
pthreads

#pthreads

Table of Contents

About 1

Chapter 1: Getting started with pthreads 2

Remarks 2

Examples 2

Installation or Setup 2

Minimal "Hello World" with pthreads 2

Passing arguments to threads 2

Returning result from thread 3

Chapter 2: Conditional Variables 5

Introduction 5

Remarks 5

Examples 6

Producer / consumer example 6

Chapter 3: Race condition in pthreads 8

Introduction 8

Examples 8

Example: Consider will have two threads T1 and T2. 8

Credits 11

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: pthreads

It is an unofficial and free pthreads ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official pthreads.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/pthreads
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with pthreads

Remarks

This section provides an overview of what pthreads is, and why a developer might want to use it.

It should also mention any large subjects within pthreads, and link out to the related topics. Since
the Documentation for pthreads is new, you may need to create initial versions of those related
topics.

Examples

Installation or Setup

Detailed instructions on getting pthreads set up or installed.

Minimal "Hello World" with pthreads

#include <pthread.h>
#include <stdio.h>
#include <string.h>

/* function to be run as a thread always must have the same signature:
 it has one void* parameter and returns void */
void *threadfunction(void *arg)
{
 printf("Hello, World!\n"); /*printf() is specified as thread-safe as of C11*/
 return 0;
}

int main(void)
{
 pthread_t thread;
 int createerror = pthread_create(&thread, NULL, threadfunction, NULL);
 /*creates a new thread with default attributes and NULL passed as the argument to the start
routine*/
 if (!createerror) /*check whether the thread creation was successful*/
 {
 pthread_join(thread, NULL); /*wait until the created thread terminates*/
 return 0;
 }
 fprintf("%s\n", strerror(createerror), stderr);
 return 1;
}

Passing arguments to threads

#include <stdio.h>
#include <pthread.h>

void *thread_func(void *arg)

https://riptutorial.com/ 2

{
 printf("I am thread #%d\n", *(int *)arg);
 return NULL;
}

int main(int argc, char *argv[])
{
 pthread_t t1, t2;
 int i = 1;
 int j = 2;

 /* Create 2 threads t1 and t2 with default attributes which will execute
 function "thread_func()" in their own contexts with specified arguments. */
 pthread_create(&t1, NULL, &thread_func, &i);
 pthread_create(&t2, NULL, &thread_func, &j);

 /* This makes the main thread wait on the death of t1 and t2. */
 pthread_join(t1, NULL);
 pthread_join(t2, NULL);

 printf("In main thread\n");
 return 0;
}

How to compile:

$ gcc -pthread -o hello hello.c

This prints:

I am thread #1
I am thread #2
In main thread

Returning result from thread

A pointer to a concrete data type, converted to void *, can be used to pass values to and return
results from the thread function.

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

struct thread_args
{
 int a;
 double b;
};

struct thread_result
{
 long x;
 double y;
};

https://riptutorial.com/ 3

void *thread_func(void *args_void)
{
 struct thread_args *args = args_void;
 /* The thread cannot return a pointer to a local variable */
 struct thread_result *res = malloc(sizeof *res);

 res->x = 10 + args->a;
 res->y = args->a * args->b;
 return res;
}

int main()
{
 pthread_t threadL;
 struct thread_args in = { .a = 10, .b = 3.141592653 };
 void *out_void;
 struct thread_result *out;

 pthread_create(&threadL, NULL, thread_func, &in);
 pthread_join(threadL, &out_void);
 out = out_void;
 printf("out -> x = %ld\tout -> b = %f\n", out->x, out->y);
 free(out);

 return 0;
}

In many cases it is unnecessary to pass a return value in this way - for example, space in the
argument struct can also be used to return results, or a pointer to a shared data structure can be
passed to the thread and the results stored there.

Read Getting started with pthreads online: https://riptutorial.com/pthreads/topic/5669/getting-
started-with-pthreads

https://riptutorial.com/ 4

https://riptutorial.com/pthreads/topic/5669/getting-started-with-pthreads
https://riptutorial.com/pthreads/topic/5669/getting-started-with-pthreads

Chapter 2: Conditional Variables

Introduction

Conditional variables are useful in cases where you want a thread to wait for something that
happens in another thread. For instance, in a producer/consumer scenario with one or or more
producing threads and one consuming thread, conditional variables can be used to signal the
consuming thread that new data is available.

Remarks

General process

A wait on a conditional variable (queueCond in the producer/consumer example) is always
coupled to a mutex (the queueMutex in the producer/consumer example), and should always be
coupled to a "normal" state variable also (queue.empty() in the producer/consumer example).
When used correctly, this ensures that no new data is missed in the consumer.

In general, the process should be:

For the signalling thread:
Lock the mutex1.
Update any data and state variables2.
Signal the condition variable3.
Unlock the mutex4.

•

For the waiting thread:
Lock the mutex1.
Do a while loop on the state variable, looping as long as the data is not ready2.
In the while loop, do a wait on the condition variable with pthread_cond_wait()3.
When the while loop exits, we are now sure that new data is ready, and that the mutex
is locked

4.

Do something with the data5.
Unlock the mutex and repeat6.

•

With this scheme, no matter when the signalling and waiting threads are scheduled, the waiting
thread will never miss data (as in, it will never be stuck waiting forever with valid data ready). This
can be realized by manually trying to run through the steps for the signalling thread, recording the
states of the mutex, condition and state variables, for each of the steps in the waiting thread.

pthread_cond_wait and the mutex

To facilitate the above process, it is required to call pthread_cond_wait() with the mutex locked.
When called, pthread_cond_wait() will then unlock the mutex before putting the thread to sleep,
and, just before returning for whatever reason, the mutex will be relocked. This also means that if
some other thread currently has the mutex locked, pthread_cond_wait() will wait for the mutex to be
unlocked, and until the waiting thread can actually acquire the mutex - it will contend on it together

https://riptutorial.com/ 5

with any other threads trying to lock the mutex at the same time.

Spurious wakeups

Also, it may seem as if the while loop waiting on the state variable could be substituted for a
simple if statement. However, the while loop is needed, as the Posix standard allows
pthread_cond_wait() to do so-called "spurious" wakeups during the wait, without actually being
signalled. Thus, the code needs to recheck the state variable to see if pthread_cond_wait() returned
due to actually being signalled, or due to one of these spurious wakeups.

Examples

Producer / consumer example

pthread_mutex_t queueMutex;
pthread_cond_t queueCond;
Queue queue;

void Initialize() {
 //Initialize the mutex and the condition variable
 pthread_mutex_init(&queueMutex, NULL);
 pthread_cond_init(&queueCond, NULL);
}

void Producer() {
 //First we get some new data
 Data *newData = MakeNewData();

 //Lock the queue mutex to make sure that adding data to the queue happens correctly
 pthread_mutex_lock(&queueMutex);

 //Push new data to the queue
 queue.push(newData);

 //Signal the condition variable that new data is available in the queue
 pthread_cond_signal(&queueCond);

 //Done, unlock the mutex
 pthread_mutex_unlock(&queueMutex);
}

void Consumer() {

 //Run the consumer loop
 while(1) {

 //Start by locking the queue mutex
 pthread_mutex_lock(&queueMutex);

 //As long as the queue is empty,
 while(queue.empty()) {
 // - wait for the condition variable to be signalled
 //Note: This call unlocks the mutex when called and
 //relocks it before returning!
 pthread_cond_wait(&queueCond, &queueMutex);

https://riptutorial.com/ 6

 }

 //As we returned from the call, there must be new data in the queue - get it,
 Data *newData = queue.front();
 // - and remove it from the queue
 queue.pop();

 //Now unlock the mutex
 pthread_mutex_unlock(&queueMutex);

 // - and process the new data
 ProcessData(newData);
 }
}

Read Conditional Variables online: https://riptutorial.com/pthreads/topic/8614/conditional-variables

https://riptutorial.com/ 7

https://riptutorial.com/pthreads/topic/8614/conditional-variables

Chapter 3: Race condition in pthreads

Introduction

When writing multi-threaded applications, one of the most common problems experienced are
race conditions. So we document the How do you detect them? and How do you handle them?

Examples

Example: Consider will have two threads T1 and T2.

How do you detect them?

If the same variable/resource/memory location is accessible by multiple threads and at least of the
thread is changing the value of variable/resource/memory location, then Race Condition can
occurred. Because if a thread is changing the value of variable/resource/memory location and
another thread tries to read the same then it will not get the updated value.

Note: If all threads are just reading the variable/resource/memory location then Race Condition
will not occur.

Example: Program suffers from Race Condition

#include <stdio.h>
#include <pthread.h>

int x= 0;

void* fun(void* in)
{
 int i;
 for (i = 0; i < 10000000; i++)
 {
 x++;
 }
}

int main()
{
 pthread_t t1, t2;
 printf("Point 1 >> X is: %d\n", x);

 pthread_create(&t1, NULL, fun, NULL);
 pthread_create(&t2, NULL, fun, NULL);
 pthread_join(t1, NULL);
 pthread_join(t2, NULL);

 printf("Point 2 >> X is: %d\n", x);
 return 0;
}

https://riptutorial.com/ 8

The output on my screen is:

Point 1 >> X is: 0
Point 2 >> X is: 9925047

Your output will vary. But for sure it will not be 20,000,000. Since both Thread executing the same
loop and having global variable int x;

for (i = 0; i < 10000000; i++)
{
 x++;
}

So final value of x in line Point 2 >> X is: 9925047 should be 20,000,000. But it is not so.

The state of x can be changed by another thread during the time between x is being read and
when it is written back.

Let's say a thread retrieves the value of x, but hasn't stored it yet. Another thread can also retrieve
the same value of x (because no thread has changed it yet) and then they would both be storing
the same value (x+1) back in x!

Example:

Thread 1: reads x, value is 7

Thread 1: add 1 to x, value is now 8

Thread 2: reads x, value is 7

Thread 1: stores 8 in x

Thread 2: adds 1 to x, value is now 8

Thread 2: stores 8 in x

How do you handle them?

Race conditions can be avoided by employing some sort of locking mechanism before the code
that accesses the shared resource or mutual exclusion.

Following is modified program:

Example: Race Condition problem resolved

#include <stdio.h>
#include <pthread.h>

int x= 0;
//Create mutex
pthread_mutex_t test_mutex;

https://riptutorial.com/ 9

void* fun(void* in)
{
 int i;
 for (i = 0; i < 10000000; i++)
 {
 //Lock mutex before going to change variable
 pthread_mutex_lock(&test_mutex);
 x++;
 //Unlock mutex after changing the variable
 pthread_mutex_unlock(&test_mutex);
 }
}

int main()
{
 pthread_t t1, t2;
 printf("Point 1 >> X is: %d\n", x);

 //Initlize mutex
 pthread_mutex_init(&test_mutex, NULL);

 pthread_create(&t1, NULL, fun, NULL);
 pthread_create(&t2, NULL, fun, NULL);
 pthread_join(t1, NULL);
 pthread_join(t2, NULL);

 //Destroy mutex after use
 pthread_mutex_destroy(&test_mutex);
 printf("Point 2 >> X is: %d\n", x);
 return 0;
}

Following is the output:

Point 1 >> X is: 0
Point 2 >> X is: 20000000

Here, the answer comes out as 20,000,000 every time.

Note: Modified program, which is free from race condition error, will take much longe to execute.
Because there is overburden on mutex lock and unlock.

Read Race condition in pthreads online: https://riptutorial.com/pthreads/topic/8243/race-condition-
in-pthreads

https://riptutorial.com/ 10

https://riptutorial.com/pthreads/topic/8243/race-condition-in-pthreads
https://riptutorial.com/pthreads/topic/8243/race-condition-in-pthreads

Credits

S.
No

Chapters Contributors

1
Getting started with
pthreads

Armali, ArturFH, caf, Community, cse, EOF, nachiketkulk

2 Conditional Variables sonicwave

3
Race condition in
pthreads

cse, Mohan

https://riptutorial.com/ 11

https://riptutorial.com/contributor/2413201/armali
https://riptutorial.com/contributor/2989411/arturfh
https://riptutorial.com/contributor/134633/caf
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/8013471/cse
https://riptutorial.com/contributor/3185968/eof
https://riptutorial.com/contributor/1328157/nachiketkulk
https://riptutorial.com/contributor/1282949/sonicwave
https://riptutorial.com/contributor/8013471/cse
https://riptutorial.com/contributor/2641959/mohan

	About
	Chapter 1: Getting started with pthreads
	Remarks
	Examples
	Installation or Setup
	Minimal "Hello World" with pthreads
	Passing arguments to threads
	Returning result from thread

	Chapter 2: Conditional Variables
	Introduction
	Remarks
	Examples
	Producer / consumer example

	Chapter 3: Race condition in pthreads
	Introduction
	Examples
	Example: Consider will have two threads T1 and T2.

	Credits

