter 4: Backup and Restore
	Remarks
	Backing up the filesystem instead of using pg_dumpall and pg_dump
	Examples
	Backing up one database
	Restoring backups
	Backing up the whole cluster
	Using Copy to import

	To Copy Data from a CSV file to a table
	To Copy data from pipe separated file to table
	To ignore header line while importing file
	Using Copy to export

	To Copy table to standard o/p
	To Copy table to file
	To Copy the output of SQL statement to file
	To Copy into a compressed file
	Using psql to export data

	Chapter 5: Backup script for a production DB
	Syntax
	Parameters
	Remarks
	Examples
	saveProdDb.sh

	Chapter 6: COALESCE
	Introduction
	Examples
	Single non null argument
	Multiple non null arguments
	All null arguments

	Chapter 7: Comments in postgresql
	Introduction
	Syntax
	Remarks
	Examples
	COMMENT on Table
	Remove Comment

	Chapter 8: Common Table Expressions (WITH)
	Examples
	Common Table Expressions in SELECT Queries
	Traversing tree using WITH RECURSIVE

	Chapter 9: Connect to PostgreSQL from Java
	Introduction
	Remarks
	Examples
	Connecting with java.sql.DriverManager
	Connecting with java.sql.DriverManager and Properties
	Connecting with javax.sql.DataSource using a connection pool

	Chapter 10: Data Types
	Introduction
	Examples
	Numeric Types
	Date/ Time Types
	Geometric Types
	Network Adress Types
	Character Types
	Arrays

	Declaring an Array
	Creating an Array
	Accessing an Array
	Getting information about an array
	Array functions

	Chapter 11: Dates, Timestamps, and Intervals
	Examples
	Cast a timestamp or interval to a string
	SELECT the last day of month
	Count the number of records per week

	Chapter 12: Event Triggers
	Introduction
	Remarks
	Examples
	Logging DDL Command Start Events

	Chapter 13: Export PostgreSQL database table header and data to CSV file
	Introduction
	Examples
	Export PostgreSQL table to csv with header for some column(s)
	Full table backup to csv with header
	copy from query

	Chapter 14: EXTENSION dblink and postgres_fdw
	Syntax
	Examples
	Extention dblink
	Extention FDW
	Foreign Data Wrapper

	Chapter 15: Find String Length / Character Length
	Introduction
	Examples
	Example to get length of a character varying field

	Chapter 16: Inheritance
	Remarks
	Examples
	Creating children tables

	users
	simple_users
	users_with_password
	Altering tables

	Adding columns
	simple_users

	Dropping columns
	users
	simple_users

	Chapter 17: INSERT
	Examples
	Basic INSERT
	Inserting multiple rows
	Insert from select
	Insert data using COPY
	INSERT data and RETURING values
	SELECT data into file.
	UPSERT - INSERT ... ON CONFLICT DO UPDATE...

	Chapter 18: JSON Support
	Introduction
	Examples
	Creating a pure JSON table
	Querying complex JSON documents

	Performance of @> compared to -> and ->>
	Using JSONb operators

	Creating a DB and a Table
	Populating the DB
	-> operator returns values out of JSON columns
	-> vs ->>
	Return NESTED objects
	Filtering
	Nested filtering
	A real world example
	JSON operators + PostgreSQL aggregate functions
	Chapter 19: Postgres cryptographic functions
	Introduction
	Examples
	digest

	Chapter 20: Postgres Tip and Tricks
	Examples
	DATEADD alternative in Postgres
	Comma seperated values of a column
	Delete duplicate records from postgres table
	Update query with join between two tables alternative since Postresql does not support join in update query.
	Difference between two date timestamps month wise and year wise
	Query to Copy/Move/Transafer table data from one database to other database table with same schema

	Chapter 21: PostgreSQL High Availability
	Examples
	Replication in PostgreSQL

	Chapter 22: Programming with PL/pgSQL
	Remarks
	Examples
	Basic PL/pgSQL Function
	PL/pgSQL Syntax
	RETURNS Block
	custom exceptions

	Chapter 23: Recursive queries
	Introduction
	Examples
	Sum of Integers

	Chapter 24: Role Management
	Syntax
	Examples
	Create a user with a password
	Create Role and matching database
	Grant and Revoke Privileges.
	Alter default search_path of user
	Grant access privileges on objects created in the future.
	Create Read Only User

	Chapter 25: SELECT
	Examples
	SELECT using WHERE

	Chapter 26: Table Creation
	Examples
	Table creation with Primary Key
	Show table definition
	Create table from select
	Create unlogged table
	Create a table that references other table.

	Chapter 27: Triggers and Trigger Functions
	Introduction
	Remarks
	Examples
	Basic PL/pgSQL Trigger Function
	Type of triggers

	Trigger can be specified to fire:
	Trigger that is marked:
	Preparing to execute examples
	Single insert trigger
	Step 1: create your function
	Step 2: create your trigger
	Step 3: test it

	Trigger for multiple purpose
	Step 1: create your function
	Step 2: create your trigger
	Step 3: test it

	Chapter 28: UPDATE
	Examples
	Update all rows in a table
	Update all rows meeting a condition
	Updating multiple columns in table
	Updating a table based on joining another table

	Chapter 29: Window Functions
	Examples
	generic example
	column values vs dense_rank vs rank vs row_number

	Credits

