
puppet

#puppet

Table of Contents

About 1

Chapter 1: Getting started with puppet 2

Remarks 2

Versions 2

Puppet Open Source 2

Examples 3

What is puppet and why should I care? 3

Is it for you? 6

Before you startup 6

Official Documentation 6

Installation 6

System Requirements 6

Check your network configuration: 6

Installing Puppet Server 7

Enable the Puppet package repositories 7

Chapter 2: Agent 9

Syntax 9

Examples 9

What is it? 9

Trigger 9

Verbose output 9

Logging 10

Chapter 3: Handling NFS Mount 11

Introduction 11

Parameters 11

Remarks 11

Examples 11

Mounting a remote NFS drive 11

Credits 12

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: puppet

It is an unofficial and free puppet ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official puppet.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/puppet
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with puppet

Remarks

This section provides an overview of what puppet is, and why a developer might want to use it.

It should also mention any large subjects within puppet, and link out to the related topics. Since
the Documentation for puppet is new, you may need to create initial versions of those related
topics.

Versions

Puppet Open Source

Version Release Date

4.7.0 2015-09-22

4.6.0 2015-08-10

4.5.0 2015-05-17

4.4.0 2016-03-16

4.3.0 2015-11-17

4.2.0 2015-06-24

4.1.0 2015-05-19

4.0.0 2015-04-15

3.8.0 2015-04-28

3.7.0 2014-09-04

3.6.0 2014-05-15

3.5.0 2014-04-03

3.4.0 2013-12-19

3.3.0 2013-09-12

3.2.0 2013-05-14

3.1.0 2013-02-04

https://riptutorial.com/ 2

https://docs.puppet.com/puppet/4.7/reference/release_notes.html
https://docs.puppet.com/puppet/4.6/reference/release_notes.html
https://docs.puppet.com/puppet/4.5/reference/release_notes.html
https://docs.puppet.com/puppet/4.4/reference/release_notes.html
https://docs.puppet.com/puppet/4.3/reference/release_notes.html
https://docs.puppet.com/puppet/4.2/reference/release_notes.html
https://docs.puppet.com/puppet/4.1/reference/release_notes.html
https://docs.puppet.com/puppet/4.0/reference/release_notes.html
https://docs.puppet.com/puppet/3.8/reference/release_notes.html
https://docs.puppet.com/puppet/3.7/reference/release_notes.html
https://docs.puppet.com/puppet/3.6/reference/release_notes.html
https://docs.puppet.com/puppet/3.5/reference/release_notes.html
https://docs.puppet.com/puppet/3/reference/release_notes.html#puppet-340
https://docs.puppet.com/puppet/3/reference/release_notes.html#puppet-330
https://docs.puppet.com/puppet/3/reference/release_notes.html#puppet-320
https://docs.puppet.com/puppet/3/reference/release_notes.html#puppet-310

Version Release Date

3.0.0 2012-09-28

2.7.0 2011-06-17

2.6.0 2010-07-20

0.25.0 2009-09-05

0.24.0 2007-12-13

0.23.0 2007-01-20

0.22.0 2007-01-06

0.20.0 2006-10-18

0.19.0 2006-09-07

0.18.0 2006-06-14

0.17.0 2006-05-16

0.16.0 2006-04-21

0.15.0 2006-03-13

0.14.0 2006-03-06

0.13.0 2006-02-09

0.12.0 2006-01-26

0.11.0 2006-01-17

0.10.0 2006-01-09

0.9.3 2006-01-03

0.9.2 2005-11-22

Examples

What is puppet and why should I care?

Puppet is a configuration management solution. Users describe the desired state of a server or
software and configuration management achieves this state. This brings following advantages:

Configurations can be reproduced exactly the same every time, as many times as necessary•

https://riptutorial.com/ 3

https://docs.puppet.com/puppet/3/reference/release_notes.html#puppet-300
https://docs.puppet.com/puppet/2.7/reference/release_notes.html
https://docs.puppet.com/puppet/2.6/reference/release_notes.html
https://docs.puppet.com/puppet/0.25/reference/release_notes.html
https://docs.puppet.com/puppet/0.24/reference/release_notes.html
https://docs.puppet.com/puppet/0.23/reference/release_notes.html

Configurations for all software and servers are stored in a central location. This makes
backup and version control of configurations easily achievable

•

Changes to all servers propagate through the entire infrastructure within a couple of minutes,
without having to log in to any machine directly

•

Everything is described in the same language, making it easy to configure new software•
Modules are similar to libraries and allow configurations to be consolidated. Modules for all
major software packages already exist, making installing them extremely easy

•

Servers can share information between each other, influencing the configuration of other
servers. For example a new server can automatically register itself with the load balancer
and monitoring solution

•

Puppet uses Ruby to describe the desired state of a server, called a node. It does so with the use
of primitives called resource types. By default, every 30 minutes, the puppet agent authenticates
itself against the puppet server. It then sends a list of properties of itself called facts. The server
looks at the facts and the configuration files called manifests and compiles the desired state for
the node. It then sends that configuration back to the node, where the agent applies it.

To give an idea of how powerful this can be, here are a couple examples of increasing complexity
showcasing what puppet can do for you.

Example: User

This example creates the user username on node myserver and adds it to the group wheel.

node 'myserver' {
 user { 'username':
 ensure => 'present',
 groups => ['wheel'],
 }
}

This file that would be stored on the puppet server is the manifest. The resource type in this
example is user. Every resource type has optional and required properties. In this example,
ensure is required and groups is optional. This specific configuration would only be applied to
myserver. You can apply configurations to all nodes by placing it outside of a node definition.

It is possible to take a couple of resource definitions and store them as modules. A module is
similar to a library. These modules can be shared online, and you usually find one for every major
software package. The official way to share modules is through the puppet forge:
https://forge.puppet.com/

Example: Postgres

This example installs a postgres server on node myserver, and creates a database db, owned by
username, identified by password. It does so using the postgresql module.

node 'myserver' {
 class { 'postgresql::server': }

 postgresql::server::db { 'db':

https://riptutorial.com/ 4

https://forge.puppet.com/

 user => 'username',
 password => 'password',
 }
}

In this case postgresql is a module. The module itself takes care of identifying the operating
system, downloading and installing the program, and then configuring it according to the manifest.
This is a basic example but the module allows a great deal of customization.

Note that it is not necessary to know SQL or how to actually install a postgres server to do so.
Official modules are well maintained and provide a sane and secure base configuration.

It is also possible to use facts in manifests. Facts act like variables.

Example: Conditions using facts

This example uses the rsyslog module to configure rsyslog on all non-windows machines.

if $osfamily != 'windows' {
 class { 'rsyslog::client': }
}

$osfamily is a fact. These facts are gathered every time the puppet agent runs. Note that because
this definition is outside of a node definition, it gets applied to all nodes. However, rsyslog::client
will only be executed on nodes that do not run windows.

Since puppet uses ruby, programmatic elements like control flows and variables can be used in
manifests.

With the addition of PuppetDB you can share information between multiple nodes. This allows
one node to influence configuration on a different node. Classic examples include load balancers
or monitoring solutions.

Example: Registering a host with monitoring using exported resources

This example creates an exported resource on a node, and then imports that resource on the
monitoring server, adding the host to the monitoring. It is using the Icinga2 puppet module.

@@icinga2::object::host { $::fqdn:
 display_name => $::fqdn,
 ipv4_address => $::ipaddress_eth0,
}

node 'icinga2' {
 Icinga2::Object::Host <<| |>> { }
}

@@icinga2::object::host creates a host definition object. This gets created by every node that
executes this code. The @@ marks it as an exported resource. Usually, nodes do not share
information in puppet. Exported resources allow to do that.

https://riptutorial.com/ 5

Note that all the property values in the host definition are facts. This means they will be different
for every node which executes it.

Finally, the exported resource gets imported by the icinga2 node. The Icinga2 module is
responsible for making sure that the correct configuration files are created and reloaded.

Is it for you?

If you do deployments, configure your applications on multiple servers and required to login to
your servers and make some changes in infrastructure, applications, pre-requisits etc. then puppet
can definitely help you.

Except all this if you handle a big infrastructure and want a centralized management you can also
have a look.

Before you startup

Before you decide to work on puppet there are few things that you need to know.

puppet work in both client-server architecture (widely used) as well single machine (specially
for testing purpose)

1.

puppet master can only be configured on a linux machine (master machine/node), windows
can be used only as client (managed machine/node)

2.

if configuring master, you must be aware of using linux machine and basic commands3.

puppet provides it's own configuration language that looks like json4.

Official Documentation

Puppet provide official documention for both open-source and enterprise versions. you can find it
here

Installation

System Requirements

However, the Puppet master service is fairly resource intensive, and should be installed on a
robust dedicated server.

At a minimum, your Puppet master server should have two processor cores and at least 1
GB of RAM.

•

To comfortably serve at least 1,000 nodes, it should have 2-4 processor cores and at least 4
GB of RAM.

•

https://riptutorial.com/ 6

https://docs.puppet.com/

Check your network configuration:

In an agent/master deployment, you must prepare your network for Puppet’s traffic.

Firewalls: The Puppet master server must allow incoming connections on port 8140, and
agent nodes must be able to connect to the master on that port.

•

Name resolution: Every node must have a unique hostname. Forward and reverse DNS
must both be configured correctly.

•

Note: The default Puppet master hostname is puppet. Your agent nodes can be ready
sooner if this hostname resolves to your Puppet master.

The time must be set accurately on the Puppet master server that will be acting as the
certificate authority. You should probably use NTP.

Installing Puppet Server

Puppet provides official packages that install Puppet Server 2.4 and all of its prerequisites on the
following platforms.

Red Hat Enterprise Linux

Enterprise Linux 6•
Enterprise Linux 7•

Debian

Debian 7 (Wheezy)•
Debian 8 (Jessie)•

Ubuntu

Ubuntu 12.04 (Precise)•
Ubuntu 14.04 (Trusty)•
Ubuntu 15.10 (Wily)•
Ubuntu 16.04 (Xenial)•

Enable the Puppet package repositories

Enterprise Linux 7

sudo rpm -Uvh https://yum.puppetlabs.com/puppetlabs-release-pc1-el-7.noarch.rpm

For other versions look here

https://riptutorial.com/ 7

https://docs.puppet.com/puppet/latest/reference/puppet_collections.html#enterprise-linux-7

Installing puppet master

yum install puppetserver

or

apt-get install puppetserver

Puppet Server is configured to use 2 GB of RAM by default. To change look here

Start the Puppet Server service:

systemctl start puppetserver

or

service puppetserver start

Read Getting started with puppet online: https://riptutorial.com/puppet/topic/2871/getting-started-
with-puppet

https://riptutorial.com/ 8

https://docs.puppet.com/puppetserver/2.4/install_from_packages.html#memory-allocation
https://riptutorial.com/puppet/topic/2871/getting-started-with-puppet
https://riptutorial.com/puppet/topic/2871/getting-started-with-puppet

Chapter 2: Agent

Syntax

puppet agent [--certname NAME] [-D|--daemonize|--no-daemonize] [-d|--debug] [--detailed-
exitcodes] [--digest DIGEST] [--disable [MESSAGE]] [--enable] [--fingerprint] [-h|--help] [-l|--
logdest syslog|eventlog|FILE|console] [--masterport PORT] [--noop] [-o|--onetime] [-t|--test] [-
v|--verbose] [-V|--version] [-w|--waitforcert SECONDS]

1.

Examples

What is it?

The puppet agent is a service that runs on the servers. Once the service is started, The agent will
be triggered on background every 30 min (by default).

The agent have 2 main usages:

Send server`s facts to the puppet master•
Receive catalog from the puppet master ans apply it•

Trigger

By default the agent is triggered every 30 minutes. This interval value can be changed from the
puppet.conf file.

Linux- /etc/puppet/puppet.conf•
Windows - %PROGRAMDATA%\PuppetLabs\puppet\etc\puppet.conf•

Set the runinterval to the wanted interval.

runinterval=xxx

The agent can be triggered manually with the command:

puppet agent -t

Verbose output

Sometimes it is helpful to get more output on puppet agent run.

It is very useful for debugging.

Run puppet agent with verbose and debug parameters:

debug - Enable full debugging.•

https://riptutorial.com/ 9

verbose - Turn on verbose reporting.•

puppet agent -t --verbose --debug

Logging

Puppet agnet logs messages. You can view this logs here:

Linux - /var/log/puppet/puppet.log

Windows - view the Event Viewer (Control Panel → System and Security → Administrative Tools
→ Event Viewer)

Read Agent online: https://riptutorial.com/puppet/topic/7234/agent

https://riptutorial.com/ 10

https://riptutorial.com/puppet/topic/7234/agent

Chapter 3: Handling NFS Mount

Introduction

NFS is the most common way to share disk between computers in linux. It allows user on a client
computer to access files over a network much like local storage is accessed. Here we see how to
configure Puppet to manage mounting and serving NFS drives.

Parameters

Parameter Details

name The path to local directory in which the remote drive should be mounted.

device Remote server address and directory path on remote server, separated by :

atboot
Whether this drive should be mounted while booting. Enabling makes drives
available sooner, but may cause delayed boot in case of network or mounting
problem.

pass
Fsck order is to tell fsck what order to check the file systems, if set to "0" file
system is ignored. Usually NFS drives need not be checked in clients, so "0" is
a suitable option.

Remarks

Mount target directory should exists on the client.•
Mount resource type documentation•
fstab description and option details•

Examples

Mounting a remote NFS drive

mount { '/path/to/local/folder':
 ensure => 'mounted',
 atboot => false,
 device => 'server-ip-or-domain:/path/to/server/folder',
 fstype => 'nfs',
 options => 'defaults',
 pass => 0,
}

Read Handling NFS Mount online: https://riptutorial.com/puppet/topic/8044/handling-nfs-mount

https://riptutorial.com/ 11

https://docs.puppet.com/puppet/latest/reference/type.html#mount
https://help.ubuntu.com/community/Fstab
https://riptutorial.com/puppet/topic/8044/handling-nfs-mount

Credits

S.
No

Chapters Contributors

1
Getting started with
puppet

Ankit Katiyar, Community, Matthieu FAURE, Mor Paz, mzhaase,
Peter Souter, Quill

2 Agent Oz Bar-Shalom

3 Handling NFS Mount Amir Ali Akbari

https://riptutorial.com/ 12

https://riptutorial.com/contributor/3373597/ankit-katiyar
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/375376/matthieu-faure
https://riptutorial.com/contributor/4259027/mor-paz
https://riptutorial.com/contributor/3785588/mzhaase
https://riptutorial.com/contributor/2417812/peter-souter
https://riptutorial.com/contributor/3296811/quill
https://riptutorial.com/contributor/1472064/oz-bar-shalom
https://riptutorial.com/contributor/462865/amir-ali-akbari

	About
	Chapter 1: Getting started with puppet
	Remarks
	Versions
	Puppet Open Source
	Examples
	What is puppet and why should I care?
	Is it for you?
	Before you startup
	Official Documentation
	Installation

	System Requirements
	Check your network configuration:
	Installing Puppet Server
	Enable the Puppet package repositories
	Chapter 2: Agent
	Syntax
	Examples
	What is it?
	Trigger
	Verbose output
	Logging

	Chapter 3: Handling NFS Mount
	Introduction
	Parameters
	Remarks
	Examples
	Mounting a remote NFS drive

	Credits

