
pug

#pug

Table of Contents

About 1

Chapter 1: Getting started with pug 2

Remarks 2

Versions 2

Examples 2

Installation 2

Hello World Example 3

Chapter 2: Conditionals 5

Introduction 5

Syntax 5

Parameters 5

Remarks 5

Examples 6

If/Else Statement in Pug 6

If/Else Statement in Pug (with a dash) 6

Else If Statement 6

Unless Operator 7

Chapter 3: Interpolation with Pug 8

Introduction 8

Syntax 8

Parameters 8

Remarks 9

Examples 9

Server Side Variable Interpolation 9

Raw Variable Interpolation in HTML 10

Value Interpolation in JavaScript Code 10

HTML Element Interpolation 13

Chapter 4: Iteration with Pug 14

Introduction 14

Remarks 14

Examples 14

Each iteration 14

Chapter 5: Syntax and markup generation 16

Introduction 16

Remarks 16

Examples 16

From Pug to HTML 16

Credits 18

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: pug

It is an unofficial and free pug ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official pug.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/pug
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with pug

Remarks

Pug is a high performance, robust, elegant, feature rich template engine. It was influenced by
Haml and implemented with JavaScript for Node.js and browsers. Implementations exists for
Laravel, PHP Scala, Ruby, Python and Java.

It features:

Express integration•
Conditionals•
Filters•
Includes•
Inheritance•
Interpolation•
Iteration•
Mixins•

Pug was previously known under the Jade name but has been renamed because of a registered
trademark case.

This remark section should also mention any large subjects within pug, and link out to the related
topics. Since the Documentation for pug is new, you may need to create initial versions of those
related topics.

Versions

Version Release Date

2.0.0-beta11 2017-02-04

2.0.0-beta10 2017-01-29

2.0.0-beta9 2017-01-25

2.0.0-beta1 2016-06-03

1.11.0 2015-06-11

Examples

Installation

To install the Pug template rendering system, follow these steps:

https://riptutorial.com/ 2

http://haml.info/
https://pugjs.org/api/express.html
https://pugjs.org/language/conditionals.html
https://pugjs.org/language/filters.html
https://pugjs.org/language/includes.html
https://pugjs.org/language/inheritance.html
https://pugjs.org/language/interpolation.html
https://pugjs.org/language/iteration.html
https://pugjs.org/language/mixins.html
https://pugjs.org/api/migration-v2.html

Have the Node.js environment installed on your machine1.
Run npm install pug --save to install the pug module to your current project.2.

You can now use pug in your project through the standard require mechanism:

const pug = require("pug");

If you are using Express in your application, you do not need to require("pug"). However, you
must set the view engine property of your Express application to pug.

app.set("view engine", "pug");

Further, you must set the view directory of your app so that Express knows where to look for your
Pug files (for compilation).

app.set("views", "path/to/views");

Within your Express route, you can then render your Pug files by calling the res.render function
with the path of the file (starting from the directory set by the app.set("views") option).

app.get("/", function (req, res, next) {
 // Your route code
 var locals = {
 title: "Home",
 };
 res.render("index", locals);
});

In the above, index points to a file located at views/index.pug, and locals represents an object of
variables that are exposed to your file. As will be explained in later sections, Pug can access
variables passed to it and perform a variety of actions (conditionals, interpolation, iteration, and
more).

Hello World Example

First, let's create a template to be rendered!

p Hello World, #{name}!

Save this in a file ending with the .pug extension (you can call it anything you like, but we will use
view.pug in the following code to compile it).

All that's left to do, now, is compile that template! Create a JS script file (we'll call ours main.js),
and add the following content:

// Import the pug module
const pug = require('pug');

// Compile the template (with the data not yet inserted)

https://riptutorial.com/ 3

https://nodejs.org/en/

const templateCompiler = pug.compileFile('view.pug');

// Insert your data into the template file
console.log(templateCompiler({ name: 'John' });

When you run this file with npm main.js, you should get the following HTML code output in your
console:

<p>Hello World, John!</p>

Congratulations, you just created and compiled your first template! On to more advanced stuff,
such as Conditionals, Iteration, and much more!

Read Getting started with pug online: https://riptutorial.com/pug/topic/8613/getting-started-with-
pug

https://riptutorial.com/ 4

https://pugjs.org/language/conditionals.html
https://pugjs.org/language/iteration.html
https://riptutorial.com/pug/topic/8613/getting-started-with-pug
https://riptutorial.com/pug/topic/8613/getting-started-with-pug

Chapter 2: Conditionals

Introduction

Pug can conditionally run code based on variables (passed from your server or based in Pug
itself).

Syntax

if (statement)

// Pug code

•

else if (statement)

// Pug code

•

else

// Pug code

•

unless (statement)

// Pug code

•

Parameters

Parameter Details

if (statement)
Evaluates statement to see if it returns true or false. The code nested
underneath if will run only if statement returns true.

else if
(statement)

Chained to an existing if or else if statement; it only runs if the previous
statement evaluated to false. The code nested underneath the else if
statement will run only if statement evaluates to true.

else
The code nested underneath the else statement will run only if all previous
statements returned false.

unless
(statement)

The negation of if (statement); the code nested underneath if will run only if
statement returns false. It is the same as if (!statement).

Remarks

https://riptutorial.com/ 5

Official PugJS documentation on conditionals

Examples

If/Else Statement in Pug

Conditionals in Pug can evaluate statements in a manner similar to JavaScript. You can evaluate
variables created in Pug, or those passed to it by your route (res.render, pug.renderFile, etc).

index.js

var authorized = true
res.render("index", {
 authorized: authorized
});

index.pug

- var showLogin = false;
if authorized && showLogin === true
 .welcome Welcome back to our website!
else
 .login
 a(href="/login") Login

index.pug output

<div class="login">Login</div>

If/Else Statement in Pug (with a dash)

You can choose to prepend an if or else operator with a dash, but it is not necessary. You will
need to wrap the statement in parentheses, though (if you omit a dash, you do not need
parentheses.)

- var showLogin = false;
- if (showLogin === true)
 .welcome Welcome back to our website!
- else
 .login
 a(href="/login") Login

index.pug output

<div class="login">Login</div>

Else If Statement

You can chain any number of else if statements to an existing if statement, to evaluate a

https://riptutorial.com/ 6

https://pugjs.org/language/conditionals.html

sequence of statements.

index.pug

- var page = 60;
if page => 52
 h1 Lots of numbers!
else if page > 26 && page < 52
 h1 A few numbers
else
 h1 Not a lot of numbers

index.pug output

<h1>Lots of numbers!</h1>

Unless Operator

unless is the inverse operation of if in Pug. It is analogous to if !(statement).

index.pug

- var likesCookies = true;
unless likesCookies === true
 h2 You don't like cookies :(
else
 h2 You like cookies!

index.pug output

<h1>You like cookies!</h1>

Note: else unless statements do not work with unless; you can chain an else if statement to an
unless statement, but else unless does not work.

Read Conditionals online: https://riptutorial.com/pug/topic/9662/conditionals

https://riptutorial.com/ 7

https://riptutorial.com/pug/topic/9662/conditionals

Chapter 3: Interpolation with Pug

Introduction

It's important to be able to use server-side variables in your website. Pug allows you to interpolate
data generated by your server in HTML, CSS, and even JavaScript code.

Syntax

res.render(path, variables) // Searches for a pug file to render at path "path", and passes
"variables" to it

•

#{variable} // Interpolates "variable" inline with the surrounding Jade code, after evaluating
"variable"

•

!{variable} // Interpolates "variable" inline with the surrounding Jade code, without evaluating
"variable".

•

#[element] // Interpolates "element" inside of an existing Pug HTML element. Syntax of
interpolated HTML elements is identical to that of normal HTML elements.

•

Parameters

Parameter Details

path

Used in res.render. This is the path of the Pug file that we are going to render.
The path is taken from the root of the folder set on your Express app:
app.set("views", "templates/views"). For example, res.render("index") will
search for a Pug file at templates/views/index.pug. Subdirectories can be
specified too; res.render("admin/index") looks for a Pug file at
templates/views/admin/index.pug.

variables

Used in res.render. A JavaScript object of variables to be made accessible to
the Pug file defined by path (above). Within the Pug file, the keys of the above
JavaScript object become available as variables. If variables = {title: "Hello",
color: "red"}, we could use the title and color variable. Subproperties of
nested objects are also available.

variable

Used in bracket syntax #{} or !{}. The value of variable will be output in the
context of its surrounding Pug code. If a pound symbol is prepended to the
opening curly bracket, variable will be evaluated before being output. If an
exclamation point is prepended to the opening curly brace, variable will not be
evaluated.

element
Used in square bracket sytax #[]. The HTML element (in Pug syntax, not
normal HTML syntax) will be evaluated and output inline with the surrounding
Pug code.

https://riptutorial.com/ 8

Remarks

For more information on PugJS interpolation, see the official PugJS interpolation documentation.

Examples

Server Side Variable Interpolation

It's possible to pass variables from your server into Pug for dynamic content or script generation.
Pug templates can access variables passed to the res.render function in Express (or
pug.renderFile if you are not using Express, the arguments are identical).

index.js

let colors = ["Red", "Green", "Blue"];
let langs = ["HTML", "CSS", "JS"];
let title = "My Cool Website";

let locals = {
 siteColors: colors,
 siteLangs: langs,
 title: title
};
res.render("index", locals);

Inside your index.pug file, you then have access to the locals variable by way of its keys. The
names of the variables in your Pug file become siteColors and siteNames.

To set the entirety of an HTML element equal to a variable, use the equals operator = to do so. If
your variable needs to be embedded inline, use bracket syntax #{} to do so.

index.pug

doctype html
html
 head
 title= title
 body
 p My favorite color is #{siteColors[0]}.
 p Here's a list of my favorite coding languages
 ul
 each language in siteLangs
 li= language

index.pug output

<!DOCTYPE html>
<html>
 <head>
 <title>My Cool Website</title>
 </head>
 <body>

https://riptutorial.com/ 9

https://pugjs.org/language/interpolation.html

 <p>My favorite color is Red.</p>
 <p>Here's a list of my favorite coding languages</p>

 HTML
 CSS
 JS

 </body>
</html>

Raw Variable Interpolation in HTML

Content interpolated with bracket syntax will be evaluated for code, the output of which is included
in your HTML output.

title follows the basic pattern for evaluating a template local, but the code in between #{
and } is evaluated, escaped, and the result buffered into the output of the template
being rendered. [Source]

If you need to include raw HTML syntax, use an exclamation point instead of a pound symbol (!{}
instead of #{}).

index.js

let tag = "<div>You can't escape me!</div>";
res.render("index", {
 myTag: tag
});

index.pug

doctype html
html
 head
 body
 !{myTag}

index.pug output

<!DOCTYPE html>
<html>
 <head></head>
 <body>
 <div>You can't escape me!</div>
 </body>
</html>

Value Interpolation in JavaScript Code

Interpolating values is helpful if you need to pass a server-side variable to client-side JavaScript
(or other languages that require it).

https://riptutorial.com/ 10

https://pugjs.org/language/interpolation.html

In the case of variables, numbers, strings, and the like, you can pass these types of variables
directly into your JavaScript with bracket syntax plus an explanation point (so that the code inside
the brackets is not evaluated.) This is useful for parametrizing JavaScript code that require
something from your server.

In the below example, we have to wrap username in quotation marks in order for JavaScript to
interpret it as a string; Pug will output the content of the variable as-is, so we need to put it in
quotation marks for it to be a proper JavaScript string. This is not necessary for number, where
JavaScript will interpret our number as it we intend it to (as a number).

index.js

let number = 24;
let username = "John";
res.render("index", {
 number: number,
 username: username
});

index.pug

html
 head
 script.
 // Sets the username of the current user to be displayed site-wide
 function setUsername(username) {
 // ...
 }
 var number = #{number};
 var username = "#{username}";
 setUsername(username);

 body
 p Welcome to my site!

index.pug output

<html>
 <head>
 <script>
 // Sets the username of the current user to be displayed site-wide
 function setUsername(username) {
 // ...
 }
 var number = 24;
 var username = "John";
 setUsername(username);
 </script>
 </head>
 <body>
 <p>Welcome to my site!</p>
 </body>
</html>

If you need to interpolate the value of a JavaScript object (e.g. all the information about a user),

https://riptutorial.com/ 11

you must stringify the output in Pug for it to be treated as a JavaScript object. It's also necessary
to output the raw contents of the variable, instead of the evaluated form of it. If you were to do
output the escaped variable (var user = #{JSON.stringify(user)}), you would receive an escaped
version of the object (where quotation marks and apostrophes are converted to "), which is
not what we want in order for JSON.stringify to work on it.

index.js

var myUser = {
 name: "Leeroy Jenkins",
 id: 1234567890,
 address: "123 Wilson Way, New York NY, 10165"
};

res.render('index', {
 user: myUser
});

index.pug

doctype html
html
 head
 script.
 window.onload = function () {
 function setUsername(username) {
 return username;
 }

 var user = !{JSON.stringify(user)};
 document.getElementById("welcome-user").innerHTML = setUsername(user.name);
 };

 body
 div(id="welcome-user")

index.pug output

<!DOCTYPE html>
<html>
 <head>
 <script>
 window.onload = function() {
 function setUsername(username) {
 return username;
 }

 var user = {
 "name": "Leeroy Jenkins",
 "id": 1234567890,
 "address": "123 Wilson Way, New York NY, 10165"
 };
 document.getElementById("welcome-user").innerHTML = setUsername(user.name);
 };
 </script>
 </head>

https://riptutorial.com/ 12

 <body>
 <div id="welcome-user"></div>
 </body>
</html>

The innerHTML of #welcome-user becomes equal to Leeroy Jenkins. The contents of the user variable
are printed directly to the HTML source

HTML Element Interpolation

It may be necessary to nest HTML tags inside of each other. Element interpolation is done in a
syntax similar to variable interpolation; square brackets instead of curly braces are used here. The
syntax of interpolated HTML elements is identical to the implementation of normal HTML
elements.

index.pug

doctype html
html
 head
 title My Awesome Website
 body
 p The server room went #[b boom]!
 p The fire alarm, however, #[u failed to go off...]
 p Not even #[a(href="https://stackoverflow.com/") Stack Overflow] could save them now.

index.pug output

<!DOCTYPE html>
<html>
 <head>
 <title>My Awesome Website</title>
 </head>
 <body>
 <p>The server room went boom!</p>
 <p>The fire alarm, however, <u>failed to go off...</u></p>
 <p>Not even Stack Overflow could save them
now.</p>
 </body>
</html>

Read Interpolation with Pug online: https://riptutorial.com/pug/topic/9565/interpolation-with-pug

https://riptutorial.com/ 13

https://riptutorial.com/pug/topic/9565/interpolation-with-pug

Chapter 4: Iteration with Pug

Introduction

How to iterate over a simple JSON object and save a lot of typing

Remarks

You need to have Node.js and Pug installed

Examples

Each iteration

Build an app.js with a simple data store:

app.get("/bookstore", function (req, res, next) {
 // Your route data
 var bookStore = [
 {
 title: "Templating with Pug",
 author: "Winston Smith",
 pages: 143,
 year: 2017
 },
 {
 title: "Node.js will help",
 author: "Guy Fake",
 pages: 879,
 year: 2015
 }
];
 res.render("index", {
 bookStore: bookStore
 });
});

Iterate over the data store using an index.pug file and an each loop:

each book in bookStore
 ul
 li= book.title
 li= book.author
 li= book.pages
 li= book.year

Result will be:

 Templating with Pug

https://riptutorial.com/ 14

 Winston Smith
 143
 2017

 Node.js will help
 Guy Fake
 879
 2015

Reference

Read Iteration with Pug online: https://riptutorial.com/pug/topic/9545/iteration-with-pug

https://riptutorial.com/ 15

https://pugjs.org/language/iteration.html
https://riptutorial.com/pug/topic/9545/iteration-with-pug

Chapter 5: Syntax and markup generation

Introduction

A preview of the difference between pug code and the generated markup

Remarks

Pug makes possible to write HTML in a simplest way, using a clean, whitespace sensitive syntax.

Examples

From Pug to HTML

doctype html
html(lang="en")
 head
 title= pageTitle
 script(type='text/javascript').
 if (foo) bar(1 + 5)
 body
 h1 Pug - node template engine
 #container.col
 if youAreUsingPug
 p You are amazing
 else
 p Get on it!
 p.
 Pug is a terse and simple templating language with a
 strong focus on performance and powerful features.

Becomes:

<!DOCTYPE html>
<html lang="en">
 <head>
 <title>Pug</title>
 <script type="text/javascript">
 if (foo) bar(1 + 5)
 </script>
 </head>
 <body>
 <h1>Pug - node template engine</h1>
 <div id="container" class="col">
 <p>You are amazing</p>
 <p>Pug is a terse and simple templating language with a strong focus on performance and
powerful features.</p>
 </div>
 </body>
</html>

https://riptutorial.com/ 16

Read Syntax and markup generation online: https://riptutorial.com/pug/topic/9549/syntax-and-
markup-generation

https://riptutorial.com/ 17

https://riptutorial.com/pug/topic/9549/syntax-and-markup-generation
https://riptutorial.com/pug/topic/9549/syntax-and-markup-generation

Credits

S.
No

Chapters Contributors

1
Getting started with
pug

Community, gandreadis, Shea Belsky, smonff

2 Conditionals Shea Belsky

3
Interpolation with
Pug

Shea Belsky

4 Iteration with Pug Shea Belsky, smonff

5
Syntax and markup
generation

smonff

https://riptutorial.com/ 18

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/6171547/gandreadis
https://riptutorial.com/contributor/2246272/shea-belsky
https://riptutorial.com/contributor/954777/smonff
https://riptutorial.com/contributor/2246272/shea-belsky
https://riptutorial.com/contributor/2246272/shea-belsky
https://riptutorial.com/contributor/2246272/shea-belsky
https://riptutorial.com/contributor/954777/smonff
https://riptutorial.com/contributor/954777/smonff

	About
	Chapter 1: Getting started with pug
	Remarks
	Versions
	Examples
	Installation
	Hello World Example

	Chapter 2: Conditionals
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	If/Else Statement in Pug
	If/Else Statement in Pug (with a dash)
	Else If Statement
	Unless Operator

	Chapter 3: Interpolation with Pug
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Server Side Variable Interpolation
	Raw Variable Interpolation in HTML
	Value Interpolation in JavaScript Code
	HTML Element Interpolation

	Chapter 4: Iteration with Pug
	Introduction
	Remarks
	Examples
	Each iteration

	Chapter 5: Syntax and markup generation
	Introduction
	Remarks
	Examples
	From Pug to HTML

	Credits

