
PowerShell

#powershell

Table of Contents

About 1

Chapter 1: Getting started with PowerShell 2

Remarks 2

Versions 2

Examples 2

Installation or Setup 2

Windows 2

Other Platforms 3

Allow scripts stored on your machine to run un-signed 3

Aliases & Similar Functions 4

The Pipeline - Using Output from a PowerShell cmdlet 5

Commenting 6

Calling .Net Library Methods 6

Creating Objects 7

Chapter 2: ActiveDirectory module 9

Introduction 9

Remarks 9

Examples 9

Module 9

Users 9

Groups 10

Computers 10

Objects 10

Chapter 3: Aliases 12

Remarks 12

Examples 13

Get-Alias 13

Set-Alias 13

Chapter 4: Amazon Web Services (AWS) Rekognition 15

Introduction 15

Examples 15

Detect Image Labels with AWS Rekognition 15

Compare Facial Similarity with AWS Rekognition 16

Chapter 5: Amazon Web Services (AWS) Simple Storage Service (S3) 17

Introduction 17

Parameters 17

Examples 17

Create a new S3 Bucket 17

Upload a Local File Into an S3 Bucket 17

Delete a S3 Bucket 18

Chapter 6: Anonymize IP (v4 and v6) in text file with Powershell 19

Introduction 19

Examples 19

Anonymize IP address in text file 19

Chapter 7: Archive Module 21

Introduction 21

Syntax 21

Parameters 21

Remarks 21

Examples 22

Compress-Archive with wildcard 22

Update existing ZIP with Compress-Archive 22

Extract a Zip with Expand-Archive 22

Chapter 8: Automatic Variables 23

Introduction 23

Syntax 23

Examples 23

$pid 23

Boolean values 23

$null 23

$OFS 24

$_ / $PSItem 24

$? 25

$error 25

Chapter 9: Automatic Variables - part 2 26

Introduction 26

Remarks 26

Examples 26

$PSVersionTable 26

Chapter 10: Basic Set Operations 27

Introduction 27

Syntax 27

Examples 27

Filtering: Where-Object / where / ? 27

Ordering: Sort-Object / sort 28

Grouping: Group-Object / group 29

Projecting: Select-Object / select 29

Chapter 11: Built-in variables 32

Introduction 32

Examples 32

$PSScriptRoot 32

$Args 32

$PSItem 32

$? 33

$error 33

Chapter 12: Calculated Properties 34

Introduction 34

Examples 34

Display file size in KB - Calculated Properties 34

Chapter 13: Cmdlet Naming 35

Introduction 35

Examples 35

Verbs 35

Nouns 35

Chapter 14: Comment-based help 36

Introduction 36

Examples 36

Function comment-based help 36

Script comment-based help 38

Chapter 15: Common parameters 41

Remarks 41

Examples 41

ErrorAction parameter 41

-ErrorAction Continue 41

-ErrorAction Ignore 41

-ErrorAction Inquire 42

-ErrorAction SilentlyContinue 42

-ErrorAction Stop 42

-ErrorAction Suspend 43

Chapter 16: Communicating with RESTful APIs 44

Introduction 44

Examples 44

Use Slack.com Incoming Webhooks 44

Post Message to hipChat 44

Using REST with PowerShell Objects to Get and Put individual data 44

Using REST with PowerShell Objects to GET and POST many items 45

Using REST with PowerShell to Delete items 45

Chapter 17: Conditional logic 46

Syntax 46

Remarks 46

Examples 46

if, else and else if 46

Negation 47

If conditional shorthand 47

Chapter 18: Creating DSC Class-Based Resources 49

Introduction 49

Remarks 49

Examples 49

Create a DSC Resource Skeleton Class 49

DSC Resource Skeleton with Key Property 49

DSC Resource with Mandatory Property 50

DSC Resource with Required Methods 50

Chapter 19: CSV parsing 52

Examples 52

Basic usage of Import-Csv 52

Import from CSV and cast properties to correct type 52

Chapter 20: Desired State Configuration 54

Examples 54

Simple example - Enabling WindowsFeature 54

Starting DSC (mof) on remote machine 54

Importing psd1 (data file) into local variable 54

List available DSC Resources 55

Importing resources for use in DSC 55

Chapter 21: Embedding Managed Code (C# | VB) 56

Introduction 56

Parameters 56

Remarks 56

Removing Added types 56

CSharp and .NET syntax 56

Examples 57

C# Example 57

VB.NET Example 57

Chapter 22: Enforcing script prerequisites 59

Syntax 59

Remarks 59

Examples 59

Enforce minimum version of powershell host 59

Enforce running the script as admininstrator 59

Chapter 23: Environment Variables 61

Examples 61

Windows environment variables are visible as a PS drive called Env: 61

Instant call of Environment Variables with $env: 61

Chapter 24: Error handling 62

Introduction 62

Examples 62

Error Types 62

Chapter 25: GUI in Powershell 64

Examples 64

WPF GUI for Get-Service cmdlet 64

Chapter 26: Handling Secrets and Credentials 66

Introduction 66

Examples 66

Prompting for Credentials 66

Accessing the Plaintext Password 66

Working with Stored Credentials 66

Encrypter 67

The code that uses the stored credentials: 67

Storing the credentials in Encrypted form and Passing it as parameter when Required 67

Chapter 27: HashTables 69

Introduction 69

Remarks 69

Examples 69

Creating a Hash Table 69

Access a hash table value by key. 69

Looping over a hash table 70

Add a key value pair to an existing hash table 70

Enumerating through keys and Key-Value Pairs 70

Remove a key value pair from an existing hash table 71

Chapter 28: How to download latest artifact from Artifactory using Powershell script (v2.0 72

Introduction 72

Examples 72

Powershell Script for downloading the latest artifcat 72

Chapter 29: Infrastructure Automation 73

Introduction 73

Examples 73

Simple script for black-box integration test of console applications 73

Chapter 30: Introduction to Pester 74

Remarks 74

Examples 74

Getting Started with Pester 74

Chapter 31: Introduction to Psake 76

Syntax 76

Remarks 76

Examples 76

Basic outline 76

FormatTaskName example 76

Run Task conditionally 77

ContinueOnError 77

Chapter 32: ISE module 78

Introduction 78

Examples 78

Test Scripts 78

Chapter 33: Loops 79

Introduction 79

Syntax 79

Remarks 79

Foreach 79

Performance 80

Examples 80

For 80

Foreach 80

While 81

ForEach-Object 81

Basic usage 82

Advanced usage 82

Do 83

ForEach() Method 83

Continue 84

Break 84

Chapter 34: Modules, Scripts and Functions 86

Introduction 86

Examples 86

Function 86

Demo 86

Script 87

Demo 87

Module 88

Demo 88

Advanced Functions 88

Chapter 35: MongoDB 92

Remarks 92

Examples 92

MongoDB with C# driver 1.7 using PowerShell 92

I have 3 sets of array in Powershell 92

Chapter 36: Naming Conventions 94

Examples 94

Functions 94

Chapter 37: Operators 95

Introduction 95

Examples 95

Arithmetic Operators 95

Logical Operators 95

Assignment Operators 95

Comparison Operators 96

Redirection Operators 96

Mixing operand types : the type of the left operand dictates the behavior. 97

String Manipulation Operators 98

Chapter 38: Package management 99

Introduction 99

Examples 99

Find a PowerShell module using a pattern 99

Create the default PowerShell Module Reposity 99

Find a module by name 99

Install a Module by name 99

Uninstall a module my name and version 99

Update a module by name 99

Chapter 39: Parameter sets 101

Introduction 101

Examples 101

Simple parameter sets 101

Parameterset to enforce the use of a parmeter when a other is selected. 101

Parameter set to limit the combination of parmeters 102

Chapter 40: PowerShell "Streams"; Debug, Verbose, Warning, Error, Output and Information 103

Remarks 103

Examples 103

Write-Output 103

Write Preferences 103

Chapter 41: PowerShell Background Jobs 105

Introduction 105

Remarks 105

Examples 105

Basic job creation 105

Basic job management 106

Chapter 42: PowerShell Classes 108

Introduction 108

Examples 108

Methods and properties 108

Listing available constructors for a class 108

Constructor overloading 110

Get All Members of an Instance 110

Basic Class Template 110

Inheritance from Parent Class to Child Class 111

Chapter 43: PowerShell Dynamic Parameters 112

Examples 112

"Simple" dynamic parameter 112

Chapter 44: PowerShell Functions 114

Introduction 114

Examples 114

Simple Function with No Parameters 114

Basic Parameters 114

Mandatory Parameters 115

Advanced Function 116

Parameter Validation 117

ValidateSet 117

ValidateRange 118

ValidatePattern 118

ValidateLength 118

ValidateCount 118

ValidateScript 118

Chapter 45: Powershell Modules 120

Introduction 120

Examples 120

Create a Module Manifest 120

Simple Module Example 120

Exporting a Variable from a Module 121

Structuring PowerShell Modules 121

Location of Modules 122

Module Member Visibility 122

Chapter 46: Powershell profiles 123

Remarks 123

Examples 123

Create an basic profile 123

Chapter 47: Powershell Remoting 125

Remarks 125

Examples 125

Enabling PowerShell Remoting 125

Only for non-domain environments 125

Enabling Basic Authentication 125

Connecting to a Remote Server via PowerShell 126

Run commands on a Remote Computer 126

Remoting serialization warning 127

Argument Usage 128

A best practise for automatically cleaning-up PSSessions 128

Chapter 48: powershell sql queries 130

Introduction 130

Parameters 130

Remarks 130

Examples 132

SQLExample 132

SQLQuery 132

Chapter 49: PowerShell Workflows 134

Introduction 134

Remarks 134

Examples 134

Simple Workflow Example 134

Workflow with Input Parameters 134

Run Workflow as a Background Job 135

Add a Parallel Block to a Workflow 135

Chapter 50: PowerShell.exe Command-Line 136

Parameters 136

Examples 137

Executing a command 137

-Command <string> 137

-Command { scriptblock } 137

-Command - (standard input) 137

Executing a script file 138

Basic script 138

Using parameters and arguments 138

Chapter 51: PSScriptAnalyzer - PowerShell Script Analyzer 139

Introduction 139

Syntax 139

Examples 139

Analyzing scripts with the built-in preset rulesets 139

Analyzing scripts against every built-in rule 140

List all built-in rules 140

Chapter 52: Regular Expressions 141

Syntax 141

Examples 141

Single match 141

Using the -Match operator 141

Using Select-String 142

Using [RegEx]::Match() 143

Replace 143

Using -Replace operator 143

Using [RegEx]::Replace() method 144

Replace text with dynamic value using a MatchEvalutor 144

Escape special characters 145

Multiple matches 145

Using Select-String 146

Using [RegEx]::Matches() 146

Chapter 53: Return behavior in PowerShell 148

Introduction 148

Remarks 148

Examples 148

Early exit 148

Gotcha! Return in the pipeline 148

Gotcha! Ignoring unwanted output 149

Return with a value 149

How to work with functions returns 150

Chapter 54: Running Executables 152

Examples 152

Console Applications 152

GUI Applications 152

Console Streams 152

Exit Codes 153

Chapter 55: Scheduled tasks module 154

Introduction 154

Examples 154

Run PowerShell Script in Scheduled Task 154

Chapter 56: Security and Cryptography 155

Examples 155

Calculating a string's hash codes via .Net Cryptography 155

Chapter 57: Sending Email 156

Introduction 156

Parameters 156

Examples 157

Simple Send-MailMessage 157

Send-MailMessage with predefined parameters 157

SMTPClient - Mail with .txt file in body message 157

Chapter 58: SharePoint Module 159

Examples 159

Loading SharePoint Snap-In 159

Iterating over all lists of a site collection 159

Get all installed features on a site collection 159

Chapter 59: Signing Scripts 161

Remarks 161

Execution policies 161

Examples 162

Signing a script 162

Changing the execution policy using Set-ExecutionPolicy 162

Bypassing execution policy for a single script 162

Other Execution Policies: 163

Get the current execution policy 163

Getting the signature from a signed script 164

Creating a self-signed code signing certificate for testing 164

Chapter 60: Special Operators 165

Examples 165

Array Expression Operator 165

Call Operation 165

Dot sourcing operator 165

Chapter 61: Splatting 166

Introduction 166

Remarks 166

Examples 166

Splatting parameters 166

Passing a Switch parameter using Splatting 167

Piping and Splatting 167

Splatting From Top Level Function to a Series of Inner Function 167

Chapter 62: Strings 169

Syntax 169

Remarks 169

Examples 169

Creating a basic string 169

String 169

Literal string 169

Format string 170

Multiline string 170

Here-string 170

Here-string 170

Literal here-string 171

Concatenating strings 171

Using variables in a string 171

Using the + operator 171

Using subexpressions 171

Special characters 172

Chapter 63: Switch statement 173

Introduction 173

Remarks 173

Examples 173

Simple Switch 173

Switch Statement with Regex Parameter 173

Simple Switch With Break 174

Switch Statement with Wildcard Parameter 174

Switch Statement with Exact Parameter 175

Switch Statement with CaseSensitive Parameter 175

Switch Statement with File Parameter 176

Simple Switch with Default Condition 176

Switch Statement with Expressions 177

Chapter 64: TCP Communication with PowerShell 178

Examples 178

TCP listener 178

TCP Sender 178

Chapter 65: URL Encode/Decode 180

Remarks 180

Examples 180

Quick Start: Encoding 180

Quick Start: Decoding 180

Encode Query String with `[uri]::EscapeDataString()` 181

Encode Query String with `[System.Web.HttpUtility]::UrlEncode()` 182

Decode URL with `[uri]::UnescapeDataString()` 182

Decode URL with `[System.Web.HttpUtility]::UrlDecode()` 184

Chapter 66: Using existing static classes 187

Introduction 187

Examples 187

Creating new GUID instantly 187

Using the .Net Math Class 187

Adding types 188

Chapter 67: Using ShouldProcess 189

Syntax 189

Parameters 189

Remarks 189

Examples 189

Adding -WhatIf and -Confirm support to your cmdlet 189

Using ShouldProcess() with one argument 189

Full Usage Example 190

Chapter 68: Using the Help System 192

Remarks 192

Examples 192

Updating the Help System 192

Using Get-Help 192

Viewing online version of a help topic 193

Viewing Examples 193

Viewing the Full Help Page 193

Viewing help for a specific parameter 193

Chapter 69: Using the progress bar 194

Introduction 194

Examples 194

Simple use of progress bar 194

Usage of inner progress bar 195

Chapter 70: Variables in PowerShell 197

Introduction 197

Examples 197

Simple variable 197

Removing a variable 197

Scope 197

Reading a CmdLet Output 198

List Assignment of Multiple Variables 199

Arrays 199

Adding to an arry 200

Combining arrays together 200

Chapter 71: WMI and CIM 201

Remarks 201

CIM vs WMI 201

Additional resources 201

Examples 202

Querying objects 202

List all objects for CIM-class 202

Using a filter 202

Using a WQL-query: 203

Classes and namespaces 204

List available classes 204

Search for a class 204

List classes in a different namespace 205

List available namespaces 206

Chapter 72: Working with Objects 207

Examples 207

Updating Objects 207

Adding properties 207

Removing properties 207

Creating a new object 208

Option 1: New-Object 208

Option 2: Select-Object 208

Option 3: pscustomobject type accelerator (PSv3+ required) 209

Examining an object 209

Creating Instances of Generic Classes 210

Chapter 73: Working with the PowerShell pipeline 212

Introduction 212

Syntax 212

Remarks 212

Examples 212

Writing Functions with Advanced Lifecycle 212

Basic Pipeline Support in Functions 213

Working concept of pipeline 214

Chapter 74: Working with XML Files 215

Examples 215

Accessing an XML File 215

Creating an XML Document using XmlWriter() 217

Adding snippits of XML to current XMLDocument 218

Sample Data 218

XML Document 218

New Data 219

Templates 220

Adding the new data 220

Profit 222

Improvements 222

Credits 223

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: powershell

It is an unofficial and free PowerShell ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official PowerShell.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/powershell
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with PowerShell

Remarks

Windows PowerShell is a shell and scripting component of the Windows Management
Framework, an automation/configuration management framework from Microsoft built on the .NET
Framework. PowerShell is installed by default on all supported versions of Windows client and
server operating systems since Windows 7 / Windows Server 2008 R2. Powershell can be
updated at any time by downloading a later version of the Windows Management Framework
(WMF). The "Alpha" version of PowerShell 6 is cross-platform (Windows, Linux, and OS X) and
needs to be downloaded and installed from this release page.

Additional resources:

MSDN Documentation: https://msdn.microsoft.com/en-us/powershell/scripting/powershell-
scripting

•

TechNet: https://technet.microsoft.com/en-us/scriptcenter/dd742419.aspx
About pages○

•

PowerShell Gallery: https://www.powershellgallery.com/•
MSDN Blog: https://blogs.msdn.microsoft.com/powershell/•
Github: https://github.com/powershell•
Community Site: http://powershell.com/cs/•

Versions

Version Included with Windows Notes Release Date

1.0 XP / Server 2008 2006-11-01

2.0 7 / Server 2008 R2 2009-11-01

3.0 8 / Server 2012 2012-08-01

4.0 8.1 / Server 2012 R2 2013-11-01

5.0 10 / Server 2016 Tech Preview 2015-12-16

5.1 10 Anniversary edition / Server 2016 2017-01-27

Examples

Installation or Setup

Windows

https://riptutorial.com/ 2

https://msdn.microsoft.com/en-us/powershell/
https://github.com/PowerShell/PowerShell/releases
https://msdn.microsoft.com/en-us/powershell/scripting/powershell-scripting
https://msdn.microsoft.com/en-us/powershell/scripting/powershell-scripting
https://technet.microsoft.com/en-us/scriptcenter/dd742419.aspx
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.core/about/about_aliases
https://www.powershellgallery.com/
https://blogs.msdn.microsoft.com/powershell/
https://github.com/powershell
http://powershell.com/cs/
https://support.microsoft.com/en-us/kb/928439
https://support.microsoft.com/en-us/kb/968930
https://www.microsoft.com/en-us/download/details.aspx?id=34595
https://www.microsoft.com/en-us/download/details.aspx?id=40855
https://www.microsoft.com/en-us/download/details.aspx?id=50395
https://www.microsoft.com/en-us/download/details.aspx?id=54616

PowerShell is included with the Windows Management Framework. Installation and Setup are not
required on modern versions of Windows.

Updates to PowerShell can be accomplished by installing a newer version of the Windows
Management Framework.

Other Platforms

"Beta" version of PowerShell 6 can be installed on other platforms. The installation packages are
available here.

For example, PowerShell 6, for Ubuntu 16.04, is published to package repositories for easy
installation (and updates).

To install run the following:

Import the public repository GPG keys
curl https://packages.microsoft.com/keys/microsoft.asc | sudo apt-key add -

Register the Microsoft Ubuntu repository
curl https://packages.microsoft.com/config/ubuntu/16.04/prod.list | sudo tee
/etc/apt/sources.list.d/microsoft.list

Update apt-get
sudo apt-get update

Install PowerShell
sudo apt-get install -y powershell

Start PowerShell
powershell

After registering the Microsoft repository once as superuser, from then on, you just need to use
sudo apt-get upgrade powershell to update it. Then just run powershell

Allow scripts stored on your machine to run un-signed

For security reasons, PowerShell is set up by default to only allow signed scripts to execute.
Executing the following command will allow you to run unsigned scripts (you must run PowerShell
as Administrator to do this).

Set-ExecutionPolicy RemoteSigned

Another way to run PowerShell scripts is to use Bypass as ExecutionPolicy:

powershell.exe -ExecutionPolicy Bypass -File "c:\MyScript.ps1"

Or from within your existing PowerShell console or ISE session by running:

 Set-ExecutionPolicy Bypass Process

https://riptutorial.com/ 3

https://github.com/PowerShell/PowerShell#get-powershell

A temporary workaround for execution policy can also be achieved by running the Powershell
executable and passing any valid policy as -ExecutionPolicy parameter. The policy is in effect only
during process' lifetime, so no administrative access to the registry is needed.

C:\>powershell -ExecutionPolicy RemoteSigned

There are multiple other policies available, and sites online often encourage you to use Set-
ExecutionPolicy Unrestricted. This policy stays in place until changed, and lowers the system
security stance. This is not advisable. Use of RemoteSigned is recommended because it allows
locally stored and written code, and requires remotely acquired code be signed with a certificate
from a trusted root.

Also, beware that the Execution Policy may be enforced by Group Policy, so that even if the policy
is changed to Unrestricted system-wide, Group Policy may revert that setting at its next
enforcement interval (typically 15 minutes). You can see the execution policy set at the various
scopes using Get-ExecutionPolicy -List

TechNet Documentation:
Set-ExecutionPolicy
about_Execution_Policies

Aliases & Similar Functions

In PowerShell, there are many ways to achieve the same result. This can be illustrated nicely with
the simple & familiar Hello World example:

Using Write-Host:

Write-Host "Hello World"

Using Write-Output:

Write-Output 'Hello world'

It's worth noting that although Write-Output & Write-Host both write to the screen there is a subtle
difference. Write-Host writes only to stdout (i.e. the console screen), whereas Write-Output writes to
both stdout AND to the output [success] stream allowing for redirection. Redirection (and streams
in general) allow for the output of one command to be directed as input to another including
assignment to a variable.

> $message = Write-Output "Hello World"
> $message
"Hello World"

These similar functions are not aliases, but can produce the same results if one wants to avoid
"polluting" the success stream.

Write-Output is aliased to Echo or Write

https://riptutorial.com/ 4

https://technet.microsoft.com/en-us/library/hh849812.aspx
https://technet.microsoft.com/en-us/library/hh847748.aspx
https://blogs.technet.microsoft.com/heyscriptingguy/2014/03/30/understanding-streams-redirection-and-write-host-in-powershell/

Echo 'Hello world'
Write 'Hello world'

Or, by simply typing 'Hello world'!

'Hello world'

All of which will result with the expected console output

Hello world

Another example of aliases in PowerShell is the common mapping of both older command prompt
commands and BASH commands to PowerShell cmdlets. All of the following produce a directory
listing of the current directory.

C:\Windows> dir
C:\Windows> ls
C:\Windows> Get-ChildItem

Finally, you can create your own alias with the Set-Alias cmdlet! As an example let's alisas Test-
NetConnection, which is essentially the PowerShell equivalent to the command prompt's ping
command, to "ping".

Set-Alias -Name ping -Value Test-NetConnection

Now you can use ping instead of Test-NetConnection! Be aware that if the alias is already in use,
you'll overwrite the association.

The Alias will be alive, till the session is active. Once you close the session and try to run the alias
which you have created in your last session, it will not work. To overcome this issue, you can
import all your aliases from an excel into your session once, before starting your work.

The Pipeline - Using Output from a PowerShell cmdlet

One of the first questions people have when they begin to use PowerShell for scripting is how to
manipulate the output from a cmdlet to perform another action.

The pipeline symbol | is used at the end of a cmdlet to take the data it exports and feed it to the
next cmdlet. A simple example is using Select-Object to only show the Name property of a file
shown from Get-ChildItem:

Get-ChildItem | Select-Object Name
#This may be shortened to:
gci | Select Name

More advanced usage of the pipeline allows us to pipe the output of a cmdlet into a foreach loop:

Get-ChildItem | ForEach-Object {

https://riptutorial.com/ 5

 Copy-Item -Path $_.FullName -destination C:\NewDirectory\
}

#This may be shortened to:
gci | % { Copy $_.FullName C:\NewDirectory\ }

Note that the example above uses the $_ automatic variable. $_ is the short alias of $PSItem
which is an automatic variable which contains the current item in the pipeline.

Commenting

To comment on power scripts by prepending the line using the # (hash) symbol

This is a comment in powershell
Get-ChildItem

You can also have multi-line comments using <# and #> at the beginning and end of the comment
respectively.

<#
This is a
multi-line
comment
#>
Get-ChildItem

Calling .Net Library Methods

Static .Net library methods can be called from PowerShell by encapsulating the full class name in
third bracket and then calling the method using ::

#calling Path.GetFileName()
C:\> [System.IO.Path]::GetFileName('C:\Windows\explorer.exe')
explorer.exe

Static methods can be called from the class itself, but calling non-static methods requires an
instance of the .Net class (an object).

For example, the AddHours method cannot be called from the System.DateTime class itself. It
requires an instance of the class :

C:\> [System.DateTime]::AddHours(15)
Method invocation failed because [System.DateTime] does not contain a method named 'AddHours'.
At line:1 char:1
+ [System.DateTime]::AddHours(15)
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : InvalidOperation: (:) [], RuntimeException
 + FullyQualifiedErrorId : MethodNotFound

In this case, we first create an object, for example :

https://riptutorial.com/ 6

http://www.riptutorial.com/powershell/example/17893/creating-objects

C:\> $Object = [System.DateTime]::Now

Then, we can use methods of that object, even methods which cannot be called directly from the
System.DateTime class, like the AddHours method :

C:\> $Object.AddHours(15)

Monday 12 September 2016 01:51:19

Creating Objects

The New-Object cmdlet is used to create an object.

Create a DateTime object and stores the object in variable "$var"
$var = New-Object System.DateTime

calling constructor with parameters
$sr = New-Object System.IO.StreamReader -ArgumentList "file path"

In many instances, a new object will be created in order to export data or pass it to another
commandlet. This can be done like so:

$newObject = New-Object -TypeName PSObject -Property @{
 ComputerName = "SERVER1"
 Role = "Interface"
 Environment = "Production"
}

There are many ways of creating an object. The following method is probably the shortest and
fastest way to create a PSCustomObject:

$newObject = [PSCustomObject]@{
 ComputerName = 'SERVER1'
 Role = 'Interface'
 Environment = 'Production'
}

In case you already have an object, but you only need one or two extra properties, you can simply
add that property by using Select-Object:

Get-ChildItem | Select-Object FullName, Name,
 @{Name='DateTime'; Expression={Get-Date}},
 @{Name='PropertieName'; Expression={'CustomValue'}}

All objects can be stored in variables or passed into the pipeline. You could also add these objects
to a collection and then show the results at the end.

Collections of objects work well with Export-CSV (and Import-CSV). Each line of the CSV is an
object, each column a property.

https://riptutorial.com/ 7

Format commands convert objects into text stream for display. Avoid using Format-* commands
until the final step of any data processing, to maintain the usability of the objects.

Read Getting started with PowerShell online: https://riptutorial.com/powershell/topic/822/getting-
started-with-powershell

https://riptutorial.com/ 8

https://riptutorial.com/powershell/topic/822/getting-started-with-powershell
https://riptutorial.com/powershell/topic/822/getting-started-with-powershell

Chapter 2: ActiveDirectory module

Introduction

This topic will introduce you to some of the basic cmdlets used within the Active Directory Module
for PowerShell, for manipulating Users, Groups, Computers and Objects.

Remarks

Please remember that PowerShell's Help System is one of the best resources you can possibly
utilize.

Get-Help Get-ADUser -Full
Get-Help Get-ADGroup -Full
Get-Help Get-ADComputer -Full
Get-Help Get-ADObject -Full

All of the help documentation will provide examples, syntax and parameter help.

Examples

Module

#Add the ActiveDirectory Module to current PowerShell Session
Import-Module ActiveDirectory

Users

Retrieve Active Directory User

Get-ADUser -Identity JohnSmith

Retrieve All Properties Associated with User

Get-ADUser -Identity JohnSmith -Properties *

Retrieve Selected Properties for User

Get-ADUser -Identity JohnSmith -Properties * | Select-Object -Property sAMAccountName, Name,
Mail

New AD User

New-ADUser -Name "MarySmith" -GivenName "Mary" -Surname "Smith" -DisplayName "MarySmith" -Path
"CN=Users,DC=Domain,DC=Local"

https://riptutorial.com/ 9

Groups

Retrieve Active Directory Group

Get-ADGroup -Identity "My-First-Group" #Ensure if group name has space quotes are used

Retrieve All Properties Associated with Group

Get-ADGroup -Identity "My-First-Group" -Properties *

Retrieve All Members of a Group

Get-ADGroupMember -Identity "My-First-Group" | Select-Object -Property sAMAccountName
Get-ADgroup "MY-First-Group" -Properties Members | Select -ExpandProperty Members

Add AD User to an AD Group

Add-ADGroupMember -Identity "My-First-Group" -Members "JohnSmith"

New AD Group

New-ADGroup -GroupScope Universal -Name "My-Second-Group"

Computers

Retrieve AD Computer

Get-ADComputer -Identity "JohnLaptop"

Retrieve All Properties Associated with Computer

Get-ADComputer -Identity "JohnLaptop" -Properties *

Retrieve Select Properties of Computer

Get-ADComputer -Identity "JohnLaptop" -Properties * | Select-Object -Property Name, Enabled

Objects

Retrieve an Active Directory Object

#Identity can be ObjectGUID, Distinguished Name or many more
Get-ADObject -Identity "ObjectGUID07898"

Move an Active Directory Object

https://riptutorial.com/ 10

Move-ADObject -Identity "CN=JohnSmith,OU=Users,DC=Domain,DC=Local" -TargetPath
"OU=SuperUser,DC=Domain,DC=Local"

Modify an Active Directory Object

Set-ADObject -Identity "CN=My-First-Group,OU=Groups,DC=Domain,DC=local" -Description "This is
My First Object Modification"

Read ActiveDirectory module online: https://riptutorial.com/powershell/topic/8213/activedirectory-
module

https://riptutorial.com/ 11

https://riptutorial.com/powershell/topic/8213/activedirectory-module
https://riptutorial.com/powershell/topic/8213/activedirectory-module

Chapter 3: Aliases

Remarks

Powershell naming system has quite strict rules of naming cmdlets (Verb-Noun template; see
[topic not yet created] for more information). But it is not really convenient to write Get-ChildItems
every time you want to list files in directory interactively.
Therefore Powershell enables using shortcuts - aliases - instead of cmdlet names.

You can write ls, dir or gci instead of Get-ChildItem and get the same result. Alias is equivalent to
its cmdlet.

Some of the common aliases are:

alias cmdlet

%, foreach For-EachObject

?, where Where-Object

cat, gc, type Get-Content

cd, chdir, sl Set-Location

cls, clear Clear-Host

cp, copy, cpi Copy-Item

dir/ls/gci Get-ChildItem

echo, write Write-Output

fl Format-List

ft Format-Table

fw Format-Wide

gc, pwd Get-Location

gm Get-Member

iex Invoke-Expression

ii Invoke-Item

mv, move Move-Item

rm, rmdir, del, erase, rd, ri Remove-Item

https://riptutorial.com/ 12

alias cmdlet

sleep Start-Sleep

start, saps Start-Process

In the table above, you can see how aliases enabled simulating commands known from other
environments (cmd, bash), hence increased discoverability.

Examples

Get-Alias

To list all aliases and their functions:

Get-Alias

To get all aliases for specific cmdlet:

PS C:\> get-alias -Definition Get-ChildItem

CommandType Name Version Source
----------- ---- ------- ------
Alias dir -> Get-ChildItem
Alias gci -> Get-ChildItem
Alias ls -> Get-ChildItem

To find aliases by matching:

PS C:\> get-alias -Name p*

CommandType Name Version Source
----------- ---- ------- ------
Alias popd -> Pop-Location
Alias proc -> Get-Process
Alias ps -> Get-Process
Alias pushd -> Push-Location
Alias pwd -> Get-Location

Set-Alias

This cmdlet allows you to create new alternate names for exiting cmdlets

PS C:\> Set-Alias -Name proc -Value Get-Process
PS C:\> proc

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id SI ProcessName
------- ------ ----- ----- ----- ------ -- -- -----------
 292 17 13052 20444 ...19 7.94 620 1 ApplicationFrameHost
....

https://riptutorial.com/ 13

Keep in mind that any alias you create will be persisted only in current session. When you start
new session you need to create your aliases again. Powershell Profiles (see [topic not yet
created]) are great for these purposes.

Read Aliases online: https://riptutorial.com/powershell/topic/5287/aliases

https://riptutorial.com/ 14

https://riptutorial.com/powershell/topic/5287/aliases

Chapter 4: Amazon Web Services (AWS)
Rekognition

Introduction

Amazon Rekognition is a service that makes it easy to add image analysis to your applications.
With Rekognition, you can detect objects, scenes, and faces in images. You can also search and
compare faces. Rekognition’s API enables you to quickly add sophisticated deep learning-based
visual search and image classification to your applications.

Examples

Detect Image Labels with AWS Rekognition

$BucketName = 'trevorrekognition'
$FileName = 'kitchen.jpg'

New-S3Bucket -BucketName $BucketName
Write-S3Object -BucketName $BucketName -File $FileName
$REKResult = Find-REKLabel -Region us-east-1 -ImageBucket $BucketName -ImageName $FileName

$REKResult.Labels

After running the script above, you should have results printed in your PowerShell host that look
something similar to the following:

RESULTS:

Confidence Name
---------- ----
86.87605 Indoors
86.87605 Interior Design
86.87605 Room
77.4853 Kitchen
77.25354 Housing
77.25354 Loft
66.77325 Appliance
66.77325 Oven

Using the AWS PowerShell module in conjunction with the AWS Rekognition service, you can
detect labels in an image, such as identifying objects in a room, attributes about photos you took,
and the corresponding confidence level that AWS Rekognition has for each of those attributes.

The Find-REKLabel command is the one that enables you to invoke a search for these attributes /
labels. While you can provide image content as a byte array during the API call, a better method is
to upload your image files to an AWS S3 Bucket, and then point the Rekognition service over to
the S3 Objects that you want to analyze. The example above shows how to accomplish this.

https://riptutorial.com/ 15

Compare Facial Similarity with AWS Rekognition

$BucketName = 'trevorrekognition'

Create a new AWS S3 Bucket
New-S3Bucket -BucketName $BucketName

Upload two different photos of myself to AWS S3 Bucket
Write-S3Object -BucketName $BucketName -File myphoto1.jpg
Write-S3Object -BucketName $BucketName -File myphoto2.jpg

Perform a facial comparison between the two photos with AWS Rekognition
$Comparison = @{
 SourceImageBucket = $BucketName
 TargetImageBucket = $BucketName
 SourceImageName = 'myphoto1.jpg'
 TargetImageName = 'myphoto2.jpg'
 Region = 'us-east-1'
}
$Result = Compare-REKFace @Comparison
$Result.FaceMatches

The example script provided above should give you results similar to the following:

Face Similarity
---- ----------
Amazon.Rekognition.Model.ComparedFace 90

The AWS Rekognition service enables you to perform a facial comparison between two photos.
Using this service is quite straightforward. Simply upload two image files, that you want to
compare, to an AWS S3 Bucket. Then, invoke the Compare-REKFace command, similar to the
example provided above. Of course, you'll need to provide your own, globally-unique S3 Bucket
name and file names.

Read Amazon Web Services (AWS) Rekognition online:
https://riptutorial.com/powershell/topic/9581/amazon-web-services--aws--rekognition

https://riptutorial.com/ 16

https://riptutorial.com/powershell/topic/9581/amazon-web-services--aws--rekognition

Chapter 5: Amazon Web Services (AWS)
Simple Storage Service (S3)

Introduction

This documentation section focuses on developing against the Amazon Web Services (AWS)
Simple Storage Service (S3). S3 is truly a simple service to interact with. You create S3 "buckets"
which can contain zero or more "objects." Once you create a bucket, you can upload files or
arbitrary data into the S3 bucket as an "object." You reference S3 objects, inside of a bucket, by
the object's "key" (name).

Parameters

Parameter Details

BucketName The name of the AWS S3 bucket that you are operating on.

CannedACLName
The name of the built-in (pre-defined) Access Control List (ACL) that will
be associated with the S3 bucket.

File
The name of a file on the local filesystem that will be uploaded to an
AWS S3 Bucket.

Examples

Create a new S3 Bucket

New-S3Bucket -BucketName trevor

The Simple Storage Service (S3) bucket name must be globally unique. This means that if
someone else has already used the bucket name that you want to use, then you must decide on a
new name.

Upload a Local File Into an S3 Bucket

Set-Content -Path myfile.txt -Value 'PowerShell Rocks'
Write-S3Object -BucketName powershell -File myfile.txt

Uploading files from your local filesystem into AWS S3 is easy, using the Write-S3Object
command. In its most basic form, you only need to specify the -BucketName parameter, to indicate
which S3 bucket you want to upload a file into, and the -File parameter, which indicates the
relative or absolute path to the local file that you want to upload into the S3 bucket.

https://riptutorial.com/ 17

Delete a S3 Bucket

Get-S3Object -BucketName powershell | Remove-S3Object -Force
Remove-S3Bucket -BucketName powershell -Force

In order to remove a S3 bucket, you must first remove all of the S3 objects that are stored inside of
the bucket, provided you have permission to do so. In the above example, we are retrieving a list
of all the objects inside a bucket, and then piping them into the Remove-S3Object command to delete
them. Once all of the objects have been removed, we can use the Remove-S3Bucket command to
delete the bucket.

Read Amazon Web Services (AWS) Simple Storage Service (S3) online:
https://riptutorial.com/powershell/topic/9579/amazon-web-services--aws--simple-storage-service--
s3-

https://riptutorial.com/ 18

https://riptutorial.com/powershell/topic/9579/amazon-web-services--aws--simple-storage-service--s3-
https://riptutorial.com/powershell/topic/9579/amazon-web-services--aws--simple-storage-service--s3-

Chapter 6: Anonymize IP (v4 and v6) in text
file with Powershell

Introduction

Manipulating Regex for IPv4 and IPv6 and replacing by fake IP address in a readed log file

Examples

Anonymize IP address in text file

Read a text file and replace the IPv4 and IPv6 by fake IP Address

Describe all variables
$SourceFile = "C:\sourcefile.txt"
$IPv4File = "C:\IPV4.txt"
$DestFile = "C:\ANONYM.txt"
$Regex_v4 = "(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})"
$Anonym_v4 = "XXX.XXX.XXX.XXX"
$Regex_v6 = "((([0-9A-Fa-f]{1,4}:){7}[0-9A-Fa-f]{1,4})|(([0-9A-Fa-f]{1,4}:){6}:[0-9A-Fa-
f]{1,4})|(([0-9A-Fa-f]{1,4}:){5}:([0-9A-Fa-f]{1,4}:)?[0-9A-Fa-f]{1,4})|(([0-9A-Fa-
f]{1,4}:){4}:([0-9A-Fa-f]{1,4}:){0,2}[0-9A-Fa-f]{1,4})|(([0-9A-Fa-f]{1,4}:){3}:([0-9A-Fa-
f]{1,4}:){0,3}[0-9A-Fa-f]{1,4})|(([0-9A-Fa-f]{1,4}:){2}:([0-9A-Fa-f]{1,4}:){0,4}[0-9A-Fa-
f]{1,4})|(([0-9A-Fa-f]{1,4}:){6}((b((25[0-5])|(1d{2})|(2[0-4]d)|(d{1,2}))b).){3}(b((25[0-
5])|(1d{2})|(2[0-4]d)|(d{1,2}))b))|(([0-9A-Fa-f]{1,4}:){0,5}:((b((25[0-5])|(1d{2})|(2[0-
4]d)|(d{1,2}))b).){3}(b((25[0-5])|(1d{2})|(2[0-4]d)|(d{1,2}))b))|(::([0-9A-Fa-
f]{1,4}:){0,5}((b((25[0-5])|(1d{2})|(2[0-4]d)|(d{1,2}))b).){3}(b((25[0-5])|(1d{2})|(2[0-
4]d)|(d{1,2}))b))|([0-9A-Fa-f]{1,4}::([0-9A-Fa-f]{1,4}:){0,5}[0-9A-Fa-f]{1,4})|(::([0-9A-Fa-
f]{1,4}:){0,6}[0-9A-Fa-f]{1,4})|(([0-9A-Fa-f]{1,4}:){1,7}:))"
$Anonym_v6 = "YYYY:YYYY:YYYY:YYYY:YYYY:YYYY:YYYY:YYYY"
$SuffixName = "-ANONYM."
$AnonymFile = ($Parts[0] + $SuffixName + $Parts[1])

Replace matching IPv4 from sourcefile and creating a temp file IPV4.txt
Get-Content $SourceFile | Foreach-Object {$_ -replace $Regex_v4, $Anonym_v4} | Set-Content
$IPv4File

Replace matching IPv6 from IPV4.txt and creating a temp file ANONYM.txt
Get-Content $IPv4File | Foreach-Object {$_ -replace $Regex_v6, $Anonym_v6} | Set-Content
$DestFile

Delete temp IPV4.txt file
Remove-Item $IPv4File

Rename ANONYM.txt in sourcefile-ANONYM.txt
$Parts = $SourceFile.Split(".")
If (Test-Path $AnonymFile)
{
 Remove-Item $AnonymFile
 Rename-Item $DestFile -NewName $AnonymFile
 }
 Else

https://riptutorial.com/ 19

 {
 Rename-Item $DestFile -NewName $AnonymFile
}

Read Anonymize IP (v4 and v6) in text file with Powershell online:
https://riptutorial.com/powershell/topic/9171/anonymize-ip--v4-and-v6--in-text-file-with-powershell

https://riptutorial.com/ 20

https://riptutorial.com/powershell/topic/9171/anonymize-ip--v4-and-v6--in-text-file-with-powershell

Chapter 7: Archive Module

Introduction

The Archive module Microsoft.PowerShell.Archive provides functions for storing files in ZIP
archives (Compress-Archive) and extracting them (Expand-Archive). This module is available in
PowerShell 5.0 and above.

In earlier versions of PowerShell the Community Extensions or .NET
System.IO.Compression.FileSystem could be used.

Syntax

Expand-Archive / Compress-Archive•
-Path

the path of the file(s) to compress (Compress-Archive) or the path of the archive to
extract the file(s) form (Expand-Archive)

○

there are several other Path related options, please see below.○

•

-DestinationPath (optional)
if you do not supply this path, the archive will be created in the current working
directory (Compress-Archive) or the contents of the archive will be extracted into the
current working directory (Expand-Archive)

○

•

Parameters

Parameter Details

CompressionLevel
(Compress-Archive only) Set compression level to either Fastest, Optimal
or NoCompression

Confirm Prompts for confirmation before running

Force Forces the command to run without confirmation

LiteralPath
Path that is used literaly, no wildcards supported, use , to specify
multiple paths

Path Path that can contain wildcards, use , to specify multiple paths

Update (Compress-Archive only) Update existing archive

WhatIf Simulate the command

Remarks

https://riptutorial.com/ 21

http://pscx.codeplex.com/
http://stackoverflow.com/a/20070550/559306

See MSDN Microsoft.PowerShell.Archive (5.1) for further reference

Examples

Compress-Archive with wildcard

Compress-Archive -Path C:\Documents* -CompressionLevel Optimal -DestinationPath
C:\Archives\Documents.zip

This command:

Compresses all files in C:\Documents•
Uses Optimal compression•
Save the resulting archive in C:\Archives\Documents.zip

-DestinationPath will add .zipif not present.○

-LiteralPath can be used if you require naming it without .zip.○

•

Update existing ZIP with Compress-Archive

Compress-Archive -Path C:\Documents* -Update -DestinationPath C:\Archives\Documents.zip

this will add or replace all files Documents.zip with the new ones from C:\Documents•

Extract a Zip with Expand-Archive

Expand-Archive -Path C:\Archives\Documents.zip -DestinationPath C:\Documents

this will extract all files from Documents.zip into the folder C:\Documents•

Read Archive Module online: https://riptutorial.com/powershell/topic/9896/archive-module

https://riptutorial.com/ 22

https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.archive/microsoft.powershell.archive
https://riptutorial.com/powershell/topic/9896/archive-module

Chapter 8: Automatic Variables

Introduction

Automatic Variables are created and maintained by Windows PowerShell. One has the ability to
call a variable just about any name in the book; The only exceptions to this are the variables that
are already being managed by PowerShell. These variables, without a doubt, will be the most
repetitious objects you use in PowerShell next to functions (like $? - indicates Success/ Failure
status of the last operation)

Syntax

$$ - Contains the last token in the last line received by the session.•
$^ - Contains the first token in the last line received by the session.•
$? - Contains the execution status of the last operation.•
$_ - Contains the current object in the pipeline•

Examples

$pid

Contains process ID of the current hosting process.

PS C:\> $pid
26080

Boolean values

$true and $false are two variables that represent logical TRUE and FALSE.

Note that you have to specify the dollar sign as the first character (which is different from C#).

$boolExpr = "abc".Length -eq 3 # length of "abc" is 3, hence $boolExpr will be True
if($boolExpr -eq $true){
 "Length is 3"
}
result will be "Length is 3"
$boolExpr -ne $true
#result will be False

Notice that when you use boolean true/false in your code you write $true or $false, but when
Powershell returns a boolean, it looks like True or False

$null

$null is used to represent absent or undefined value.

https://riptutorial.com/ 23

$null can be used as an empty placeholder for empty value in arrays:

PS C:\> $array = 1, "string", $null
PS C:\> $array.Count
3

When we use the same array as the source for ForEach-Object, it will process all three items
(including $null):

PS C:\> $array | ForEach-Object {"Hello"}
Hello
Hello
Hello

Be careful! This means that ForEach-Object WILL process even $null all by itself:

PS C:\> $null | ForEach-Object {"Hello"} # THIS WILL DO ONE ITERATION !!!
Hello

Which is very unexpected result if you compare it to classic foreach loop:

PS C:\> foreach($i in $null) {"Hello"} # THIS WILL DO NO ITERATION
PS C:\>

$OFS

Variable called Output Field Separator contains string value that is used when converting an array
to a string. By default $OFS = " " (a space), but it can be changed:

PS C:\> $array = 1,2,3
PS C:\> "$array" # default OFS will be used
1 2 3
PS C:\> $OFS = ",." # we change OFS to comma and dot
PS C:\> "$array"
1,.2,.3

$_ / $PSItem

Contains the object/item currently being processed by the pipeline.

PS C:\> 1..5 | % { Write-Host "The current item is $_" }
The current item is 1
The current item is 2
The current item is 3
The current item is 4
The current item is 5

$PSItem and $_ are identical and can be used interchangeably, but $_ is by far the most commonly
used.

https://riptutorial.com/ 24

$?

Contains status of the last operation. When there is no error, it is set to True:

PS C:\> Write-Host "Hello"
Hello
PS C:\> $?
True

If there is some error, it is set to False:

PS C:\> wrt-host
wrt-host : The term 'wrt-host' is not recognized as the name of a cmdlet, function, script
file, or operable program.
Check the spelling of the name, or if a path was included, verify that the path is correct and
try again.
At line:1 char:1
+ wrt-host
+ ~~~~~~~~
 + CategoryInfo : ObjectNotFound: (wrt-host:String) [], CommandNotFoundException
 + FullyQualifiedErrorId : CommandNotFoundException

PS C:\> $?
False

$error

Array of most recent error objects. The first one in the array is the most recent one:

PS C:\> throw "Error" # resulting output will be in red font
Error
At line:1 char:1
+ throw "Error"
+ ~~~~~~~~~~~~~
 + CategoryInfo : OperationStopped: (Error:String) [], RuntimeException
 + FullyQualifiedErrorId : Error

PS C:\> $error[0] # resulting output will be normal string (not red)
Error
At line:1 char:1
+ throw "Error"
+ ~~~~~~~~~~~~~
 + CategoryInfo : OperationStopped: (Error:String) [], RuntimeException
 + FullyQualifiedErrorId : Error

Usage hints: When using the $error variable in a format cmdlet (e.g. format-list), be aware to use
the -Force switch. Otherwise the format cmdlet is going to output the $errorcontents in above
shown manner.

Error entries can be removed via e.g. $Error.Remove($Error[0]).

Read Automatic Variables online: https://riptutorial.com/powershell/topic/5353/automatic-variables

https://riptutorial.com/ 25

https://riptutorial.com/powershell/topic/5353/automatic-variables

Chapter 9: Automatic Variables - part 2

Introduction

Topic "Automatic Variables" already has 7 examples listed and we can't add more. This topic will
have a continuation of Automatic Variables.

Automatic Variables are variables that store state information for PowerShell. These variables are
created and maintained by Windows PowerShell.

Remarks

Not sure if this is the best way to handle documenting Automatic Variables, yet this is better than
nothing. Please comment if you find a better way :)

Examples

$PSVersionTable

Contains a read-only hash table (Constant, AllScope) that displays details about the version of
PowerShell that is running in the current session.

$PSVersionTable #this call results in this:
Name Value
---- -----
PSVersion 5.0.10586.117
PSCompatibleVersions {1.0, 2.0, 3.0, 4.0...}
BuildVersion 10.0.10586.117
CLRVersion 4.0.30319.42000
WSManStackVersion 3.0
PSRemotingProtocolVersion 2.3
SerializationVersion 1.1.0.1

The fastest way to get a version of PowerShell running:

$PSVersionTable.PSVersion
result :
Major Minor Build Revision
----- ----- ----- --------
5 0 10586 117

Read Automatic Variables - part 2 online: https://riptutorial.com/powershell/topic/8639/automatic-
variables---part-2

https://riptutorial.com/ 26

https://riptutorial.com/powershell/topic/8639/automatic-variables---part-2
https://riptutorial.com/powershell/topic/8639/automatic-variables---part-2

Chapter 10: Basic Set Operations

Introduction

A set is a collection of items which can be anything. Whatever operator we need to work on these
sets are in short the set operators and the operation is also known as set operation. Basic set
operation includes Union, Intersection as well as addition, subtraction, etc.

Syntax

Group-Object•

Group-Object -Property <propertyName>•

Group-Object -Property <propertyName>, <propertyName2>•

Group-Object -Property <propertyName> -CaseSensitive•

Group-Object -Property <propertyName> -Culture <culture>•

Group-Object -Property <ScriptBlock>•

Sort-Object•

Sort-Object -Property <propertyName>•

Sort-Object -Property <ScriptBlock>•

Sort-Object -Property <propertyName>, <propertyName2>•

Sort-Object -Property <propertyObject> -CaseSensitive•

Sort-Object -Property <propertyObject> -Descending•

Sort-Object -Property <propertyObject> -Unique•

Sort-Object -Property <propertyObject> -Culture <culture>•

Examples

Filtering: Where-Object / where / ?

Filter an enumeration by using a conditional expression

Synonyms:

Where-Object

https://riptutorial.com/ 27

where
?

Example:

$names = @("Aaron", "Albert", "Alphonse","Bernie", "Charlie", "Danny", "Ernie", "Frank")

$names | Where-Object { $_ -like "A*" }
$names | where { $_ -like "A*" }
$names | ? { $_ -like "A*" }

Returns:

Aaron
Albert
Alphonse

Ordering: Sort-Object / sort

Sort an enumeration in either ascending or descending order

Synonyms:

Sort-Object
sort

Assuming:

$names = @("Aaron", "Aaron", "Bernie", "Charlie", "Danny")

Ascending sort is the default:

$names | Sort-Object
$names | sort

Aaron
Aaron
Bernie
Charlie
Danny

To request descending order:

$names | Sort-Object -Descending
$names | sort -Descending

Danny
Charlie
Bernie

https://riptutorial.com/ 28

Aaron
Aaron

You can sort using an expression.

$names | Sort-Object { $_.length }

Aaron
Aaron
Danny
Bernie
Charlie

Grouping: Group-Object / group

You can group an enumeration based on an expression.

Synonyms:

Group-Object
group

Examples:

$names = @("Aaron", "Albert", "Alphonse","Bernie", "Charlie", "Danny", "Ernie", "Frank")

$names | Group-Object -Property Length
$names | group -Property Length

Response:

Count Name Group

4 5 {Aaron, Danny, Ernie, Frank}

2 6 {Albert, Bernie}

1 8 {Alphonse}

1 7 {Charlie}

Projecting: Select-Object / select

Projecting an enumeration allows you to extract specific members of each object, to extract all the
details, or to compute values for each object

Synonyms:

https://riptutorial.com/ 29

Select-Object
select

Selecting a subset of the properties:

$dir = dir "C:\MyFolder"

$dir | Select-Object Name, FullName, Attributes
$dir | select Name, FullName, Attributes

Name FullName Attributes

Images C:\MyFolder\Images Directory

data.txt C:\MyFolder\data.txt Archive

source.c C:\MyFolder\source.c Archive

Selecting the first element, and show all its properties:

$d | select -first 1 *

PSPath

PSParentPath

PSChildName

PSDrive

PSProvider

PSIsContainer

BaseName

Mode

Name

Parent

Exists

Root

FullName

Extension

https://riptutorial.com/ 30

CreationTime

CreationTimeUtc

LastAccessTime

LastAccessTimeUtc

LastWriteTime

LastWriteTimeUtc

Attributes

Read Basic Set Operations online: https://riptutorial.com/powershell/topic/1557/basic-set-
operations

https://riptutorial.com/ 31

https://riptutorial.com/powershell/topic/1557/basic-set-operations
https://riptutorial.com/powershell/topic/1557/basic-set-operations

Chapter 11: Built-in variables

Introduction

PowerShell offers a variety of useful "automatic" (built-in) variables. Certain automatic variables
are only populated in special circumstances, while others are available globally.

Examples

$PSScriptRoot

Get-ChildItem -Path $PSScriptRoot

This example retrieves the list of child items (directories and files) from the folder where the script
file resides.

The $PSScriptRoot automatic variable is $null if used from outside a PowerShell code file. If used
inside a PowerShell script, it automatically defined the fully-qualified filesystem path to the
directory that contains the script file.

In Windows PowerShell 2.0, this variable is valid only in script modules (.psm1). Beginning in
Windows PowerShell 3.0, it is valid in all scripts.

$Args

$Args

Contains an array of the undeclared parameters and/or parameter values that are passed to a
function, script, or script block. When you create a function, you can declare the parameters by
using the param keyword or by adding a comma-separated list of parameters in parentheses after
the function name.

In an event action, the $Args variable contains objects that represent the event arguments of the
event that is being processed. This variable is populated only within the Action block of an event
registration command. The value of this variable can also be found in the SourceArgs property of
the PSEventArgs object (System.Management.Automation.PSEventArgs) that Get-Event returns.

$PSItem

Get-Process | ForEach-Object -Process {
 $PSItem.Name
}

Same as $_. Contains the current object in the pipeline object. You can use this variable in
commands that perform an action on every object or on selected objects in a pipeline.

https://riptutorial.com/ 32

$?

Get-Process -Name doesnotexist
Write-Host -Object "Was the last operation successful? $?"

Contains the execution status of the last operation. It contains TRUE if the last operation
succeeded and FALSE if it failed.

$error

Get-Process -Name doesnotexist
Write-Host -Object ('The last error that occurred was: {0}' -f $error[0].Exception.Message)

Contains an array of error objects that represent the most recent errors. The most recent error is
the first error object in the array ($Error[0]).

To prevent an error from being added to the $Error array, use the ErrorAction common parameter
with a value of Ignore. For more information, see about_CommonParameters (
http://go.microsoft.com/fwlink/?LinkID=113216).

Read Built-in variables online: https://riptutorial.com/powershell/topic/8732/built-in-variables

https://riptutorial.com/ 33

http://go.microsoft.com/fwlink/?LinkID=113216)
https://riptutorial.com/powershell/topic/8732/built-in-variables

Chapter 12: Calculated Properties

Introduction

Calculated Properties in Powershell are custom derived(Calculated) properties. It lets the user to
format a certain property in a way he want it to be. The calculation(expression) can be a quite
possibly anything.

Examples

Display file size in KB - Calculated Properties

Let's consider the below snippet,

Get-ChildItem -Path C:\MyFolder | Select-Object Name, CreationTime, Length

It simply output the folder content with the selected properties. Something like,

What if I want to display the file size in KB ? This is where calcualted properties comes handy.

Get-ChildItem C:\MyFolder | Select-Object Name, @{Name="Size_In_KB";Expression={$_.Length /
1Kb}}

Which produces,

The Expression is what holds the calculation for calculated property. And yes, it can be anything!

Read Calculated Properties online: https://riptutorial.com/powershell/topic/8913/calculated-
properties

https://riptutorial.com/ 34

https://i.stack.imgur.com/4IJGG.png
https://i.stack.imgur.com/KPeVM.png
https://riptutorial.com/powershell/topic/8913/calculated-properties
https://riptutorial.com/powershell/topic/8913/calculated-properties

Chapter 13: Cmdlet Naming

Introduction

CmdLets should be named using a <verb>-<noun> naming scheme in order to improve
discoverability.

Examples

Verbs

Verbs used to name CmdLets should be named from verbs from the list supplied be Get-Verb

Further details on how to use verbs can be found at Approved Verbs for Windows PowerShell

Nouns

Nouns should always be singular.

Be consistent with the nouns. For instance Find-Package needs a provider the noun is
PackageProvider not ProviderPackage.

Read Cmdlet Naming online: https://riptutorial.com/powershell/topic/8703/cmdlet-naming

https://riptutorial.com/ 35

https://msdn.microsoft.com/en-us/library/ms714428(v=vs.85).aspx
https://riptutorial.com/powershell/topic/8703/cmdlet-naming

Chapter 14: Comment-based help

Introduction

PowerShell features a documentation mechanism called comment-based help. It allows
documenting scripts and functions with code comments. Comment-based help is most of the time
written in comment blocks containing multiple help keywords. Help keywords start with dots and
identify help sections that will be displayed by running the Get-Help cmdlet.

Examples

Function comment-based help

<#

.SYNOPSIS
 Gets the content of an INI file.

.DESCRIPTION
 Gets the content of an INI file and returns it as a hashtable.

.INPUTS
 System.String

.OUTPUTS
 System.Collections.Hashtable

.PARAMETER FilePath
 Specifies the path to the input INI file.

.EXAMPLE
 C:\PS>$IniContent = Get-IniContent -FilePath file.ini
 C:\PS>$IniContent['Section1'].Key1
 Gets the content of file.ini and access Key1 from Section1.

.LINK
 Out-IniFile

#>
function Get-IniContent
{
 [CmdletBinding()]
 Param
 (
 [Parameter(Mandatory=$true,ValueFromPipeline=$true)]
 [ValidateNotNullOrEmpty()]
 [ValidateScript({(Test-Path $_) -and ((Get-Item $_).Extension -eq ".ini")})]
 [System.String]$FilePath
)

 # Initialize output hash table.
 $ini = @{}
 switch -regex -file $FilePath
 {

https://riptutorial.com/ 36

 "^\[(.+)\]$" # Section
 {
 $section = $matches[1]
 $ini[$section] = @{}
 $CommentCount = 0
 }
 "^(;.*)$" # Comment
 {
 if(!($section))
 {
 $section = "No-Section"
 $ini[$section] = @{}
 }
 $value = $matches[1]
 $CommentCount = $CommentCount + 1
 $name = "Comment" + $CommentCount
 $ini[$section][$name] = $value
 }
 "(.+?)\s*=\s*(.*)" # Key
 {
 if(!($section))
 {
 $section = "No-Section"
 $ini[$section] = @{}
 }
 $name,$value = $matches[1..2]
 $ini[$section][$name] = $value
 }
 }

 return $ini
}

The above function documentation can be displayed by running Get-Help -Name Get-IniContent -
Full:

https://riptutorial.com/ 37

Notice that the comment-based keywords starting with a . match the Get-Help result sections.

Script comment-based help

<#

.SYNOPSIS
 Reads a CSV file and filters it.

.DESCRIPTION

https://riptutorial.com/ 38

https://i.stack.imgur.com/orT77.png

 The ReadUsersCsv.ps1 script reads a CSV file and filters it on the 'UserName' column.

.PARAMETER Path
 Specifies the path of the CSV input file.

.INPUTS
 None. You cannot pipe objects to ReadUsersCsv.ps1.

.OUTPUTS
 None. ReadUsersCsv.ps1 does not generate any output.

.EXAMPLE
 C:\PS> .\ReadUsersCsv.ps1 -Path C:\Temp\Users.csv -UserName j.doe

#>
Param
(
 [Parameter(Mandatory=$true,ValueFromPipeline=$false)]
 [System.String]
 $Path,
 [Parameter(Mandatory=$true,ValueFromPipeline=$false)]
 [System.String]
 $UserName
)

Import-Csv -Path $Path | Where-Object -FilterScript {$_.UserName -eq $UserName}

The above script documentation can be displayed by running Get-Help -Name ReadUsersCsv.ps1 -
Full:

https://riptutorial.com/ 39

Read Comment-based help online: https://riptutorial.com/powershell/topic/9530/comment-based-
help

https://riptutorial.com/ 40

https://i.stack.imgur.com/u1pRK.png
https://riptutorial.com/powershell/topic/9530/comment-based-help
https://riptutorial.com/powershell/topic/9530/comment-based-help

Chapter 15: Common parameters

Remarks

Common parameters can be used with any cmdlet (that means as soon as you mark your function
as cmdlet [see CmdletBinding()], you get all of these parameters for free).

Here is the list of all common parameters (alias is in parenthesis after corresponding parameter):

-Debug (db)
-ErrorAction (ea)
-ErrorVariable (ev)
-InformationAction (ia) # introduced in v5
-InformationVariable (iv) # introduced in v5
-OutVariable (ov)
-OutBuffer (ob)
-PipelineVariable (pv)
-Verbose (vb)
-WarningAction (wa)
-WarningVariable (wv)
-WhatIf (wi)
-Confirm (cf)

Examples

ErrorAction parameter

Possible values are Continue | Ignore | Inquire | SilentlyContinue | Stop | Suspend.

Value of this parameter will determine how the cmdlet will handle non-terminating errors (those
generated from Write-Error for example; to learn more about error handling see [topic not yet
created]).

Default value (if this parameter is omitted) is Continue.

-ErrorAction Continue

This option will produce an error message and will continue with execution.

PS C:\> Write-Error "test" -ErrorAction Continue ; Write-Host "Second command"

https://riptutorial.com/ 41

https://i.stack.imgur.com/r9jzQ.png

-ErrorAction Ignore

This option will not produce any error message and will continue with execution. Also no errors will
be added to $Error automatic variable.
This option was introduced in v3.

PS C:\> Write-Error "test" -ErrorAction Ignore ; Write-Host "Second command"

-ErrorAction Inquire

This option will produce an error message and will prompt user to choose an action to take.

PS C:\> Write-Error "test" -ErrorAction Inquire ; Write-Host "Second command"

-ErrorAction SilentlyContinue

This option will not produce an error message and will continue with execution. All errors will be
added to $Error automatic variable.

PS C:\> Write-Error "test" -ErrorAction SilentlyContinue ; Write-Host "Second command"

-ErrorAction Stop

This option will produce an error message and will not continue with execution.

PS C:\> Write-Error "test" -ErrorAction Stop ; Write-Host "Second command"

https://riptutorial.com/ 42

https://i.stack.imgur.com/sLtQW.png
https://i.stack.imgur.com/ewOoW.png
https://i.stack.imgur.com/cfTx7.png

-ErrorAction Suspend

Only available in Powershell Workflows. When used, if the command runs into an error, the
workflow is suspended. This allows investigation of such error and gives a possibility to resume
the workflow. To learn more about Workflow system, see [topic not yet created].

Read Common parameters online: https://riptutorial.com/powershell/topic/5951/common-
parameters

https://riptutorial.com/ 43

https://i.stack.imgur.com/50WP7.png
https://riptutorial.com/powershell/topic/5951/common-parameters
https://riptutorial.com/powershell/topic/5951/common-parameters

Chapter 16: Communicating with RESTful
APIs

Introduction

REST stands for Representational State Transfer (sometimes spelled "ReST"). It relies on a
stateless, client-server, cacheable communications protocol and mostly HTTP protocol is used. It
is primarily used to build Web services that are lightweight, maintainable, and scalable. A service
based on REST is called a RESTful service and the APIs which are being used for it are RESTful
APIs. In PowerShell, Invoke-RestMethod is used to deal with them.

Examples

Use Slack.com Incoming Webhooks

Define your payload to send for possible more complex data

$Payload = @{ text="test string"; username="testuser" }

Use ConvertTo-Json cmdlet and Invoke-RestMethod to execute the call

Invoke-RestMethod -Uri "https://hooks.slack.com/services/yourwebhookstring" -Method Post -Body
(ConvertTo-Json $Payload)

Post Message to hipChat

$params = @{
 Uri = "https://your.hipchat.com/v2/room/934419/notification?auth_token=???"
 Method = "POST"
 Body = @{
 color = 'yellow'
 message = "This is a test message!"
 notify = $false
 message_format = "text"
 } | ConvertTo-Json
 ContentType = 'application/json'
}

Invoke-RestMethod @params

Using REST with PowerShell Objects to Get and Put individual data

GET your REST data and store in a PowerShell object:

$Post = Invoke-RestMethod -Uri "http://jsonplaceholder.typicode.com/posts/1"

https://riptutorial.com/ 44

Modify your data:

$Post.title = "New Title"

PUT the REST data back

$Json = $Post | ConvertTo-Json
Invoke-RestMethod -Method Put -Uri "http://jsonplaceholder.typicode.com/posts/1" -Body $Json -
ContentType 'application/json'

Using REST with PowerShell Objects to GET and POST many items

GET your REST data and store in a PowerShell object:

$Users = Invoke-RestMethod -Uri "http://jsonplaceholder.typicode.com/users"

Modify many items in your data:

$Users[0].name = "John Smith"
$Users[0].email = "John.Smith@example.com"
$Users[1].name = "Jane Smith"
$Users[1].email = "Jane.Smith@example.com"

POST all of the REST data back:

$Json = $Users | ConvertTo-Json
Invoke-RestMethod -Method Post -Uri "http://jsonplaceholder.typicode.com/users" -Body $Json -
ContentType 'application/json'

Using REST with PowerShell to Delete items

Identify the item that is to be deleted and delete it:

Invoke-RestMethod -Method Delete -Uri "http://jsonplaceholder.typicode.com/posts/1"

Read Communicating with RESTful APIs online:
https://riptutorial.com/powershell/topic/3869/communicating-with-restful-apis

https://riptutorial.com/ 45

https://riptutorial.com/powershell/topic/3869/communicating-with-restful-apis

Chapter 17: Conditional logic

Syntax

if(expression){}•
if(expression){}else{}•
if(expression){}elseif(expression){}•
if(expression){}elseif(expression){}else{}•

Remarks

See also Comparison Operators, which can be used in conditional expressions.

Examples

if, else and else if

Powershell supports standard conditional logic operators, much like many programming
languages. These allow certain functions or commands to be run under particular circumstances.

With an if the commands inside the brackets ({}) are only executed if the conditions inside the if(
()) are met

$test = "test"
if ($test -eq "test"){
 Write-Host "if condition met"
}

You can also do an else. Here the else commands are executed if the if conditions are not met:

$test = "test"
if ($test -eq "test2"){
 Write-Host "if condition met"
}
else{
 Write-Host "if condition not met"
}

or an elseif. An else if runs the commands if the if conditions are not met and the elseif
conditions are met:

$test = "test"
if ($test -eq "test2"){
 Write-Host "if condition met"
}
elseif ($test -eq "test"){
 Write-Host "ifelse condition met"
}

https://riptutorial.com/ 46

http://www.riptutorial.com/powershell/example/3451/comparison-operators

Note the above use -eq(equality) CmdLet and not = or == as many other languages do for equlaity.

Negation

You may want to negate a boolean value, i.e. enter an if statement when a condition is false
rather than true. This can be done by using the -Not CmdLet

$test = "test"
if (-Not $test -eq "test2"){
 Write-Host "if condition not met"
}

You can also use !:

$test = "test"
if (!($test -eq "test2")){
 Write-Host "if condition not met"
}

there is also the -ne (not equal) operator:

$test = "test"
if ($test -ne "test2"){
 Write-Host "variable test is not equal to 'test2'"
}

If conditional shorthand

If you want to use the shorthand you can make use of conditional logic with the following
shorthand. Only the string 'false' will evaluate to true (2.0).

#Done in Powershell 2.0
$boolean = $false;
$string = "false";
$emptyString = "";

If($boolean){
 # this does not run because $boolean is false
 Write-Host "Shorthand If conditions can be nice, just make sure they are always boolean."
}

If($string){
 # This does run because the string is non-zero length
 Write-Host "If the variable is not strictly null or Boolean false, it will evaluate to
true as it is an object or string with length greater than 0."
}

If($emptyString){
 # This does not run because the string is zero-length
 Write-Host "Checking empty strings can be useful as well."
}

If($null){
 # This does not run because the condition is null

https://riptutorial.com/ 47

 Write-Host "Checking Nulls will not print this statement."
}

Read Conditional logic online: https://riptutorial.com/powershell/topic/7208/conditional-logic

https://riptutorial.com/ 48

https://riptutorial.com/powershell/topic/7208/conditional-logic

Chapter 18: Creating DSC Class-Based
Resources

Introduction

Starting with PowerShell version 5.0, you can use PowerShell class definitions to create Desired
State Configuration (DSC) Resources.

To aid in building DSC Resource, there's a [DscResource()] attribute that's applied to the class
definition, and a [DscProperty()] resource to designate properties as configurable by the DSC
Resource user.

Remarks

A class-based DSC Resource must:

Be decorated with the [DscResource()] attribute•
Define a Test() method that returns [bool]•
Define a Get() method that returns its own object type (eg. [Ticket])•
Define a Set() method that returns [void]•
At least one Key DSC Property•

After creating a class-based PowerShell DSC Resource, it must be "exported" from a module,
using a module manifest (.psd1) file. Within the module manifest, the DscResourcesToExport
hashtable key is used to declare an array of DSC Resources (class names) to "export" from the
module. This enables consumers of the DSC module to "see" the class-based resources inside
the module.

Examples

Create a DSC Resource Skeleton Class

[DscResource()]
class File {
}

This example demonstrates how to build the outer section of a PowerShell class, that declares a
DSC Resource. You still need to fill in the contents of the class definition.

DSC Resource Skeleton with Key Property

[DscResource()]
class Ticket {
 [DscProperty(Key)]

https://riptutorial.com/ 49

 [string] $TicketId
}

A DSC Resource must declare at least one key property. The key property is what uniquely
identifies the resource from other resources. For example, let's say that you're building a DSC
Resource that represents a ticket in a ticketing system. Each ticket would be uniquely represented
with a ticket ID.

Each property that will be exposed to the user of the DSC Resource must be decorated with the
[DscProperty()] attribute. This attributes accepts a key parameter, to indicate that the property is a
key attribute for the DSC Resource.

DSC Resource with Mandatory Property

[DscResource()]
class Ticket {
 [DscProperty(Key)]
 [string] $TicketId

 [DscProperty(Mandatory)]
 [string] $Subject
}

When building a DSC Resource, you'll often find that not every single property should be
mandatory. However, there are some core properties that you'll want to ensure are configured by
the user of the DSC Resource. You use the Mandatory parameter of the [DscResource()] attribute to
declare a property as required by the DSC Resource's user.

In the example above, we've added a Subject property to a Ticket resource, that represents a
unique ticket in a ticketing system, and designated it as a Mandatory property.

DSC Resource with Required Methods

[DscResource()]
class Ticket {
 [DscProperty(Key)]
 [string] $TicketId

 # The subject line of the ticket
 [DscProperty(Mandatory)]
 [string] $Subject

 # Get / Set if ticket should be open or closed
 [DscProperty(Mandatory)]
 [string] $TicketState

 [void] Set() {
 # Create or update the resource
 }

 [Ticket] Get() {
 # Return the resource's current state as an object
 $TicketState = [Ticket]::new()

https://riptutorial.com/ 50

 return $TicketState
 }

 [bool] Test() {
 # Return $true if desired state is met
 # Return $false if desired state is not met
 return $false
 }
}

This is a complete DSC Resource that demonstrates all of the core requirements to build a valid
resource. The method implementations are not complete, but are provided with the intention of
showing the basic structure.

Read Creating DSC Class-Based Resources online:
https://riptutorial.com/powershell/topic/8733/creating-dsc-class-based-resources

https://riptutorial.com/ 51

https://riptutorial.com/powershell/topic/8733/creating-dsc-class-based-resources

Chapter 19: CSV parsing

Examples

Basic usage of Import-Csv

Given the following CSV-file

String,DateTime,Integer
First,2016-12-01T12:00:00,30
Second,2015-12-01T12:00:00,20
Third,2015-12-01T12:00:00,20

One can import the CSV rows in PowerShell objects using the Import-Csv command

> $listOfRows = Import-Csv .\example.csv
> $listOfRows

String DateTime Integer
------ -------- -------
First 2016-12-01T12:00:00 30
Second 2015-11-03T13:00:00 20
Third 2015-12-05T14:00:00 20

> Write-Host $row[0].String1
Third

Import from CSV and cast properties to correct type

By default, Import-CSV imports all values as strings, so to get DateTime- and integer-objects, we
need to cast or parse them.

Using Foreach-Object:

> $listOfRows = Import-Csv .\example.csv
> $listOfRows | ForEach-Object {
 #Cast properties
 $_.DateTime = [datetime]$_.DateTime
 $_.Integer = [int]$_.Integer

 #Output object
 $_
}

Using calculated properties:

> $listOfRows = Import-Csv .\example.csv
> $listOfRows | Select-Object String,
 @{name="DateTime";expression={ [datetime]$_.DateTime }},
 @{name="Integer";expression={ [int]$_.Integer }}

https://riptutorial.com/ 52

Output:

String DateTime Integer
------ -------- -------
First 01.12.2016 12:00:00 30
Second 03.11.2015 13:00:00 20
Third 05.12.2015 14:00:00 20

Read CSV parsing online: https://riptutorial.com/powershell/topic/5691/csv-parsing

https://riptutorial.com/ 53

https://riptutorial.com/powershell/topic/5691/csv-parsing

Chapter 20: Desired State Configuration

Examples

Simple example - Enabling WindowsFeature

configuration EnableIISFeature
{
 node localhost
 {
 WindowsFeature IIS
 {
 Ensure = “Present”
 Name = “Web-Server”
 }
 }
}

If you run this configuration in Powershell (EnableIISFeature), it will produce a localhost.mof file.
This is the "compiled" configuration you can run on a machine.

To test the DSC configuration on your localhost, you can simply invoke the following:

Start-DscConfiguration -ComputerName localhost -Wait

Starting DSC (mof) on remote machine

Starting a DSC on a remote machine is almost just as simple. Assuming you've already set up
Powershell remoting (or enabled WSMAN).

$remoteComputer = "myserver.somedomain.com"
$cred = (Get-Credential)
Start-DSCConfiguration -ServerName $remoteComputer -Credential $cred -Verbose

Nb: Assuming you have compiled a configuration for your node on your localmachine (and that the
file myserver.somedomain.com.mof is present prior to starting the configuration)

Importing psd1 (data file) into local variable

Sometimes it can be useful to test your Powershell data files and iterate through the nodes and
servers.

Powershell 5 (WMF5) added this neat little feature for doing this called Import-PowerShellDataFile
.

Example:

$data = Import-PowerShellDataFile -path .\MydataFile.psd1

https://riptutorial.com/ 54

$data.AllNodes

List available DSC Resources

To list available DSC resources on your authoring node:

 Get-DscResource

This will list all resources for all installed modules (that are in your PSModulePath) on your
authoring node.

To list all available DSC resources that can be found in the online sources (PSGallery ++) on
WMF 5 :

Find-DSCResource

Importing resources for use in DSC

Before you can use a resource in a configuration, you must explicitly import it. Just having it
installed on your computer, will not let you use the resource implicitly.

Import a resource by using Import-DscResource .

Example showing how to import the PSDesiredStateConfiguration resource and the File resource.

Configuration InstallPreReqs
{
 param(); # params to DSC goes here.

 Import-DscResource PSDesiredStateConfiguration

 File CheckForTmpFolder {
 Type = 'Directory'
 DestinationPath = 'C:\Tmp'
 Ensure = "Present"
 }
 }

Note: In order for DSC Resources to work, you must have the modules installed on the target
machines when running the configuration. If you don't have them installed, the configuration will
fail.

Read Desired State Configuration online: https://riptutorial.com/powershell/topic/5662/desired-
state-configuration

https://riptutorial.com/ 55

https://riptutorial.com/powershell/topic/5662/desired-state-configuration
https://riptutorial.com/powershell/topic/5662/desired-state-configuration

Chapter 21: Embedding Managed Code (C# |
VB)

Introduction

This topic is to briefly describe how C# or VB .NET Managed code can be scripted and utilised
within a PowerShell script. This topic is not exploring all facets of the Add-Type cmdlet.

For more information on the Add-Type cmdlet, please refer to the MSDN documentation (for 5.1)
here: https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.utility/add-
type

Parameters

Parameter Details

-
TypeDefinition<String_>

Accepts the code as a string

-Language<String_>
Specifies the Managed Code language.Accepted values: CSharp,
CSharpVersion3, CSharpVersion2, VisualBasic, JScript

Remarks

Removing Added types

In later versions of PowerShell, Remove-TypeData has been added to the PowerShell cmdlet
libraries which can allow for removal of a type within a session. For more details on this cmdlet, go
here: https://msdn.microsoft.com/en-
us/powershell/reference/4.0/microsoft.powershell.utility/remove-typedata

CSharp and .NET syntax

For those experience with .NET it goes without saying that the differing versions of C# can be
quite radically different in their level of support for certain syntax.

If utilising Powershell 1.0 and/or -Language CSharp, the managed code will be utilising .NET 2.0
which is lacking in a number of features which C# developers typically use without a second
thought these days, such as Generics, Linq and Lambda. On top of this is formal polymorphism,
which is handled with defaulted parameters in later versions of C#/.NET.

https://riptutorial.com/ 56

https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.utility/add-type
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.utility/add-type
https://msdn.microsoft.com/en-us/powershell/reference/4.0/microsoft.powershell.utility/remove-typedata
https://msdn.microsoft.com/en-us/powershell/reference/4.0/microsoft.powershell.utility/remove-typedata

Examples

C# Example

This example shows how to embed some basic C# into a PowerShell script, add it to the
runspace/session and utilise the code within PowerShell syntax.

$code = "
using System;

namespace MyNameSpace
{
 public class Responder
 {
 public static void StaticRespond()
 {
 Console.WriteLine("Static Response");
 }

 public void Respond()
 {
 Console.WriteLine("Instance Respond");
 }
 }
}
"@

Check the type has not been previously added within the session, otherwise an exception is
raised
if (-not ([System.Management.Automation.PSTypeName]'MyNameSpace.Responder').Type)
{
 Add-Type -TypeDefinition $code -Language CSharp;
}

[MyNameSpace.Responder]::StaticRespond();

$instance = New-Object MyNameSpace.Responder;
$instance.Respond();

VB.NET Example

This example shows how to embed some basic C# into a PowerShell script, add it to the
runspace/session and utilise the code within PowerShell syntax.

$code = @"
Imports System

Namespace MyNameSpace
 Public Class Responder
 Public Shared Sub StaticRespond()
 Console.WriteLine("Static Response")
 End Sub

 Public Sub Respond()
 Console.WriteLine("Instance Respond")
 End Sub

https://riptutorial.com/ 57

 End Class
End Namespace
"@

Check the type has not been previously added within the session, otherwise an exception is
raised
if (-not ([System.Management.Automation.PSTypeName]'MyNameSpace.Responder').Type)
{
 Add-Type -TypeDefinition $code -Language VisualBasic;
}

[MyNameSpace.Responder]::StaticRespond();

$instance = New-Object MyNameSpace.Responder;
$instance.Respond();

Read Embedding Managed Code (C# | VB) online:
https://riptutorial.com/powershell/topic/9823/embedding-managed-code--csharp---vb-

https://riptutorial.com/ 58

https://riptutorial.com/powershell/topic/9823/embedding-managed-code--csharp---vb-

Chapter 22: Enforcing script prerequisites

Syntax

#Requires -Version <N>[.<n>]•
#Requires –PSSnapin <PSSnapin-Name> [-Version <N>[.<n>]]•
#Requires -Modules { <Module-Name> | <Hashtable> }•
#Requires –ShellId <ShellId>•
#Requires -RunAsAdministrator•

Remarks

#requires statement can be placed on any line in the script (it doesn't have to be the first line) but it
must be the first statement on that line.

Multiple #requires statements may be used in one script.

For more reference, please refer to official documentation on Technet - about_about_Requires.

Examples

Enforce minimum version of powershell host

#requires -version 4

After trying to run this script in lower version, you will see this error message

.\script.ps1 : The script 'script.ps1' cannot be run because it contained a "#requires"
statement at line 1 for Windows PowerShell version 5.0. The version required by the
script does not match the currently running version of Windows PowerShell version
2.0.

Enforce running the script as admininstrator

4.0

#requires -RunAsAdministrator

After trying to run this script without admin privileges, you will see this error message

.\script.ps1 : The script 'script.ps1' cannot be run because it contains a "#requires"
statement for running as Administrator. The current Windows PowerShell session is
not running as Administrator. Start Windows PowerShell by using the Run as
Administrator option, and then try running the script again.

https://riptutorial.com/ 59

https://technet.microsoft.com/en-us/library/hh847765(v=wps.620).aspx

Read Enforcing script prerequisites online: https://riptutorial.com/powershell/topic/5637/enforcing-
script-prerequisites

https://riptutorial.com/ 60

https://riptutorial.com/powershell/topic/5637/enforcing-script-prerequisites
https://riptutorial.com/powershell/topic/5637/enforcing-script-prerequisites

Chapter 23: Environment Variables

Examples

Windows environment variables are visible as a PS drive called Env:

You can see list with all environment variables with:
Get-Childitem env:

Instant call of Environment Variables with $env:

$env:COMPUTERNAME

Read Environment Variables online: https://riptutorial.com/powershell/topic/5635/environment-
variables

https://riptutorial.com/ 61

https://riptutorial.com/powershell/topic/5635/environment-variables
https://riptutorial.com/powershell/topic/5635/environment-variables

Chapter 24: Error handling

Introduction

This topic discuss about Error Types & Error Handling in PowerShell.

Examples

Error Types

An error is an error, one might wonder how could there be types in it. Well, with powershell the
error broadly falls into two criteria,

Terminating error•
Non-Terminating error•

As the name says Terminating errors will terminate the execution and a Non-Terminating Errors let
the execution continue to next statement.

This is true assuming that $ErrorActionPreference value is default (Continue).
$ErrorActionPreference is a Prefrence Variable which tells powershell what to do in
case of an "Non-Terminating" error.

Terminating error

A terminating error can be handled with a typical try catch, as below

Try
{
 Write-Host "Attempting Divide By Zero"
 1/0
}
Catch
{
 Write-Host "A Terminating Error: Divide by Zero Caught!"
}

The above snippet will execute and the error will be caught thru the catch block.

Non-Terminating Error

A Non-Terminating error in the other hand will not be caught in the catch block by default. The
reason behind that is a Non-Terminating error is not considered a critical error.

Try
{
 Stop-Process -Id 123456
}
Catch

https://riptutorial.com/ 62

https://technet.microsoft.com/en-us/library/hh847796.aspx

{
 Write-Host "Non-Terminating Error: Invalid Process ID"
}

If you execute the above the line you wont get the output from catch block as since the error is not
considered critical and the execution will simply continue from next command. However, the error
will be displayed in the console. To handle a Non-Terminating error, you simple have to change
the error preference.

Try
{
 Stop-Process -Id 123456 -ErrorAction Stop
}
Catch
{
 "Non-Terminating Error: Invalid Process ID"
}

Now, with the updated Error preference, this error will be considered a Terminating error and will
be caught in the catch block.

Invoking Terminating & Non-Terminating Errors:

Write-Error cmdlet simply writes the error to the invoking host program. It doesn't stop the
execution. Where as throw will give you a terminating error and stop the execution

Write-host "Going to try a non terminating Error "
Write-Error "Non terminating"
Write-host "Going to try a terminating Error "
throw "Terminating Error "
Write-host "This Line wont be displayed"

Read Error handling online: https://riptutorial.com/powershell/topic/8075/error-handling

https://riptutorial.com/ 63

https://riptutorial.com/powershell/topic/8075/error-handling

Chapter 25: GUI in Powershell

Examples

WPF GUI for Get-Service cmdlet

Add-Type -AssemblyName PresentationFramework

[xml]$XAMLWindow = '
<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Height="Auto"
 SizeToContent="WidthAndHeight"
 Title="Get-Service">
 <ScrollViewer Padding="10,10,10,0" ScrollViewer.VerticalScrollBarVisibility="Disabled">
 <StackPanel>
 <StackPanel Orientation="Horizontal">
 <Label Margin="10,10,0,10">ComputerName:</Label>
 <TextBox Name="Input" Margin="10" Width="250px"></TextBox>
 </StackPanel>
 <DockPanel>
 <Button Name="ButtonGetService" Content="Get-Service" Margin="10"
Width="150px" IsEnabled="false"/>
 <Button Name="ButtonClose" Content="Close" HorizontalAlignment="Right"
Margin="10" Width="50px"/>
 </DockPanel>
 </StackPanel>
 </ScrollViewer >
</Window>
'

Create the Window Object
$Reader=(New-Object System.Xml.XmlNodeReader $XAMLWindow)
$Window=[Windows.Markup.XamlReader]::Load($Reader)

TextChanged Event Handler for Input
$TextboxInput = $Window.FindName("Input")
$TextboxInput.add_TextChanged.Invoke({
 $ComputerName = $TextboxInput.Text
 $ButtonGetService.IsEnabled = $ComputerName -ne ''
})

Click Event Handler for ButtonClose
$ButtonClose = $Window.FindName("ButtonClose")
$ButtonClose.add_Click.Invoke({
 $Window.Close();
})

Click Event Handler for ButtonGetService
$ButtonGetService = $Window.FindName("ButtonGetService")
$ButtonGetService.add_Click.Invoke({
 $ComputerName = $TextboxInput.text.Trim()
 try{
 Get-Service -ComputerName $computerName | Out-GridView -Title "Get-Service on
$ComputerName"
 }catch{

https://riptutorial.com/ 64

[System.Windows.MessageBox]::Show($_.exception.message,"Error",[System.Windows.MessageBoxButton]::OK,[System.Windows.MessageBoxImage]::Error)

 }
})

Open the Window
$Window.ShowDialog() | Out-Null

This creates a dialog window which allows the user to select a computer name, then will display a
table of services and their statuses on that computer.
This example uses WPF rather than Windows Forms.

Read GUI in Powershell online: https://riptutorial.com/powershell/topic/7141/gui-in-powershell

https://riptutorial.com/ 65

https://riptutorial.com/powershell/topic/7141/gui-in-powershell

Chapter 26: Handling Secrets and Credentials

Introduction

In Powershell, to avoid storing the password in clear text we use different methods of encryption
and store it as secure string. When you are not specifying a key or securekey, this will only work
for the same user on the same computer will be able to decrypt the encrypted string if you’re not
using Keys/SecureKeys. Any process that runs under that same user account will be able to
decrypt that encrypted string on that same machine.

Examples

Prompting for Credentials

To prompt for credentials, you should almost always use the Get-Credential cmdlet:

$credential = Get-Credential

Pre-filled user name:

$credential = Get-Credential -UserName 'myUser'

Add a custom prompt message:

$credential = Get-Credential -Message 'Please enter your company email address and password.'

Accessing the Plaintext Password

The password in a credential object is an encrypted [SecureString]. The most straightforward way
is to get a [NetworkCredential] which does not store the password encrypted:

$credential = Get-Credential
$plainPass = $credential.GetNetworkCredential().Password

The helper method (.GetNetworkCredential()) only exists on [PSCredential] objects.
To directly deal with a [SecureString], use .NET methods:

$bstr = [System.Runtime.InteropServices.Marshal]::SecureStringToBSTR($secStr)
$plainPass = [System.Runtime.InteropServices.Marshal]::PtrToStringAuto($bstr)

Working with Stored Credentials

To store and retrieve encrypted credentials easily, use PowerShell's built-in XML serialization
(Clixml):

https://riptutorial.com/ 66

https://technet.microsoft.com/en-us/library/hh849815.aspx

$credential = Get-Credential

$credential | Export-CliXml -Path 'C:\My\Path\cred.xml'

To re-import:

$credential = Import-CliXml -Path 'C:\My\Path\cred.xml'

The important thing to remember is that by default this uses the Windows data protection API, and
the key used to encrypt the password is specific to both the user and the machine that the code is
running under.

As a result, the encrypted credential cannot be imported by a different user nor the same
user on a different computer.

By encrypting several versions of the same credential with different running users and on different
computers, you can have the same secret available to multiple users.

By putting the user and computer name in the file name, you can store all of the encrypted secrets
in a way that allows for the same code to use them without hard coding anything:

Encrypter

run as each user, and on each computer

$credential = Get-Credential

$credential | Export-CliXml -Path
"C:\My\Secrets\myCred_${env:USERNAME}_${env:COMPUTERNAME}.xml"

The code that uses the stored credentials:

$credential = Import-CliXml -Path
"C:\My\Secrets\myCred_${env:USERNAME}_${env:COMPUTERNAME}.xml"

The correct version of the file for the running user will be loaded automatically (or it will fail
because the file doesn't exist).

Storing the credentials in Encrypted form and Passing it as parameter when
Required

$username = "user1@domain.com"
$pwdTxt = Get-Content "C:\temp\Stored_Password.txt"
$securePwd = $pwdTxt | ConvertTo-SecureString
$credObject = New-Object System.Management.Automation.PSCredential -ArgumentList $username,
$securePwd
Now, $credObject is having the credentials stored and you can pass it wherever you want.

https://riptutorial.com/ 67

Import Password with AES

$username = "user1@domain.com"
$AESKey = Get-Content $AESKeyFilePath
$pwdTxt = Get-Content $SecurePwdFilePath
$securePwd = $pwdTxt | ConvertTo-SecureString -Key $AESKey
$credObject = New-Object System.Management.Automation.PSCredential -ArgumentList $username,
$securePwd

Now, $credObject is having the credentials stored with AES Key and you can pass it wherever
you want.

Read Handling Secrets and Credentials online:
https://riptutorial.com/powershell/topic/2917/handling-secrets-and-credentials

https://riptutorial.com/ 68

https://riptutorial.com/powershell/topic/2917/handling-secrets-and-credentials

Chapter 27: HashTables

Introduction

A Hash Table is a structure which maps keys to values. See Hash Table for details.

Remarks

An important concept which relies on Hash Tables is Splatting. It is very useful for making a large
number of calls with repetitive parameters.

Examples

Creating a Hash Table

Example of creating an empty HashTable:

$hashTable = @{}

Example of creating a HashTable with data:

$hashTable = @{
 Name1 = 'Value'
 Name2 = 'Value'
 Name3 = 'Value3'
}

Access a hash table value by key.

An example of defining a hash table and accessing a value by the key

$hashTable = @{
 Key1 = 'Value1'
 Key2 = 'Value2'
}
$hashTable.Key1
#output
Value1

An example of accessing a key with invalid characters for a property name:

$hashTable = @{
 'Key 1' = 'Value3'
 Key2 = 'Value4'
}
$hashTable.'Key 1'
#Output

https://riptutorial.com/ 69

https://en.wikipedia.org/wiki/Hash_table
http://www.riptutorial.com/powershell/topic/5647/splatting

Value3

Looping over a hash table

$hashTable = @{
 Key1 = 'Value1'
 Key2 = 'Value2'
}

foreach($key in $hashTable.Keys)
{
 $value = $hashTable.$key
 Write-Output "$key : $value"
}
#Output
Key1 : Value1
Key2 : Value2

Add a key value pair to an existing hash table

An example, to add a "Key2" key with a value of "Value2" to the hash table, using the addition
operator:

$hashTable = @{
 Key1 = 'Value1'
}
$hashTable += @{Key2 = 'Value2'}
$hashTable

#Output

Name Value
---- -----
Key1 Value1
Key2 Value2

An example, to add a "Key2" key with a value of "Value2" to the hash table using the Add method:

$hashTable = @{
 Key1 = 'Value1'
}
$hashTable.Add("Key2", "Value2")
$hashTable

#Output

Name Value
---- -----
Key1 Value1
Key2 Value2

Enumerating through keys and Key-Value Pairs

Enumerating through Keys

https://riptutorial.com/ 70

foreach ($key in $var1.Keys) {
 $value = $var1[$key]
 # or
 $value = $var1.$key
}

Enumerating through Key-Value Pairs

foreach ($keyvaluepair in $var1.GetEnumerator()) {
 $key1 = $_.Key1
 $val1 = $_.Val1
}

Remove a key value pair from an existing hash table

An example, to remove a "Key2" key with a value of "Value2" from the hash table, using the
remove operator:

$hashTable = @{
 Key1 = 'Value1'
 Key2 = 'Value2'
}
$hashTable.Remove("Key2", "Value2")
$hashTable

#Output

Name Value
---- -----
Key1 Value1

Read HashTables online: https://riptutorial.com/powershell/topic/8083/hashtables

https://riptutorial.com/ 71

https://riptutorial.com/powershell/topic/8083/hashtables

Chapter 28: How to download latest artifact
from Artifactory using Powershell script (v2.0
or below)?

Introduction

This documentation explains and provides steps to download latest artifact from a JFrog
Artifactory repository using Powershell Script (v2.0 or below).

Examples

Powershell Script for downloading the latest artifcat

$username = 'user'
$password= 'password'
$DESTINATION = "D:\test\latest.tar.gz"
$client = New-Object System.Net.WebClient
$client.Credentials = new-object System.Net.NetworkCredential($username, $password)
$lastModifiedResponse =
$client.DownloadString('https://domain.org.com/artifactory/api/storage/FOLDER/repo/?lastModified')

[System.Reflection.Assembly]::LoadWithPartialName("System.Web.Extensions")
$serializer = New-Object System.Web.Script.Serialization.JavaScriptSerializer
$getLatestModifiedResponse = $serializer.DeserializeObject($lastModifiedResponse)
$downloaUriResponse = $getLatestModifiedResponse.uri
Write-Host $json.uri
$latestArtifcatUrlResponse=$client.DownloadString($downloaUriResponse)
[System.Reflection.Assembly]::LoadWithPartialName("System.Web.Extensions")
$serializer = New-Object System.Web.Script.Serialization.JavaScriptSerializer
$getLatestArtifact = $serializer.DeserializeObject($latestArtifcatUrlResponse)
Write-Host $getLatestArtifact.downloadUri
$SOURCE=$getLatestArtifact.downloadUri
$client.DownloadFile($SOURCE,$DESTINATION)

Read How to download latest artifact from Artifactory using Powershell script (v2.0 or below)?
online: https://riptutorial.com/powershell/topic/8883/how-to-download-latest-artifact-from-
artifactory-using-powershell-script--v2-0-or-below--

https://riptutorial.com/ 72

https://riptutorial.com/powershell/topic/8883/how-to-download-latest-artifact-from-artifactory-using-powershell-script--v2-0-or-below--
https://riptutorial.com/powershell/topic/8883/how-to-download-latest-artifact-from-artifactory-using-powershell-script--v2-0-or-below--

Chapter 29: Infrastructure Automation

Introduction

Automating Infrastructure Management Services results in reducing the FTE as well as
cumulatively getting better ROI using multiple tools, orchestrators, orchestration Engine , scripts
and easy UI

Examples

Simple script for black-box integration test of console applications

This is a simple example on how you can automate tests for a console application that interact
with standard input and standard output.

The tested application read and sum every new line and will provide the result after a single white
line is provided. The power shell script write "pass" when the output match.

$process = New-Object System.Diagnostics.Process
$process.StartInfo.FileName = ".\ConsoleApp1.exe"
$process.StartInfo.UseShellExecute = $false
$process.StartInfo.RedirectStandardOutput = $true
$process.StartInfo.RedirectStandardInput = $true
if ($process.Start()) {
 # input
 $process.StandardInput.WriteLine("1");
 $process.StandardInput.WriteLine("2");
 $process.StandardInput.WriteLine("3");
 $process.StandardInput.WriteLine();
 $process.StandardInput.WriteLine();
 # output check
 $output = $process.StandardOutput.ReadToEnd()
 if ($output) {
 if ($output.Contains("sum 6")) {
 Write "pass"
 }
 else {
 Write-Error $output
 }
 }
 $process.WaitForExit()
}

Read Infrastructure Automation online:
https://riptutorial.com/powershell/topic/10909/infrastructure-automation

https://riptutorial.com/ 73

https://riptutorial.com/powershell/topic/10909/infrastructure-automation

Chapter 30: Introduction to Pester

Remarks

Pester is a test framework for PowerShell that allows you to run test cases for you PowerShell
code. It can be used to run ex. unit tests to help you verify that your modules, scripts etc. work as
intended.

What is Pester and Why Should I Care?

Examples

Getting Started with Pester

To get started with unit testing PowerShell code using the Pester-module, you need to be familiar
with three keywords/commands:

Describe: Defines a group of tests. All Pester test files needs at least one Describe-block.•
It: Defines an individual test. You can have multiple It-blocks inside a Descripe-block.•
Should: The verify/test command. It is used to define the result that should be considered a
successful test.

•

Sample:

Import-Module Pester

#Sample function to run tests against
function Add-Numbers{
 param($a, $b)
 return [int]$a + [int]$b
}

#Group of tests
Describe "Validate Add-Numbers" {

 #Individual test cases
 It "Should add 2 + 2 to equal 4" {
 Add-Numbers 2 2 | Should Be 4
 }

 It "Should handle strings" {
 Add-Numbers "2" "2" | Should Be 4
 }

 It "Should return an integer"{
 Add-Numbers 2.3 2 | Should BeOfType Int32
 }

}

Output:

https://riptutorial.com/ 74

https://blogs.technet.microsoft.com/heyscriptingguy/2015/12/14/what-is-pester-and-why-should-i-care/

Describing Validate Add-Numbers
 [+] Should add 2 + 2 to equal 4 33ms
 [+] Should handle strings 19ms
 [+] Should return an integer 23ms

Read Introduction to Pester online: https://riptutorial.com/powershell/topic/5753/introduction-to-
pester

https://riptutorial.com/ 75

https://riptutorial.com/powershell/topic/5753/introduction-to-pester
https://riptutorial.com/powershell/topic/5753/introduction-to-pester

Chapter 31: Introduction to Psake

Syntax

Task - main function to execute a step of your build script•
Depends - property that specify what the current step depends upon•
default - there must always be a default task that will get executed if no initial task is
specified

•

FormatTaskName - specifies how each step is displayed in the result window.•

Remarks

psake is a build automation tool written in PowerShell, and is inspired by Rake (Ruby make) and
Bake (Boo make). It is used to create builds using dependency pattern. Documentation available
here

Examples

Basic outline

Task Rebuild -Depends Clean, Build {
 "Rebuild"
 }

Task Build {
 "Build"
 }

Task Clean {
 "Clean"
 }

Task default -Depends Build

FormatTaskName example

Will display task as:
-------- Rebuild --------
-------- Build --------
FormatTaskName "-------- {0} --------"

will display tasks in yellow colour:
Running Rebuild
FormatTaskName {
 param($taskName)
 "Running $taskName" - foregroundcolor yellow
}

Task Rebuild -Depends Clean, Build {

https://riptutorial.com/ 76

https://github.com/psake/psake
http://psake.readthedocs.io/en/latest/

 "Rebuild"
 }

Task Build {
 "Build"
 }

Task Clean {
 "Clean"
 }

Task default -Depends Build

Run Task conditionally

propreties {
 $isOk = $false
}

By default the Build task won't run, unless there is a param $true
Task Build -precondition { return $isOk } {
 "Build"
 }

Task Clean {
 "Clean"
 }

Task default -Depends Build

ContinueOnError

Task Build -depends Clean {
 "Build"
 }

Task Clean -ContinueOnError {
 "Clean"
 throw "throw on purpose, but the task will continue to run"
 }

Task default -Depends Build

Read Introduction to Psake online: https://riptutorial.com/powershell/topic/5019/introduction-to-
psake

https://riptutorial.com/ 77

https://riptutorial.com/powershell/topic/5019/introduction-to-psake
https://riptutorial.com/powershell/topic/5019/introduction-to-psake

Chapter 32: ISE module

Introduction

Windows PowerShell Integrated Scripting Environment (ISE) is a host application that enables you
to write, run, and test scripts and modules in a graphical and intuitive environment. Key features in
Windows PowerShell ISE include syntax-coloring, tab completion, Intellisense, visual debugging,
Unicode compliance, and context-sensitive Help, and provide a rich scripting experience.

Examples

Test Scripts

The simple, yet powerful use of the ISE is e.g. writing code in the top section (with intuitive syntax
coloring) and run the code by simply marking it and hitting the F8 key.

function Get-Sum
{
 foreach ($i in $Input)
 {$Sum += $i}
 $Sum

1..10 | Get-Sum

#output
55

Read ISE module online: https://riptutorial.com/powershell/topic/10954/ise-module

https://riptutorial.com/ 78

https://riptutorial.com/powershell/topic/10954/ise-module

Chapter 33: Loops

Introduction

A loop is a sequence of instruction(s) that is continually repeated until a certain condition is
reached. Being able to have your program repeatedly execute a block of code is one of the most
basic but useful tasks in programming. A loop lets you write a very simple statement to produce a
significantly greater result simply by repetition. If the condition has been reached, the next
instruction "falls through" to the next sequential instruction or branches outside the loop.

Syntax

for (<Initialization>; <Condition>; <Repetition>) { <Script_Block> }•

<Collection> | Foreach-Object { <Script_Block_with_$__as_current_item> }•

foreach (<Item> in <Collection>) { <Script_Block> }•

while (<Condition>){ <Script_Block> }•

do { <Script_Block> } while (<Condition>)•

do { <Script_Block> } until (<Condition>)•

<Collection>.foreach({ <Script_Block_with_$__as_current_item> })•

Remarks

Foreach

There are multiple ways to run a foreach-loop in PowerShell and they all bring their own
advantages and disadvantages:

Solution Advantages Disadvantages

Foreach
statement

Fastest. Works best with static collections
(stored in a variable).

No pipeline input or output

ForEach()
Method

Same scriptblock syntax as Foreach-Object,
but faster. Works best with static collections
(stored in a variable). Supports pipeline
output.

No support for pipeline
input. Requires PowerShell
4.0 or greater

Foreach-
Object

Supports pipeline input and output. Supports
begin and end-scriptblocks for initialization

Slowest

https://riptutorial.com/ 79

Solution Advantages Disadvantages

(cmdlet) and closing of connections etc. Most flexible
solution.

Performance

$foreach = Measure-Command { foreach ($i in (1..1000000)) { $i * $i } }
$foreachmethod = Measure-Command { (1..1000000).ForEach{ $_ * $_ } }
$foreachobject = Measure-Command { (1..1000000) | ForEach-Object { $_ * $_ } }

"Foreach: $($foreach.TotalSeconds)"
"Foreach method: $($foreachmethod.TotalSeconds)"
"ForEach-Object: $($foreachobject.TotalSeconds)"

Example output:

Foreach: 1.9039875
Foreach method: 4.7559563
ForEach-Object: 10.7543821

While Foreach-Object is the slowest, it's pipeline-support might be useful as it lets you process
items as they arrive (while reading a file, receiving data etc.). This can be very useful when
working with big data and low memory as you don't need to load all the data to memory before
processing.

Examples

For

for($i = 0; $i -le 5; $i++){
 "$i"
}

A typical use of the for loop is to operate on a subset of the values in an array. In most cases, if
you want to iterate all values in an array, consider using a foreach statement.

Foreach

ForEach has two different meanings in PowerShell. One is a keyword and the other is an alias for
the ForEach-Object cmdlet. The former is described here.

This example demonstrates printing all items in an array to the console host:

$Names = @('Amy', 'Bob', 'Celine', 'David')

ForEach ($Name in $Names)
{
 Write-Host "Hi, my name is $Name!"
}

https://riptutorial.com/ 80

https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.core/about/about_language_keywords
http://www.riptutorial.com/powershell/example/3665/foreach-object

This example demonstrates capturing the output of a ForEach loop:

$Numbers = ForEach ($Number in 1..20) {
 $Number # Alternatively, Write-Output $Number
}

Like the last example, this example, instead, demonstrates creating an array prior to storing the
loop:

$Numbers = @()
ForEach ($Number in 1..20)
{
 $Numbers += $Number
}

While

A while loop will evaluate a condition and if true will perform an action. As long as the condition
evaluates to true the action will continue to be performed.

while(condition){
 code_block
}

The following example creates a loop that will count down from 10 to 0

$i = 10
while($i -ge 0){
 $i
 $i--
}

Unlike the Do-While loop the condition is evaluated prior to the action's first execution. The action
will not be performed if the initial condition evaluates to false.

Note: When evaluating the condition, PowerShell will treat the existence of a return object as true.
This can be used in several ways but below is an example to monitor for a process. This example
will spawn a notepad process and then sleep the current shell as long as that process is running.
When you manually close the notepad instance the while condition will fail and the loop will break.

Start-Process notepad.exe
while(Get-Process notepad -ErrorAction SilentlyContinue){
 Start-Sleep -Milliseconds 500
}

ForEach-Object

The ForEach-Object cmdlet works similarly to the foreach statement, but takes its input from the
pipeline.

https://riptutorial.com/ 81

http://www.riptutorial.com/powershell/example/3884/do
http://www.riptutorial.com/powershell/example/3429/foreach

Basic usage

$object | ForEach-Object {
 code_block
}

Example:

$names = @("Any","Bob","Celine","David")
$names | ForEach-Object {
 "Hi, my name is $_!"
}

Foreach-Object has two default aliases, foreach and % (shorthand syntax). Most common is %
because foreach can be confused with the foreach statement. Examples:

$names | % {
 "Hi, my name is $_!"
}

$names | foreach {
 "Hi, my name is $_!"
}

Advanced usage

Foreach-Object stands out from the alternative foreach solutions because it's a cmdlet which means
it's designed to use the pipeline. Because of this, it has support for three scriptblocks just like a
cmdlet or advanced function:

Begin: Executed once before looping through the items that arrive from the pipeline. Usually
used to create functions for use in the loop, creating variables, opening connections
(database, web +) etc.

•

Process: Executed once per item arrived from the pipeline. "Normal" foreach codeblock.
This is the default used in the examples above when the parameter isn't specified.

•

End: Executed once after processing all items. Usually used to close connections, generate
a report etc.

•

Example:

"Any","Bob","Celine","David" | ForEach-Object -Begin {
 $results = @()
} -Process {
 #Create and store message
 $results += "Hi, my name is $_!"
} -End {
 #Count messages and output
 Write-Host "Total messages: $($results.Count)"
 $results
}

https://riptutorial.com/ 82

http://www.riptutorial.com/powershell/example/3429/foreach

Do

Do-loops are useful when you always want to run a codeblock at least once. A Do-loop will
evaluate the condition after executing the codeblock, unlike a while-loop which does it before
executing the codeblock.

You can use do-loops in two ways:

Loop while the condition is true:

Do {
 code_block
} while (condition)

•

Loop until the condition is true, in other words, loop while the condition is false:

Do {
 code_block
} until (condition)

•

Real Examples:

$i = 0

Do {
 $i++
 "Number $i"
} while ($i -ne 3)

Do {
 $i++
 "Number $i"
} until ($i -eq 3)

Do-While and Do-Until are antonymous loops. If the code inside the same, the condition will be
reversed. The example above illustrates this behaviour.

ForEach() Method

4.0

Instead of the ForEach-Object cmdlet, the here is also the possibility to use a ForEach method
directly on object arrays like so

(1..10).ForEach({$_ * $_})

or - if desired - the parentheses around the script block can be omitted

(1..10).ForEach{$_ * $_}

https://riptutorial.com/ 83

Both will result in the output below

1
4
9
16
25
36
49
64
81
100

Continue

The Continue operator works in For, ForEach, While and Do loops. It skips the current iteration of the
loop, jumping to the top of the innermost loop.

$i =0
while ($i -lt 20) {
 $i++
 if ($i -eq 7) { continue }
 Write-Host $I
}

The above will output 1 to 20 to the console but miss out the number 7.

Note: When using a pipeline loop you should use return instead of Continue.

Break

The break operator will exit a program loop immediately. It can be used in For, ForEach, While and Do
loops or in a Switch Statement.

$i = 0
while ($i -lt 15) {
 $i++
 if ($i -eq 7) {break}
 Write-Host $i
}

The above will count to 15 but stop as soon as 7 is reached.

Note: When using a pipeline loop, break will behave as continue. To simulate break in the pipeline
loop you need to incorporate some additional logic, cmdlet, etc. It is easier to stick with non-
pipeline loops if you need to use break.

Break Labels

Break can also call a label that was placed in front of the instantiation of a loop:

$i = 0

https://riptutorial.com/ 84

:mainLoop While ($i -lt 15) {
 Write-Host $i -ForegroundColor 'Cyan'
 $j = 0
 While ($j -lt 15) {
 Write-Host $j -ForegroundColor 'Magenta'
 $k = $i*$j
 Write-Host $k -ForegroundColor 'Green'
 if ($k -gt 100) {
 break mainLoop
 }
 $j++
 }
 $i++
}

Note: This code will increment $i to 8 and $j to 13 which will cause $k to equal 104. Since $k
exceed 100, the code will then break out of both loops.

Read Loops online: https://riptutorial.com/powershell/topic/1067/loops

https://riptutorial.com/ 85

https://riptutorial.com/powershell/topic/1067/loops

Chapter 34: Modules, Scripts and Functions

Introduction

PowerShell modules bring extendibility to the systems administrator, DBA, and developer.
Whether it’s simply as a method to share functions and scripts.

Powershell Functions are to avoid repitetive codes. Refer [PS Functions][1] [1]: PowerShell
Functions

PowerShell Scripts are used for automating administrative tasks which consists of command-line
shell and associated cmdlets built on top of .NET Framework.

Examples

Function

A function is a named block of code which is used to define reusable code that should be easy to
use. It is usually included inside a script to help reuse code (to avoid duplicate code) or distributed
as part of a module to make it useful for others in multiple scripts.

Scenarios where a function might be useful:

Calculate the average of a group of numbers•
Generate a report for running processes•
Write a function that tests is a computer is "healthy" by pinging the computer and accessing
the c$-share

•

Functions are created using the function keyword, followed by a single-word name and a script
block containing the code to executed when the function name is called.

function NameOfFunction {
 Your code
}

Demo

function HelloWorld {
 Write-Host "Greetings from PowerShell!"
}

Usage:

> HelloWorld
Greetings from PowerShell!

https://riptutorial.com/ 86

http://www.riptutorial.com/powershell/topic/1673/powershell-functions
http://www.riptutorial.com/powershell/topic/1673/powershell-functions

Script

A script is a text file with the file extension .ps1 that contains PowerShell commands that will be
executed when the script is called. Because scripts are saved files, they are easy to transfer
between computers.

Scripts are often written to solve a specific problem, ex.:

Run a weekly maintenance task•
To install and configure a solution/application on a computer•

Demo

MyFirstScript.ps1:

Write-Host "Hello World!"
2+2

You can run a script by entering the path to the file using an:

Absolute path, ex. c:\MyFirstScript.ps1•
Relative path, ex .\MyFirstScript.ps1 if the current directory of your PowerShell console was
C:\

•

Usage:

> .\MyFirstScript.ps1
Hello World!
4

A script can also import modules, define it's own functions etc.

MySecondScript.ps1:

function HelloWorld {
 Write-Host "Greetings from PowerShell!"
}

HelloWorld
Write-Host "Let's get started!"
2+2
HelloWorld

Usage:

> .\MySecondScript.ps1
Greetings from PowerShell!
Let's get started!
4
Greetings from PowerShell!

https://riptutorial.com/ 87

Module

A module is a collection of related reusable functions (or cmdlets) that can easily be distributed to
other PowerShell users and used in multiple scripts or directly in the console. A module is usually
saved in it's own directory and consists of:

One or more code files with the .psm1 file extension containing functions or binary assemblies
(.dll) containing cmdlets

•

A module manifest .psd1 describing the modules name, version, author, description, which
functions/cmdlets it provides etc.

•

Other requirements for it to work incl. dependencies, scripts etc.•

Examples of modules:

A module containing functions/cmdlets that perform statistics on a dataset•
A module for querying and configuring databases•

To make it easy for PowerShell to find and import a module, it is often placed in one of the known
PowerShell module-locations defined in $env:PSModulePath.

Demo

List modules that are installed to one of the known module-locations:

Get-Module -ListAvailable

Import a module, ex. Hyper-V module:

Import-Module Hyper-V

List available commands in a module, ex. the Microsoft.PowerShell.Archive-module

> Import-Module Microsoft.PowerShell.Archive
> Get-Command -Module Microsoft.PowerShell.Archive

CommandType Name Version Source
----------- ---- ------- ------
Function Compress-Archive 1.0.1.0 Microsoft.PowerShell.Archive
Function Expand-Archive 1.0.1.0 Microsoft.PowerShell.Archive

Advanced Functions

Advanced functions behave the in the same way as cmdlets. The PowerShell ISE includes two
skeletons of advanced functions. Access these via the menu, edit, code snippets, or by Ctrl+J. (As
of PS 3.0, later versions may differ)

Key things that advanced functions include are,

built-in, customized help for the function, accessible via Get-Help•

https://riptutorial.com/ 88

can use [CmdletBinding()] which makes the function act like a cmdlet•
extensive parameter options•

Simple version:

<#
.Synopsis
 Short description
.DESCRIPTION
 Long description
.EXAMPLE
 Example of how to use this cmdlet
.EXAMPLE
 Another example of how to use this cmdlet
#>
function Verb-Noun
{
 [CmdletBinding()]
 [OutputType([int])]
 Param
 (
 # Param1 help description
 [Parameter(Mandatory=$true,
 ValueFromPipelineByPropertyName=$true,
 Position=0)]
 $Param1,

 # Param2 help description
 [int]
 $Param2
)

 Begin
 {
 }
 Process
 {
 }
 End
 {
 }
}

Complete version:

<#
.Synopsis
 Short description
.DESCRIPTION
 Long description
.EXAMPLE
 Example of how to use this cmdlet
.EXAMPLE
 Another example of how to use this cmdlet
.INPUTS
 Inputs to this cmdlet (if any)
.OUTPUTS
 Output from this cmdlet (if any)
.NOTES

https://riptutorial.com/ 89

 General notes
.COMPONENT
 The component this cmdlet belongs to
.ROLE
 The role this cmdlet belongs to
.FUNCTIONALITY
 The functionality that best describes this cmdlet
#>
function Verb-Noun
{
 [CmdletBinding(DefaultParameterSetName='Parameter Set 1',
 SupportsShouldProcess=$true,
 PositionalBinding=$false,
 HelpUri = 'http://www.microsoft.com/',
 ConfirmImpact='Medium')]
 [OutputType([String])]
 Param
 (
 # Param1 help description
 [Parameter(Mandatory=$true,
 ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true,
 ValueFromRemainingArguments=$false,
 Position=0,
 ParameterSetName='Parameter Set 1')]
 [ValidateNotNull()]
 [ValidateNotNullOrEmpty()]
 [ValidateCount(0,5)]
 [ValidateSet("sun", "moon", "earth")]
 [Alias("p1")]
 $Param1,

 # Param2 help description
 [Parameter(ParameterSetName='Parameter Set 1')]
 [AllowNull()]
 [AllowEmptyCollection()]
 [AllowEmptyString()]
 [ValidateScript({$true})]
 [ValidateRange(0,5)]
 [int]
 $Param2,

 # Param3 help description
 [Parameter(ParameterSetName='Another Parameter Set')]
 [ValidatePattern("[a-z]*")]
 [ValidateLength(0,15)]
 [String]
 $Param3
)

 Begin
 {
 }
 Process
 {
 if ($pscmdlet.ShouldProcess("Target", "Operation"))
 {
 }
 }
 End
 {

https://riptutorial.com/ 90

 }
}

Read Modules, Scripts and Functions online:
https://riptutorial.com/powershell/topic/5755/modules--scripts-and-functions

https://riptutorial.com/ 91

https://riptutorial.com/powershell/topic/5755/modules--scripts-and-functions

Chapter 35: MongoDB

Remarks

The most hard part is to attach a subdocument into the document which hasn't created yet if we
need the subdocument need to be in the expected looking we will need to iterate with a for loop
the array into a variable and using $doc2.add("Key", "Value") instead using the foreach current
array with index. This will make the subdocument in two lines as you can see in the "Tags" =
[MongoDB.Bson.BsonDocument] $doc2.

Examples

MongoDB with C# driver 1.7 using PowerShell

I need to query all the details from virtual machine and update into the MongoDB.

Which require the output look like this.
{
 "_id" : ObjectId("5800509f23888a12bccf2347"),
 "ResourceGrp" : "XYZZ-MachineGrp",
 "ProcessTime" : ISODate("2016-10-14T03:27:16.586Z"),
 "SubscriptionName" : "GSS",
 "OS" : "Windows",
 "HostName" : "VM1",
 "IPAddress" : "192.168.22.11",
 "Tags" : {
 "costCenter" : "803344",
 "BusinessUNIT" : "WinEng",
 "MachineRole" : "App",
 "OwnerEmail" : "zteffer@somewhere.com",
 "appSupporter" : "Steve",
 "environment" : "Prod",
 "implementationOwner" : "xyzr@somewhere.com",
 "appSoftware" : "WebServer",
 "Code" : "Gx",
 "WholeOwner" : "zzzgg@somewhere.com"
 },
 "SubscriptionID" : "",
 "Status" : "running fine",
 "ResourceGroupName" : "XYZZ-MachineGrp",
 "LocalTime" : "14-10-2016-11:27"
}

I have 3 sets of array in Powershell

 $MachinesList # Array
 $ResourceList # Array
 $MachineTags # Array

 pseudo code

https://riptutorial.com/ 92

 $mongoDriverPath = 'C:\Program Files (x86)\MongoDB\CSharpDriver 1.7';
 Add-Type -Path "$($mongoDriverPath)\MongoDB.Bson.dll";
 Add-Type -Path "$($mongoDriverPath)\MongoDB.Driver.dll";

 $db = [MongoDB.Driver.MongoDatabase]::Create('mongodb://127.0.0.1:2701/RGrpMachines');
 [System.Collections.ArrayList]$TagList = $vm.tags
 $A1 = $Taglist.key
 $A2 = $Taglist.value
 foreach ($Machine in $MachinesList)
 {
 foreach($Resource in $ResourceList)
 {
 $doc2 = $null
 [MongoDB.Bson.BsonDocument] $doc2 = @{}; #Create a Document here
 for($i = 0; $i -lt $TagList.count; $i++)
 {
 $A1Key = $A1[$i].ToString()
 $A2Value = $A2[$i].toString()
 $doc2.add("$A1Key", "$A2Value")
 }

 [MongoDB.Bson.BsonDocument] $doc = @{
 "_id"= [MongoDB.Bson.ObjectId]::GenerateNewId();
 "ProcessTime"= [MongoDB.Bson.BsonDateTime] $ProcessTime;
 "LocalTime" = "$LocalTime";
 "Tags" = [MongoDB.Bson.BsonDocument] $doc2;
 "ResourceGrp" = "$RGName";
 "HostName"= "$VMName";
 "Status"= "$VMStatus";
 "IPAddress"= "$IPAddress";
 "ResourceGroupName"= "$RGName";
 "SubscriptionName"= "$CurSubName";
 "SubscriptionID"= "$subid";
 "OS"= "$OSType";
 }; #doc loop close

 $collection.Insert($doc);
 }
 }

Read MongoDB online: https://riptutorial.com/powershell/topic/7438/mongodb

https://riptutorial.com/ 93

https://riptutorial.com/powershell/topic/7438/mongodb

Chapter 36: Naming Conventions

Examples

Functions

Get-User()

Use Verb-Noun pattern while naming a function.•
Verb implies an action e.g. Get, Set, New, Read, Write and many more. See approved verbs.•
Noun should be singular even if it acts on multiple items. Get-User() may return one or
multiple users.

•

Use Pascal case for both Verb and Noun. E.g. Get-UserLogin()•

Read Naming Conventions online: https://riptutorial.com/powershell/topic/9714/naming-
conventions

https://riptutorial.com/ 94

https://msdn.microsoft.com/en-us/library/ms714428(v=vs.85).aspx
https://riptutorial.com/powershell/topic/9714/naming-conventions
https://riptutorial.com/powershell/topic/9714/naming-conventions

Chapter 37: Operators

Introduction

An operator is a character that represents an action. It tells the compiler/interpreter to perform
specific mathematical, relational or logical operation and produce final result. PowerShell
interprets in a specific way and categorizes accordingly like arithmetic operators perform
operations primarily on numbers, but they also affect strings and other data types. Along with the
basic operators,PowerShell has a number of operators that save time and coding effort(eg: -like,-
match,-replace,etc).

Examples

Arithmetic Operators

1 + 2 # Addition
1 - 2 # Subtraction
-1 # Set negative value
1 * 2 # Multiplication
1 / 2 # Division
1 % 2 # Modulus
100 -shl 2 # Bitwise Shift-left
100 -shr 1 # Bitwise Shift-right

Logical Operators

-and # Logical and
-or # Logical or
-xor # Logical exclusive or
-not # Logical not
! # Logical not

Assignment Operators

Simple arithmetic:

$var = 1 # Assignment. Sets the value of a variable to the specified value
$var += 2 # Addition. Increases the value of a variable by the specified value
$var -= 1 # Subtraction. Decreases the value of a variable by the specified value
$var *= 2 # Multiplication. Multiplies the value of a variable by the specified value
$var /= 2 # Division. Divides the value of a variable by the specified value
$var %= 2 # Modulus. Divides the value of a variable by the specified value and then
 # assigns the remainder (modulus) to the variable

Increment and decrement:

$var++ # Increases the value of a variable, assignable property, or array element by 1
$var-- # Decreases the value of a variable, assignable property, or array element by 1

https://riptutorial.com/ 95

Comparison Operators

PowerShell comparison operators are comprised of a leading dash (-) followed by a name (eq for
equal, gt for greater than, etc...).

Names can be preceded by special characters to modify the behavior of the operator:

i # Case-Insensitive Explicit (-ieq)
c # Case-Sensitive Explicit (-ceq)

Case-Insensitive is the default if not specified, ("a" -eq "A") same as ("a" -ieq "A").

Simple comparison operators:

2 -eq 2 # Equal to (==)
2 -ne 4 # Not equal to (!=)
5 -gt 2 # Greater-than (>)
5 -ge 5 # Greater-than or equal to (>=)
5 -lt 10 # Less-than (<)
5 -le 5 # Less-than or equal to (<=)

String comparison operators:

"MyString" -like "*String" # Match using the wildcard character (*)
"MyString" -notlike "Other*" # Does not match using the wildcard character (*)
"MyString" -match "$String^" # Matches a string using regular expressions
"MyString" -notmatch "$Other^" # Does not match a string using regular expressions

Collection comparison operators:

"abc", "def" -contains "def" # Returns true when the value (right) is present
 # in the array (left)
"abc", "def" -notcontains "123" # Returns true when the value (right) is not present
 # in the array (left)
"def" -in "abc", "def" # Returns true when the value (left) is present
 # in the array (right)
"123" -notin "abc", "def" # Returns true when the value (left) is not present
 # in the array (right)

Redirection Operators

Success output stream:

cmdlet > file # Send success output to file, overwriting existing content
cmdlet >> file # Send success output to file, appending to existing content
cmdlet 1>&2 # Send success and error output to error stream

Error output stream:

cmdlet 2> file # Send error output to file, overwriting existing content
cmdlet 2>> file # Send error output to file, appending to existing content

https://riptutorial.com/ 96

cmdlet 2>&1 # Send success and error output to success output stream

Warning output stream: (PowerShell 3.0+)

cmdlet 3> file # Send warning output to file, overwriting existing content
cmdlet 3>> file # Send warning output to file, appending to existing content
cmdlet 3>&1 # Send success and warning output to success output stream

Verbose output stream: (PowerShell 3.0+)

cmdlet 4> file # Send verbose output to file, overwriting existing content
cmdlet 4>> file # Send verbose output to file, appending to existing content
cmdlet 4>&1 # Send success and verbose output to success output stream

Debug output stream: (PowerShell 3.0+)

cmdlet 5> file # Send debug output to file, overwriting existing content
cmdlet 5>> file # Send debug output to file, appending to existing content
cmdlet 5>&1 # Send success and debug output to success output stream

Information output stream: (PowerShell 5.0+)

cmdlet 6> file # Send information output to file, overwriting existing content
cmdlet 6>> file # Send information output to file, appending to existing content
cmdlet 6>&1 # Send success and information output to success output stream

All output streams:

cmdlet *> file # Send all output streams to file, overwriting existing content
cmdlet *>> file # Send all output streams to file, appending to existing content
cmdlet *>&1 # Send all output streams to success output stream

Differences to the pipe operator (|)

Redirection operators only redirect streams to files or streams to streams. The pipe operator
pumps an object down the pipeline to a cmdlet or the output. How the pipeline works differs in
general from how redirection works and can be read on Working with the PowerShell pipeline

Mixing operand types : the type of the left operand dictates the behavior.

For Addition

"4" + 2 # Gives "42"
4 + "2" # Gives 6
1,2,3 + "Hello" # Gives 1,2,3,"Hello"
"Hello" + 1,2,3 # Gives "Hello1 2 3"

For Multiplication

"3" * 2 # Gives "33"

https://riptutorial.com/ 97

http://www.riptutorial.com/powershell/topic/3937/working-with-the-powershell-pipeline

2 * "3" # Gives 6
1,2,3 * 2 # Gives 1,2,3,1,2,3
2 * 1,2,3 # Gives an error op_Multiply is missing

The impact may have hidden consequences on comparison operators :

$a = Read-Host "Enter a number"
Enter a number : 33
$a -gt 5
False

String Manipulation Operators

Replace operator:

The -replace operator replaces a pattern in an input value using a regular expression. This
operator uses two arguments (separated by a comma): a regular expression pattern and its
replacement value (which is optional and an empty string by default).

"The rain in Seattle" -replace 'rain','hail' #Returns: The hail in Seattle
"kenmyer@contoso.com" -replace '^[\w]+@(.+)', '$1' #Returns: contoso.com

Split and Join operators:

The -split operator splits a string into an array of sub-strings.

"A B C" -split " " #Returns an array string collection object containing A,B and C.

The -join operator joins an array of strings into a single string.

"E","F","G" -join ":" #Returns a single string: E:F:G

Read Operators online: https://riptutorial.com/powershell/topic/1071/operators

https://riptutorial.com/ 98

https://riptutorial.com/powershell/topic/1071/operators

Chapter 38: Package management

Introduction

PowerShell Package Management allows you to find, install, update and uninstall PowerShell
Modules and other packages.

PowerShellGallery.com is the default source for PowerShell modules. You can also browse the
site for available packages, command and preview the code.

Examples

Find a PowerShell module using a pattern

To find a module that ends with DSC

Find-Module -Name *DSC

Create the default PowerShell Module Reposity

If for some reason, the default PowerShell module repository PSGallery gets removed. You will
need to create it. This is the command.

Register-PSRepository -Default

Find a module by name

Find-Module -Name <Name>

Install a Module by name

Install-Module -Name <name>

Uninstall a module my name and version

Uninstall-Module -Name <Name> -RequiredVersion <Version>

Update a module by name

Update-Module -Name <Name>

Read Package management online: https://riptutorial.com/powershell/topic/8698/package-

https://riptutorial.com/ 99

https://powershellgallery.com
https://riptutorial.com/powershell/topic/8698/package-management

management

https://riptutorial.com/ 100

https://riptutorial.com/powershell/topic/8698/package-management

Chapter 39: Parameter sets

Introduction

Parameter sets are used to limit the possible combination of parameters, or to enforce the use of
parameters when 1 or more parameters are selected.

The examples will explain the use and reason of a parameter set.

Examples

Simple parameter sets

function myFunction
{
 param(
 # If parameter 'a' is used, then 'c' is mandatory
 # If parameter 'b' is used, then 'c' is optional, but allowed
 # You can use parameter 'c' in combination with either 'a' or 'b'
 # 'a' and 'b' cannot be used together

 [parameter(ParameterSetName="AandC", mandatory=$true)]
 [switch]$a,
 [parameter(ParameterSetName="BandC", mandatory=$true)]
 [switch]$b,
 [parameter(ParameterSetName="AandC", mandatory=$true)]
 [parameter(ParameterSetName="BandC", mandatory=$false)]
 [switch]$c
)
 # $PSCmdlet.ParameterSetName can be used to check which parameter set was used
 Write-Host $PSCmdlet.ParameterSetName
}

Valid syntaxes
myFunction -a -c
=> "Parameter set : AandC"
myFunction -b -c
=> "Parameter set : BandC"
myFunction -b
=> "Parameter set : BandC"

Invalid syntaxes
myFunction -a -b
=> "Parameter set cannot be resolved using the specified named parameters."
myFunction -a
=> "Supply values for the following parameters:
c:"

Parameterset to enforce the use of a parmeter when a other is selected.

When you want for example enforce the use of the parameter Password if the parameter User is
provided. (and vise versa)

https://riptutorial.com/ 101

Function Do-Something
{
 Param
 (
 [Parameter(Mandatory=$true)]
 [String]$SomeThingToDo,
 [Parameter(ParameterSetName="Credentials", mandatory=$false)]
 [String]$Computername = "LocalHost",
 [Parameter(ParameterSetName="Credentials", mandatory=$true)]
 [String]$User,
 [Parameter(ParameterSetName="Credentials", mandatory=$true)]
 [SecureString]$Password
)

 #Do something
}

This will not work he will ask for user and password
Do-Something -SomeThingToDo 'get-help about_Functions_Advanced' -ComputerName

This will not work he will ask for password
Do-Something -SomeThingToDo 'get-help about_Functions_Advanced' -User

Parameter set to limit the combination of parmeters

Function Do-Something
{
 Param
 (
 [Parameter(Mandatory=$true)]
 [String]$SomeThingToDo,
 [Parameter(ParameterSetName="Silently", mandatory=$false)]
 [Switch]$Silently,
 [Parameter(ParameterSetName="Loudly", mandatory=$false)]
 [Switch]$Loudly
)

 #Do something
}

This will not work because you can not use the combination Silently and Loudly
Do-Something -SomeThingToDo 'get-help about_Functions_Advanced' -Silently -Loudly

Read Parameter sets online: https://riptutorial.com/powershell/topic/6598/parameter-sets

https://riptutorial.com/ 102

https://riptutorial.com/powershell/topic/6598/parameter-sets

Chapter 40: PowerShell "Streams"; Debug,
Verbose, Warning, Error, Output and
Information

Remarks

https://technet.microsoft.com/en-us/library/hh849921.aspx

Examples

Write-Output

Write-Output generates output. This output can go to the next command after the pipeline or to the
console so it's simply displayed.

The Cmdlet sends objects down the primary pipeline, also known as the "output stream" or the
"success pipeline." To send error objects down the error pipeline, use Write-Error.

1.) Output to the next Cmdlet in the pipeline
Write-Output 'My text' | Out-File -FilePath "$env:TEMP\Test.txt"

Write-Output 'Bob' | ForEach-Object {
 "My name is $_"
}

2.) Output to the console since Write-Output is the last command in the pipeline
Write-Output 'Hello world'

3.) 'Write-Output' CmdLet missing, but the output is still considered to be 'Write-Output'
'Hello world'

The Write-Output cmdlet sends the specified object down the pipeline to the next command.1.
If the command is the last command in the pipeline, the object is displayed in the console.2.
The PowerShell interpreter treats this as an implicit Write-Output.3.

Because Write-Output's default behavior is to display the objects at the end of a pipeline, it is
generally not necessary to use the Cmdlet. For example, Get-Process | Write-Output is equivalent
to Get-Process.

Write Preferences

Messages can be written with;

Write-Verbose "Detailed Message"
Write-Information "Information Message"
Write-Debug "Debug Message"

https://riptutorial.com/ 103

https://technet.microsoft.com/en-us/library/hh849921.aspx

Write-Progress "Progress Message"
Write-Warning "Warning Message"

Each of these has a preference variable;

$VerbosePreference = "SilentlyContinue"
$InformationPreference = "SilentlyContinue"
$DebugPreference = "SilentlyContinue"
$ProgressPreference = "Continue"
$WarningPreference = "Continue"

The preference variable controls how the message and subsequent execution of the script are
handled;

$InformationPreference = "SilentlyContinue"
Write-Information "This message will not be shown and execution continues"

$InformationPreference = "Continue"
Write-Information "This message is shown and execution continues"

$InformationPreference = "Inquire"
Write-Information "This message is shown and execution will optionally continue"

$InformationPreference = "Stop"
Write-Information "This message is shown and execution terminates"

The color of the messages can be controlled for Write-Error by setting;

$host.PrivateData.ErrorBackgroundColor = "Black"
$host.PrivateData.ErrorForegroundColor = "Red"

Similar settings are available for Write-Verbose, Write-Debug and Write-Warning.

Read PowerShell "Streams"; Debug, Verbose, Warning, Error, Output and Information online:
https://riptutorial.com/powershell/topic/3255/powershell--streams---debug--verbose--warning--
error--output-and-information

https://riptutorial.com/ 104

https://riptutorial.com/powershell/topic/3255/powershell--streams---debug--verbose--warning--error--output-and-information
https://riptutorial.com/powershell/topic/3255/powershell--streams---debug--verbose--warning--error--output-and-information

Chapter 41: PowerShell Background Jobs

Introduction

Jobs were introduced in PowerShell 2.0 and helped to solve a problem inherent in the command-
line tools. In a nutshell, if you start a long running task, your prompt is unavailable until the task
finishes. As an example of a long running task, think of this simple PowerShell command:

Get-ChildItem -Path c:\ -Recurse

It will take a while to fetch full directory list of your C: drive. If you run it as Job then the console will
get the control back and you can capture the result later on.

Remarks

PowerShell Jobs run in a new process. This has pros and cons which are related.

Pros:

The job runs in a clean process, including environment.1.
The job can run asynchronously to your main PowerShell process2.

Cons:

Process environment changes will not be present in the job.1.
Parameters pass to and returned results are serialized.

This means if you change a parameter object while the job is running it will not be
reflected in the job.

•

This also means if an object cannot be serialized you cannot pass or return it (although
PowerShell may Copy any parameters and pass/return a PSObject.)

•

2.

Examples

Basic job creation

Start a Script Block as background job:

$job = Start-Job -ScriptBlock {Get-Process}

Start a script as background job:

$job = Start-Job -FilePath "C:\YourFolder\Script.ps1"

Start a job using Invoke-Command on a remote machine:

https://riptutorial.com/ 105

$job = Invoke-Command -ComputerName "ComputerName" -ScriptBlock {Get-Service winrm} -JobName
"WinRM" -ThrottleLimit 16 -AsJob

Start job as a different user (Prompts for password):

Start-Job -ScriptBlock {Get-Process} -Credential "Domain\Username"

Or

Start-Job -ScriptBlock {Get-Process} -Credential (Get-Credential)

Start job as a different user (No prompt):

$username = "Domain\Username"
$password = "password"
$secPassword = ConvertTo-SecureString -String $password -AsPlainText -Force
$credentials = New-Object System.Management.Automation.PSCredential -ArgumentList @($username,
$secPassword)
Start-Job -ScriptBlock {Get-Process} -Credential $credentials

Basic job management

Get a list of all jobs in the current session:

Get-Job

Waiting on a job to finish before getting the result:

$job | Wait-job | Receive-Job

Timeout a job if it runs too long (10 seconds in this example)

$job | Wait-job -Timeout 10

Stopping a job (completes all tasks that are pending in that job queue before ending):

$job | Stop-Job

Remove job from current session's background jobs list:

$job | Remove-Job

Note: The following will only work on Workflow Jobs.

Suspend a Workflow Job (Pause):

$job | Suspend-Job

https://riptutorial.com/ 106

Resume a Workflow Job:

$job | Resume-Job

Read PowerShell Background Jobs online:
https://riptutorial.com/powershell/topic/3970/powershell-background-jobs

https://riptutorial.com/ 107

https://riptutorial.com/powershell/topic/3970/powershell-background-jobs

Chapter 42: PowerShell Classes

Introduction

A class is an extensible program-code-template for creating objects, providing initial values for
state (member variables) and implementations of behavior (member functions or methods).A class
is a blueprint for an object. It is used as a model to define the structure of objects. An object
contains data that we access through properties and that we can work on using methods.
PowerShell 5.0 added the ability to create your own classes.

Examples

Methods and properties

class Person {
 [string] $FirstName
 [string] $LastName
 [string] Greeting() {
 return "Greetings, {0} {1}!" -f $this.FirstName, $this.LastName
 }
}

$x = [Person]::new()
$x.FirstName = "Jane"
$x.LastName = "Doe"
$greeting = $x.Greeting() # "Greetings, Jane Doe!"

Listing available constructors for a class

5.0

In PowerShell 5.0+ you can list available constructors by calling the static new-method without
parentheses.

PS> [DateTime]::new

OverloadDefinitions

datetime new(long ticks)
datetime new(long ticks, System.DateTimeKind kind)
datetime new(int year, int month, int day)
datetime new(int year, int month, int day, System.Globalization.Calendar calendar)
datetime new(int year, int month, int day, int hour, int minute, int second)
datetime new(int year, int month, int day, int hour, int minute, int second,
System.DateTimeKind kind)
datetime new(int year, int month, int day, int hour, int minute, int second,
System.Globalization.Calendar calendar)
datetime new(int year, int month, int day, int hour, int minute, int second, int millisecond)
datetime new(int year, int month, int day, int hour, int minute, int second, int millisecond,
System.DateTimeKind kind)
datetime new(int year, int month, int day, int hour, int minute, int second, int millisecond,

https://riptutorial.com/ 108

System.Globalization.Calendar calendar)
datetime new(int year, int month, int day, int hour, int minute, int second, int millisecond,
System.Globalization.Calendar calendar, System.DateTimeKind kind)

This is the same technique that you can use to list overload definitions for any method

> 'abc'.CompareTo

OverloadDefinitions

int CompareTo(System.Object value)
int CompareTo(string strB)
int IComparable.CompareTo(System.Object obj)
int IComparable[string].CompareTo(string other)

For earlier versions you can create your own function to list available constructors:

function Get-Constructor {
 [CmdletBinding()]
 param(
 [Parameter(ValueFromPipeline=$true)]
 [type]$type
)

 Process {
 $type.GetConstructors() |
 Format-Table -Wrap @{
 n="$($type.Name) Constructors"
 e={ ($_.GetParameters() | % { $_.ToString() }) -Join ", " }
 }
 }
}

Usage:

Get-Constructor System.DateTime
#Or [datetime] | Get-Constructor

DateTime Constructors

Int64 ticks
Int64 ticks, System.DateTimeKind kind
Int32 year, Int32 month, Int32 day
Int32 year, Int32 month, Int32 day, System.Globalization.Calendar calendar
Int32 year, Int32 month, Int32 day, Int32 hour, Int32 minute, Int32 second
Int32 year, Int32 month, Int32 day, Int32 hour, Int32 minute, Int32 second,
System.DateTimeKind kind
Int32 year, Int32 month, Int32 day, Int32 hour, Int32 minute, Int32 second,
System.Globalization.Calendar calendar
Int32 year, Int32 month, Int32 day, Int32 hour, Int32 minute, Int32 second, Int32 millisecond
Int32 year, Int32 month, Int32 day, Int32 hour, Int32 minute, Int32 second, Int32 millisecond,
System.DateTimeKind kind
Int32 year, Int32 month, Int32 day, Int32 hour, Int32 minute, Int32 second, Int32 millisecond,
System.Globalization.Cal
endar calendar
Int32 year, Int32 month, Int32 day, Int32 hour, Int32 minute, Int32 second, Int32 millisecond,
System.Globalization.Cal

https://riptutorial.com/ 109

endar calendar, System.DateTimeKind kind

Constructor overloading

class Person {
 [string] $Name
 [int] $Age

 Person([string] $Name) {
 $this.Name = $Name
 }

 Person([string] $Name, [int]$Age) {
 $this.Name = $Name
 $this.Age = $Age
 }
}

Get All Members of an Instance

PS > Get-Member -InputObject $anObjectInstance

This will return all members of the type instance. Here is a part of a sample output for String
instance

 TypeName: System.String

Name MemberType Definition
---- ---------- ----------
Clone Method System.Object Clone(), System.Object ICloneable.Clone()
CompareTo Method int CompareTo(System.Object value), int
CompareTo(string strB), i...
Contains Method bool Contains(string value)
CopyTo Method void CopyTo(int sourceIndex, char[] destination, int
destinationI...
EndsWith Method bool EndsWith(string value), bool EndsWith(string
value, System.S...
Equals Method bool Equals(System.Object obj), bool Equals(string
value), bool E...
GetEnumerator Method System.CharEnumerator GetEnumerator(),
System.Collections.Generic...
GetHashCode Method int GetHashCode()
GetType Method type GetType()
...

Basic Class Template

Define a class
class TypeName
{
 # Property with validate set
 [ValidateSet("val1", "Val2")]
 [string] $P1

https://riptutorial.com/ 110

 # Static property
 static [hashtable] $P2

 # Hidden property does not show as result of Get-Member
 hidden [int] $P3

 # Constructor
 TypeName ([string] $s)
 {
 $this.P1 = $s
 }

 # Static method
 static [void] MemberMethod1([hashtable] $h)
 {
 [TypeName]::P2 = $h
 }

 # Instance method
 [int] MemberMethod2([int] $i)
 {
 $this.P3 = $i
 return $this.P3
 }
}

Inheritance from Parent Class to Child Class

class ParentClass
{
 [string] $Message = "Its under the Parent Class"

 [string] GetMessage()
 {
 return ("Message: {0}" -f $this.Message)
 }
}

Bar extends Foo and inherits its members
class ChildClass : ParentClass
{

}
$Inherit = [ChildClass]::new()

SO, $Inherit.Message will give you the

"Its under the Parent Class"

Read PowerShell Classes online: https://riptutorial.com/powershell/topic/1146/powershell-classes

https://riptutorial.com/ 111

https://riptutorial.com/powershell/topic/1146/powershell-classes

Chapter 43: PowerShell Dynamic Parameters

Examples

"Simple" dynamic parameter

This example adds a new parameter to MyTestFunction if $SomeUsefulNumber is greater than 5.

function MyTestFunction
{
 [CmdletBinding(DefaultParameterSetName='DefaultConfiguration')]
 Param
 (
 [Parameter(Mandatory=$true)][int]$SomeUsefulNumber
)

 DynamicParam
 {
 $paramDictionary = New-Object -Type
System.Management.Automation.RuntimeDefinedParameterDictionary
 $attributes = New-Object System.Management.Automation.ParameterAttribute
 $attributes.ParameterSetName = "__AllParameterSets"
 $attributes.Mandatory = $true
 $attributeCollection = New-Object -Type
System.Collections.ObjectModel.Collection[System.Attribute]
 $attributeCollection.Add($attributes)
 # If "SomeUsefulNumber" is greater than 5, then add the "MandatoryParam1" parameter
 if($SomeUsefulNumber -gt 5)
 {
 # Create a mandatory string parameter called "MandatoryParam1"
 $dynParam1 = New-Object -Type
System.Management.Automation.RuntimeDefinedParameter("MandatoryParam1", [String],
$attributeCollection)
 # Add the new parameter to the dictionary
 $paramDictionary.Add("MandatoryParam1", $dynParam1)
 }
 return $paramDictionary
 }

 process
 {
 Write-Host "SomeUsefulNumber = $SomeUsefulNumber"
 # Notice that dynamic parameters need a specific syntax
 Write-Host ("MandatoryParam1 = {0}" -f $PSBoundParameters.MandatoryParam1)
 }

}

Usage:

PS > MyTestFunction -SomeUsefulNumber 3
SomeUsefulNumber = 3
MandatoryParam1 =

PS > MyTestFunction -SomeUsefulNumber 6

https://riptutorial.com/ 112

cmdlet MyTestFunction at command pipeline position 1
Supply values for the following parameters:
MandatoryParam1:

PS >MyTestFunction -SomeUsefulNumber 6 -MandatoryParam1 test
SomeUsefulNumber = 6
MandatoryParam1 = test

In the second usage example, you can clearly see that a parameter is missing.

Dynamic parameters are also taken into account with auto completion.
Here's what happens if you hit ctrl + space at the end of the line:

PS >MyTestFunction -SomeUsefulNumber 3 -<ctrl+space>
Verbose WarningAction WarningVariable OutBuffer
Debug InformationAction InformationVariable PipelineVariable
ErrorAction ErrorVariable OutVariable

PS >MyTestFunction -SomeUsefulNumber 6 -<ctrl+space>
MandatoryParam1 ErrorAction ErrorVariable OutVariable
Verbose WarningAction WarningVariable OutBuffer
Debug InformationAction InformationVariable PipelineVariable

Read PowerShell Dynamic Parameters online:
https://riptutorial.com/powershell/topic/6704/powershell-dynamic-parameters

https://riptutorial.com/ 113

https://riptutorial.com/powershell/topic/6704/powershell-dynamic-parameters

Chapter 44: PowerShell Functions

Introduction

A function is basically a named block of code. When you call the function name, the script block
within that function runs. It is a list of PowerShell statements that has a name that you assign.
When you run a function, you type the function name.It is a method of saving time when tackling
repetitive tasks. PowerShell formats in three parts: the keyword 'Function', followed by a Name,
finally, the payload containing the script block, which is enclosed by curly/parenthesis style
bracket.

Examples

Simple Function with No Parameters

This is an example of a function which returns a string. In the example, the function is called in a
statement assigning a value to a variable. The value in this case is the return value of the function.

function Get-Greeting{
 "Hello World"
}

Invoking the function
$greeting = Get-Greeting

demonstrate output
$greeting
Get-Greeting

function declares the following code to be a function.

Get-Greeting is the name of the function. Any time that function needs to be used in the script, the
function can be called by means of invoking it by name.

{ ... } is the script block that is executed by the function.

If the above code is executed in the ISE, the results would be something like:

Hello World
Hello World

Basic Parameters

A function can be defined with parameters using the param block:

function Write-Greeting {
 param(
 [Parameter(Mandatory,Position=0)]

https://riptutorial.com/ 114

 [String]$name,
 [Parameter(Mandatory,Position=1)]
 [Int]$age
)
 "Hello $name, you are $age years old."
}

Or using the simple function syntax:

function Write-Greeting ($name, $age) {
 "Hello $name, you are $age years old."
}

Note: Casting parameters is not required in either type of parameter definition.

Simple function syntax (SFS) has very limited capabilities in comparison to the param block.
Though you can define parameters to be exposed within the function, you cannot specify
Parameter Attributes, utilize Parameter Validation, include [CmdletBinding()], with SFS (and this is
a non-exhaustive list).

Functions can be invoked with ordered or named parameters.

The order of the parameters on the invocation is matched to the order of the declaration in the
function header (by default), or can be specified using the Position Parameter Attribute (as shown
in the advanced function example, above).

$greeting = Write-Greeting "Jim" 82

Alternatively, this function can be invoked with named parameters

$greeting = Write-Greeting -name "Bob" -age 82

Mandatory Parameters

Parameters to a function can be marked as mandatory

function Get-Greeting{
 param
 (
 [Parameter(Mandatory=$true)]$name
)
 "Hello World $name"
}

If the function is invoked without a value, the command line will prompt for the value:

$greeting = Get-Greeting

cmdlet Get-Greeting at command pipeline position 1
Supply values for the following parameters:
name:

https://riptutorial.com/ 115

https://msdn.microsoft.com/en-us/library/ms714348(v=vs.85).aspx
https://msdn.microsoft.com/en-gb/library/ms714432(v=vs.85).aspx

Advanced Function

This is a copy of the advanced function snippet from the Powershell ISE. Basically this is a
template for many of the things you can use with advanced functions in Powershell. Key points to
note:

get-help integration - the beginning of the function contains a comment block that is set up to
be read by the get-help cmdlet. The function block may be located at the end, if desired.

•

cmdletbinding - function will behave like a cmdlet•
parameters•
parameter sets•

<#
.Synopsis
 Short description
.DESCRIPTION
 Long description
.EXAMPLE
 Example of how to use this cmdlet
.EXAMPLE
 Another example of how to use this cmdlet
.INPUTS
 Inputs to this cmdlet (if any)
.OUTPUTS
 Output from this cmdlet (if any)
.NOTES
 General notes
.COMPONENT
 The component this cmdlet belongs to
.ROLE
 The role this cmdlet belongs to
.FUNCTIONALITY
 The functionality that best describes this cmdlet
#>
function Verb-Noun
{
 [CmdletBinding(DefaultParameterSetName='Parameter Set 1',
 SupportsShouldProcess=$true,
 PositionalBinding=$false,
 HelpUri = 'http://www.microsoft.com/',
 ConfirmImpact='Medium')]
 [Alias()]
 [OutputType([String])]
 Param
 (
 # Param1 help description
 [Parameter(Mandatory=$true,
 ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true,
 ValueFromRemainingArguments=$false,
 Position=0,
 ParameterSetName='Parameter Set 1')]
 [ValidateNotNull()]
 [ValidateNotNullOrEmpty()]
 [ValidateCount(0,5)]
 [ValidateSet("sun", "moon", "earth")]
 [Alias("p1")]

https://riptutorial.com/ 116

 $Param1,

 # Param2 help description
 [Parameter(ParameterSetName='Parameter Set 1')]
 [AllowNull()]
 [AllowEmptyCollection()]
 [AllowEmptyString()]
 [ValidateScript({$true})]
 [ValidateRange(0,5)]
 [int]
 $Param2,

 # Param3 help description
 [Parameter(ParameterSetName='Another Parameter Set')]
 [ValidatePattern("[a-z]*")]
 [ValidateLength(0,15)]
 [String]
 $Param3
)

 Begin
 {
 }
 Process
 {
 if ($pscmdlet.ShouldProcess("Target", "Operation"))
 {
 }
 }
 End
 {
 }
}

Parameter Validation

There are a variety of ways to validate parameter entry, in PowerShell.

Instead of writing code within functions or scripts to validate parameter values, these
ParameterAttributes will throw if invalid values are passed.

ValidateSet

Sometimes we need to restrict the possible values that a parameter can accept. Say we want to
allow only red, green and blue for the $Color parameter in a script or function.

We can use the ValidateSet parameter attribute to restrict this. It has the additional benefit of
allowing tab completion when setting this argument (in some environments).

param(
 [ValidateSet('red','green','blue',IgnoreCase)]
 [string]$Color
)

You can also specify IgnoreCase to disable case sensitivity.

https://riptutorial.com/ 117

ValidateRange

This method of parameter validation takes a min and max Int32 value, and requires the parameter
to be within that range.

param(
 [ValidateRange(0,120)]
 [Int]$Age
)

ValidatePattern

This method of parameter validation accepts parameters that match the regex pattern specified.

param(
 [ValidatePattern("\w{4-6}\d{2}")]
 [string]$UserName
)

ValidateLength

This method of parameter validation tests the length of the passed string.

param(
 [ValidateLength(0,15)]
 [String]$PhoneNumber
)

ValidateCount

This method of parameter validation tests the amount of arguments passed in, for example, an
array of strings.

param(
 [ValidateCount(1,5)]
 [String[]]$ComputerName
)

ValidateScript

Finally, the ValidateScript method is extraordinarily flexible, taking a scriptblock and evaluating it
using $_ to represent the passed argument. It then passes the argument if the result is $true
(including any output as valid).

This can be used to test that a file exists:

https://riptutorial.com/ 118

param(
 [ValidateScript({Test-Path $_})]
 [IO.FileInfo]$Path
)

To check that a user exists in AD:

param(
 [ValidateScript({Get-ADUser $_})]
 [String]$UserName
)

And pretty much anything else you can write (as it's not restricted to oneliners):

param(
 [ValidateScript({
 $AnHourAgo = (Get-Date).AddHours(-1)
 if ($_ -lt $AnHourAgo.AddMinutes(5) -and $_ -gt $AnHourAgo.AddMinutes(-5)) {
 $true
 } else {
 throw "That's not within five minutes. Try again."
 }
 })]
 [String]$TimeAboutAnHourAgo
)

Read PowerShell Functions online: https://riptutorial.com/powershell/topic/1673/powershell-
functions

https://riptutorial.com/ 119

https://riptutorial.com/powershell/topic/1673/powershell-functions
https://riptutorial.com/powershell/topic/1673/powershell-functions

Chapter 45: Powershell Modules

Introduction

Starting with PowerShell version 2.0, developers can create PowerShell modules. PowerShell
modules encapsulate a set of common functionality. For example, there are vendor-specific
PowerShell modules that manage various cloud services. There are also generic PowerShell
modules that interact with social media services, and perform common programming tasks, such
as Base64 encoding, working with Named Pipes, and more.

Modules can expose command aliases, functions, variables, classes, and more.

Examples

Create a Module Manifest

@{
 RootModule = 'MyCoolModule.psm1'
 ModuleVersion = '1.0'
 CompatiblePSEditions = @('Core')
 GUID = '6b42c995-67da-4139-be79-597a328056cc'
 Author = 'Bob Schmob'
 CompanyName = 'My Company'
 Copyright = '(c) 2017 Administrator. All rights reserved.'
 Description = 'It does cool stuff.'
 FunctionsToExport = @()
 CmdletsToExport = @()
 VariablesToExport = @()
 AliasesToExport = @()
 DscResourcesToExport = @()
}

Every good PowerShell module has a module manifest. The module manifest simply contains
metadata about a PowerShell module, and doesn't define the actual contents of the module.

The manifest file is a PowerShell script file, with a .psd1 file extension, that contains a HashTable.
The HashTable in the manifest must contain specific keys, in order for PowerShell to correctly
interpret it as a PowerShell module file.

The example above provides a list of the core HashTable keys that make up a module manifest,
but there are many others. The New-ModuleManifest command helps you create a new module
manifest skeleton.

Simple Module Example

function Add {
 [CmdletBinding()]
 param (
 [int] $x

https://riptutorial.com/ 120

 , [int] $y
)

 return $x + $y
}

Export-ModuleMember -Function Add

This is a simple example of what a PowerShell script module file might look like. This file would be
called MyCoolModule.psm1, and is referenced from the module manifest (.psd1) file. You'll notice that
the Export-ModuleMember command enables us to specify which functions in the module we want to
"export," or expose, to the user of the module. Some functions will be internal-only, and shouldn't
be exposed, so those would be omitted from the call to Export-ModuleMember.

Exporting a Variable from a Module

$FirstName = 'Bob'
Export-ModuleMember -Variable FirstName

To export a variable from a module, you use the Export-ModuleMember command, with the -Variable
parameter. Remember, however, that if the variable is also not explicitly exported in the module
manifest (.psd1) file, then the variable will not be visible to the module consumer. Think of the
module manifest like a "gatekeeper." If a function or variable isn't allowed in the module manifest,
it won't be visible to the module consumer.

Note: Exporting a variable is similar to making a field in a class public. It is not advisable. It would
be better to expose a function to get the field and a function to set the field.

Structuring PowerShell Modules

Rather than defining all of your functions in a single .psm1 PowerShell script module file, you might
want to break apart your function into individual files. You can then dot-source these files from
your script module file, which in essence, treats them as if they were part of the .psm1 file itself.

Consider this module directory structure:

\MyCoolModule
 \Functions
 Function1.ps1
 Function2.ps1
 Function3.ps1
MyCoolModule.psd1
MyCoolModule.psm1

Inside your MyCoolModule.psm1 file, you could insert the following code:

Get-ChildItem -Path $PSScriptRoot\Functions |
 ForEach-Object -Process { . $PSItem.FullName }

This would dot-source the individual function files into the .psm1 module file.

https://riptutorial.com/ 121

Location of Modules

PowerShell looks for modules in the directories listed in the $Env:PSModulepath.

A module called foo, in a folder called foo will be found with Import-Module foo

In that folder, PowerShell will look for a module manifest (foo.psd1), a module file (foo.psm1), a
DLL (foo.dll).

Module Member Visibility

By default, only functions defined in a module are visible outside of the module. In other words, if
you define variables and aliases in a module, they won't be available except in the module's code.

To override this behavior, you can use the Export-ModuleMember cmdlet. It has parameters called -
Function, -Variable, and -Alias which allow you to specify exactly which members are exported.

It is important to note that if you use Export-ModuleMember, only the items you specify will be visible.

Read Powershell Modules online: https://riptutorial.com/powershell/topic/8734/powershell-modules

https://riptutorial.com/ 122

https://riptutorial.com/powershell/topic/8734/powershell-modules

Chapter 46: Powershell profiles

Remarks

Profile file is a powershell script that will run while the powershell console is starting. This way we
can have our environment prepared for us each time we start new powershell session.

Typical things we want to do on powershell start are:

importing modules we use often (ActiveDirectory, Exchange, some specific DLL)•
logging•
changing the prompt•
diagnostics•

There are several profile files and locations that have different uses and also hierarchy of start-up
order:

Host User Path
Start
order

Variable

All All %WINDIR%\System32\WindowsPowerShell\v1.0\profile.ps1 1 $profile.AllUsersAllHosts

All Current %USERPROFILE%\Documents\WindowsPowerShell\profile.ps1 3 $profile.CurrentUserAllHosts

Console All %WINDIR%\System32\WindowsPowerShell\v1.0\Microsoft.PowerShell_profile.ps1 2 $profile.AllUsersCurrentHost

Console Current %USERPROFILE%\Documents\WindowsPowerShell\Microsoft.PowerShell_profile.ps1 4 $profile.CurrentUserCurrentHost

ISE All %WINDIR%\System32\WindowsPowerShell\v1.0\Microsoft.PowerShellISE_profile.ps1 2 $profile.AllUsersCurrentHost

ISE Current %USERPROFILE%\Documents\WindowsPowerShell\Microsoft.PowerShellISE_profile.ps1 4 $profile.CurrentUserCurrentHost

Examples

Create an basic profile

A PowerShell profile is used to load user defined variables and functions automatically.

PowerShell profiles are not automatically created for users.

To create a PowerShell profile C:>New-Item -ItemType File $profile.

If you are in ISE you can use the built in editor C:>psEdit $profile

An easy way to get started with your personal profile for the current host is to save some text to
path stored in the $profile-variable

https://riptutorial.com/ 123

"#Current host, current user" > $profile

Further modification to the profile can be done using PowerShell ISE, notepad, Visual Studio Code
or any other editor.

The $profile-variable returns the current user profile for the current host by default, but you can
access the path to the machine-policy (all users) and/or the profile for all hosts (console, ISE, 3rd
party) by using it's properties.

PS> $PROFILE | Format-List -Force

AllUsersAllHosts : C:\Windows\System32\WindowsPowerShell\v1.0\profile.ps1
AllUsersCurrentHost :
C:\Windows\System32\WindowsPowerShell\v1.0\Microsoft.PowerShell_profile.ps1
CurrentUserAllHosts : C:\Users\user\Documents\WindowsPowerShell\profile.ps1
CurrentUserCurrentHost :
C:\Users\user\Documents\WindowsPowerShell\Microsoft.PowerShell_profile.ps1
Length : 75

PS> $PROFILE.AllUsersAllHosts
C:\Windows\System32\WindowsPowerShell\v1.0\profile.ps1

Read Powershell profiles online: https://riptutorial.com/powershell/topic/5636/powershell-profiles

https://riptutorial.com/ 124

https://riptutorial.com/powershell/topic/5636/powershell-profiles

Chapter 47: Powershell Remoting

Remarks

about_Remote•
about_RemoteFAQ•
about_RemoteTroubleshooting•

Examples

Enabling PowerShell Remoting

PowerShell remoting must first be enabled on the server to which you wish to remotely connect.

Enable-PSRemoting -Force

This command does the following:

Runs the Set-WSManQuickConfig cmdlet, which performs the following tasks:•
Starts the WinRM service.•
Sets the startup type on the WinRM service to Automatic.•
Creates a listener to accept requests on any IP address, if one does not already exist.•
Enables a firewall exception for WS-Management communications.•
Registers the Microsoft.PowerShell and Microsoft.PowerShell.Workflow session
configurations, if it they are not already registered.

•

Registers the Microsoft.PowerShell32 session configuration on 64-bit computers, if it is not
already registered.

•

Enables all session configurations.•
Changes the security descriptor of all session configurations to allow remote access.•
Restarts the WinRM service to make the preceding changes effective.•

Only for non-domain environments

For servers in an AD Domain the PS remoting authentication is done through Kerberos ('Default'),
or NTLM ('Negotiate'). If you want to allow remoting to a non-domain server you have two options.

Either set up WSMan communication over HTTPS (which requires certificate generation) or
enable basic authentication which sends your credentials across the wire base64-encoded (that's
basically the same as plain-text so be careful with this).

In either case you'll have to add the remote systems to your WSMan trusted hosts list.

Enabling Basic Authentication

https://riptutorial.com/ 125

https://technet.microsoft.com/en-us/library/hh847900.aspx
https://technet.microsoft.com/en-us/library/hh847845.aspx
https://technet.microsoft.com/en-us/library/hh847850.aspx

Set-Item WSMan:\localhost\Service\AllowUnencrypted $true

Then on the computer you wish to connect from, you must tell it to trust the computer you're
connecting to.

Set-Item WSMan:\localhost\Client\TrustedHosts '192.168.1.1,192.168.1.2'

Set-Item WSMan:\localhost\Client\TrustedHosts *.contoso.com

Set-Item WSMan:\localhost\Client\TrustedHosts *

Important: You must tell your client to trust the computer addressed in the way you want to
connect (e.g. if you connect via IP, it must trust the IP not the hostname)

Connecting to a Remote Server via PowerShell

Using credentials from your local computer:

Enter-PSSession 192.168.1.1

Prompting for credentials on the remote computer

Enter-PSSession 192.168.1.1 -Credential $(Get-Credential)

Run commands on a Remote Computer

Once Powershell remoting is enabled (Enable-PSRemoting) You can run commands on the
remote computer like this:

Invoke-Command -ComputerName "RemoteComputerName" -ScriptBlock {
 Write host "Remote Computer Name: $ENV:ComputerName"
}

The above method creates a temporary session and closes it right after the command or
scriptblock ends.

To leave the session open and run other command in it later, you need to create a remote session
first:

$Session = New-PSSession -ComputerName "RemoteComputerName"

Then you can use this session each time you invoke commands on the remote computer:

Invoke-Command -Session $Session -ScriptBlock {
 Write host "Remote Computer Name: $ENV:ComputerName"
}

Invoke-Command -Session $Session -ScriptBlock {

https://riptutorial.com/ 126

 Get-Date
}

If you need to use different Credentials, you can add them with the -Credential Parameter:

$Cred = Get-Credential
Invoke-Command -Session $Session -Credential $Cred -ScriptBlock {...}

Remoting serialization warning

Note:

It is important to know that remoting serializes PowerShell objects on the remote
system and deserializes them on your end of the remoting session, i.e. they are
converted to XML during transport and lose all of their methods.

$output = Invoke-Command -Session $Session -ScriptBlock {
 Get-WmiObject -Class win32_printer
}

$output | Get-Member -MemberType Method

 TypeName: Deserialized.System.Management.ManagementObject#root\cimv2\Win32_Printer

Name MemberType Definition
---- ---------- ----------
GetType Method type GetType()
ToString Method string ToString(), string ToString(string format, System.IFormatProvi...

Whereas you have the methods on the regular PS object:

Get-WmiObject -Class win32_printer | Get-Member -MemberType Method

 TypeName: System.Management.ManagementObject#root\cimv2\Win32_Printer

Name MemberType Definition

---- ---------- ----------

CancelAllJobs Method System.Management.ManagementBaseObject CancelAllJobs()

GetSecurityDescriptor Method System.Management.ManagementBaseObject
GetSecurityDescriptor()
Pause Method System.Management.ManagementBaseObject Pause()

PrintTestPage Method System.Management.ManagementBaseObject PrintTestPage()

RenamePrinter Method System.Management.ManagementBaseObject
RenamePrinter(System.String NewPrinterName)
Reset Method System.Management.ManagementBaseObject Reset()

Resume Method System.Management.ManagementBaseObject Resume()

SetDefaultPrinter Method System.Management.ManagementBaseObject SetDefaultPrinter()

https://riptutorial.com/ 127

SetPowerState Method System.Management.ManagementBaseObject
SetPowerState(System.UInt16 PowerState, System.String Time)
SetSecurityDescriptor Method System.Management.ManagementBaseObject
SetSecurityDescriptor(System.Management.ManagementObject#Win32_SecurityDescriptor Descriptor)

Argument Usage

To use arguments as parameters for the remote scripting block, one might either use the
ArgumentList parameter of Invoke-Command, or use the $Using: syntax.

Using ArgumentList with unnamed parameters (i.e. in the order they are passed to the scriptblock):

$servicesToShow = "service1"
$fileName = "C:\temp\servicestatus.csv"
Invoke-Command -Session $session -ArgumentList $servicesToShow,$fileName -ScriptBlock {
 Write-Host "Calling script block remotely with $($Args.Count)"
 Get-Service -Name $args[0]
 Remove-Item -Path $args[1] -ErrorAction SilentlyContinue -Force
}

Using ArgumentList with named parameters:

$servicesToShow = "service1"
$fileName = "C:\temp\servicestatus.csv"
Invoke-Command -Session $session -ArgumentList $servicesToShow,$fileName -ScriptBlock {
 Param($serviceToShowInRemoteSession,$fileToDelete)

 Write-Host "Calling script block remotely with $($Args.Count)"
 Get-Service -Name $serviceToShowInRemoteSession
 Remove-Item -Path $fileToDelete -ErrorAction SilentlyContinue -Force
}

Using $Using: syntax:

$servicesToShow = "service1"
$fileName = "C:\temp\servicestatus.csv"
Invoke-Command -Session $session -ScriptBlock {
 Get-Service $Using:servicesToShow
 Remove-Item -Path $fileName -ErrorAction SilentlyContinue -Force
}

A best practise for automatically cleaning-up PSSessions

When a remote session is created via the New-PSsession cmdlet, the PSSession persists until the
current PowerShell session ends. Meaning that, by default, the PSSession and all associated
resources will continue to be used until the current PowerShell session ends.

Multiple active PSSessions can become a strain on resources, particularly for long running or
interlinked scripts that create hundreds of PSSessions in a single PowerShell session.

https://riptutorial.com/ 128

It is best practise to explicitly remove each PSSession after it is finished being used. [1]

The following code template utilises try-catch-finally in order to achieve the above, combining
error handling with a secure way to ensure all created PSSessions are removed when they are
finished being used:

try
{
 $session = New-PSsession -Computername "RemoteMachineName"
 Invoke-Command -Session $session -ScriptBlock {write-host "This is running on
$ENV:ComputerName"}
}
catch
{
 Write-Output "ERROR: $_"
}
finally
{
 if ($session)
 {
 Remove-PSSession $session
 }
}

References: [1] https://msdn.microsoft.com/en-
us/powershell/reference/5.1/microsoft.powershell.core/new-pssession

Read Powershell Remoting online: https://riptutorial.com/powershell/topic/3087/powershell-
remoting

https://riptutorial.com/ 129

https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.core/new-pssession
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.core/new-pssession
https://riptutorial.com/powershell/topic/3087/powershell-remoting
https://riptutorial.com/powershell/topic/3087/powershell-remoting

Chapter 48: powershell sql queries

Introduction

By going through this document You can get to know how to use SQL queries with powershell

Parameters

Item Description

$ServerInstance
Here we have to mention the instance in which the database is
present

$Database
Here we have to mention the database in which the table is
present

$Query Here we have to the query which you we want to execute in SQ

$Username &
$Password

UserName and Password which have access in database

Remarks

You can use the below function if in case you are not able to import SQLPS module

function Import-Xls
{

 [CmdletBinding(SupportsShouldProcess=$true)]

 Param(
 [parameter(
 mandatory=$true,
 position=1,
 ValueFromPipeline=$true,
 ValueFromPipelineByPropertyName=$true)]
 [String[]]
 $Path,

 [parameter(mandatory=$false)]
 $Worksheet = 1,

 [parameter(mandatory=$false)]
 [switch]
 $Force
)

 Begin
 {
 function GetTempFileName($extension)

https://riptutorial.com/ 130

 {
 $temp = [io.path]::GetTempFileName();
 $params = @{
 Path = $temp;
 Destination = $temp + $extension;
 Confirm = $false;
 Verbose = $VerbosePreference;
 }
 Move-Item @params;
 $temp += $extension;
 return $temp;
 }

 # since an extension like .xls can have multiple formats, this
 # will need to be changed
 #
 $xlFileFormats = @{
 # single worksheet formats
 '.csv' = 6; # 6, 22, 23, 24
 '.dbf' = 11; # 7, 8, 11
 '.dif' = 9; #
 '.prn' = 36; #
 '.slk' = 2; # 2, 10
 '.wk1' = 31; # 5, 30, 31
 '.wk3' = 32; # 15, 32
 '.wk4' = 38; #
 '.wks' = 4; #
 '.xlw' = 35; #

 # multiple worksheet formats
 '.xls' = -4143; # -4143, 1, 16, 18, 29, 33, 39, 43
 '.xlsb' = 50; #
 '.xlsm' = 52; #
 '.xlsx' = 51; #
 '.xml' = 46; #
 '.ods' = 60; #
 }

 $xl = New-Object -ComObject Excel.Application;
 $xl.DisplayAlerts = $false;
 $xl.Visible = $false;
 }

 Process
 {
 $Path | ForEach-Object {

 if ($Force -or $psCmdlet.ShouldProcess($_)) {

 $fileExist = Test-Path $_

 if (-not $fileExist) {
 Write-Error "Error: $_ does not exist" -Category ResourceUnavailable;

 } else {
 # create temporary .csv file from excel file and import .csv
 #
 $_ = (Resolve-Path $_).toString();
 $wb = $xl.Workbooks.Add($_);
 if ($?) {
 $csvTemp = GetTempFileName(".csv");

https://riptutorial.com/ 131

 $ws = $wb.Worksheets.Item($Worksheet);
 $ws.SaveAs($csvTemp, $xlFileFormats[".csv"]);
 $wb.Close($false);
 Remove-Variable -Name ('ws', 'wb') -Confirm:$false;
 Import-Csv $csvTemp;
 Remove-Item $csvTemp -Confirm:$false -Verbose:$VerbosePreference;
 }
 }
 }
 }
 }

 End
 {
 $xl.Quit();
 Remove-Variable -name xl -Confirm:$false;
 [gc]::Collect();
 }
}

Examples

SQLExample

For querying all the data from table MachineName we can use the command like below one.

$Query="Select * from MachineName"

$Inst="ServerInstance"

$DbName="DatabaseName

$UID="User ID"

$Password="Password"

Invoke-Sqlcmd2 -Serverinstance $Inst -Database $DBName -query $Query -Username $UID -Password
$Password

SQLQuery

For querying all the data from table MachineName we can use the command like below one.

$Query="Select * from MachineName"

$Inst="ServerInstance"

$DbName="DatabaseName

$UID="User ID"

$Password="Password"

https://riptutorial.com/ 132

Invoke-Sqlcmd2 -Serverinstance $Inst -Database $DBName -query $Query -Username $UID -Password
$Password

Read powershell sql queries online: https://riptutorial.com/powershell/topic/8217/powershell-sql-
queries

https://riptutorial.com/ 133

https://riptutorial.com/powershell/topic/8217/powershell-sql-queries
https://riptutorial.com/powershell/topic/8217/powershell-sql-queries

Chapter 49: PowerShell Workflows

Introduction

PowerShell Workflow is a feature that was introduced starting with PowerShell version 3.0.
Workflow definitions look very similar to PowerShell function definitions, however they execute
within the Windows Workflow Foundation environment, instead of directly in the PowerShell
engine.

Several unique "out of box" features are included with the Workflow engine, most notably, job
persistence.

Remarks

The PowerShell Workflow feature is exclusively supported on the Microsoft Windows platform,
under PowerShell Desktop Edition. PowerShell Core Edition, which is supported on Linux, Mac,
and Windows, does not support the PowerShell Workflow feature.

When authoring a PowerShell Workflow, keep in mind that workflows call activities, not cmdlets.
You can still call cmdlets from a PowerShell Workflow, but the Workflow Engine will implicitly wrap
the cmdlet invocation in an InlineScript activity. You can also explicitly wrap code inside of the
InlineScript activity, which executes PowerShell code; by default the InlineScript activity runs in
a separate process, and returns the result to the calling Workflow.

Examples

Simple Workflow Example

workflow DoSomeWork {
 Get-Process -Name notepad | Stop-Process
}

This is a basic example of a PowerShell Workflow definition.

Workflow with Input Parameters

Just like PowerShell functions, workflows can accept input parameter. Input parameters can
optionally be bound to a specific data type, such as a string, integer, etc. Use the standard param
keyword to define a block of input parameters, directly after the workflow declaration.

workflow DoSomeWork {
 param (
 [string[]] $ComputerName
)
 Get-Process -ComputerName $ComputerName
}

https://riptutorial.com/ 134

DoSomeWork -ComputerName server01, server02, server03

Run Workflow as a Background Job

PowerShell Workflows are inherently equipped with the ability to run as a background job. To call
a workflow as a PowerShell background job, use the -AsJob parameter when invoking the
workflow.

workflow DoSomeWork {
 Get-Process -ComputerName server01
 Get-Process -ComputerName server02
 Get-Process -ComputerName server03
}

DoSomeWork -AsJob

Add a Parallel Block to a Workflow

workflow DoSomeWork {
 parallel {
 Get-Process -ComputerName server01
 Get-Process -ComputerName server02
 Get-Process -ComputerName server03
 }
}

One of the unique features of PowerShell Workflow is the ability to define a block of activities as
parallel. To use this feature, use the parallel keyword inside your Workflow.

Calling workflow activities in parallel may help to improve performance of your workflow.

Read PowerShell Workflows online: https://riptutorial.com/powershell/topic/8745/powershell-
workflows

https://riptutorial.com/ 135

https://riptutorial.com/powershell/topic/8745/powershell-workflows
https://riptutorial.com/powershell/topic/8745/powershell-workflows

Chapter 50: PowerShell.exe Command-Line

Parameters

Parameter Description

-Help | -? | /? Shows the help

-File <FilePath> [<Args>]
Path to script-file that should be executed
and arguments (optional)

-Command { - | <script-block> [-args <arg-
array>] | <string> [<CommandParameters>] }

Commands to be executed followed by
arguments

-EncodedCommand
<Base64EncodedCommand>

Base64 encoded commands

-ExecutionPolicy <ExecutionPolicy>
Sets the execution policy for this process
only

-InputFormat { Text | XML}
Sets input format for data sent to process.
Text (strings) or XML (serialized CLIXML)

-Mta
PowerShell 3.0+: Runs PowerShell in
multi-threaded apartment (STA is default)

-Sta
PowerShell 2.0: Runs PowerShell in a
single-threaded apartment (MTA is default)

-NoExit
Leaves PowerShell console running after
executing the script/command

-NoLogo Hides copyright-banner at launch

-NonInteractive Hides console from user

-NoProfile
Avoid loading of PowerShell profiles for
machine or user

-OutputFormat { Text | XML }
Sets output format for data returned from
PowerShell. Text (strings) or XML
(serialized CLIXML)

-PSConsoleFile <FilePath>
Loads a pre-created console file that
configures the environment (created using
Export-Console)

https://riptutorial.com/ 136

Parameter Description

-Version <Windows PowerShell version>
Specify a version of PowerShell to run.
Mostly used with 2.0

-WindowStyle <style>
Specifies whether to start the PowerShell
process as a normal, hidden, minimized or
maximized window.

Examples

Executing a command

The -Command parameter is used to specify commands to be executed on launch. It supports
multiple data inputs.

-Command <string>

You can specify commands to executed on launch as a string. Multiple semicolon ;-separated
statements may be executed.

>PowerShell.exe -Command "(Get-Date).ToShortDateString()"
10.09.2016

>PowerShell.exe -Command "(Get-Date).ToShortDateString(); 'PowerShell is fun!'"
10.09.2016
PowerShell is fun!

-Command { scriptblock }

The -Command parameter also supports a scriptblock input (one or multiple statements wrapped in
braces { #code }. This only works when calling PowerShell.exe from another Windows PowerShell-
session.

PS > powershell.exe -Command {
"This can be useful, sometimes..."
(Get-Date).ToShortDateString()
}
This can be useful, sometimes...
10.09.2016

-Command - (standard input)

You can pass in commands from the standard input by using -Command -. The standard input can
come from echo, reading a file, a legacy console application etc.

https://riptutorial.com/ 137

>echo "Hello World";"Greetings from PowerShell" | PowerShell.exe -NoProfile -Command -
Hello World
Greetings from PowerShell

Executing a script file

You can specify a file to a ps1-script to execute it's content on launch using the -File parameter.

Basic script

MyScript.ps1

(Get-Date).ToShortDateString()
"Hello World"

Output:

>PowerShell.exe -File Desktop\MyScript.ps1
10.09.2016
Hello World

Using parameters and arguments

You can add parameters and/or arguments after filepath to use them in the script. Arguments will
be used as values for undefined/available script-parameters, the rest will be available in the $args-
array

MyScript.ps1

param($Name)

"Hello $Name! Today's date it $((Get-Date).ToShortDateString())"
"First arg: $($args[0])"

Output:

>PowerShell.exe -File Desktop\MyScript.ps1 -Name StackOverflow foo
Hello StackOverflow! Today's date it 10.09.2016
First arg: foo

Read PowerShell.exe Command-Line online:
https://riptutorial.com/powershell/topic/5839/powershell-exe-command-line

https://riptutorial.com/ 138

https://riptutorial.com/powershell/topic/5839/powershell-exe-command-line

Chapter 51: PSScriptAnalyzer - PowerShell
Script Analyzer

Introduction

PSScriptAnalyzer, https://github.com/PowerShell/PSScriptAnalyzer, is a static code checker for
Windows PowerShell modules and scripts. PSScriptAnalyzer checks the quality of Windows
PowerShell code by running a set of rules based on PowerShell best practices identified by the
PowerShell Team and community. It generates DiagnosticResults (errors and warnings) to inform
users about potential code defects and suggests possible solutions for improvements.

PS> Install-Module -Name PSScriptAnalyzer

Syntax

Get-ScriptAnalyzerRule [-CustomizedRulePath <string[]>] [-Name <string[]>] [-Severity
<string[]>] [<CommonParameters>]

1.

Invoke-ScriptAnalyzer [-Path] <string> [-CustomizedRulePath <string[]>] [-ExcludeRule
<string[]>] [-IncludeRule<string[]>] [-Severity <string[]>] [-Recurse] [-SuppressedOnly]
[<CommonParameters>]

2.

Examples

Analyzing scripts with the built-in preset rulesets

ScriptAnalyzer ships with sets of built-in preset rules that can be used to analyze scripts. These
include: PSGallery, DSC and CodeFormatting. They can be executed as follows:

PowerShell Gallery rules

To execute the PowerShell Gallery rules use the following command:

Invoke-ScriptAnalyzer -Path /path/to/module/ -Settings PSGallery -Recurse

DSC rules

To execute the DSC rules use the following command:

Invoke-ScriptAnalyzer -Path /path/to/module/ -Settings DSC -Recurse

Code formatting rules

To execute the code formatting rules use the following command:

Invoke-ScriptAnalyzer -Path /path/to/module/ -Settings CodeFormatting -Recurse

https://riptutorial.com/ 139

https://github.com/PowerShell/PSScriptAnalyzer

Analyzing scripts against every built-in rule

To run the script analyzer against a single script file execute:

Invoke-ScriptAnalyzer -Path myscript.ps1

This will analyze your script against every built-in rule. If your script is sufficiently large that could
result in a lot of warnings and/or errors.

To run the script analyzer against a whole directory, specify the folder containing the script,
module and DSC files you want analyzed. Specify the Recurse parameter if you also want sub-
directories searched for files to analyze.

Invoke-ScriptAnalyzer -Path . -Recurse

List all built-in rules

To see all the built-in rules execute:

Get-ScriptAnalyzerRule

Read PSScriptAnalyzer - PowerShell Script Analyzer online:
https://riptutorial.com/powershell/topic/9619/psscriptanalyzer---powershell-script-analyzer

https://riptutorial.com/ 140

https://riptutorial.com/powershell/topic/9619/psscriptanalyzer---powershell-script-analyzer

Chapter 52: Regular Expressions

Syntax

'text' -match 'RegExPattern'•
'text' -replace 'RegExPattern', 'newvalue'•
[regex]::Match("text","pattern") #Single match•
[regex]::Matches("text","pattern") #Multiple matches•
[regex]::Replace("text","pattern","newvalue")•
[regex]::Replace("text","pattern", {param($m) }) #MatchEvaluator•
[regex]::Escape("input") #Escape special characters•

Examples

Single match

You can quickly determine if a text includes a specific pattern using Regex. There are multiple
ways to work with Regex in PowerShell.

#Sample text
$text = @"
This is (a) sample
text, this is
a (sample text)
"@

#Sample pattern: Content wrapped in ()
$pattern = '\(.*?\)'

Using the -Match operator

To determine if a string matches a pattern using the built-in -matches operator, use the syntax
'input' -match 'pattern'. This will return true or false depending on the result of the search. If
there was match you can view the match and groups (if defined in pattern) by accessing the
$Matches-variable.

> $text -match $pattern
True

> $Matches

Name Value
---- -----
0 (a)

You can also use -match to filter through an array of strings and only return the strings containing a

https://riptutorial.com/ 141

match.

> $textarray = @"
This is (a) sample
text, this is
a (sample text)
"@ -split "`n"

> $textarray -match $pattern
This is (a) sample
a (sample text)

2.0

Using Select-String

PowerShell 2.0 introduced a new cmdlet for searching through text using regex. It returns a
MatchInfo object per textinput that contains a match. You can access it's properties to find
matching groups etc.

> $m = Select-String -InputObject $text -Pattern $pattern

> $m

This is (a) sample
text, this is
a (sample text)

> $m | Format-List *

IgnoreCase : True
LineNumber : 1
Line : This is (a) sample
 text, this is
 a (sample text)
Filename : InputStream
Path : InputStream
Pattern : \(.*?\)
Context :
Matches : {(a)}

Like -match, Select-String can also be used to filter through an array of strings by piping an array
to it. It creates a MatchInfo-object per string that includes a match.

> $textarray | Select-String -Pattern $pattern

This is (a) sample
a (sample text)

#You can also access the matches, groups etc.
> $textarray | Select-String -Pattern $pattern | fl *

IgnoreCase : True
LineNumber : 1

https://riptutorial.com/ 142

Line : This is (a) sample
Filename : InputStream
Path : InputStream
Pattern : \(.*?\)
Context :
Matches : {(a)}

IgnoreCase : True
LineNumber : 3
Line : a (sample text)
Filename : InputStream
Path : InputStream
Pattern : \(.*?\)
Context :
Matches : {(sample text)}

Select-String can also search using a normal text-pattern (no regex) by adding the -SimpleMatch
switch.

Using [RegEx]::Match()

You can also use the static Match() method available in the .NET [RegEx]-class.

> [regex]::Match($text,$pattern)

Groups : {(a)}
Success : True
Captures : {(a)}
Index : 8
Length : 3
Value : (a)

> [regex]::Match($text,$pattern) | Select-Object -ExpandProperty Value
(a)

Replace

A common task for regex is to replace text that matches a pattern with a new value.

#Sample text
$text = @"
This is (a) sample
text, this is
a (sample text)
"@

#Sample pattern: Text wrapped in ()
$pattern = '\(.*?\)'

#Replace matches with:
$newvalue = 'test'

https://riptutorial.com/ 143

Using -Replace operator

The -replace operator in PowerShell can be used to replace text matching a pattern with a new
value using the syntax 'input' -replace 'pattern', 'newvalue'.

> $text -replace $pattern, $newvalue
This is test sample
text, this is
a test

Using [RegEx]::Replace() method

Replacing matches can also be done using the Replace() method in the [RegEx] .NET class.

[regex]::Replace($text, $pattern, 'test')
This is test sample
text, this is
a test

Replace text with dynamic value using a MatchEvalutor

Sometimes you need to replace a value matching a pattern with a new value that's based on that
specific match, making it impossible to predict the new value. For these types of scenarios, a
MatchEvaluator can be very useful.

In PowerShell, a MatchEvaluator is as simple as a scriptblock with a single paramter that contains a
Match-object for the current match. The output of the action will be the new value for that specific
match. MatchEvalutor can be used with the [Regex]::Replace() static method.

Example: Replacing the text inside () with it's length

#Sample text
$text = @"
This is (a) sample
text, this is
a (sample text)
"@

#Sample pattern: Content wrapped in ()
$pattern = '(?<=\().*?(?=\))'

$MatchEvalutor = {
 param($match)

 #Replace content with length of content
 $match.Value.Length

}

Output:

https://riptutorial.com/ 144

https://msdn.microsoft.com/en-us/library/system.text.regularexpressions.match(v=vs.110).aspx

> [regex]::Replace($text, $pattern, $MatchEvalutor)

This is 1 sample
text, this is
a 11

Example: Make sample upper-case

#Sample pattern: "Sample"
$pattern = 'sample'

$MatchEvalutor = {
 param($match)

 #Return match in upper-case
 $match.Value.ToUpper()

}

Output:

> [regex]::Replace($text, $pattern, $MatchEvalutor)

This is (a) SAMPLE
text, this is
a (SAMPLE text)

Escape special characters

A regex-pattern uses many special characters to describe a pattern. Ex., . means "any character",
+ is "one or more" etc.

To use these characters, as a .,+ etc., in a pattern, you need to escape them to remove their
special meaning. This is done by using the escape character which is a backslash \ in regex.
Example: To search for +, you would use the pattern \+.

It can be hard to remember all special characters in regex, so to escape every special character in
a string you want to search for, you could use the [RegEx]::Escape("input") method.

> [regex]::Escape("(foo)")
\(foo\)

> [regex]::Escape("1+1.2=2.2")
1\+1\.2=2\.2

Multiple matches

There are multiple ways to find all matches for a pattern in a text.

#Sample text
$text = @"
This is (a) sample

https://riptutorial.com/ 145

text, this is
a (sample text)
"@

#Sample pattern: Content wrapped in ()
$pattern = '\(.*?\)'

Using Select-String

You can find all matches (global match) by adding the -AllMatches switch to Select-String.

> $m = Select-String -InputObject $text -Pattern $pattern -AllMatches

> $m | Format-List *

IgnoreCase : True
LineNumber : 1
Line : This is (a) sample
 text, this is
 a (sample text)
Filename : InputStream
Path : InputStream
Pattern : \(.*?\)
Context :
Matches : {(a), (sample text)}

#List all matches
> $m.Matches

Groups : {(a)}
Success : True
Captures : {(a)}
Index : 8
Length : 3
Value : (a)

Groups : {(sample text)}
Success : True
Captures : {(sample text)}
Index : 37
Length : 13
Value : (sample text)

#Get matched text
> $m.Matches | Select-Object -ExpandProperty Value
(a)
(sample text)

Using [RegEx]::Matches()

The Matches() method in the .NET `[regex]-class can also be used to do a global search for
multiple matches.

https://riptutorial.com/ 146

> [regex]::Matches($text,$pattern)

Groups : {(a)}
Success : True
Captures : {(a)}
Index : 8
Length : 3
Value : (a)

Groups : {(sample text)}
Success : True
Captures : {(sample text)}
Index : 37
Length : 13
Value : (sample text)

> [regex]::Matches($text,$pattern) | Select-Object -ExpandProperty Value

(a)
(sample text)

Read Regular Expressions online: https://riptutorial.com/powershell/topic/6674/regular-
expressions

https://riptutorial.com/ 147

https://riptutorial.com/powershell/topic/6674/regular-expressions
https://riptutorial.com/powershell/topic/6674/regular-expressions

Chapter 53: Return behavior in PowerShell

Introduction

It can be used to Exit the current scope, which can be a function, script, or script block. In
PowerShell, the result of each statement is returned as output, even without an explicit Return
keyword or to indicate that the end of the scope has been reached.

Remarks

You can read more about the return semantics on the about_Return page on TechNet, or by
invoking get-help return from a PowerShell prompt.

Notable Q&A question(s) with more examples/explanation:

Function return value in PowerShell•
PowerShell: Function doesn't have proper return value•

about_return on MSDN explains it succinctly:

The Return keyword exits a function, script, or script block. It can be used to exit a
scope at a specific point, to return a value, or to indicate that the end of the scope has
been reached.

Users who are familiar with languages like C or C# might want to use the Return
keyword to make the logic of leaving a scope explicit.

In Windows PowerShell, the results of each statement are returned as output, even
without a statement that contains the Return keyword. Languages like C or C# return
only the value or values that are specified by the Return keyword.

Examples

Early exit

function earlyexit {
 "Hello"
 return
 "World"
}

"Hello" will be placed in the output pipeline, "World" will not

Gotcha! Return in the pipeline

https://riptutorial.com/ 148

https://technet.microsoft.com/en-us/library/hh847760.aspx
http://stackoverflow.com/questions/10286164/function-return-value-in-powershell
http://stackoverflow.com/questions/22663848/powershell-function-doesnt-have-proper-return-value
https://technet.microsoft.com/en-us/library/hh847760.aspx

get-childitem | foreach-object { if ($_.IsReadOnly) { return } }

Pipeline cmdlets (ex: ForEach-Object, Where-Object, etc) operate on closures. The return here will
only move to the next item on the pipeline, not exit processing. You can use break instead of
return if you want to exit processing.

get-childitem | foreach-object { if ($_.IsReadOnly) { break } }

Gotcha! Ignoring unwanted output

Inspired by

PowerShell: Function doesn't have proper return value•

function bar {
 [System.Collections.ArrayList]$MyVariable = @()
 $MyVariable.Add("a") | Out-Null
 $MyVariable.Add("b") | Out-Null
 $MyVariable
}

The Out-Null is necessary because the .NET ArrayList.Add method returns the number of items in
the collection after adding. If omitted, the pipeline would have contained 1, 2, "a", "b"

There are multiple ways to omit unwanted output:

function bar
{
 # New-Item cmdlet returns information about newly created file/folder
 New-Item "test1.txt" | out-null
 New-Item "test2.txt" > $null
 [void](New-Item "test3.txt")
 $tmp = New-Item "test4.txt"
}

Note: to learn more about why to prefer > $null, see [topic not yet created].

Return with a value

(paraphrased from about_return)

The following methods will have the same values on the pipeline

function foo {
 $a = "Hello"
 return $a
}

function bar {
 $a = "Hello"
 $a
 return

https://riptutorial.com/ 149

http://stackoverflow.com/questions/22663848/powershell-function-doesnt-have-proper-return-value
https://technet.microsoft.com/en-us/library/hh847760.aspx

}

function quux {
 $a = "Hello"
 $a
}

How to work with functions returns

A function returns everything that is not captured by something else.
If u use the return keyword, every statement after the return line will not be executed!

Like this:

Function Test-Function
{
 Param
 (
 [switch]$ExceptionalReturn
)
 "Start"
 if($ExceptionalReturn){Return "Damn, it didn't work!"}
 New-ItemProperty -Path "HKCU:\" -Name "test" -Value "TestValue" -Type "String"
 Return "Yes, it worked!"
}

Test-Function
Will return:

Start•
The newly created registry key (this is because there are some statements that create output
that you may not be expecting)

•

Yes, it worked!•

Test-Function -ExceptionalReturn Will return:

Start•
Damn, it didn't work!•

If you do it like this:

Function Test-Function
{
 Param
 (
 [switch]$ExceptionalReturn
)
 . {
 "Start"
 if($ExceptionalReturn)
 {
 $Return = "Damn, it didn't work!"
 Return
 }

https://riptutorial.com/ 150

 New-ItemProperty -Path "HKCU:\" -Name "test" -Value "TestValue" -Type "String"
 $Return = "Yes, it worked!"
 Return
 } | Out-Null
 Return $Return
}

Test-Function
Will return:

Yes, it worked!•

Test-Function -ExceptionalReturn Will return:

Damn, it didn't work!•

With this trick you can control the returned output even if you are not sure what will each
statement will spit out.

It works like this

.{<Statements>} | Out-Null

the . makes the following scriptblock included in the code
the {} marks the script block
the | Out-Null pipes any unexpected output to Out-Null (so it is gone!)
Because the scriptblock is included it gets the same scope as the rest of the function.
So you can access variables who were made inside the scriptblock.

Read Return behavior in PowerShell online: https://riptutorial.com/powershell/topic/4781/return-
behavior-in-powershell

https://riptutorial.com/ 151

https://riptutorial.com/powershell/topic/4781/return-behavior-in-powershell
https://riptutorial.com/powershell/topic/4781/return-behavior-in-powershell

Chapter 54: Running Executables

Examples

Console Applications

PS> console_app.exe
PS> & console_app.exe
PS> Start-Process console_app.exe

GUI Applications

PS> gui_app.exe (1)
PS> & gui_app.exe (2)
PS> & gui_app.exe | Out-Null (3)
PS> Start-Process gui_app.exe (4)
PS> Start-Process gui_app.exe -Wait (5)

GUI applications launch in a different process, and will immediately return control to the
PowerShell host. Sometimes you need the application to finish processing before the next
PowerShell statement must be executed. This can be achieved by piping the application output to
$null (3) or by using Start-Process with the -Wait switch (5).

Console Streams

PS> $ErrorActionPreference = "Continue" (1)
PS> & console_app.exe *>&1 | % { $_ } (2)
PS> & console_app.exe *>&1 | ? { $_ -is [System.Management.Automation.ErrorRecord] } (3)
PS> & console_app.exe *>&1 | ? { $_ -is [System.Management.Automation.WarningRecord] } (4)
PS> & console_app.exe *>&1 | ? { $_ -is [System.Management.Automation.VerboseRecord] } (5)
PS> & console_app.exe *>&1 (6)
PS> & console_app.exe 2>&1 (7)

Stream 2 contains System.Management.Automation.ErrorRecord objects. Note that some
applications like git.exe use the "error stream" for informational purposes, that are not necessarily
errors at all. In this case it is best to look at the exit code to determine whether the error stream
should be interpreted as errors.

PowerShell understands these streams: Output, Error, Warning, Verbose, Debug, Progress.
Native applications commonly use only these streams: Output, Error, Warning.

In PowerShell 5, all streams can be redirected to the standard output/success stream (6).

In earlier PowerShell versions, only specific streams can be redirected to the standard
output/success stream (7). In this example, the "error stream" will be redirected to the output
stream.

https://riptutorial.com/ 152

Exit Codes

PS> $LastExitCode
PS> $?
PS> $Error[0]

These are built-in PowerShell variables that provide additional information about the most recent
error. $LastExitCode is the final exit code of the last native application that was executed. $? and
$Error[0] is the last error record that was generated by PowerShell.

Read Running Executables online: https://riptutorial.com/powershell/topic/7707/running-
executables

https://riptutorial.com/ 153

https://riptutorial.com/powershell/topic/7707/running-executables
https://riptutorial.com/powershell/topic/7707/running-executables

Chapter 55: Scheduled tasks module

Introduction

Examples of how to use the Scheduled Tasks module available in Windows 8/Server 2012 and on.

Examples

Run PowerShell Script in Scheduled Task

Creates a scheduled task that executes immediately, then on start up to run C:\myscript.ps1 as
SYSTEM

$ScheduledTaskPrincipal = New-ScheduledTaskPrincipal -UserId "SYSTEM" -LogonType
ServiceAccount
$ScheduledTaskTrigger1 = New-ScheduledTaskTrigger -AtStartup
$ScheduledTaskTrigger2 = New-ScheduledTaskTrigger -Once -At $(Get-Date) -RepetitionInterval
"00:01:00" -RepetitionDuration $([timeSpan] "24855.03:14:07")
$ScheduledTaskActionParams = @{
 Execute = "PowerShell.exe"
 Argument = '-executionpolicy Bypass -NonInteractive -c C:\myscript.ps1 -verbose >>
C:\output.log 2>&1"'
}
$ScheduledTaskAction = New-ScheduledTaskAction @ScheduledTaskActionParams
Register-ScheduledTask -Principal $ScheduledTaskPrincipal -Trigger
@($ScheduledTaskTrigger1,$ScheduledTaskTrigger2) -TaskName "Example Task" -Action
$ScheduledTaskAction

Read Scheduled tasks module online: https://riptutorial.com/powershell/topic/10940/scheduled-
tasks-module

https://riptutorial.com/ 154

https://riptutorial.com/powershell/topic/10940/scheduled-tasks-module
https://riptutorial.com/powershell/topic/10940/scheduled-tasks-module

Chapter 56: Security and Cryptography

Examples

Calculating a string's hash codes via .Net Cryptography

Utilizing .Net System.Security.Cryptography.HashAlgorithm namespace to generate the message
hash code with the algorithms supported.

$example="Nobody expects the Spanish Inquisition."

#calculate
$hash=[System.Security.Cryptography.HashAlgorithm]::Create("sha256").ComputeHash(
[System.Text.Encoding]::UTF8.GetBytes($example))

#convert to hex
[System.BitConverter]::ToString($hash)

#2E-DF-DA-DA-56-52-5B-12-90-FF-16-FB-17-44-CF-B4-82-DD-29-14-FF-BC-B6-49-79-0C-0E-58-9E-46-2D-
3D

The "sha256" part was the hash algorithm used.

the - can be removed or change to lower case

#convert to lower case hex without '-'
[System.BitConverter]::ToString($hash).Replace("-","").ToLower()

#2edfdada56525b1290ff16fb1744cfb482dd2914ffbcb649790c0e589e462d3d

If base64 format was preferred, using base64 converter for output

#convert to base64
[Convert]::ToBase64String($hash)

#Lt/a2lZSWxKQ/xb7F0TPtILdKRT/vLZJeQwOWJ5GLT0=

Read Security and Cryptography online: https://riptutorial.com/powershell/topic/5683/security-and-
cryptography

https://riptutorial.com/ 155

https://riptutorial.com/powershell/topic/5683/security-and-cryptography
https://riptutorial.com/powershell/topic/5683/security-and-cryptography

Chapter 57: Sending Email

Introduction

A useful technique for Exchange Server administrators is to be able to send email messages via
SMTP from PowerShell. Depending on the version of PowerShell installed on your computer or
server, there are multiple ways to send emails via powershell. There is a native cmdlet option that
is simple and easy to use. It uses the cmdlet Send-MailMessage.

Parameters

Parameter Details

Attachments<String[]>
Path and file names of files to be attached to the message. Paths
and filenames can be piped to Send-MailMessage.

Bcc<String[]>

Email addresses that receive a copy of an email message but
does not appear as a recipient in the message. Enter names
(optional) and the email address (required), such as Name
someone@example.com or someone@example.com.

Body <String_> Content of the email message.

BodyAsHtml It indicates that the content is in HTML format.

Cc<String[]>
Email addresses that receive a copy of an email message. Enter
names (optional) and the email address (required), such as
Name someone@example.com or someone@example.com.

Credential

Specifies a user account that has permission to send message
from specified email address. The default is the current user.
Enter name such as User or Domain\User, or enter a
PSCredential object.

DeliveryNotificationOption

Specifies the delivery notification options for the email message.
Multiple values can be specified. Delivery notifications are sent in
message to address specified in To parameter. Acceptable
values: None, OnSuccess, OnFailure, Delay, Never.

Encoding
Encoding for the body and subject. Acceptable values: ASCII,
UTF8, UTF7, UTF32, Unicode, BigEndianUnicode, Default,
OEM.

From
Email addresses from which the mail is sent. Enter names
(optional) and the email address (require), such as Name
someone@example.com or someone@example.com.

https://riptutorial.com/ 156

Parameter Details

Port
Alternate port on the SMTP server. The default value is 25.
Available from Windows PowerShell 3.0.

Priority
Priority of the email message. Acceptable values: Normal, High,
Low.

SmtpServer
Name of the SMTP server that sends the email message. Default
value is the value of the $PSEmailServer variable.

Subject Subject of the email message.

To
Email addresses to which the mail is sent. Enter names
(optional) and the email address (required), such as Name
someone@example.com or someone@example.com

UseSsl
Uses the Secure Sockets Layer (SSL) protocol to establish a
connection to the remote computer to send mail

Examples

Simple Send-MailMessage

Send-MailMessage -From sender@bar.com -Subject "Email Subject" -To receiver@bar.com -
SmtpServer smtp.com

Send-MailMessage with predefined parameters

$parameters = @{
 From = 'from@bar.com'
 To = 'to@bar.com'
 Subject = 'Email Subject'
 Attachments = @('C:\files\samplefile1.txt','C:\files\samplefile2.txt')
 BCC = 'bcc@bar.com'
 Body = 'Email body'
 BodyAsHTML = $False
 CC = 'cc@bar.com'
 Credential = Get-Credential
 DeliveryNotificationOption = 'onSuccess'
 Encoding = 'UTF8'
 Port = '25'
 Priority = 'High'
 SmtpServer = 'smtp.com'
 UseSSL = $True
}

Notice: Splatting requires @ instead of $ in front of variable name
Send-MailMessage @parameters

SMTPClient - Mail with .txt file in body message

https://riptutorial.com/ 157

Define the txt which will be in the email body
$Txt_File = "c:\file.txt"

function Send_mail {
 #Define Email settings
 $EmailFrom = "source@domain.com"
 $EmailTo = "destination@domain.com"
 $Txt_Body = Get-Content $Txt_File -RAW
 $Body = $Body_Custom + $Txt_Body
 $Subject = "Email Subject"
 $SMTPServer = "smtpserver.domain.com"
 $SMTPClient = New-Object Net.Mail.SmtpClient($SmtpServer, 25)
 $SMTPClient.EnableSsl = $false
 $SMTPClient.Send($EmailFrom, $EmailTo, $Subject, $Body)

}

$Body_Custom = "This is what contain file.txt : "

Send_mail

Read Sending Email online: https://riptutorial.com/powershell/topic/2040/sending-email

https://riptutorial.com/ 158

https://riptutorial.com/powershell/topic/2040/sending-email

Chapter 58: SharePoint Module

Examples

Loading SharePoint Snap-In

Loading the SharePoint Snapin can be done using the following:

Add-PSSnapin "Microsoft.SharePoint.PowerShell"

This only works in the 64bit version of PowerShell. If the window says "Windows PowerShell
(x86)" in the title you are using the incorrect version.

If the Snap-In is already loaded, the code above will cause an error. Using the following will load
only if necessary, which can be used in Cmdlets/functions:

if ((Get-PSSnapin "Microsoft.SharePoint.PowerShell" -ErrorAction SilentlyContinue) -eq $null)
{
 Add-PSSnapin "Microsoft.SharePoint.PowerShell"
}

Alternatively, if you start the SharePoint Management Shell, it will automatically include the Snap-
In.

To get a list of all the available SharePoint Cmdlets, run the following:

Get-Command -Module Microsoft.SharePoint.PowerShell

Iterating over all lists of a site collection

Print out all list names and the item count.

$site = Get-SPSite -Identity https://mysharepointsite/sites/test
foreach ($web in $site.AllWebs)
{
 foreach ($list in $web.Lists)
 {
 # Prints list title and item count
 Write-Output "$($list.Title), Items: $($list.ItemCount)"
 }
}
$site.Dispose()

Get all installed features on a site collection

Get-SPFeature -Site https://mysharepointsite/sites/test

Get-SPFeature can also be run on web scope (-Web <WebUrl>), farm scope (-Farm) and web
application scope (-WebApplication <WebAppUrl>).

https://riptutorial.com/ 159

Get all orphaned features on a site collection

Another usage of Get-SPFeature can be to find all features that have no scope:

Get-SPFeature -Site https://mysharepointsite/sites/test |? { $_.Scope -eq $null)

Read SharePoint Module online: https://riptutorial.com/powershell/topic/5147/sharepoint-module

https://riptutorial.com/ 160

https://riptutorial.com/powershell/topic/5147/sharepoint-module

Chapter 59: Signing Scripts

Remarks

Signing a script will make your scripts comply with all exeuction policies in PowerShell and ensure
the integrity of a script. Signed scripts will fail to run if they have been modified after being signed.

Scripts signing requires a code signing certificate. Recommendations:

Personal scripts/testing (not shared): Certificate from trusted certifiate authority (internal or
third-party) OR a self-signed certificate.

•

Shared inside organization: Certificate from trusted certifiate authority (internal or third-party)•
Shared outside organization: Certificate from trusted third party certifiate authority•

Read more at about_Signing @ TechNet

Execution policies

PowerShell has configurable execution policies that control which conditions are required for a
script or configuration to be executed. An excecution policy can be set for multiple scopes;
computer, current user and current process. Execution policies can easily be bypassed and is
not designed to restrict users, but rather protect them from violating signing policies
unintentionally.

The available policies are:

Setting Description

Restricted No scripts allowed

AllSigned All scripts need to be signed

RemoteSigned All local scripts allowed; only signed remote scripts

Unrestricted
No requirements. All scripts allowed, but will warn before running scripts
downloaded from the internet

Bypass All scripts are allowed and no warnings are displayed

Undefined
Remove the current execution policy for the current scope. Uses the parent
policy. If all policies are undefined, restricted will be used.

You can modify the current execution policies using Set-ExecutionPolicy-cmdlet, Group Policy or
the -ExecutionPolicy parameter when launching a powershell.exe process.

Read more at about_Execution_Policies @ TechNet

https://riptutorial.com/ 161

https://technet.microsoft.com/en-us/library/hh847874(v=wps.640).aspx
https://technet.microsoft.com/en-us/library/hh847748(v=wps.620).aspx

Examples

Signing a script

Signing a script is done by using the Set-AuthenticodeSignature-cmdlet and a code-signing
certificate.

#Get the first available personal code-signing certificate for the logged on user
$cert = @(Get-ChildItem -Path Cert:\CurrentUser\My -CodeSigningCert)[0]

#Sign script using certificate
Set-AuthenticodeSignature -Certificate $cert -FilePath c:\MyScript.ps1

You can also read a certificate from a .pfx-file using:

$cert = Get-PfxCertificate -FilePath "C:\MyCodeSigningCert.pfx"

The script will be valid until the cetificate expires. If you use a timestamp-server during the signing,
the script will continue to be valid after the certificate expires. It is also useful to add the trust chain
for the certificate (including root authority) to help most computers trust the certificated used to
sign the script.

Set-AuthenticodeSignature -Certificate $cert -FilePath c:\MyScript.ps1 -IncludeChain All -
TimeStampServer "http://timestamp.verisign.com/scripts/timstamp.dll"

It's recommended to use a timestamp-server from a trusted certificate provider like Verisign,
Comodo, Thawte etc.

Changing the execution policy using Set-ExecutionPolicy

To change the execution policy for the default scope (LocalMachine), use:

Set-ExecutionPolicy AllSigned

To change the policy for a specific scope, use:

Set-ExecutionPolicy -Scope CurrentUser -ExecutionPolicy AllSigned

You can suppress the prompts by adding the -Force switch.

Bypassing execution policy for a single script

Often you might need to execute an unsigned script that doesn't comply with the current execution
policy. An easy way to do this is by bypassing the execution policy for that single process.
Example:

powershell.exe -ExecutionPolicy Bypass -File C:\MyUnsignedScript.ps1

https://riptutorial.com/ 162

Or you can use the shorthand:

powershell -ep Bypass C:\MyUnsignedScript.ps1

Other Execution Policies:

Policy Description

AllSigned Only scripts signed by a trusted publisher can be run.

Bypass No restrictions; all Windows PowerShell scripts can be run.

Default Normally RemoteSigned, but is controlled via ActiveDirectory

RemoteSigned
Downloaded scripts must be signed by a trusted publisher before they can be
run.

Restricted
No scripts can be run. Windows PowerShell can be used only in interactive
mode.

Undefined NA

Unrestricted
* Similar to bypass

Unrestricted* Caveat: If you run an unsigned script that was downloaded from the Internet, you
are prompted for permission before it runs.

More Information available here.

Get the current execution policy

Getting the effective execution policy for the current session:

PS> Get-ExecutionPolicy
RemoteSigned

List all effective execution policies for the current session:

PS> Get-ExecutionPolicy -List

 Scope ExecutionPolicy
 ----- ---------------
MachinePolicy Undefined
 UserPolicy Undefined
 Process Undefined
 CurrentUser Undefined

https://riptutorial.com/ 163

https://blog.netspi.com/15-ways-to-bypass-the-powershell-execution-policy/

 LocalMachine RemoteSigned

List the execution policy for a specific scope, ex. process:

PS> Get-ExecutionPolicy -Scope Process
Undefined

Getting the signature from a signed script

Get information about the Authenticode signature from a signed script by using the Get-
AuthenticodeSignature-cmdlet:

Get-AuthenticodeSignature .\MyScript.ps1 | Format-List *

Creating a self-signed code signing certificate for testing

When signing personal scripts or when testing code signing it can be useful to create a self-signed
code signing certificate.

5.0

Beginning with PowerShell 5.0 you can generate a self-signed code signing certificate by using the
New-SelfSignedCertificate-cmdlet:

New-SelfSignedCertificate -FriendlyName "StackOverflow Example Code Signing" -
CertStoreLocation Cert:\CurrentUser\My -Subject "SO User" -Type CodeSigningCert

In earlier versions, you can create a self-signed certificate using the makecert.exe tool found in the
.NET Framework SDK and Windows SDK.

A self-signed ceriticate will only be trusted by computers that have installed the certificate. For
scripts that will be shared, a certificate from a trusted certificate authority (internal or trusted third-
party) are recommended.

Read Signing Scripts online: https://riptutorial.com/powershell/topic/5670/signing-scripts

https://riptutorial.com/ 164

https://riptutorial.com/powershell/topic/5670/signing-scripts

Chapter 60: Special Operators

Examples

Array Expression Operator

Returns the expression as an array.

@(Get-ChildItem $env:windir\System32\ntdll.dll)

Will return an array with one item

@(Get-ChildItem $env:windir\System32)

Will return an array with all the items in the folder (which is not a change of behavior from the inner
expression.

Call Operation

$command = 'Get-ChildItem'
& $Command

Will execute Get-ChildItem

Dot sourcing operator

. .\myScript.ps1

runs .\myScript.ps1 in the current scope making any functions, and variable available in the
current scope.

Read Special Operators online: https://riptutorial.com/powershell/topic/8981/special-operators

https://riptutorial.com/ 165

https://riptutorial.com/powershell/topic/8981/special-operators

Chapter 61: Splatting

Introduction

Splatting is a method of passing multiple parameters to a command as a single unit. This is done
by storing the parameters and their values as key-value pairs in a hashtable and splatting it to a
cmdlet using the splatting operator @.

Splatting can make a command more readable and allows you to reuse parameters in mulitple
command calls.

Remarks

Note: The Array expression operator or @() have very different behavior than the Splatting
operator @.

Read more at about_Splatting @ TechNet

Examples

Splatting parameters

Splatting is done by replacing the dollar-sign $ with the splatting operator @ when using a variable
containing a HashTable of parameters and values in a command call.

$MyParameters = @{
 Name = "iexplore"
 FileVersionInfo = $true
}

Get-Process @MyParameters

Without splatting:

Get-Process -Name "iexplore" -FileVersionInfo

You can combine normal parameters with splatted parameters to easily add common parameters
to your calls.

$MyParameters = @{
 ComputerName = "StackOverflow-PC"
}

Get-Process -Name "iexplore" @MyParameters

Invoke-Command -ScriptBlock { "Something to excute remotely" } @MyParameters

https://riptutorial.com/ 166

http://www.riptutorial.com/powershell/topic/8083/hashtables
http://www.riptutorial.com/powershell/example/27942/array-expression-operator
http://www.riptutorial.com/powershell/example/27942/array-expression-operator
https://technet.microsoft.com/en-us/library/jj672955.aspx
http://www.riptutorial.com/powershell/topic/8083/hashtables

Passing a Switch parameter using Splatting

To use Splatting to call Get-Process with the -FileVersionInfo switch similar to this:

Get-Process -FileVersionInfo

This is the call using splatting:

$MyParameters = @{
 FileVersionInfo = $true
}

Get-Process @MyParameters

Note: This is useful because you can create a default set of paramaters and make the call many
times like this

$MyParameters = @{
 FileVersionInfo = $true
}

Get-Process @MyParameters -Name WmiPrvSE
Get-Process @MyParameters -Name explorer

Piping and Splatting

Declaring the splat is useful for reusing sets of parameters multiple times or with slight variations:

$splat = @{
 Class = "Win32_SystemEnclosure"
 Property = "Manufacturer"
 ErrorAction = "Stop"
}

Get-WmiObject -ComputerName $env:COMPUTERNAME @splat
Get-WmiObject -ComputerName "Computer2" @splat
Get-WmiObject -ComputerName "Computer3" @splat

However, if the splat is not indented for reuse, you may not wish to declare it. It can be piped
instead:

@{
 ComputerName = $env:COMPUTERNAME
 Class = "Win32_SystemEnclosure"
 Property = "Manufacturer"
 ErrorAction = "Stop"
} | % { Get-WmiObject @_ }

Splatting From Top Level Function to a Series of Inner Function

Without splatting it is very cumbersome to try and pass values down through the call stack. But if

https://riptutorial.com/ 167

you combine splatting with the power of the @PSBoundParameters then you can pass the top
level parameter collection down through the layers.

Function Outer-Method
{
 Param
 (
 [string]
 $First,

 [string]
 $Second
)

 Write-Host ($First) -NoNewline

 Inner-Method @PSBoundParameters
}

Function Inner-Method
{
 Param
 (
 [string]
 $Second
)

 Write-Host (" {0}!" -f $Second)
}

$parameters = @{
 First = "Hello"
 Second = "World"
}

Outer-Method @parameters

Read Splatting online: https://riptutorial.com/powershell/topic/5647/splatting

https://riptutorial.com/ 168

https://riptutorial.com/powershell/topic/5647/splatting

Chapter 62: Strings

Syntax

"(Double-quoted) String"•

'Literal string'•

@"
Here-string
"@

•

@'
Literal here-string
'@

•

Remarks

Strings are objects representing text.

Examples

Creating a basic string

String

Strings are created by wrapping the text with double quotes. Double-quoted strings can evalute
variables and special characters.

$myString = "Some basic text"
$mySecondString = "String with a $variable"

To use a double quote inside a string it needs to be escaped using the escape character, backtick
(`). Single quotes can be used inside a double-quoted string.

$myString = "A `"double quoted`" string which also has 'single quotes'."

Literal string

Literal strings are strings that doesn't evaluate variables and special characters. It's created using
single quotes.

https://riptutorial.com/ 169

$myLiteralString = 'Simple text including special characters (`n) and a $variable-reference'

To use single quotes inside a literal string, use double single quotes or a literal here-string. Double
qutoes can be used safely inside a literal string

$myLiteralString = 'Simple string with ''single quotes'' and "double quotes".'

Format string

$hash = @{ city = 'Berlin' }

$result = 'You should really visit {0}' -f $hash.city
Write-Host $result #prints "You should really visit Berlin"

Format strings can be used with the -f operator or the static [String]::Format(string format, args)
.NET method.

Multiline string

There are multiple ways to create a multiline string in PowerShell:

You can use the special characters for carriage return and/or newline manually or use the
NewLine-environment variable to insert the systems "newline" value)

"Hello`r`nWorld"
"Hello{0}World" -f [environment]::NewLine

•

Create a linebreak while defining a string (before closing quote)

"Hello
World"

•

Using a here-string. This is the most common technique.

@"
Hello
World
"@

•

Here-string

Here-strings are very useful when creating multiline strings. One of the biggest benefits compared
to other multiline strings are that you can use quotes without having to escape them using a
backtick.

Here-string

https://riptutorial.com/ 170

Here-strings begin with @" and a linebreak and end with "@ on it's own line ("@must be first
characters on the line, not even whitespace/tab).

@"
Simple
 Multiline string
with "quotes"
"@

Literal here-string

You could also create a literal here-string by using single quotes, when you don't want any
expressions to be expanded just like a normal literal string.

@'
The following line won't be expanded
$(Get-Date)
because this is a literal here-string
'@

Concatenating strings

Using variables in a string

You can concatenate strings using variables inside a double-quoted string. This does not work
with properties.

$string1 = "Power"
$string2 = "Shell"
"Greetings from $string1$string2"

Using the + operator

You can also join strings using the + operator.

$string1 = "Greetings from"
$string2 = "PowerShell"
$string1 + " " + $string2

This also works with properties of objects.

"The title of this console is '" + $host.Name + "'"

Using subexpressions

https://riptutorial.com/ 171

The output/result of a subexpressions $() can be used in a string. This is useful when accessing
propeties of an object or performing a complex expression. Subexpressions can contain multiple
statements separated by semicolon ;

"Tomorrow is $((Get-Date).AddDays(1).DayOfWeek)"

Special characters

When used inside a double-quoted string, the escape character (backtick `) reperesents a special
character.

`0 #Null
`a #Alert/Beep
`b #Backspace
`f #Form feed (used for printer output)
`n #New line
`r #Carriage return
`t #Horizontal tab
`v #Vertical tab (used for printer output)

Example:

> "This`tuses`ttab`r`nThis is on a second line"
This uses tab
This is on a second line

You can also escape special characters with special meanings:

`# #Comment-operator
`$ #Variable operator
`` #Escape character
`' #Single quote
`" #Double quote

Read Strings online: https://riptutorial.com/powershell/topic/5124/strings

https://riptutorial.com/ 172

https://riptutorial.com/powershell/topic/5124/strings

Chapter 63: Switch statement

Introduction

A switch statement allows a variable to be tested for equality against a list of values. Each value is
called a case, and the variable being switched on is checked for each switch case. It enables you
to write a script that can choose from a series of options, but without requiring you to write a long
series of if statements.

Remarks

This topic is documenting the switch statement used for branching the flow of the script. Do not
confuse it with switch parameters which are used in functions as boolean flags.

Examples

Simple Switch

Switch statements compare a single test value to multiple conditions, and performs any associated
actions for successful comparisons. It can result in multiple matches/actions.

Given the following switch...

switch($myValue)
{
 'First Condition' { 'First Action' }
 'Second Condition' { 'Second Action' }
}

'First Action' will be output if $myValue is set as 'First Condition'.

'Section Action' will be output if $myValue is set as 'Second Condition'.

Nothing will be output if $myValue does not match either conditions.

Switch Statement with Regex Parameter

The -Regex parameter allows switch statements to perform regular expression matching against
conditions.

Example:

switch -Regex ('Condition')
{
 'Con\D+ion' {'One or more non-digits'}
 'Conditio*$' {'Zero or more "o"'}
 'C.ndition' {'Any single char.'}

https://riptutorial.com/ 173

 '^C\w+ition$' {'Anchors and one or more word chars.'}
 'Test' {'No match'}
}

Output:

One or more non-digits
Any single char.
Anchors and one or more word chars.

Simple Switch With Break

The break keyword can be used in switch statements to exit the statement before evaluating all
conditions.

Example:

switch('Condition')
{
 'Condition'
 {
 'First Action'
 }
 'Condition'
 {
 'Second Action'
 break
 }
 'Condition'
 {
 'Third Action'
 }
}

Output:

First Action
Second Action

Because of the break keyword in the second action, the third condition is not evaluated.

Switch Statement with Wildcard Parameter

The -Wildcard parameter allows switch statements to perform wildcard matching against
conditions.

Example:

switch -Wildcard ('Condition')
{
 'Condition' {'Normal match'}
 'Condit*' {'Zero or more wildcard chars.'}

https://riptutorial.com/ 174

 'C[aoc]ndit[f-l]on' {'Range and set of chars.'}
 'C?ndition' {'Single char. wildcard'}
 'Test*' {'No match'}
}

Output:

Normal match
Zero or more wildcard chars.
Range and set of chars.
Single char. wildcard

Switch Statement with Exact Parameter

The -Exact parameter enforces switch statements to perform exact, case-insensitive matching
against string-conditions.

Example:

switch -Exact ('Condition')
{
 'condition' {'First Action'}
 'Condition' {'Second Action'}
 'conditioN' {'Third Action'}
 '^*ondition$' {'Fourth Action'}
 'Conditio*' {'Fifth Action'}
}

Output:

First Action
Second Action
Third Action

The first through third actions are executed because their associated conditions matched the
input. The regex and wildcard strings in the fourth and fifth conditions fail matching.

Note that the fourth condition would also match the input string if regular expression matching was
being performed, but was ignored in this case because it is not.

Switch Statement with CaseSensitive Parameter

The -CaseSensitive parameter enforces switch statements to perform exact, case-sensitive
matching against conditions.

Example:

switch -CaseSensitive ('Condition')
{
 'condition' {'First Action'}
 'Condition' {'Second Action'}
 'conditioN' {'Third Action'}

https://riptutorial.com/ 175

}

Output:

Second Action

The second action is the only action executed because it is the only condition that exactly matches
the string 'Condition' when accounting for case-sensitivity.

Switch Statement with File Parameter

The -file parameter allows the switch statement to receive input from a file. Each line of the file is
evaluated by the switch statement.

Example file input.txt:

condition
test

Example switch statement:

switch -file input.txt
{
 'condition' {'First Action'}
 'test' {'Second Action'}
 'fail' {'Third Action'}
}

Output:

First Action
Second Action

Simple Switch with Default Condition

The Default keyword is used to execute an action when no other conditions match the input value.

Example:

switch('Condition')
{
 'Skip Condition'
 {
 'First Action'
 }
 'Skip This Condition Too'
 {
 'Second Action'
 }
 Default
 {

https://riptutorial.com/ 176

 'Default Action'
 }
}

Output:

Default Action

Switch Statement with Expressions

Conditions can also be expressions:

$myInput = 0

switch($myInput) {
 # because the result of the expression, 4,
 # does not equal our input this block should not be run.
 (2+2) { 'True. 2 +2 = 4' }

 # because the result of the expression, 0,
 # does equal our input this block should be run.
 (2-2) { 'True. 2-2 = 0' }

 # because our input is greater than -1 and is less than 1
 # the expression evaluates to true and the block should be run.
 { $_ -gt -1 -and $_ -lt 1 } { 'True. Value is 0' }
}

#Output
True. 2-2 = 0
True. Value is 0

Read Switch statement online: https://riptutorial.com/powershell/topic/1174/switch-statement

https://riptutorial.com/ 177

https://riptutorial.com/powershell/topic/1174/switch-statement

Chapter 64: TCP Communication with
PowerShell

Examples

TCP listener

Function Receive-TCPMessage {
 Param (
 [Parameter(Mandatory=$true, Position=0)]
 [ValidateNotNullOrEmpty()]
 [int] $Port
)
 Process {
 Try {
 # Set up endpoint and start listening
 $endpoint = new-object System.Net.IPEndPoint([ipaddress]::any,$port)
 $listener = new-object System.Net.Sockets.TcpListener $EndPoint
 $listener.start()

 # Wait for an incoming connection
 $data = $listener.AcceptTcpClient()

 # Stream setup
 $stream = $data.GetStream()
 $bytes = New-Object System.Byte[] 1024

 # Read data from stream and write it to host
 while (($i = $stream.Read($bytes,0,$bytes.Length)) -ne 0){
 $EncodedText = New-Object System.Text.ASCIIEncoding
 $data = $EncodedText.GetString($bytes,0, $i)
 Write-Output $data
 }

 # Close TCP connection and stop listening
 $stream.close()
 $listener.stop()
 }
 Catch {
 "Receive Message failed with: `n" + $Error[0]
 }
 }
}

Start listening with the following and capture any message in the variable $msg:

$msg = Receive-TCPMessage -Port 29800

TCP Sender

Function Send-TCPMessage {
 Param (

https://riptutorial.com/ 178

 [Parameter(Mandatory=$true, Position=0)]
 [ValidateNotNullOrEmpty()]
 [string]
 $EndPoint
 ,
 [Parameter(Mandatory=$true, Position=1)]
 [int]
 $Port
 ,
 [Parameter(Mandatory=$true, Position=2)]
 [string]
 $Message
)
 Process {
 # Setup connection
 $IP = [System.Net.Dns]::GetHostAddresses($EndPoint)
 $Address = [System.Net.IPAddress]::Parse($IP)
 $Socket = New-Object System.Net.Sockets.TCPClient($Address,$Port)

 # Setup stream wrtier
 $Stream = $Socket.GetStream()
 $Writer = New-Object System.IO.StreamWriter($Stream)

 # Write message to stream
 $Message | % {
 $Writer.WriteLine($_)
 $Writer.Flush()
 }

 # Close connection and stream
 $Stream.Close()
 $Socket.Close()
 }
}

Send a message with:

Send-TCPMessage -Port 29800 -Endpoint 192.168.0.1 -message "My first TCP message !"

Note: TCP messages may be blocked by your software firewall or any external facing firewalls you
are trying to go through. Ensure that the TCP port you set in the above command is open and that
you are have setup the listener on the same port.

Read TCP Communication with PowerShell online:
https://riptutorial.com/powershell/topic/5125/tcp-communication-with-powershell

https://riptutorial.com/ 179

https://riptutorial.com/powershell/topic/5125/tcp-communication-with-powershell

Chapter 65: URL Encode/Decode

Remarks

The regular expression used in the Decode URL examples was taken from RFC 2396, Appendix
B: Parsing a URI Reference with a Regular Expression; for posterity, here's a quote:

The following line is the regular expression for breaking-down a URI reference into its
components.

^(([^:/?#]+):)?(//([^/?#]*))?([^?#]*)(\?([^#]*))?(#(.*))?
 12 3 4 5 6 7 8 9

The numbers in the second line above are only to assist readability; they indicate the
reference points for each subexpression (i.e., each paired parenthesis). We refer to the
value matched for subexpression as $. For example, matching the above expression to

http://www.ics.uci.edu/pub/ietf/uri/#Related

results in the following subexpression matches:

$1 = http:
$2 = http
$3 = //www.ics.uci.edu
$4 = www.ics.uci.edu
$5 = /pub/ietf/uri/
$6 = <undefined>
$7 = <undefined>
$8 = #Related
$9 = Related

Examples

Quick Start: Encoding

$url1 = [uri]::EscapeDataString("http://test.com?test=my value")
url1: http%3A%2F%2Ftest.com%3Ftest%3Dmy%20value

$url2 = [uri]::EscapeUriString("http://test.com?test=my value")
url2: http://test.com?test=my%20value

HttpUtility requires at least .NET 1.1 to be installed.
$url3 = [System.Web.HttpUtility]::UrlEncode("http://test.com?test=my value")
url3: http%3a%2f%2ftest.com%3ftest%3dmy+value

Note: More info on HTTPUtility.

Quick Start: Decoding

https://riptutorial.com/ 180

https://www.ietf.org/rfc/rfc2396.txt
https://www.ietf.org/rfc/rfc2396.txt
https://msdn.microsoft.com/en-us/library/system.web.httputility(v=vs.110).aspx

Note: these examples use the variables created in the Quick Start: Encoding section above.

url1: http%3A%2F%2Ftest.com%3Ftest%3Dmy%20value
[uri]::UnescapeDataString($url1)
Returns: http://test.com?test=my value

url2: http://test.com?test=my%20value
[uri]::UnescapeDataString($url2)
Returns: http://test.com?test=my value

url3: http%3a%2f%2ftest.com%3ftest%3dmy+value
[uri]::UnescapeDataString($url3)
Returns: http://test.com?test=my+value

Note: There is no `[uri]::UnescapeUriString()`;
which makes sense since the `[uri]::UnescapeDataString()`
function handles everything it would handle plus more.

HttpUtility requires at least .NET 1.1 to be installed.
url1: http%3A%2F%2Ftest.com%3Ftest%3Dmy%20value
[System.Web.HttpUtility]::UrlDecode($url1)
Returns: http://test.com?test=my value

HttpUtility requires at least .NET 1.1 to be installed.
url2: http://test.com?test=my%20value
[System.Web.HttpUtility]::UrlDecode($url2)
Returns: http://test.com?test=my value

HttpUtility requires at least .NET 1.1 to be installed.
url3: http%3a%2f%2ftest.com%3ftest%3dmy+value
[System.Web.HttpUtility]::UrlDecode($url3)
Returns: http://test.com?test=my value

Note: More info on HTTPUtility.

Encode Query String with `[uri]::EscapeDataString()`

$scheme = 'https'
$url_format = '{0}://example.vertigion.com/foos?{1}'
$qs_data = @{
 'foo1'='bar1';
 'foo2'= 'complex;/?:@&=+$, bar''"';
 'complex;/?:@&=+$, foo''"'='bar2';
}

[System.Collections.ArrayList] $qs_array = @()
foreach ($qs in $qs_data.GetEnumerator()) {
 $qs_key = [uri]::EscapeDataString($qs.Name)
 $qs_value = [uri]::EscapeDataString($qs.Value)
 $qs_array.Add("${qs_key}=${qs_value}") | Out-Null
}

$url = $url_format -f @([uri]::"UriScheme${scheme}", ($qs_array -join '&'))

With [uri]::EscapeDataString(), you will notice that the apostrophe (') was not encoded:

https://example.vertigion.com/foos?

https://riptutorial.com/ 181

https://msdn.microsoft.com/en-us/library/system.web.httputility(v=vs.110).aspx
https://example.vertigion.com/foos

foo2=complex%3B%2F%3F%3A%40%26%3D%2B%24%2C%20bar'%22&
complex%3B%2F%3F%3A%40%26%3D%2B%24%2C%20foo'%22=bar2&foo1=bar1

Encode Query String with `[System.Web.HttpUtility]::UrlEncode()`

$scheme = 'https'
$url_format = '{0}://example.vertigion.com/foos?{1}'
$qs_data = @{
 'foo1'='bar1';
 'foo2'= 'complex;/?:@&=+$, bar''"';
 'complex;/?:@&=+$, foo''"'='bar2';
}

[System.Collections.ArrayList] $qs_array = @()
foreach ($qs in $qs_data.GetEnumerator()) {
 $qs_key = [System.Web.HttpUtility]::UrlEncode($qs.Name)
 $qs_value = [System.Web.HttpUtility]::UrlEncode($qs.Value)
 $qs_array.Add("${qs_key}=${qs_value}") | Out-Null
}

$url = $url_format -f @([uri]::"UriScheme${scheme}", ($qs_array -join '&'))

With [System.Web.HttpUtility]::UrlEncode(), you will notice that spaces are turned into plus signs (
+) instead of %20:

https://example.vertigion.com/foos?
foo2=complex%3b%2f%3f%3a%40%26%3d%2b%24%2c+bar%27%22&
complex%3b%2f%3f%3a%40%26%3d%2b%24%2c+foo%27%22=bar2&foo1=bar1

Decode URL with `[uri]::UnescapeDataString()`

Encoded with [uri]::EscapeDataString()

First, we'll decode the URL and Query String encoded with [uri]::EscapeDataString() in the above
example:

https://example.vertigion.com/foos?
foo2=complex%3B%2F%3F%3A%40%26%3D%2B%24%2C%20bar'%22&
complex%3B%2F%3F%3A%40%26%3D%2B%24%2C%20foo'%22=bar2&foo1=bar1

$url =
'https://example.vertigion.com/foos?foo2=complex%3B%2F%3F%3A%40%26%3D%2B%24%2C%20bar''%22&complex%3B%2F%3F%3A%40%26%3D%2B%24%2C%20foo''%22=bar2&foo1=bar1'

$url_parts_regex = '^(([^:/?#]+):)?(//([^/?#]*))?([^?#]*)(\?([^#]*))?(#(.*))?' # See Remarks

if ($url -match $url_parts_regex) {
 $url_parts = @{
 'Scheme' = $Matches[2];
 'Server' = $Matches[4];
 'Path' = $Matches[5];
 'QueryString' = $Matches[7];
 'QueryStringParts' = @{}
 }

https://riptutorial.com/ 182

https://example.vertigion.com/foos
https://example.vertigion.com/foos

 foreach ($qs in $query_string.Split('&')) {
 $qs_key, $qs_value = $qs.Split('=')
 $url_parts.QueryStringParts.Add(
 [uri]::UnescapeDataString($qs_key),
 [uri]::UnescapeDataString($qs_value)
) | Out-Null
 }
} else {
 Throw [System.Management.Automation.ParameterBindingException] "Invalid URL Supplied"
}

This gives you back [hashtable]$url_parts; which equals (Note: the spaces in the complex parts
are spaces):

PS > $url_parts

Name Value
---- -----
Scheme https
Path /foos
Server example.vertigion.com
QueryString
foo2=complex%3B%2F%3F%3A%40%26%3D%2B%24%2C%20bar'%22&complex%3B%2F%3F%3A%40%26%3D%2B%24%2C%20foo'%22=bar2&foo1=bar1

QueryStringParts {foo2, complex;/?:@&=+$, foo'", foo1}

PS > $url_parts.QueryStringParts

Name Value
---- -----
foo2 complex;/?:@&=+$, bar'"
complex;/?:@&=+$, foo'" bar2
foo1 bar1

Encoded with [System.Web.HttpUtility]::UrlEncode()

Now, we'll decode the URL and Query String encoded with [System.Web.HttpUtility]::UrlEncode()
in the above example:

https://example.vertigion.com/foos?
foo2=complex%3b%2f%3f%3a%40%26%3d%2b%24%2c+bar%27%22&
complex%3b%2f%3f%3a%40%26%3d%2b%24%2c+foo%27%22=bar2&foo1=bar1

$url =
'https://example.vertigion.com/foos?foo2=complex%3b%2f%3f%3a%40%26%3d%2b%24%2c+bar%27%22&complex%3b%2f%3f%3a%40%26%3d%2b%24%2c+foo%27%22=bar2&foo1=bar1'

$url_parts_regex = '^(([^:/?#]+):)?(//([^/?#]*))?([^?#]*)(\?([^#]*))?(#(.*))?' # See Remarks

if ($url -match $url_parts_regex) {
 $url_parts = @{
 'Scheme' = $Matches[2];
 'Server' = $Matches[4];
 'Path' = $Matches[5];
 'QueryString' = $Matches[7];
 'QueryStringParts' = @{}
 }

https://riptutorial.com/ 183

https://example.vertigion.com/foos

 foreach ($qs in $query_string.Split('&')) {
 $qs_key, $qs_value = $qs.Split('=')
 $url_parts.QueryStringParts.Add(
 [uri]::UnescapeDataString($qs_key),
 [uri]::UnescapeDataString($qs_value)
) | Out-Null
 }
} else {
 Throw [System.Management.Automation.ParameterBindingException] "Invalid URL Supplied"
}

This gives you back [hashtable]$url_parts, which equals (Note: the spaces in the complex parts
are plus signs (+) in the first part and spaces in the second part):

PS > $url_parts

Name Value
---- -----
Scheme https
Path /foos
Server example.vertigion.com
QueryString
foo2=complex%3b%2f%3f%3a%40%26%3d%2b%24%2c+bar%27%22&complex%3b%2f%3f%3a%40%26%3d%2b%24%2c+foo%27%22=bar2&foo1=bar1

QueryStringParts {foo2, complex;/?:@&=+$, foo'", foo1}

PS > $url_parts.QueryStringParts

Name Value
---- -----
foo2 complex;/?:@&=+$, bar'"
complex;/?:@&=+$, foo'" bar2
foo1 bar1

Decode URL with `[System.Web.HttpUtility]::UrlDecode()`

Encoded with [uri]::EscapeDataString()

First, we'll decode the URL and Query String encoded with [uri]::EscapeDataString() in the above
example:

https://example.vertigion.com/foos?
foo2=complex%3B%2F%3F%3A%40%26%3D%2B%24%2C%20bar'%22&
complex%3B%2F%3F%3A%40%26%3D%2B%24%2C%20foo'%22=bar2&foo1=bar1

$url =
'https://example.vertigion.com/foos?foo2=complex%3B%2F%3F%3A%40%26%3D%2B%24%2C%20bar''%22&complex%3B%2F%3F%3A%40%26%3D%2B%24%2C%20foo''%22=bar2&foo1=bar1'

$url_parts_regex = '^(([^:/?#]+):)?(//([^/?#]*))?([^?#]*)(\?([^#]*))?(#(.*))?' # See Remarks

if ($url -match $url_parts_regex) {
 $url_parts = @{
 'Scheme' = $Matches[2];
 'Server' = $Matches[4];

https://riptutorial.com/ 184

https://example.vertigion.com/foos

 'Path' = $Matches[5];
 'QueryString' = $Matches[7];
 'QueryStringParts' = @{}
 }

 foreach ($qs in $query_string.Split('&')) {
 $qs_key, $qs_value = $qs.Split('=')
 $url_parts.QueryStringParts.Add(
 [System.Web.HttpUtility]::UrlDecode($qs_key),
 [System.Web.HttpUtility]::UrlDecode($qs_value)
) | Out-Null
 }
} else {
 Throw [System.Management.Automation.ParameterBindingException] "Invalid URL Supplied"
}

This gives you back [hashtable]$url_parts; which equals (Note: the spaces in the complex parts
are spaces):

PS > $url_parts

Name Value
---- -----
Scheme https
Path /foos
Server example.vertigion.com
QueryString
foo2=complex%3B%2F%3F%3A%40%26%3D%2B%24%2C%20bar'%22&complex%3B%2F%3F%3A%40%26%3D%2B%24%2C%20foo'%22=bar2&foo1=bar1

QueryStringParts {foo2, complex;/?:@&=+$, foo'", foo1}

PS > $url_parts.QueryStringParts

Name Value
---- -----
foo2 complex;/?:@&=+$, bar'"
complex;/?:@&=+$, foo'" bar2
foo1 bar1

Encoded with [System.Web.HttpUtility]::UrlEncode()

Now, we'll decode the URL and Query String encoded with [System.Web.HttpUtility]::UrlEncode()
in the above example:

https://example.vertigion.com/foos?
foo2=complex%3b%2f%3f%3a%40%26%3d%2b%24%2c+bar%27%22&
complex%3b%2f%3f%3a%40%26%3d%2b%24%2c+foo%27%22=bar2&foo1=bar1

$url =
'https://example.vertigion.com/foos?foo2=complex%3b%2f%3f%3a%40%26%3d%2b%24%2c+bar%27%22&complex%3b%2f%3f%3a%40%26%3d%2b%24%2c+foo%27%22=bar2&foo1=bar1'

$url_parts_regex = '^(([^:/?#]+):)?(//([^/?#]*))?([^?#]*)(\?([^#]*))?(#(.*))?' # See Remarks

if ($url -match $url_parts_regex) {
 $url_parts = @{
 'Scheme' = $Matches[2];

https://riptutorial.com/ 185

https://example.vertigion.com/foos

 'Server' = $Matches[4];
 'Path' = $Matches[5];
 'QueryString' = $Matches[7];
 'QueryStringParts' = @{}
 }

 foreach ($qs in $query_string.Split('&')) {
 $qs_key, $qs_value = $qs.Split('=')
 $url_parts.QueryStringParts.Add(
 [System.Web.HttpUtility]::UrlDecode($qs_key),
 [System.Web.HttpUtility]::UrlDecode($qs_value)
) | Out-Null
 }
} else {
 Throw [System.Management.Automation.ParameterBindingException] "Invalid URL Supplied"
}

This gives you back [hashtable]$url_parts; which equals (Note: the spaces in the complex parts
are spaces):

PS > $url_parts

Name Value
---- -----
Scheme https
Path /foos
Server example.vertigion.com
QueryString
foo2=complex%3b%2f%3f%3a%40%26%3d%2b%24%2c+bar%27%22&complex%3b%2f%3f%3a%40%26%3d%2b%24%2c+foo%27%22=bar2&foo1=bar1

QueryStringParts {foo2, complex;/?:@&=+$, foo'", foo1}

PS > $url_parts.QueryStringParts

Name Value
---- -----
foo2 complex;/?:@&=+$, bar'"
complex;/?:@&=+$, foo'" bar2
foo1 bar1

Read URL Encode/Decode online: https://riptutorial.com/powershell/topic/7352/url-encode-decode

https://riptutorial.com/ 186

https://riptutorial.com/powershell/topic/7352/url-encode-decode

Chapter 66: Using existing static classes

Introduction

These classes are reference libraries of methods and properties that do not change state, in one
word, immutable. You don't need to create them, you simply use them. Classes and methods such
as these are called static classes because they are not created, destroyed, or changed.You can
refer to a static class by surrounding the class name with square brackets.

Examples

Creating new GUID instantly

Use existing .NET classes instantly with PowerShell by using [class]::Method(args):

PS C:\> [guid]::NewGuid()

Guid

8874a185-64be-43ed-a64c-d2fe4b6e31bc

Similarly, in PowerShell 5+ you may use the New-Guid cmdlet:

PS C:\> New-Guid

Guid

8874a185-64be-43ed-a64c-d2fe4b6e31bc

To get the GUID as a [String] only, referenced the .Guid property:

[guid]::NewGuid().Guid

Using the .Net Math Class

You can use the .Net Math class to do calculations ([System.Math])

If you want to know which methods are available you can use:

[System.Math] | Get-Member -Static -MemberType Methods

Here are some examples how to use the Math class:

PS C:\> [System.Math]::Floor(9.42)
9
PS C:\> [System.Math]::Ceiling(9.42)
10

https://riptutorial.com/ 187

PS C:\> [System.Math]::Pow(4,3)
64
PS C:\> [System.Math]::Sqrt(49)
7

Adding types

By Assembly Name, add library

Add-Type -AssemblyName "System.Math"

or by file path:

Add-Type -Path "D:\Libs\CustomMath.dll"

To Use added type:

[CustomMath.NameSpace]::Method(param1, $variableParam, [int]castMeAsIntParam)

Read Using existing static classes online: https://riptutorial.com/powershell/topic/1522/using-
existing-static-classes

https://riptutorial.com/ 188

https://riptutorial.com/powershell/topic/1522/using-existing-static-classes
https://riptutorial.com/powershell/topic/1522/using-existing-static-classes

Chapter 67: Using ShouldProcess

Syntax

$PSCmdlet.ShouldProcess("Target")•
$PSCmdlet.ShouldProcess("Target", "Action")•

Parameters

Parameter Details

Target The resource being changed.

Action The operation being performed. Defaults to the name of the cmdlet.

Remarks

$PSCmdlet.ShouldProcess() will also automatically write a message to the verbose output.

PS> Invoke-MyCmdlet -Verbose
VERBOSE: Performing the operation "Invoke-MyCmdlet" on target "Target of action"

Examples

Adding -WhatIf and -Confirm support to your cmdlet

function Invoke-MyCmdlet {
 [CmdletBinding(SupportsShouldProcess = $true)]
 param()
 # ...
}

Using ShouldProcess() with one argument

if ($PSCmdlet.ShouldProcess("Target of action")) {
 # Do the thing
}

When using -WhatIf:

What if: Performing the action "Invoke-MyCmdlet" on target "Target of action"

When using -Confirm:

https://riptutorial.com/ 189

Are you sure you want to perform this action?
Performing operation "Invoke-MyCmdlet" on target "Target of action"
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is "Y"):

Full Usage Example

Other examples couldn't clearly explain to me how to trigger the conditional logic.

This example also shows that underlying commands will also listen to the -Confirm flag!

<#
Restart-Win32Computer
#>

function Restart-Win32Computer
{
 [CmdletBinding(SupportsShouldProcess=$true,ConfirmImpact="High")]
 param (
 [parameter(Mandatory=$true,ValueFromPipeline=$true,ValueFromPipelineByPropertyName=$true)]
 [string[]]$computerName,
 [parameter(Mandatory=$true)]
 [string][ValidateSet("Restart","LogOff","Shutdown","PowerOff")] $action,
 [boolean]$force = $false
)
BEGIN {
translate action to numeric value required by the method
switch($action) {
 "Restart"
 {
 $_action = 2
 break
 }
 "LogOff"
 {
 $_action = 0
 break
 }
 "Shutdown"
 {
 $_action = 2
 break
 }
 "PowerOff"
 {
 $_action = 8
 break
 }
}
to force, add 4 to the value
if($force)
{
 $_action += 4
}
write-verbose "Action set to $action"
}
PROCESS {
 write-verbose "Attempting to connect to $computername"
 # this is how we support -whatif and -confirm
 # which are enabled by the SupportsShouldProcess

https://riptutorial.com/ 190

 # parameter in the cmdlet bindnig
 if($pscmdlet.ShouldProcess($computername)) {
 get-wmiobject win32_operatingsystem -computername $computername | invoke-wmimethod -
name Win32Shutdown -argumentlist $_action
 }
}
}
#Usage:
#This will only output a description of the actions that this command would execute if -WhatIf
is removed.
'localhost','server1'| Restart-Win32Computer -action LogOff -whatif

#This will request the permission of the caller to continue with this item.
#Attention: in this example you will get two confirmation request because all cmdlets called
by this cmdlet that also support ShouldProcess, will ask for their own confirmations...
'localhost','server1'| Restart-Win32Computer -action LogOff -Confirm

Read Using ShouldProcess online: https://riptutorial.com/powershell/topic/1145/using-
shouldprocess

https://riptutorial.com/ 191

https://riptutorial.com/powershell/topic/1145/using-shouldprocess
https://riptutorial.com/powershell/topic/1145/using-shouldprocess

Chapter 68: Using the Help System

Remarks

Get-Help is a cmdlet for reading help topics in PowerShell.

Read more a TechNet

Examples

Updating the Help System

3.0

Beginning with PowerShell 3.0, you can download and update the offline help documentation
using a single cmdlet.

Update-Help

To update help on multiple computers (or computers not connected to the internet).

Run the following on a computer with the help files

Save-Help -DestinationPath \\Server01\Share\PSHelp -Credential $Cred

To run on many computers remotely

Invoke-Command -ComputerName (Get-Content Servers.txt) -ScriptBlock {Update-Help -SourcePath
\\Server01\Share\Help -Credential $cred}

Using Get-Help

Get-Help can be used to view help in PowerShell. You can search for cmdlets, functions, providers
or other topics.

In order to view the help documentation about jobs, use:

Get-Help about_Jobs

You can search for topics using wildcards. If you want to list available help topics with a title
starting with about_, try:

Get-Help about_*

If you wanted help on Select-Object, you would use:

Get-Help Select-Object

https://riptutorial.com/ 192

https://technet.microsoft.com/en-us/library/hh849696(v=wps.640).aspx

You can also use the aliases help or man.

Viewing online version of a help topic

You can access online help documentation using:

Get-Help Get-Command -Online

Viewing Examples

Show usage examples for a specific cmdlet.

Get-Help Get-Command -Examples

Viewing the Full Help Page

View the full documentation for the topic.

Get-Help Get-Command -Full

Viewing help for a specific parameter

You can view help for a specific parameter using:

Get-Help Get-Content -Parameter Path

Read Using the Help System online: https://riptutorial.com/powershell/topic/5644/using-the-help-
system

https://riptutorial.com/ 193

https://riptutorial.com/powershell/topic/5644/using-the-help-system
https://riptutorial.com/powershell/topic/5644/using-the-help-system

Chapter 69: Using the progress bar

Introduction

A progress bar can be used to show something is in a process.It is a time-saving and slick feature
one should have. Progress bars are incredibly useful while debugging to figure out which part of
the script is executing, and they’re satisfying for the people running scripts to track what’s
happening. It is common to display some kind of progress when a script takes a long time to
complete. When a user launches the script and nothing happens, one begins to wonder if the
script launched correctly.

Examples

Simple use of progress bar

1..100 | ForEach-Object {
 Write-Progress -Activity "Copying files" -Status "$_ %" -Id 1 -PercentComplete $_ -
CurrentOperation "Copying file file_name_$_.txt"
 Start-Sleep -Milliseconds 500 # sleep simulates working code, replace this line
with your executive code (i.e. file copying)
 }

Please note that for brevity this example does not contain any executive code (simulated with
Start-Sleep). However it is possible to run it directly as is and than modify and play with it.

This is how result looks in PS console:

This is how result looks in PS ISE:

https://riptutorial.com/ 194

https://i.stack.imgur.com/7vWJK.png

Usage of inner progress bar

1..10 | foreach-object {
 $fileName = "file_name_$_.txt"
 Write-Progress -Activity "Copying files" -Status "$($_*10) %" -Id 1 -PercentComplete
($_*10) -CurrentOperation "Copying file $fileName"

 1..100 | foreach-object {
 Write-Progress -Activity "Copying contents of the file $fileName" -Status "$_ %" -
Id 2 -ParentId 1 -PercentComplete $_ -CurrentOperation "Copying $_. line"

 Start-Sleep -Milliseconds 20 # sleep simulates working code, replace this line
with your executive code (i.e. file copying)
 }

 Start-Sleep -Milliseconds 500 # sleep simulates working code, replace this line with
your executive code (i.e. file search)

 }

Please note that for brevity this example does not contain any executive code (simulated with
Start-Sleep). However it is possible to run it directly as is and than modify and play with it.

This is how result looks in PS console:

https://riptutorial.com/ 195

https://i.stack.imgur.com/58sB0.png

This is how result looks in PS ISE:

Read Using the progress bar online: https://riptutorial.com/powershell/topic/5020/using-the-
progress-bar

https://riptutorial.com/ 196

https://i.stack.imgur.com/URYAL.png
https://i.stack.imgur.com/k8bEr.png
https://riptutorial.com/powershell/topic/5020/using-the-progress-bar
https://riptutorial.com/powershell/topic/5020/using-the-progress-bar

Chapter 70: Variables in PowerShell

Introduction

Variables are used for storing values. Let the value be of any type , we need to store it somewhere
so that we can use it throughout the console/script. Variable names in PowerShell begin with a $,
as in $Variable1, and values are assigned using =, like $Variable1 = "Value 1".PowerShell
supports a huge number of variable types; such as text strings, integers, decimals, arrays, and
even advanced types like version numbers or IP addresses.

Examples

Simple variable

All variables in powershell begin with a US dollar sign ($). The simplest example of this is:

$foo = "bar"

This statement allocates a variable called foo with a string value of "bar".

Removing a variable

To remove a variable from memory, one can use the Remove-Item cmdlet. Note: The variable name
does NOT include the $.

Remove-Item Variable:\foo

Variable has a provider to allow most *-item cmdlets to work much like file systems.

Another method to remove variable is to use Remove-Variable cmdlet and its alias rv

$var = "Some Variable" #Define variable 'var' containing the string 'Some Variable'
$var #For test and show string 'Some Variable' on the console

Remove-Variable -Name var
$var

#also can use alias 'rv'
rv var

Scope

The default scope for a variable is the enclosing container. If outside a script, or other container
then the scope is Global. To specify a scope, it is prefixed to the variable name $scope:varname like
so:

https://riptutorial.com/ 197

https://technet.microsoft.com/en-us/library/hh847849.aspx
https://technet.microsoft.com/en-us/library/hh847849.aspx

$foo = "Global Scope"
function myFunc {
 $foo = "Function (local) scope"
 Write-Host $global:foo
 Write-Host $local:foo
 Write-Host $foo
}
myFunc
Write-Host $local:foo
Write-Host $foo

Output:

 Global Scope
 Function (local) scope
 Function (local) scope
 Global Scope
 Global Scope

Reading a CmdLet Output

By Default, powershell would return the output to the calling Entity. Consider Below Example,

Get-Process -Name excel

This would simply, return the running process which matches the name excel, to the calling entity.
In this case, the PowerShell Host. It prints something like,

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id SI ProcessName

------- ------ ----- ----- ----- ------ -- -- -----------

 1037 54 67632 62544 617 5.23 4544 1 EXCEL

Now if you assign the output to a variable, it simply wont print anything. And of course the variable
holds the output. (Be it a string, Object - Any type for that matter)

$allExcel = Get-Process -Name excel

So, lets say you have a scenario where you want to assign a variable by a Dynamic name, you
can use the -OutVariable parameter

Get-Process -Name excel -OutVariable AllRunningExcel

Note that the '$' is missing here. A major difference between these two assignments is that, it also
prints the output apart from assigning it to the variable AllRunningExcel. You can also choose to
assign it to an another variable.

$VarOne = Get-Process -Name excel -OutVariable VarTwo

https://riptutorial.com/ 198

Albeit, the above scenario is very rare, both variables $VarOne & $VarTwo will have the same
value.

Now consider this,

Get-Process -Name EXCEL -OutVariable MSOFFICE
Get-Process -Name WINWORD -OutVariable +MSOFFICE

The first statement would simply get excel process & assign it to MSOFFICE variable, and next
would get ms word processes running and "Append" it to the existing value of MSOFFICE. It
would look something like this,

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id SI ProcessName

------- ------ ----- ----- ----- ------ -- -- -----------

 1047 54 67720 64448 618 5.70 4544 1 EXCEL

 1172 70 50052 81780 584 1.83 14968 1 WINWORD

List Assignment of Multiple Variables

Powershell allows multiple assignment of variables and treats almost everything like an array or
list. This means that instead of doing something like this:

$input = "foo.bar.baz"
$parts = $input.Split(".")
$foo = $parts[0]
$bar = $parts[1]
$baz = $parts[2]

You can simply do this:

$foo, $bar, $baz = $input.Split(".")

Since Powershell treats assignments in this manner like lists, if there are more values in the list
than items in your list of variables to assign them to, the last variable becomes an array of the
remaining values. This means you can also do things like this:

$foo, $leftover = $input.Split(".") #Sets $foo = "foo", $leftover = ["bar","baz"]
$bar = $leftover[0] # $bar = "bar"
$baz = $leftover[1] # $baz = "baz"

Arrays

Array declaration in Powershell is almost the same as instantiating any other variable, i.e. you use
a $name = syntax. The items in the array are declared by separating them by commas(,):

$myArrayOfInts = 1,2,3,4
$myArrayOfStrings = "1","2","3","4"

https://riptutorial.com/ 199

Adding to an arry

Adding to an array is as simple as using the + operator:

$myArrayOfInts = $myArrayOfInts + 5
//now contains 1,2,3,4 & 5!

Combining arrays together

Again this is as simple as using the + operator

$myArrayOfInts = 1,2,3,4
$myOtherArrayOfInts = 5,6,7
$myArrayOfInts = $myArrayOfInts + $myOtherArrayOfInts
//now 1,2,3,4,5,6,7

Read Variables in PowerShell online: https://riptutorial.com/powershell/topic/3457/variables-in-
powershell

https://riptutorial.com/ 200

https://riptutorial.com/powershell/topic/3457/variables-in-powershell
https://riptutorial.com/powershell/topic/3457/variables-in-powershell

Chapter 71: WMI and CIM

Remarks

CIM vs WMI

As of PowerShell 3.0, there are two ways to work with management classes in PowerShell, WMI
and CIM. PowerShell 1.0 and 2.0 only supported the WMI-module which is now superseeded by
the new and improved CIM-module. In a later release of PowerShell, the WMI-cmdlets will be
removed.

Comparison of CIM and WMI-modules:

CIM-cmdlet WMI-cmdlet What it does

Get-CimInstance Get-WmiObject Gets CIM/WMI-objects for a class

Invoke-CimMethod
Invoke-
WmiMethod

Invokes a CIM/WMI-class method

Register-
CimIndicationEvent

Register-
WmiEvent

Registers event for a CIM/WMI-class

Remove-CimInstance
Remove-
WmiObject

Remove CIM/WMI-object

Set-CimInstance
Set-
WmiInstance

Updates/Saves CIM/WMI-object

Get-
CimAssociatedInstance

N/A
Get associated instances (linked
object/classes)

Get-CimClass
Get-WmiObject
-List

List CIM/WMI-classes

New-CimInstance N/A Create new CIM-object

Get-CimSession N/A Lists CIM-sessions

New-CimSession N/A Create new CIM-session

New-CimSessionOption N/A
Creates object with session options; protocol,
encoding, disable encryption etc. (for use with
New-CimSession)

Remove-CimSession N/A Removes/Stops CIM-session

https://riptutorial.com/ 201

Additional resources

Should I use CIM or WMI with Windows PowerShell? @ Hey, Scripting Guy! Blog

Examples

Querying objects

CIM/WMI is most commonly used to query information or configuration on a device. Thof a class
that represents a configuration, process, user etc. In PowerShell there are multiple ways to access
these classes and instances, but the most common ways are by using the Get-CimInstance (CIM)
or Get-WmiObject (WMI) cmdlets.

List all objects for CIM-class

You can list all instances of a class.

3.0

CIM:

> Get-CimInstance -ClassName Win32_Process

ProcessId Name HandleCount WorkingSetSize VirtualSize
--------- ---- ----------- -------------- -----------
0 System Idle Process 0 4096 65536
4 System 1459 32768 3563520
480 Secure System 0 3731456 0
484 smss.exe 52 372736 2199029891072
....
....

WMI:

Get-WmiObject -Class Win32_Process

Using a filter

You can apply a filter to only get specific instances of a CIM/WMI-class. Filters are written using
WQL (default) or CQL (add -QueryDialect CQL). -Filter uses the WHERE-part of a full WQL/CQL-query.

3.0

CIM:

https://riptutorial.com/ 202

https://blogs.technet.microsoft.com/heyscriptingguy/2016/02/08/should-i-use-cim-or-wmi-with-windows-powershell/

Get-CimInstance -ClassName Win32_Process -Filter "Name = 'powershell.exe'"

ProcessId Name HandleCount WorkingSetSize VirtualSize
--------- ---- ----------- -------------- -----------
4800 powershell.exe 676 88305664 2199697199104

WMI:

Get-WmiObject -Class Win32_Process -Filter "Name = 'powershell.exe'"

...
Caption : powershell.exe
CommandLine : "C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe"
CreationClassName : Win32_Process
CreationDate : 20160913184324.393887+120
CSCreationClassName : Win32_ComputerSystem
CSName : STACKOVERFLOW-PC
Description : powershell.exe
ExecutablePath : C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe
ExecutionState :
Handle : 4800
HandleCount : 673
....

Using a WQL-query:

You can also use a WQL/CQL-query to query and filter instances.

3.0

CIM:

Get-CimInstance -Query "SELECT * FROM Win32_Process WHERE Name = 'powershell.exe'"

ProcessId Name HandleCount WorkingSetSize VirtualSize
--------- ---- ----------- -------------- -----------
4800 powershell.exe 673 88387584 2199696674816

Querying objects in a different namespace:

3.0

CIM:

> Get-CimInstance -Namespace "root/SecurityCenter2" -ClassName AntiVirusProduct

displayName : Windows Defender
instanceGuid : {D68DDC3A-831F-4fae-9E44-DA132C1ACF46}
pathToSignedProductExe : %ProgramFiles%\Windows Defender\MSASCui.exe
pathToSignedReportingExe : %ProgramFiles%\Windows Defender\MsMpeng.exe
productState : 397568
timestamp : Fri, 09 Sep 2016 21:26:41 GMT
PSComputerName :

https://riptutorial.com/ 203

WMI:

> Get-WmiObject -Namespace "root\SecurityCenter2" -Class AntiVirusProduct

__GENUS : 2
__CLASS : AntiVirusProduct
__SUPERCLASS :
__DYNASTY : AntiVirusProduct
__RELPATH : AntiVirusProduct.instanceGuid="{D68DDC3A-831F-4fae-9E44-
DA132C1ACF46}"
__PROPERTY_COUNT : 6
__DERIVATION : {}
__SERVER : STACKOVERFLOW-PC
__NAMESPACE : ROOT\SecurityCenter2
__PATH : \\STACKOVERFLOW-
PC\ROOT\SecurityCenter2:AntiVirusProduct.instanceGuid="{D68DDC3A-831F-4fae-9E44-DA132C1ACF46}"
displayName : Windows Defender
instanceGuid : {D68DDC3A-831F-4fae-9E44-DA132C1ACF46}
pathToSignedProductExe : %ProgramFiles%\Windows Defender\MSASCui.exe
pathToSignedReportingExe : %ProgramFiles%\Windows Defender\MsMpeng.exe
productState : 397568
timestamp : Fri, 09 Sep 2016 21:26:41 GMT
PSComputerName : STACKOVERFLOW-PC

Classes and namespaces

There are many classes available in CIM and WMI which are separated into multiple namespaces.
The most common (and default) namespace in Windows is root/cimv2. To find the righ class, it can
useful to list all or search.

List available classes

You can list all available classes in the default namespace (root/cimv2) on a computer.

3.0

CIM:

Get-CimClass

WMI:

Get-WmiObject -List

Search for a class

You can search for specific classes using wildcards. Ex: Find classes containing the word process.

3.0

https://riptutorial.com/ 204

CIM:

> Get-CimClass -ClassName "*Process*"

 NameSpace: ROOT/CIMV2

CimClassName CimClassMethods CimClassProperties

------------ --------------- ------------------

Win32_ProcessTrace {} {SECURITY_DESCRIPTOR, TIME_CREATED,
ParentProcessID, ProcessID...}
Win32_ProcessStartTrace {} {SECURITY_DESCRIPTOR, TIME_CREATED,
ParentProcessID, ProcessID...}
Win32_ProcessStopTrace {} {SECURITY_DESCRIPTOR, TIME_CREATED,
ParentProcessID, ProcessID...}
CIM_Process {} {Caption, Description, InstallDate,
Name...}
Win32_Process {Create, Terminat... {Caption, Description, InstallDate,
Name...}
CIM_Processor {SetPowerState, R... {Caption, Description, InstallDate,
Name...}
Win32_Processor {SetPowerState, R... {Caption, Description, InstallDate,
Name...}
...

WMI:

Get-WmiObject -List -Class "*Process*"

List classes in a different namespace

The root namespace is simply called root. You can list classes in another namespace using the -
NameSpace parameter.

3.0

CIM:

> Get-CimClass -Namespace "root/SecurityCenter2"

 NameSpace: ROOT/SecurityCenter2

CimClassName CimClassMethods CimClassProperties

------------ --------------- ------------------
....
AntiSpywareProduct {} {displayName, instanceGuid,
pathToSignedProductExe, pathToSignedReportingE...
AntiVirusProduct {} {displayName, instanceGuid,
pathToSignedProductExe, pathToSignedReportingE...
FirewallProduct {} {displayName, instanceGuid,
pathToSignedProductExe, pathToSignedReportingE...

https://riptutorial.com/ 205

WMI:

Get-WmiObject -Class "__Namespace" -Namespace "root"

List available namespaces

To find available child-namespaces of root (or another namespace), query the objects in the
__NAMESPACE-class for that namespace.

3.0

CIM:

> Get-CimInstance -Namespace "root" -ClassName "__Namespace"

Name PSComputerName
---- --------------
subscription
DEFAULT
CIMV2
msdtc
Cli
SECURITY
HyperVCluster
SecurityCenter2
RSOP
PEH
StandardCimv2
WMI
directory
Policy
virtualization
Interop
Hardware
ServiceModel
SecurityCenter
Microsoft
aspnet
Appv

WMI:

Get-WmiObject -List -Namespace "root"

Read WMI and CIM online: https://riptutorial.com/powershell/topic/6808/wmi-and-cim

https://riptutorial.com/ 206

https://riptutorial.com/powershell/topic/6808/wmi-and-cim

Chapter 72: Working with Objects

Examples

Updating Objects

Adding properties

If you'd like to add properties to an existing object, you can use the Add-Member cmdlet. With
PSObjects, values are kept in a type of "Note Properties"

$object = New-Object -TypeName PSObject -Property @{
 Name = $env:username
 ID = 12
 Address = $null
 }

Add-Member -InputObject $object -Name "SomeNewProp" -Value "A value" -MemberType NoteProperty

Returns
PS> $Object
Name ID Address SomeNewProp
---- -- ------- -----------
nem 12 A value

You can also add properties with Select-Object Cmdlet (so called calculated properties):

$newObject = $Object | Select-Object *, @{label='SomeOtherProp'; expression={'Another value'}}

Returns
PS> $newObject
Name ID Address SomeNewProp SomeOtherProp
---- -- ------- ----------- -------------
nem 12 A value Another value

The command above can be shortened to this:

$newObject = $Object | Select *,@{l='SomeOtherProp';e={'Another value'}}

Removing properties

You can use the Select-Object Cmdlet to remove properties from an object:

$object = $newObject | Select-Object * -ExcludeProperty ID, Address

Returns
PS> $object

https://riptutorial.com/ 207

Name SomeNewProp SomeOtherProp
---- ----------- -------------
nem A value Another value

Creating a new object

PowerShell, unlike some other scripting languages, sends objects through the pipeline. What this
means is that when you send data from one command to another, it's essential to be able to
create, modify, and collect objects.

Creating an object is simple. Most objects you create will be custom objects in PowerShell, and
the type to use for that is PSObject. PowerShell will also allow you to create any object you could
create in .NET.

Here's an example of creating a new objects with a few properties:

Option 1: New-Object

$newObject = New-Object -TypeName PSObject -Property @{
 Name = $env:username
 ID = 12
 Address = $null
}

Returns
PS> $newObject
Name ID Address
---- -- -------
nem 12

You can store the object in a variable by prefacing the command with $newObject =

You may also need to store collections of objects. This can be done by creating an empty
collection variable, and adding objects to the collection, like so:

$newCollection = @()
$newCollection += New-Object -TypeName PSObject -Property @{
 Name = $env:username
 ID = 12
 Address = $null
}

You may then wish to iterate through this collection object by object. To do that, locate the Loop
section in the documentation.

Option 2: Select-Object

A less common way of creating objects that you'll still find on the internet is the following:

https://riptutorial.com/ 208

$newObject = 'unuseddummy' | Select-Object -Property Name, ID, Address
$newObject.Name = $env:username
$newObject.ID = 12

Returns
PS> $newObject
Name ID Address
---- -- -------
nem 12

Option 3: pscustomobject type accelerator
(PSv3+ required)

The ordered type accelerator forces PowerShell to keep our properties in the order that we defined
them. You don't need the ordered type accelerator to use [PSCustomObject]:

$newObject = [PSCustomObject][Ordered]@{
 Name = $env:Username
 ID = 12
 Address = $null
}

Returns
PS> $newObject
Name ID Address
---- -- -------
nem 12

Examining an object

Now that you have an object, it might be good to figure out what it is. You can use the Get-
Member cmdlet to see what an object is and what it contains:

Get-Item c:\windows | Get-Member

This yields:

TypeName: System.IO.DirectoryInfo

Followed by a list of properties and methods the object has.

Another way to get the type of an object is to use the GetType method, like so :

C:\> $Object = Get-Item C:\Windows
C:\> $Object.GetType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True DirectoryInfo System.IO.FileSystemInfo

https://riptutorial.com/ 209

To view a list of properties the object has, along with their values, you can use the Format-List
cmdlet with its Property parameter set to : * (meaning all).

Here is a example, with the resulting output :

C:\> Get-Item C:\Windows | Format-List -Property *

PSPath : Microsoft.PowerShell.Core\FileSystem::C:\Windows
PSParentPath : Microsoft.PowerShell.Core\FileSystem::C:\
PSChildName : Windows
PSDrive : C
PSProvider : Microsoft.PowerShell.Core\FileSystem
PSIsContainer : True
Mode : d-----
BaseName : Windows
Target : {}
LinkType :
Name : Windows
Parent :
Exists : True
Root : C:\
FullName : C:\Windows
Extension :
CreationTime : 30/10/2015 06:28:30
CreationTimeUtc : 30/10/2015 06:28:30
LastAccessTime : 16/08/2016 17:32:04
LastAccessTimeUtc : 16/08/2016 16:32:04
LastWriteTime : 16/08/2016 17:32:04
LastWriteTimeUtc : 16/08/2016 16:32:04
Attributes : Directory

Creating Instances of Generic Classes

Note: examples written for PowerShell 5.1 You can create instances of Generic Classes

#Nullable System.DateTime
[Nullable[datetime]]$nullableDate = Get-Date -Year 2012
$nullableDate
$nullableDate.GetType().FullName
$nullableDate = $null
$nullableDate

#Normal System.DateTime
[datetime]$aDate = Get-Date -Year 2013
$aDate
$aDate.GetType().FullName
$aDate = $null #Throws exception when PowerShell attempts to convert null to

Gives the output:

Saturday, 4 August 2012 08:53:02
System.DateTime
Sunday, 4 August 2013 08:53:02
System.DateTime
Cannot convert null to type "System.DateTime".

https://riptutorial.com/ 210

At line:14 char:1
+ $aDate = $null
+ ~~~~~~~~~~~~~~
 + CategoryInfo : MetadataError: (:) [], ArgumentTransformationMetadataException
 + FullyQualifiedErrorId : RuntimeException

Generic Collections are also possible

[System.Collections.Generic.SortedDictionary[int, String]]$dict =
[System.Collections.Generic.SortedDictionary[int, String]]::new()
$dict.GetType().FullName

$dict.Add(1, 'a')
$dict.Add(2, 'b')
$dict.Add(3, 'c')

$dict.Add('4', 'd') #powershell auto converts '4' to 4
$dict.Add('5.1', 'c') #powershell auto converts '5.1' to 5

$dict

$dict.Add('z', 'z') #powershell can't convert 'z' to System.Int32 so it throws an error

Gives the output:

System.Collections.Generic.SortedDictionary`2[[System.Int32, mscorlib, Version=4.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089],[System.String, mscorlib, Version=4.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089]]

Key Value
--- -----
 1 a
 2 b
 3 c
 4 d
 5 c
Cannot convert argument "key", with value: "z", for "Add" to type "System.Int32": "Cannot
convert value "z" to type "System.Int32". Error: "Input string was not in a correct format.""
At line:15 char:1
+ $dict.Add('z', 'z') #powershell can't convert 'z' to System.Int32 so ...
+ ~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : NotSpecified: (:) [], MethodException
 + FullyQualifiedErrorId : MethodArgumentConversionInvalidCastArgument

Read Working with Objects online: https://riptutorial.com/powershell/topic/1328/working-with-
objects

https://riptutorial.com/ 211

https://riptutorial.com/powershell/topic/1328/working-with-objects
https://riptutorial.com/powershell/topic/1328/working-with-objects

Chapter 73: Working with the PowerShell
pipeline

Introduction

PowerShell introduces an object pipelining model, which allows you to send whole objects down
through the pipeline to consuming commandlets or (at least) the output. In contrast to classical
string-based pipelining, information in piped objects don't have to be on specific positions.
Commandlets can declare to interact with Objects from the pipeline as input, while return values
are sent to the pipeline automatically.

Syntax

BEGIN The first block. Executed once at the beginning. The pipeline input here is $null, as it
has not been set.

•

PROCESS The second block. Executed for each element of the pipeline. The pipeline
parameter is equal to the currently processed element.

•

END Last block. Executed once at the end. The pipeline parameter is equal to the last
element of the input, because it has not been changed since it was set.

•

Remarks

In most cases, the input of the pipeline will be an array of objects. Although the behavior of the
PROCESS{} block may seem similar to the foreach{} block, skipping an element in the array requires
a different process.

If, like in foreach{}, you used continue inside the PROCESS{} block, it would break the pipeline,
skipping all following statements including the END{} block. Instead, use return - it will only end the
PROCESS{} block for the current element and move to the next.

In some cases, there is a need to output the result of functions with different encoding. The
encoding of the output of the CmdLets is controlled by the $OutputEncoding variable. When the
output is intended to be put into a pipeline to native applications, it might be a good idea to fix the
encoding to match the target $OutputEncoding = [Console]::OutputEncoding

Additional references:

Blog article with more insight about $OutputEncoding
https://blogs.msdn.microsoft.com/powershell/2006/12/11/outputencoding-to-the-rescue/

Examples

Writing Functions with Advanced Lifecycle

https://riptutorial.com/ 212

https://blogs.msdn.microsoft.com/powershell/2006/12/11/outputencoding-to-the-rescue/

This example shows how a function can accept pipelined input, and iterate efficiently.

Note, that the begin and end structures of the function are optional when pipelining, but that process
is required when using ValueFromPipeline or ValueFromPipelineByPropertyName.

function Write-FromPipeline{
 [CmdletBinding()]
 param(
 [Parameter(ValueFromPipeline)]
 $myInput
)
 begin {
 Write-Verbose -Message "Beginning Write-FromPipeline"
 }
 process {
 Write-Output -InputObject $myInput
 }
 end {
 Write-Verbose -Message "Ending Write-FromPipeline"
 }
}

$foo = 'hello','world',1,2,3

$foo | Write-FromPipeline -Verbose

Output:

VERBOSE: Beginning Write-FromPipeline
hello
world
1
2
3
VERBOSE: Ending Write-FromPipeline

Basic Pipeline Support in Functions

This is an example of a function with the simplest possible support for pipelining.
Any function with pipeline support must have at least one parameter with the ParameterAttribute
ValueFromPipeline or ValueFromPipelineByPropertyName set, as shown below.

function Write-FromPipeline {
 param(
 [Parameter(ValueFromPipeline)] # This sets the ParameterAttribute
 [String]$Input
)
 Write-Host $Input
}

$foo = 'Hello World!'

$foo | Write-FromPipeline

Output:

https://riptutorial.com/ 213

Hello World!

Note: In PowerShell 3.0 and above, Default Values for ParameterAttributes is supported. In earlier
versions, you must specify ValueFromPipeline=$true.

Working concept of pipeline

In a pipeline series each function runs parallel to the others, like parallel threads. The first
processed object is transmitted to the next pipeline and the next processing is immediately
executed in another thread. This explains the high speed gain compared to the standard ForEach

@(bigFile_1, bigFile_2, ..., bigFile_n) | Copy-File | Encrypt-File | Get-Md5

step - copy the first file (in Copy-file Thread)1.
step - copy second file (in Copy-file Thread) and simultaneously Encrypt the first (in Encrypt-
File)

2.

step - copy third file (in Copy-file Thread) and simultaneously encrypt second file (in Encrypt-
File) and simultaneously get-Md5 of the first (in Get-Md5)

3.

Read Working with the PowerShell pipeline online:
https://riptutorial.com/powershell/topic/3937/working-with-the-powershell-pipeline

https://riptutorial.com/ 214

https://riptutorial.com/powershell/topic/3937/working-with-the-powershell-pipeline

Chapter 74: Working with XML Files

Examples

Accessing an XML File

<!-- file.xml -->
<people>
 <person id="101">
 <name>Jon Lajoie</name>
 <age>22</age>
 </person>
 <person id="102">
 <name>Lord Gaben</name>
 <age>65</age>
 </person>
 <person id="103">
 <name>Gordon Freeman</name>
 <age>29</age>
 </person>
</people>

Loading an XML File

To load an XML file, you can use any of these:

First Method
$xdoc = New-Object System.Xml.XmlDocument
$file = Resolve-Path(".\file.xml")
$xdoc.load($file)

Second Method
[xml] $xdoc = Get-Content ".\file.xml"

Third Method
$xdoc = [xml] (Get-Content ".\file.xml")

Accessing XML as Objects

PS C:\> $xml = [xml](Get-Content file.xml)
PS C:\> $xml

PS C:\> $xml.people

person

{Jon Lajoie, Lord Gaben, Gordon Freeman}

PS C:\> $xml.people.person

id name age
-- ---- ---

https://riptutorial.com/ 215

101 Jon Lajoie 22
102 Lord Gaben 65
103 Gordon Freeman 29

PS C:\> $xml.people.person[0].name
Jon Lajoie

PS C:\> $xml.people.person[1].age
65

PS C:\> $xml.people.person[2].id
103

Accessing XML with XPath

PS C:\> $xml = [xml](Get-Content file.xml)
PS C:\> $xml

PS C:\> $xml.SelectNodes("//people")

person

{Jon Lajoie, Lord Gaben, Gordon Freeman}

PS C:\> $xml.SelectNodes("//people//person")

id name age
-- ---- ---
101 Jon Lajoie 22
102 Lord Gaben 65
103 Gordon Freeman 29

PS C:\> $xml.SelectSingleNode("people//person[1]//name")
Jon Lajoie

PS C:\> $xml.SelectSingleNode("people//person[2]//age")
65

PS C:\> $xml.SelectSingleNode("people//person[3]//@id")
103

Accessing XML containing namespaces with XPath

PS C:\> [xml]$xml = @"
<ns:people xmlns:ns="http://schemas.xmlsoap.org/soap/envelope/">
 <ns:person id="101">
 <ns:name>Jon Lajoie</ns:name>
 </ns:person>
 <ns:person id="102">
 <ns:name>Lord Gaben</ns:name>
 </ns:person>
 <ns:person id="103">
 <ns:name>Gordon Freeman</ns:name>
 </ns:person>
</ns:people>
"@

PS C:\> $ns = new-object Xml.XmlNamespaceManager $xml.NameTable

https://riptutorial.com/ 216

PS C:\> $ns.AddNamespace("ns", $xml.DocumentElement.NamespaceURI)
PS C:\> $xml.SelectNodes("//ns:people/ns:person", $ns)

id name
-- ----
101 Jon Lajoie
102 Lord Gaben
103 Gordon Freeman

Creating an XML Document using XmlWriter()

Set The Formatting
$xmlsettings = New-Object System.Xml.XmlWriterSettings
$xmlsettings.Indent = $true
$xmlsettings.IndentChars = " "

Set the File Name Create The Document
$XmlWriter = [System.XML.XmlWriter]::Create("C:\YourXML.xml", $xmlsettings)

Write the XML Decleration and set the XSL
$xmlWriter.WriteStartDocument()
$xmlWriter.WriteProcessingInstruction("xml-stylesheet", "type='text/xsl' href='style.xsl'")

Start the Root Element
$xmlWriter.WriteStartElement("Root")

 $xmlWriter.WriteStartElement("Object") # <-- Start <Object>

 $xmlWriter.WriteElementString("Property1","Value 1")
 $xmlWriter.WriteElementString("Property2","Value 2")

 $xmlWriter.WriteStartElement("SubObject") # <-- Start <SubObject>
 $xmlWriter.WriteElementString("Property3","Value 3")
 $xmlWriter.WriteEndElement() # <-- End <SubObject>

 $xmlWriter.WriteEndElement() # <-- End <Object>

$xmlWriter.WriteEndElement() # <-- End <Root>

End, Finalize and close the XML Document
$xmlWriter.WriteEndDocument()
$xmlWriter.Flush()
$xmlWriter.Close()

Output XML File

<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet type='text/xsl' href='style.xsl'?>
<Root>
 <Object>
 <Property1>Value 1</Property1>
 <Property2>Value 2</Property2>
 <SubObject>
 <Property3>Value 3</Property3>
 </SubObject>
 </Object>
</Root>

https://riptutorial.com/ 217

Adding snippits of XML to current XMLDocument

Sample Data

XML Document

First, let's define a sample XML document named "books.xml" in our current directory:

<?xml version="1.0" encoding="UTF-8"?>
<books>
 <book>
 <title>Of Mice And Men</title>
 <author>John Steinbeck</author>
 <pageCount>187</pageCount>
 <publishers>
 <publisher>
 <isbn>978-88-58702-15-4</isbn>
 <name>Pascal Covici</name>
 <year>1937</year>
 <binding>Hardcover</binding>
 <first>true</first>
 </publisher>
 <publisher>
 <isbn>978-05-82461-46-8</isbn>
 <name>Longman</name>
 <year>2009</year>
 <binding>Hardcover</binding>
 </publisher>
 </publishers>
 <characters>
 <character name="Lennie Small" />
 <character name="Curley's Wife" />
 <character name="George Milton" />
 <character name="Curley" />
 </characters>
 <film>True</film>
 </book>
 <book>
 <title>The Hunt for Red October</title>
 <author>Tom Clancy</author>
 <pageCount>387</pageCount>
 <publishers>
 <publisher>
 <isbn>978-08-70212-85-7</isbn>
 <name>Naval Institute Press</name>
 <year>1984</year>
 <binding>Hardcover</binding>
 <first>true</first>
 </publisher>
 <publisher>
 <isbn>978-04-25083-83-3</isbn>
 <name>Berkley</name>
 <year>1986</year>
 <binding>Paperback</binding>
 </publisher>
 <publisher>

https://riptutorial.com/ 218

 <isbn>978-08-08587-35-4</isbn>
 <name>Penguin Putnam</name>
 <year>2010</year>
 <binding>Paperback</binding>
 </publisher>
 </publishers>
 <characters>
 <character name="Marko Alexadrovich Ramius" />
 <character name="Jack Ryan" />
 <character name="Admiral Greer" />
 <character name="Bart Mancuso" />
 <character name="Vasily Borodin" />
 </characters>
 <film>True</film>
 </book>
</books>

New Data

What we want to do is add a few new books to this document, let's say Patriot Games by Tom
Clancy (yes, I'm a fan of Clancy's works ^__^) and a Sci-Fi favourite: The Hitchhiker's Guide to the
Galaxy by Douglas Adams mainly because Zaphod Beeblebrox is just fun to read.

Somehow we've acquired the data for the new books and saved them as a list of
PSCustomObjects:

$newBooks = @(
 [PSCustomObject] @{
 "Title" = "Patriot Games";
 "Author" = "Tom Clancy";
 "PageCount" = 540;
 "Publishers" = @(
 [PSCustomObject] @{
 "ISBN" = "978-0-39-913241-4";
 "Year" = "1987";
 "First" = $True;
 "Name" = "Putnam";
 "Binding" = "Hardcover";
 }
);
 "Characters" = @(
 "Jack Ryan", "Prince of Wales", "Princess of Wales",
 "Robby Jackson", "Cathy Ryan", "Sean Patrick Miller"
);
 "film" = $True;
 },
 [PSCustomObject] @{
 "Title" = "The Hitchhiker's Guide to the Galaxy";
 "Author" = "Douglas Adams";
 "PageCount" = 216;
 "Publishers" = @(
 [PSCustomObject] @{
 "ISBN" = "978-0-33-025864-7";
 "Year" = "1979";
 "First" = $True;
 "Name" = "Pan Books";
 "Binding" = "Hardcover";

https://riptutorial.com/ 219

 }
);
 "Characters" = @(
 "Arthur Dent", "Marvin", "Zaphod Beeblebrox", "Ford Prefect",
 "Trillian", "Slartibartfast", "Dirk Gently"
);
 "film" = $True;
 }
);

Templates

Now we need to define a few skeleton XML structures for our new data to go into. Basically, you
want to create a skeleton/template for each list of data. In our example, that means we need a
template for the book, characters, and publishers. We can also use this to define a few default
values, such as the value for the film tag.

$t_book = [xml] @'
<book>
 <title />
 <author />
 <pageCount />
 <publishers />
 <characters />
 <film>False</film>
</book>
'@;

$t_publisher = [xml] @'
<publisher>
 <isbn/>
 <name/>
 <year/>
 <binding/>
 <first>false</first>
</publisher>
'@;

$t_character = [xml] @'
<character name="" />
'@;

We're done with set-up.

Adding the new data

Now that we're all set-up with our sample data, let's add the custom objects to the XML Document
Object.

Read the xml document
$xml = [xml] Get-Content .\books.xml;

https://riptutorial.com/ 220

Let's show a list of titles to see what we've got currently:
$xml.books.book | Select Title, Author, @{N="ISBN";E={If ($_.Publishers.Publisher.Count) {
$_.Publishers.publisher[0].ISBN} Else { $_.Publishers.publisher.isbn}}};;

Outputs:
title author ISBN
----- ------ ----
Of Mice And Men John Steinbeck 978-88-58702-15-4
The Hunt for Red October Tom Clancy 978-08-70212-85-7

Let's show our new books as well:
$newBooks | Select Title, Author, @{N="ISBN";E={$_.Publishers[0].ISBN}};

Outputs:
Title Author ISBN
----- ------ ----
Patriot Games Tom Clancy 978-0-39-913241-4
The Hitchhiker's Guide to the Galaxy Douglas Adams 978-0-33-025864-7

Now to merge the two:

ForEach ($book in $newBooks) {
 $root = $xml.SelectSingleNode("/books");

 # Add the template for a book as a new node to the root element
 [void]$root.AppendChild($xml.ImportNode($t_book.book, $true));

 # Select the new child element
 $newElement = $root.SelectSingleNode("book[last()]");

 # Update the parameters of that new element to match our current new book data
 $newElement.title = [String]$book.Title;
 $newElement.author = [String]$book.Author;
 $newElement.pageCount = [String]$book.PageCount;
 $newElement.film = [String]$book.Film;

 # Iterate through the properties that are Children of our new Element:
 ForEach ($publisher in $book.Publishers) {
 # Create the new child publisher element
 # Note the use of "SelectSingleNode" here, this allows the use of the "AppendChild"
method as it returns
 # a XmlElement type object instead of the $Null data that is currently stored in that
leaf of the
 # XML document tree

[void]$newElement.SelectSingleNode("publishers").AppendChild($xml.ImportNode($t_publisher.publisher,
$true));

 # Update the attribute and text values of our new XML Element to match our new data
 $newPublisherElement = $newElement.SelectSingleNode("publishers/publisher[last()]");
 $newPublisherElement.year = [String]$publisher.Year;
 $newPublisherElement.name = [String]$publisher.Name;
 $newPublisherElement.binding = [String]$publisher.Binding;
 $newPublisherElement.isbn = [String]$publisher.ISBN;
 If ($publisher.first) {
 $newPublisherElement.first = "True";
 }
 }

 ForEach ($character in $book.Characters) {
 # Select the characters xml element

https://riptutorial.com/ 221

 $charactersElement = $newElement.SelectSingleNode("characters");

 # Add a new character child element
 [void]$charactersElement.AppendChild($xml.ImportNode($t_character.character, $true));

 # Select the new characters/character element
 $characterElement = $charactersElement.SelectSingleNode("character[last()]");

 # Update the attribute and text values to match our new data
 $characterElement.name = [String]$character;
 }
}

Check out the new XML:
$xml.books.book | Select Title, Author, @{N="ISBN";E={If ($_.Publishers.Publisher.Count) {
$_.Publishers.publisher[0].ISBN} Else { $_.Publishers.publisher.isbn}}};

Outputs:
title author ISBN
----- ------ ----
Of Mice And Men John Steinbeck 978-88-58702-15-4
The Hunt for Red October Tom Clancy 978-08-70212-85-7
Patriot Games Tom Clancy 978-0-39-913241-4
The Hitchhiker's Guide to the Galaxy Douglas Adams 978-0-33-025864-7

We can now write our XML to disk, or screen, or web, or wherever!

Profit

While this may not be the procedure for everyone I found it to help avoid a whole bunch of
[void]$xml.SelectSingleNode("/complicated/xpath/goes[here]").AppendChild($xml.CreateElement("newElementName")
followed by $xml.SelectSingleNode("/complicated/xpath/goes/here/newElementName") = $textValue

I think the method detailed in the example is cleaner and easier to parse for normal humans.

Improvements

It may be possible to change the template to include elements with children instead of breaking
out each section as a separate template. You just have to take care to clone the previous element
when you loop through the list.

Read Working with XML Files online: https://riptutorial.com/powershell/topic/4882/working-with-
xml-files

https://riptutorial.com/ 222

https://riptutorial.com/powershell/topic/4882/working-with-xml-files
https://riptutorial.com/powershell/topic/4882/working-with-xml-files

Credits

S.
No

Chapters Contributors

1
Getting started with
PowerShell

4444, autosvet, Brant Bobby, Chris N, Clijsters, Community,
DarkLite1, DAXaholic, Eitan, FoxDeploy, Gordon Bell, Greg
Bray, Ian Miller, It-Z, JNYRanger, Jonas, Luboš Turek, Mark
Wragg, Mathieu Buisson, Mrk, Nacimota, oɔɯǝɹ, Poorkenny,
Sam Martin, th1rdey3, TheIncorrigible1, Tim, tjrobinson,
TravisEz13, vonPryz, Xalorous

2
ActiveDirectory
module

Lachie White

3 Aliases jumbo

4
Amazon Web
Services (AWS)
Rekognition

Trevor Sullivan

5

Amazon Web
Services (AWS)
Simple Storage
Service (S3)

Trevor Sullivan

6
Anonymize IP (v4
and v6) in text file
with Powershell

NooJ

7 Archive Module James Ruskin, RapidCoder

8 Automatic Variables
Brant Bobby, jumbo, Mateusz Piotrowski, Moerwald, Ranadip
Dutta, Roman

9
Automatic Variables
- part 2

Roman

10 Basic Set Operations Euro Micelli, Ranadip Dutta, TravisEz13

11 Built-in variables Trevor Sullivan

12
Calculated
Properties

Prageeth Saravanan

13 Cmdlet Naming TravisEz13

Comment-based 14 Christophe

https://riptutorial.com/ 223

https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/5615788/autosvet
https://riptutorial.com/contributor/4160/brant-bobby
https://riptutorial.com/contributor/532858/chris-n
https://riptutorial.com/contributor/4068240/clijsters
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2304170/darklite1
https://riptutorial.com/contributor/1830293/daxaholic
https://riptutorial.com/contributor/3038259/eitan
https://riptutorial.com/contributor/1238413/foxdeploy
https://riptutorial.com/contributor/16473/gordon-bell
https://riptutorial.com/contributor/17373/greg-bray
https://riptutorial.com/contributor/17373/greg-bray
https://riptutorial.com/contributor/644939/ian-miller
https://riptutorial.com/contributor/3992622/it-z
https://riptutorial.com/contributor/2359643/jnyranger
https://riptutorial.com/contributor/1073409/jonas
https://riptutorial.com/contributor/3242070/lubos-turek
https://riptutorial.com/contributor/2796058/mark-wragg
https://riptutorial.com/contributor/2796058/mark-wragg
https://riptutorial.com/contributor/3810178/mathieu-buisson
https://riptutorial.com/contributor/2031552/mrk
https://riptutorial.com/contributor/1029145/nacimota
https://riptutorial.com/contributor/62662/o----
https://riptutorial.com/contributor/62662/o----
https://riptutorial.com/contributor/1303657/poorkenny
https://riptutorial.com/contributor/336783/sam-martin
https://riptutorial.com/contributor/1682148/th1rdey3
https://riptutorial.com/contributor/8188846/theincorrigible1
https://riptutorial.com/contributor/745969/tim
https://riptutorial.com/contributor/12124/tjrobinson
https://riptutorial.com/contributor/2658816/travisez13
https://riptutorial.com/contributor/503046/vonpryz
https://riptutorial.com/contributor/4446881/xalorous
https://riptutorial.com/contributor/4819378/lachie-white
https://riptutorial.com/contributor/411691/jumbo
https://riptutorial.com/contributor/189198/trevor-sullivan
https://riptutorial.com/contributor/189198/trevor-sullivan
https://riptutorial.com/contributor/3205561/nooj
https://riptutorial.com/contributor/1112679/james-ruskin
https://riptutorial.com/contributor/559306/rapidcoder
https://riptutorial.com/contributor/4160/brant-bobby
https://riptutorial.com/contributor/411691/jumbo
https://riptutorial.com/contributor/4694621/mateusz-piotrowski
https://riptutorial.com/contributor/6270170/moerwald
https://riptutorial.com/contributor/4831435/ranadip-dutta
https://riptutorial.com/contributor/4831435/ranadip-dutta
https://riptutorial.com/contributor/1361460/roman
https://riptutorial.com/contributor/1361460/roman
https://riptutorial.com/contributor/2230/euro-micelli
https://riptutorial.com/contributor/4831435/ranadip-dutta
https://riptutorial.com/contributor/2658816/travisez13
https://riptutorial.com/contributor/189198/trevor-sullivan
https://riptutorial.com/contributor/5212566/prageeth-saravanan
https://riptutorial.com/contributor/2658816/travisez13
https://riptutorial.com/contributor/3649441/christophe

help

15 Common parameters autosvet, jumbo, RamenChef

16
Communicating with
RESTful APIs

autosvet, Clijsters, HAL9256, kdtong, RamenChef, Ranadip
Dutta, Sam Martin, YChi Lu

17 Conditional logic Liam, lloyd, miken32, TravisEz13

18
Creating DSC Class-
Based Resources

Trevor Sullivan

19 CSV parsing Andrei Epure, Frode F.

20
Desired State
Configuration

autosvet, CmdrTchort, Frode F., RamenChef

21
Embedding
Managed Code (C# |
VB)

ajb101

22
Enforcing script
prerequisites

autosvet, Frode F., jumbo, RamenChef

23
Environment
Variables

autosvet

24 Error handling Prageeth Saravanan

25 GUI in Powershell Sam Martin

26
Handling Secrets
and Credentials

4444, briantist, Ranadip Dutta, TravisEz13

27 HashTables Florian Meyer, Ranadip Dutta, TravisEz13

28

How to download
latest artifact from
Artifactory using
Powershell script
(v2.0 or below)?

ANIL

29
Infrastructure
Automation

Giulio Caccin, Ranadip Dutta

30
Introduction to
Pester

Frode F., Sam Martin

31 Introduction to Psake Roman

32 ISE module Florian Meyer

https://riptutorial.com/ 224

https://riptutorial.com/contributor/5615788/autosvet
https://riptutorial.com/contributor/411691/jumbo
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5615788/autosvet
https://riptutorial.com/contributor/4068240/clijsters
https://riptutorial.com/contributor/2150063/hal9256
https://riptutorial.com/contributor/671801/kdtong
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4831435/ranadip-dutta
https://riptutorial.com/contributor/4831435/ranadip-dutta
https://riptutorial.com/contributor/336783/sam-martin
https://riptutorial.com/contributor/4551050/ychi-lu
https://riptutorial.com/contributor/542251/liam
https://riptutorial.com/contributor/4527057/lloyd
https://riptutorial.com/contributor/1255289/miken32
https://riptutorial.com/contributor/2658816/travisez13
https://riptutorial.com/contributor/189198/trevor-sullivan
https://riptutorial.com/contributor/2261315/andrei-epure
https://riptutorial.com/contributor/702944/frode-f-
https://riptutorial.com/contributor/5615788/autosvet
https://riptutorial.com/contributor/952477/cmdrtchort
https://riptutorial.com/contributor/702944/frode-f-
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/7894895/ajb101
https://riptutorial.com/contributor/5615788/autosvet
https://riptutorial.com/contributor/702944/frode-f-
https://riptutorial.com/contributor/411691/jumbo
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5615788/autosvet
https://riptutorial.com/contributor/5212566/prageeth-saravanan
https://riptutorial.com/contributor/336783/sam-martin
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/3905079/briantist
https://riptutorial.com/contributor/4831435/ranadip-dutta
https://riptutorial.com/contributor/2658816/travisez13
https://riptutorial.com/contributor/8370230/florian-meyer
https://riptutorial.com/contributor/4831435/ranadip-dutta
https://riptutorial.com/contributor/2658816/travisez13
https://riptutorial.com/contributor/7156080/anil
https://riptutorial.com/contributor/1636173/giulio-caccin
https://riptutorial.com/contributor/4831435/ranadip-dutta
https://riptutorial.com/contributor/702944/frode-f-
https://riptutorial.com/contributor/336783/sam-martin
https://riptutorial.com/contributor/1361460/roman
https://riptutorial.com/contributor/8370230/florian-meyer

33 Loops

Blockhead, Christopher G. Lewis, Clijsters, CmdrTchort,
DAXaholic, Eris, Frode F., Gomibushi, Gordon Bell, Jay Bazuzi,
Jon, jumbo, mákos, Poorkenny, Ranadip Dutta, Richard, Roman
, SeeuD1, Shawn Esterman, StephenP, TessellatingHeckler,
TheIncorrigible1, VertigoRay

34
Modules, Scripts and
Functions

Frode F., Ranadip Dutta, Xalorous

35 MongoDB Thomas Gerot, Zteffer

36 Naming Conventions niksofteng

37 Operators
Anthony Neace, Bevo, Clijsters, Gordon Bell, JPBlanc, Mark
Wragg, Ranadip Dutta

38
Package
management

TravisEz13

39 Parameter sets Bert Levrau, Poorkenny

40

PowerShell
"Streams"; Debug,
Verbose, Warning,
Error, Output and
Information

DarkLite1, Dave Anderson, megamorf

41
PowerShell
Background Jobs

Clijsters, mattnicola, Ranadip Dutta, Richard, TravisEz13

42 PowerShell Classes
boeprox, Brant Bobby, Frode F., Jaqueline Vanek, Mert Gülsoy,
Ranadip Dutta, xvorsx

43
PowerShell Dynamic
Parameters

Poorkenny

44
PowerShell
Functions

Bert Levrau, Eris, James Ruskin, Luke Ryan, niksofteng,
Ranadip Dutta, Richard, TessellatingHeckler, TravisEz13,
Xalorous

45 Powershell Modules autosvet, Mike Shepard, TravisEz13, Trevor Sullivan

46 Powershell profiles Frode F., Kolob Canyon

47 Powershell Remoting Avshalom, megamorf, Moerwald, Sam Martin, ShaneC

48
powershell sql
queries

Venkatakrishnan

PowerShell 49 Trevor Sullivan

https://riptutorial.com/ 225

https://riptutorial.com/contributor/563358/blockhead
https://riptutorial.com/contributor/13532/christopher-g--lewis
https://riptutorial.com/contributor/4068240/clijsters
https://riptutorial.com/contributor/952477/cmdrtchort
https://riptutorial.com/contributor/1830293/daxaholic
https://riptutorial.com/contributor/2100227/eris
https://riptutorial.com/contributor/702944/frode-f-
https://riptutorial.com/contributor/744648/gomibushi
https://riptutorial.com/contributor/16473/gordon-bell
https://riptutorial.com/contributor/5314/jay-bazuzi
https://riptutorial.com/contributor/4987947/jon
https://riptutorial.com/contributor/411691/jumbo
https://riptutorial.com/contributor/4358231/makos
https://riptutorial.com/contributor/1303657/poorkenny
https://riptutorial.com/contributor/4831435/ranadip-dutta
https://riptutorial.com/contributor/2215029/richard
https://riptutorial.com/contributor/1361460/roman
https://riptutorial.com/contributor/3288649/seeud1
https://riptutorial.com/contributor/6320829/shawn-esterman
https://riptutorial.com/contributor/3594883/stephenp
https://riptutorial.com/contributor/478656/tessellatingheckler
https://riptutorial.com/contributor/8188846/theincorrigible1
https://riptutorial.com/contributor/615422/vertigoray
https://riptutorial.com/contributor/702944/frode-f-
https://riptutorial.com/contributor/4831435/ranadip-dutta
https://riptutorial.com/contributor/4446881/xalorous
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/7017028/zteffer
https://riptutorial.com/contributor/1440057/niksofteng
https://riptutorial.com/contributor/775544/anthony-neace
https://riptutorial.com/contributor/6627197/bevo
https://riptutorial.com/contributor/4068240/clijsters
https://riptutorial.com/contributor/16473/gordon-bell
https://riptutorial.com/contributor/608772/jpblanc
https://riptutorial.com/contributor/2796058/mark-wragg
https://riptutorial.com/contributor/2796058/mark-wragg
https://riptutorial.com/contributor/4831435/ranadip-dutta
https://riptutorial.com/contributor/2658816/travisez13
https://riptutorial.com/contributor/3815179/bert-levrau
https://riptutorial.com/contributor/1303657/poorkenny
https://riptutorial.com/contributor/2304170/darklite1
https://riptutorial.com/contributor/371/dave-anderson
https://riptutorial.com/contributor/3151055/megamorf
https://riptutorial.com/contributor/4068240/clijsters
https://riptutorial.com/contributor/4022830/mattnicola
https://riptutorial.com/contributor/4831435/ranadip-dutta
https://riptutorial.com/contributor/2215029/richard
https://riptutorial.com/contributor/2658816/travisez13
https://riptutorial.com/contributor/613928/boeprox
https://riptutorial.com/contributor/4160/brant-bobby
https://riptutorial.com/contributor/702944/frode-f-
https://riptutorial.com/contributor/4405933/jaqueline-vanek
https://riptutorial.com/contributor/745049/mert-gulsoy
https://riptutorial.com/contributor/4831435/ranadip-dutta
https://riptutorial.com/contributor/1355726/xvorsx
https://riptutorial.com/contributor/1303657/poorkenny
https://riptutorial.com/contributor/3815179/bert-levrau
https://riptutorial.com/contributor/2100227/eris
https://riptutorial.com/contributor/1112679/james-ruskin
https://riptutorial.com/contributor/657237/luke-ryan
https://riptutorial.com/contributor/1440057/niksofteng
https://riptutorial.com/contributor/4831435/ranadip-dutta
https://riptutorial.com/contributor/2215029/richard
https://riptutorial.com/contributor/478656/tessellatingheckler
https://riptutorial.com/contributor/2658816/travisez13
https://riptutorial.com/contributor/4446881/xalorous
https://riptutorial.com/contributor/5615788/autosvet
https://riptutorial.com/contributor/36429/mike-shepard
https://riptutorial.com/contributor/2658816/travisez13
https://riptutorial.com/contributor/189198/trevor-sullivan
https://riptutorial.com/contributor/702944/frode-f-
https://riptutorial.com/contributor/5361412/kolob-canyon
https://riptutorial.com/contributor/4568320/avshalom
https://riptutorial.com/contributor/3151055/megamorf
https://riptutorial.com/contributor/6270170/moerwald
https://riptutorial.com/contributor/336783/sam-martin
https://riptutorial.com/contributor/2191599/shanec
https://riptutorial.com/contributor/7057983/venkatakrishnan
https://riptutorial.com/contributor/189198/trevor-sullivan

Workflows

50
PowerShell.exe
Command-Line

Frode F.

51
PSScriptAnalyzer -
PowerShell Script
Analyzer

Mark Wragg, mattnicola

52 Regular Expressions Frode F.

53
Return behavior in
PowerShell

Bert Levrau, camilohe, Eris, jumbo, Ranadip Dutta, Thomas
Gerot

54 Running Executables RamenChef, W1M0R

55
Scheduled tasks
module

Sam Martin

56
Security and
Cryptography

YChi Lu

57 Sending Email
Adam M., jimmyb, megamorf, NooJ, Ranadip Dutta, void,
Yusuke Arakawa

58 SharePoint Module Raziel

59 Signing Scripts AP., Frode F.

60 Special Operators TravisEz13

61 Splatting
autosvet, Frode F., Moerwald, Petru Zaharia, Poorkenny,
RamenChef, Ranadip Dutta, TravisEz13, xXhRQ8sD2L7Z

62 Strings Frode F., restless1987, void

63 Switch statement
Anthony Neace, Frode F., jumbo, oɔɯǝɹ, Ranadip Dutta,
TravisEz13

64
TCP Communication
with PowerShell

autosvet, RamenChef, Richard

65 URL Encode/Decode VertigoRay

66
Using existing static
classes

Austin T French, briantist, motcke, Ranadip Dutta, Xenophane

67
Using
ShouldProcess

Brant Bobby, Charlie Joynt, Schwarzie2478

Using the Help 68 Frode F., Madniz, mattnicola, RamenChef

https://riptutorial.com/ 226

https://riptutorial.com/contributor/702944/frode-f-
https://riptutorial.com/contributor/2796058/mark-wragg
https://riptutorial.com/contributor/4022830/mattnicola
https://riptutorial.com/contributor/702944/frode-f-
https://riptutorial.com/contributor/3815179/bert-levrau
https://riptutorial.com/contributor/380233/camilohe
https://riptutorial.com/contributor/2100227/eris
https://riptutorial.com/contributor/411691/jumbo
https://riptutorial.com/contributor/4831435/ranadip-dutta
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/755405/w1m0r
https://riptutorial.com/contributor/336783/sam-martin
https://riptutorial.com/contributor/4551050/ychi-lu
https://riptutorial.com/contributor/6623684/adam-m-
https://riptutorial.com/contributor/1279587/jimmyb
https://riptutorial.com/contributor/3151055/megamorf
https://riptutorial.com/contributor/3205561/nooj
https://riptutorial.com/contributor/4831435/ranadip-dutta
https://riptutorial.com/contributor/1029287/void
https://riptutorial.com/contributor/2387890/yusuke-arakawa
https://riptutorial.com/contributor/1244910/raziel
https://riptutorial.com/contributor/2162893/ap-
https://riptutorial.com/contributor/702944/frode-f-
https://riptutorial.com/contributor/2658816/travisez13
https://riptutorial.com/contributor/5615788/autosvet
https://riptutorial.com/contributor/702944/frode-f-
https://riptutorial.com/contributor/6270170/moerwald
https://riptutorial.com/contributor/444172/petru-zaharia
https://riptutorial.com/contributor/1303657/poorkenny
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4831435/ranadip-dutta
https://riptutorial.com/contributor/2658816/travisez13
https://riptutorial.com/contributor/551834/xxhrq8sd2l7z
https://riptutorial.com/contributor/702944/frode-f-
https://riptutorial.com/contributor/5088946/restless1987
https://riptutorial.com/contributor/1029287/void
https://riptutorial.com/contributor/775544/anthony-neace
https://riptutorial.com/contributor/702944/frode-f-
https://riptutorial.com/contributor/411691/jumbo
https://riptutorial.com/contributor/62662/o----
https://riptutorial.com/contributor/62662/o----
https://riptutorial.com/contributor/4831435/ranadip-dutta
https://riptutorial.com/contributor/2658816/travisez13
https://riptutorial.com/contributor/5615788/autosvet
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2215029/richard
https://riptutorial.com/contributor/615422/vertigoray
https://riptutorial.com/contributor/2040569/austin-t-french
https://riptutorial.com/contributor/3905079/briantist
https://riptutorial.com/contributor/3026851/motcke
https://riptutorial.com/contributor/4831435/ranadip-dutta
https://riptutorial.com/contributor/812022/xenophane
https://riptutorial.com/contributor/4160/brant-bobby
https://riptutorial.com/contributor/5771128/charlie-joynt
https://riptutorial.com/contributor/1157051/schwarzie2478
https://riptutorial.com/contributor/702944/frode-f-
https://riptutorial.com/contributor/5249060/madniz
https://riptutorial.com/contributor/4022830/mattnicola
https://riptutorial.com/contributor/6392939/ramenchef

System

69
Using the progress
bar

Clijsters, jumbo, Ranadip Dutta

70
Variables in
PowerShell

autosvet, Eris, Liam, Prageeth Saravanan, Ranadip Dutta,
restless1987, Steve K

71 WMI and CIM Frode F.

72 Working with Objects Chris N, djwork, Mathieu Buisson, megamorf

73
Working with the
PowerShell pipeline

Alban, Atsch, Clijsters, Deptor, James Ruskin, Keith, oɔɯǝɹ,
Sam Martin

74
Working with XML
Files

autosvet, Frode F., Giorgio Gambino, Lieven Keersmaekers,
RamenChef, Richard, Rowshi

https://riptutorial.com/ 227

https://riptutorial.com/contributor/4068240/clijsters
https://riptutorial.com/contributor/411691/jumbo
https://riptutorial.com/contributor/4831435/ranadip-dutta
https://riptutorial.com/contributor/5615788/autosvet
https://riptutorial.com/contributor/2100227/eris
https://riptutorial.com/contributor/542251/liam
https://riptutorial.com/contributor/5212566/prageeth-saravanan
https://riptutorial.com/contributor/4831435/ranadip-dutta
https://riptutorial.com/contributor/5088946/restless1987
https://riptutorial.com/contributor/2020820/steve-k
https://riptutorial.com/contributor/702944/frode-f-
https://riptutorial.com/contributor/532858/chris-n
https://riptutorial.com/contributor/2499785/djwork
https://riptutorial.com/contributor/3810178/mathieu-buisson
https://riptutorial.com/contributor/3151055/megamorf
https://riptutorial.com/contributor/1911082/alban
https://riptutorial.com/contributor/2730399/atsch
https://riptutorial.com/contributor/4068240/clijsters
https://riptutorial.com/contributor/2126820/deptor
https://riptutorial.com/contributor/1112679/james-ruskin
https://riptutorial.com/contributor/758233/keith
https://riptutorial.com/contributor/62662/o----
https://riptutorial.com/contributor/62662/o----
https://riptutorial.com/contributor/336783/sam-martin
https://riptutorial.com/contributor/5615788/autosvet
https://riptutorial.com/contributor/702944/frode-f-
https://riptutorial.com/contributor/327785/giorgio-gambino
https://riptutorial.com/contributor/52598/lieven-keersmaekers
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2215029/richard
https://riptutorial.com/contributor/2056247/rowshi

	About
	Chapter 1: Getting started with PowerShell
	Remarks
	Versions
	Examples
	Installation or Setup

	Windows
	Other Platforms
	Allow scripts stored on your machine to run un-signed
	Aliases & Similar Functions
	The Pipeline - Using Output from a PowerShell cmdlet
	Commenting
	Calling .Net Library Methods
	Creating Objects

	Chapter 2: ActiveDirectory module
	Introduction
	Remarks
	Examples
	Module
	Users
	Groups
	Computers
	Objects

	Chapter 3: Aliases
	Remarks
	Examples
	Get-Alias
	Set-Alias

	Chapter 4: Amazon Web Services (AWS) Rekognition
	Introduction
	Examples
	Detect Image Labels with AWS Rekognition
	Compare Facial Similarity with AWS Rekognition

	Chapter 5: Amazon Web Services (AWS) Simple Storage Service (S3)
	Introduction
	Parameters
	Examples
	Create a new S3 Bucket
	Upload a Local File Into an S3 Bucket
	Delete a S3 Bucket

	Chapter 6: Anonymize IP (v4 and v6) in text file with Powershell
	Introduction
	Examples
	Anonymize IP address in text file

	Chapter 7: Archive Module
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Compress-Archive with wildcard
	Update existing ZIP with Compress-Archive
	Extract a Zip with Expand-Archive

	Chapter 8: Automatic Variables
	Introduction
	Syntax
	Examples
	$pid
	Boolean values
	$null
	$OFS
	$_ / $PSItem
	$?
	$error

	Chapter 9: Automatic Variables - part 2
	Introduction
	Remarks
	Examples
	$PSVersionTable

	Chapter 10: Basic Set Operations
	Introduction
	Syntax
	Examples
	Filtering: Where-Object / where / ?
	Ordering: Sort-Object / sort
	Grouping: Group-Object / group
	Projecting: Select-Object / select

	Chapter 11: Built-in variables
	Introduction
	Examples
	$PSScriptRoot
	$Args
	$PSItem
	$?
	$error

	Chapter 12: Calculated Properties
	Introduction
	Examples
	Display file size in KB - Calculated Properties

	Chapter 13: Cmdlet Naming
	Introduction
	Examples
	Verbs
	Nouns

	Chapter 14: Comment-based help
	Introduction
	Examples
	Function comment-based help
	Script comment-based help

	Chapter 15: Common parameters
	Remarks
	Examples
	ErrorAction parameter

	-ErrorAction Continue
	-ErrorAction Ignore
	-ErrorAction Inquire
	-ErrorAction SilentlyContinue
	-ErrorAction Stop
	-ErrorAction Suspend
	Chapter 16: Communicating with RESTful APIs
	Introduction
	Examples
	Use Slack.com Incoming Webhooks
	Post Message to hipChat
	Using REST with PowerShell Objects to Get and Put individual data
	Using REST with PowerShell Objects to GET and POST many items
	Using REST with PowerShell to Delete items

	Chapter 17: Conditional logic
	Syntax
	Remarks
	Examples
	if, else and else if
	Negation
	If conditional shorthand

	Chapter 18: Creating DSC Class-Based Resources
	Introduction
	Remarks
	Examples
	Create a DSC Resource Skeleton Class
	DSC Resource Skeleton with Key Property
	DSC Resource with Mandatory Property
	DSC Resource with Required Methods

	Chapter 19: CSV parsing
	Examples
	Basic usage of Import-Csv
	Import from CSV and cast properties to correct type

	Chapter 20: Desired State Configuration
	Examples
	Simple example - Enabling WindowsFeature
	Starting DSC (mof) on remote machine
	Importing psd1 (data file) into local variable
	List available DSC Resources
	Importing resources for use in DSC

	Chapter 21: Embedding Managed Code (C# | VB)
	Introduction
	Parameters
	Remarks
	Removing Added types
	CSharp and .NET syntax
	Examples
	C# Example
	VB.NET Example

	Chapter 22: Enforcing script prerequisites
	Syntax
	Remarks
	Examples
	Enforce minimum version of powershell host
	Enforce running the script as admininstrator

	Chapter 23: Environment Variables
	Examples
	Windows environment variables are visible as a PS drive called Env:
	Instant call of Environment Variables with $env:

	Chapter 24: Error handling
	Introduction
	Examples
	Error Types

	Chapter 25: GUI in Powershell
	Examples
	WPF GUI for Get-Service cmdlet

	Chapter 26: Handling Secrets and Credentials
	Introduction
	Examples
	Prompting for Credentials
	Accessing the Plaintext Password
	Working with Stored Credentials

	Encrypter
	The code that uses the stored credentials:
	Storing the credentials in Encrypted form and Passing it as parameter when Required

	Chapter 27: HashTables
	Introduction
	Remarks
	Examples
	Creating a Hash Table
	Access a hash table value by key.
	Looping over a hash table
	Add a key value pair to an existing hash table
	Enumerating through keys and Key-Value Pairs
	Remove a key value pair from an existing hash table

	Chapter 28: How to download latest artifact from Artifactory using Powershell script (v2.0 or below)?
	Introduction
	Examples
	Powershell Script for downloading the latest artifcat

	Chapter 29: Infrastructure Automation
	Introduction
	Examples
	Simple script for black-box integration test of console applications

	Chapter 30: Introduction to Pester
	Remarks
	Examples
	Getting Started with Pester

	Chapter 31: Introduction to Psake
	Syntax
	Remarks
	Examples
	Basic outline
	FormatTaskName example
	Run Task conditionally
	ContinueOnError

	Chapter 32: ISE module
	Introduction
	Examples
	Test Scripts

	Chapter 33: Loops
	Introduction
	Syntax
	Remarks

	Foreach
	Performance
	Examples
	For
	Foreach
	While
	ForEach-Object

	Basic usage
	Advanced usage
	Do
	ForEach() Method
	Continue
	Break

	Chapter 34: Modules, Scripts and Functions
	Introduction
	Examples
	Function

	Demo
	Script

	Demo
	Module

	Demo
	Advanced Functions

	Chapter 35: MongoDB
	Remarks
	Examples
	MongoDB with C# driver 1.7 using PowerShell
	I have 3 sets of array in Powershell

	Chapter 36: Naming Conventions
	Examples
	Functions

	Chapter 37: Operators
	Introduction
	Examples
	Arithmetic Operators
	Logical Operators
	Assignment Operators
	Comparison Operators
	Redirection Operators
	Mixing operand types : the type of the left operand dictates the behavior.
	String Manipulation Operators

	Chapter 38: Package management
	Introduction
	Examples
	Find a PowerShell module using a pattern
	Create the default PowerShell Module Reposity
	Find a module by name
	Install a Module by name
	Uninstall a module my name and version
	Update a module by name

	Chapter 39: Parameter sets
	Introduction
	Examples
	Simple parameter sets
	Parameterset to enforce the use of a parmeter when a other is selected.
	Parameter set to limit the combination of parmeters

	Chapter 40: PowerShell "Streams"; Debug, Verbose, Warning, Error, Output and Information
	Remarks
	Examples
	Write-Output
	Write Preferences

	Chapter 41: PowerShell Background Jobs
	Introduction
	Remarks
	Examples
	Basic job creation
	Basic job management

	Chapter 42: PowerShell Classes
	Introduction
	Examples
	Methods and properties
	Listing available constructors for a class
	Constructor overloading
	Get All Members of an Instance
	Basic Class Template
	Inheritance from Parent Class to Child Class

	Chapter 43: PowerShell Dynamic Parameters
	Examples
	"Simple" dynamic parameter

	Chapter 44: PowerShell Functions
	Introduction
	Examples
	Simple Function with No Parameters
	Basic Parameters
	Mandatory Parameters
	Advanced Function
	Parameter Validation

	ValidateSet
	ValidateRange
	ValidatePattern
	ValidateLength
	ValidateCount
	ValidateScript

	Chapter 45: Powershell Modules
	Introduction
	Examples
	Create a Module Manifest
	Simple Module Example
	Exporting a Variable from a Module
	Structuring PowerShell Modules
	Location of Modules
	Module Member Visibility

	Chapter 46: Powershell profiles
	Remarks
	Examples
	Create an basic profile

	Chapter 47: Powershell Remoting
	Remarks
	Examples
	Enabling PowerShell Remoting

	Only for non-domain environments
	Enabling Basic Authentication
	Connecting to a Remote Server via PowerShell
	Run commands on a Remote Computer

	Remoting serialization warning
	Argument Usage
	A best practise for automatically cleaning-up PSSessions

	Chapter 48: powershell sql queries
	Introduction
	Parameters
	Remarks
	Examples
	SQLExample
	SQLQuery

	Chapter 49: PowerShell Workflows
	Introduction
	Remarks
	Examples
	Simple Workflow Example
	Workflow with Input Parameters
	Run Workflow as a Background Job
	Add a Parallel Block to a Workflow

	Chapter 50: PowerShell.exe Command-Line
	Parameters
	Examples
	Executing a command

	-Command <string>
	-Command { scriptblock }
	-Command - (standard input)
	Executing a script file

	Basic script
	Using parameters and arguments
	Chapter 51: PSScriptAnalyzer - PowerShell Script Analyzer
	Introduction
	Syntax
	Examples
	Analyzing scripts with the built-in preset rulesets
	Analyzing scripts against every built-in rule
	List all built-in rules

	Chapter 52: Regular Expressions
	Syntax
	Examples
	Single match

	Using the -Match operator
	Using Select-String
	Using [RegEx]::Match()
	Replace

	Using -Replace operator
	Using [RegEx]::Replace() method
	Replace text with dynamic value using a MatchEvalutor
	Escape special characters
	Multiple matches

	Using Select-String
	Using [RegEx]::Matches()
	Chapter 53: Return behavior in PowerShell
	Introduction
	Remarks
	Examples
	Early exit
	Gotcha! Return in the pipeline
	Gotcha! Ignoring unwanted output
	Return with a value
	How to work with functions returns

	Chapter 54: Running Executables
	Examples
	Console Applications
	GUI Applications
	Console Streams
	Exit Codes

	Chapter 55: Scheduled tasks module
	Introduction
	Examples
	Run PowerShell Script in Scheduled Task

	Chapter 56: Security and Cryptography
	Examples
	Calculating a string's hash codes via .Net Cryptography

	Chapter 57: Sending Email
	Introduction
	Parameters
	Examples
	Simple Send-MailMessage
	Send-MailMessage with predefined parameters
	SMTPClient - Mail with .txt file in body message

	Chapter 58: SharePoint Module
	Examples
	Loading SharePoint Snap-In
	Iterating over all lists of a site collection
	Get all installed features on a site collection

	Chapter 59: Signing Scripts
	Remarks
	Execution policies
	Examples
	Signing a script
	Changing the execution policy using Set-ExecutionPolicy
	Bypassing execution policy for a single script

	Other Execution Policies:
	Get the current execution policy
	Getting the signature from a signed script
	Creating a self-signed code signing certificate for testing

	Chapter 60: Special Operators
	Examples
	Array Expression Operator
	Call Operation
	Dot sourcing operator

	Chapter 61: Splatting
	Introduction
	Remarks
	Examples
	Splatting parameters
	Passing a Switch parameter using Splatting
	Piping and Splatting
	Splatting From Top Level Function to a Series of Inner Function

	Chapter 62: Strings
	Syntax
	Remarks
	Examples
	Creating a basic string

	String
	Literal string
	Format string
	Multiline string
	Here-string

	Here-string
	Literal here-string
	Concatenating strings

	Using variables in a string
	Using the + operator
	Using subexpressions
	Special characters

	Chapter 63: Switch statement
	Introduction
	Remarks
	Examples
	Simple Switch
	Switch Statement with Regex Parameter
	Simple Switch With Break
	Switch Statement with Wildcard Parameter
	Switch Statement with Exact Parameter
	Switch Statement with CaseSensitive Parameter
	Switch Statement with File Parameter
	Simple Switch with Default Condition
	Switch Statement with Expressions

	Chapter 64: TCP Communication with PowerShell
	Examples
	TCP listener
	TCP Sender

	Chapter 65: URL Encode/Decode
	Remarks
	Examples
	Quick Start: Encoding
	Quick Start: Decoding
	Encode Query String with `[uri]::EscapeDataString()`
	Encode Query String with `[System.Web.HttpUtility]::UrlEncode()`
	Decode URL with `[uri]::UnescapeDataString()`
	Decode URL with `[System.Web.HttpUtility]::UrlDecode()`

	Chapter 66: Using existing static classes
	Introduction
	Examples
	Creating new GUID instantly
	Using the .Net Math Class
	Adding types

	Chapter 67: Using ShouldProcess
	Syntax
	Parameters
	Remarks
	Examples
	Adding -WhatIf and -Confirm support to your cmdlet
	Using ShouldProcess() with one argument
	Full Usage Example

	Chapter 68: Using the Help System
	Remarks
	Examples
	Updating the Help System
	Using Get-Help
	Viewing online version of a help topic
	Viewing Examples
	Viewing the Full Help Page
	Viewing help for a specific parameter

	Chapter 69: Using the progress bar
	Introduction
	Examples
	Simple use of progress bar
	Usage of inner progress bar

	Chapter 70: Variables in PowerShell
	Introduction
	Examples
	Simple variable
	Removing a variable
	Scope
	Reading a CmdLet Output
	List Assignment of Multiple Variables
	Arrays

	Adding to an arry
	Combining arrays together

	Chapter 71: WMI and CIM
	Remarks

	CIM vs WMI
	Additional resources
	Examples
	Querying objects

	List all objects for CIM-class
	Using a filter
	Using a WQL-query:
	Classes and namespaces

	List available classes
	Search for a class
	List classes in a different namespace
	List available namespaces
	Chapter 72: Working with Objects
	Examples
	Updating Objects

	Adding properties
	Removing properties
	Creating a new object

	Option 1: New-Object
	Option 2: Select-Object
	Option 3: pscustomobject type accelerator (PSv3+ required)
	Examining an object
	Creating Instances of Generic Classes

	Chapter 73: Working with the PowerShell pipeline
	Introduction
	Syntax
	Remarks
	Examples
	Writing Functions with Advanced Lifecycle
	Basic Pipeline Support in Functions
	Working concept of pipeline

	Chapter 74: Working with XML Files
	Examples
	Accessing an XML File
	Creating an XML Document using XmlWriter()
	Adding snippits of XML to current XMLDocument

	Sample Data
	XML Document
	New Data
	Templates

	Adding the new data
	Profit
	Improvements
	Credits

