
pygame

#pygame

Table of Contents

About 1

Chapter 1: Getting started with pygame 2

Remarks 2

Versions 2

Examples 2

A simple 'game' 2

Import and initialize 2

Create necessities 3

The game loop 3

Complete code 4

Slightly improved game mechanics 5

Installing pygame 6

On windows 6

On linux 7

On macOS 7

Importing pygame and drawing on a display 8

Getting Started 8

Setting up a window name 8

About the screen 8

Updating the Screen 8

Colors 8

Drawing 9

Setting everything into a loop 9

Drawing a rectangle on pygame window (code) 9

Chapter 2: Adding background music and sound effects 11

Remarks 11

Examples 11

Example to add music in pygame 11

Example to add music playlist in pygame 11

Chapter 3: Creating a pygame window 12

Remarks 12

Examples 12

Creating the pygame window 12

Chapter 4: Creating a simple pygame window 13

Examples 13

The complete code 13

Chapter 5: Creating a window in pygame - pygame.display.set_mode() 16

Syntax 16

Parameters 16

Remarks 16

Examples 17

Create a pygame window 17

Chapter 6: Drawing on the screen 18

Examples 18

drawing shapes, text and images on the screen with a small animation 18

the entire code: 18

drawing the white background: 19

drawing the polygon: 19

drawing the lines: 19

drawing the circle: 20

drawing the ellipse: 20

drawing the rectangle: 20

defining the text: 20

drawing the text: 21

defining the image: 21

animating the image: 21

checking if you quit the program: 22

updating the display: 22

defining the frames per second: 22

Chapter 7: Drawing on the screen 23

Syntax 23

Parameters 23

Examples 24

Drawing with the draw module 24

How to use the module 24

Example 24

Rect 25

Polygon 25

Circle 25

Ellipse 25

Arc 26

Line 26

Lines 26

Antialiased line 26

Antialiased lines 27

Try it out 27

Surfaces 27

Create a Surface 28

Load an image 28

Blitting 28

Transparency 29

Colorkeys 29

Surface alphas 29

Per-pixel alpha 29

Combine colorkey and Surface alpha 30

Full code 30

Chapter 8: Event handling 32

Examples 32

Event loop 32

Example 32

Keyboard events 33

Example 33

Modifiers 33

Example 34

Mouse events 34

Example 34

State checking 35

Keyboard events 36

Mouse events 36

Chapter 9: The essentials 38

Examples 38

Drawing and a basic animation 38

the complete code: 38

setting up pygame and the window: 39

drawing the white background: 39

drawing the green polygon: 39

drawing the blue lines: 40

drawing the blue circle: 40

drawing the ellipse: 40

drawing the rectangle: 40

defining the text: 40

drawing the text: 41

defining the image: 41

animating the image: 41

checking for quit: 42

updating the screen: 42

FPS setting: 42

Using with PIL 42

Credits 44

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: pygame

It is an unofficial and free pygame ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official pygame.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/pygame
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with pygame

Remarks

Pygame is a Python wrapper for SDL – a cross-platform C library for controlling multimedia –,
written by Pete Shinners. This means, using pygame, you can write video games or other
multimedia applications in Python that will run unaltered on any of SDL’s supported platforms
(Windows, Unix, Mac, beOS and others).

This section provides an overview of what pygame is, and why a developer might want to use it.

It should also mention any large subjects within pygame, and link out to the related topics. Since
the Documentation for pygame is new, you may need to create initial versions of those related
topics.

Versions

Version	==============>	Release Date
Pygame 1.9.0	========>	August 1, 2009
Pygame 1.8.1	========>	July 30, 2008
Pygame 1.8.0	========>	March 29, 2008
Pygame 1.7.1	========>	August 16, 2005
Pygame 1.6.2	========>	-
Pygame 1.6	=========>	October 23, 2003
Pygame 1.5	=========>	May 30, 2002
Pygame 1.4	=========>	Jan 30, 2002
Pygame 1.3	=========>	Dec 19, 2001
Pygame 1.2	=========>	Sep 4, 2001
Pygame 1.1	=========>	Jun 23, 2001
Pygame 1.0	=========>	Apr 5, 2001
Pygame 0.9	=========>	Feb 13, 2001
Pygame 0.5	=========>	Jan 6 14, 2001
Pygame 0.4	=========>	Dec 14, 2000
Pygame 0.3	=========>	Nov 20, 2000
Pygame 0.2	=========>	Nov 3, 2000
Pygame 0.1	=========>	Oct 28, 2000

Examples

A simple 'game'

Import and initialize

https://riptutorial.com/ 2

http://www.riptutorial.com/topic/193
https://en.wikipedia.org/wiki/Simple_DirectMedia_Layer
http://www.pygame.org/ftp/pygame-1.9.0release.tar.gz
http://www.pygame.org/ftp/pygame-1.8.1release.tar.gz
http://www.pygame.org/ftp/pygame-1.8.0release.tar.gz
http://www.pygame.org/ftp/pygame-1.7.1release.tar.gz
http://www.pygame.org/ftp/pygame-1.6.2.tar.bz2
http://www.pygame.org/ftp/pygame-1.6.tar.gz
http://www.pygame.org/ftp/old/pygame-1.5.tar.gz
http://www.pygame.org/ftp/old/pygame-1.4.tar.gz
http://www.pygame.org/ftp/old/pygame-1.3.tar.gz
http://www.pygame.org/ftp/old/pygame-1.2.tar.gz
http://www.pygame.org/ftp/old/pygame-1.1.tar.gz
http://www.pygame.org/ftp/old/pygame-1.0.tar.gz
http://www.pygame.org/ftp/old/pygame-0.9.tar.gz
http://www.pygame.org/ftp/old/pygame-0.5.tar.gz
http://www.pygame.org/ftp/old/pygame-0.4.tar.gz
http://www.pygame.org/ftp/old/pygame-0.3b.tar.gz
http://www.pygame.org/ftp/old/pygame-0.2b.tar.gz
http://www.pygame.org/ftp/old/pygame-0.1a.tar.gz

Every module needs to be imported and pygame is no exception. Although we need to call the
function pygame.init() for all imported modules in pygame to be initialized properly. If we forget
this some modules won't work. The function also returns a tuple of all successfully and failed
initializations (it won't raise an error if a module fails to initialize).

import pygame
successes, failures = pygame.init()
print("{0} successes and {1} failures".format(successes, failures))

Create necessities

We also need to create a display. Pygame have already created a (hidden) display, so all we need
to do is to set the mode of the display (in this example we only set the resolution). It's also a good
idea to create a clock to make sure our program updates at a fixed speed (otherwise it would run
at different speed depending on how fast the computer is).

screen = pygame.display.set_mode((720, 480)) # Notice the tuple! It's not 2 arguments.
clock = pygame.time.Clock()
FPS = 60 # This variable will define how many frames we update per second.

For a bit of readability later in our code we'll create two color constants, which represent a tuple of
Red, Green and Blue (RGB). The values goes from 0 (no light) to 255 (full light).

BLACK = (0, 0, 0)
WHITE = (255, 255, 255)

In pygame we usually use a Surface to represent the appearance of an object, and a Rect
(rectangle) to represent the position of an object. A Surface is like a blank sheet of paper which
contain colors or images. If you're making a class you should name the attributes image and rect
since many functions will look for and use those attributes. Such classes would benefit by inherit
the pygame.sprite.Sprite class for reasons you can read up on here.

rect = pygame.Rect((0, 0), (32, 32)) # First tuple is position, second is size.
image = pygame.Surface((32, 32)) # The tuple represent size.
image.fill(WHITE) # We fill our surface with a nice white color (by default black).

The game loop

Now we have everything set for our game loop. This is a loop that will run for the entire game,
where we handle events and updates the screen and positions of our objects.

First we'll make sure our loop executes at a given FPS. We defined the FPS and created our clock
in the beginning of the program. The following code will make sure our program sleeps enough
time to make our loop repeat the amount we defined our FPS to be. In this example, 60 times per
second.

https://riptutorial.com/ 3

http://www.pygame.org/docs/tut/SpriteIntro.html

clock.tick(FPS)

Then we'll handle events. An event is basically a user action, such as moving the mouse or
pressing a key. Pygame will register all these events in a queue which we get by calling
pygame.event.get(). We can iterate over this and check if there's an event that we'd like to handle.
Events have a type attribute which we can check against constants in the pygame module to
determine what type of event it is.

for event in pygame.event.get():
 if event.type == pygame.QUIT: # The user pressed the close button in the top corner of
the window.
 quit()
 # Close the program. Other methods like 'raise SystemExit' or 'sys.exit()'.
 # Calling 'pygame.quit()' won't close the program! It will just uninitialize the
modules.

We can also check if event.type == pygame.KEYDOWN to see if the user has pressed a key down. In
that case the event has an attribute key which we can check to see which key it represents.

for event in pygame.event.get():
 if event.type == pygame.QUIT:
 quit()
 elif event.type == pygame.KEYDOWN:
 if event.key == pygame.K_w:
 rect.move_ip(0, -2) # Changes the rect's position.
 elif event.key == pygame.K_s:
 rect.move_ip(0, 2)
 elif event.key == pygame.K_a:
 rect.move_ip(-2, 0)
 elif event.key == pygame.K_d:
 rect.move_ip(2, 0)

Now we need to display our image. First we might want to clear our screen from previous
rendering. We do so by filling our entire screen with black (remove the code to see why we want to
clear it). Then we need to blit our image to the screen. Blitting essentially means copying the
image to another surface (in our case, the screen). Lastly we flip or update the screen.

When we're blitting we're not actually displaying anything to the user. Imagine it as the computer
on one side and the user on the other. The computer draws (blits) on it's side of the screen, flips it
towards the user, and then repeats.

screen.fill(BLACK)
screen.blit(image, rect)
pygame.display.update() # Or 'pygame.display.flip()'.

Now we have a basic game! Quite boring, yes, but the essentials are there! Combined this with
your current Python knowledge and you should be able to create something awesome.

Complete code

https://riptutorial.com/ 4

import pygame
successes, failures = pygame.init()
print("{0} successes and {1} failures".format(successes, failures))

screen = pygame.display.set_mode((720, 480))
clock = pygame.time.Clock()
FPS = 60 # Frames per second.

BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
RED = (255, 0, 0), GREEN = (0, 255, 0), BLUE = (0, 0, 255).

rect = pygame.Rect((0, 0), (32, 32))
image = pygame.Surface((32, 32))
image .fill(WHITE)

while True:
 clock.tick(FPS)

 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 quit()
 elif event.type == pygame.KEYDOWN:
 if event.key == pygame.K_w:
 rect.move_ip(0, -2)
 elif event.key == pygame.K_s:
 rect.move_ip(0, 2)
 elif event.key == pygame.K_a:
 rect.move_ip(-2, 0)
 elif event.key == pygame.K_d:
 rect.move_ip(2, 0)

 screen.fill(BLACK)
 screen.blit(image, rect)
 pygame.display.update() # Or pygame.display.flip()

Slightly improved game mechanics

Note that the program checks for when we press the key and not for when we're holding the key
down. To fix this we could introduce a velocity variable. We can create a player class to keep it
more organized. To avoid frame dependent movement (if we would change the FPS to 30 the
objects would move at half the speed) we introduce time dependent movement by passing the
time between ticks to our movable objects.

import pygame

successes, failures = pygame.init()
print("Initializing pygame: {0} successes and {1} failures.".format(successes, failures))

screen = pygame.display.set_mode((720, 480))
clock = pygame.time.Clock()
FPS = 60

BLACK = (0, 0, 0)
WHITE = (255, 255, 255)

https://riptutorial.com/ 5

class Player(pygame.sprite.Sprite):
 def __init__(self):
 super().__init__()
 self.image = pygame.Surface((32, 32))
 self.image.fill(WHITE)
 self.rect = self.image.get_rect() # Get rect of some size as 'image'.
 self.velocity = [0, 0]

 def update(self):
 self.rect.move_ip(*self.velocity)

player = Player()
running = True
while running:
 dt = clock.tick(FPS) / 1000 # Returns milliseconds between each call to 'tick'. The
convert time to seconds.
 screen.fill(BLACK) # Fill the screen with background color.

 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 running = False
 elif event.type == pygame.KEYDOWN:
 if event.key == pygame.K_w:
 player.velocity[1] = -200 * dt # 200 pixels per second
 elif event.key == pygame.K_s:
 player.velocity[1] = 200 * dt
 elif event.key == pygame.K_a:
 player.velocity[0] = -200 * dt
 elif event.key == pygame.K_d:
 player.velocity[0] = 200 * dt
 elif event.type == pygame.KEYUP:
 if event.key == pygame.K_w or event.key == pygame.K_s:
 player.velocity[1] = 0
 elif event.key == pygame.K_a or event.key == pygame.K_d:
 player.velocity[0] = 0

 player.update()

 screen.blit(player.image, player.rect)
 pygame.display.update() # Or pygame.display.flip()

print("Exited the game loop. Game will quit...")
quit() # Not actually necessary since the script will exit anyway.

There are still many things that should be improved about this code. I'd recommend you to read
the pygame tutorial and this talk by Richard Jones for more in depth.

Installing pygame

On windows

Navigate to http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygame – an unofficial site providing
windows binaries of open-source python packages for the official CPython distribution by
Christoph Gohlke.

1.

https://riptutorial.com/ 6

http://www.pygame.org/docs/
https://www.youtube.com/watch?v=bMt47wvK6u0&list=PL4Yp6gRH-R1Birdm-Gs-SdBFWLUC1q3Fa&index=4
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygame
https://en.wikipedia.org/wiki/CPython

Download the appropriate pygame .whl file according to your installed python version. (The
file is named something like pygame -<pygame version> - <python version>- win32.whl)

2.

Run

 pip install your-pygame-package.whl

inside your terminal, bash or consol.
Note: if pip is not found in PATH try to run python -m pip install your-pygame-package.whl

3.

Check if you can import pygame as a python module

import pygame

If you do not get an error, you have correctly installed pygame on your computer :)

4.

On linux

Open your terminal and run

sudo apt-get install python-pygame

Note: This will install pygame for python2

1.

Try to import pygame inside

import pygame

If you do not get an error, you have correctly installed pygame on your linux system :)

2.

On macOS

There are two ways to install it on mac:

Method 1

Go to the Pygame downloads page and download the mac installer. Run it, and it should install
Pygame on your Mac.

Method 2

Install Homebrew:

/usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

Then use Homebrew to install Python 2.7.12 and Pygame:

https://riptutorial.com/ 7

http://www.pygame.org/download.shtml
http://brew.sh

brew install python; brew install homebrew/python/pygame

Now run Python in your terminal and try import pygame. If it does not say anything, it's installed
successfully.

Importing pygame and drawing on a display

Getting Started

You must do the following to get started with Pygame:

import pygame

This opens a window of size 640,480, and stores it in a variable called screen.

Setting up a window name

Setting up a name for the pygame window requires the following syntax:

pygame.display.set_caption('Name')

About the screen

The point (0,0) is at the upper left hand corner of the screen.•
x coordinates increase from left to right, y coordinates increase from top to bottom.That is
the right side coordinates on the Cartesian plane is positive and left side is
negative.However , the upper side coordinates on the Cartesian plane is negative on top and
positive on bottom.(Note: This is considered if the points are taken from the origin.)

•

Updating the Screen

Changes you make to the screen—e.g. filling it with color, or drawing on it, do not show up
immediately!
So how to do it?
You have to call this function:

pygame.display.update()

Colors

The coloring in pygame works on RGB mode.
The code for coloring is:

https://riptutorial.com/ 8

color_Name = (r,g,b)

R stands for red.•
G stands for green•
B stands for blue.•
All three should be integers between 0 and 255, with 255 being brightest, and 0 being
darkest

•

Drawing

To draw lines

pygame.draw.lines(screen, color, closed, pointlist, thickness)

1.

To draw rectangle

pygame.draw.rect(screen, color, (x,y,width,height), thickness)

2.

To draw circle

pygame.draw.circle(screen, color, (x,y), radius, thickness)

3.

Setting everything into a loop

To make a loop use the following code:

running = True
while running:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 running = False
 pygame.quit()

Drawing a rectangle on pygame window
(code)

import pygame
background_colour = (255,255,255) # White color
(width, height) = (300, 200) # Screen size
color=(0,0,0) #For retangle
screen = pygame.display.set_mode((width, height)) #Setting Screen
pygame.display.set_caption('Drawing') #Window Name
screen.fill(background_colour)#Fills white to screen
pygame.draw.rect(screen, color, (100,50,30,40), 1) #Drawing the rectangle
pygame.display.update()

https://riptutorial.com/ 9

#Loop
running = True
while running:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 running = False
 pygame.quit()

Read Getting started with pygame online: https://riptutorial.com/pygame/topic/3959/getting-
started-with-pygame

https://riptutorial.com/ 10

https://riptutorial.com/pygame/topic/3959/getting-started-with-pygame
https://riptutorial.com/pygame/topic/3959/getting-started-with-pygame

Chapter 2: Adding background music and
sound effects

Remarks

Try to play music in '.wav' instead of '.mp3'.In '.mp3' the music lags.

Examples

Example to add music in pygame

import pygame
file = 'some.mp3'
pygame.init()
pygame.mixer.init()
pygame.mixer.music.load(file)
pygame.mixer.music.play(-1) # If the loops is -1 then the music will repeat indefinitely.

Example to add music playlist in pygame

import pygame
import time

pygame.mixer.init()
pygame.display.init()

screen = pygame.display.set_mode ((420 , 240))

playlist = list()
playlist.append ("music3.mp3")
playlist.append ("music2.mp3")
playlist.append ("music1.mp3")

pygame.mixer.music.load (playlist.pop()) # Get the first track from the playlist
pygame.mixer.music.queue (playlist.pop()) # Queue the 2nd song
pygame.mixer.music.set_endevent (pygame.USEREVENT) # Setup the end track event
pygame.mixer.music.play() # Play the music

running = True
while running:
 for event in pygame.event.get():
 if event.type == pygame.USEREVENT: # A track has ended
 if len (playlist) > 0: # If there are more tracks in the queue...
 pygame.mixer.music.queue (playlist.pop()) # Q

Read Adding background music and sound effects online:
https://riptutorial.com/pygame/topic/7419/adding-background-music-and-sound-effects

https://riptutorial.com/ 11

https://riptutorial.com/pygame/topic/7419/adding-background-music-and-sound-effects

Chapter 3: Creating a pygame window

Remarks

If you want to have other colours as the background, then name a new variable such as red =
(255,0,0) and change the display.fill(black) to display.fill(red). You can create colours by
storing them in a variable and checking their RGB values from the internet.

Examples

Creating the pygame window

import pygame

background_colour = (255,255,255) # For the background color of your window
(width, height) = (300, 200) # Dimension of the window

screen = pygame.display.set_mode((width, height)) # Making of the screen
pygame.display.set_caption('Tutorial 1') # Name for the window
screen.fill(background_colour) #This syntax fills the background colour

pygame.display.flip()

running = True
while running:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 running = False
 pygame.quit()

Read Creating a pygame window online: https://riptutorial.com/pygame/topic/6477/creating-a-
pygame-window

https://riptutorial.com/ 12

https://riptutorial.com/pygame/topic/6477/creating-a-pygame-window
https://riptutorial.com/pygame/topic/6477/creating-a-pygame-window

Chapter 4: Creating a simple pygame window

Examples

The complete code

import pygame

pygame.init()

WIDTH = 300
HEIGHT = 200
SCREEN = pygame.display.set_mode((WIDTH, HEIGHT))

pygame.display.set_caption('My Game')

WHITE = (255, 255, 255)
BLACK = (0, 0, 0)
RED = (255, 0, 0)
GREEN = (0, 255, 0)
BLUE = (0, 0, 255)
YELLOW = (255, 255, 255)

SCREEN.fill(RED)
pygame.display.flip()

is_running = True
while is_running:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 is_running = False

pygame.quit()

Importing and initialising pygame

As we do with any module in python we need to import pygame:

import pygame

We then initialise all the imported pygame modules:

pygame.init()

This is used to initialise all of the pygame modules. Without this the modules would not work

Defining Constants

We then define some constants here:

WIDTH = 300
HEIGHT = 200

https://riptutorial.com/ 13

SCREEN = pygame.display.set_mode((WIDTH, HEIGHT))

The WIDTH and HEIGHT constants are used to create a window, which would have a width of 300
pixels and a height of 200 pixels. The function used in SCREEN, pygame.display.set_mode((WIDTH,
HEIGHT)), will set the mode of the display and return a Surface object. Note how the parameters for
this function are the WIDTH and HEIGHT constants defined earlier.

Setting the name of the window

We then use this function to change the name of the window to My Game:

pygame.display.set_caption('My Game')

Defining colours

Afterwards we define 6 colours that can be used in our window:

WHITE = (255, 255, 255)
BLACK = (0, 0, 0)
RED = (255, 0, 0)
GREEN = (0, 255, 0)
BLUE = (0, 0, 255)
YELLOW = (255, 255, 255)

When defining colours we put in 3 values that range between 0 and 255. The pygame.Color class
normally goes by this format:

COLOUR = (r, g, b, a)

Where the r parameter sets the red value of the colour, the g parameter sets the green value of
the colour and the b parameter sets the blue value of the colour. The a parameter sets the alpha
value of the colour.

We then give this command:

SCREEN.fill(RED)

This is a pygame.Surface.fill function which fills the Surface object, our screen, with the colour red.

Using pygame.display.flip()

We then use this function

pygame.display.flip()

This basically makes everything we have drawn on the screen Surface become visible and
updates the contents of the entire display. Without this line, the user wouldn't see anything on their
pygame screen.

https://riptutorial.com/ 14

http://www.pygame.org/docs/ref/surface.html
http://www.pygame.org/docs/ref/color.html
http://www.pygame.org/docs/ref/surface.html#pygame.Surface.fill
http://www.pygame.org/docs/ref/display.html#pygame.display.flip

The game loop

The next few lines are what's called a "game loop".

To start this off we make a variable and make it True:

is_running = True

So that we can start off our while loop:

while is_running:

which will be running throughout the whole game.

In it's most basic form, pygame has "events" which takes user input, for example a button press or
mouse click. Pygame handles these events through an event queue. We can get these events
from the event queue with this for loop:

for event in pygame.event.get():

Which basically goes through a list of events, our event queue. These are the next 2 lines:

if event.type == pygame.QUIT:
 is_running = False

This will make it so that when the user presses the exit button in the top corner, the event with the
type pygame.QUIT occurs.

This then ends the while loop, as is_running is now False and the script moves on to the final line:

pygame.quit()

Which uninitialises the pygame modules.

Read Creating a simple pygame window online: https://riptutorial.com/pygame/topic/6597/creating-
a-simple-pygame-window

https://riptutorial.com/ 15

https://riptutorial.com/pygame/topic/6597/creating-a-simple-pygame-window
https://riptutorial.com/pygame/topic/6597/creating-a-simple-pygame-window

Chapter 5: Creating a window in pygame -
pygame.display.set_mode()

Syntax

pygame.display.set_mode(resolution=(0,0), flags=0, depth=0) # Returns a pygame.Surface
representing the window on screen

•

flags = pygame.FULLSCREEN | pygame.OPENGL # Flags can be combined using the "|"
(bitwise OR or "pipe") character.

•

Parameters

parameter explaination

resolution a pair of numbers representing the width and height of the window

flags
additional options that change the type of window - see "Remarks" for avaliable
flags

depth amount of bits used for color

Remarks

Possible values for the flag arguments are:•

flag description

pygame.FULLSCREEN window is fullscreen

pygame.RESIZABLE window is resizeable

pygame.NOFRAME window has no border or controls

pygame.DOUBLEBUF use double buffer - recommended for HWSURFACE or OPENGL

pygame.HWSURFACE window is hardware accelerated, only possible in combination with
FULLSCREEN

pygame.OPENGL window is renderable by OpenGL

Other remarks:

Pygame can currently only handle one single window at a time. Creating a second window
by calling pygame.display.set_mode((x,y)) a second time will close the first window.

•

https://riptutorial.com/ 16

Changing the depths argument is almost never required - pygame will select the best one by
itself. In case a depth that is not supported by the system is set, pygame will emulate this
depth, which can be very slow.

•

Things that are drawn onto the surface returned by pygame.display.set_mode() are not
immediately visible on screen - the display first has to be flipped using
pygame.display.update() or pygame.display.flip().

•

Examples

Create a pygame window

This creates a window in fullscreen with size 500x500 pixels:

pygame.init()
screen = pygame.display.set_mode((500, 500), pygame.FULLSCREEN)

screen represents from now on the window on screen; it is a pygame.Surface object. Anything that
should be come visible to the user has to be drawn onto it using screen.blit.

Read Creating a window in pygame - pygame.display.set_mode() online:
https://riptutorial.com/pygame/topic/6442/creating-a-window-in-pygame---pygame-display-set-
mode--

https://riptutorial.com/ 17

https://riptutorial.com/pygame/topic/6442/creating-a-window-in-pygame---pygame-display-set-mode--
https://riptutorial.com/pygame/topic/6442/creating-a-window-in-pygame---pygame-display-set-mode--

Chapter 6: Drawing on the screen

Examples

drawing shapes, text and images on the screen with a small animation

This program will draw some shapes on the display, draw "hello world!" in the middle of the screen
and let an image go to every corner of the window. You can use every image you want, but you
will need to place the image file in the same directory as your program.

the entire code:

import pygame, sys
from pygame.locals import *

pygame.init()

FPS = 30 #frames per second setting
fpsClock = pygame.time.Clock()

#set up the window
screen = pygame.display.set_mode((400, 300), 0, 32)
pygame.display.set_caption('animation')

#set up the colors
white = (255, 255, 255)
black = (0, 0, 0)
green = (0, 255, 0)
blue = (0, 0, 180)
red = (255, 0, 0)

image = pygame.image.load('image.png')
imagex = 360
imagey = 260
direction = 'left'

text setting
font_obj = pygame.font.Font('freesansbold.ttf', 32)
text_surface_obj = font_obj.render('Hello World!', True, GREEN, BLUE)
text_rect_obj = text_surface_obj.get_rect()
text_rectObj.center = (200, 150)

while True: # the main game loop
 screen.fill(WHITE)

 # draw a green polygon onto the surface
 pygame.draw.polygon(screen, green, ((146, 0), (291, 106), (236, 277), (56, 277), (0,
106)))

 # draw some blue lines onto the surface
 pygame.draw.line(screen, blue, (60, 60), (120, 60), 4)
 pygame.draw.line(screen, blue, (120, 60), (60, 120))
 pygame.draw.line(screen, blue, (60, 120), (120, 120), 4)

https://riptutorial.com/ 18

 # draw a blue circle onto the surface
 pygame.draw.circle(screen, blue, (300, 50), 20, 0)

 # draw a red ellipse onto the surface
 pygame.draw.ellipse(screen, red, (100, 150, 40,80), 1)

 # draw a red rectangle onto the surface
 pygame.draw.rect(screen,red, (200, 150, 100, 50))

 # draw the text onto the surface
 screen.blit(text_surface_obj, text_rect_obj)

 #the animation of the image
 if direction == 'right':
 imagex += 5
 if imagex == 360:
 direction = 'down'
 elif direction == 'down':
 imagey += 5
 if imagey == 260:
 direction = 'left'
 elif direction == 'left':
 imagex -= 5
 if imagex == 20:
 direction = 'up'
 elif direction == 'up':
 imagey -= 5
 if imagey == 20:
 direction = 'right'
 screen.blit(image, (imagex, imagey))

 for event in pygame.event.get():
 if event.type == QUIT:
 pygame.quit()
 sys.exit()

 pygame.display.update()
 fpsClock.tick(FPS)

drawing the white background:

screen.fill(white)

drawing the polygon:

In this function you define display surface, the color and the position of every corner of the
polygon, you can do that clockwise and counterclockwise.

pygame.draw.polygon(screen, green, ((146, 0), (291, 106), (236, 277), (56, 277), (0, 106)))

https://riptutorial.com/ 19

drawing the lines:

Here you define the display surface, the color, the first and the last point and the width of the line.

pygame.draw.line(screen, blue, (60, 60), (120, 60), 4)
pygame.draw.line(screen, blue, (120, 60), (60, 120))
pygame.draw.line(screen, blue, (60, 120), (120, 120), 4)

drawing the circle:

In this function you define the display surface, the color, the position, the radius and the width of
the circle (0 gives a plain circle).

pygame.draw.circle(screen, blue, (300, 50), 20, 0)

drawing the ellipse:

In this function you define the display surface, the color, the position, the horizontal size, the
vertical size and the width of the ellipse

pygame.draw.ellipse(screen, red, (100, 150, 40,80), 1)

drawing the rectangle:

In this function you define the display surface, the color, the position and the vertical and the
horizontal size of the rectangle.

pygame.draw.rect(screen,red, (200, 150, 100, 50))

defining the text:

First you define the type and the size of your text, I use a basic font that you get with pygame.

font_obj = pygame.font.Font('freesansbold.ttf', 32)

Then you define the actual text, if you want it bold or not (True/False), the color of the text and, if
you want to mark your text, a color of the marking.

text_surface_obj = font_obj.render('Hello World!', True, green, blue)

https://riptutorial.com/ 20

If you want to mark your text or want to define the center of your text, you have to tell pygame that
with this function:

text_rect_obj = text_surface_obj.get_rect()

And after that, you can define the center of your text with this function:

text_rect_obj.center = (200, 150)

drawing the text:

If you marked your text or defined the center, you have to draw the text this way:

screen.blit(text_surface_obj, text_rectObj)

Otherwise you draw your text, but you need to define the position, so you do that this way:

DISPLAYSURF.blit(textSurfaceObj, (100,50))

defining the image:

Here you define the image you want to use, the start position (x and y coordinates), and the
direction of the image.

image = pygame.image.load('image.png')
imagex = 360
imagey = 260
direction = 'left'

animating the image:

Here you check the direction of the image, if it reached a corner, if so change the direction, if not,
move it 5 pixels in the same direction and draw the image again. That's what we do with this part
of the code:

if direction == 'right':
 imagex += 5
 if imagex == 360:
 direction = 'down'
elif direction == 'down':
 imagey += 5
 if imagey == 260:
 direction = 'left'
elif direction == 'left':
 imagex -= 5

https://riptutorial.com/ 21

 if imagex == 20:
 direction = 'up'
elif direction == 'up':
 imagey -= 5
 if imagey == 20:
 direction = 'right'
screen.blit(image, (imagex, imagey))

note: my image is 20 by 20 pixels, I used if imagex == 360 and if imagey == 260: because then
my image is 20 pixels from the edge, if your image has a different size, you will have to
change the numbers.

checking if you quit the program:

Here we check if you closed the window of your program.

for event in pygame.event.get():
 if event.type == QUIT:
 pygame.quit()
 sys.exit()

updating the display:

Here you tell pygame to update the display so everything you have drawn appears on the screen.

pygame.display.update()

defining the frames per second:

Here you tell pygame to sleep enough so the frames per second setting is respected.

fpsClock.tick(FPS)

Read Drawing on the screen online: https://riptutorial.com/pygame/topic/6287/drawing-on-the-
screen

https://riptutorial.com/ 22

https://riptutorial.com/pygame/topic/6287/drawing-on-the-screen
https://riptutorial.com/pygame/topic/6287/drawing-on-the-screen

Chapter 7: Drawing on the screen

Syntax

pygame.draw.rect(Surface, color, Rect, width=0)•
pygame.draw.polygon(Surface, color, pointlist, width=0)•
pygame.draw.circle(Surface, color, pos, radius, width=0)•
pygame.draw.ellipse(Surface, color, Rect, width=0)•
pygame.draw.arc(Surface, color, Rect, start_angle, stop_angle, width=1)•
pygame.draw.line(Surface, color, start_pos, end_pos, width=1)•
pygame.draw.lines(Surface, color, closed, pointlist, width=1)•
pygame.draw.aaline(Surface, color, startpos, endpos, blend=1)•
pygame.draw.aalines(Surface, color, closed, pointlist, blend=1)•

Parameters

Parameters Details

Surface The Surface to draw the shape on.

color
A 3 or 4 integer sequence representing red, green and blue (and alpha), each
value ranging between 0-255.

Rect A rectangular area where the shape will be drawn to.

width The width of the lines. The shape will be filled if width=0.

pointlist A list of an arbitrary amount of points/vertices, in pixels (x, y).

pos The position of the center of the circle, in pixels (x, y).

radius The circles radius in pixels.

closed If true, a line between last and first point will be drawn, closing the shape.

blend=1
If true, the shades will be blended with existing pixel shades instead of
overwriting them.

start_angle The initial angle of the arc, in radians.

stop_angle The final angle of the arc, in radians.

start_pos The starting position of the line, in pixels.

end_pos The end position of the line, in pixels

https://riptutorial.com/ 23

Examples

Drawing with the draw module

Pygame has a module, pygame.draw, that contains functions which can draw shapes directly to a
Surface.

Function Description

pygame.draw.rect draw a rectangle shape

pygame.draw.polygon draw a shape with any number of sides

pygame.draw.circle draw a circle around a point

pygame.draw.ellipse draw a round shape inside a rectangle

pygame.draw.arc draw a partial section of an ellipse

pygame.draw.line draw a straight line segment

pygame.draw.lines draw multiple contiguous line segments

pygame.draw.aaline draw fine antialiased lines

pygame.draw.aalines draw a connected sequence of antialiased lines

How to use the module

To use the module you first need to import and initialize pygame correctly and set a mode for the
display. It's convenient to define color constants in advance, making your code more readable and
more beautiful. All functions takes a Surface to draw on, a color and a position argument that's
either a pygame Rect or a 2-element integer/float sequence (the pygame.draw.circle will only take
integers because of undefined reasons).

Example

The code below will showcase all the different functions, how they are used and how they look.
We'll initialize pygame and define some constants before the examples.

import pygame
from math import pi
pygame.init()

screen = pygame.display.set_mode((100, 100))
WHITE = pygame.Color(255, 255, 255)
RED = pygame.Color(255, 0, 0)

https://riptutorial.com/ 24

The black color is the Surface default color and represents the part of the Surface that hasn't been
drawn onto. The parameters of each function is explained down below at Parameters .

Rect

size = (50, 50)

rect_border = pygame.Surface(size) # Create a Surface to draw on.
pygame.draw.rect(rect_border, RED, rect_border.get_rect(), 10) # Draw on it.

rect_filled = pygame.Surface(size)
pygame.draw.rect(rect_filled, RED, rect_filled.get_rect())

Polygon

size = (50, 50)
points = [(25, 0), (50, 25), (25, 50), (0, 25)] # The corner points of the polygon.

polygon = pygame.Surface(size)
pygame.draw.polygon(polygon, RED, points, 10)

polygon_filled = pygame.Surface(size)
pygame.draw.polygon(polygon_filled, RED, points)

Circle

size = (50, 50)
radius = 25

circle = pygame.Surface(size)
pygame.draw.circle(circle, RED, (radius, radius), radius, 10) # Position is the center of the
circle.

circle_filled = pygame.Surface(size)
pygame.draw.circle(circle_filled, RED, (radius, radius), radius)

The holes is a unfortunate consequence of pygame's drawing algorithm.

Ellipse

https://riptutorial.com/ 25

http://i.stack.imgur.com/dNToS.png
http://i.stack.imgur.com/bFrOo.png
http://i.stack.imgur.com/fJcU7.png

size = (50, 25) # Minimize it's height so it doesn't look like a circle.

ellipse = pygame.Surface(size)
pygame.draw.ellipse(ellipse, RED, ellipse.get_rect(), 5)

ellipse_filled = pygame.Surface(size)
pygame.draw.ellipse(ellipse_filled, RED, ellipse.get_rect())

The holes is a unfortunate consequence of pygame's drawing algorithm.

Arc

size = (50, 50)

arc = pygame.Surface(size)
pygame.draw.arc(arc, RED, arc.get_rect(), 0, pi) # 0 to pi is 180° creating a half circle.

Line

size = (50, 50)

line = pygame.Surface(size)
pygame.draw.line(line, RED, (0, 0), (50, 50)) # Start at topleft and ends at bottomright.

Lines

size = (50, 50)
points = [(25, 0), (50, 25), (25, 50), (0, 25)]

lines = pygame.Surface(size)
pygame.draw.lines(lines, RED, False, points)

lines_closed = pygame.Surface(size)
pygame.draw.lines(lines_closed, RED, True, points)

Antialiased line

https://riptutorial.com/ 26

http://i.stack.imgur.com/D4XLk.png
http://i.stack.imgur.com/QWJtH.png
http://i.stack.imgur.com/FMSwV.png
http://i.stack.imgur.com/vqdAc.png

size = (50, 50)

antialiased_line = pygame.Surface(size)
pygame.draw.aaline(antialiased_line, RED, (0, 0), (50, 50))

Antialiased lines

size = (50, 50)
points = [(25, 0), (50, 25), (25, 50), (0, 25)]

antialiased_lines = pygame.Surface(size)
pygame.draw.aalines(antialiased_lines, RED, False, points)

antialiased_lines_closed = pygame.Surface(size)
pygame.draw.aalines(antialiased_lines_closed, RED, True, points)

Try it out

To try it out for yourself: copy one of the code snippets above and the code below in an empty file,
change the name image to the name of the Surface you want to blit and experiment.

import pygame
from math import pi
pygame.init()

screen = pygame.display.set_mode((100, 100))
WHITE = pygame.Color(255, 255, 255)
RED = pygame.Color(255, 0, 0)

But code snippet here

while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 quit()

 screen.blit(image, (25, 25))
 pygame.display.update()

Surfaces

In pygame you usually use Surfaces to represent the appearance of objects, and Rectangles to
represent their positions. A Surface is like a blank sheet of paper which contain colors or images.
There are two ways to create a Surface: blank from scratch or by loading an image.

https://riptutorial.com/ 27

http://i.stack.imgur.com/lw0aY.png
http://i.stack.imgur.com/S062I.png

Create a Surface

To create a Surface you need at minimum it's size, which is a 2-element integer sequence of width
and height, representing the size in pixels.

You can also pass additional arguments when creating a Surface to control bit depth, masks and
additional features as per-pixel alpha and/or create the image in video memory. This is outside the
scope of this example though.

size = width, height = (32, 32)
empty_surface = pygame.Surface(size)

You can use the pygame.draw module to draw shapes on the Surface, or fill it with a color by calling
the Surface method fill(color). The argument color is a 3 or 4-element integer sequence or a
pygame.Color object.

Load an image

More often than not you'd like to use your own images in a game (called sprites). Creating a
Surface with your image on is as easy as:

my_image = pygame.image.load(path_to_image)

The path to the image can be relative or absolute. To improve performance it's usually wise to
convert your image to the same pixel format as the screen. This can be done by calling the
Surface method convert(), like so:

my_image = pygame.image.load(path_to_image).convert()

If your image contains transparency (alpha values) you just call the method convert_alpha()
instead:

my_image = pygame.image.load(path_to_image).convert_alpha()

Blitting

Surfaces needs to be blit to the screen in order to be able to display them. Blitting essentially
means copying pixels from one Surface to another (the screen is a Surface as well). You also
need to pass the position of the Surface, which should be a 2-element integer sequence or a Rect
object. The topleft of the Surface will be placed at the position.

screen.blit(my_image, (0, 0))
pygame.display.update() # or pygame.display.flip()

It's possible to blit to other Surfaces than the screen. To display what's been blitted to the screen

https://riptutorial.com/ 28

you need to call pygame.display.update() or pygame.display.flip().

Transparency

There are kinds 3 of transparency supported in pygame: colorkeys, Surface alphas, and per-pixel
alphas.

Colorkeys

Makes a color fully transparent, or more accurately, making a color simply not be blit. If you have
an image with a black rect inside you could set a colorkey to prevent the black color from being
blit.

BLACK = (0, 0, 0)
my_image.set_colorkey(BLACK) # Black colors will not be blit.

A Surface can only have one colorkey. Setting another colorkey will overwrite the previous.
Colorkeys cannot have different alpha values, it can only make a color not visible.

Surface alphas

Makes the whole Surface transparent by an alpha value. With this method you can have different
alpha values but it will affect the whole Surface.

my_image.set_alpha(100) # 0 is fully transparent and 255 fully opaque.

Per-pixel alpha

Makes every pixel in the Surface transparent by a individual alpha value. This gives you the most
freedom and flexibility but is also the slowest method. This method also requires the Surface to be
created as a per-pixel alpha Surface, and the color arguments needs to contain a fourth alpha
integer.

size = width, height = (32, 32)
my_image = pygame.Surface(size, pygame.SRCALPHA) # Creates an empty per-pixel alpha Surface.

The Surface will now draw transparency if the color contains the fourth alpha value.

BLUE = (0, 0, 255, 255)

https://riptutorial.com/ 29

http://i.stack.imgur.com/bhKVj.png
http://i.stack.imgur.com/4bzs8.png

pygame.draw.rect(my_image, BLUE, my_image.get_rect(), 10)

Unlike the other Surfaces, this Surface default color won't be black but transparent. That's why the
black rectangle in the middle disappear.

Combine colorkey and Surface alpha

Colorkeys and Surface alphas can be combined, but per-pixel alpha cannot. This can be useful if
you don't want the slower performance of a per-pixel Surface.

purple_image.set_colorkey(BLACK)
purple_image.set_alpha(50)

Full code

Copy this in an empty file and run it. Press the keys 1, 2, 3 or 4 to make the images appear. Press
2, 3 or 4 multiple times to make them more opaque.

import pygame
pygame.init()

WHITE = (255, 255, 255)
BLACK = (0, 0, 0)
RED = (255, 0, 0)
GREEN = (0, 255, 0)
BLUE = (0, 0, 255, 50) # This color contains an extra integer. It's the alpha value.
PURPLE = (255, 0, 255)

screen = pygame.display.set_mode((200, 325))
screen.fill(WHITE) # Make the background white. Remember that the screen is a Surface!
clock = pygame.time.Clock()

size = (50, 50)
red_image = pygame.Surface(size)
green_image = pygame.Surface(size)
blue_image = pygame.Surface(size, pygame.SRCALPHA) # Contains a flag telling pygame that the
Surface is per-pixel alpha
purple_image = pygame.Surface(size)

red_image.set_colorkey(BLACK)
green_image.set_alpha(50)
For the 'blue_image' it's the alpha value of the color that's been drawn to each pixel that
determines transparency.
purple_image.set_colorkey(BLACK)
purple_image.set_alpha(50)

https://riptutorial.com/ 30

http://i.stack.imgur.com/zb9SQ.png
http://i.stack.imgur.com/gR2uu.png

pygame.draw.rect(red_image, RED, red_image.get_rect(), 10)
pygame.draw.rect(green_image, GREEN, green_image.get_rect(), 10)
pygame.draw.rect(blue_image, BLUE, blue_image.get_rect(), 10)
pygame.draw.rect(purple_image, PURPLE, purple_image.get_rect(), 10)

while True:
 clock.tick(60)

 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 quit()
 elif event.type == pygame.KEYDOWN:
 if event.key == pygame.K_1:
 screen.blit(red_image, (75, 25))
 elif event.key == pygame.K_2:
 screen.blit(green_image, (75, 100))
 elif event.key == pygame.K_3:
 screen.blit(blue_image, (75, 175))
 elif event.key == pygame.K_4:
 screen.blit(purple_image, (75, 250))

 pygame.display.update()

Read Drawing on the screen online: https://riptutorial.com/pygame/topic/7079/drawing-on-the-
screen

https://riptutorial.com/ 31

https://riptutorial.com/pygame/topic/7079/drawing-on-the-screen
https://riptutorial.com/pygame/topic/7079/drawing-on-the-screen

Chapter 8: Event handling

Examples

Event loop

Pygame will register all events from the user into an event queue which can be received with the
code pygame.event.get(). Every element in this queue is an Event object and they'll all have the
attribute type, which is an integer representing what kind of event it is. In the pygame module there
are predefined integer constants representing the type. Except for this attribute, events have
different attributes.

Constant name Attributes

QUIT none

ACTIVEEVENT gain, state

KEYDOWN unicode, key, mod

KEYUP key, mod

MOUSEMOTION pos, rel, buttons

MOUSEBUTTONUP pos, button

MOUSEBUTTONDOWN pos, button

JOYAXISMOTION joy, axis, value

JOYBALLMOTION joy, ball, rel

JOYHATMOTION joy, hat, value

JOYBUTTONUP joy, button

JOYBUTTONDOWN joy, button

VIDEORESIZE size, w, h

VIDEOEXPOSE none

USEREVENT code

Example

To handle our events we simply loop through the queue, check what type it is (with the help of the

https://riptutorial.com/ 32

predefined constants in the pygame module) and then perform some action. This code will check if
the user has pressed the close button on the top corner of the display, and if so terminate the
program.

for event in pygame.event.get():
 if event.type == pygame.QUIT:
 # Close the program any way you want, or troll users who want to close your program.
 raise SystemExit

ATTENTION: You have to call the event queue regularly when using pygame! Apart from fetching
the available events, calling the event queue is also the way of pygame to interact with the
operating system internally. If the event queue isn't called regularly, your operating system will
assume that your program doesn't work correctly anymore and possibly make it look like the
program crashed (in Windows the window becomes white). If you don't want to do anything with
the events you should call pygame.event.pump() every game loop to make pygame process the
events internally.

Keyboard events

There are two types of key events in pygame: KEYDOWN and KEYUP. These events have an attribute
key which is an integer representing a key on the keyboard. The pygame module has predefined
integer constants representing all the common keys. The constants are named with a capital K, an
underscore and the name of the key. For example, <- is named K_BACKSPACE, a is named K_a and F4
is namned K_F4.

Example

This code will check if the user has pressed w, a, s or d.

for event in pygame.event.get():
 if event.type == pygame.QUIT: # Usually wise to be able to close your program.
 raise SystemExit
 elif event.type == pygame.KEYDOWN:
 if event.key == pygame.K_w:
 print("Player moved up!")
 elif event.key == pygame.K_a:
 print("Player moved left!")
 elif event.key == pygame.K_s:
 print("Player moved down!")
 elif event.key == pygame.K_d:
 print("Player moved right!")

Modifiers

There is no integer constant for capital letters. Instead, key events have another attribute called
mod, which is the modifiers (shift, ctrl, alt etc.) being pressed simultaneously as the key. The mod
attribute is an integer representing the modifier being pressed. Each modifier's integer value are

https://riptutorial.com/ 33

stored in the pygame module under the name of KMOD_ and their name. For example, Left shift is
named KMOD_LSHIFT, Tab is named KMOD_TAB and Ctrl is named KMOD_CTRL.

Example

This code will check wether the user pressed a, Left shift + a or Caps + a.

for event in pygame.event.get():
 if event.type == pygame.QUIT: # It's still wise to be able to close your program.
 raise SystemExit
 elif event.type == pygame.KEYDOWN:
 if event.key == pygame.K_a:
 if event.mod == 0: # No modifier.
 print("You pressed 'a'")
 elif event.mod == pygame.KMOD_LSHIFT or event.mod == pygame.KMOD_CAPS:
 print("You pressed 'A'")
 else:
 print("You pressed 'a' with another modifier than right shift or caps.")

Mouse events

There are three types of mouse events in pygame MOUSEMOTION, MOUSEBUTTONDOWN and MOUSEBUTTONUP.
Pygame will register these events when a display mode has been set.

MOUSEMOTION is received when the user moves his or her mouse in the display. It has the attributes
buttons, pos and rel.

buttons is a tuple representing if the mouse buttons (left, mouse-wheel, right) are being
pressed or not.

•

pos is the absolute position (x, y) of the cursor in pixels.•
rel is the position relative to the previous position (rel_x, rel_y) in pixels.•

MOUSEBUTTONDOWN and MOUSEBUTTONUP is received when the user presses or releases a mouse button.
They have the attributes button and pos.

button is an integer representing the button being pressed. 1 for left button, 2 for mouse-
wheel and 3 for right button.

•

pos is the absolute position of the mouse (x, y) when the user pressed the mouse button.•

Example

Here's a short example using some of the attributes of each mouse event:

for event in pygame.event.get():
 if event.type == pygame.QUIT: # Close your program if the user wants to quit.
 raise SystemExit
 elif event.type == pygame.MOUSEMOTION:
 if event.rel[0] > 0: # 'rel' is a tuple (x, y). 'rel[0]' is the x-value.

https://riptutorial.com/ 34

 print("You're moving the mouse to the right")
 elif event.rel[1] > 0: # pygame start y=0 at the top of the display, so higher y-
values are further down.
 print("You're moving the mouse down")
 elif event.type == pygame.MOUSEBUTTONDOWN:
 if event.button == 1:
 print("You pressed the left mouse button")
 elif event.button == 3:
 print("You pressed the right mouse button")
 elif event.type == pygame.MOUSEBUTTONUP:
 print("You released the mouse button")

Since there are no predefined constants for the mouse button attribute in the pygame module,
here's the values for each:

Button Value

Left mouse button 1

Mouse wheel button 2

Right mouse button 3

Mouse wheel scroll up 4

Mouse wheel scroll down 5

Scrolling the mouse button will generate pygame.MOUSEBUTTONDOWN and pygame.MOUSEBUTTONUP events.

State checking

It's possible to call functions from the pygame.key and pygame.mouse module to receive the state of
the key and mouse. However, it's not the recommended way to process events in pygame since
there are some flaws with it:

You'll receive the states when the function is called, which means you might miss events
between calls if the user is pressing buttons fast.

•

You cannot determine the order of the events,.•

You still need to to call one of pygame's event functions for pygame to internally interact with
the operating system, otherwise it'll warn that program has become unresponsive. The
functions you can call are:

pygame.event.get() to get all events or event types (by passing the types as an
argument) from the queue.

○

pygame.event.poll() to get one single event from the queue.○

pygame.event.wait() to wait for one single event from the queue.○

pygame.event.clear() to clear all events in the queue.○

pygame.event.pump() to allow pygame to handle internal actions (is called implicitly by ○

•

https://riptutorial.com/ 35

the functions above).

Keyboard events

The key module has a function pygame.key.get_pressed() which returns a list of the state of all keys.
The list contains 0 for all the keys which are not pressed and 1 for all keys that are pressed. Its
index in the list is defined by constants in the pygame module, all prefixed with K_ and the key
name.

pygame.event.pump() # Allow pygame to handle internal actions.
key = pygame.key.get_pressed()
if key[pygame.K_a]:
 print("You pressed 'a'")
if key[pygame.K_F1]:
 print("You pressed 'F1'")
if key[pygame.K_LSHIFT]:
 print("You pressed 'left shift'")
if key[pygame.K_q]: # Press 'q' to exit the program
 quit()

If you want to check for a single key press instead of if the key is held down, you can store the
previous state of all keys in a temporary variable and check if the value changes:

pygame.event.pump() # Allow pygame to handle internal actions.
key = pygame.key.get_pressed()
if key[pygame.K_q] and not previous_key[pygame.K_q]:
 print("You pressed 'q'")
if key[pygame.K_p] and not previous_key[pygame.K_p]:
 print("You pressed 'p'")
previous_key = key

The statement evaluates to true only when the current key is pressed down and the previous key
isn't pressed down. To check whether the user released the key you only have to switch the not
keyword (if not key[pygame.K_q] and previous_key[pygame.K_q]). For this to work properly, you have
to set the variable previous_key = pygame.key.get_pressed() before the game loop, otherwise you'll
receive a NameError.

Mouse events

The mouse module has functions that lets us check and set the position of the mouse as well as
check the buttons pressed. The function pygame.mouse.get_pressed() returns a tuple tuple
representing if the mouse buttons (left, mouse-wheel, right) is being pressed or not.

pygame.event.pump() # Allow pygame to handle internal actions.
mouse_pos = pygame.mouse.get_pos()
mouse_buttons = pygame.mouse.get_pressed()
if mouse_pos[0] > 100:
 pygame.mouse.set_pos(10, mouse_pos[1]) # Reset the mouse's x-position to 10.

https://riptutorial.com/ 36

 print("YOU SHALL NOT PASS!")
if mouse_buttons[2]:
 print("I'm right, right?")
if mouse_buttons[0]: # Press left mouse button to exit.
 print("Program left")
 quit()

Read Event handling online: https://riptutorial.com/pygame/topic/5110/event-handling

https://riptutorial.com/ 37

https://riptutorial.com/pygame/topic/5110/event-handling

Chapter 9: The essentials

Examples

Drawing and a basic animation

This program draws some shapes and 'hello world!' and let an image go to every corner of the
window.

the complete code:

import pygame,sys
from pygame.locals import *

pygame.init()

FPS = 30 #frames per second setting
fpsClock = pygame.time.Clock()

#set up the window
screen = pygame.display.set_mode((500,400), 0, 32)
pygame.display.set_caption('drawing')

#set up the colors
black = (0, 0, 0)
white = (255, 255, 255)
red = (255, 0, 0)
green = (0, 255, 0)
blue = (0, 0, 255)

imageImg = pygame.image.load('baddie.png')
imagex = 320
imagey = 220
direction = 'left'

fontObj = pygame.font.Font('freesansbold.ttf', 32)
text = fontObj.render('Hello World!', True, green, blue)
rect = text.get_rect()
rect.center = (200, 150)

the main game loop
while True:
 screen.fill(white)

 # draw a green polygon onto the surface
 pygame.draw.polygon(screen, green, ((146, 0), (291, 106), (236, 277), (56, 277), (0,
106)))

 # draw some blue lines onto the surface
 pygame.draw.line(screen, blue, (60, 60), (120, 60), 4)
 pygame.draw.line(screen, blue, (120, 60), (60, 120))
 pygame.draw.line(screen, blue, (60, 120), (120, 120), 4)

 # draw a blue circle onto the surface

https://riptutorial.com/ 38

 pygame.draw.circle(screen, blue, (300, 50), 100, 0)

 # draw a red ellipse onto the surface
 pygame.draw.ellipse(screen, red, (300, 250, 80,80), 1)

 # draw a red rectangle onto the surface
 pygame.draw.rect(screen,red, (200, 150, 100, 50))

 # draw the text onto the surface
 screen.blit(text, rect)

 if direction == 'right':
 imagex += 5
 if imagex == 320:
 direction = 'down'
 elif direction == 'down':
 imagey += 5
 if imagey == 220:
 direction = 'left'
 elif direction == 'left':
 imagex -= 5
 if imagex == 20:
 direction = 'up'
 elif direction == 'up':
 imagey -= 5
 if imagey == 20:
 direction = 'right'
 screen.blit(imageImg, (imagex, imagey))

for event in pygame.event.get():
 if event.type == QUIT:
 pygame.quit()
 sys.exit()

pygame.display.update()
fpsClock.tick(FPS)

setting up pygame and the window:

import pygame,sys
from pygame.locals import *

pygame.init()

#set up the window
screen = pygame.display.set_mode((500,400), 0, 32)
pygame.display.set_caption('drawing')

drawing the white background:

In this function you define the color of the background.

screen.fill(white)

https://riptutorial.com/ 39

drawing the green polygon:

Here you define the display surface, the color and the position of every corner of the polygon (x
and y coordinates), you can do that clockwise and counterclockwise.

pygame.draw.polygon(screen, green, ((146, 0), (291, 106), (236, 277), (56, 277), (0, 106)))

drawing the blue lines:

In this function you define the display surface, the color, the first and the last point and the width of
the line (if you don't give a width, it's just 1).

pygame.draw.line(screen, blue, (60, 60), (120, 60), 4)
pygame.draw.line(screen, blue, (120, 60), (60, 120))
pygame.draw.line(screen, blue, (60, 120), (120, 120), 4)

drawing the blue circle:

In this function you define the display surface, the color, the position, the radius and the width of
the circle (if you give a 0 for the width, it's a plain circle).

pygame.draw.circle(screen, blue, (300, 50), 100, 0)

drawing the ellipse:

In this function you define the display surface, the color, the position, the horizontal size and the
vertical size and the width.

pygame.draw.ellipse(screen, red, (300, 250, 80,80), 1)

drawing the rectangle:

In this function you define the display surface, the color, the position and the horizontal and the
vertical size.

pygame.draw.rect(screen,red, (200, 150, 100, 50))

defining the text:

https://riptutorial.com/ 40

First you define the type and the size of your text with this function:

fontObj = pygame.font.Font('freesansbold.ttf', 32)

Then you define the actual text, if the text is bold, the color and, if you want, the color of the
marking. You can do that with this function:

text = fontObj.render('Hello World!', True, green, blue)

If you want to mark your text, you have to tell pygame that with this function:

rect = text.get_rect()

And if you want to define the position of the center of the text you can do that with this function:

rect.center = (200, 150)

drawing the text:

If you defined a marking and/or the center:

screen.blit(text, rect)

Otherwise you have to define the position of the text so draw the text this way:

screen.blit(text, (100,50))

defining the image:

Here you define which image you want to use (if you do it this way, the image file has to be in the
same directory as your program file), the start position (x and y) and the direction of the image.

image = pygame.image.load('image.png')
baddiex = 320
baddiey = 220
direction = 'left'

animating the image:

With this part of the code we check the direction of the image, if it reached a corner, if so, change
the direction, if not, draw the image 5 pixels further in the same direction.

if direction == 'right':

https://riptutorial.com/ 41

 imagex += 5
 if imagex == 360:
 direction = 'down'
elif direction == 'down':
 imagey += 5
 if imagey == 260:
 direction = 'left'
elif direction == 'left':
 imagex -= 5
 if imagex == 20:
 direction = 'up'
elif direction == 'up':
 imagey -= 5
 if imagey == 20:
 direction = 'right'
screen.blit(imageImg, (imagex, imagey))

note: My image is 20x20 pixels, I use if imagex == 360: and if imagey == 260: because then
my image is 20 pixels from the edge of the window, just like the other 2 corners. If your
image has a different size, you'll probably have to change those numbers.

checking for quit:

Here we check if you closed the pygame window, and if so, close the window, if you don't write
this somewhere in your program, you probably won't be able to close the window.

for event in pygame.event.get():
 if event.type == QUIT:
 pygame.quit()
 sys.exit()

updating the screen:

With this function you update the screen so everything you have drawn becomes visible.

pygame.display.update()

FPS setting:

With this function you tell pygame to sleep enough so your FPS setting is respected.

fpsClock.tick(FPS)

Using with PIL

When you have to use both PIL and Pygame because missing functionalities in both of them, you
need a way to convert between Pygame Surfaces and PIL Images, preferably without writing them

https://riptutorial.com/ 42

to the disk.

For that you can use "tostring" and "fromstring" functions provided in both libraries.

Conversion from PIL to Pygame:

strFormat = 'RGBA'
raw_str = image.tostring("raw", strFormat)
surface = pygame.image.fromstring(raw_str, image.size, strFormat)

Conversion from Pygame to PIL:

strFormat = 'RGBA'
raw_str = pygame.image.tostring(surface, strFormat, False)
image = Image.frombytes(strFormat, surface.get_size(), raw_str)

Read The essentials online: https://riptutorial.com/pygame/topic/4196/the-essentials

https://riptutorial.com/ 43

https://riptutorial.com/pygame/topic/4196/the-essentials

Credits

S.
No

Chapters Contributors

1
Getting started with
pygame

Community, elegent, Inazuma, Nearoo, Ni.,
numbermaniac, svs, Ted Klein Bergman, White Shadow

2
Adding background music
and sound effects

Hikaryu, White Shadow

3 Creating a pygame window Rishi Malhotra, White Shadow

4
Creating a simple pygame
window

ModoUnreal

5
Creating a window in
pygame -
pygame.display.set_mode()

Nearoo

6 Drawing on the screen svs

7 Event handling elegent, Mikhail V, Nearoo, Ted Klein Bergman

8 The essentials Ni., numbermaniac, svs, Ted Klein Bergman

https://riptutorial.com/ 44

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/4594443/elegent
https://riptutorial.com/contributor/2725280/inazuma
https://riptutorial.com/contributor/3424423/nearoo
https://riptutorial.com/contributor/2907819/ni-
https://riptutorial.com/contributor/3150837/numbermaniac
https://riptutorial.com/contributor/5133008/svs
https://riptutorial.com/contributor/6486738/ted-klein-bergman
https://riptutorial.com/contributor/6289743/white-shadow
https://riptutorial.com/contributor/5088949/hikaryu
https://riptutorial.com/contributor/6289743/white-shadow
https://riptutorial.com/contributor/5668318/rishi-malhotra
https://riptutorial.com/contributor/6289743/white-shadow
https://riptutorial.com/contributor/5381327/modounreal
https://riptutorial.com/contributor/3424423/nearoo
https://riptutorial.com/contributor/5133008/svs
https://riptutorial.com/contributor/4594443/elegent
https://riptutorial.com/contributor/4157407/mikhail-v
https://riptutorial.com/contributor/3424423/nearoo
https://riptutorial.com/contributor/6486738/ted-klein-bergman
https://riptutorial.com/contributor/2907819/ni-
https://riptutorial.com/contributor/3150837/numbermaniac
https://riptutorial.com/contributor/5133008/svs
https://riptutorial.com/contributor/6486738/ted-klein-bergman

	About
	Chapter 1: Getting started with pygame
	Remarks
	Versions
	Examples
	A simple 'game'

	Import and initialize
	Create necessities
	The game loop
	Complete code
	Slightly improved game mechanics
	Installing pygame

	On windows
	On linux
	On macOS
	Importing pygame and drawing on a display

	Getting Started
	Setting up a window name
	About the screen
	Updating the Screen
	Colors
	Drawing
	Setting everything into a loop

	Drawing a rectangle on pygame window (code)
	Chapter 2: Adding background music and sound effects
	Remarks
	Examples
	Example to add music in pygame
	Example to add music playlist in pygame

	Chapter 3: Creating a pygame window
	Remarks
	Examples
	Creating the pygame window

	Chapter 4: Creating a simple pygame window
	Examples
	The complete code

	Chapter 5: Creating a window in pygame - pygame.display.set_mode()
	Syntax
	Parameters
	Remarks
	Examples
	Create a pygame window

	Chapter 6: Drawing on the screen
	Examples
	drawing shapes, text and images on the screen with a small animation

	the entire code:
	drawing the white background:
	drawing the polygon:
	drawing the lines:
	drawing the circle:
	drawing the ellipse:
	drawing the rectangle:
	defining the text:
	drawing the text:
	defining the image:
	animating the image:
	checking if you quit the program:
	updating the display:
	defining the frames per second:
	Chapter 7: Drawing on the screen
	Syntax
	Parameters
	Examples
	Drawing with the draw module

	How to use the module
	Example
	Rect
	Polygon
	Circle
	Ellipse
	Arc
	Line
	Lines
	Antialiased line
	Antialiased lines
	Try it out
	Surfaces

	Create a Surface
	Load an image
	Blitting
	Transparency

	Colorkeys
	Surface alphas
	Per-pixel alpha
	Combine colorkey and Surface alpha
	Full code

	Chapter 8: Event handling
	Examples
	Event loop

	Example

	Keyboard events
	Example
	Modifiers
	Example

	Mouse events
	Example
	State checking

	Keyboard events
	Mouse events
	Chapter 9: The essentials
	Examples
	Drawing and a basic animation

	the complete code:
	setting up pygame and the window:
	drawing the white background:
	drawing the green polygon:
	drawing the blue lines:
	drawing the blue circle:
	drawing the ellipse:
	drawing the rectangle:
	defining the text:
	drawing the text:
	defining the image:
	animating the image:
	checking for quit:
	updating the screen:
	FPS setting:
	Using with PIL

	Credits

