
PubNub

#pubnub

Table of Contents

About 1

Chapter 1: Getting started with PubNub 2

Remarks 2

Versions 2

Examples 2

Publish on Subscribe Success (connect) 2

Chapter 2: Access Manager 4

Examples 4

Wildcard Channel Group Manage Grant - Java SDK v4 4

pubnub access manager at server side 4

Chapter 3: Channel Specific Callbacks for v4 SDKs 9

Examples 9

JavaScript v4 SDK Channel Specific Callbacks 9

Chapter 4: Hello World 13

Remarks 13

Examples 13

Publish and Subscribe for Node.JS SDK 13

Publish and Subscribe for Node.JS 13

Chapter 5: Message Filtering 15

Remarks 15

Examples 15

Prevent Receiving Your Own Messages Using Objective-C 15

Chapter 6: Presence 16

Examples 16

Presence in JavaScript 16

Setting State Upon Subscribe 17

Chapter 7: Storage & Playback 19

Parameters 19

Remarks 19

Examples 20

JavaScript SDK v4 - History 20

Chapter 8: Stream Controller: Channel Groups 21

Remarks 21

Examples 21

Subscribe with Channel Groups in JavaScript 21

Chapter 9: UUIDs 23

Examples 23

JavaScript/Web SDK 23

Android/Java SDK 23

Chapter 10: webhook 25

Examples 25

pubnub webhook 25

Credits 27

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: pubnub

It is an unofficial and free PubNub ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official PubNub.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/pubnub
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with PubNub

Remarks

This is an simple, yet thorough, example of initializing PubNub, subscribing to a channel and
publishing to that channel.

Once you init PUBNUB, you can subscribe to a channel.•
The connect callback indicates that subscription to the channel was successful, so we call our
pub function which performs a publish to the channel we just subscribed to.

•

This published message will be sent to the PubNub network which will send the message to
all active subscribers. In this case, it is just us so we will receive that message in our message
callback where we are displaying the various attributes of the received message to our
browser's Console.

•

In a real world use case, you would update your web page UI to display the received message.

See also: latest/official PubNub JavaScript SDK Docs

Versions

Version Release Date

3.15.x 2016-04-01

Examples

Publish on Subscribe Success (connect)

This example show how to subscribe, and once that is successful, publishing a message to that
channel. It also demonstrates the full set of parameters that can be included in the subscribe's
message callback function.

pubnub = PUBNUB({
 publish_key : 'your_pub_key',
 subscribe_key : 'your_sub_key'
});

pubnub.subscribe({
 channel : "channel-1",
 message : function (message, envelope, channelOrGroup, time, channel) {
 console.log(
 "Message Received." + "\n" +
 "Channel or Group: " + JSON.stringify(channelOrGroup) + "\n" +
 "Channel: " + JSON.stringify(channel) + "\n" +
 "Message: " + JSON.stringify(message) + "\n" +
 "Time: " + time + "\n" +

https://riptutorial.com/ 2

https://www.pubnub.com/docs/javascript/pubnub-javascript-sdk-v4

 "Raw Envelope: " + JSON.stringify(envelope)
)},
 connect: pub,
 disconnect: function(m) {console.log("DISCONNECT: " + m)},
 reconnect: function(m) {console.log("RECONNECT: " + m)},
 error: function(m) {console.log("ERROR: " + m)}
});

function pub() {
 pubnub.publish({
 channel : "channel-1",
 message : {"msg": "I'm Puuumped!"},
 callback: function(m) {console.log("Publish SUCCESS: " + m)},
 error: function(m) {console.log("Publish ERROR: " + m)}
 })
};

Read Getting started with PubNub online: https://riptutorial.com/pubnub/topic/327/getting-started-
with-pubnub

https://riptutorial.com/ 3

https://riptutorial.com/pubnub/topic/327/getting-started-with-pubnub
https://riptutorial.com/pubnub/topic/327/getting-started-with-pubnub

Chapter 2: Access Manager

Examples

Wildcard Channel Group Manage Grant - Java SDK v4

When it comes to adding/removing channels to/from your channel groups, you need to have must
have the manage permission for those channel groups. But you should never grant clients the
permission to manage the channel groups that they will subscribe to. If they did, then they could add
any channel they wanted to their channel group and instantly have read access to that channel.

So this is why your server must be the only entity that has the manage permission. But your server
will need to have the manage permission for every single channel group so that it can add/remove
channels to/from channel groups on behalf of all of the clients.

But granting manage to each and every channel group can be a bit tedious. Instead, you can grant
manage to all channel groups (existing and to be created) in one wildcard grant.

// init PubNub instance using PNConfiguration with the secret-key
PNConfiguration pnConfiguration = new PNConfiguration();
pnConfiguration.setSubscribeKey("my_subkey")
pnConfiguration.setPublishKey("my_pubkey");
// secret key allows server to `grant` permissions
pnConfiguration.setSecretKey("my_secretkey");
pnConfiguration.setSecure(true);
// set the the server's auth key
pnConfiguration.setAuthKey("server_authkey");
PubNub pubnub = new PubNub(pnConfiguration);

// grant read and manage using the channel group wildcard - ":"
// with forever ttl (0)
pubNub.grant()
 .channelGroups(Arrays.asList(":")) // colon (:) is channel group wildcard
 .manage(true) // add/remove channels to/from channel groups
 .read(true) // in case server needs to subscribe or do here-now on channel groups
 .ttl(0) // 0 = forever grant
 .async(new PNCallback<PNAccessManagerGrantResult>() {
 @Override
 public void onResponse(PNAccessManagerGrantResult result, PNStatus status) {
 // check status for success or failure of grant
 }
 });

From here on, your server will be able to add/remove channels to/from any channel group your
app creates.

pubnub access manager at server side

PubNub Access Manager (PAM) extends PubNub's existing security framework by allowing
developers to create and enforce secure access to channels throughout the PubNub Real Time
Network.

https://riptutorial.com/ 4

Access Manager allows you to manage granular permissions for your realtime apps and data
streams, create multiple permission levels, grant and revoke access, and audit user access.

To use Access Manager, you need to enable Access Manager in the Admin Dashboard. Once you
enable Access Manager, you must grant permissions before any data can be sent or received.

PAM Server side Configuration

In order to client side working correctly, at server side must first issue the appropriate permissions
for a given PAM channel or channel-group and auth token combination.

for granting these permission you must initialize pubnub instance at least with your subscribe and
secret keys.

Example :

Step 1. Make Pubnub Configuration : -

PNConfiguration pnConfiguration = new PNConfiguration();
 pnConfiguration.setSubscribeKey(SUBSCRIBE_KEY);
 pnConfiguration.setPublishKey(PUBLISH_KEY);;
 pnConfiguration.setSecretKey(SECRET_KEY);
 pnConfiguration.setSecure(true);
 pnConfiguration.setLogVerbosity(PNLogVerbosity.BODY);

Step 2. Initialize PubNub with pnConfiguration

PubNub pubnub = new PubNub(pnConfiguration);

PAM Operation occurs at three level

1. A global level (no auth key, and no channel/channel group is defined)

2. A channel/channel group level (only a channel/channel group is defined)

3. A channel/channel group and key level (where both the channel/channel group and key are
defined)

At all these levels we can grant , revoke and audit permissions. Here we do the same on
channel/channel group and auth key level.

PAM Grant

we can grant a read/write permission to auth_key on specific channels or channel groups

Example:

Synchronously:

try {

https://riptutorial.com/ 5

 pubnub.grant().authKeys(Arrays.asList("auth1,auth2"))
 .channels(Arrays.asList("channel1,channel2")).read(true).write(true).ttl(0).sync();

} catch (PubNubException e) {
 e.printStackTrace();
}

Asynchronously:

pubNub.grant().channels(channels).authKeys(Arrays.asList(authKey)).read(true).write(true).manage(false).ttl(0)
.async(new PNCallback() {

@Override
public void onResponse(PNAccessManagerGrantResult result,
 PNStatus status) {
}});

PAM REVOKE: we can revoke a permission to auth_key from a specific channel or channel groups.

Syntax for revoking permission same as granting . Just we need to change the permission true to
false.

try {

 pubnub.grant().authKeys(Arrays.asList("auth1,auth2"))
 .channels(Arrays.asList("channel1,channel2")).read(false).write(false).ttl(0).sync();

} catch (PubNubException e) {
 e.printStackTrace();
}

PAM Audit: we can audit a given permission to specific channel/channel group or to a given
auth_key on specific channel or channel group

Example:

pubnub.audit().channel("mycha").authKeys(Arrays.asList("a1")).async(new
PNCallback<PNAccessManagerAuditResult>(){

 @Override
 public void onResponse(PNAccessManagerAuditResult result,
 PNStatus status) {

 }
 });

PAM Add Channels into groups: we can also add channels into channel groups

Example:

pubnub.addChannelsToChannelGroup().channelGroup("my_channel").channels(Arrays.asList("my_channel5"))

 .async(new PNCallback<PNChannelGroupsAddChannelResult>() {

https://riptutorial.com/ 6

 @Override
 public void onResponse(PNChannelGroupsAddChannelResult
result,PNStatus status) {

 }
});

Authentication Isue at Client Side (403 Forbidden):

If there is an error performing PAM operations, you may receive a 403 error. If you do, be sure you
have set the correct secret_key, and the issuing computer's clock is synced with NTP.

NTP Setup

Network Time Protocol (NTP) is a protocol that is used to synchronize computer clock times in a
network of computers. NTP uses Coordinated Universal Time (UTC) to synchronize computer
clock times to a millisecond, and sometimes to a fraction of a millisecond.

Here we need to scyn server time with pubnub. Follow the step for doing so

Step 1 Intallation NTP

$ sudo apt-get update
$ sudo apt-get install ntp

Step 2 Edit ntp.conf

Replace these four with pubnub server

server 0.ubuntu.pool.ntp.org
server 1.ubuntu.pool.ntp.org
server 2.ubuntu.pool.ntp.org
server 3.ubuntu.pool.ntp.org

to

server 0.pubsub.pubnub.com
server 1.pubsub.pubnub.com
server 2.pubsub.pubnub.com
server 3.pubsub.pubnub.com

Step 3 Restart NTP Service

$ sudo service ntp restart

Ref :

[https://www.pubnub.com/docs/web-javascript/pam-security][1]

https://www.pubnub.com/docs/java/pubnub-java-sdk-v4

https://riptutorial.com/ 7

https://www.pubnub.com/docs/web-javascript/pam-security%5D%5B1%5D
https://www.pubnub.com/docs/java/pubnub-java-sdk-v4

Read Access Manager online: https://riptutorial.com/pubnub/topic/330/access-manager

https://riptutorial.com/ 8

https://riptutorial.com/pubnub/topic/330/access-manager

Chapter 3: Channel Specific Callbacks for v4
SDKs

Examples

JavaScript v4 SDK Channel Specific Callbacks

In PubNub JavaScript v3, you could implement a unique callback for every channel that you
subscribed to as long as you called the subscribe function for each channel and implemented the
callback in that subscribe like this:

var pubnub = new PubNub({
 publishKey: "your-pub-key",
 subscribeKey: "your-sub-key"
});

pubnub.subscribe({
 channel: 'ch1',
 message: function (m) {
 console.log(m + " ch1 callback");
 }
});

pubnub.subscribe({
 channel: 'ch2',
 message: function (m) {
 console.log(m + " ch2 callback: ");
 }
});

So in the above code, if you publish the message "hello" to ch1:

publish({channel: "ch1", message: "hello"});

...then you would get the output, hello ch1 callback. And of course if you published the same
message to ch2, you would get the output hello ch2 callback.

The ability to provide a custom callback for each channel, or a group of channels, is useful and
often more desirable than creating a monolithic callback with a long if-then-else of channel
names and code to be executed for each condition. And there are better practices to use than the
above simple example but I wanted to make it easy to compare and contrast with how PubNub
JavaScript SDK v4 (and any v4 PubNub SDK) is designed.

PubNub v4 SDKs use a single listener to receive all message, presence and status events. This
means that when you subscribe to a channel, you only provide the channel name(s) rather than a
companion message callback function. In JavaScript SDK v4, the listener looks like this:

pubnub.addListener({

https://riptutorial.com/ 9

https://www.pubnub.com/docs/web-javascript/pubnub-javascript-sdk
https://www.pubnub.com/docs/javascript/pubnub-javascript-sdk-v4
https://www.pubnub.com/docs/javascript/pubnub-javascript-sdk-v4
https://www.pubnub.com/docs/javascript/pubnub-javascript-sdk-v4

 message: function(m) {
 console.log(JSON.stringify(m));
 },
 presence: function(p) {
 console.log(JSON.stringify(p));
 },
 status: function(s) {
 console.log(JSON.stringify(s));
 }
});

I know many developers will be wondering how to migrate the subscribe code with unique message
callbacks from SDK v3 with this sort of design without resorting to the never ending channel name
conditional code that I mentioned above, like this:

pubnub.addListener({
 message: function(m) {
 if (m.subscribedChannel == 'ch1') {
 console.log(m.message + "ch1 callback");
 }
 else if (m.subscribedChannel == 'ch2') {
 console.log(m.message + "ch2 callback");
 }
 else {
 console.log(m.message + "default callback");
 }
 }
 // removed the other two callbacks for brevity purposes
});

The parameter m that is passed into the message listener above has the following structure which
is a different design than the multiple parameter design of JavaScript SDK v3.

{
 "channel": "ch1",
 "subscription": <undefined>,
 "timetoken": "14721821326909151",
 "message": "hello"
}

That timetoken is the actual publish timetoken. For experienced PubNub developers, you should be
excited to see that this is now available to the subscriber, but let's not get into why this is important
and powerful right now.

Now I wouldn't expect any experienced JavaScript developer to write code as represented above
and many advance developers might already know what to do. But for those developers that are at
the beginner to intermediate level with JavaScript, the solution may not be immediately obvious.
However, I know once you see this simple design approach below, it will open your eyes to the
unlimited possibilities of the JavaScript language - here we go.

Let's restate the requirement:

For every channel I subscribe to, I want to be able to provide a unique function to in
invoke when a message is received on that channel. And I want to avoid the monolithic

https://riptutorial.com/ 10

conditional channel name approach.

So what we need to do first is create a function lookup table. A hashtable to be exact. This table
will have channel names as keys and functions (the code to invoke when a message is received
on that channel) as values. If you are somewhat new to JavaScript or have been coding with the
language for awhile but haven't really dove into the language features yet, this might sound odd
and impossible, but it's really how JavaScript works and you've been doing it all along and didn't
really know it. Let's define our function lookup table:

ftbl = {};

That's it - you have an object that will hold your channels and functions. Pretty simple, right? But
how do you add the channels and functions? Just like any other key/value.

ftbl.ch1 = function(m){console.log(m.message + " ch1 callback")};
ftbl.ch2 = function(m){console.log(m.message + " ch1 callback")};

...and so on with each channel and function you want to define. And you don't have to create all of
your channel/function keys in one spot of your code. You can add each channel/function to the
ftbl as you subscribe to a channel.

ftbl.ch10 = function(m){console.log(m.message + " ch10 callback")};
pubnub.pubnub.subscribe({
 channels: ['ch10']
});

OK, that's simple enough, and you can get fancier and more advanced with how you do this but
just keeping it basic. But how do you invoke this function for the channel it is linked to? This is why
JavaScript is so cool, powerful and easy especially if you come from a rigid and structured
language like Java - check it out.

pubnub.addListener({
 message: function(m) {
 // use the channel name to get the function
 // from ftbl and invoke it
 ftbl[m.subscribedChannel](m);
 },
 presence: function(p) {
 console.log(JSON.stringify(p));
 },
 status: function(statusEvent) {
 console.log(JSON.stringify(s));
 }
});

That's all there is to it. Just get the function from ftbl using the channel name that is passed into
the listener's message callback function and add (m) to the end of it and boom, it runs your function.

If the channel is ch10, ftbl[m.subscribedChannel](m) just invokes function(m){console.log(m.message
+ "ch10 callback")} passing in the m parameter which your function can parse and exploit as it
needs to.

https://riptutorial.com/ 11

So calling the following publish function:

pubnub.publish(
 {
 channel : "ch10",
 message : "hello"
 },
 function(status, response) {
 console.log(status, response);
 }
);

...will result in the following message getting displayed: hello ch10 callback. And the equivalent for
publishing to other channels that you have defined in your function lookup table. Don't forget to
provide a default for unknown channels.

And don't forget the presence and status callbacks in the listener. This could be just two more
function lookup tables or just a slightly more complex ftbl:

ftbl.message.ch1 = function(m){console.log(m.message + " ch1 message cb")};
ftbl.presence.ch1 = function(m){console.log(m.message + " ch1 presence cb")};
ftbl.status.ch1 = function(m){console.log(m.message + " ch1 status cb")};

or

ftbl.ch1.message = ...
ftbl.ch1.presence = ...
ftbl.ch1.status = ...

I like the former better than the latter but it's really up to you. And you probably want some generic
status event handling code anyway but it will depend on your specific requirements.

And this can get even more complicated and robust with optional functions per channel that can
be invoked depending on some additional data that you embed in the message payload.

So there you go, unique callbacks for each channel. No more excuses for not wanting to migrate
from 3x to 4x. But if you do have some doubts about migrating, don't hesitate to reach out to
PubNub Support and we'll get you moving forward. And don't forget to review the PubNub
JavaScript SDK v3 to v4 Migration Guide.

Read Channel Specific Callbacks for v4 SDKs online:
https://riptutorial.com/pubnub/topic/6037/channel-specific-callbacks-for-v4-sdks

https://riptutorial.com/ 12

https://pubnub.com/support
https://www.pubnub.com/docs/web-javascript/migration-guide-from-v3
https://www.pubnub.com/docs/web-javascript/migration-guide-from-v3
https://riptutorial.com/pubnub/topic/6037/channel-specific-callbacks-for-v4-sdks

Chapter 4: Hello World

Remarks

<init> (i.e. require ("pubnub"))

Initialize an instance of PubNub to invoke operations.

Parameter Details

publish_key String - your publish key from your PubNub Admin Dashboard account

subscribe_key String - your publish key from your PubNub Admin Dashboard account

subscribe

Subscribe to a channel(s) and provide a means to receive messages published to the channel(s).

Parameter Details

channel String - channel name or comma-delimited list of channel names

message
function - the callback function that will receive messages published on the
subscribe channels

connect
function - the callback function that will be called when the subscription to the
channels is successful

publish

Publish a message to a channel which will be received by subscribers on that channel.

Parameter Details

channel String - channel name on which to send the message

message
String - The message to publish on the channel. JSON format is recommended
(do not stringify; use the JSON object)

Examples

Publish and Subscribe for Node.JS SDK

Publish and Subscribe for Node.JS

https://riptutorial.com/ 13

Install PubNub NPM Package.

npm install pubnub@3.15.2

Example Publish Subscribe with Node.JS

var channel = "hello_world";
var pubnub = require("pubnub")({
 publish_key : "your_pub_key"
, subscribe_key : "your_sub_key"
});

pubnub.subscribe({
 channel : channel
, message : receive // print message
, connect : send // send message after subscribe connected
});

function receive(message) { console.log(message) }

function send(message) {
 pubnub.publish({
 channel : channel
 , message : message
 });
}

Read Hello World online: https://riptutorial.com/pubnub/topic/329/hello-world

https://riptutorial.com/ 14

https://riptutorial.com/pubnub/topic/329/hello-world

Chapter 5: Message Filtering

Remarks

Stream Filter provides the ability to filter messages on the server before they are sent to a
subscriber is a popular request. With the introduction of our v4.x SDKs, you now have the ability to
do so using message meta data.

Examples

Prevent Receiving Your Own Messages Using Objective-C

Setting a filter applies to all channels that you will subscribe to from that particular client. This
client filter excludes messages that have this subscriber's UUID set at the sender's UUID:

NSString *expression = [NSString stringWithFormat:@"(uuid != '%@'",
 self.client.currentConfiguration.uuid];
[self.client setFilterExpression:expression];

When publishing messages, you need to include the sender's UUID if you want the subscriber
side client filter to work:

[self.client publish:@"message" toChannel:@"group-chat"
 withMetadata:@{@"uuid": self.client.currentConfiguration.uuid}
 completion:^(PNPublishStatus *status) {

 // Check whether request successfully completed or not.
 if (!status.isError) {

 // Message successfully published to specified channel.
 }
 else {

 // Request processing failed. Handle message publish error.
 // Check 'category' property to find out possible issue
 // publish can be attempted again using: [status retry];
 }
}];

See also:

PubNub Objective-C SDK Stream Filter Documentation•

Read Message Filtering online: https://riptutorial.com/pubnub/topic/593/message-filtering

https://riptutorial.com/ 15

https://www.pubnub.com/docs/ios-objective-c/stream-filtering-tutorial-sdk-v4
https://www.pubnub.com/docs/ios-objective-c/stream-filtering-tutorial-sdk-v4
https://riptutorial.com/pubnub/topic/593/message-filtering

Chapter 6: Presence

Examples

Presence in JavaScript

Presence works by sending messages when a user joins, leaves, or times out from a particular
channel. You can listen for these messages to track who is in a channel, and how long since they
did anything.

First, make sure each user as a UUID. Set this when you initialize PubNub:

var pubnub = PUBNUB({
 publish_key: 'my_pub_key',
 subscribe_key: 'my_sub_key',
 uuid: '1234_some_uuid'
 });

Now when you connect to a channel, add an extra listener for join events.

pubnub.subscribe({
 channel: "channel-1",
 message: function(m){console.log(m)}
 presence: onPresenceEvent,
});

onPresenceEvent = function(message, envelope, channel){
 if (!message.action) {
 // presence interval mode happens
 // when occupancy > presence announce max
 // there is no action key
 console.log("Presence Interval Mode: occupancy = " + m.occupancy);
 return;
 }

 console.log(
 "Action: " + message.action + "\n" +
 "UUID: " + message.uuid + "\n" +
 "Channel: " + JSON.stringify(channel) + "\n" +
 "Occupancy: " + message.occupancy + "\n" +
 "Timestamp: " + message.timestamp);

 else if (m.action == 'join') {
 // new subscriber to channel
 // add the user to your buddy list
 }
 else if (m.action == 'leave') {
 // subscriber explicitly unsubscribed channel
 // remove user from your buddy list
 }
 else if (m.action == 'timeout') {
 // subscriber implicitly unsubscribed channel (did not unsubscribe)
 // remove user from your buddy list
 }

https://riptutorial.com/ 16

 else if (m.action == 'state-change') {
 // subscriber changed state
 // update the attributes about the user in the buddy list
 // i.e. - is typing, online status, etc.
 console.log("State Data: " + JSON.stringify(message.data));
 }
};

The message object sent to the presence callback will include the action taken (join, leave, timeout
or state-change) and the UUID of the user who did the action, as well as timestamp and some
other metadata.

When state is set, a state-change event is sent which will include the new state in the data key of
the message key.

Note: If you have the Access Manager enabled, you must ensure that your grants cover both the
regular channel as well as the presence channel. Otherwise, when you attempt to subscribe to the
channel with a presence callback, the SDK will also subscribe you to the presence channel which
will fail if you have not applied the grants. The presence channel name is the regular channel
name with a "-pnpres" suffix; meaning a channel named "pubnub-sensor-array" will have a
presence channel named "pubnub-sensor-array-pnpres". See the Access Manager examples for
more information.

Setting State Upon Subscribe

When a user subscribes to a channel, you may want to set state for that newly subscribed user.
While there is a subscribe with state API, there are some scenarios where this is not the most
optimal/reliable technique (like during a disconnect/reconnect situation - the state will be lost and
not reinstated).

It is better to explicitly set state once the channel is successfully subscribed. This means you use
the subscribe's connect callback to set the state.

var pubnub = PUBNUB({
 publish_key: 'my_pub_key',
 subscribe_key: 'my_sub_key',
 uuid: 'users_uuid'
});

pubnub.subscribe({
 channel: 'channel-1',
 message: function(msg, env, ch){console.log(msg)},
 connect: function(m) {
 console.log('CONNECT: ' + m);
 pubnub.state({
 channel : 'channel-1', // use the channel param from the subscribe
 state : {'nickname': 'Bandit', 'mood': 'Pumped!'},
 callback : function(m){console.log(m)},
 error : function(m){console.log(m)}
 });
 },
 disconnect : function(m){console.log('DISCONNECT: ' + m)},
 reconnect : function(m){console.log('RECONNECT: ' + m)},

https://riptutorial.com/ 17

http://www.riptutorial.com/pubnub/topic/330/access-manager
https://www.pubnub.com/docs/web-javascript/presence#setting_custom_presence_state_set_state

 error : function(m){console.log('CONNECT: ' + m)}
});

Read Presence online: https://riptutorial.com/pubnub/topic/331/presence

https://riptutorial.com/ 18

https://riptutorial.com/pubnub/topic/331/presence

Chapter 7: Storage & Playback

Parameters

Parameter Type / Required / Default Description

channel String / Yes Specifies channel to return history messages from.

reverse

Boolean / No / false Setting to true will traverse the time line in reverse
starting with the oldest message first. Default is false. If both start and
end arguments are provided, reverse is ignored and messages are
returned starting with the newest message.

limit Number / No / 100 Specifies the number of historical messages to return.

start
Number / No Time token delimiting the start of time slice (exclusive) to pull
messages from.

end
Number / No Time token delimiting the end of time slice (inclusive) to pull
messages from.

includeTimetoken
Boolean / No / false If true the message post timestamps will be included
in the history response.

Remarks

Simply enabling Storage & Playback add-on for your keys in the PubNub Admin Dashboard will
result in all published messages on all channels to be stored. You can prevent a message from
being stored by passing the storeInHistory parameter as false when the message is published,
like this:

pubnub.publish(
 {
 message: {
 'price': 8.07
 },
 channel: 'channel1',
 storeInHistory: false // override default storage options
 },
 function (status, response) {
 // log status & response to browser console
 console.log("STATUS : " + console.log(JSON.stringify(status));
 console.log("RESPONSE: " + console.log(JSON.stringify(response));
 }
);

Otherwise, just omit the storeInHistory or set to true to store the message when it is published.

https://riptutorial.com/ 19

Examples

JavaScript SDK v4 - History

// initialize pubnub object
var pubnub = new PubNub({
 subscribeKey: "yourSubscribeKey",
 publishKey: "myPublishKey" // optional
})

// get up to the last 100 messages
// published to the channel
pubnub.history(
 {
 channel: 'channel1'
 },
 function (status, response) {
 // log status & response to browser console
 console.log("STATUS : " + console.log(JSON.stringify(status));
 console.log("RESPONSE: " + console.log(JSON.stringify(response));
 }
);

// this is the format of the response
[
 [array of returned messages],
 "firstMessageTimetoken",
 "lastMessageTimetoken"
]

// example of response
[
 [{'price':10.02}, {'price':10.12}, {'price':10.08}, {'price':10.10}],
 "14691304969408991",
 "14691307326690522"
]

Read Storage & Playback online: https://riptutorial.com/pubnub/topic/3714/storage---playback

https://riptutorial.com/ 20

https://riptutorial.com/pubnub/topic/3714/storage---playback

Chapter 8: Stream Controller: Channel
Groups

Remarks

When using Channel Groups, you should not add or remove channels in your client side
applications. This example shows adding channels to a channel group and subscribing to that
channel group for simplicity sake. But in a real world scenario, you should have your server do all
the add/remove of channels to/from channel groups. When you enable Access Manager, you will
need the manage permission to add/remove channels to/from channel groups and you should never
grant the manage permission to clients for security reasons. Only your server should be granted the
manage permission.

Examples

Subscribe with Channel Groups in JavaScript

With Stream Controller add-on enabled, you can use Channel Groups to subscribe to a 1000's of
channels from a single client. You do this by creating a channel group and adding channels to the
channel group. We'll assume pubnub variable has been initialized properly with your keys.

Create a generic callback handler function:

function displayCallback(m,e,c,d,f){
 console.log(JSON.stringify(m, null, 4));
}

Create channel group and add channels to it:

pubnub.channel_group_add_channel({
 callback: displayCallback,
 error: displayCallback,
 channel_group: "sports",
 channel: "football,baseball,basketball,lacrosse,cricket"
});

Now, subscribe to the channel group and you will be subscribed to all channels in that group:

pubnub.subscribe({
 callback: displayCallback,
 error: displayCallback,
 channel_group: "sports"
});

Any messages published to the channels in the channel group will be received in the
displayCallback function.

https://riptutorial.com/ 21

Read Stream Controller: Channel Groups online: https://riptutorial.com/pubnub/topic/580/stream-
controller--channel-groups

https://riptutorial.com/ 22

https://riptutorial.com/pubnub/topic/580/stream-controller--channel-groups
https://riptutorial.com/pubnub/topic/580/stream-controller--channel-groups

Chapter 9: UUIDs

Examples

JavaScript/Web SDK

For JavaScript, here is the code we recommend for generating, persisting and retrieving a UUID.
This could be wrapped in a function can called directly from the PUBNUB.init function rather than
the two step inline solution below.

// get/create/store UUID
var UUID = PUBNUB.db.get('session') || (function(){
 var uuid = PUBNUB.uuid();
 PUBNUB.db.set('session', uuid);
 return uuid;
})();

// init PUBNUB object with UUID value
var pubnub = PUBNUB.init({
 publish_key: pubKey,
 subscribe_key: subKey,
 uuid: UUID
});

Android/Java SDK

For Android, here is the code we recommend for generating, persisting and retrieving a UUID.
There is not constructor that accepts the UUID as a parameter, so you must instantiate Pubnub
object first then use the setter to provide the UUID.

// creating the Pubnub connection object with minimal args
Pubnub pubnub = new Pubnub(pubKey, subKey);

// get the SharedPreferences object using private mode
// so that this uuid is only used/updated by this app
SharedPreferences sharedPrefs = getActivity().getPreferences(Context.MODE_PRIVATE);

// get the current pn_uuid value (first time, it will be null)
String uuid = getResources().getString(R.string.pn_uuid);

// if uuid hasn’t been created & persisted, then create
// and persist to use for subsequent app loads/connections
if (uuid == null || uuid.length == 0) {
 // PubNub provides a uuid generator method but you could
 // use your own custom uuid, if required
 uuid = pubnub.uuid();
 SharedPreferences.Editor editor = sharedPrefs.edit();
 editor.putString(getString(R.string.pn_uuid), uuid);
 editor.commit();
}

// set the uuid for the pubnub object
pubnub.setUUID(uuid);

https://riptutorial.com/ 23

Read UUIDs online: https://riptutorial.com/pubnub/topic/561/uuids

https://riptutorial.com/ 24

https://riptutorial.com/pubnub/topic/561/uuids

Chapter 10: webhook

Examples

pubnub webhook

Webhook Overview

A WebHook is an HTTP callback: an HTTP POST that occurs when something happens; a simple
event-notification via HTTP POST. A web application implementing WebHooks will POST a
message to a URL when certain things happen.

PubNub Presence

Pubnub presence all about the user presence at pubnub platform. it provides the presence of user
when they are joining, leaving a channel or when there is a user's state changes. Presence
Webhooks provide a means for your server to be notified whenever presence events occur on any
channel for your keys. This provides an easy to scale solution for your server side application to
monitor the presence events.

How it would reduce the overhead

Without Presence Webhooks, your server would have to subscribe to all the channels' -pnpres
channels. So this can be a tedious task to control overs channels if your app has thousands of
channels or more.

Pubnub Webhooks would help us in this scenario and it is easier to implement and scale with
traditional, well-known web infrastructure(load balancers, web and app servers provided by your
application service providers like Heroku, Rackspace, Azure, Amazon and others).

PubNub Presence Webhooks

PubNub Presence Webhooks are a means for the PubNub network to invoke a REST endpoint
your server directly as presence events occur. It would also help in load balancing. So here you
need to create REST Endpoint URL of your server at which pubnub would sends the presence
data.

User Presence Events

There are four user events at pubnunb platform

join1.
leave2.
timeout3.
state-change4.

https://riptutorial.com/ 25

And two channel level events : active and inactive. please refer pubnub-doc for detailed
information.

Each event has it's own Webhook for which you can provide a REST endpoint to your server to
handle the event. Or you can provide one REST endpoint for all of them and just implement
conditional logic on the action attribute on your server to handle each individual event.

Whatever you choose, you need to provide the sub-key and the REST URIs to PubNub Support to
configure this for you. You likely will have more than one sub-key with different endpoints for
different server environments (dev, test, production, for example).

Once your server's REST endpoints are implemented and the PubNub key configuration is in
place, you are ready to go. But before you implement the REST endpoints, it might be helpful to
know what the events' data looks like.

Here is an example of a join :

HTTP POST
Content-Type: application/json

{
 'action': 'join',
 'sub_key': 'sub-c-...',
 'channel': 'lacrosse'
 'uuid': '1234-5678-90ab-cdef',
 'timestamp': 1440568311,
 'occupancy': 1,
 'data': {'foo': 'bar'}
}

This would be the same for leave and timeout and state-change except for the action value, of
course.

Webhook Response Status

It is important that your REST endpoint implementation should return a status code (200 OK)
immediately upon receiving the Webhook from PubNub.

Pubnub Re-try

If pubnub does not recieve 200 From Rest-Endpoint then it will send duplicate events because
PubNub assumes no response means your server did not receive the event. PubNub will wait five
seconds for the 200 response before trying again. After a third retry (four total attempts), PubNub
will no longer attempt to send that particular event to your server.

Read webhook online: https://riptutorial.com/pubnub/topic/3715/webhook

https://riptutorial.com/ 26

https://riptutorial.com/pubnub/topic/3715/webhook

Credits

S.
No

Chapters Contributors

1
Getting started with
PubNub

Community, Craig Conover, Dara Kong, Josh Marinacci

2 Access Manager Craig Conover, Girish Kumar, Josh Marinacci

3
Channel Specific
Callbacks for v4
SDKs

Craig Conover

4 Hello World Craig Conover, girlie_mac, PubNub

5 Message Filtering Craig Conover, Serhii Mamontov

6 Presence Alex Vidal, Craig Conover, Dara Kong, Josh Marinacci

7 Storage & Playback Craig Conover

8
Stream Controller:
Channel Groups

Craig Conover

9 UUIDs Craig Conover

10 webhook Girish Kumar

https://riptutorial.com/ 27

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1342232/craig-conover
https://riptutorial.com/contributor/11292/dara-kong
https://riptutorial.com/contributor/242077/josh-marinacci
https://riptutorial.com/contributor/1342232/craig-conover
https://riptutorial.com/contributor/4626262/girish-kumar
https://riptutorial.com/contributor/242077/josh-marinacci
https://riptutorial.com/contributor/1342232/craig-conover
https://riptutorial.com/contributor/1342232/craig-conover
https://riptutorial.com/contributor/845834/girlie-mac
https://riptutorial.com/contributor/524733/pubnub
https://riptutorial.com/contributor/1342232/craig-conover
https://riptutorial.com/contributor/859183/serhii-mamontov
https://riptutorial.com/contributor/237211/alex-vidal
https://riptutorial.com/contributor/1342232/craig-conover
https://riptutorial.com/contributor/11292/dara-kong
https://riptutorial.com/contributor/242077/josh-marinacci
https://riptutorial.com/contributor/1342232/craig-conover
https://riptutorial.com/contributor/1342232/craig-conover
https://riptutorial.com/contributor/1342232/craig-conover
https://riptutorial.com/contributor/4626262/girish-kumar

	About
	Chapter 1: Getting started with PubNub
	Remarks
	Versions
	Examples
	Publish on Subscribe Success (connect)

	Chapter 2: Access Manager
	Examples
	Wildcard Channel Group Manage Grant - Java SDK v4
	pubnub access manager at server side

	Chapter 3: Channel Specific Callbacks for v4 SDKs
	Examples
	JavaScript v4 SDK Channel Specific Callbacks

	Chapter 4: Hello World
	Remarks
	Examples
	Publish and Subscribe for Node.JS SDK

	Publish and Subscribe for Node.JS
	Chapter 5: Message Filtering
	Remarks
	Examples
	Prevent Receiving Your Own Messages Using Objective-C

	Chapter 6: Presence
	Examples
	Presence in JavaScript
	Setting State Upon Subscribe

	Chapter 7: Storage & Playback
	Parameters
	Remarks
	Examples
	JavaScript SDK v4 - History

	Chapter 8: Stream Controller: Channel Groups
	Remarks
	Examples
	Subscribe with Channel Groups in JavaScript

	Chapter 9: UUIDs
	Examples
	JavaScript/Web SDK
	Android/Java SDK

	Chapter 10: webhook
	Examples
	pubnub webhook

	Credits

