
protractor

#protractor

Table of Contents

About 1

Chapter 1: Getting started with protractor 2

Remarks 2

Versions 2

Examples 2

Installing and Setting up Protractor (On Windows) 2

First test using Protractor 3

Write a Protractor test 4

Selective Running Tests 5

Pending Tests 6

Combinations 6

Protractor: E2E Testing for Enterprise Angular Applications 6

Chapter 2: Control Flow and Promises 9

Introduction 9

Examples 9

Understanding the Control Flow 9

Chapter 3: CSS Selectors 10

Syntax 10

Parameters 10

Remarks 10

Examples 11

$ and $$ CSS selector locator shortcuts 11

Introduction to locators 12

Select element by an exact HTML attribute value 12

Select element by an HTML attribute that contains a specified value 12

Chapter 4: Explicit waits with browser.wait() 13

Examples 13

browser.sleep() vs browser.wait() 13

Chapter 5: Locating Elements 14

Introduction 14

Parameters 14

Examples 14

Protractor specific locators (for Angular-based applications) 14

Binding locator 14

Example 14

Exact Binding locator 15

Example 15

Model locator 15

Example 15

Button text locator 15

Example 16

Partial button text locator 16

Repeater locator 16

Example 16

Exact repeater locator 17

Example 17

CSS and text locator 17

Example 18

Options locator 18

Example 18

Deep CSS locator 18

Example 18

Locator basics 19

Chapter 6: Page Objects 21

Introduction 21

Examples 21

First Page Object 21

Chapter 7: Protractor configuration file 23

Introduction 23

Examples 23

Simple Config file - Chrome 23

Config file with capabilities - Chrome 23

config file shardTestFiles - Chrome 23

config file multi-capabilities emulate - chrome 24

Chapter 8: Protractor Debugger 25

Syntax 25

Remarks 25

Examples 25

Using browser.pause() 25

Using browser.debugger() 26

Chapter 9: Testing non-angular apps with Protractor 28

Introduction 28

Examples 28

Changes needed to test non-angular app with Protractor 28

Chapter 10: XPath selectors in Protractor 29

Examples 29

Selecting a DOM element using protractor 29

Selecting elements with specific attributes 29

By Class 29

By id 30

Other attributes 30

Credits 32

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: protractor

It is an unofficial and free protractor ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official protractor.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/protractor
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with protractor

Remarks

Protractor is an end-to-end test framework for AngularJS applications.

Protractor is a wrapper (built on the top) around Selenium WebDriver, so it contains every feature
that is available in the Selenium WebDriver. Additionally, Protractor provides some new locator
strategies and functions which are very helpful to automate the AngularJS application. Examples
include things like: waitForAngular, By.binding, By.repeater, By.textarea, By.model,
WebElement.all, WebElement.evaluate, etc.

Versions

Version Release Data

0.0.1 2016-08-01

Examples

Installing and Setting up Protractor (On Windows)

Requirements: Protractor requires the following dependencies to be installed prior to installation:

Java JDK 1.7 or higher•
Node.js v4 or higher•

Installation:

Download and install Node.js from this URL: https://nodejs.org/en/

To see if the Node.js installation is successfull, you can go and check the Environment variables.
The 'Path' under System Variables will be automatically updated.

You can also check the same by typing the command npm -version in command prompt which will

https://riptutorial.com/ 2

https://nodejs.org/en/
http://i.stack.imgur.com/BZCwx.png

give you the installed version.

Now Protractor can be installed in two ways: Locally or Globally.

We can install protractor in a specified folder or project directory location. If we install in a project
directory, every time we run, we should run from that location only.

To install locally in project directory, navigate to the project folder and type the command

npm install protractor

To install Protractor globally run the command:

$ npm install -g protractor

This will install two command line tools, protractor and webdriver-manager.
Run protractor --version to ensure protractor was successfully installed.

webdriver-manager is used to download the browser driver binaries and start the selenium server.
Download the browser driver binaries with:

$ webdriver-manager update

Start the selenium server with:

$ webdriver-manager start

To download internet explorer driver, run the command webdriver-manager update --ie in command
prompt. This will download IEDriverServer.exe in your selenium folder

First test using Protractor

Protractor needs only two files to run the first test, spec (test code) file and configuration file. The
spec file contains test code and the other one contains configuration details like spec file path,
browser details, test url, framework parameters etc. To write first test we will be providing only
selenium server address and spec file path.The other parameters like browser, timeout, framework
will be picked up to default values.

https://riptutorial.com/ 3

http://i.stack.imgur.com/yt5d7.png

The default browser for Protractor is Chrome.

conf.js - Configuration file

exports.config = {
 seleniumAddress: 'http://localhost:4444/wd/hub',
 specs: ['spec.js']
};

spec.js - Spec (test code) file

describe('first test in protractor', function() {
 it('should verify title', function() {
 browser.get('https://angularjs.org');

 expect(browser.getTitle()).toEqual('AngularJS — Superheroic JavaScript MVW Framework');
 });
});

seleniumAddress - Path to the server where webdriver server is running .

specs - An array element which contains path of test files. The multiple paths can be specified by
comma separated values.

describe - Syntax from Jasmine framework. describe syntax sta

Write a Protractor test

Open a new command line or terminal window and create a clean folder for testing.

Protractor needs two files to run, a spec file and a configuration file.

Let's start with a simple test that navigates to the todo list example in the AngularJS website and
adds a new todo item to the list.

Copy the following into spec.js

describe('angularjs homepage todo list', function() { it('should add a todo', function() { browser.get('
https://angularjs.org');

element(by.model('todoList.todoText')).sendKeys('write first protractor test');
element(by.css('[value="add"]')).click();

var todoList = element.all(by.repeater('todo in todoList.todos'));
expect(todoList.count()).toEqual(3);
expect(todoList.get(2).getText()).toEqual('write first protractor test');

// You wrote your first test, cross it off the list
todoList.get(2).element(by.css('input')).click();
var completedAmount = element.all(by.css('.done-true'));
expect(completedAmount.count()).toEqual(2);});});

https://riptutorial.com/ 4

http://jasmine.github.io/2.0/introduction.html
https://angularjs.org

Selective Running Tests

Protractor can selectively run groups of tests using fdescribe() instead of describe().

fdescribe('first group',()=>{
 it('only this test will run',()=>{
 //code that will run
 });
});
describe('second group',()=>{
 it('this code will not run',()=>{
 //code that won't run
 });
});

Protractor can selectively run tests within groups using fit() instead of it().

describe('first group',()=>{
 fit('only this test will run',()=>{
 //code that will run
 });
 it('this code will not run',()=>{
 //code that won't run
 });
});

If there is no fit() within an fdescribe(), then every it() will run. However, a fit() will block it() calls
within the same describe() or fdescribe().

fdescribe('first group',()=>{
 fit('only this test will run',()=>{
 //code that will run
 });
 it('this code will not run',()=>{
 //code that won't run
 });
});

Even if a fit() is in a describe() instead of an fdescribe(), it will run. Also, any it() within an
fdescribe() that does not contain a fit() will run.

fdescribe('first group',()=>{
 it('this test will run',()=>{
 //code that will run
 });
 it('this test will also run',()=>{
 //code that will also run
 });
});
describe('second group',()=>{
 it('this code will not run',()=>{
 //code that won't run
 });
 fit('this code will run',(){
 //code that will run

https://riptutorial.com/ 5

 });
});

Pending Tests

Protractor allows tests to be set as pending. This means that protractor will not execute the test,
but will instead output:

Pending:
1) Test Name
Temporarily disabled with xit

Or, if disabled with xdescribe():

Pending:
1) Test Name
No reason given

Combinations

A xit() within an xdescribe() will output the xit() response.•
A xit() within an fdescribe() will still be treated as pending.•
A fit() within an xdescribe() will still run, and no pending tests will output anything.•

Protractor: E2E Testing for Enterprise Angular Applications

Protractor Installation and Setup

Step 1: Download and install NodeJS from here. Make sure you have latest version of node. Here,
I am using node v7.8.0. You will need to have the Java Development Kit(JDK) installed to run
selenium.

Step 2: Open your terminal and type in the following command to install protractor globally.

npm install -g protractor

This will install two tools such as protractor and webdriver manager. You can verify your Protractor
Installation by following command:protractor –version. If Protractor is installed successfully then
the system will display the installed version.(i.e. Version 5.1.1).Otherwise you will have to recheck
the installation. Step 3: Update the webdriver manager to download the necessary binaries.

webdriver-manager update

Step 4: Following command will start up a Selenium Server. This step will run the web driver
manager in the background and will listen to any tests which runs via protractor.

webdriver-manager start You can see information about the status of the server at
http://localhost:4444/wd/hub/static/resource/hub.html.

https://riptutorial.com/ 6

Writing First Test case using Protractor:

Before jump into the writing the test case, we have to prepare two files that is configuration file and
spec file.

In configuration file :

//In conf.js
exports.config = {
 baseUrl: ‘http://localhost:8800/adminapp’,
 seleniumAddress: ‘http://localhost:4444/wd/hub',
 specs: [‘product/product_test.js’],
 directConnect : true,
 capabilities :{
 browserName: ‘chrome’
 }
}

Basic Understanding of the Terminologies used in configuration file:

baseUrl – A base URL for your application under test.

seleniumAddress – To connect to a Selenium Server which is already running.

specs – Location of your spec file

directConnect : true – To connect directly to the browser Drivers.

capabilities – If you are testing on a single browser, use the capabilities option. If you are testing
on multiple browsers, use the multiCapabilities array.

You can find more configuration option from here. They have described all possible terminology
with its definition.

In Spec file :

//In product_test.js

 describe(‘Angular Enterprise Boilerplate’, function() {
 it('should have a title', function() {
 browser.get('http://localhost:8800/adminapp’);
 expect(browser.getTitle()).toEqual(‘Angular Enterprise Boilerplate’);
 });
 });

Basic Understanding of the Terminologies used in spec file:

By default,Protractor uses the jasmine framework for its testing interface. ‘describe’ and ‘it’ syntax
is from jasmine framework. You can learn more from here. Running First Test case:

Before run the test case make sure that your webdriver manager and your application running in
different tabs of your terminal.

https://riptutorial.com/ 7

https://github.com/angular/protractor/blob/master/lib/config.ts

Now, Run the test with :

Protractor app/conf.js

You should see the chrome browser opens up with your application url and close itself. The test
output should be 1 tests, 1 assertion, 0 failures.

Bravo! You successfully run your first test case.

Read Getting started with protractor online: https://riptutorial.com/protractor/topic/933/getting-
started-with-protractor

https://riptutorial.com/ 8

https://riptutorial.com/protractor/topic/933/getting-started-with-protractor
https://riptutorial.com/protractor/topic/933/getting-started-with-protractor

Chapter 2: Control Flow and Promises

Introduction

Protractor/WebDriverJS has this mechanism called Control Flow - it is an internal queue of
promises, it keeps the code execution organized.

Examples

Understanding the Control Flow

Consider the following test:

it('should test something', function() {
 browser.get('/dashboard/');

 $("#myid").click();
 expect(element(by.model('username')).getText()).toEqual('Test');

 console.log("HERE");
});

In the following test, when the console.log() is executed and you see HERE on the console, none of
the Protractor commands from previous lines have been executed. This is an entirely
asynchronous behavior. The commands are represented as promises and were put on the Control
Flow which would execute and resolve the promises sequentially, one by one.

See more at Promises and the Control Flow.

Read Control Flow and Promises online: https://riptutorial.com/protractor/topic/8580/control-flow-
and-promises

https://riptutorial.com/ 9

http://www.protractortest.org/#/control-flow
http://www.protractortest.org/#/control-flow
https://riptutorial.com/protractor/topic/8580/control-flow-and-promises
https://riptutorial.com/protractor/topic/8580/control-flow-and-promises

Chapter 3: CSS Selectors

Syntax

by.css('css-selector')•
by.id('id')•
by.model('model')•
by.binding('binding')•

Parameters

Parameter Details

css-
selector

A css selector like '.class-name' to select the element on the base of class
name

id Id of the dom element

model Model used for dom element

binding Name of the binding which is used to bound to certain element

Remarks

How to write css selectors?

The most important attributes to write css selectors are class and id of dom. For an instance if a
html dom lookes like below example:

 <form class="form-signin">
 <input type="text" id="email" class="form-control" placeholder="Email">
 <input type="password" id="password" class="form-control" placeholder="Password">
 <button class="btn btn-block" id="signin-button" type="submit">Sign in</button>
 </form>

Then to select the email input field, you can write css selector in following way:

Using class name: The class name in css selector starts with special character .(dot). The
css selector for that will be like this .form-control.

by.css('.form-control')

1.

Since the form-control class is shared by both input elements so it raises a concern of duplicity in
locators. So in such situation if id is available then you should always prefer to use id instead of
class name.

https://riptutorial.com/ 10

Using ID: The id in css selector starts with special character # (hash). So the css selector
using id for email input element will be written like below:

by.css('#email')

2.

Using multiple class names: If dom element has multiple classes then you can with
combination of classes as css selector. For example if dom element is like this:

3.

<input class="username-class form-control">
// css selector using multiple classes
by.css('.username-class.form-control')

Using tag name with other attributes : The general expression to write css selector using
tag name and other attributes is tagname[attribute-type='attribute-vallue']. So following the
expression the css locator for sign-in button can be formed like this:

4.

by.css("button[type='submit']") //or
by.css("button[id='signin-button']")

Examples

$ and $$ CSS selector locator shortcuts

The Protractor API allows CSS element locators to use the jQuery-like shortcut notation $().

Normal CSS Element Locator:

element(by.css('h1.documentation-text[ng-bind="title"]'));
element(by.css('[ng-click="submit"]));

Shortcut $() CSS Element Locator:

$('h1.documentation-text[ng-bind="title"]');
$('[ng-click="submit"]');

For finding multiple elements under a locator use the shortcut notation $$().

Normal CSS Element Locator:

element.all(by.css('h1.documentation-text[ng-bind="title"]'));
element.all(by.css('[ng-click="submit"]));

Shortcut $$() CSS Element Locator:

$$('h1.documentation-text[ng-bind="title"]');
$$('[ng-click="submit"]');

https://riptutorial.com/ 11

http://www.protractortest.org/#/api?view=ElementFinder.prototype.$
http://www.protractortest.org/#/api?view=ElementFinder.prototype.$
http://www.protractortest.org/#/api?view=ElementFinder.prototype.$$
http://www.protractortest.org/#/api?view=ElementFinder.prototype.$$

Introduction to locators

A locator in Protractor is used to perform action on HTML dom elements. The most common and
best locators used in Protractor are css, id, model and binding. For example commonly used
locators are:

by.css('css-selector')
by.id('id')

Select element by an exact HTML attribute value

To select an element by an exact HTML attribute use the css locator pattern [attribute=value]

//selects the first element with href value '/contact'
element(by.css('[href="/contact"]'));

//selects the first element with tag option and value 'foo'
element(by.css('option[value="foo"]'));

//selects all input elements nested under the form tag with name attribute 'email'
element.all(by.css('form input[name="email"]'));

Select element by an HTML attribute that contains a specified value

To select an element by an HTML attribute that contains a specified value use the css locator
pattern [attribute*=value]

//selects the first element with href value that contains'cont'
element(by.css('[href*="cont"]'));

//selects the first element with tag h1 and class attribute that contains 'fo'
element(by.css('h1[class*="fo"]'));

//selects all li elements with a title attribute that contains 'users'
element.all(by.css('li[title*='users']'));

Read CSS Selectors online: https://riptutorial.com/protractor/topic/1524/css-selectors

https://riptutorial.com/ 12

http://www.w3schools.com/cssref/sel_attribute_value.asp
http://www.w3schools.com/cssref/sel_attr_contain.asp
https://riptutorial.com/protractor/topic/1524/css-selectors

Chapter 4: Explicit waits with browser.wait()

Examples

browser.sleep() vs browser.wait()

When it comes to dealing with timing issue, it is tempting and easy to put a "quick"
browser.sleep(<timeout_in_milliseconds>) and move on.

The problem is, it would some day fail. There is no golden/generic rule on what sleep timeout to
set and, hence, at some point due to network or performance or other issues, it might take more
time for a page to load or element to become visible etc. Plus, most of the time, you would end up
waiting more than you actually should.

browser.wait() on the other hand works differently. You provide an Expected Condition function for
Protractor/WebDriverJS to execute and wait for the result of the function to evaluate to true.
Protractor would continuously execute the function and stop once the result of the function
evaluates to true or a configurable timeout has been reached.

There are multiple built-in Expected Conditions, but you can also create and use a custom one
(sample here).

Read Explicit waits with browser.wait() online: https://riptutorial.com/protractor/topic/8297/explicit-
waits-with-browser-wait--

https://riptutorial.com/ 13

http://www.protractortest.org/#/api?view=webdriver.WebDriver.prototype.wait
http://www.protractortest.org/#/api?view=ProtractorExpectedConditions
http://stackoverflow.com/a/30220003/771848
https://riptutorial.com/protractor/topic/8297/explicit-waits-with-browser-wait--
https://riptutorial.com/protractor/topic/8297/explicit-waits-with-browser-wait--

Chapter 5: Locating Elements

Introduction

To be able to interact with a page, you need to tell Protractor exactly which element to look for.
The basis used for selecting elements are locators. Protractor, as well as including the generic
Selenium selectors, also has Angular-specific locators which are more robust and persistent to
changes. However, sometimes, even in an Angular application, regular locators must be used.

Parameters

Parameter Detail

selector A string which specifies the value of the selector (depends on the locator)

Examples

Protractor specific locators (for Angular-based applications)

These locators should be used as a priority when possible, because they are more persistent to
changes in an application then locators based on css or xpath, which can easily break.

Binding locator

Syntax

by.binding('bind value')

Example

View

{{user.password}}

Locator

by.binding('user.password')
by.binding('user.email')

Also supports partial matches

https://riptutorial.com/ 14

by.binding('email')

Exact Binding locator

Similar to binding, except partial matches are not allowed.

Syntax

by.exactBinding('exact bind value')

Example

View

{{user.password}}

Locator

by.exactBinding('user.password')
by.exactBinding('password') // Will not work

Model locator

Selects an element with an Angular model directive

Syntax

by.model('model value')

Example

View

<input ng-model="user.username">

Locator

by.model('user.username')

Button text locator

Selects a button based on its text. Should be used only if button text not expected to change often.

https://riptutorial.com/ 15

https://docs.angularjs.org/api/ng/directive/ngModel

Syntax

by.buttonText('button text')

Example

View

<button>Sign In</button>

Locator

by.buttonText('Sign In')

Partial button text locator

Similar to buttonText, but allows partial matches. Should be used only if button text not expected to
change often.

Syntax

by.partialButtonText('partial button text')

Example

View

<button>Register an account</button>

Locator

by.partialButtonText('Register')

Repeater locator

Selects an element with an Angular repeater directive

Syntax

by.repeater('repeater value')

Example

https://riptutorial.com/ 16

https://docs.angularjs.org/api/ng/directive/ngRepeat

View

<tbody ng-repeat="review in reviews">
 <tr>Movie was good</tr>
 <tr>Movie was ok</tr>
 <tr>Movie was bad</tr>
</tbody>

Locator

by.repeater('review in reviews')

Also supports partial matches

by.repeater('reviews')

Exact repeater locator

Similar to repeater, but does not allow partial matches

Syntax

by.exactRepeater('exact repeater value')

Example

View

<tbody ng-repeat="review in reviews">
 <tr>Movie was good</tr>
 <tr>Movie was ok</tr>
 <tr>Movie was bad</tr>
</tbody>

Locator

by.exactRepeater('review in reviews')
by.exactRepeater('reviews') // Won't work

CSS and text locator

An extended CSS locator where you can also specify the text content of the element.

Syntax

by.cssContainingText('css selector', 'text of css element')

https://riptutorial.com/ 17

Example

View

 <li class="users">Mike
 <li class="users">Rebecca

Locator

by.cssContainingText('.users', 'Rebecca') // Will return the second li only

Options locator

Selects an element with an Angular options directive

Syntax

by.options('options value')

Example

View

<select ng-options="country.name for c in countries">
 <option>Canada</option>
 <option>United States</option>
 <option>Mexico</option>
</select>

Locator

by.options('country.name for c in countries')

Deep CSS locator

CSS locator that extends into the shadow DOM

Syntax

by.deepCss('css selector')

Example

https://riptutorial.com/ 18

https://docs.angularjs.org/api/ng/directive/ngOptions
https://glazkov.com/2011/01/14/what-the-heck-is-shadow-dom/

View

<div>

 <"shadow tree">

 <"shadow tree">

 </>
 </>
</div>

Locator

by.deepCss('span') // Will select every span element

Locator basics

Locators by themselves do not return an element which can be interacted with in Protractor, they
are simply instructions that indicate Protractor how to find the element.

To access the element itself, use this syntax:

element(locator);
element.all(locator);

Note: the element(s) is not actually accessed until an action is performed on it - that is, Protractor
will only actually go retrieve the element when an action such as getText() is called on the
element.

If you want to select only one element using a locator, use element. If your locator points to multiple
elements, element will return the first one found. element returns an ElementFinder.

If you want to select multiple elements using a locator, element.all will return all elements found.
element.all returns an ElementArrayFinder, and every element in the array can be accessed using
different methods - for example, the map function.

element.all(locator).map(function(singleElement) {
 return singleElement.getText();
 }
});

Chaining locators

You can chain multiple locators to select an element in a complex application. You can't directly
chain locator objects, you must chain ElementFinders:

element(by.repeater('movie in movies').element(by.linkText('Watch Frozen on Netflix')

https://riptutorial.com/ 19

There is no limit to how many you chains you can use; in the end, you will still recieve a single
ElementFinder or and ElementArrayFinder, depending on your locators.

Read Locating Elements online: https://riptutorial.com/protractor/topic/10825/locating-elements

https://riptutorial.com/ 20

https://riptutorial.com/protractor/topic/10825/locating-elements

Chapter 6: Page Objects

Introduction

Page objects is a design pattern which results in less code duplicates, easy maintenance and
more readability.

Examples

First Page Object

/* save the file in 'pages/loginPage'
var LoginPage = function(){

};

/*Application object properties*/
LoginPage.prototype = Object.create({}, {
 userName: {
 get: function() {
 return browser.driver.findElement(By.id('userid'));
 }
 },
 userPass: {
 get: function() {
 return browser.driver.findElement(By.id('password'));
 }
 },
 submitBtn: {
 get: function() {
 return browser.driver.findElement(By.id('btnSubmit'));
 }
 }
});

/* Adding functions */
LoginPage.prototype.login = function(strUser, strPass) {
 browser.driver.get(browser.baseUrl);
 this.userName.sendKeys(strUser);
 this.userPass.sendKeys(strPass);
 this.submitBtn.click();
};

module.exports = LoginPage;

Let's use our first page object file in our test.

var LoginPage = require('../pages/loginPage');
describe('User Login to Application', function() {
 var loginPage = new LoginPage();

 beforeAll(function() {
 loginPage.login(browser.params.userName, browser.params.userPass);

https://riptutorial.com/ 21

 });

 it('and see a success message in title', function() {
 expect(browser.getTitle()).toEqual('Success');
 });

 });

Read Page Objects online: https://riptutorial.com/protractor/topic/9747/page-objects

https://riptutorial.com/ 22

https://riptutorial.com/protractor/topic/9747/page-objects

Chapter 7: Protractor configuration file

Introduction

The configuration file contains information which Protractor uses to run your test script. Here I'll try
to give a few different variations.

Examples

Simple Config file - Chrome

var config = {};
var timeout = 120000;

config.framework = 'jasmine2';
config.allScriptsTimeout = timeout;
config.getPageTimeout = timeout;
config.jasmineNodeOpts.isVerbose = true;
config.jasmineNodeOpts.defaultTimeoutInterval = timeout;
config.specs = ['qa/**/*Spec.js'];
config.browserName = 'chrome';

exports.config = config;

Config file with capabilities - Chrome

var config = {};
var timeout = 120000;

config.framework = 'jasmine2';
config.allScriptsTimeout = timeout;
config.getPageTimeout = timeout;
config.jasmineNodeOpts.isVerbose = true;
config.jasmineNodeOpts.defaultTimeoutInterval = timeout;
config.specs = ['qa/**/*Spec.js'];
config.capabilities = {
 browserName: 'chrome',
 'chromeOptions': {
 'args': ['start-minimized', 'window-size=1920,1080']
 }
};

exports.config = config;

config file shardTestFiles - Chrome

This configuration lets' you run your total spec files in two browser instances in parallel. It helps
reduce the overall test execution time. Change the maxInstances based on your need.

Note: Make sure your tests are independent.

https://riptutorial.com/ 23

var config = {};
var timeout = 120000;

config.framework = 'jasmine2';
config.allScriptsTimeout = timeout;
config.getPageTimeout = timeout;
config.jasmineNodeOpts.isVerbose = true;
config.jasmineNodeOpts.defaultTimeoutInterval = timeout;
config.specs = ['qa/**/*Spec.js'];
config.capabilities = {
 browserName: 'chrome',
 shardTestFiles: true,
 maxInstances: 2,
 'chromeOptions': {
 'args': ['start-minimized', 'window-size=1920,1080']
 }
};

exports.config = config;

config file multi-capabilities emulate - chrome

var config = {};
var timeout = 120000;

config.framework = 'jasmine2';
config.allScriptsTimeout = timeout;
config.getPageTimeout = timeout;
config.jasmineNodeOpts.isVerbose = true;
config.jasmineNodeOpts.defaultTimeoutInterval = timeout;
config.specs = ['qa/**/*Spec.js'];
config.multiCapabilities = [{
 browserName: 'chrome',
 shardTestFiles: true,
 maxInstances: 2,
 'chromeOptions': {
 'args': ['start-minimized', 'window-size=1920,1080']
 }
 },
 {
 browserName: 'chrome',
 shardTestFiles: true,
 maxInstances: 1,
 'chromeOptions': {
 'args': ['show-fps-counter=true'],
 'mobileEmulation': {
 'deviceName': 'Apple iPhone 6'
 }
 }
 }
];

exports.config = config;

Read Protractor configuration file online: https://riptutorial.com/protractor/topic/9745/protractor-
configuration-file

https://riptutorial.com/ 24

https://riptutorial.com/protractor/topic/9745/protractor-configuration-file
https://riptutorial.com/protractor/topic/9745/protractor-configuration-file

Chapter 8: Protractor Debugger

Syntax

browser.pause()•
browser.debugger()•

Remarks

This section explains how we can debug protractor tests.

Examples

Using browser.pause()

The pause() method is one of the easiest solution Protractor provides you to debug the code, in
order to use it you have to add it in your code where you want to pause the execution.Once the
execution is in paused state:

You can use C (type C) to move forward. Be careful while using it, you have to write this
command without any delay as you might get timeout error from your assertion library if you
delayed to press c.

1.

Type repl to enter interactive mode. The interactive mode is used to send browser
commands directly to open instance of browser. For example in interactive mode you can
issue command like this:

2.

> element(by.css('#username')).getText()
> NoSuchElementError: No element found using locator: by.username("#username")

Notice output of above command appears directly over there, which lets you know correctness of
your command.

Note: If you have opened the Chrome Dev Tools, you must close them before continuing the test
because ChromeDriver cannot operate when the Dev Tools are open.

Exit debug mode using CTRL+C, you can take yourself out from debug mode using classical
CTRL+C command.

3.

 it('should pause when we use pause method', function () {
 browser.get('/index.html');

 var username = element(by.model('username'));
 username.sendKeys('username');
 browser.pause();

 var password = element(by.model('password'));

https://riptutorial.com/ 25

 password.sendKeys('password');
 browser.pause();
});

Press d to continue to the next debugger statement4.

Using browser.debugger()

You can use browser.debugger() to stop the execution. You can insert it any place in your code
and it will stop the execution after that line until you don't command to continue.

Note: To run the tests in debugger mode you have to issue command like this:

 `protractor debug <configuration.file.js>`

Enter c to start execution and continue after the breakpoint or enter next command.The next
command steps to the next line in control flow.

The debugger used in Protractor uses node debugger and it pause the execution in asynchronous
way. For example, in below code the browser.debugger() will get called when
username.sendKeys('username') has been executed.

Note: Since these are asynchronous tasks, you would have to increase the default timeout of your
specs else default timeout exception would be thrown!

it('should pause when we use pause method', function () {
browser.get('/index.html');

var username = element(by.model('username'));
username.sendKeys('username');
browser.debugger();

var password = element(by.model('password'));
password.sendKeys('password');
});

One can enter the repl mode by entering the command-

debug > repl
> element(by.model('abc')).sendKeys('xyz');

This will run the sendKeys command as the next task, then re-enter the debugger.

One can change the Port no. they want to debug their scripts by just passing the port to the
debugger method-

browser.debugger(4545); //will start the debugger in port 4545

The debugger() method injects a client side from Protractor to browser and you can run few
commands in browser console in order to fetch the elements. One of the example to use client

https://riptutorial.com/ 26

https://nodejs.org/api/debugger.html

side script is:

window.clientSideScripts.findInputs('username');

Read Protractor Debugger online: https://riptutorial.com/protractor/topic/3910/protractor-debugger

https://riptutorial.com/ 27

https://riptutorial.com/protractor/topic/3910/protractor-debugger

Chapter 9: Testing non-angular apps with
Protractor

Introduction

Protractor is made for testing Angular applications. However, it is still possible to test non-angular
applications with Protractor if needed.

Examples

Changes needed to test non-angular app with Protractor

Use browser.driver instead of driver

Use browser.driver.ignoreSynchronization = true

Reason: Protractor waits for angular components to load completely on a web-page befor it
begins any execution. However, since our pages are non-angular, Protractor keeps waiting for
'angular' to load till the test fails with timeout. So, we need to explicitly tell the Protractor to not to
wait for 'angular'

Read Testing non-angular apps with Protractor online:
https://riptutorial.com/protractor/topic/8830/testing-non-angular-apps-with-protractor

https://riptutorial.com/ 28

https://riptutorial.com/protractor/topic/8830/testing-non-angular-apps-with-protractor

Chapter 10: XPath selectors in Protractor

Examples

Selecting a DOM element using protractor

Apart from CSS, model, and binding selectors, protractor can also locate elements using xpath
View

Go to google

Code

var googleLink= element(by.xpath('//ul/li/a'));
expect(element.getText()).to.eventually.equal('Go to google','The text you mention was not
found');

Selecting elements with specific attributes

XPath selectors can be used to select elements with specific attributes, such as class, id, title etc.

By Class

View:

<div class="HakunaMatata"> Hakuna Matata </div>

Code:

var theLionKing= element(by.xpath('//div[@class="HakunaMatata"]'));
expect(theLionKing.getText()).to.eventually.equal('Hakuna Matata', "Text not found");

However, an element can have multiple classes. In such cases, the 'contains' workaround can be
used

View:

<div class="Hakuna Matata"> Hakuna Matata </div>

Code:

var theLionKing= element(by.xpath('//div[conatins(@class,"Hakuna")]'));
expect(theLionKing.getText()).to.eventually.equal('Hakuna Matata', "Text not found");

https://riptutorial.com/ 29

The above piece of code will return elements containing both 'class="HakunaMatata"' and
'class="Hakuna Matata"'. If your search text is a part of a space-separated list, then the following
workaround may be used:

var theLionKing= element(by.xpath('//div[contains(concat(' ',normalize-space(@class),' '),
"Hakuna")]'));
expect(theLionKing.getText()).to.eventually.equal('Hakuna Matata', "Text not found");

By id

ID remains the easiest and the most precise locator which can be used to select an element.

View:

<div id="HakunaMatata">Hakuna Matata</div>

Code:

var theLionKing= element(by.xpath('//div[@id="HakunaMatata"])');
expect(theLionKing.getText()).to.eventually.equal('Hakuna Matata', "Text not found");

As with classes, the contains function can be used to find an element containing the given text.

Other attributes

Finding an element with a given title attribute

View

<div title="Hakuna Matata">Hakuna Matata</div>

Code

var theLionKing= element(by.xpath('//div[@title="Hakuna Matata"]'));
expect(theLionKing.getText()).to.eventually.equal('Hakuna Matata', "Text not found");

Selecting an element with a specific text

View

<div class="Run Simba Run">Run Simba</div>

Code

var runSimba= element(by.xpath('//div[text()="Run Simba"]'));

https://riptutorial.com/ 30

As with other text based searches, the contains function can be used to select elements with text()
containing the required match.

View

<div class="Run Simba Run">Run Simba,run</div>

Code

 var runSimba= element(by.xpath('//div[contains(text(),"Run Simba")]'));
expect(runSimba.getText()).to.eventually.equal('Run Simba, run', "Text not found"); //true

Selecting an element with a specific name attribute

View

<input type="text" name="FullName"></input>

Code

var fullNameInput= element(by.xpath('//input[@name="FullName"]'));
fullNameInput.sendKeys("John Doe");

Read XPath selectors in Protractor online: https://riptutorial.com/protractor/topic/7205/xpath-
selectors-in-protractor

https://riptutorial.com/ 31

https://riptutorial.com/protractor/topic/7205/xpath-selectors-in-protractor
https://riptutorial.com/protractor/topic/7205/xpath-selectors-in-protractor

Credits

S.
No

Chapters Contributors

1
Getting started with
protractor

Bhoomi Bhalani, Community, Devmati Wadikar, Manuli Piyalka,
olyv, Peter Stegnar, Praveen, Priyanshu Shekhar, SilentLupin,
sonhu, Stephen Leppik

2
Control Flow and
Promises

alecxe

3 CSS Selectors alecxe, Droogans, leon, Priyanshu Shekhar, sonhu

4
Explicit waits with
browser.wait()

alecxe

5 Locating Elements Sébastien Dufour-Beauséjour

6 Page Objects Barney, Suresh Salloju

7
Protractor
configuration file

Barney

8 Protractor Debugger
Devmati Wadikar, Priyanshu Shekhar, Ram Pasala, Sakshi
Singla, Stephen Leppik

9
Testing non-angular
apps with Protractor

Sakshi Singla

10
XPath selectors in
Protractor

Shubhang

https://riptutorial.com/ 32

https://riptutorial.com/contributor/5205144/bhoomi-bhalani
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/6936853/devmati-wadikar
https://riptutorial.com/contributor/5808332/manuli-piyalka
https://riptutorial.com/contributor/2504101/olyv
https://riptutorial.com/contributor/99422/peter-stegnar
https://riptutorial.com/contributor/1514225/praveen
https://riptutorial.com/contributor/3655261/priyanshu-shekhar
https://riptutorial.com/contributor/2348288/silentlupin
https://riptutorial.com/contributor/3103515/sonhu
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/771848/alecxe
https://riptutorial.com/contributor/771848/alecxe
https://riptutorial.com/contributor/881224/droogans
https://riptutorial.com/contributor/869256/leon
https://riptutorial.com/contributor/3655261/priyanshu-shekhar
https://riptutorial.com/contributor/3103515/sonhu
https://riptutorial.com/contributor/771848/alecxe
https://riptutorial.com/contributor/6529379/sebastien-dufour-beausejour
https://riptutorial.com/contributor/6304906/barney
https://riptutorial.com/contributor/2743310/suresh-salloju
https://riptutorial.com/contributor/6304906/barney
https://riptutorial.com/contributor/6936853/devmati-wadikar
https://riptutorial.com/contributor/3655261/priyanshu-shekhar
https://riptutorial.com/contributor/4741503/ram-pasala
https://riptutorial.com/contributor/3977630/sakshi-singla
https://riptutorial.com/contributor/3977630/sakshi-singla
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/3977630/sakshi-singla
https://riptutorial.com/contributor/1989583/shubhang

	About
	Chapter 1: Getting started with protractor
	Remarks
	Versions
	Examples
	Installing and Setting up Protractor (On Windows)
	First test using Protractor
	Write a Protractor test
	Selective Running Tests
	Pending Tests
	Combinations
	Protractor: E2E Testing for Enterprise Angular Applications

	Chapter 2: Control Flow and Promises
	Introduction
	Examples
	Understanding the Control Flow

	Chapter 3: CSS Selectors
	Syntax
	Parameters
	Remarks
	Examples
	$ and $$ CSS selector locator shortcuts
	Introduction to locators
	Select element by an exact HTML attribute value
	Select element by an HTML attribute that contains a specified value

	Chapter 4: Explicit waits with browser.wait()
	Examples
	browser.sleep() vs browser.wait()

	Chapter 5: Locating Elements
	Introduction
	Parameters
	Examples
	Protractor specific locators (for Angular-based applications)

	Binding locator
	Example

	Exact Binding locator
	Example

	Model locator
	Example

	Button text locator
	Example

	Partial button text locator
	Repeater locator
	Example

	Exact repeater locator
	Example

	CSS and text locator
	Example

	Options locator
	Example

	Deep CSS locator
	Example
	Locator basics

	Chapter 6: Page Objects
	Introduction
	Examples
	First Page Object

	Chapter 7: Protractor configuration file
	Introduction
	Examples
	Simple Config file - Chrome
	Config file with capabilities - Chrome
	config file shardTestFiles - Chrome
	config file multi-capabilities emulate - chrome

	Chapter 8: Protractor Debugger
	Syntax
	Remarks
	Examples
	Using browser.pause()
	Using browser.debugger()

	Chapter 9: Testing non-angular apps with Protractor
	Introduction
	Examples
	Changes needed to test non-angular app with Protractor

	Chapter 10: XPath selectors in Protractor
	Examples
	Selecting a DOM element using protractor
	Selecting elements with specific attributes

	By Class
	By id
	Other attributes
	Credits

