
progress-4gl

#progress-

4gl

Table of Contents

About 1

Chapter 1: Getting started with progress-4gl 2

Remarks 2

Versions 2

Examples 2

Installation or Setup 3

Hello, World! 10

FizzBuzz 10

Setting up the environment 11

Creating the "sports2000" demo database from the command line 12

Commenting code 13

Program files 14

Running sports2000 as a service 14

Chapter 2: Compiling 17

Introduction 17

Syntax 17

Examples 17

Application Compiler 17

COMPILE statement 21

COMPILER system handle 22

Chapter 3: Conditional statements 27

Introduction 27

Examples 27

IF ... THEN ... ELSE-statement 27

CASE 28

IF ... THEN ... ELSE-function 29

Chapter 4: FIND statement 31

Introduction 31

Examples 31

FIND basic examples 31

Availability and scope 31

FIND and locking 33

Chapter 5: Functions 35

Introduction 35

Remarks 35

Examples 35

Simple function 35

Forward declaring functions 35

Multiple input parameters 36

Multiple return statements (but a single return value) 36

Output and input-output parameters 37

Recursion 38

Dynamic call of a function 38

Chapter 6: Iterating 42

Introduction 42

Examples 42

DO WHILE 42

DO var = start TO finish [BY step] 42

REPEAT 44

Chapter 7: OS-utilities 45

Introduction 45

Examples 45

OS-COMMAND 45

OPSYS 46

OS-ERROR 46

OS-GETENV function 47

OS-COPY 48

OS-DELETE 48

OS-CREATE-DIR 48

OS-APPEND 49

OS-RENAME 49

OS-DRIVES (Windows only) 49

Chapter 8: Procedures 51

Introduction 51

Syntax 51

Examples 51

A basic internal procedure 51

INPUT and OUTPUT parameters 51

Recursion - see recursion 52

Scope 53

Chapter 9: Queries 55

Introduction 55

Syntax 55

Examples 55

Basic Query 55

Multi-Tables Query 56

Moving poisition withing a query using next, first, prev and last 57

Chapter 10: Strings 59

Introduction 59

Remarks 59

Examples 59

Defining, assing and displaying a string 59

Concatenating strings 59

String manipulation 59

CASE-SENSITIVE strings 63

BEGINS and MATCHES 64

Converting upper and lower case 65

Lists 66

Special characters (and escaping) 67

Chapter 11: TEMP-TABLE 69

Introduction 69

Examples 69

Defining a simple temp-table 69

A temp-table with an index 69

More indexes - indices... 69

Inputting and outputting temp-tables 71

Chapter 12: Variables 75

Introduction 75

Syntax 75

Examples 75

Basic variable declarations 75

Arrays - defining and accessing 76

Using the LIKE keyword 78

Chapter 13: Working with numbers 79

Introduction 79

Examples 79

Operators 79

More mathematical functions 79

Comparing numbers 80

Random number generator 81

Credits 82

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: progress-4gl

It is an unofficial and free progress-4gl ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official progress-4gl.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/progress-4gl
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with progress-4gl

Remarks

ABL (Advanced Business Language). Earlier known as Progress 4GL.

Progress ABL is a programming language tied to the Progress OpenEdge environment, its
database and surrounding utilities. This makes it a "fourth generation" programming language.

Progress ABL is a strongly typed, late-bound, English-like programming language with growing
support for object orientation. The compiled code is run by the "AVM" (ABL Virtual Machine).

The language is developed and maintained by the Progress Corporation (formerly Progress
Software).

Versions

Version Retired Note Release Date

11.7 tbd 2017-04-04

11.6 tbd Latest: 11.6.3 2015-10-01

11.5 2017-Dec 2014-12-01

11.4 2017-Aug 2014-08-01

11.3 2016-Aug 2013-07-01

11.2 2016-Feb 2013-02-01

11.1 2014-Feb 2012-06-01

11.0 2013-Jun 2011-12-01

10.2B tbd Renamed OpenEdge 2009-12-01

10.1C 2014-Jul 2008-02-01

10.0B 2006-Mar 2004-08-01

9.1E 2015-Oct 2004-11-01

8.3E 2010-Feb 2001-12-01

Examples

https://riptutorial.com/ 2

https://en.wikipedia.org/wiki/Fourth-generation_programming_language
https://www.progress.com/
https://community.progress.com/community_groups/openedge_general/w/openedgegeneral/2912.openedge-11-7-release-notes
https://community.progress.com/community_groups/openedge_general/w/openedgegeneral/2744.openedge-11-6-release-notes
http://knowledgebase.progress.com/articles/Release_Notes/Progress-OpenEdge-11-6-3-Service-Pack-Readme
https://community.progress.com/community_groups/openedge_general/w/openedgegeneral/2354.openedge-11-5-release-notes
https://community.progress.com/community_groups/openedge_general/w/openedgegeneral/2284.openedge-11-4-release-notes
https://community.progress.com/community_groups/openedge_general/w/openedgegeneral/1106.openedge-11-3-release-notes
https://community.progress.com/community_groups/openedge_general/w/openedgegeneral/1111.openedge-11-2-release-notes
https://community.progress.com/community_groups/openedge_general/w/openedgegeneral/1114.openedge-11-1-release-notes
http://documentation.progress.com/output/OpenEdge110/pdfs/releasenotes/PROGRESS_OE_11_0_README.txt
http://documentation.progress.com/output/OpenEdge102b/pdfs/releasenotes/102b_releasenotes.pdf
https://community.progress.com/community_groups/openedge_general/w/openedgegeneral/1333.openedge-replication-10-1c-product-documentation-overview
https://community.progress.com/community_groups/openedge_general/w/openedgegeneral/1690.openedge-10-0b-release-notes

Installation or Setup

Installing Progress

Download your distribution from Progress. If you want a demo license you need to contact them.
Make sure you download a 64-bit and not a 32-bit tar file (unless you happen to run a 32-bit
machine).

Windows

The download will be a zip archive. Unpack it and simply run setup.exe. The installation will be
graphical but otherwise exactly like the one described below.

Linux/Unix/HP-UX etc

Put the tar file on your Progress system. Let's say you have it in your home directory:

/home/user/PROGRESSFILENAME.tar

Extract it:

cd /home/user
tar xvf PROGRESSFILENAME.tar

It will create a directory named

proinst

Change directory to another destination and create a temporary directory there. For example:

cd /tmp
mkdir proinst116
cd proinst116

Once the installation is complete this directory will contain information about the installation as well
as files you can save and used for future automatic repetitions of the same installation.

Now run the installationscript (named "proinst" in the directory "proinst"):

/home/user/proinst/proinst

This will start the installation:

 +---+
 | Welcome |
 +---+
 | |
 | WELCOME TO THE OPENEDGE INSTALLATION UTILITY |
 | |
 | Ensure that you have your completed "Preinstallation Checklist |

https://riptutorial.com/ 3

 | for Unix" handy to consult. This information will facilitate your |
 | installation and ensure your choices are accurately recorded. |
 | |
 | Copyright (c) 1984-2015 Progress Software Corporation |
 | and/or one of its subsidiaries or affiliates. |
 | All Rights Reserved. |
 | |
 | |
 | [Enter=OK] |
 +---+

Now you will need to insert license keys, company name etc. It's recommended to download an
"addendum file" then you can simply press Ctrl+A and use it.

+--+
| Product Configuration Data |
+--+
| [Enter=Additional] |
| Company Name: ______________________________ [Ctrl-E=Done] |
| Serial Number: _________ [CTRL-T=Quit] |
| Control Number: _____ _____ _____ [CTRL-N=Release Notes]|
| [CTRL-V=View] |
| [TAB=Next Field] |
| [CTRL-P=Help] |
| [CTRL-A=Addendum File]|
| |
+--+

Adding an addendum-file:

 +---+
 | License Addendum File |
 +---+
 | |
 | Enter Path: /home/myuser/myfile.txt______________________________________ |
 | |
 | |
 | |
 | [Enter=OK] [CTRL-N=Cancel] |
 +---+
 | [TAB=Next Field] |
 | [CTRL-P=Help] |
 | [CTRL-A=Addendum File]|
 | |
 +--+

After you've added licenses manually or loaded them via a file you can press Ctrl+V to view
products to be installed:

 +------------------------+
 |Entered Product List |
 +------------------------+
 | 4GL Development System |
 | OE Application Svr Ent |
+-----| OE Enterprise RDBMS |---------------------------------------+
| | OpenEdge Replication |nfiguration Data |
+-----+------------------------+---------------------------------------+

https://riptutorial.com/ 4

| [Enter=Additional] |
| Company Name: ______________________________ [Ctrl-E=Done] |
| Serial Number: _________ [CTRL-T=Quit] |
| Control Number: _____ _____ _____ [CTRL-N=Release Notes]|
| [CTRL-V=View] |
| [TAB=Next Field] |
| [CTRL-P=Help] |
| [CTRL-A=Addendum File]|
| |
+--+

Once you're satisfied, press Ctrl+E to continue the installation or Ctrl+Q to quit.

If you move on you will have to OK just one more thing:

 +---+
 | Done Configuration Data Confirmation |
 +---+
 | |
 |Are you sure that you are done entering all the control numbers for the|
 |OpenEdge products that will be installed? |
 | |
 | [Y=YES] [N=NO] |
 +---+
 | [CTRL-P=Help] |
 | [CTRL-A=Addendum File]|
 | |
 +--+

Press Y to continue or N to go back.

Depending on what you're installing you might need to set up different products during the
installation.

Next step is to decide if you want to enable the "OpenEdge Explorer". Y or N. This can be changed
later on.

 +-------------------------------+
 | Install Type and Destination |
 +-------------------------------+
 | Select Type of Installation |
 | Select Destination Pathname |
 | Select Management Pathname |
 | Continue with Installation |
 | View Release Notes |
 | Cancel |
 | Quit Installation |
 | Help |
 +-------------------------------+

+---+
|Type: Complete Install |
|Destination pathname: /usr/dlc |
|Working Dir pathname: /usr/wrk |

https://riptutorial.com/ 5

|Management pathname: /usr/oemgmt |
|Management Working Dir pathname: /usr/wrk_oemgmt |
| |
+---+

Now you have to decide directories where you want to install Progress as well as primary working
directory (basically where you want to store your code). Change these or move on with the
defaults. Historically /usr/dlc has always been the default so you might want to change this to
something thats unique for this specific version of Progress - that might help when upgrading.
Choose a Complete Install (the default).

Once done: choose Continue with Installation using arrow keys and press enter to continue.

 +---+
 | Select Server Engine |
 +---+
 |*SQL -Provides SQL access to OpenEdge data files |
 | Continue with Install |
 | Cancel |
 | Help |
 +---+

If you're not planning any SQL access you can press enter once and remove the * before SQL,
otherwise just Continue with Install.

 +---+
 | ATTENTION |
 +---+
 | |
 |The OpenEdge Adapter for Sonic ESB is a recommended component of this |
 |installation and requires a Sonic ESB installation somewhere on your |
 |network. |
 | |
 |Choose YES if you plan on using OpenEdge Adapter for Sonic ESB, else choose|
 |NO. |
 | |
 | [Y=YES] [N=NO] [H=Help] |
 +---+

Most likely you do not need the OpenEdge Adapter for Sonic ESB so press N - otherwise you know
what to do.

 +---+
 | ATTENTION |
 +---+
 | |
 |WebSpeed is a recommended component of this installation and |
 |requires a Web Server installed somewhere on your network. |
 | |
 |Choose YES if you plan on using WebSpeed and you are installing |
 |on the system where your Web Server is installed, else choose NO.|
 | |
 | [Y=YES] [N=NO] [H=Help] |
 +---+

https://riptutorial.com/ 6

If you plan on using WebSpeed for producing dynamic HTML press Y, otherwise N.

 +------------------------------------+
 | Web Server Type |
 +------------------------------------+
 | Select Web Server Type |
 | Select Web Server Script directory |
 | Copy the static HTML to docroot |
 | Continue with Installation |
 | Cancel |
 | Quit Installation |
 | Help |
 +------------------------------------+

Setting up WebSpeed: Choose Select Web Server Type and set it to cgi (most likely anyway). Web
server script directory can be set to your servers cgi-bin directory or something like /tmp. Don't
copy the static HTML - it's really outdated. Continue!

 +----------------------------+
 |Language Selection |
 +----------------------------+
 | Chinese (Simplified) |
 | Czech |
 | Dutch |
 | English - American |
 | English - International |
 | French |
 | German |
 | Italian |
 | Polish |
 | Portuguese - Brazilian |
 | Spanish |
 | Portuguese |
 | Swedish |
 | Spanish - Latin |
 | Make Default |
 | Continue with Installation |
 | Cancel |
 | Help |
 +----------------------------+

Choose English unless you really need something else, you can actually select more than one -
make one default in that case. Continue!

 +------------------------------------+
 | International Settings |
 +------------------------------------+
 | Select CharacterSet,Collation,Case |
 | Select a Date Format |
 | Select a Number Format |
 | Continue with Installation |
 | Cancel |
 | Quit Installation |
 | Help |
 +------------------------------------+
 | Polish |
 | Portuguese - Brazilian |

https://riptutorial.com/ 7

 | Spanish |
 | Portuguese |
 | Swedish |
 | Spanish - Latin |
 | Make Default |
+---+
| |
| CharacterSet,Collation,Case: ISO8859-1, Swedish, Basic |
| Date Format: ymd |
| Number Format: 1.234,56 (period, comma) |
+---+

For the Itnernational Settings you should try and match any previous installations to help yourself
in the future. Otherwise you can set it to something that fits your own needs. This can be changed
in the future. Use UTF-8 if you want.

 +---+
 | Web Services Adapter URL |
 +---+
 | Please enter the URL of where you will configure the sample |
 | Web Services Adapter's Java Servlet. |
 | |
 | URL: http://fedora-1gb-ams3-01.localdomain:80/wsa/wsa1___________________ |
 | |
 | [Enter=OK] [CTRL-N=Cancel] [CTRL-P=Help] |
 +---+

Leave the defaults for the Web Services adapter URL unless you have a good reason.

 +---+
 | WSA Authentication |
 +---+
 | |
 |Would you like to Disable the Web Services Adapter's administration user |
 |authentication? |
 | |
 | [Y=YES] [N=NO] [H=Help] |
 +---+

Disable user authentication? Most likely N is what you want.

 +---+
 | Complete Installation |
 +---+
 | |
 |The following products will be installed: |
 |'4GL Development System (x USERS)', 'OE Application Svr Ent (y USERS)', |
 |'OE Enterprise RDBMS (z USERS)', 'OpenEdge Replication (u USERS)' |
 | |
 |Disk Space Required for Products: 1,138,163,712 bytes |
 |Disk Space Required for Installation: 1,139,343,360 bytes |
 |Disk Space Remaining After Installation: 26,534,129,664 bytes |
 | |
 |Selected Destination Path: /usr/dlc |
 | |
 |Do you want to install the above listed product(s)? |
 | |

https://riptutorial.com/ 8

 | [Y=YES] [N=NO] [H=Help] |
 +---+

This is the final (but one) screen before installation begins.

 +-----------------------------+
 | Copy Scripts? |
 +-----------------------------+
 | |
 |Copy the scripts to /usr/bin?|
 | |
 | [Y=YES] [N=NO] [H=Help] |
 +-----------------------------+

If you choose to do this you might want to make sure there isn't a previous install being
overwritten.

 +--+
 | Installing Files |
 +--+
 | |
 | Installing subcomponent: Common Files (m) |
 | Installing file: libjvm.so |
 | 17% |
 | +--+ |
 | | | |
 | +--+ |
 | |
 | [CTRL-T=Quit] |
 +--+

Installation in process. Takes a minute or two.

 +---+
 | Configuring WebSpeed |
 +---+
 | |
 | a. Set up and start your Web server |
 | - If you did not select to "Copy static HTML files to |
 | Document Root directory", then manually copy the files |
 | or set a link. |
 | - For NSAPI Messenger, edit the "obj.conf" and "start" files |
 | on the Web server. |
 | b. Set up the Broker machine. |
 | - Set environment variables if necessary. |
 | - Edit the properties file (ubroker.properties), then start Broker. |
 | c. To validate your configuration through the Messenger |
 | Administration Page, enter ?WSMAdmin after the Messenger name |
 | in a URL. |
 | (For example, for CGI, http://hostname/cgi-bin/wspd_cgi.sh?WSMAdmin) |
 | (For example, for NSAPI, http://hostname/wsnsa.dll?WSMADmin) |
 | |
 |See the "OpenEdge Application Server: Administration" guide for details. |
 | |
 | [Enter=OK] [H=Help] |
 +---+

https://riptutorial.com/ 9

Some information about WebSpeed.

 +---+
 |Installation of selected OpenEdge products is complete. |
 |Refer to the installation notes for more information. |
 +---+
 | End the OpenEdge Installation |
 | View Release Notes |
 | Help |
 +---+

Final screen - End the Installation or View the Release Notes.

You are done!

Silent installation

The installation has stored a file named /usr/dlc/install/response.ini (or your installation
directory). This file can be used to repeat the exact same installation again in a "silent" install that
can be scriptet and run without any interaction.

To run a silent install simply do:

/path-to-proinst/proinst -b /path-to-response-file/response.ini -l /path-to-store-
log/silent.log

Hello, World!

Once you've started your Progress editor of choice (there are a couple of options) simply write:

DISPLAY "Hello, World!".

And run by pressing the corresponding key or menu item:

On Windows in AppBuilder: F1 (Compile -> Run)

On Linux/Unix in the 4GL editor: F2 (or ctrl+X) (Compile -> Run)

On Windows in Developer Studio: alt+shift+X, followed by G (Run -> Run As Progress OpenEdge
Application)

FizzBuzz

Another example of "Hello World" style programs is FizzBuzz.

DEFINE VARIABLE i AS INTEGER NO-UNDO.
DEFINE VARIABLE cOut AS CHARACTER NO-UNDO.

DO i = 1 TO 100:

 /* Dividable by 3: fizz */

https://riptutorial.com/ 10

https://en.wikipedia.org/wiki/Fizz_buzz

 IF i MODULO 3 = 0 THEN
 cOut = "Fizz".
 /* Dividable by 5: buzz */
 ELSE IF i MODULO 5 = 0 THEN
 cOut = "Buzz".
 /* Otherwise just the number */
 ELSE
 cOut = STRING(i).

 /* Display the output */
 DISPLAY cOut WITH FRAME x1 20 DOWN.
 /* Move the display position in the frame down 1 */
 DOWN WITH FRAME x1.
END.

Setting up the environment

Linux/Unix

Once you have Progress installed it's very easy to run.

You only need a couple of environment variables. The directory where Progress was installed
(default /usr/dlc but can be something else) needs to be in the DLC-variable

DLC=/usr/dlc

And you might also want the "bin" subdirectory of DLC in your PATH:

PATH=$PATH:$DLC/bin

Now you're set!

Theres also a script installed called proenv that will do this (and a little bit more) for you. It's default
location is /usr/dlc/bin/proenv.

Some utilites:

showcfg

This will list all your installed products.

pro

This will start the "Procedure Editor" where you can edit and run your programs.

pro program.p

Will open program.p for editing if it exists. Otherwise an error will be displayed.

pro -p program.p

https://riptutorial.com/ 11

This will run "program.p". If there's a compiled file (program.r) present it will be run, otherwise it will
be temporarily compiled and after that executed. The compiled file will not be saved.

Creating the "sports2000" demo database from the command line

This shows how to create the demo database used in big parts of Progress documentation:
sports2000.

This assumes you have installed the Progress products with at least one type of database license.

Run proenv script/bat-file that will give you a prompt with all environment variables set.

Create a directory.

This example is for Windows. Directory handling etc might be different in another OS.

proenv> cd \
proenv> mkdir db
proenv> cd db
proenv> mkdir sports2000
proenv> cd sports2000

Create a sports2000 database using "prodb"

proenv> prodb mySportsDb sports2000

Syntax of prodb:

prodb name-of-new-database name-and-path-of-source-database

This will create a database called "mySportsDb" in the current directory. That database is an exact
copy of the sports2000 database that's shipped with the Progress install. Since the source
sports2000 database is located in the Progress install directory you don't need to specify path.

If you look at the directory content you will see some files:

proenv> dir
2017-01-12 20:24 2 228 224 mySportsDb.b1
2017-01-12 20:24 1 703 936 mySportsDb.d1
2017-01-12 20:24 32 768 mySportsDb.db
2017-01-12 20:24 2 951 mySportsDb.lg
2017-01-12 20:07 368 mySportsDb.st
2017-01-12 20:24 327 680 mySportsDb_10.d1
2017-01-12 20:24 65 536 mySportsDb_10.d2
2017-01-12 20:24 1 310 720 mySportsDb_11.d1
2017-01-12 20:24 1 376 256 mySportsDb_11.d2
2017-01-12 20:24 327 680 mySportsDb_12.d1
2017-01-12 20:24 65 536 mySportsDb_12.d2
2017-01-12 20:24 327 680 mySportsDb_7.d1
2017-01-12 20:24 65 536 mySportsDb_7.d2
2017-01-12 20:24 655 360 mySportsDb_8.d1
2017-01-12 20:24 655 360 mySportsDb_8.d2
2017-01-12 20:24 327 680 mySportsDb_9.d1

https://riptutorial.com/ 12

2017-01-12 20:24 65 536 mySportsDb_9.d2

File
name

Contains

.db The main database file. Contains the database schema

.lg The database log file. Contains logging information in text format

.st The database structure file. Describe the storage layout in a text format

.d?
The actual data. Different files store data of different formats. The .st file can tell
what format

.b? Before-Image files. Contains information about transactions in process.

Now you can access the database directly by simply typing pro mySportsDb. This will start a
Progress Editor that's connected to the database. This will be a single user connection so nobody
else will be able to access the database at the same time.

In the editor you can simply type:

FOR EACH bill NO-LOCK:
 DISPLAY bill.
END.

To access the database. Press Ctrl+X to execute. This will display all contents of the "bill" table. If
you want to cancel you can press Ctrl+C.

Commenting code

/*
In all versions of
Progress ABL you can write
multi line comments
*/

/* They can also span a single line */

//Starting with version 11.6 you can also write single line comments

//Can you nest single line comments? //Yes you can

string = "HELLO". //A single line comment can be written after some code

string2 = "Goodbye". /* And the same thing
goes for multi line comments. A difference is
that a multi line comment also can preceed some code */ i = 1.

/* Is it possible to mix comments?
//Yes, but multi line comments always needs to be terminated! */

/* You can nest multi line comments as well

https://riptutorial.com/ 13

/* but then all nested comments must be terminated */ or the compiler
will generate an error */

Formally the single line comment starts with the double slash // and ends with a newline, carriage
return or end-of-file.

Program files

Progress ABL code is normally stored in files with different ending depending on what they
contain. The endings are optional but rather a defacto standard:

Filename
extension

Contains

.p
A Progress program. Can contain several internal procedures, functions
etc

.i Include file to be included in other files

.w
A file containing a graphical representation of a Window or Dialog,
WinForm-based.

.r The compiled result of any file containing Progress 4GL. Called r-code.

.cls A Progress Object Oriented Class

.wrx
A container for ActiveX data whenever needed (generated by compiling
in "AppBuilder").

To run a program-file in Progress 4GL the RUN-statement is used:

RUN program.p. //Will run program.p without parameters.
RUN program.w (INPUT true). //Will run program.w with input parameter set to true.

RUN program. //Will run program.r if present otherwise internal procedure "program".

To include another file in a Progress-program the {}-directive is used:

{program.i} //Includes program.i in the current program

Running sports2000 as a service

Once the sports2000 database has been installed it's time to run it as a standalone server (and
not connect to it as a file).

Start proenv (proenv in the startmeny on Windows or /usr/install-directory/bin/proenv on
Linux/Unix).

https://riptutorial.com/ 14

This example is from Windows. Linux is the same but you need to change paths etc to match your
install.

proenv> cd \db\sports2000
proenv> proserve mySportsDb -H localhost -S 9999
OpenEdge Release 11.6 as of Fri Oct 16 19:01:51 EDT 2015
20:09:54 BROKER This broker will terminate when session ends. (5405)
20:09:54 BROKER The startup of this database requires 17Mb of shared memory. Maximum
segment size is 128Mb.
20:09:54 BROKER 0: Multi-user session begin. (333)
20:09:55 BROKER 0: Begin Physical Redo Phase at 0 . (5326)
20:17:36 BROKER 0: Before Image Log Initialization at block 1 offset 5300. (15321)
20:09:55 BROKER 0: Login by xyz on CON:. (452)
20:09:55 BROKER 0: Started for 9999 using TCP IPV4 address 127.0.0.1, pid 2892. (5644)
proenv>

(You might not get exactly this output).

This will start the mySportsDb on localhost and use port 9999 as primary port for database
access. If you want to connect to this database from another client on the same network or
elsewhere localhost wont work. Use your IP-address or hostname instead:

proenv> proserve mySportsDb -H 192.168.1.10 -S 9999.

Connecting and disconnecting

Once your database is up and running you can connect to it in your Progress editor:

CONNECT mySportsDb -H localhost -S 9999.

or

CONNECT "-db mySportsDb -H localhost -S 9999".

If you get an error message you have either gotten some information wrong in the command or the
database isn't up and running. You could also have a software firewall or similar interfering.

You can check the database logfile (mySportsDb.lg in this example) for any clues.

Disconnecting is just as easy:

DISCONNECT mySportDb.

or

DISCONNECT "mySportsDb".

Shutting down the database (or disconnect users

To shut the database down you can run the proshut command from proenv:

https://riptutorial.com/ 15

proenv> proshut mySportsDb
OpenEdge Release 11.6 as of Fri Oct 16 19:01:51 EDT 2015
usr pid time of login user id Type tty Limbo?
 24 7044 Wed Feb 01 20:22:57 2017 xyz REMC XYZ-PC no
 1 Disconnect a User
 2 Unconditional Shutdown
 3 Emergency Shutdown (Kill All)
 x Exit

Use 1 to disconnect specific users.1.
Use 2 to shut down the database. Note: no questions asked, shutdown starts directly!2.
Use 3 only if you can't take down the database any other way. This might corrupt your data.3.
Use x to exit the proshut utility.4.

You can also shutdown the database directly from the command line:

proenv>proshut mySportsDb -by

Or disconnect a user from command line (assuming you know it's user number, usr in the list
above):

proenv>proshut mySportsDb -C disconnect 24
OpenEdge Release 11.6 as of Fri Oct 16 19:01:51 EDT 2015
User 24 disconnect initiated. (6796)

Read Getting started with progress-4gl online: https://riptutorial.com/progress-
4gl/topic/8124/getting-started-with-progress-4gl

https://riptutorial.com/ 16

https://riptutorial.com/progress-4gl/topic/8124/getting-started-with-progress-4gl
https://riptutorial.com/progress-4gl/topic/8124/getting-started-with-progress-4gl

Chapter 2: Compiling

Introduction

Compile Progress code as called "r-code" and is normally saved in a file with the extension .r.
There are a couple of different ways of compiling: using the COMPILE statement or on Linux or
AppBuilder: the built in Application Compiler. Developer Studio (the Eclipse environment) has
compiling built into it's build process.

You must have 4GL Development or OpenEdge Studio installed to compile 4GL programs which
update the database.

Syntax

COMPILE program.p SAVE. //Compile program.p and save it's r-code•
COMPILE VALUE(var) SAVE. //Compile the named saved in the variable "var" and save it's
r-code

•

COMPILE prog.p XREF prog.xref LISTING prog.list. //Compile prog.p and create xref and
listing-files. Don't save the r-code.

•

COMPILE program.p SAVE NO-ERROR. //Compile program.p, save r-code and supress
errors to stop the execution.

•

Examples

Application Compiler

Windows AppBuilder

In the Windows Appbuilder the Application Compiler is found in the Tools Menu.

https://riptutorial.com/ 17

Procedure Editor (Linux - pro or Windows pro.exe

In the Procedure Editor (both Linux and Windows) the Compiler if found in the Tools menu.

Application Compiler

https://riptutorial.com/ 18

https://i.stack.imgur.com/U2HHj.png
https://i.stack.imgur.com/9ZAwg.png

Regardless of OS the functionality of the compiler is the same. You can add directories and/or files
and compile them.

Main settings (more below):

Save new .r File. If not checked the files will simply be compiled but not saved. Useful for
error tracking for instance.

•

Look in Subdirectories. Otherwise subdirectories will have to be added.•
Remove old .r Files. Overwrite old .r file.•
Onlu Compile if No .r File. Only compiles uncompiled files.•

https://riptutorial.com/ 19

https://i.stack.imgur.com/U2HHj.png
https://i.stack.imgur.com/pSAhb.png

Options:

Propath - shows you the propath and let's you select directories to compile from it.•
Add - lets you input a directory or file.•
Modify - lets you modify an existing entry.•
Delete - Deletes an entry.•
Start Compile - Starts the compiler. Shortcut: F2•

The main menu choices:

File -> Exit: Exits the compiler•
Compile -> Start Compile : Starts the compiler. Shortcut: F2•
Tools -> Access to other tools•
Option -> Compiler... : Settings, se below.•
Help -> OpenEdge Help (Windows Only). Online help. Shortcut: F1•

Settings

Default File Spec: Filename extensions to compile•
Message Log File: File to save messages, warnings and errors in•
Save into: Where to store .r file. If blank the same directory as the code.•
Languages: for translations. Not covered here.•
V6Frame: Old and unuseful...•
Steam-IO: If you want to print the compiler output. Most likely not.•
Listing File: If you want the compiler to create a listing file. Useful for debugging•
Append: add to the existing listing file. Otherwise overwrite.•
Page Width + Length: Format of listing file.•

https://riptutorial.com/ 20

https://i.stack.imgur.com/jf0ub.png

Xref File: If you want the compiler to create a XREF. Useful for debugging, checking index
usage etc.

•

XML Format: If the compiler xref should be an xml. Otherwise "plain" text.•
Append: add to the existing xref file. Otherwise overwrite.•
Debug File: Debugger listing file.•
Encryption Key: If the source file is encrypted using xcode insert the key here.•
Minimize R-code Size: Remove some debugging information to keep the r-code small.•
Generate MD-5: Mostly for WebClient compiling.•

Basic usage

Start the compiler1.
Add a path (if not already saved from last session)2.
Press F2 to compile.3.
Observe any errors.4.
Exit5.

COMPILE statement

The compile statement lets you compile programs in Progress ABL:

Basic usage:

COMPILE hello-world.p SAVE.

With a variable:

DEFINE VARIABLE prog AS CHARACTER NO-UNDO.

prog = "hello.p".

COMPILE VALUE(prog) SAVE.

There are several options to the COMPILE-statement:

SAVE states that the .r-code should be saved for future use.

COMPILE hello-world.p SAVE.

SAVE INTO dir OR SAVE INTO VALUE(dir-variable) saves the r-code in the specified directory:

COMPILE hello-world.p SAVE INTO /usr/sources.

LISTING file. Creates a listing file containing debug information regarding blocks, includes etc.

COMPILE program.p SAVE LISTING c:\temp\listing.txt.

Listing has a couple of options for appending files, page-size and page-width:

https://riptutorial.com/ 21

APPEND PAGE-SIZE num PAGE-WIDTH num

XREF xreffile will save a compiler xref file containing information about string and index usage etc.
You can also APPEND this one.

COMPILE checkFile.p SAVE XREF c:\directory\xref-file.txt.

XREF-XML xreffile-or-dir will do the same thing as XREF but save the file in an xml-format instead. If
you use a directory the xref-file will be named programname.xref.xml.

COMPILE file.p SAVE XREF c:\temp\.

NO-ERROR will supress any errors from stopping your program.

COMPILE program SAVE NO-ERROR.

DEBUG-LIST file generates a debug file with line numbers.

COMPILE checkFile.p SAVE DEBUG-LIST c:\temp\debug.txt.

PREPROCESS file will first translate all preprocessors and then create a new .p-file with the code
prior to compiling.

 COMPILE checkFile.p SAVE PREPROCESS c:\temp\PREPROC.txt.

XCODE key will compile an encrypted source code with key as key. You cannot use XCODE with the
XREF, XREF-XML, STRING-XREF, or LISTING options together.

COMPILE program.p SAVE XCODE myKey.

You can combine several options:

COMPILE prog.p SAVE INTO /usr/r-code XREF /usr/xrefs/xref.txt APPEND LISTING /usr/listings.txt
APPEND NO-ERROR.

COMPILER system handle

The COMPILER system handle let's you look at information regarding a recent compile.

Assuming ok-program.p is a program without any errors or warning:

COMPILE ok-program.p SAVE NO-ERROR.

DEFINE VARIABLE iError AS INTEGER NO-UNDO.

MESSAGE
 "Errors: " COMPILER:ERROR SKIP
 "Warnings: " COMPILER:WARNING SKIP

https://riptutorial.com/ 22

 "Messages: " COMPILER:NUM-MESSAGES
 VIEW-AS ALERT-BOX INFORMATION.

This will procude:

Compiling a program with a warning:

/* program-with-warning.p */
DEFINE VARIABLE c AS CHARACTER NO-UNDO.
DEFINE VARIABLE i AS INTEGER NO-UNDO.

c = "hello".
DISPLAY c.
//This RETURN makes the program exit here and the code below unreachable.
RETURN.

IF TRUE THEN DO:
 i = 10.
END.

Compiling the program:

COMPILE program-with-warning.p SAVE.

DEFINE VARIABLE iError AS INTEGER NO-UNDO.

MESSAGE
 "Errors: " COMPILER:ERROR SKIP
 "Warnings: " COMPILER:WARNING SKIP
 "Messages: " COMPILER:NUM-MESSAGES
 VIEW-AS ALERT-BOX INFORMATION.

DO iError = 1 TO COMPILER:NUM-MESSAGES:
 DISPLAY
 COMPILER:GET-FILE-NAME(iError) LABEL "Filename" FORMAT "x(20)"
 COMPILER:GET-MESSAGE(iError) LABEL "Message" FORMAT "x(50)"
 COMPILER:GET-NUMBER(iError) LABEL "Msg#"
 COMPILER:GET-ERROR-COLUMN(iError) LABEL "Column"
 COMPILER:GET-ERROR-ROW(iError) LABEL "Row"
 WITH FRAME fr1 SIDE-LABELS 1 COLUMNS.
END.

Result:

https://riptutorial.com/ 23

https://i.stack.imgur.com/WN6o5.png

Compiling a program with an error

DEFINE VARIABLE c AS CHARACTER NO-UNDO.
DEFINE VARIABLE i AS INTEGER NO-UNDO.

c = "hello".
DISPLAY c.
//Casting should be required below...
IF TRUE THEN DO:
 i = c.
END.

Compiling the program:

https://riptutorial.com/ 24

https://i.stack.imgur.com/0maPd.png
https://i.stack.imgur.com/pFTfD.png

//Use no-errors to supress any error messages from interrupting us.
COMPILE c:\temp\program-with-error.p SAVE NO-ERROR.

DEFINE VARIABLE iError AS INTEGER NO-UNDO.

MESSAGE
 "Errors: " COMPILER:ERROR SKIP
 "Warnings: " COMPILER:WARNING SKIP
 "Messages: " COMPILER:NUM-MESSAGES
 VIEW-AS ALERT-BOX INFORMATION.

DO iError = 1 TO COMPILER:NUM-MESSAGES:
 DISPLAY
 COMPILER:GET-FILE-NAME(iError) LABEL "Filename" FORMAT "x(20)"
 COMPILER:GET-MESSAGE(iError) LABEL "Message" FORMAT "x(50)"
 COMPILER:GET-NUMBER(iError) LABEL "Msg#"
 COMPILER:GET-ERROR-COLUMN(iError) LABEL "Column"
 COMPILER:GET-ERROR-ROW(iError) LABEL "Row"
 WITH FRAME fr1 SIDE-LABELS 1 COLUMNS 20 DOWN.

 DOWN WITH FRAME fr1.
END.

Result, there's almost always two errors per error. "Could not understand" is followed by the actual

error:

https://riptutorial.com/ 25

https://i.stack.imgur.com/LFyhw.png

Read Compiling online: https://riptutorial.com/progress-4gl/topic/9029/compiling

https://riptutorial.com/ 26

https://i.stack.imgur.com/O1TDz.png
https://riptutorial.com/progress-4gl/topic/9029/compiling

Chapter 3: Conditional statements

Introduction

Progress ABL supports two contitional statements: IF/THEN/ELSE and CASE.

Examples

IF ... THEN ... ELSE-statement

In the IF THEN ELSE statement the result can be either a single statement:

DEFINE VARIABLE i AS INTEGER NO-UNDO.

IF i = 0 THEN
 MESSAGE "Zero".
ELSE
 MESSAGE "Something else".

Or a block, for instance by adding a DO-block:

DEFINE VARIABLE i AS INTEGER NO-UNDO.

IF i = 0 THEN DO:
 RUN procedure1.
 RUN procedure2.
END.
ELSE DO:
 RUN procedure3.
 RUN procedure4.
END.

Several IF-statements can be nested with the ELSE IF-syntax:

DEFINE VARIABLE i AS INTEGER NO-UNDO.

IF i = 0 THEN DO:
 RUN procedure1.
 RUN procedure2.
END.
ELSE IF i = 1 THEN DO:
 RUN procedure3.
 RUN procedure4.

END.
ELSE DO:
 RUN procedure5.
 RUN procedure6.
END.

The ELSE-part is not mandatory:

https://riptutorial.com/ 27

DEFINE VARIABLE l AS LOGICAL NO-UNDO.

l = TRUE.

IF l = TRUE THEN DO:
 MESSAGE "The l variable has the value TRUE" VIEW-AS ALERT-BOX.
END.

The IF/ELSE IF can compare several conditionals, with or without internal connections. This leaves
you free to mess up your code in several ways:

DEFINE VARIABLE i AS INTEGER NO-UNDO.
DEFINE VARIABLE l AS LOGICAL NO-UNDO.

IF i < 30 OR l = TRUE THEN DO:

END.
ELSE IF i > 30 AND l = FALSE OR TODAY = DATE("2017-08-20") THEN DO:

END.
ELSE DO:
 MESSAGE "I dont really know what happened here".
END.

CASE

The CASE-statement is a lot more strict than the IF/ELSE-conditional. It can only compare a single
variable and only equality, not larget/smaller than etc.

DEFINE VARIABLE c AS CHARACTER NO-UNDO.

CASE c:
 WHEN "A" THEN DO:
 RUN procedureA.
 END.
 WHEN "B" THEN DO:
 RUN procedureB.
 END.
 OTHERWISE DO:
 RUN procedureX.
 END.
END CASE.

Using an OR each WHEN can compare different values:

DEFINE VARIABLE c AS CHARACTER NO-UNDO.

CASE c:
 WHEN "A" THEN DO:
 RUN procedureA.
 END.
 WHEN "B" OR WHEN "C" THEN DO:
 RUN procedureB-C.
 END.
 OTHERWISE DO:

https://riptutorial.com/ 28

 RUN procedureX.
 END.
END CASE.

Just like with the IF-statement each branch can either be a single statement or a block. Just like
with the ELSE-statement, OTHERWISE is not mandatory.

DEFINE VARIABLE c AS CHARACTER NO-UNDO.

CASE c:
 WHEN "A" THEN
 RUN procedureA.
 WHEN "B" OR WHEN "C" THEN
 RUN procedureB-C.
END CASE.

Unlike a c-style switch-clause there's no need to escape the CASE-statement - only one branch will
be executed. If several WHENs match only the first one will trigger. OTHERWISE must be last and will
only trigger if none of the branches above match.

DEFINE VARIABLE c AS CHARACTER NO-UNDO.

c = "A".

CASE c:
 WHEN "A" THEN
 MESSAGE "A" VIEW-AS ALERT-BOX. //Only "A" will be messaged
 WHEN "A" OR WHEN "C" THEN
 MESSAGE "A or C" VIEW-AS ALERT-BOX.
END CASE.

IF ... THEN ... ELSE-function

IF THEN ELSE can also be used like a function to return a single value. This is a lot like the ternary ?-
operator of C.

DEFINE VARIABLE i AS INTEGER NO-UNDO.
DEFINE VARIABLE c AS CHARACTER NO-UNDO.

/* Set c to "low" if i is less than 5 otherwise set it to "high"
c = IF i < 5 THEN "low" ELSE "high".

Using parenthesis can ease readability for code like this.

DEFINE VARIABLE i AS INTEGER NO-UNDO.
DEFINE VARIABLE c AS CHARACTER NO-UNDO.

c = (IF i < 5 THEN "low" ELSE "high").

The value of the IF-part and the value of the ELSE-part must be of the same datatype. It's not
possible to use ELSE IF in this case.

https://riptutorial.com/ 29

DEFINE VARIABLE dat AS DATE NO-UNDO.
DEFINE VARIABLE beforeTheFifth AS LOGICAL NO-UNDO.

dat = TODAY.

beforeTheFifth = (IF DAY(dat) < 5 THEN TRUE ELSE FALSE).

Several comparisons can be done in the IF-statement:

DEFINE VARIABLE between5and10 AS LOGICAL NO-UNDO.
DEFINE VARIABLE i AS INTEGER NO-UNDO INIT 7.

between5and10 = (IF i >= 5 AND i <= 10 THEN TRUE ELSE FALSE).

MESSAGE between5and10 VIEW-AS ALERT-BOX.

Read Conditional statements online: https://riptutorial.com/progress-4gl/topic/8904/conditional-
statements

https://riptutorial.com/ 30

https://riptutorial.com/progress-4gl/topic/8904/conditional-statements
https://riptutorial.com/progress-4gl/topic/8904/conditional-statements

Chapter 4: FIND statement

Introduction

The FIND statement is used to retrieve a single record from a single table. It has some limitations
compared to FOR or QUERY, but it's a simple and handy statement for fast access to records.

Examples

FIND basic examples

A simple sports2000 example:

FIND FIRST Customer NO-LOCK WHERE CustNum = 1 NO-ERROR.
IF AVAILABLE Customer THEN DO:
 DISPLAY Customer.NAME.
END.
ELSE DO:
 MESSAGE "No record available".
END.

FIRST - find the first record that matches the query

NO-LOCK - don't lock the record - meaning we will only read and not change the
record.

WHERE - this is the query

NO-ERROR - don't fail if there isn't any record available.

(IF) AVAILABLE Customer - check if we found a record or not

findLoop:
REPEAT :
 FIND NEXT Customer NO-LOCK WHERE NAME BEGINS "N" NO-ERROR.

 IF AVAILABLE customer THEN DO:
 DISPLAY Customer.NAME.
 END.
 ELSE DO:
 LEAVE findLoop.
 END.
END.

Availability and scope

The latest find is always the one the availability check will work against - a unsuccesful find will
make AVAILABLE return false:

https://riptutorial.com/ 31

DEFINE TEMP-TABLE tt NO-UNDO
 FIELD nr AS INTEGER.

CREATE tt.
tt.nr = 1.

CREATE tt.
tt.nr = 2.

CREATE tt.
tt.nr = 3.

DISPLAY AVAILABL tt. // yes (tt with nr = 3 is still available)

FIND FIRST tt WHERE tt.nr = 1 NO-ERROR.
DISPLAY AVAILABLE tt. //yes

FIND FIRST tt WHERE tt.nr = 2 NO-ERROR.
DISPLAY AVAILABLE tt. //yes

FIND FIRST tt WHERE tt.nr = 3 NO-ERROR.
DISPLAY AVAILABLE tt. //yes

FIND FIRST tt WHERE tt.nr = 4 NO-ERROR.
DISPLAY AVAILABLE tt. //no

A record found in "main" will be available in any procedures.

DEFINE TEMP-TABLE tt NO-UNDO
 FIELD nr AS INTEGER.

PROCEDURE av:
 DISPLAY AVAILABLE tt.

 IF AVAILABLE tt THEN DO:
 DISPLAY tt.nr.
 END.
END PROCEDURE.

CREATE tt.
tt.nr = 1.

RUN av. // yes. tt.nr = 1

CREATE tt.
tt.nr = 2.

RUN av. // yes. tt.nr = 2

FIND FIRST tt WHERE tt.nr = 4 NO-ERROR.

RUN av. // no (and no tt.nr displayed)

Also, a record found in a procedure will still be available after that procedure has exited.

DEFINE TEMP-TABLE tt NO-UNDO
 FIELD nr AS INTEGER.

PROCEDURE av:

https://riptutorial.com/ 32

 FIND FIRST tt WHERE tt.nr = 1.
END PROCEDURE.

CREATE tt.
tt.nr = 1.

CREATE tt.
tt.nr = 2.

DISPLAY AVAILABLE tt WITH FRAME x1. // yes.

IF AVAILABLE tt THEN DO:
 DISPLAY tt.nr WITH FRAME x1. //tt.nr = 2
END.

PAUSE.

RUN av.

DISPLAY AVAILABLE tt WITH FRAME x2. // yes.

IF AVAILABLE tt THEN DO:
 DISPLAY tt.nr WITH FRAME x2. //tt.nr = 1
END.

FIND and locking

Whenever you FIND a record you can aquire a lock of it.

NO-LOCK: Used for read only operations. If you do a FIND <record> NO-LOCK you cannot in any way
modify the record.

FIND FIRST Customer NO-LOCK NO-ERROR.

EXCLUSIVE-LOCK: Used for updates and deletes. If you do this you will "own" the record and
nobody else can modify it or delete it until you're done. They can read it (with no-lock) as long as
you haven't deleted it.

FIND FIRST Customer EXCLUSIVE-LOCK NO-ERROR.

SHARE-LOCK: Avoid at all cost. This will cause mad headache.

FIND FIRST Customer EXCLUSIVE-LOCK NO-ERROR. //Do this instead.

UPGRADING your lock from NO-LOCK to EXCLUSIVE-LOCK

You can easily move from a NO-LOCK to an EXCLUSIVE-LOCK if the need to modify a record has arisen:

FIND FIRST Customer NO-LOCK NO-ERROR.
// Some code goes here
// Now we shall modify
FIND CURRENT Customer EXCLUSIVE-LOCK NO-ERROR.

https://riptutorial.com/ 33

You can go from EXCLUSIVE-LOCK to NO-LOCK as well.

LOCKED RECORDS

Whenever other users might aquire a lock of a record you better take this possibility into account.
Collisions will occur!

It's better to handle this programmatically using the NO-WAIT statement. This tells the AVM to just
pass the FIND if the record is locked by somebody else and let you handle this problem.

FIND FIRST Customer EXCLUSIVE-LOCK NO-ERROR NO-WAIT.

/* Check for availability */
IF AVAILABLE Customer THEN DO:

 /* Check that no lock (from somebody else) is present */
 IF NOT LOCKED Customer THEN DO:
 /* Do your stuff here */
 END.
 ELSE DO:
 MESSAGE "I'm afraid somebody else has locked this record!" VIEW-AS ALERT-BOX ERROR.
 END.
END.

Read FIND statement online: https://riptutorial.com/progress-4gl/topic/8941/find-statement

https://riptutorial.com/ 34

https://riptutorial.com/progress-4gl/topic/8941/find-statement

Chapter 5: Functions

Introduction

A user defined function in Progress ABL is a reusable program module.

Remarks

A function must be declared in the "main" procedure. It cannot be declared inside a
procedure or inside another function.

•

A function in Progress ABL isn't a "first class citizen" unlike in programming languages like
Haskell or Javascript. You cannot pass a function as an input or output parameter. You can
however invioke them dynamically using DYNAMIC-FUNCTION or the CALL object.

•

Calling functions in your queries can lead to bad performance since index matching will hurt.
Try to assign the value of the function to a variable and use that variable in the WHERE-clause
instead.

•

Examples

Simple function

/* This function returns TRUE if input is the letter "b" and false otherwise */
FUNCTION isTheLetterB RETURNS LOGICAL (INPUT pcString AS CHARACTER):
 IF pcString = "B" THEN
 RETURN TRUE.
 ELSE
 RETURN FALSE.
END FUNCTION.

/* Calling the function with "b" as input - TRUE expected */
DISPLAY isTheLetterB("b").

/* Calling the function with "r" as input - FALSE expected */
DISPLAY isTheLetterB("r").

Parts of the syntax is actually not required:

/* RETURNS isn't required, INPUT isn't required on INPUT-parameters */
FUNCTION isTheLetterB LOGICAL (pcString AS CHARACTER):
 IF pcString = "B" THEN
 RETURN TRUE.
 ELSE
 RETURN FALSE.
/* END FUNCTION can be replaced with END */
END.

Forward declaring functions

https://riptutorial.com/ 35

A function can be forward declared, this is similar to specifications in a C header file. That way the
compiler knows that a function will be made available later on.

Without forward declarations the function MUST be declared before it's called in the code. The
forward declaration consists of the FUNCTION specification (function name, return type and
parameter data types and order). If the forward declaration doesn't match the actual function the
compiler will produce errors and the code will fail to run.

FUNCTION dividableByThree LOGICAL (piNumber AS INTEGER) FORWARD.

DISPLAY dividableByThree(9).

FUNCTION dividableByThree LOGICAL (piNumber AS INTEGER):

 IF piNumber MODULO 3 = 0 THEN
 RETURN TRUE.
 ELSE
 RETURN FALSE.
END.

Multiple input parameters

/* This will popup a message-box saying "HELLO WORLD" */

FUNCTION cat RETURNS CHARACTER (c AS CHARACTER, d AS CHARACTER):

 RETURN c + " " + d.

END.

MESSAGE cat("HELLO", "WORLD") VIEW-AS ALERT-BOX.

Multiple return statements (but a single return value)

A function can have multiple return statements and they can be placed in different parts of the
actual function. They all need to return the same data type though.

FUNCTION returning DATE (dat AS DATE):
 IF dat < TODAY THEN DO:
 DISPLAY "<".
 RETURN dat - 200.
 END.
 ELSE DO:
 DISPLAY ">".
 RETURN TODAY.
 END.
END.

MESSAGE returning(TODAY + RANDOM(-50, 50)) VIEW-AS ALERT-BOX.

A function actually don't have to return anything at all. Then it's return value will be ? (unknown).
The compiler will not catch this (but your colleagues will so avoid it).

https://riptutorial.com/ 36

/* This function will only return TRUE or ?, never FALSE, so it might lead to troubles */
FUNCTION inTheFuture LOGICAL (dat AS DATE):
 IF dat > TODAY THEN DO:
 RETURN TRUE.
 END.
END.
MESSAGE inTheFuture(TODAY + RANDOM(-50, 50)) VIEW-AS ALERT-BOX.

Output and input-output parameters

A function can only return a single value but there's one way around that: the parameters are not
limited to input parameters. You can declare INPUT, OUTPUT and INPUT-OUTPUT parameters.

Unlike INPUT parameters you must specify OUTPUT or INPUT-OUTPUT before the parameters.

Some coding conventions might not like this but it can be done.

/* Function will add numbers and return a sum (AddSomSumbers(6) = 6 + 5 + 4 + 3 + 2 + 1 = 21
*/
/* It will also have a 1% per iteration of failing
*/
/* To handle that possibility we will have a status output parameter
*/
FUNCTION AddSomeNumbers INTEGER (INPUT number AS INTEGER, OUTPUT procstatus AS CHARACTER):

 procStatus = "processing".

 DEFINE VARIABLE i AS INTEGER NO-UNDO.
 DEFINE VARIABLE n AS INTEGER NO-UNDO.
 /* Iterate number times */
 DO i = 1 TO number:
 /* Do something */

 n = n + i.

 /* Fake a 1% chance for an error that breaks the function */
 IF RANDOM(1,100) = 1 THEN
 RETURN 0.
 END.

 procStatus = "done".
 RETURN n.
END.

DEFINE VARIABLE ret AS INTEGER NO-UNDO.
DEFINE VARIABLE stat AS CHARACTER NO-UNDO.

/* Call the function */
ret = AddSomeNumbers(30, OUTPUT stat).

/* If "stat" is done we made it! */
IF stat = "done" THEN DO:
 MESSAGE "We did it! Sum:" ret VIEW-AS ALERT-BOX.
END.
ELSE DO:
 MESSAGE "An error occured" VIEW-AS ALERT-BOX ERROR.
END.

https://riptutorial.com/ 37

Here's an example of an INPUT-OUTPUT parameter:

/* Function doubles a string and returns the length of the new string */
FUNCTION doubleString RETURN INTEGER (INPUT-OUTPUT str AS CHARACTER).

 str = str + str.

 RETURN LENGTH(str).

END.

DEFINE VARIABLE str AS CHARACTER NO-UNDO.
DEFINE VARIABLE len AS INTEGER NO-UNDO.

str = "HELLO".

len = doubleString(INPUT-OUTPUT str).

MESSAGE
 "New string: " str SKIP
 "Length: " len VIEW-AS ALERT-BOX.

Recursion

See recursion

A function can call itself and thereby recurse.

FUNCTION factorial INTEGER (num AS INTEGER).

 IF num = 1 THEN
 RETURN 1.
 ELSE
 RETURN num * factorial(num - 1).

END FUNCTION.

DISPLAY factorial(5).

With standard settings (startup parameter) the Progress session wont be able to handle very large
numbers in this example. factorial(200) will fill the stack and raise an error.

Dynamic call of a function

Using DYNAMIC-FUNCTION or the CALL-object you can dynamically call functions.

DEFINE VARIABLE posY AS INTEGER NO-UNDO.
DEFINE VARIABLE posX AS INTEGER NO-UNDO.
DEFINE VARIABLE OKkeys AS CHARACTER NO-UNDO INIT "QLDRUS".
DEFINE VARIABLE Step AS INTEGER NO-UNDO INIT 1.
DEFINE VARIABLE moved AS LOGICAL NO-UNDO.
/* Set original position */
posY = 10.
posX = 10.

https://riptutorial.com/ 38

/* Move up (y coordinates - steps) */
FUNCTION moveU LOGICAL (INPUT steps AS INTEGER):

 IF posY = 0 THEN
 RETURN FALSE.

 posY = posY - steps.

 IF posY < 0 THEN
 posY = 0.

 RETURN TRUE.
END FUNCTION.

/* Move down (y coordinates + steps) */
FUNCTION moveD LOGICAL (INPUT steps AS INTEGER):

 IF posY = 20 THEN
 RETURN FALSE.

 posY = posY + steps.

 IF posY > 20 THEN
 posY = 20.

END FUNCTION.

/* Move left (x coordinates - steps) */
FUNCTION moveL LOGICAL (INPUT steps AS INTEGER):

 IF posX = 0 THEN
 RETURN FALSE.

 posX = posX - steps.

 IF posX < 0 THEN
 posX = 0.

 RETURN TRUE.
END FUNCTION.

/* Move down (x coordinates + steps) */
FUNCTION moveR LOGICAL (INPUT steps AS INTEGER):

 IF posX = 20 THEN
 RETURN FALSE.

 posX = posX + steps.

 IF posX > 20 THEN
 posX = 20.

END FUNCTION.

REPEAT:

 DISPLAY posX posY step WITH FRAME x1 1 DOWN.
 READKEY.

 IF INDEX(OKKeys, CHR(LASTKEY)) <> 0 THEN DO:

https://riptutorial.com/ 39

 IF CHR(LASTKEY) = "q" THEN LEAVE.
 IF CAPS(CHR(LASTKEY)) = "s" THEN UPDATE step WITH FRAME x1.
 ELSE DO:
 moved = DYNAMIC-FUNCTION("move" + CAPS(CHR(LASTKEY)), INPUT step).
 IF moved = FALSE THEN
 MESSAGE "Out of bounds".
 END.
 END.
END.

The CALL object is not as lightweight as the DYNAMIC-FUNCTION. It can be used to call different
things: functions, procedures, external program, Windows DLL-functions. It can also invoke
methods on objects and access getters/setters.

DEFINE VARIABLE functionHandle AS HANDLE NO-UNDO.
DEFINE VARIABLE returnvalue AS CHARACTER NO-UNDO.

FUNCTION isPalindrome LOGICAL (INPUT txt AS CHARACTER, OUTPUT txtBackwards AS CHARACTER):
 DEFINE VARIABLE i AS INTEGER NO-UNDO.

 DO i = LENGTH(txt) TO 1 BY -1:
 txtBackwards = txtBackwards + SUBSTRING(txt, i, 1).
 END.

 IF txt = txtBackwards THEN
 RETURN TRUE.
 ELSE
 RETURN FALSE.

END FUNCTION.

CREATE CALL functionHandle.
functionHandle:CALL-NAME = "isPalindrome".
/* Sets CALL-TYPE to the default */
functionHandle:CALL-TYPE = FUNCTION-CALL-TYPE.
functionHandle:NUM-PARAMETERS = 2.
functionHandle:SET-PARAMETER(1, "CHARACTER", "INPUT", "HELLO WORLD").
functionHandle:SET-PARAMETER(2, "CHARACTER", "OUTPUT", returnvalue).
functionHandle:INVOKE.

MESSAGE "Text backwards: " returnvalue "Is it a palindrome? " functionHandle:RETURN-VALUE
VIEW-AS ALERT-BOX.

DELETE OBJECT functionHandle.

CREATE CALL functionHandle.
functionHandle:CALL-NAME = "isPalindrome".
/* Sets CALL-TYPE to the default */
functionHandle:CALL-TYPE = FUNCTION-CALL-TYPE.
functionHandle:NUM-PARAMETERS = 2.
functionHandle:SET-PARAMETER(1, "CHARACTER", "INPUT", "ANNA").
functionHandle:SET-PARAMETER(2, "CHARACTER", "OUTPUT", returnvalue).
functionHandle:INVOKE.

MESSAGE "Text backwards: " returnvalue "Is it a palindrome? " functionHandle:RETURN-VALUE
VIEW-AS ALERT-BOX.

DELETE OBJECT functionHandle.

https://riptutorial.com/ 40

Read Functions online: https://riptutorial.com/progress-4gl/topic/8857/functions

https://riptutorial.com/ 41

https://riptutorial.com/progress-4gl/topic/8857/functions

Chapter 6: Iterating

Introduction

There are several ways of iterating (looping) in Progress ABL.

Examples

DO WHILE

A DO WHILE loop will continue to loop unless the WHILE-part is met. This makes it easy to run forever
and eat up all time from one CPU core.

DO WHILE expression:

END.

expression is any combination of boolean logic, comparisons, variables, fields etc that
evaluates to a true value.

/* This is a well defined DO WHILE loop that will run as long as i is lower than 10*/
DEFINE VARIABLE i AS INTEGER NO-UNDO.
DO WHILE i < 10:
 i = i + 1.
END.

DISPLAY i. // Will display 10

You can use any number of checks in the WHILE-part:

DEFINE VARIABLE i AS INTEGER NO-UNDO.
DO WHILE TODAY = DATE("2017-02-06") AND RANDOM(1,100) < 99:
 i = i + 1.
END.

MESSAGE i "iterations done" VIEW-AS ALERT-BOX.

However, the compiler wont help you so check that the WHILE-part eventually is met:

/* Oops. Didnt increase i. This will run forever... */
DEFINE VARIABLE i AS INTEGER NO-UNDO.
DO WHILE i < 10:
 i = 1.
END.

DO var = start TO finish [BY step]

This iteration changes a value from a starting point to an end, optionally by a specified value for

https://riptutorial.com/ 42

each step. The default change is 1.

DEFINE VARIABLE i AS INTEGER NO-UNDO.

DO i = 10 TO 15:
 DISPLAY i WITH FRAME x1 6 DOWN .
 DOWN WITH FRAME x1.
END.

Result:

---------------i

 10
 11
 12
 13
 14
 15

You can iterate over dates as well:

DEFINE VARIABLE dat AS INTEGER NO-UNDO.

DO dat = TODAY TO TODAY + 3:

END.

And over decimals. But then you most likely want to use BY - otherwise an INTEGER would have
done just as fine...

DEFINE VARIABLE de AS DECIMAL NO-UNDO.

DO de = 1.8 TO 2.6 BY 0.2:
 DISPLAY "Value" de.
END.

Using BY a negative number you can also go from a higher to a lower value:

DEFINE VARIABLE i AS INTEGER NO-UNDO.

DO i = 5 TO 1 BY -1:

END.

The expression will be tested until it's no longer met. This makes the counter be higher (if moving
upwards) or lower (if moving downwards) once the loop is finished:

DEFINE VARIABLE i AS INTEGER NO-UNDO.

DO i = 5 TO 1 BY -1:

END.

https://riptutorial.com/ 43

MESSAGE i. // Will message 0

Another example:

DEFINE VARIABLE da AS DATE NO-UNDO.

DISPLAY TODAY. //17/02/06
DO da = TODAY TO TODAY + 10:

END.
DISPLAY da. //17/02/17 (TODAY + 11)

REPEAT

REPEAT, will repeat itself forever unless you explicitly exit the loop:

//Runs forever
REPEAT:
 // Do stuff
END.

To exit the loop you can use the LEAVE keyword. With or without a label. Without a label LEAVE will
always effect the current loop. With a name you can specify what loop to LEAVE.

/* Without a label */
REPEAT:
 //Do stuff
 IF TRUE THEN LEAVE.
END.

/* With a label */
loopLabel:
REPEAT:
 //Do stuff
 IF <somecondition> THEN LEAVE loopLabel.
END.

/* Two nested REPEATS */
DEFINE VARIABLE i AS INTEGER NO-UNDO.
loopLabelOne:
REPEAT:
 loopLabelTwo:
 REPEAT:
 i = i + 1.
 IF RANDOM(1,100) = 1 THEN LEAVE loopLabelTwo.
 IF RANDOM(1,100) = 1 THEN LEAVE loopLabelOne.
 END.
 IF RANDOM(1,100) = 1 THEN LEAVE loopLabelOne.
END.
DISPLAY i.

Read Iterating online: https://riptutorial.com/progress-4gl/topic/9009/iterating

https://riptutorial.com/ 44

https://riptutorial.com/progress-4gl/topic/9009/iterating

Chapter 7: OS-utilities

Introduction

There are several built in functions and statements for accessing the operating system.

Examples

OS-COMMAND

Executes a OS-command.

OS-COMMAND without any options will start a new shell and not exit it - thus you will on graphical
OS:es leave a window "hanging".

DEFINE VARIABLE cmd AS CHARACTER NO-UNDO.

cmd = "dir".

OS-COMMAND VALUE(cmd).

There are three options: SILENT, NO-WAIT and NO-CONSOLE.

SILENT

After processing an operating system command, the AVM shell pauses. To exit the
window in Windows GUI platforms, you must type exit. To exit the window in Windows
character platforms, you must type exit and press RETURN or SPACEBAR. You can
use the SILENT option to eliminate this pause. Use this option only if you are sure that
the program, command, or batch file does not generate any output to the screen.
Cannot be used with NO-WAIT.

OS-COMMAND SILENT VALUE("runprogram.exe").

NO-WAIT

In a multi-tasking environment, causes the AVM to immediately pass control back to
next statement after the OS-COMMAND without waiting for the operating system
command to terminate. Cannot be used with SILENT. This option is supported in
Windows only.

OS-COMMAND NO-WAIT VALUE("DIR > dirfile.txt").

On Linux/Unix you will have to achieve this by preceding the command with a &-sign instead:

OS-COMMAND VALUE("ls >> file.txt &").

https://riptutorial.com/ 45

NO-CONSOLE

While processing an operating system command, the AVM creates a console window.
The console window may not be cleaned up after the command is executed. You can
use the NO-CONSOLE option to prevent this window from being created in the first
place.

OS-COMMAND NO-CONSOLE VALUE("startbach.bat").

No errors are ever returned from OS-COMMAND to Progress ABL so you have to check for errors
another way, possibly writing them to a file in a shell-script or similar.

OPSYS

The OPSYS-function returns what OS the program is running on:

MESSAGE OPSYS VIEW-AS ALERT-BOX.

Result:

It can be used to select what OS-utility to call:

IF OPSYS = "LINUX" THEN
 OS-COMMAND VALUE("ls -l").
ELSE
 OS-COMMAND VALUE("dir").

OS-ERROR

Returns an error from a previous OS-* call represented by an integer. The calls that can return an
OS-ERROR are:

OS-APPEND•
OS-COPY•
OS-CREATE-DIR•
OS-DELETE•
OS-RENAME•
SAVE CACHE•

Note that OS-COMMAND is missing. You need to handle errors in OS-COMMAND yourself.

https://riptutorial.com/ 46

https://i.stack.imgur.com/6sfN6.png

Error number Description

0 No error

1 Not owner

2 No such file or directory

3 Interrupted system call

4 I/O error

5 Bad file number

6 No more processes

7 Not enough core memory

8 Permission denied

9 Bad address

10 File exists

11 No such device

12 Not a directory

13 Is a directory

14 File table overflow

15 Too many open files

16 File too large

17 No space left on device

18 Directory not empty

999 Unmapped error (ABL default)

OS-GETENV function

Returns the value of any OS environment variable.

MESSAGE OS-GETENV ("OS") VIEW-AS ALERT-BOX.

On a Windows machine:

https://riptutorial.com/ 47

MESSAGE OS-GETENV ("SHELL") VIEW-AS ALERT-BOX.

Result on a Linux machine with Bash as current shell:

 ┌────── Message ───────┐
 │ /bin/bash │
 │ ──────────────────── │
 │ <OK> │
 └──────────────────────┘

OS-COPY

Copy a file

COPY source-file target-file

Copy c:\temp\source-file.txt to c:\temp\target-file.txt. You need to check OS-ERROR for success
or lack thereof.

OS-COPY VALUE("c:\temp\source-file.txt") VALUE("c:\temp\target-file.txt").
IF OS-ERROR <> 0 THEN DO:
 MESSAGE "An error occured" VIEW-AS ALERT-BOX ERROR.
END.

OS-DELETE

Deletes a file, or a file-tree.

As with many other OS-* utilities, you have to check status in OS-ERROR.

OS-DELETE file-or-dir-to-delete [RECURSIVE]

Delete the entire /tmp/dir tree:

OS-DELETE VALUE("/tmp/dir") RECURSIVE.

Delete the file called c:\dir\file.txt

OS-DELETE VALUE("c:\dir\file.txt").

OS-CREATE-DIR

https://riptutorial.com/ 48

https://i.stack.imgur.com/ugpDH.png

Creates a directory, status is in OS-ERROR

OS-CREATE-DIR directory

Create a directory called /usr/local/appData

OS-CREATE-DIR VALUE("/usr/local/appData").

OS-APPEND

Append one file to another. Status is checked in OS-ERROR

OS-APPEND source target

Appends targetfile.txt with sourcefile.txt:

OS-APPEND VALUE("sourcefile.txt") VALUE("targetfile.txt").

OS-RENAME

Rename a file or directory. Status is in OS-ERROR. Can also be used to move files (or move and
rename).

OS-RENAME oldname newname

Rename /tmp/old-name to /tmp/new-name:

OS-RENAME VALUE("/tmp/old-name") VALUE("/tmp/new-name").

Move file c:\temp\old.txt to c:\new-dir\old.txt:

OS-RENAME VALUE("c:\temp\old.txt") VALUE("c:\new-dir\old.txt").

OS-DRIVES (Windows only)

Returns a list of all drives on a system.

MESSAGE OS-DRIVES VIEW-AS ALERT-BOX.

Result with four drives, C through F:

https://riptutorial.com/ 49

https://i.stack.imgur.com/d8VlI.png

On Linux the list will simply be empty as there by definitions are no "drives" connected. Listing
directories is done in another way (INPUT FROM OS-DIR)

Read OS-utilities online: https://riptutorial.com/progress-4gl/topic/9056/os-utilities

https://riptutorial.com/ 50

https://riptutorial.com/progress-4gl/topic/9056/os-utilities

Chapter 8: Procedures

Introduction

There are two types of procedures in Progress ABL: internal procedures and procedure prototypes
that are facades to Windows dlls or Unix/Linux shared library procedures.

Just like with functions, procedures cannot be nested. You cannot nest functions in procedures
and vice versa.

A procedure is called with the RUN statement.

Syntax

RUN procedurename. //Runs a procedure called procedurename.•

RUN proc1(INPUT "HELLO"). //Inputs the string HELLO to proc1•

RUN proc2(INPUT var1, output var2). //Inputs var1 and outputs var2 to/from proc2•

RUN proc3(input "name = 'joe'", OUTPUT TABLE ttResult). //Inputs name=joe and outputs
records in a table

•

PROCEDURE proc: // Declares a procedure named proc•

END PROCEDURE. // Ends the current procedure•

Examples

A basic internal procedure

Unlike functions, there's no need to forward declare a procedure. It can be placed anywhere in
your code, before or after you call it using RUN.

RUN proc.

//Procedure starts here
PROCEDURE proc:

//Procedure ends here
END PROCEDURE.

The procedure name is folowed by a colon sign telling us that this is the start of a block. The block
ends with END PROCEDURE. (but this can be replaced with simply END.).

INPUT and OUTPUT parameters

https://riptutorial.com/ 51

A procedure can have parameters of different kinds: input, output, input-output (bidirectional) and
also some special types like temp-tables and datasets).

In the run statement it's optional to declare INPUT (it's considered default) - all other directions must
be specifically declared.

A procedure taking two integers as input and outputting a decimal.

PROCEDURE divideAbyB:
 DEFINE INPUT PARAMETER piA AS INTEGER NO-UNDO.
 DEFINE INPUT PARAMETER piB AS INTEGER NO-UNDO.
 DEFINE OUTPUT PARAMETER pdeResult AS DECIMAL NO-UNDO.

 pdeResult = piA / piB.

END PROCEDURE.

DEFINE VARIABLE de AS DECIMAL NO-UNDO.

RUN divideAbyB(10, 2, OUTPUT de).

DISPLAY de. //5.00

Parameters are totally optional. You can mix and match any way you want. The order of the
parameters are up to you but it's handy to start with input and end with output - you have to put
them in the right order in the run statement and mixing directions can be annoying.

Recursion - see recursion

Recursion is easy - RUN the procedure itself from inside the procedure. However if you recurse too
far the stack will run out of space.

A procedure calculation the factorial.

PROCEDURE factorial:
 DEFINE INPUT PARAMETER piNum AS INTEGER NO-UNDO.
 DEFINE OUTPUT PARAMETER piFac AS INTEGER NO-UNDO.

 DEFINE VARIABLE iFac AS INTEGER NO-UNDO.

 IF piNum = 1 THEN DO:
 pifac = 1.
 END.
 ELSE DO:
 RUN factorial(piNum - 1, OUTPUT iFac).
 piFac = piNum * iFac.
 END.

END PROCEDURE.

DEFINE VARIABLE f AS INTEGER NO-UNDO.

RUN factorial(7, OUTPUT f).

DISPLAY f.

https://riptutorial.com/ 52

Scope

The procedure has it's own scope. The outside scope will "bleed" into the procedure but not the
other way arround.

DEFINE VARIABLE i AS INTEGER NO-UNDO INIT 1.
DEFINE VARIABLE j AS INTEGER NO-UNDO.

PROCEDURE p:

 MESSAGE i VIEW-AS ALERT-BOX. // 1
 MESSAGE j VIEW-AS ALERT-BOX. // 0

 j = 2.

END PROCEDURE.

RUN p.

MESSAGE i VIEW-AS ALERT-BOX. // 1
MESSAGE j VIEW-AS ALERT-BOX. // 2

Declaring a variable inside a procedure that has the same name as a parameter on the outside will
only create a local variable.

DEFINE VARIABLE i AS INTEGER NO-UNDO INIT 1.
DEFINE VARIABLE j AS INTEGER NO-UNDO.

PROCEDURE p:

 DEFINE VARIABLE i AS INTEGER NO-UNDO INIT 5.

 MESSAGE i VIEW-AS ALERT-BOX. // 5
 MESSAGE j VIEW-AS ALERT-BOX. // 0

 j = 2.

END PROCEDURE.

RUN p.

MESSAGE i VIEW-AS ALERT-BOX. // 1
MESSAGE j VIEW-AS ALERT-BOX. // 2

Any variable created on the inside of a procedure is accessible to that procedure only.

This will generate a compiler error:

PROCEDURE p:

 DEFINE VARIABLE i AS INTEGER NO-UNDO INIT 5.

END PROCEDURE.

RUN p.

https://riptutorial.com/ 53

MESSAGE i VIEW-AS ALERT-BOX. // Unknown Field or Variable name i - error 201

Read Procedures online: https://riptutorial.com/progress-4gl/topic/8914/procedures

https://riptutorial.com/ 54

https://riptutorial.com/progress-4gl/topic/8914/procedures

Chapter 9: Queries

Introduction

The examples will be based on a copy of the demo database Sports 2000 provided with the setup
of Progress.

When working with queries in Progress you need to:

DEFINE the query and set what buffers (tables) and fields it works against.

OPEN the query with a specific WHERE-clause that defines how to retrieve the records. Possibly also
sorting (BY/BREAK BY)

GET the actual data - that can be the FIRST, NEXT, PREV (for previous) or LAST matching record.

Syntax

DEFINE QUERY query-name FOR buffer-name. //General query definition for one buffer•
DEFINE QUERY query-name FOR buffer-name1, buffer-name2. //Joining two buffers•
DEFINE QUERY query-name FOR buffer-name FIELDS (field1 field2). //Only retreive field1
and field2

•

DEFINE QUERY query-name FOR buffer-name EXCEPT (field3). //Retreive all fields except
field3.

•

Examples

Basic Query

/* Define a query named q1 for the Customer table */
DEFINE QUERY q1 FOR Customer.
/* Open the query for all Customer records where the state is "tx" */
OPEN QUERY q1 FOR EACH Customer WHERE Customer.state ='TX'.

/* Get the first result of query q1 */
GET FIRST q1.

/* Repeat as long as query q1 has a result */
DO WHILE NOT QUERY-OFF-END('q1'):
 /* Display Customer.Name in a frame called frame1 with 10 rows */
 DISPLAY Customer.Name WITH FRAME frame1 10 DOWN.
 /* Move down the target line where to display the next record */
 DOWN WITH FRAME frame1.
 /* Get the next result of query q1 */
 GET NEXT q1.
END.
/* Display how many results query q1 had. */
DISPLAY NUM-RESULTS('q1') LABEL "Number of records".

https://riptutorial.com/ 55

/* Close the query */
CLOSE QUERY q1.

Output (third screen in Windows gui):

Multi-Tables Query

This query will join three tables: Customer, Order and Orderline.

The use of the OF statement as in childtable OF parenttable assumes that indexes are constructed
in a specific way. That is the case in the sports2000-database.

DEFINE QUERY q1 FOR Customer, Order, Orderline.

OPEN QUERY q1 FOR EACH Customer WHERE Customer.state = 'TX'
 , EACH Order OF customer WHERE order.custnum < 1000
 , EACH orderline OF order.

GET FIRST q1.
DO WHILE NOT QUERY-OFF-END('q1'):
 DISPLAY Customer.Name Order.OrderNum OrderLine.LineNum
 WITH FRAME frameA 20 DOWN.

https://riptutorial.com/ 56

https://i.stack.imgur.com/0loHs.png

 DOWN WITH FRAME frameA.
 GET NEXT q1.
END.

CLOSE QUERY q1.

Result: In Windows GUI:

Moving poisition withing a query using next, first, prev and last

DEFINE QUERY q1 FOR Customer.

OPEN QUERY q1 FOR EACH Customer.

GET FIRST q1.

loop:
REPEAT:
 IF AVAILABLE Customer THEN DO:
 DISPLAY Customer.NAME CustNum WITH FRAME frClient TITLE "Client data".

 DISPLAY
 "(P)revious" SKIP
 "(N)ext" SKIP

https://riptutorial.com/ 57

https://i.stack.imgur.com/QMvMG.png

 "(F)irst" SKIP
 "(L)ast" SKIP
 "(Q)uit" SKIP
 WITH FRAME frInstr
 TITLE "Instructions".
 END.

 READKEY.

 IF LASTKEY = ASC("q") THEN LEAVE loop.
 ELSE IF LASTKEY = ASC("n") THEN
 GET NEXT q1.
 ELSE IF LASTKEY = ASC("p") THEN
 GET PREV q1.
 ELSE IF LASTKEY = ASC("l") THEN
 GET LAST q1.
 ELSE IF LASTKEY = ASC("f") THEN
 GET FIRST q1.

END.

MESSAGE "Bye" VIEW-AS ALERT-BOX.

Read Queries online: https://riptutorial.com/progress-4gl/topic/8694/queries

https://riptutorial.com/ 58

https://riptutorial.com/progress-4gl/topic/8694/queries

Chapter 10: Strings

Introduction

In Progress ABL there are two types of strings, those defined as CHARACTER and those defined as
LONGCHAR. A file larger than 32K in length is a LONGCHAR. Most strings are unless specified any other
way case insensitive.

Remarks

Remember - all positions start with the position 1!

Examples

Defining, assing and displaying a string

Generally you should always define all variable and parameters as NO-UNDO unless you really need
to.

DEFINE VARIABLE cString AS CHARACTER NO-UNDO.

cString = "HELLO".

DISPLAY cString.

Concatenating strings

Using the + operator you can easily concatenate two or more strings.

DEFINE VARIABLE cString AS CHARACTER NO-UNDO.

cString = "HELLO".

cString = cString + " " + "GOODBYE".

DISPLAY cString FORMAT "X(20)".

String manipulation

There are a couple of useful built in functions for working with string. All functions working with the
position of characters start with index 1 as the first character, not 0 as is common in many
languages.

STRING - converts any value to a string

This example converts the integer 2000 to the string "2000".

https://riptutorial.com/ 59

DEFINE VARIABLE i AS INTEGER NO-UNDO.
DEFINE VARIABLE c AS CHARACTER NO-UNDO.

i = 2000.

c = STRING(i).

DISPLAY c.

CHR and ASC - converts single characters to and from ascii.

CHR(integer)

Returns the character representation for ascii code integer

ASC(character)

Returns the ascii integer value for the character

DEFINE VARIABLE ix AS INTEGER NO-UNDO.
DEFINE VARIABLE letter AS CHARACTER NO-UNDO FORMAT "X(1)" EXTENT 26.

DO ix = 1 TO 26:
 letter[ix] = CHR((ASC("A")) - 1 + ix).
END.

DISPLAY SKIP(1) letter WITH 2 COLUMNS NO-LABELS
 TITLE "T H E A L P H A B E T".

LENGTH - returns the length of a string

LENGTH(string). //Returns an integer with the length of the string.

DEFINE VARIABLE cString AS CHARACTER NO-UNDO.

cString = "HELLO".

MESSAGE "The string " cString " is " LENGTH(cString) " characters long" VIEW-AS ALERT-BOX.

SUBSTRING - returns or assigns a part of a string

SUBSTRING(string, starting-position, length).•

Returns "length" characters from "string" starting on position "starting-position".

SUBSTRING(string, starting-position).•

Returns the rest of "string", starting at position "starting-position"

DEFINE VARIABLE cString AS CHARACTER NO-UNDO.

cString = "ABCDEFGH".

DISPLAY SUBSTRING(cString, 4, 2). //Displays "DE"

https://riptutorial.com/ 60

DISPLAY SUBSTRING(cString, 4). //Displays "DEFGH"

Substring can also be used to overwrite a part of a string. Use the same syntax but assign that
substring instead:

DEFINE VARIABLE cString AS CHARACTER NO-UNDO.

cString = "ABCDEFGH".

SUBSTRING(cString, 4, 2) = "XY". //Replaces position 4 and 5 with "XY"

DISPLAY cString.

There's also a similar function called OVERLAY this example from the Progress documentation
covers the differences between OVERLAYand SUBSTRING:

/* This procedure illustrates the differences between the SUBSTRING and
 OVERLAY statements. */
DEFINE VARIABLE cOriginal AS CHARACTER NO-UNDO INITIAL "OpenEdge".
DEFINE VARIABLE cSubstring AS CHARACTER NO-UNDO.
DEFINE VARIABLE cOverlay AS CHARACTER NO-UNDO.
DEFINE VARIABLE cResults AS CHARACTER NO-UNDO.

/* Default behavior without optional LENGTH. */
ASSIGN
 cSubstring = cOriginal
 SUBSTRING(cSubstring,2) = "***"
 cOverlay = cOriginal
 OVERLAY(cOverlay,2) = "***"
 cResults = "target = ~"OpenEdge~". ~n~n"
 + "If you do not supply a length, SUBSTRING and OVERLAY default as follows:
 ~n~n" + "SUBSTRING(target,2) = ~"***~" yields: " + cSubstring + ". ~n"
 + "OVERLAY(target,2) = ~"***~" yields: " + cOverlay + ".".

/* Behavior with zero LENGTH. */
ASSIGN
 cSubstring = cOriginal
 SUBSTRING(cSubstring,2,0) = "***"
 cOverlay = cOriginal
 OVERLAY(cOverlay,2,0) = "***"
 cResults = cResults + "~n~n"
 + "For a zero length, SUBSTRING and OVERLAY behave as follows: ~n~n"
 + "SUBSTRING(target,2,0) = ~"***~" yields: " + cSubstring + ". ~n"
 + "OVERLAY(target,2,0) = ~"***~" yields: " + cOverlay + ".".

/* Behavior with LENGTH < replacement. */
ASSIGN
 cSubstring = cOriginal
 SUBSTRING(cSubstring,2,1) = "***"
 cOverlay = cOriginal
 OVERLAY(cOverlay,2,1) = "***"
 cResults = cResults + "~n~n"
 + "For a length shorter than the replacement, SUBSTRING and OVERLAY behave
 as follows: ~n~n" + "SUBSTRING(target,2,1) = ~"***~" yields: "
 + cSubstring + ". ~n" + "OVERLAY(target,2,1) = ~"***~" yields: "
 + cOverlay + ".".

/* Behavior with LENGTH = replacement. */

https://riptutorial.com/ 61

ASSIGN
 cSubstring = cOriginal
 SUBSTRING(cSubstring,2,3) = "***"
 cOverlay = cOriginal
 OVERLAY(cOverlay,2,3) = "***"
 cResults = cResults + "~n~n"
 + "For a length equal to the replacement, SUBSTRING and OVERLAY behave as
 follows: ~n~n" + "SUBSTRING(target,2,3) = ~"***~" yields: "
 + cSubstring + ". ~n" + "OVERLAY(target,2,3) = ~"***~" yields: "
 + cOverlay + ".".

/* Behavior with LENGTH > replacement. */
ASSIGN
 cSubstring = cOriginal
 SUBSTRING(cSubstring,2,6) = "***"
 cOverlay = cOriginal
 OVERLAY(cOverlay,2,6) = "***"
 cResults = cResults + "~n~n"
 + "For a length greater than the replacement, SUBSTRING and OVERLAY behave
 as follows: ~n~n" + "SUBSTRING(target,2,6) = ~"***~" yields: "
 + cSubstring + ". ~n" + "OVERLAY(target,2,6) = ~"***~" yields: "
 + cOverlay + ".".

MESSAGE cResults VIEW-AS ALERT-BOX.

INDEX - return the position of a string in a string.

R-INDEX will to the same thing but search right to left.

INDEX(source, target)

Search target within source (left to right) and return it's position. If it's missing return 0.

INDEX(source, target, starting-position).

Same as above but start searching at starting-position

DEFINE VARIABLE str AS CHARACTER NO-UNDO.

str = "ABCDEFGH".

DISPLAY INDEX(str, "cd") INDEX(str, "cd", 4). //Will display 3 and 0

REPLACE - replaces a string within a string.

REPLACE(string, from-string, to-string)

Replaces from-string with to-string in string. From-string and to-string don't need to be
of the same length, to-string can also be nothing ("") to remove a character.

DEFINE VARIABLE c AS CHARACTER NO-UNDO.

c = "ELLO".

DISPLAY REPLACE(c, "E", "HE"). // Displays "HELLO"

https://riptutorial.com/ 62

c = "ABABABA".

DISPLAY REPLACE(c, "B", ""). // Remove all Bs

TRIM - removes leading and trailing whitespaces (or other characters).

This can be useful when cleaning up indata.

TRIM(string)

Removes all leading and trailing spaces, tabs, line feeds, carriage returns.

TRIM(string, character).

Removes all leading and trailing "characters".

LEFT-TRIM and RIGHT-TRIM does the same thing but only leading or trailing.

DEFINE VARIABLE c AS CHARACTER NO-UNDO.

c = "__HELLO_WORLD_____".

DISPLAY TRIM(c, "_").
/*Displays HELLO_WORLD without all the leading and
trailing underscores but leaves the one in the middle.
REPLACE would have removed that one as well */

SUBSTITUTE - substitutes paramters in a string.

SUBSTITUTE is a limited function for replacing up to nine preformatted parameters in a string.

SUBSTITUTE(string, param1, param2, ..., param9).

The parameters must be in the format &1 to &9.

If you want to use an ampersand in the string (and not use it as a parameter) escape it with
another ampersand: &&.

DEFINE VARIABLE str AS CHARACTER NO-UNDO.

str = "&1 made &2 goals in &3 games playing for &4".

MESSAGE SUBSTITUTE(str, "Zlatan Ibrahimovic", 113, 122, "Paris Saint-Germain") VIEW-AS ALERT-
BOX.
MESSAGE SUBSTITUTE(str, "Mats Sundin", 555, 1305, "Toronto Maple Leafs") VIEW-AS ALERT-BOX.

A parameter can appear more than once in a string, all will be replaced:

MESSAGE SUBSTITUTE("&1 &2 or not &1 &2", "To", "Be") VIEW-AS ALERT-BOX.

CASE-SENSITIVE strings

https://riptutorial.com/ 63

All strings in Progress ABL are case sensitive unless specified otherwise.

This example will display a message box saying that the strings are identical.

DEFINE VARIABLE str1 AS CHARACTER NO-UNDO.
DEFINE VARIABLE str2 AS CHARACTER NO-UNDO.

str1 = "abc".
str2 = "ABC".

IF str1 = str2 THEN
 MESSAGE "The strings are identical" VIEW-AS ALERT-BOX.

To declare a string case sensitive you just add the attribute CASE-SENSITIVE

DEFINE VARIABLE str1 AS CHARACTER NO-UNDO CASE-SENSITIVE.
DEFINE VARIABLE str2 AS CHARACTER NO-UNDO.

str1 = "abc".
str2 = "ABC".

IF str1 = str2 THEN
 MESSAGE "The strings are identical" VIEW-AS ALERT-BOX.
ELSE
 MESSAGE "There's a difference" VIEW-AS ALERT-BOX.

(It's enough that one of the strings has it in this case).

BEGINS and MATCHES

BEGINS - returns TRUE if one string begins with another string.

string1 BEGINS string2

If string1 BEGINS with (or is equal to) string2 this will return true. Otherwise it will
return false. If string two is empty ("") it will always return true.

BEGINS is very useful in queries where you want to search the beginning of something, for
instance a name. But it's basically a function working on strings.

DEFINE VARIABLE str AS CHARACTER NO-UNDO.
DEFINE VARIABLE beg AS CHARACTER NO-UNDO.

str = "HELLO".
beg = "HELLO".
DISPLAY str BEGINS beg. // yes

str = "HELLO".
beg = "H".
DISPLAY str BEGINS beg. // yes

str = "HELLO".
beg = "".
DISPLAY str BEGINS beg. // yes

https://riptutorial.com/ 64

str = "HELLO".
beg = "HELLO WORLD".
DISPLAY str BEGINS beg. // no

MATCHES returns true if certain wildcard critera is met in a string.

string1 MATCHES expression

Returns true if string1 matches the wildcard expression:

* (asterisk) = 0 to n characters (basically any string of any length)

. (period) = wildcard for any character (except null)

DEFINE VARIABLE str AS CHARACTER NO-UNDO.
DEFINE VARIABLE beg AS CHARACTER NO-UNDO.

str = "HELLO".
beg = "HELLO".
DISPLAY str MATCHES beg. // yes

str = "HELLO".
beg = "H*".
DISPLAY str MATCHES beg. // yes

str = "HELLO".
beg = "*O".
DISPLAY str MATCHES beg. // yes

str = "HELLO WORLD".
beg = "HELLO.WORLD".
DISPLAY str MATCHES beg. // yes

str = "HELLO WORLD".
beg = "*WORL..".
DISPLAY str MATCHES beg. // no

str = "*HELLO WORLD".
beg = "WOR*LD".
DISPLAY str MATCHES beg. // no

Converting upper and lower case

As mentioned before strings are normally case insensitive but that only regards comparison of
strings. There's built in functions for changing case.

CAPS (string)

Makes string upper case

LC(string)

Makes string lower case

https://riptutorial.com/ 65

DEFINE VARIABLE c AS CHARACTER NO-UNDO.
DEFINE VARIABLE d AS CHARACTER NO-UNDO.

c = "Hello".
d = "World".

DISPLAY CAPS(c) LC(d). // HELLO world

Remember strings normally are case insensitive

DEFINE VARIABLE c AS CHARACTER NO-UNDO.
DEFINE VARIABLE d AS CHARACTER NO-UNDO.

c = "hello".
d = "hello".

DISPLAY CAPS(c) = LC(d). // yes

Unless specificed as CASE-SENSITIVE

DEFINE VARIABLE c AS CHARACTER NO-UNDO CASE-SENSITIVE.
DEFINE VARIABLE d AS CHARACTER NO-UNDO.

c = "hello".
d = "hello".

DISPLAY CAPS(c) = LC(d). // no

Lists

There are a number of functions and methods for working with comma (or other character)
separated lists in Progress 4GL.

NUM-ENTRIES Returns the number of entries in a list. You can optionally specify delimiter,
comma is default

NUM-ENTRIES(string [, delimiter])

Using comma, the default delimiter:

DEFINE VARIABLE cList AS CHARACTER NO-UNDO.

cList = "Goodbye,cruel,world!".

DISPLAY NUM-ENTRIES(cList). //3

Using another delimiter, semilcolon:

DEFINE VARIABLE cList AS CHARACTER NO-UNDO.

cList = "Goodbye;cruel;world!".

DISPLAY NUM-ENTRIES(cList, ";"). //3

https://riptutorial.com/ 66

ENTRY - function - returns a specified entry in a list

As usual starting position is 1, not 0!

ENTRY(entry, list [, delimiter]).

DEFINE VARIABLE cList AS CHARACTER NO-UNDO.

cList = "Goodbye,cruel,world!".

DISPLAY ENTRY(2, cList). //cruel

ENTRY - method - assigning the value of a specified entry in a list

ENTRY(entry, list [, delimiter]) = value

DEFINE VARIABLE cList AS CHARACTER NO-UNDO.

cList = "Goodbye,cruel,world!".

ENTRY(1, cList) = "Hello".
ENTRY(2, cList) = "nice".

MESSAGE REPLACE(cList, ",", " ") VIEW-AS ALERT-BOX. //Hello nice world!

LOOKUP - check a list for a specific entry. Returns it's entry.

If the string isn't present in the list lookup will returns 0

LOOKUP(string, list [, delimiter])

DEFINE VARIABLE cList AS CHARACTER NO-UNDO.

cList = "Hello,nice,world!".

MESSAGE LOOKUP("nice", cList) VIEW-AS ALERT-BOX. //2
MESSAGE LOOKUP("cruel", cList) VIEW-AS ALERT-BOX. //0

Special characters (and escaping)

In Progress 4GL the normal way to write a special character is to preceed it with a tilde character
(~).

These are the default special characters

Sequence Interpreted as Comment

~" " Used to write " inside strings defined using "string".

~' ' Used to write ' inside strings defined using 'string'.

For instance if you want to print the sequence and not how ~~ ~

https://riptutorial.com/ 67

Sequence Interpreted as Comment

its interpreted.

~\ \

~{ {
{ is used in preprocessors and sometimes escaping is
needed.

~nnn
A single
character

nnn is an octal number representing the ascii value of the
character.

~t tab

~n
New line/line
feed

~r Carriage return

~E Escape

~b Backspace

~f Form feed

If you want to display tilde at all it must be escaped!

MESSAGE "A single tilde: ~~" VIEW-AS ALERT-BOX.

MESSAGE "At sign: ~100" SKIP
 "Tab~tseparated~twords!" SKIP
 "A linefeed:~n"
 "Escaping a quote sign: ~"This is a quote!~"" SKIP VIEW-AS ALERT-BOX.

Read Strings online: https://riptutorial.com/progress-4gl/topic/8872/strings

https://riptutorial.com/ 68

https://riptutorial.com/progress-4gl/topic/8872/strings

Chapter 11: TEMP-TABLE

Introduction

The TEMP-TABLE is a very powerful feature of Progress ABL. It's a temporary in-memory (mostly at
least) table that can be used for writing complex logic. It can be used as input/output parameters
to procedures, functions and other programs. One or more temp-tables can make up the
foundation of a DATASET (often called ProDataset).

Almost anything that can be done with a native Progress database table can be done with a temp-
table.

Examples

Defining a simple temp-table

This is the definition of a TEMP-TABLE named ttTempTable with three fields. NO-UNDO indicates that no
undo handling is needed (this is usually what you want to do unless you really need the opposite).

DEFINE TEMP-TABLE ttTempTable NO-UNDO
 FIELD field1 AS INTEGER
 FIELD field2 AS CHARACTER
 FIELD field3 AS LOGICAL.

A temp-table with an index

Temp-tables can (and should) be created with indices if you plan to run queries against them.

This table has one index (index1) containing of one field (field1). This index is primary and unique
(meaning not two records can have the same contents of field1).

DEFINE TEMP-TABLE ttTempTable NO-UNDO
 FIELD field1 AS INTEGER
 FIELD field2 AS CHARACTER
 FIELD field3 AS LOGICAL
 INDEX index1 IS PRIMARY UNIQUE field1 .

More indexes - indices...

You can define multiple indices for each temp-table. If you need them - define them. Basically an
index matching your query and/or sort order will help performance!

DEFINE TEMP-TABLE ttWithIndex NO-UNDO
 FIELD field1 AS INTEGER
 FIELD field2 AS CHARACTER
 FIELD field3 AS LOGICAL
 INDEX field1 field1.

https://riptutorial.com/ 69

DEFINE TEMP-TABLE ttWithoutIndex NO-UNDO
 FIELD field1 AS INTEGER
 FIELD field2 AS CHARACTER
 FIELD field3 AS LOGICAL.

DEFINE VARIABLE i AS INTEGER NO-UNDO.
DEFINE VARIABLE iWithCreate AS INTEGER NO-UNDO.
DEFINE VARIABLE iWithFind AS INTEGER NO-UNDO.
DEFINE VARIABLE iWithoutCreate AS INTEGER NO-UNDO.
DEFINE VARIABLE iWithoutFind AS INTEGER NO-UNDO.

ETIME(TRUE).
DO i = 1 TO 1000:
 CREATE ttWithIndex.
 ttWithIndex.field1 = i.
END.
iWithCreate = ETIME.

ETIME(TRUE).
DO i = 1 TO 1000:
 CREATE ttWithoutIndex.
 ttWithoutIndex.field1 = i.
END.
iWithoutCreate = ETIME.

RELEASE ttWithIndex.
RELEASE ttWithoutIndex.

ETIME(TRUE).
DO i = 1 TO 1000:
 FIND FIRST ttWithIndex WHERE ttWithIndex.field1 = i NO-ERROR.
END.
iWithFind = ETIME.

ETIME(TRUE).
DO i = 1 TO 1000:
 FIND FIRST ttWithoutIndex WHERE ttWithoutIndex.field1 = i NO-ERROR.
END.
iWithoutFind = ETIME.

MESSAGE
 "With index took" iWithFind "ms to find and" iWithCreate "ms to create" SKIP
 "Without index took" iWithoutFind "ms to find and" iWithoutCreate "ms to create"
 VIEW-AS ALERT-BOX.

Searching with index was roughly 70 times faster compared to no index! This is just one run of
course so not a scientific proof but your index setup will make impact.

https://riptutorial.com/ 70

https://i.stack.imgur.com/G8ecw.png

Inputting and outputting temp-tables

It's very simple to pass temp-tables in and out of programs, procedures and functions.

This can be handy if you want a procedure to process a bigger number of data than you can easily
store in a string or similar. You can pass temp-tables as INPUT, OUTPUT and INPUT-OUTPUT data.

Inputting one temp-table and outputting another:

DEFINE TEMP-TABLE ttRequest NO-UNDO
 FIELD fieldA AS CHARACTER
 FIELD fieldB AS CHARACTER.

/* Define a temp-table with the same fields and indices */
DEFINE TEMP-TABLE ttResponse NO-UNDO LIKE ttRequest.

/* A procedure that simply swap the values of fieldA and fieldB */
PROCEDURE swapFields:
 DEFINE INPUT PARAMETER TABLE FOR ttRequest.
 DEFINE OUTPUT PARAMETER TABLE FOR ttResponse.

 FOR EACH ttRequest:
 CREATE ttResponse.
 ASSIGN
 ttResponse.fieldA = ttRequest.fieldB
 ttResponse.fieldB = ttRequest.fieldA.
 END.
END PROCEDURE.

CREATE ttRequest.
ASSIGN ttRequest.fieldA = "A"
 ttRequest.fieldB = "B".

CREATE ttRequest.
ASSIGN ttRequest.fieldA = "B"
 ttRequest.fieldB = "C".

CREATE ttRequest.
ASSIGN ttRequest.fieldA = "C"
 ttRequest.fieldB = "D".

/* Call the procedure */
RUN swapFields (INPUT TABLE ttRequest
 , OUTPUT TABLE ttResponse).

FOR EACH ttResponse:
 DISPLAY ttResponse.
END.

Result:

fieldA--------fieldB--------

B A
C B
D C

https://riptutorial.com/ 71

Input-outputting a temp-table:

DEFINE TEMP-TABLE ttCalculate NO-UNDO
 FIELD num1 AS INTEGER
 FIELD num2 AS INTEGER
 FIELD response AS DECIMAL.

PROCEDURE pythagoras:
 DEFINE INPUT-OUTPUT PARAMETER TABLE FOR ttCalculate.

 FOR EACH ttCalculate:
 ttCalculate.response = SQRT(EXP(num1, 2) + EXP(num2, 2)).
 END.

END PROCEDURE.

CREATE ttCalculate.
ASSIGN ttCalculate.num1 = 3
 ttCalculate.num2 = 4.

CREATE ttCalculate.
ASSIGN ttCalculate.num1 = 6
 ttCalculate.num2 = 8.

CREATE ttCalculate.
ASSIGN ttCalculate.num1 = 12
 ttCalculate.num2 = 16.

/* Call the procedure */
RUN pythagoras (INPUT-OUTPUT TABLE ttCalculate).

FOR EACH ttCalculate:
 DISPLAY ttCalculate.
END.

Result:

----------num1-- ----------num2-- -------response-

 3 4 5.00
 6 8 10.00
 12 16 20.00

Passing to functions

DEFINE TEMP-TABLE ttNumbers NO-UNDO
 FIELD num1 AS INTEGER
 FIELD num2 AS INTEGER
 INDEX index1 num1 num2.

DEFINE VARIABLE iNum AS INTEGER NO-UNDO.

/* Forward declare the function */
FUNCTION hasAPair RETURNS LOGICAL (INPUT TABLE ttNumbers) FORWARD.

DO iNum = 1 TO 100:
 CREATE ttNumbers.
 ASSIGN ttNumbers.num1 = RANDOM(1,100)

https://riptutorial.com/ 72

 ttNumbers.num2 = RANDOM(1,100).
END.

MESSAGE hasAPair(INPUT TABLE ttNumbers) VIEW-AS ALERT-BOX.

/* Function to check if two records has the same value in num1 and num2 */
FUNCTION hasAPair RETURNS LOGICAL (INPUT TABLE ttNumbers):

 FIND FIRST ttNumbers WHERE ttNumbers.num1 = ttNumbers.num2 NO-ERROR.
 IF AVAILABLE ttNumbers THEN
 RETURN TRUE.
 ELSE
 RETURN FALSE.

END FUNCTION.

Passing to program files

You pass temp-tables to and from other .p-programs the same way you pass them to other
procedures. The only difference is that both the calling and the called program must have the
same temp-table declaration. One easy way is to store the temp-table program in a third file - an
include that's used in both programs.

Include file containing temp-table definition: /* ttFile.i */ DEFINE TEMP-TABLE ttFile NO-UNDO
FIELD fName AS CHARACTER FORMAT "x(20)" FIELD isADirectory AS LOGICAL.

Program checking all files in a temp-table. Are they directories?

/* checkFiles.p */
{ttFile.i}

DEFINE INPUT-OUTPUT PARAMETER TABLE FOR ttFile.

FOR EACH ttFile:
 FILE-INFO:FILE-NAME = ttFile.fName.

 IF FILE-INFO:FILE-TYPE BEGINS "D" THEN
 ttFile.isADirectory = TRUE.
END.

Main program:

{ttFile.i}

CREATE ttFile.
ASSIGN ttFile.fname = "c:\temp\".

CREATE ttFile.
ASSIGN ttFile.fname = "c:\Windows\".

CREATE ttFile.
ASSIGN ttFile.fname = "c:\Windoose\".

RUN checkFiles.p(INPUT-OUTPUT TABLE ttFile).

https://riptutorial.com/ 73

FOR EACH ttFile:
 DISPLAY ttFile.
END.

Result:

fName----------------- isADirector

c:\temp\ yes
c:\Windows\ yes
c:\Windoose\ no

Read TEMP-TABLE online: https://riptutorial.com/progress-4gl/topic/8957/temp-table

https://riptutorial.com/ 74

https://riptutorial.com/progress-4gl/topic/8957/temp-table

Chapter 12: Variables

Introduction

Progress ABL is statically typed. The variables need to be declared and the datatype cannot be
changed during run time.

Syntax

DEFINE VARIABLE i AS INT64 INITIAL -200 NO-UNDO. //A 64-bit integer initialized to -200•

DEFINE VARIABLE l AS LOGICAL NO-UNDO. //A logical variable named l•

DEFINE VARIABLE c AS CHARACTER NO-UNDO CASE-SENSITIVE. //A case sensitive
('a' <> 'A') variable.

•

DEFINE VARIABLE dt AS DATE INTIAL TODAY NO-UNDO. //A date variable set to todays
date.

•

DEFINE VARIABLE a AS CHARACTER EXTENT 5 NO-UNDO. //An character array with
length = 5

•

DEFINE VARIABLE j AS INTEGER EXTENT NO-UNDO. //An extent without a set length•

DEFINE VARIABLE b AS DATETIME LABEL "Departure time". //A variable with a label•

Examples

Basic variable declarations

/*

These variables are declared with `NO-UNDO`.
That states that no undo handling is wanted for this specific variable
in case of a transactional roll-back.

This should always be the default unless transactional control over
this variable is a requirement.
*/

/* Strings. A character longer than 32K should be a longchar */
DEFINE VARIABLE c AS CHARACTER NO-UNDO.
DEFINE VARIABLE cl AS LONGCHAR NO-UNDO.

/* Integers and decimals. INTEGER = 32 bit. INT64 = 64 bits */
DEFINE VARIABLE i AS INTEGER NO-UNDO.
DEFINE VARIABLE j AS INT64 NO-UNDO.
DEFINE VARIABLE k AS DECIMAL NO-UNDO.

/* Date and datetimez. Unset variables have the unknown value ? */

https://riptutorial.com/ 75

DEFINE VARIABLE d AS DATE NO-UNDO.
DEFINE VARIABLE dt AS DATETIME NO-UNDO.
DEFINE VARIABLE dtz AS DATETIME-TZ NO-UNDO.

/* LOGICAL = Boolean data. True or false (or ?) */
DEFINE VARIABLE l AS LOGICAL NO-UNDO.

/* Rowids and recids are internal identifiers to database records */
DEFINE VARIABLE rid AS ROWID NO-UNDO.
DEFINE VARIABLE rec AS RECID NO-UNDO.

/* A handle is a handle to anything: a session, an on screen widget etc */
/* A Com-handle is used for ActiveX Com-automation */
DEFINE VARIABLE h AS HANDLE NO-UNDO.
DEFINE VARIABLE hc AS COM-HANDLE NO-UNDO.

/* A raw variable can contain any data. Binary, strings etc */
DEFINE VARIABLE rw AS RAW NO-UNDO.

/* A mempointer contains a sequence of bytes in memory. */
DEFINE VARIABLE m AS MEMPTR NO-UNDO.

Arrays - defining and accessing

Progress supports one dimensional arrays, but they are called EXTENTS.

/* Define a character array with the length 5, and display it's length */
DEFINE VARIABLE a AS CHARACTER EXTENT 5 NO-UNDO.
DISPLAY EXTENT(a).

Individual positions i the array is accessed using "standard" c-style brackets. But the index starts
at 1. The maximum size is 28000.

a[1] = "A".
a[2] = "B".
a[3] = "C".
a[4] = "D".
a[5] = "E".

DISPLAY a[5].

Result:

Index 0 will generate an error:

DISPLAY a[0].

Result:

https://riptutorial.com/ 76

https://i.stack.imgur.com/PsdKC.png

You can also define a indeterminate array without a set length. The length (extent) can be set in
run-time. But only once!

DEFINE VARIABLE a AS CHARACTER EXTENT NO-UNDO.
EXTENT(a) = 10.
EXTENT(a) = 1.

The third line will procude the following error:

You can use the INITIAL option on the DEFINE VARIABLE statement to set initial values.

DEFINE VARIABLE a AS CHARACTER EXTENT 3 INITIAL ["one","two","three"] NO-UNDO.
/* Some statements (like DISPLAY) can handle a whole array: */
DISPLAY a.

Result:

If you don't set all extents the remaining will get the last set value:

DEFINE VARIABLE a AS CHARACTER EXTENT 10 INITIAL ["one","two","three"] NO-UNDO.
DISPLAY a.

Result:

https://riptutorial.com/ 77

https://i.stack.imgur.com/Qlubh.png
https://i.stack.imgur.com/YmO90.png
https://i.stack.imgur.com/0wV65.png

Using the LIKE keyword

Using LIKE you can base the definition of you variable on another variable or a field in a database
or temp-table.

Defining a variable LIKE a database field requiers the database to always be connected. This might
not always be what you want.

DEFINE VARIABLE i AS INTEGER NO-UNDO LABEL "Nr" FORMAT "99999".
/* Define a variable with the same properties as "i" */
DEFINE VARIABLE j LIKE i.

/* Define a variable based on Customer.Custnum from the sports2000 database but
override the label-definition */
DEFINE VARIABLE k LIKE Customer.Custnum LABEL "Client".

Read Variables online: https://riptutorial.com/progress-4gl/topic/8800/variables

https://riptutorial.com/ 78

https://i.stack.imgur.com/46oNA.png
https://riptutorial.com/progress-4gl/topic/8800/variables

Chapter 13: Working with numbers

Introduction

Progress ABL supports three number formats: 32 and 64 bit integers and floats.

Examples

Operators

Progress supports + / - * as operators. They cannot be overloaded. Division always returns a
decimal. If any of the numbers in a calculation is a decimal a decimal will be returned. Otherwise
an INTEGER or INT64.

There's no += or ++ operator. To increase or decrease a variable you have to assign it to itself plus
or minus something. So to add 1 to a variable you do: i = i + 1.

DEFINE VARIABLE i AS INTEGER NO-UNDO.
DEFINE VARIABLE j AS INTEGER NO-UNDO.

i = 3.
j = 2.

DISPLAY i + j. // 3 + 2 = 5

DISPLAY i - j. // 3 - 2 = 1

DISPLAY i / j. // 3 / 2 = 1.5

DISPLAY INTEGER(i / j). //Integer(3/2) = 2.

DISPLAY i * j. //3 x 2 = 6

More mathematical functions

EXP - Returns the result of raising a number to a power.

EXP(base, exponent)

MESSAGE EXP(10, 2) VIEW-AS ALERT-BOX. // Messages 100

SQRT - Returns the square root of a number.

SQRT(number)

MESSAGE "The square root of 256 is " SQRT(256) VIEW-AS ALERT-BOX. // Messages 16

MODULO - Determines the remainder after division.

https://riptutorial.com/ 79

expression MODULO base

DISPLAY 52 MODULO 12. //Displays 4

ROUND - Rounds a decimal expression to a specified number of places after the decimal point.

ROUND(number, precision)

DISPLAY ROUND(67.12345, 6) FORMAT "99.99999". // 67.12345
DISPLAY ROUND(67.12345, 5) FORMAT "99.99999". // 67.12345
DISPLAY ROUND(67.12345, 4) FORMAT "99.99999". // 67.12350
DISPLAY ROUND(67.12345, 3) FORMAT "99.99999". // 67.12300
DISPLAY ROUND(67.12345, 2) FORMAT "99.99999". // 67.12000
DISPLAY ROUND(67.12345, 1) FORMAT "99.99999". // 67.10000
DISPLAY ROUND(67.12345, 0) FORMAT "99.99999". // 67.00000

TRUNCATE Truncates a decimal expression to a specified number of decimal places, returning a
decimal value.

TRUNCATE(number, places)

DISPLAY TRUNCATE(67.12345, 6) FORMAT "99.99999". // 67.12345
DISPLAY TRUNCATE(67.12345, 5) FORMAT "99.99999". // 67.12345
DISPLAY TRUNCATE(67.12345, 4) FORMAT "99.99999". // 67.12340
DISPLAY TRUNCATE(67.12345, 3) FORMAT "99.99999". // 67.12300
DISPLAY TRUNCATE(67.12345, 2) FORMAT "99.99999". // 67.12000
DISPLAY TRUNCATE(67.12345, 1) FORMAT "99.99999". // 67.10000
DISPLAY TRUNCATE(67.12345, 0) FORMAT "99.99999". // 67.00000

ABSOLUTE - Returns the absolute value of a number

DISPLAY ABS(10 - 12). //Displays 2
DISPLAY ABS(-2) = ABS(2). //Displays yes

MINIMUM and MAXIMUM - returns the smalles and largest number

MINIMUM(number1, number2, ... numbern)

MAXIMUM(number1, number2, ... numbern)

DEFINE VARIABLE i AS INTEGER NO-UNDO.
DEFINE VARIABLE j AS INTEGER NO-UNDO.
DEFINE VARIABLE k AS INTEGER NO-UNDO.

i = 40.
j = 45.
k = 56.

DISPLAY MINIMUM(i, j, k) MAXIMUM(i, j, k). // Displays 40 and 56

Comparing numbers

https://riptutorial.com/ 80

There are standard functions built in for comparing equality, inequality etc.

Name Symbol Alternative Example

Equal = EQ i = j

Not equal <> NE i <> j

Less than < LT i < j

less than or equal <= LE i <= j

Greater than >= GT i > j

Greater than or equal ≥= GE i >= j

The symbol can be exchanged with the alternative and vice versa. So var1 <> var2 is the same
thing as var1 NE var2.

You can compare a float with an integer but you cannot compare for instance a date with an
integer.

Random number generator

RANDOM - generates a random number

RANDOM(low, high)

Generates a pseudo random integer between low and high

// Example that generates 20 random numbers between 1 and 20 (1 and 20 included)
DEFINE VARIABLE i AS INTEGER NO-UNDO.

DO i = 1 TO 20.
 DISPLAY i RANDOM(1, 20).
 PAUSE.
END.

Read Working with numbers online: https://riptutorial.com/progress-4gl/topic/8878/working-with-
numbers

https://riptutorial.com/ 81

https://riptutorial.com/progress-4gl/topic/8878/working-with-numbers
https://riptutorial.com/progress-4gl/topic/8878/working-with-numbers

Credits

S.
No

Chapters Contributors

1
Getting started with
progress-4gl

Community, Jensd, Stephen Leppik

2 Compiling Jensd

3
Conditional
statements

Jensd

4 FIND statement Jensd

5 Functions Jensd

6 Iterating Jensd

7 OS-utilities Jensd

8 Procedures Jensd

9 Queries Jensd, R3uK

10 Strings Jensd

11 TEMP-TABLE Jensd

12 Variables Jensd

13
Working with
numbers

Jensd

https://riptutorial.com/ 82

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2189922/jensd
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/2189922/jensd
https://riptutorial.com/contributor/2189922/jensd
https://riptutorial.com/contributor/2189922/jensd
https://riptutorial.com/contributor/2189922/jensd
https://riptutorial.com/contributor/2189922/jensd
https://riptutorial.com/contributor/2189922/jensd
https://riptutorial.com/contributor/2189922/jensd
https://riptutorial.com/contributor/2189922/jensd
https://riptutorial.com/contributor/4628637/r3uk
https://riptutorial.com/contributor/2189922/jensd
https://riptutorial.com/contributor/2189922/jensd
https://riptutorial.com/contributor/2189922/jensd
https://riptutorial.com/contributor/2189922/jensd

	About
	Chapter 1: Getting started with progress-4gl
	Remarks
	Versions
	Examples
	Installation or Setup
	Hello, World!
	FizzBuzz
	Setting up the environment
	Creating the "sports2000" demo database from the command line
	Commenting code
	Program files
	Running sports2000 as a service

	Chapter 2: Compiling
	Introduction
	Syntax
	Examples
	Application Compiler
	COMPILE statement
	COMPILER system handle

	Chapter 3: Conditional statements
	Introduction
	Examples
	IF ... THEN ... ELSE-statement
	CASE
	IF ... THEN ... ELSE-function

	Chapter 4: FIND statement
	Introduction
	Examples
	FIND basic examples
	Availability and scope
	FIND and locking

	Chapter 5: Functions
	Introduction
	Remarks
	Examples
	Simple function
	Forward declaring functions
	Multiple input parameters
	Multiple return statements (but a single return value)
	Output and input-output parameters
	Recursion
	Dynamic call of a function

	Chapter 6: Iterating
	Introduction
	Examples
	DO WHILE
	DO var = start TO finish [BY step]
	REPEAT

	Chapter 7: OS-utilities
	Introduction
	Examples
	OS-COMMAND
	OPSYS
	OS-ERROR
	OS-GETENV function
	OS-COPY
	OS-DELETE
	OS-CREATE-DIR
	OS-APPEND
	OS-RENAME
	OS-DRIVES (Windows only)

	Chapter 8: Procedures
	Introduction
	Syntax
	Examples
	A basic internal procedure
	INPUT and OUTPUT parameters
	Recursion - see recursion
	Scope

	Chapter 9: Queries
	Introduction
	Syntax
	Examples
	Basic Query
	Multi-Tables Query
	Moving poisition withing a query using next, first, prev and last

	Chapter 10: Strings
	Introduction
	Remarks
	Examples
	Defining, assing and displaying a string
	Concatenating strings
	String manipulation
	CASE-SENSITIVE strings
	BEGINS and MATCHES
	Converting upper and lower case
	Lists
	Special characters (and escaping)

	Chapter 11: TEMP-TABLE
	Introduction
	Examples
	Defining a simple temp-table
	A temp-table with an index
	More indexes - indices...
	Inputting and outputting temp-tables

	Chapter 12: Variables
	Introduction
	Syntax
	Examples
	Basic variable declarations
	Arrays - defining and accessing
	Using the LIKE keyword

	Chapter 13: Working with numbers
	Introduction
	Examples
	Operators
	More mathematical functions
	Comparing numbers
	Random number generator

	Credits

