
postscript

#postscript

Table of Contents

About 1

Chapter 1: Getting started with postscript 2

Remarks 2

Examples 2

Installation or Setup 2

Freely-available PostScript interpreters 2

General Description of PostScript 3

Online References 3

FAQs 4

Books 4

Local namespaces for functions 4

Hello World example 5

Curriculum 5

Chapter 2: Error Handling 7

Syntax 7

Remarks 7

Examples 7

Is there a currentpoint? 7

Sequence of events when an error is signaled 8

Signalling (throwing) an error 8

Catching an error 8

Re-throwing errors 9

Chapter 3: Path Construction 10

Examples 10

Drawing (describing) a polygon 10

Iterating through a path 10

Graph Paper 11

Credits 12

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: postscript

It is an unofficial and free postscript ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official postscript.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/postscript
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with postscript

Remarks

PostScript is a reverse-polish stack-based, dynamically-typed, dynamic-namespacing, scripting
language with built-in primitives for generating rendered images from vector descriptions.
PostScript employs the same "Adobe Image Model" as the PDF file format.

PostScript is used as an output format by many programs since it is designed to be easily
machine-generated.

Like LISP, PostScript is homoiconic and code and data share the same representation.
Procedures can take procedures as data and yield procedures as results, lending itself to
techniques from concatenative-programming as well.

Examples

Installation or Setup

The authentic Adobe PostScript interpreters are available in high-end printers, the Display
PostScript (DPS) product, and the Acrobat Distiller product. As authors of the standard, these
products are considered "the standard implementation" for the purpose of describing differences
among PostScript implementations.

The Standard interface to the interpreter defined in the PLRM is the program-stream which may be
either text or binary depending upon the details of the underlying channel or OS/controller. Acrobat
Distiller has a GUI front-end to select the input postscript program and render its output as a pdf.
Distiller also has some limited support for using the output text stream for reporting errors and
other program output. GSView provides a similar GUI front-end for a similar workflow using
Ghostscript as the interpreter.

Ghostscript and Xpost both work in a command-line mode. The postscript program file to run can
be mentioned on the command-line (gs program.ps or xpost program.ps) which will open a graphics
window to display the graphical output. Options may be used to render the graphics somewhere
else like a disk file or suppress the graphics entirely and use postscript just as a text scripting
language.

The various interpreters each have their own installation and setup instructions and it would be
wasteful (and prone to falling out-of-date) to reproduce them here.

Freely-available PostScript interpreters

Ghostscript is available for all major platforms and Linux distributions, in source or binary
form, under the GNU license or under other license arrangements with the authors, Artifex
software. Ghostscript implements the full PostScript 3 standard.

•

https://riptutorial.com/ 2

http://ghostscript.com/
http://ghostscript.com/Artifex_Software_Inc.html
http://ghostscript.com/Artifex_Software_Inc.html

Xpost is available in source form for all major platforms, under the BSD-3-clause license. It
implements the Level-1 standard with some Level-2 extensions and some DPS extensions.

•

General Description of PostScript

PostScript is a Turing-complete general programming language, designed and developed by
Adobe Systems. Many of the ideas which blossomed in PostScript had been cultivated in projects
for Xerox and Evans & Sutherland.

Its main real-world application historically is as a page description language, or in its single-page
EPS form a vector-graphics image-description language. It is dynamically-typed, dynamically-
scoped, and stack-based which leads to a mostly Reverse Polish syntax.

There are three major releases of PostScript.

PostScript Level 1 — this was released to the market in 1984 as the resident operating
system of the Apple LaserWriter laser printer, inaugurating the Desktop Publishing Era.

1.

PostScript Level 2 — released in 1991, this contained several important improvements to
Level 1, including support for image decompression, in-RIP separation, auto-growing
dictionaries, garbage collection, Named Resources, binary encodings of the PostScript
program stream itself.

2.

PostScript 3 — the latest and perhaps most widely adopted version was released in 1997. It
too contains several import improvements over Level 2 such as Smooth Shading. The term
“level” has been dropped.

3.

Though PostScript is typically used as a page description language -- and therefore is
implemented inside many printers to generate raster images -- it can also be used for other
purposes. As a quick reverse-polish calculator with more memorable operator names than bc. As
an output format generated by another program (usually in some other language).

Though PostScript file are typically 7-bit-clean ASCII, there exist several kinds of binary encoding
described in the level 2 standard. And being programmable, a program may implement its own
arbitrarily-complex encoding scheme for itself. There is an International Obfuscated Postscript
Competition, somewhat less active than the C one.

Online References

Index Pages of Adobe Documentation:
https://www.adobe.com/products/postscript/resources.html
http://www.adobe.com/devnet/postscript.html
http://www.adobe.com/devnet/font.html

•

PostScript Language Reference Manual, 3ed - The PostScript 3 standard. (7.41MB pdf)
(Supplement, Errata)

•

PostScript Language Reference Manual, 2ed - The PostScript Level 2 standard. (includes
Display PostScript documentation.) (3.29MB pdf)

•

https://riptutorial.com/ 3

https://github.com/luser-dr00g/xpost
https://www.adobe.com/products/postscript/resources.html
http://www.adobe.com/devnet/postscript.html
http://www.adobe.com/devnet/font.html
https://www.adobe.com/products/postscript/pdfs/PLRM.pdf
http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/postscript/pdfs/PS3010and3011.Supplement.pdf
http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/postscript/pdfs/PSerrata.txt
http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/postscript/pdfs/psrefman.pdf

Postscript Tutorial and Cookbook - The blue book. (847KB pdf)•

Postscript Language Program Design - The green book. (911KB pdf)•

Thinking in Postscript - By the author of the green book and the blue-book's tutorial. (826KB
pdf)

•

PostScript Language Document Structuring Conventions Specification 3.0 (521KB pdf)•

Adobe Type 1 Font Format (444KB pdf)•

Encapsulated PostScript File Format Specification 3.0 (185KB pdf)•

PostScript Printer Description File Format Specification 4.3 (186KB pdf) (Update)•

Troubleshoot PostScript errors - Debugging tips. (158KB html)•

Acumen Journal - Archive of Postscript and PDF programming articles. (html directory of
zipped pdfs)

•

Mathematical Illustrations: A Manual of Geometry and Postscript - by Bill Casselman. (html
directory of pdf chapters and code downloads)

•

Thread with many sorting algorithm implementations (usenet archive)•

Don Lancaster's Guru Pages•

Anastigmatix's Direct use of the Postscript Language•

Open-source step-wise Debugger for Postscript Code•

FAQs

Usenet FAQ (circa 1995)•

Wikibooks PostScript FAQ•

SO PostScript questions sorted by most-frequently viewed•

Books

Postscript Language Reference Manual, 1ed, 1985. Recommended for its small size, and
easy operator index from the summary pages (missing from later editions).

•

Real World Postscript. Chapters by various authors on various topics, including excellent
coverage of halftoning.

•

Local namespaces for functions

Postscript is a dynamic-namespacing or LISP 1 language. But it provides the tools to implement

https://riptutorial.com/ 4

http://www-cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF
http://www-cdf.fnal.gov/offline/PostScript/GREENBK.PDF
http://wwwcdf.pd.infn.it/localdoc/tips.pdf
http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/postscript/pdfs/5001.DSC_Spec.pdf
http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/postscript/pdfs/5001.DSC_Spec.pdf
http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/font/pdfs/T1_SPEC.pdf
http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/postscript/pdfs/5002.EPSF_Spec.pdf
http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/postscript/pdfs/5002.EPSF_Spec.pdf
http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/postscript/pdfs/5003.PPD_Spec_v4.3.pdf
http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/postscript/pdfs/5645.PPD_Update.pdf
http://helpx.adobe.com/x-productkb/global/troubleshoot-postscript-errors.html
http://www.acumentraining.com/acumenjournal.html
http://www.math.ubc.ca/~cass/graphics/manual/
https://groups.google.com/d/topic/comp.lang.postscript/p9gr6p-q3Gk/discussion
http://www.tinaja.com/
http://www.anastigmatix.net/postscript/direct.html
https://github.com/luser-dr00g/debug.ps
ftp://ftp.cs.brown.edu/pub/comp.lang.postscript/FAQ.txt
http://en.wikibooks.org/wiki/PostScript_FAQ
http://stackoverflow.com/questions/tagged/postscript?sort=frequent

local variables in procedures and other effects needed to implement algorithms.

For local names in a procedure, make a new dictionary at the start and pop it at the end.

/myproc {
 10 dict begin
 %... useful code ...
 end
 } def

You can also combine this nicely with a shortcut to define the function's arguments as variables.

% a b c myproc result
/myproc {
 10 dict begin
 {/c /b /a} {exch def} forall
 %... useful code yielding result ...
 end
 } def

If you need to update a *"global" * variable while the local dictionary is on top, use store instead of
def.

Hello World example

Select a font and fontsize, select location, show string.

%!PS
/Palatino-Roman 20 selectfont
300 400 moveto
(Hello, World!) show
showpage

Notes and common pitfalls:

Failing to set a font (resulting in either no text or a default (ugly) font)•

Using findfont and setfont but forgetting to scalefont in between. Using the level-2
selectfont avoids this problem and is more concise.

•

Failing to set a point with moveto, or setting the point outside of the page. For US letter paper
8.5x11 is 792x612 ps points. So it's easy to remember roughly 800x600 (but a smidge
shorter and wider). So 300 400 is roughly the center of the page (little high, little left).

•

Forgetting to call showpage. If you preview a ps program with gs and it does not end in
showpage, gs may display an image for you. And yet, the file will mysteriously fail to produce
any output when you try to convert to pdf or something else.

•

Curriculum

Read the documentation in this order to easily learn postscript:

https://riptutorial.com/ 5

Paul Bourke's excellent tutorial: http://paulbourke.net/dataformats/postscript/1.

Blue Book, first half, the original official tutorial:
http://www-cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF

2.

Green Book, how to use postscript effectively:
http://www-cdf.fnal.gov/offline/PostScript/GREENBK.PDF

3.

Thinking in Postscript, 'nuff said: http://wwwcdf.pd.infn.it/localdoc/tips.pdf4.

Mathematical Illustrations. Start small, build big. The math behind Bezier Curves. The
Hodgman-Sutherland polygon clipping algorithm. Affine transformations and non-linear
transformations of the path. 3D drawing and Gouraud shading. From the preface:

5.

Which [of the many tools to help one produce mathematical graphics] to choose
apparently involves a trade-off between simplicity and quality, in which most go for
what they perceive to be simplicity. The truth is that the trade-off is unnecessary —
once one has made a small initial investment of effort, by far the best thing to do in
most situations is to write a program in the graphics programming language PostScript.
There is practically no limit to the quality of the output of a PostScript program, and as
one acquires experience the difficulties of using the language decrease rapidly. The
apparent complexity involved in producing simple figures by programming in
PostScript, as I hope this book will demonstrate, is largely an illusion. And the amount
of work involved in producing more complicated figures will usually be neither more nor
less than what is necessary.

Read Getting started with postscript online: https://riptutorial.com/postscript/topic/5616/getting-
started-with-postscript

https://riptutorial.com/ 6

http://paulbourke.net/dataformats/postscript/
http://www-cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF
http://www-cdf.fnal.gov/offline/PostScript/GREENBK.PDF
http://wwwcdf.pd.infn.it/localdoc/tips.pdf
http://www.math.ubc.ca/~cass/graphics/manual/
https://riptutorial.com/postscript/topic/5616/getting-started-with-postscript
https://riptutorial.com/postscript/topic/5616/getting-started-with-postscript

Chapter 2: Error Handling

Syntax

{ -code- } stopped { -error- }{ -no-error- } ifelse % error catching frame•

$error /errorname get % stackunderflow typecheck rangecheck etc
$error /newerror get % bool. put false to deactivate error
$error /ostack get % copy of operand stack at point of error

•

errordict /stackoverflow { -additional-code- /stackoverflow signalerror} put
% execute additional code on types of errors (here, the /stackoverflow error).

•

Remarks

There are two levels to error handling in postscript. This dichotomy applies both to the way the
interpreter handles errors as well as the means available to the user (programmer) to control the
handling.

The lower level is an unusual control structure stop ... stopped. stopped behaves much like a
looping construct in that it establishes a mark on the execution stack that can be jumped-to if the
exit operator (for a loop) or stop operator (for a stopped-context) is called. Unlike a looping
construct, stopped yields a Boolean on the stack indicating whether stop was called (otherwise the
procedure passed to stopped is known to have executed to completion.

When a PostScript error occurs, like stackunderflow maybe, the interpreter looks up the error's
name in errordict which lives in systemdict. If the user has not replaced the procedure in errordict
, then the default error procedure will take snapshots of all the stack and place them in $error,
another dictionary in systemdict. Finally, the default procedure will call stop which pops the user
program from the exec stack and executes the interpreter's error printing procedure called
handleerror in errordict.

So using all of this knowledge, you can catch errors by wrapping a section of code in { ... }
stopped. You can rethrow an error by calling stop. You can determine what type of error occurred
with $error /errorname get.

You can also change the default behavior for a specific type of error by replacing the procedure
with that name in errordict. Or change the format of printing the error report by replacing
/handleerror in errordict.

Examples

Is there a currentpoint?

Yield true on the stack if currentpoint executes successfully, or false if it signals a /nocurrentpoint

https://riptutorial.com/ 7

error.

{currentpoint pop pop} stopped not % bool

Sequence of events when an error is signaled

The sequence for an error is usually:

error is triggered by looking up the error name in errordict and executing this procedure.1.
the errordict procedure calls signalerror, passing it the error name.2.
signalerror takes snapshots of the stacks, saving the snapshots in $error, and then calls
stop.

3.

stop pops the exec stack until the nearest enclosing stopped context established by the
stopped operator.

4.

if the program has not established its own stopped context to catch the error, it will be caught
by an outer-level stopped { errordict /handleerror get exec } if which was called by the
startup code to bracket the whole user program.

5.

handleerror uses the information in $error to print an error report.6.

Signalling (throwing) an error

Most of the tools are standardized with the exception of the name of the operator to throw an error.
In Adobe interpreters, it is called .error. In ghostscript, it is called signalerror. So with this line you
can use signalerror in postscript code for Adobe interpreters or ghostscript or xpost.

/.error where {pop /signalerror /.error load def} if

commandname errorname signalerror —
Take snapshots of the stack in $error, then stop.

Eg.

% my proc only accepts integer
/proc {
 dup type /integertype ne {
 /proc cvx /typecheck signalerror
 } if
 % ... rest of proc ...
} def

Catching an error

Since the final action of the default error handler is to call stop, you can catch errors from
operators by enclosing code in a { ... } stopped construct.

{
 0 array
 1 get
} stopped {

https://riptutorial.com/ 8

 $error /errorname get =
} if

will print "rangecheck", the error signaled by get when the index is outside the acceptable range for
that array.

Re-throwing errors

This snippet implements a procedure which behaves like a postscript looping operator. If the user
proc calls exit, it catches the invalidexit error to fix the dictstack for the end at the end. Any other
error except invalidexit is re-thrown by calling stop.

% array n proc . -
% Like `forall` but delivers length=n subsequences produced by getinterval
/fortuple { 4 dict begin
 0 {offset proc n arr} {exch def} forall
 /arr load length n idiv
 {
 {
 /arr load offset n getinterval
 [/proc load currentdict end /begin cvx] cvx exec
 /offset offset n add def
 } stopped {
 $error /errorname get /invalidexit eq
 { 1 dict begin exit }{ stop } ifelse
 } if
 } repeat
end
} def

%[0 1 10 {} for] 3 {} fortuple pstack clear ()=

Read Error Handling online: https://riptutorial.com/postscript/topic/6199/error-handling

https://riptutorial.com/ 9

https://riptutorial.com/postscript/topic/6199/error-handling

Chapter 3: Path Construction

Examples

Drawing (describing) a polygon

This example attempts to mimic the behavior of the built-in path construction operators like arc.

If there is a current point, poly first draws a line to (x,y)+(r,0), otherwise it starts by moving to that
point.

Instead of gsave ... grestore (which has the undesirable effect of discarding the very changes to the
current path which we want), it saves a copy of the current transformation matrix (CTM) as it exists
when the function starts.

Then it does lineto to each succeeding point, which by scaling and rotating the matrix is always at
(0,1). Finally, it calls closepath and then restores the saved matrix as the CTM.

% x y n radius poly -
% construct a path of a closed n-polygon
/poly {
 matrix currentmatrix 5 1 roll % matrix x y n radius
 4 2 roll translate % matrix n radius
 dup scale % matrix n
 360 1 index div exch % matrix 360/n n
 0 1 {lineto currentpoint moveto}stopped{moveto}if % start or re-start subpath
 { % matrix 360/n
 dup rotate % matrix 360/n
 0 1 lineto % matrix 360/n
 } repeat % matrix 360/n
 pop % matrix
 closepath % matrix
 setmatrix %
} def

Iterating through a path

This snippet dumps the contents of the current path to stdout. It uses the ghostscript procedure
=only which may not be available on all interpreters. An equivalent procedure on Adobe
interpreters is called =print.

pathforall is a looping operator which takes 4 procedure bodies as arguments which are called for
the specific types of path elements, the result of moveto, lineto, curveto, closepath, and all other
path-contruction operators which boil-down to these elements.

{ exch =only () print =only () print /moveto =}
{ exch =only () print =only () print /lineto =}
{ 6 -2 roll exch =only () print =only () print
 4 2 roll exch =only () print =only () print
 exch =only () print =only () print /curveto =}

https://riptutorial.com/ 10

{ /closepath = }
pathforall

Graph Paper

/in {72 mul} def
/delta {1 in 10 div} def
/X 612 def
/Y 792 def
0 delta Y {
 0 1 index X exch % i 0 X i
 moveto exch % 0 i
 lineto
 stroke
} for
0 delta X {
 0 1 index Y % i 0 i Y
 moveto % i 0
 lineto
 stroke
} for
showpage

Read Path Construction online: https://riptutorial.com/postscript/topic/6679/path-construction

https://riptutorial.com/ 11

https://riptutorial.com/postscript/topic/6679/path-construction

Credits

S.
No

Chapters Contributors

1
Getting started with
postscript

Community, Kurt Pfeifle, luser droog

2 Error Handling luser droog

3 Path Construction luser droog

https://riptutorial.com/ 12

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/359307/kurt-pfeifle
https://riptutorial.com/contributor/733077/luser-droog
https://riptutorial.com/contributor/733077/luser-droog
https://riptutorial.com/contributor/733077/luser-droog

	About
	Chapter 1: Getting started with postscript
	Remarks
	Examples
	Installation or Setup

	Freely-available PostScript interpreters
	General Description of PostScript
	Online References
	FAQs
	Books
	Local namespaces for functions
	Hello World example
	Curriculum

	Chapter 2: Error Handling
	Syntax
	Remarks
	Examples
	Is there a currentpoint?
	Sequence of events when an error is signaled
	Signalling (throwing) an error
	Catching an error
	Re-throwing errors

	Chapter 3: Path Construction
	Examples
	Drawing (describing) a polygon
	Iterating through a path
	Graph Paper

	Credits

