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About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version 
from: prolog-language

It is an unofficial and free Prolog Language ebook created for educational purposes. All the 
content is extracted from Stack Overflow Documentation, which is written by many hardworking 
individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official Prolog 
Language.

The content is released under Creative Commons BY-SA, and the list of contributors to each 
chapter are provided in the credits section at the end of this book. Images may be copyright of 
their respective owners unless otherwise specified. All trademarks and registered trademarks are 
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor 
accurate, please send your feedback and corrections to info@zzzprojects.com
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Chapter 1: Getting started with Prolog 
Language

Remarks

Implementations

SWI-Prolog (free) swi-prolog
Implemented in c•

1. 

SICStus (commercial) sicstus-prolog2. 
YAP (free) yap3. 
GNU Prolog (free) gnu-prolog4. 
XSB (free) xsb5. 
B (commercial) b-prolog6. 
IF (commercial)7. 
Ciao (free)8. 
Minerva (commercial)9. 
ECLiPSe-CLP (free) eclipse-clp10. 
Jekejeke Prolog (commercial)11. 
Prolog IV12. 
Yield Prolog (free)

Implemented in c#, javascript and phyton•
13. 

Visual Prolog (commercial) visual-prolog14. 

Examples

Installation or Setup

SWI-Prolog

Windows and Mac:

Download SWI-Prolog at the official website•
Simply install by following the installer instructions.•

Linux (PPA):

Add the PPA ppa:swi-prolog/stable to your system’s software sources (developers may 
choose for ppa:swi-prolog/devel) :

Open a terminal (Ctrl+Alt+T) and type: sudo add-apt-repository ppa:swi-prolog/stable○

Afterwards, update the package information: sudo apt-get update○

•
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Now install SWI-Prolog through the package manager: sudo apt-get install swi-prolog•

You can now start SWI-Prolog through the command-line with command swipl•

append/3

append([], Bs, Bs). 
append([A|As], Bs, [A|Cs]) :- 
    append(As, Bs, Cs).

append/3 is one of the most well-known Prolog relations. It defines a relation between three 
arguments and is true if the third argument is a list that denotes the concatenation of the lists that 
are specified in the first and second arguments.

Notably, and as is typical for good Prolog code, append/3 can be used in several directions: It can 
be used to:

append two fully or partially instantiated lists:

  ?- A = [1, 2, 3], B=[4, 5, 6], append(A, B, Y) 
  Output: 
  A = [1, 2, 3], 
  B = [4, 5, 6], 
  Y = [1, 2, 3, 4, 5, 6].

•

check whether the relation is true for three fully instantiated lists:

  ?- A = [1, 2, 3], B = [4, 5], C = [1, 2, 3, 4, 5, 6], append(A, B, C) 
  Output: 
  false

•

generate all possible ways to append two lists to a given list:

  ?- append(A, B, [1, 2, 3, 4]). 
  Output: 
  A = [], 
  B = [1, 2, 3, 4] ; 
  A = [1], 
  B = [2, 3, 4] ; 
  A = [1, 2], 
  B = [3, 4] ; 
  A = [1, 2, 3], 
  B = [4] ; 
  A = [1, 2, 3, 4], 
  B = [] ; 
  false.

•

CLP(FD) Constraints

CLP(FD) constraints are provided by all serious Prolog implementations. They allow us to reason 
about integers in a pure way.
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?- X #= 1 + 2. 
X = 3. 
 
?- 5 #= Y + 2. 
Y = 3.

Database Programming

Prolog categorizes everything into:

Atoms - Any sequence of characters that do not start with an uppercase alphabet. Eg - a, b, 
okay

•

Numbers - There is no special syntax for numbers, no declaration is required. Eg 1, 22, 35.8•
Variables - A string which starts with an uppercase character or underscore (_). Eg X, Y, Abc, 
AA

•

Complex Terms - They are made from a functor and a sequence of arguments. Name of a 
complex term is always an atom, while arguments can either be atoms or variables. Eg 
father(john,doe), relative(a), mother(X,Y).

•

A logic database contains a set of facts and rules.

A complex term with only atoms as arguments is called a fact, while a complex term with variables 
as arguments is called a rule.

Example of facts in Prolog:

father_child(fred, susan). 
mother_child(hillary, joe).

Example of a rule in Prolog:

child_of(X,Y):- 
    father_child(Y,X) 
    ; 
    mother_child(Y,X).

Note that the ; here is like the or operator in other languages.

Prolog is a declarative language and you can read this database as follows:

fred is the father of susan

hillary is the mother of joe.

For all X and Y, X is a child of Y if Y is a father of X or Y is a mother of X.

In fact, a finite set of facts and or rules constitutes as a logic program.

The use of such a program is demonstrated by doing queries. Queries lets you retrieve information 
from a logic program.
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To load the database into the interpreter (assuming that you've saved the database into the 
directory you are running the interpreter in) you simply enter:

?- [nameofdatabase].

replacing the nameofdatabase with the actual file name (note that here we exclude the .pl extension 
to the filename).

Example of queries in the interpreter for the program above and the results:

?- child_of(susan,fred). 
true 
 
?- child_of(joe,hillary). 
true 
 
?- child_of(fred,susan). 
false 
 
?- child_of(susan,hillary). 
false 
 
?- child_of(susan,X). 
X = fred 
 
?- child_of(X,Y). 
X = susan, 
Y = fred ; 
X = joe, 
Y = hillary.

The queries above and their answers can be read as follows:

is susan a child of fred? - true

is joe a child of hillary? - true

is fred a child of susan? - false

is susan a child of hillary? - false

who is susan a child of? - fred

This is how we program logic in Prolog. A logic program is more formally: a set of axioms, or rules, 
defining relations (aka predicates) between objects. An alternative way of interpreting the 
database above in a more formal logic way is:

The relation father_child holds between fred and susan

The relation mother_child holds between hillary and joe

For all X and Y the relation child_of holds between X and Y if the relation father_child 
holds between Y and X, or the relation mother_child holds between Y and X.

https://riptutorial.com/ 5



Hello, World

Hello, World in the interactive interpreter

To print "Hello, World!" in the Prolog interpreter (here we are using swipl, the shell for SWI 
Prolog):

$ swipl 
<...banner...> 
?- write('Hello, World!'), nl.

?- is the system prompt: it indicates that the system is ready for the user to enter a sequence of 
goals (i.e. a query) that must be terminated with a . (full stop).

Here the query write('Hello World!'), nl has two goals:

write('Hello World!'): 'Hello World!' has to be displayed and (,)•
a new line (nl) must follow.•

write/1 (the /1 is used to indicate that the predicate takes one argument) and nl/0 are built-in 
predicates (the definition is provided in advance by the Prolog system). Built-in predicates provide 
facilities that cannot be obtained by pure Prolog definition or to save the programmer from having 
to define them.

The output:

Hello, World!

yes

ends with yes meaning that the query has succeeded. In some systems true is printed instead of 
yes.

Hello, World from a file

Open a new file called hello_world.pl and insert the following text:

:- initialization hello_world, halt. 
 
hello_world :- 
    write('Hello, World!'), nl.

The initialization directive specifies that the goal hello_world, halt should be called when the file 
is loaded. halt exits the program.

This file can then be executed by your Prolog executable. The exact flags depend on the Prolog 
system. If you are using SWI Prolog:

https://riptutorial.com/ 6

http://www.swi-prolog.org/pldoc/doc_for?object=write/1
http://www.swi-prolog.org/pldoc/doc_for?object=nl/0


$ swipl -q -l hello_world.pl 

This will produce output Hello, World!. The -q flag suppresses the banner that usually displays 
when you call run swipl. The -l specifies a file to load.

Read Getting started with Prolog Language online: https://riptutorial.com/prolog/topic/1038/getting-
started-with-prolog-language
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Chapter 2: Coding guidelines

Examples

Naming

When programming in Prolog, we must pick two kinds of names:

names of predicates•
names of variables.•

A good predicate name makes clear what each argument means. By convention, underscores 
are used in names to separate the description of different arguments. This is because 
underscores_keep_even_longer_names_readable, whereas mixingTheCasesDoesNotDoThisToTheSameExtent.

Examples of good predicates names are:

parent_child/2•
person_likes/2•
route_to/2•

Note that descriptive names are used. Imperatives are avoided. Using descriptive names is 
advisable because Prolog predicates can typically be used in multiple directions, and the name 
should be applicable also of all or none of the arguments are instantiated.

Mixed capitalization is more common when selecting names of variables. For example: 
BestSolutions, MinElement, GreatestDivisor. A common convention for naming variables that denote 
successive states is using S0, S1, S2, ..., S, where S represents the final state.

Indentation

There are only a few language constructs in Prolog, and several ways for indenting them are 
common.

No matter which style is chosen, one principle that should always be adhered to is to never place 
(;)/2 at the end of a line. This is because ; and , look very similar, and , frequently occurs at the 
end of a line. Therefore, clauses that use a disjunction should for example be written as:

(  Goal1 
;  Goal2 
)

Order of arguments

Ideally, Prolog predicates can be used in all directions. For many pure predicates, this is also 
actually the case. However, some predicates only work in particular modes, which means 
instantiation patterns of their arguments.

https://riptutorial.com/ 8



By convention, the most common argument order for such predicates is:

input arguments are placed first. These arguments must be instantiated before the predicate 
is called.

•

pairs of arguments that belong together are placed adjacently, such as p(..., State0, State, 
...)

•

intended output arguments are placed last. These predicates are instantiated by the 
predicate.

•

Read Coding guidelines online: https://riptutorial.com/prolog/topic/4612/coding-guidelines
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Chapter 3: Constraint Logic Programming

Examples

CLP(FD)

CLP(FD) constraints (Finite Domains) implement arithmetic over integers. They are available in 
all serious Prolog implementations.

There are two major use cases of CLP(FD) constraints:

Declarative integer arithmetic•
Solving combinatorial problems such as planning, scheduling and allocation tasks.•

Examples:

?- X #= 1+2. 
X = 3. 
 
?- 3 #= Y+2. 
Y = 1.

Note that if is/2 were to be used in the second query, an instantiation error would occur:

?- 3 is Y+2. 
ERROR: is/2: Arguments are not sufficiently instantiated

CLP(Q)

CLP(Q) implements reasoning over rational numbers.

Example:

?- { 5/6 = X/2 + 1/3 }. 
X = 1.

CLP(H)

Prolog itself can be considered as CLP(H): Constraint Logic Programming over Herbrand terms. 
With this perspective, a Prolog program posts constraints over terms. For example:

?- X = f(Y), Y = a. 
X = f(a), 
Y = a.

Read Constraint Logic Programming online: https://riptutorial.com/prolog/topic/2057/constraint-
logic-programming
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Chapter 4: Control structures

Examples

Disjunction (logical OR), implicit vs. explict

Prolog tries alternative clauses for a predicate in the order of appearance:

likes(alice, music). 
likes(bob, hiking). 
 
// Either alice likes music, or bob likes hiking will succeed.

The disjunction (OR) operator ; can be used to express this in one rule:

likes(P,Q) :- 
    ( P = alice , Q = music ) ; ( P = bob , Q = hiking ).

Parentheses are important here for clarity. See this Question on relative precedence for 
conjunction , and disjunction ;.

Conjunction (logical AND)

Conjunction (logical AND) is represented by the comma , operator (among other roles).

Conjunction between clauses can appear in a query:

?- X = 1, Y = 2.

Conjunction can also appear between the subgoal clauses in the body of a rule:

triangleSides(X,Y,Z) :- 
    X + Y > Z, X + Z > Y, Y + Z > X.

Cut (remove choice points)

Sometimes it is desirable to prevent Prolog from backtracking into alternative solutions. The basic 
tool available to the programmer to stop prolog from continuing futher in its backtrack is the cut 
operator. consider the following.

% (percent signs mean comments) 
% a is the parent of b, c, and d. 
parent(a,b). 
parent(a,c). 
parent(a,d).

Here the predicate parent/2 succeeds more than once when

https://riptutorial.com/ 11

http://stackoverflow.com/questions/29060684/conjunction-vs-disjunction-precedence-in-prolog


?- parent(a,X).

is called. To stop prolog from searching for more solutions after the first is found you would use 
the cut operator, like so.

?- parent(a,X), !.

This will have X equal to b (as it is the first possible solution) and look for no more solutions.

Read Control structures online: https://riptutorial.com/prolog/topic/4479/control-structures
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Chapter 5: Data Structures

Examples

Lists

Lists are a special kind of compound term. Lists are defined inductively:

the atom [] is a list, denoting the empty list.•
if Ls is a list, then the term '.'(L, Ls) is also a list.•

There is a special syntax for denoting lists conveniently in Prolog:

The list '.'(a, '.'(b, '.'(c, []))) can also be written as [a,b,c].1. 
The term '.'(L, Ls) can also be written as [L|Ls].2. 

These notations can be combined in any way. For example, the term [a,b|Ls] is a list iff Ls is a list.

Creating lists

A list consisting of literals unified with the variable List:

?- List = [1,2,3,4]. 
List = [1, 2, 3, 4].

Building a list by consing:

?- Tail = [2, 3, 4], List = [1|Tail]. 
Tail = [2, 3, 4], 
List = [1, 2, 3, 4].

Building a list of unknown values using the built-in length/2:

?- length(List,5). 
List = [_G496, _G499, _G502, _G505, _G508].

Since in Prolog everything is in essence a Term, lists behave heterogeneous:

?- List = [1, 2>1, this, term(X), 7.3, a-A]. 
List = [1, 2>1, this, term(X), 7.3, a-A].

This means a list can also contain other lists, also called inner lists:

List = [[1,2],[3,[4]]].

Pairs

https://riptutorial.com/ 13



By convention, the functor (-)/2 is often used to denote pairs of elements in Prolog. For example, 
the term -(A, B) denotes the pair of elements A and B. In Prolog, (-)/2 is defined as an 
infix operator. Therefore, the term can be written equivalently as A-B.

Many commonly available predicates also use this syntax to denote pairs. Examples of this are 
keysort/2 and pairs_keys_values/3.

Association lists

In all serious Prolog systems, association lists are available to allow faster than linear access to 
a collection of elements. These association lists are typically based on balanced trees like 
AVL trees. There is a public domain library called library(assoc) that ships with many Prolog 
systems and provides O(log(N)) operations for inserting, fetching and changing elements to a 
collection.

Terms

On a very high level, Prolog only has a single data type, called term. In Prolog, all data is 
represented by Prolog terms. Terms are defined inductively:

an atom is a term. Examples of atoms are: x, test and 'quotes and space'.•
a variable is a term. Variables start with an uppercase letter or underscore _.•
integers and floating point numbers are terms. Examples: 42 and 42.42.•
a compound term is a term, defined inductively as follows: If T1, T2, ..., T_n are terms, then F
(T1,T2,...,T_n) is also a term, where F is called the functor of the compound term.

•

Terms with named fields using library(record)

The [record][1] library provides the ability to create compound terms with named fields. The 
directive :- record/1 <spec> compiles to a collection of predicates that initialize, set and get fields 
in the term defined by <spec>.

For example, we can define a point data structure with named fields x and y:

:- use_module(library(record)). 
 
:- record point(x:integer=0, 
                y:integer=0). 
 
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
?- default_point(Point), point_x(Point, X), set_x_of_point(10, Point, Point1). 
Point = point(0, 0), 
X = 0, 
Point1 = point(10, 0). 
 
?- make_point([y(20)], Point). 
Point = point(0, 20). 
 
?-  is_point(X). 
false. 
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?- is_point(point(_, _)). 
false. 
 
?- is_point(point(1, a)). 
false. 
 
?- is_point(point(1, 1)). 
true. 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

Read Data Structures online: https://riptutorial.com/prolog/topic/2417/data-structures
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Chapter 6: Definite Clause Grammars (DCGs)

Examples

Anything at all: `... //0`

One of the most elementary DCG nonterminals is ... //0, which can be read as "anything at all":

... --> [] | [_], ... .

It can be used to describe a list Ls that contains the element E via:

phrase(( ..., [E], ... ), Ls)

Parsing with DCGs

DCGs can be used for parsing. Best of all, the same DCG can often be used to both parse and 
generate lists that are being described. For example:

sentence --> article, subject, verb, object. 
 
article --> [the]. 
 
subject --> [woman] | [man]. 
 
verb --> [likes] | [enjoys]. 
 
object --> [apples] | [oranges].

Example queries:

?- phrase(sentence, Ls). 
Ls = [the, woman, likes, apples] ; 
Ls = [the, woman, likes, oranges] ; 
Ls = [the, woman, enjoys, apples] . 
 
?- phrase(sentence, [the,man,likes,apples]). 
true .

Extra goals

Extra goals enable to add processing to DCG clauses, for example, conditions that the elements 
of the list must satisfy.

The extra goals are observed between curly braces at the end of a DCG clause.

% DCG clause requiring an integer 
int --> [X], {integer(X)}.

https://riptutorial.com/ 16



Usage:

?- phrase(int, [3]). 
true. 
 
?- phrase(int, [a]). 
false.

Extra arguments

The extra arguments add results to predicates of a DCG clause, by decorating the derivation tree. 
For example, it's possible to create a algebraic grammar that computes the value at the end.

Given a grammar that supports the operation addition:

% Extra arguments are passed between parenthesis after the name of the DCG clauses. 
exp(C) --> int(A), [+], exp(B), {plus(A, B, C)}. 
exp(X) --> int(X). 
int(X) --> [X], {integer(X)}.

The result of this grammar can be validated and queried:

?- phrase(exp(X), [1,+,2,+,3]). 
X = 6 ;

Read Definite Clause Grammars (DCGs) online: https://riptutorial.com/prolog/topic/2426/definite-
clause-grammars--dcgs-
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Chapter 7: Derivation trees

Examples

Proof tree

The proof tree (also search tree or derivation tree) is a tree that shows the execution of a Prolog 
program. This tree helps visualise the chronological backtracking process present in Prolog. The 
root of the tree represents the initial query and branches are created when choice points occur. 
Every node in the tree thus represents a goal. Branches only become leafs when either true/false 
was proven for the required (set of) goal(s) and search in Prolog is performed in a left-to-right 
depth-first fashion.

Consider following example:

% Facts 
father_child(paul,chris).        % Paul is the father of Chris and Ellen 
father_child(paul,ellen). 
mother_child(ellen,angie).       % Ellen is the mother of Angie and Peter 
mother_child(ellen,peter). 
 
 
% Rules 
grandfather_grandchild(X,Y) :- 
    father_child(X,Z), 
    father_child(Z,Y). 
 
grandfather_grandchild(X,Y) :- 
    father_child(X,Z), 
    mother_child(Z,Y).

When we now query:

?- grandfather_grandchild(paul,peter).

following proof tree visualises the depth-first search process:

                                   ?- grandfather_grandchild(paul,peter). 
                                       /                             \ 
                                      /                               \ 
  ?- father_child(paul,Z1),father_child(Z1,peter).            ?- 
father_child(paul,Z2),mother_child(Z2,peter). 
             /                   \                                    / 
\ 
      {Z1=chris}             {Z1=ellen}                         {Z2=chris} 
{Z2=ellen} 
           /                       \                                / 
\ 
?- father_child(chris,peter).  ?- father_child(ellen,peter).  ?- mother_child(chris,peter). ?- 
mother_child(ellen,peter). 
         |                         |                               | 
/              \ 
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       fail                      fail                            fail 
fail(*)          success 

(*) fails for mother_child(ellen,angie) where 'angie' fails to match 'peter'

Read Derivation trees online: https://riptutorial.com/prolog/topic/3097/derivation-trees
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Chapter 8: Difference Lists

Introduction

Difference Lists in Prolog denotes the concept to know the structure of a list up to a point. The 
remaining of the list can be left unbound until the complete evaluation of a predicate. A list where 
its end is unknown is referred as an open list, ended by a hole. This technique is especially useful 
to validate complex syntaxes or grammars.

The well-known Definite Clause Grammars (DCG) is using Difference Lists to operate under the 
hood.

Examples

Basic usage

Let's consider the predicate sumDif/2, verified if the structure of a list matches several constraints. 
The first term represents the list to analyze and the second term another list that holds the part of 
the first list that is unknown to our constraints.

For the demonstration, sumDif/2 recognizes an arithmetic expression to sum n integers.

sumDif([X, +|OpenList], Hole) :- 
    integer(X), 
    sumDif(OpenList, Hole).

We know the first element of the list to validate is an integer, here illustrated by X, followed by the 
symbol of the addition (+). The remaining of the list that still needs to be processed later on (
OpenList) is left unvalidated at that level. Hole represents the part of the list we don't need to 
validate.

Let's give another definition of the predicate sumDif/2 to complete the validation of the arithmetic 
expression:

sumDif([X|Hole], Hole) :- 
    integer(X).

We expect an integer called X directly at the start the open list. Interestingly, the remaining of the 
list Hole is left unknown and that's the whole purpose of the Difference Lists: the structure of the list 
is known up to a point.

Finally, the missing piece comes when a list is evaluated:

?- sumDif([1,+,2,+,3], []). 
true
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This is when the predicate is used that the end of the list is mentioned, here [], indicates the list 
does not contain additional elements.

Evaluate an arithmetic expression

Let's define a grammar enabling us to perform additions, multiplications with the usage of 
parenthesis. To add more value to this example, we are going to compute the result of the 
arithmetic expression. Summary of the grammar:

expression → times 

expression → times '+' expression 

times → element 
times → element '*' times 

element → "integer" 
element → '(' expression ')'

All the predicates have an arity of 3, because they need to open list, the hole and the value of the 
arithmetic expression.

expression(Value, OpenList, FinalHole) :- 
    times(Value, OpenList, FinalHole). 
 
expression(SumValue, OpenList, FinalHole) :- 
    times(Value1, OpenList, ['+'|Hole1]), 
    expression(Value2, Hole1, FinalHole), 
    plus(Value1, Value2, SumValue). 
 
times(Value, OpenList, FinalHole) :- 
    element(Value, OpenList, FinalHole). 
 
times(TimesValue, OpenList, FinalHole) :- 
    element(Value1, OpenList, ['*'|Hole1]), 
    times(Value2, Hole1, FinalHole), 
    TimesValue is Value1 * Value2. 
 
element(Value, [Value|FinalHole], FinalHole) :- 
    integer(Value). 
 
element(Value, ['('|OpenList], FinalHole) :- 
    expression(Value, OpenList, [')'|FinalHole]).

To properly explain the principle of holes and how the value is computed, let's take the second 
clause expression:

expression(SumValue, OpenList, FinalHole) :- 
    times(Value1, OpenList, ['+'|Hole1]), 
    expression(Value2, Hole1, FinalHole), 
    plus(Value1, Value2, SumValue).

The open list is denoted by the predicate OpenList. The first element to validate is what comes 
before the addition symbol (+). When the first element is validated, it's directly followed by the 
addition symbol and by the continuation of the list, called Hole1. We know that Hole1 is the next 
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element to validate and can be another expression, hence Hole1 is then the term given to the 
predicate expression.

The value is always represented in the first term. In this clause, it's defined by the sum of the 
Value1 (everything before the addition symbol) and Value2 (everything after the addition symbol).

Finally, the an expression can be evaluated.

?- expression(V, [1,+,3,*,'(',5,+,5,')'], []). 
V = 31

Read Difference Lists online: https://riptutorial.com/prolog/topic/9414/difference-lists
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Chapter 9: Error handling and exceptions

Examples

Instantiation errors

An instantiation error is thrown if an argument is not sufficiently instantiated.

Critically, an instantiation error cannot be replaced by silent failure: Failing in such cases would 
mean that there is no solution, whereas an instantiation error means that an instance of the 
argument may participate in a solution.

This is in contrast to—for example—domain error, which can be replaced by silent failure without 
changing the declarative meaning of a program.

General points about error handling

Prolog features exceptions, which are part of the Prolog ISO standard.

An exception can be thrown with throw/1, and caught with catch/3.

The ISO standard defines many cases in which errors must or may be thrown. The standardized 
exceptions are all of the form error(E,_), where E indicates the error. Examples are 
instantiation_error, domain_error and type_error, which see.

An important predicate in connection with exceptions is setup_call_cleanup/3, which see.

Cleaning up after exceptions

The predicate setup_call_cleanup/3, which is currently being considered for inclusion in the Prolog 
ISO standard and provided by an increasing number of implementations, lets us ensure that 
resources are correctly freed after an exception is thrown.

A typical invocation is:

setup_call_cleanup(open(File, Mode, Stream), process_file(File), close(Stream))

Note that an exception or interrupt may even occur immediately after open/3 is called in this case. 
For this reason, the Setup phase is performed atomically. In Prolog systems that only provide 
call_cleanup/2, this is much harder to express.

Type and domain errors

A type error occurs if an argument is not of the expected type. Examples of types are:

integer•
atom•
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list.•

If the predicate is of the expected type, but outside the expected domain, then a domain error is 
raised.

For example, a domain error is admissible if an integer between 0 and 15 is expected, but the 
argument is the integer 20.

Declaratively, a type or domain error is equivalent to silent failure, since no instantiation can make 
a predicate whose argument is of the wrong type or domain succeed.

Read Error handling and exceptions online: https://riptutorial.com/prolog/topic/7114/error-handling-
and-exceptions
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Chapter 10: Extra-logical Predicates

Examples

Predicates with side effects

Predicates that produce side effects leave the realm of pure logic. These are for example:

writeq/1•
read/1•
format/2•

Side effects are phenomena that cannot be reasoned about within the program. For example, 
deletion of a file or output on the system terminal.

Meta-logical predicates

Predicates that reason about instantiations are called meta-logical. Examples are:

var/1•
ground/1•
integer/1•

These predicates are outside the realm of pure monotonic logic programs, because they break 
properties like commutativity of conjunction.

Other predicates that are meta-logical include:

arg/3•
functor/3•
(=..)/2•

These predicates could in principle be modeled within first-order logic, but require an infinite 
number of clauses.

All-solutions predicates

Predicates that reason about all solutions are extra-logical. These are for example:

setof/3•
findall/3•
bagof/3•

!/0 and related predicates

Predicates that impede or prohibit a declarative reading of Prolog programs are extra-logical. 
Examples of such predicates are:

!/0•
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(->)/2 and if-then-else•
(\+)/1•

These predicates can only be understood procedurally, by taking into account the actual control 
flow of the interpreter, and as such are beyond the realm of pure logic.

Read Extra-logical Predicates online: https://riptutorial.com/prolog/topic/2282/extra-logical-
predicates
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Chapter 11: Higher-Order Programming

Examples

call/N predicates

The call/N family of predicates can call arbitrary Prolog goals at run time:

?- G=true, call(G). 
true. 
 
?- G=(true,false), call(G). 
false.

maplist/[2,3]

maplist/2 and maplist/3 are higher-order predicates, which allow the definition of a predicate to be 
lifted about a single element to lists of such elements. These predicates can be defined using 
call/2 and call/3 as building blocks and ship with many Prolog systems.

For example:

?- maplist(dif(a), [X,Y,Z]). 
dif(X, a), 
dif(Y, a), 
dif(Z, a).

Meta-call

In Prolog, the so-called meta-call is a built-in language feature. All Prolog code is represented by 
Prolog terms, allowing goals to be constructed dynamically and be used like other goals without 
additional predicates:

?- Goal = dif(X, Y), Goal. 
dif(X, Y).

Using this mechanism, other higher-order predicates can be defined in Prolog itself.

foldl/4

A fold (from the left) is a higher-order relation between:

a predicate with 3 arguments•
a list of elements•
an initial state•
a final state, which is the result of applying the predicate to successive elements while 
carrying through intermediate states.

•

https://riptutorial.com/ 27



For example: Use foldl/4 to express the sum of all elements in a list, using a predicate as a 
building block to define the sum of two elements:

?- foldl(plus, [2,3,4], 0, S). 
S = 9.

Call a list of goals

To call a list of goals as if it were a conjunction of goals, combine the higher-order predicates call/1 
and maplist/2:

?- Gs = [X = a, Y = b], maplist(call, Gs). 
Gs = [a=a, b=b], 
X = a, 
Y = b.

Read Higher-Order Programming online: https://riptutorial.com/prolog/topic/2420/higher-order-
programming
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Chapter 12: Logical Purity

Examples

dif/2

The predicate dif/2 is a pure predicate: It can be used in all directions and with all instantiation 
patterns, always meaning that its two arguments are different.

CLP(FD) constraints

CLP(FD) constraints are completely pure relations. They can be used in all directions for 
declarative integer arithmetic:

?- X #= 1+2. 
X = 3. 
 
?- 3 #= Y+2. 
Y = 1.

Unification

Unification is a pure relation. It does not produce side effects and can be used in all directions, 
with either or both arguments fully or only partially instantiated.

In Prolog, unification can happen

explicitly, using built-in predicates like (=)/2 or unify_with_occurs_check/2•
implicitly, when unification is used for selecting a suitable clause.•

Read Logical Purity online: https://riptutorial.com/prolog/topic/2058/logical-purity
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Chapter 13: Monotonicity

Examples

Reasoning about monotonic predicates

Monotonic predicates can be debugged by applying declarative reasoning.

In pure Prolog, a programming mistake can lead to one or all of the following phenomena:

the predicate incorrectly succeeds in a case where it should fail1. 
the predicate incorrectly fails in a case where it should succeed2. 
the predicate unexpectedly loops where it should only produce a finite set of answers.3. 

As an example, consider how we can debug case (2) by declarative reasoning: We can 
systematically remove goals of the predicate's clauses and see if the query still fails. In monotonic 
code, removing goals can at most make the resulting program more general. Hence, we can 
pinpoint errors by seeing which of the goals leads to the unexpected failure.

Examples of monotonic predicates

Examples of monotonic predicates are:

unification with (=)/2 or unify_with_occurs_check/2•
dif/2, expressing disequality of terms•
CLP(FD) constraints like (#=)/2 and (#>)/2, using a monotonic execution mode.•

Prolog predicates that only use monotonic goals are themselves monotonic.

Monotonic predicates allow for declarative reasoning:

Adding a constraint (i.e., a goal) to a query can at most reduce, never extend, the set of 
solutions.

1. 

Removing a goal of such predicates can at most extend, never reduce, the set of solutions.2. 

Non-monotonic predicates

Here are examples of predicates that are not monotonic:

meta-logical predicates like var/1, integer/1 etc.•
term comparison predicates like (@<)/2 and (@>=)/2•
predicates that use !/0, (\+)/1 and other constructs that break monotonicity•
all-solutions predicates like findall/3 and setof/3.•

If these predicates are used, then adding goals can lead to more solutions, which runs counter to 
the important declarative property known from logic that adding constraints can at most reduce, 
never extend, the set of solutions.
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As a consequence, other properties that we rely for declarative debugging and other reasoning are 
also broken. For example, non-monotonic predicates break the fundamental notion of 
commutativity of conjunction known from first-order logic. The following example illustrates this:

?- var(X), X = a. 
X = a. 
 
?- X = a, var(X). 
false.

All-solutions predicates like findall/3 also break monotonicity: Adding clauses can lead to the 
failure of goals that previously had held. This also runs counter to montonicity as known from first-
order logic, where adding facts can at most increase, never reduce the set of consequences.

Monotonic alternatives for non-monotonic constructs

Here are examples of how to use monotonic predicates instead of impure, non-monotonic 
constructs in your programs:

dif/2 is meant to be used instead of non-monotonic constructs like (\=)/2•
arithmetic constraints (CLP(FD), CLP(Q) and others) are meant to be used instead of 
moded arithmetic predicates

•

!/0 almost always leads to non-monotonic programs and should be avoided entirely.•
instantiation errors can be raised in situations where you cannot make a sound decision at 
this point in time.

•

Combining monotonicity with efficiency

It is sometimes argued that, for the sake of efficiency, we must accept the use of non-monotonic 
constructs in real-world Prolog programs.

There is no evidence for this. Recent research indicates that the pure monotonic subset of Prolog 
may not only be sufficient to express most real-world programs, but also acceptably efficient in 
practice. A construct that has recently been discovered and encourages this view is if_/3: It 
combines monotonicity with a reduction of choice points. See Indexing dif/2.

For example, code of the form:

pred(L, Ls) :- 
    condition(L), 
    then(Ls). 
pred(L, Ls) :- 
    \+ condition(L), 
    else(Ls).

Can be written with if_/3 as:

pred(L, Ls) :- 
    if_(condition(L), 
        then(Ls), 
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        else(Ls)).

and combines monotonicity with determinism.

Read Monotonicity online: https://riptutorial.com/prolog/topic/3989/monotonicity
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Chapter 14: Operators

Examples

Predefined operators

Predefined operators according to ISO/IEC 13211-1 and 13211-2:

Priority Type Operator(s) Use

1200 xfx :- -->

1200 fx :- ?- Directive, query

1100 xfy ;

1050 xfy ->

1000 xfy ','

900 fy \+

700 xfx = \\= Term unification

700 xfx == \\== @< @=< @> @>= Term comparison

700 xfx =..

700 xfx is =:= =\= < > =< >= Arithmetic evaluation and comparison

600 xfy : Module qualification

500 yfx + - /\ \/

400 yfx * / div mod // rem << >>

200 xfx ** Float power

200 xfy ^ Variable quantification, integer power

200 fy + - \ Arithmetic identity, negation ; bitwise complement

Many systems provide further operators as an implementation specific extension:

Priority Type Operator(s) Use

1150 fx dynamic multifile discontiguous initialization Standard directives
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Priority Type Operator(s) Use

1150 fx mode public volatile block meta_predicate

900 fy spy nospy

Operator declaration

In Prolog, custom operators can be defined using op/3:

op(+Precedence, +Type, :Operator)

Declares Operator to be an operator of a Type with a Precedence. Operator can also be a 
list of names in which case all elements of the list are declared to be identical operators.

•

Precedence is an integer between 0 and 1200, where 0 removes the declaration.•

Type is one of: xf, yf, xfx, xfy, yfx, fy or fx where f indicates the position of the functor and x 
and y indicate the positions of the arguments. y denotes a term with a precedence lower or 
equal to the precedence of the functor, whereas x denotes a strictly lower precedence.

Prefix: fx , fy○

Infix: xfx (not associative), xfy (right associative), yfx (left associative)○

Postfix: xf , yf○

•

Example usage:

:- op(900, xf, is_true). 
 
X_0 is_true :- 
  X_0.

Example query:

?- dif(X, a) is_true. 
dif(X, a).

Term ordering

Two terms may be compared via the standard ordering:

variables @< numbers @< atoms @< strings @< structures @< lists

Notes:

Structures compare alphabetically by functor first, then by arity and lastly by the comparison 
of each argument.

•

Lists compare by length first, then by each element.•
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Order operator Succeeds if

X @< Y X is less than Y in the standard order

X @> Y X is greater than Y in the standard order

X @=< Y X is less than or equal to Y in the standard order

X @>= Y X is greater than or equal to Y in the standard order

Example queries:

?- alpha @< beta. 
true. 
 
?- alpha(1) @< beta. 
false. 
 
?- alpha(X) @< alpha(1). 
true. 
 
?- alpha(X) @=< alpha(Y). 
true. 
 
?- alpha(X) @> alpha(Y). 
false. 
 
?- compound(z) @< compound(inner(a)). 
true.

Term equality

Equality operator Succeeds if

X = Y X can be unified with Y

X \= Y X cannot be unified with Y

X == Y X and Y are identical (i.e. they unify with no variable bindings occurring)

X \== Y X and Y are not identical

X =:= Y X and Y are arithmetically equal

X =\= Y X and Y are not arithmetically equal

Read Operators online: https://riptutorial.com/prolog/topic/2479/operators
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Chapter 15: Performance

Examples

Abstract machine

For efficiency, Prolog code is typically compiled to abstract machine code before it is run.

Many different abstract machine architectures and variants have been proposed for efficient 
execution of Prolog programs. These include:

WAM, the Warren Abstract Machine•
TOAM, an abstract machine used in B-Prolog.•
ZIP, used for example as the basis for the VM of SWI-Prolog•
VAM, a research architecture developped in Vienna.•

Indexing

All widely used Prolog interpreters use argument indexing to efficiently select suitable clauses.

Users can typically rely on at least first argument indexing, meaning that clauses can be efficiently 
told apart by the functor and arity of the outermost term of the first argument. In calls where that 
argument is sufficiently instantiated, matching clauses can essentially be selected in constant time 
via hashing on that argument.

More recently, JIT indexing has been implemented in more systems, enabling dynamic indexing 
on any argument that is sufficiently instantiated when the predicate is called.

Tail call optimization

Virtually all Prolog systems implement tail call optimization (TCO). This means that predicate 
calls that are in a tail position can be executed in constant stack space if the predicate is 
deterministic.

Tail recursion optimization (TRO) is a special case of tail call optimization.

Read Performance online: https://riptutorial.com/prolog/topic/4205/performance
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Chapter 16: Reasoning about data

Remarks

A new section called Data Structures was brought to life where explanations of certain structures 
+ some simple example(s) of creation are provided. To keep its content concise and uncluttered, it 
should not contain any documentation about data manipulation.

Therefore, this section was renamed to "Reasoning about data" with as purpose the generalisation 
of reasoning about data in Prolog. This could include topics ranging from 'top-down inference' to 
'traversal of lists', as well as many others. Because of its broad generalisation, clear subsections 
should be made!

Examples

Recursion

Prolog doesn't have iteration, but all iteration can be rewritten using recursion. Recursion appears 
when a predicate contains a goal that refers to itself. When writing such predicates in Prolog, a 
standard recursive pattern always has at least two parts:

Base (non-recursive) clause: Typically the base-case rule(s) will represent the smallest 
possible example(s) of the problem that you are trying to solve - a list with no members, or 
just one member, or if you're working with a tree structure, it might deal with an empty tree, 
or a tree with just one node in it, etc. It non-recursively describes the base of the recursive 
process.

•

Recursive (continuing) clause: Contains any required logic including a call to itself, 
continuing recursion.

•

As an example we shall define the well-known predicate append/3. Viewed declaratively, 
append(L1,L2,L3) holds when the list L3 is the result of appending lists L1 and L2. When we try to 
figure out the declarative meaning of a predicate, we try to describe solutions for which the 
predicate holds. The difficulty here lies in trying to avoid any step-by-step recurring details while 
still keeping in mind the procedural behaviour the predicate should exhibit.

% Base case 
append([],L,L). 
 
% Recursive clause 
append([X|L1],L2,[X|L3]) :- append(L1,L2,L3).

The base case declaratively states "any L appended to the empty list is L", note that this says 
nothing about L being empty – or even being a list (remember, in Prolog everything boils down to 
terms):
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?- append(X,some_term(a,b),Z). 
X = [], 
Z = some_term(a, b).

For describing the recursive rule, although Prolog executes rules left-to-right, we omit the head for 
a second and look at the body first – reading the rule right-to-left:

    append([X|L1],L2,[X|L3]) :- append(L1,L2,L3).

Now we say that if the body holds: “assuming that append(L1,L2,L3) holds”

    append([X|L1],L2,[X|L3]) :-  append(L1,L2,L3).  

Then so does the head: “then so does append([X|L1],L2,[X|L3])”

In plain English this simply translates to:

Assuming L3 is the concatenation of L1 and L2, then [X followed by L3] is also the 
concatenation of [X followed by L1] and L2.

In a practical example:

“Assuming [1,2,3] is the concatenation of [1] and [2,3], then [a,1,2,3] is also the 
concatenation of [a,1] and [2,3].”

Now let's look at some queries:

It's always a good idea to initially test your predicate with the most general query rather than 
providing it with a specific scenario test case. Think of it: because of Prolog's unification, we're not 
required to provide test data, we just hand it free variables!

?- append(L1,L2,L3). 
L1 = [], 
L2 = L3 ;                                   % Answer #1 
L1 = [_G1162], 
L3 = [_G1162|L2] ;                          % Answer #2 
L1 = [_G1162, _G1168], 
L3 = [_G1162, _G1168|L2] ;                  % Answer #3 
L1 = [_G1162, _G1168, _G1174], 
L3 = [_G1162, _G1168, _G1174|L2] ;          % Answer #4 
...

Let's replace the free variable _G1162-like notation with alphabetical letters to get a better overview:

?- append(L1,L2,L3). 
L1 = [], 
L2 = L3 ;                                   % Answer #1 
L1 = [_A], 
L3 = [_A|L2] ;                              % Answer #2 
L1 = [_A, _B], 
L3 = [_A, _B|L2] ;                          % Answer #3 
L1 = [_A, _B, _C], 
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L3 = [_A, _B, _C|L2] ;                      % Answer #4 
...

In the first answer, the base case was pattern matched and Prolog instantiated L1 to the empty list 
and unified L2 and L3 proving that L3 is the concatenation of the empty list and L2.

At answer #2, through chronological backtracking, the recursive clause comes into play and 
Prolog tries to proof that some element in the head of L1 concatenated with L2 is L3 with that same 
element in its list head. To do so, a new free variable _A is unified with the head of L1 and L3 is 
proven to now be [_A|L2].

A new recursive call is made, now with L1 = [_A]. Once more, Prolog tries to proof that some 
element placed in the head of L1, concatenated with L2 is L3 with that same element in its head. 
Notice that _A is already the head of L1, which perfectly matches the rule, so now, through 
recursion, Prolog puts _A in front of a new free variable and we get L1 = [_A,_B] and L3 = 
[_A,_B|L2]

We clearly see the recursive pattern repeating itself and can easily see that, for example, the 
result of the 100th step in recursion would look like:

L1 = [X1,X2,..,X99], 
L3 = [X1,X2,..,X99|L2]

Note: as is typical for good Prolog code, the recursive definition of append/3 provides us not only 
with the possibility of verifying whether a list is the concatenation of two other lists, it also 
generates all possible answers satisfying the logical relations with either fully or partially 
instantiated lists.

Accessing lists

Member

member/2 has signature member(?Elem, ?List) and denotes true if Elem is a member of List. This 
predicate can be used to access variables in a list, where different solutions are retrieved through 
backtracking.

Example queries:

?- member(X, [1,2,3]). 
X = 1 ; 
X = 2 ; 
X = 3. 
 
?- member(X,[Y]). 
X = Y. 
 
?- member(X,Y). 
Y = [X|_G969] ; 
Y = [_G968, X|_G972] ; 
Y = [_G968, _G971, X|_G975] ; 
Y = [_G968, _G971, _G974, X|_G978] 
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...

Pattern matching

When the indices you need to access are small, pattern matching can be a good solution, e.g.:

third([_,_,X|_], X). 
fourth([_,_,_,X|_], X).

Read Reasoning about data online: https://riptutorial.com/prolog/topic/2005/reasoning-about-data

https://riptutorial.com/ 40

https://riptutorial.com/prolog/topic/2005/reasoning-about-data


Chapter 17: Using Modern Prolog

Examples

Introduction

Many modern Prolog systems are in continuous development and have added new features to 
address classic shortcomings of the language. Unfortunately, many Prolog textbooks and even 
teaching courses still introduce only the outdated prolog. This topic is intended to illustrate how 
modern Prolog has overcome some of the problems and rather crufty syntax that appears in older 
Prolog and may still be being introduced.

CLP(FD) for integer arithmetic

Traditionally Prolog performed arithmetic using the is and =:= operators. However, several current 
Prologs offer CLP(FD) (Constraint Logic Programming over Finite Domains) as a cleaner 
alternative for integer arithmetic. CLP(FD) is based on storing the constraints that apply to an 
integer value and combining those together in memory.

CLP(FD) is an extension in most Prologs that support it, so must be loaded explicitly. Once it is 
loaded, the #= syntax can take the place of both is and =:=. For example, in SWI-Prolog:

?- X is 2+2. 
X = 4. 
 
?- use_module(library(clpfd)). 
?- X #= 2+2. 
X = 4.

Unlike is, #= is able to solve simple equations and unify in both directions:

?- 4 is 2+X. 
ERROR: is/2: Arguments are not sufficiently instantiated 
 
?- 4 #= 2+X. 
X = 2.

CLP(FD) provides its own generator syntax.

?- between(1,100,X). 
X = 1; 
X = 2; 
X = 3... 
 
?- X in 1..100. 
X in 1..100.

Note that the generator does not actually run: only the range constraint is stored, ready for later 
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constraints to be combined with it. The generator can be forced to run (and brute force constraints) 
using the label predicate:

?- X in 1..100, label([X]). 
X = 1; 
X = 2; 
X = 3..

Using CLP can allow some intelligent reduction of brute force cases. For example, using old-style 
integer arithmetic:

?- trace. 
?- between(1,10,X), Y is X+5, Y>10. 
... 
Exit: (8) 6 is 1+5 ? creep 
Call: (8) 6 > 10 ? creep 
... 
X = 6, Y = 11; ...

Prolog still loops through the values 1-5 even though it is mathematically provable from the given 
conditions that these values cannot be useful. Using CLP(FD):

?- X in 1..10, Y #= X+5, Y #> 10. 
X is 6..10, 
X+5 #= Y, 
Y is 11..15.

CLP(FD) immediately does the maths and works out the available ranges. Adding label([Y]) will 
cause X to loop only through the useful values 6..10. In this toy example, this does not increase 
performance because with such a small range as 1-10, the algebra processing takes as long as 
the loop would have done; but when a larger range of numbers are being processed this may 
valuably reduce computation time.

Support for CLP(FD) is variable between Prologs. The acknowledged best development of 
CLP(FD) is in SICStus Prolog, which is commercial and expensive. SWI-Prolog and other open 
Prologs often have some implementation. Visual Prolog does not include CLP(FD) in its standard 
library, although extension libraries for it are available.

Forall instead of failure-driven loops

Some "classic" Prolog textbooks still use the confusing and error-prone failure-driven loop syntax 
where a fail construct is used to force backtracking to apply a goal to every value of a generator. 
For example, to print all numbers up to a given limit:

fdl(X) :- between(1,X,Y), print(Y), fail. 
fdl(_).

The vast majority of Modern Prologs no longer require this syntax, instead providing a higher order 
predicate to address this.
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nicer(X) :- forall(between(1,X,Y), print(Y)).

Not only is this much easier to read, but if a goal that could fail was used in place of print, its 
failure would be correctly detected and passed on - whereas failures of the goals in a failure-driven 
loop are confused with the forced failure that drives the loop.

Visual Prolog has a custom syntactic sugar for these loops, combined with function predicates 
(see below):

vploop(X) :- foreach Y = std::fromTo(1,X) do 
                 console::write(X) 
             end foreach.

Although this looks like an imperative for loop, it still follows Prolog rules: in particular, each 
iteration of the foreach is its own scope.

Function-style Predicates

Traditionally in Prolog, "functions" (with one output and bound inputs) were written as regular 
predicates:

mangle(X,Y) :- Y is (X*5)+2.

This can create the difficulty that if a function-style predicate is called multiple times, it is 
necessary to "daisy chain" temporary variables.

multimangle(X,Y) :- mangle(X,A), mangle(A,B), mangle(B,Y).

In most Prologs, it is possible to avoid this by writing an alternate infix operator to use in place of 
is which expands expressions including the alternative function.

% Define the new infix operator 
:- op(900, xfy, <-). 
 
% Define our function in terms of the infix operator - note the cut to avoid 
% the choice falling through 
R <- mangle(X) :- R is (X*5)+2, !. 
 
% To make the new operator compatible with is.. 
R <- X :- 
    compound(X),            % If the input is a compound/function 
    X =.. [OP, X2, X3],     % Deconstruct it 
    R2 <- X2,               % Recurse to evaluate the arguments 
    R3 <- X3, 
    Expr =.. [OP, R2, R3],  % Rebuild a compound with the evaluated arguments 
    R is Expr,              % And send it to is 
    !. 
R <- X :- R is X, !.        % If it's not a compound, just use is directly

We can now write:
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multimangle(X,Y) :- X <- mangle(mangle(mangle(Y))).

However, some modern Prologs go further and offer a custom syntax for this type of predicate. For 
example, in Visual Prolog:

mangle(X) = Y :- Y = ((X*5)+2). 
multimangle(X,Y) :- Y = mangle(mangle(mangle(X))).

Note that the <- operator and the functional-style predicate above still behave as relations - it is 
legal for them to have choice points and perform multiple unification. In the first example, we 
prevent this using cuts. In Visual Prolog, it is normal to use the functional syntax for relations and 
choice points are created in the normal way - for example, the goal X = (std::fromTo(1,10))*10 
succeeds with bindings X=10, X=20, X=30, X=40, etc.

Flow/mode declarations

When programming in Prolog it is not always possible, or desirable, to create predicates which 
unify for every possible combination of parameters. For example, the predicate between(X,Y,Z) 
which expresses that Z is numerically between X and Y. It is easily implemented in the cases 
where X, Y, and Z are all bound (either Z is between X and Y or it is not), or where X and Y are 
bound and Z is free (Z unifies with all numbers between X and Y, or the predicate fails if Y<X); but 
in other cases, such as where X and Z are bound and Y is free, there are potentially an infinite 
number of unifications. Although this can be implemented, it usually would not be.

Flow declaration or mode declarations allow an explicit description of how predicates behave 
when called with different combinations of bound parameters. In the case of between, the 
declaration would be:

%! between(+X,+Y,+Z) is semidet. 
%! between(+X,+Y,-Z) is nondet. 

Each line specifies one potential calling pattern for the predicate. Each argument is decorated with 
+ to indicate cases where it is bound, or - to indicate cases where it is not (there are also other 
decorations available for more complex types such as tuples or lists that may be partially bound). 
The keyword after is indicates the behavior of the predicate in that case, and may be one of these:

det if the predicate always succeeds with no choice point. For example add(+X,+Y,-Z) is det 
because adding two given numbers X and Y will always have exactly one answer.

•

semidet if the predicate either succeeds or fails, with no choice point. As above, 
between(+X,+Y,+Z) is semidet because Z is either between X and Y or it is not.

•

multi if the predicate always succeeds, but may have choice points (but also may not). For 
example, factor(+X,-Y) would be multi because a number always has at least one factor - 
itself - but may have more.

•

nondet if the predicate may succeed with choice points, or fail. For example, between(+X,+Y,-
Z) is nondet because there may be several possible unifications of Z to numbers between X 
and Y, or if Y<X then there are no numbers between them and the predicate fails.

•

Flow/mode declarations can also be combined with argument labeling to clarify what terms mean, 
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or with typing. For example, between(+From:Int, +To:Int, +Mid:Int) is semidet.

In pure Prologs, flow and mode declarations are optional and only used for documentation 
generation, but they can be extremely useful to help programmers identify the cause of 
instantiation errors.

In Mercury, flow and mode declarations (and types) are mandatory and are validated by the 
compiler. The syntax used is as above.

In Visual Prolog, flow and mode declarations and types are also mandatory and the syntax is 
different. The above declaration would be written as:

between : (int From, int To, int Mid) determ (i,i,i) nondeterm (i,i,o).

The meaning is the same as above, but with the differences that:

The flow/mode declarations are separated from the type declarations (since it is assumed 
that flow/mode for a single predicate will not vary with type overloading);

•

i and o are used for + and - and are matched with the parameters based on ordering;•
The terms used are different. det becomes procedure, semidet becomes determ, and nondet 
becomes nondeterm (multi is still multi).

•

Read Using Modern Prolog online: https://riptutorial.com/prolog/topic/5499/using-modern-prolog
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