
PyMongo

#pymongo

Table of Contents

About 1

Chapter 1: Getting started with PyMongo 2

Remarks 2

Examples 2

Installation or Setup 2

Hello, World 2

Install PyMongo 2

Create a connection 3

Access Database Objects 3

Access Collection Objects 3

Basic CRUD Operation 3

Create 3

Update 4

Read 4

Query With Projection 4

Delete 4

Chapter 2: Converting between BSON and JSON 6

Introduction 6

Examples 6

Using json_util 6

Simple usage 6

JSONOptions 6

Using python-bsonjs 7

Installation 8

Usage 8

Using the json module with custom handlers 8

Chapter 3: Filter documents by creation time stored in ObjectId 10

Introduction 10

Examples 10

Documents created in the last 60 seconds 10

Credits 11

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: pymongo

It is an unofficial and free PyMongo ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official PyMongo.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/pymongo
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with PyMongo

Remarks

This section provides an overview of what pymongo is, and why a developer might want to use it.

It should also mention any large subjects within pymongo, and link out to the related topics. Since
the Documentation for pymongo is new, you may need to create initial versions of those related
topics.

Examples

Installation or Setup

Detailed instructions on getting pymongo set up or installed.

Installing with Pip

To install pymongo for the first time:

pip install pymongo

○

Installing a specific version of pymongo:

Where X.X.X is the version to be installed

pip install pymongo==X.X.X

○

Upgrading existing pymongo:

pip install --upgrade pymongo

○

•

Installing with easy_install

To install pymongo for the first time:

python -m easy_install pymongo

○

Upgrading existing pymongo:

python -m easy_install -U pymongo

○

•

Hello, World

PyMongo is a native Python driver for MongoDB.

Install PyMongo

https://riptutorial.com/ 2

https://pip.pypa.io/en/stable/installing/
https://pypi.python.org/pypi/setuptools

pip install pymongo

Create a connection

Use MongoClient to create a connection. MongoClient defaults to MongoDB instance running on
localhost:27017 if not specified.

from pymongo import MongoClient
client = MongoClient()

Access Database Objects

PyMongo's Database class represents database construct in MongoDB. Databases hold groups of
logically related collections.

db = client.mydb

Access Collection Objects

PyMongo's Collection class represents collection construct in MongoDB. Collections hold groups
of related documents.

col = db.mycollection

MongoDB creates new databases and collections implicitly upon first use.

Basic CRUD Operation

MongoDB stores data records as BSON documents. BSON is the binary representation of JSON.

$ python
>>> from pymongo import MongoClient
>>> client = MongoClient()
>>> col = client.mydb.test

Create

Insert a single document insert_one(document)

>>> result = col.insert_one({'x':1})
>>> result.inserted_id
ObjectId('583c16b9dc32d44b6e93cd9b')

Insert multiple documents insert_many(documents)

https://riptutorial.com/ 3

http://api.mongodb.com/python/current/api/pymongo/database.html
http://api.mongodb.com/python/current/api/pymongo/collection.html
http://bsonspec.org/

>>> result = col.insert_many([{'x': 2}, {'x': 3}])
>>> result.inserted_ids
[ObjectId('583c17e7dc32d44b6e93cd9c'), ObjectId('583c17e7dc32d44b6e93cd9d')]

Replace a single document matching the filter replace_one(filter, replacement, upsert=False). (to
insert a new document if matching document doesn't exist, use upsert=True)

>>> result = col.replace_one({'x': 1}, {'y': 1})
>>> result.matched_count
1
>>> result.modified_count
1

Update

Update a single document matching the filter update_one(filter, update, upsert=False)

>>> result = col.update_one({'x': 1}, {'x': 3})

Update one or more documents that match the filter update_many(filter, update, upsert=False)

>>> result = col.update_many({'x': 1}, {'x': 3})

Read

Query the database find(filter=None, projection=None, skip=0, limit=0, no_cursor_timeout=False).
The filter argument is a prototype document that all results must match.

>>> result = col.find({'x': 1})

Get a single document from the database find_one(filter=None)

>>> result = col.find_one()

Query With Projection

query={'x':1}
projection={'_id':0, 'x':1} # show x but not show _id
result=col.find(query,projection)

Delete

Delete a single document matching the filter delete_one(filter)

>>> result = col.delete_one({'x': 1})
>>> result.deleted_count

https://riptutorial.com/ 4

1

Delete one or more documents matching the filter delete_many(filter)

>>> result = col.delete_many({'x': 1})
>>> result.deleted_count
3

PyMongo also provides find_one_and_delete(), find_one_and_update() and find_one_and_replace()
functionality.

Read Getting started with PyMongo online: https://riptutorial.com/pymongo/topic/2612/getting-
started-with-pymongo

https://riptutorial.com/ 5

https://riptutorial.com/pymongo/topic/2612/getting-started-with-pymongo
https://riptutorial.com/pymongo/topic/2612/getting-started-with-pymongo

Chapter 2: Converting between BSON and
JSON

Introduction

In many applications, records from MongoDB need to be serialized in JSON format. If your records
have fields of type date, datetime, objectId, binary, code, etc. you will encounter TypeError: not
JSON serializable exceptions when using json.dumps. This topic shows how to overcome this.

Examples

Using json_util

json_util provides two helper methods, dumps and loads, that wrap the native json methods and
provide explicit BSON conversion to and from json.

Simple usage

from bson.json_util import loads, dumps
record = db.movies.find_one()
json_str = dumps(record)
record2 = loads(json_str)

if record is:

{
 "_id" : ObjectId("5692a15524de1e0ce2dfcfa3"),
 "title" : "Toy Story 4",
 "released" : ISODate("2010-06-18T04:00:00Z")
}

then json_str becomes:

{
 "_id": {"$oid": "5692a15524de1e0ce2dfcfa3"},
 "title" : "Toy Story 4",
 "released": {"$date": 1276833600000}
}

JSONOptions

It is possible to customize the behavior of dumps via a JSONOptions object. Two sets of options are
already available: DEFAULT_JSON_OPTIONS and STRICT_JSON_OPTIONS.

>>> bson.json_util.DEFAULT_JSON_OPTIONS

https://riptutorial.com/ 6

http://api.mongodb.com/python/current/api/bson/json_util.html

 JSONOptions(strict_number_long=False, datetime_representation=0,
 strict_uuid=False, document_class=dict, tz_aware=True,
 uuid_representation=PYTHON_LEGACY, unicode_decode_error_handler='strict',
 tzinfo=<bson.tz_util.FixedOffset object at 0x7fc168a773d0>)

To use different options, you can:

modify the DEFAULT_JSON_OPTIONS object. In this case, the options will be used for all
subsequent call to dumps:

 from bson.json_util import DEFAULT_JSON_OPTIONS
 DEFAULT_JSON_OPTIONS.datetime_representation = 2
 dumps(record)

1.

specify a JSONOptions in a call to dumps using the json_options parameter:

 # using strict
 dumps(record, json_options=bson.json_util.STRICT_JSON_OPTIONS)

 # using a custom set of options
 from bson.json_util import JSONOptions
 options = JSONOptions() # options is a copy of DEFAULT_JSON_OPTIONS
 options.datetime_representation=2
 dumps(record, json_options=options)

2.

The parameters of JSONOptions are:

strict_number_long: If true, Int64 objects are encoded to MongoDB Extended JSON’s Strict
mode type NumberLong, ie {"$numberLong": "<number>" }. Otherwise they will be encoded as
an int. Defaults to False.

•

datetime_representation: The representation to use when encoding instances of
datetime.datetime. 0 => {"$date": <dateAsMilliseconds>}, 1 => {"$date": {"$numberLong":
"<dateAsMilliseconds>"}}, 2 => {"$date": "<ISO-8601>"}

•

strict_uuid: If true, uuid.UUID object are encoded to MongoDB Extended JSON’s Strict
mode type Binary. Otherwise it will be encoded as {"$uuid": "<hex>" }. Defaults to False.

•

document_class: BSON documents returned by loads() will be decoded to an instance of
this class. Must be a subclass of collections.MutableMapping. Defaults to dict.

•

uuid_representation: The BSON representation to use when encoding and decoding
instances of uuid.UUID. Defaults to PYTHON_LEGACY.

•

tz_aware: If true, MongoDB Extended JSON’s Strict mode type Date will be decoded to
timezone aware instances of datetime.datetime. Otherwise they will be naive. Defaults to
True.

•

tzinfo: A datetime.tzinfo subclass that specifies the timezone from which datetime objects
should be decoded. Defaults to utc.

•

Using python-bsonjs

python-bsonjs does not depend on PyMongo and can offer a nice performance improvement over
json_util:

https://riptutorial.com/ 7

https://pypi.python.org/pypi/python-bsonjs

bsonjs is roughly 10-15x faster than PyMongo’s json_util at decoding BSON to JSON
and encoding JSON to BSON.

Note that:

to use bsonjs effectively, it is recommended to work directly with RawBSONDocument•
dates are encoded using the LEGACY representation, i.e. {"$date": <dateAsMilliseconds>}.
There is currently no options to change that.

•

Installation

pip install python-bsonjs

Usage

To take full advantage of the bsonjs, configure the database to use the RawBSONDocument class.
Then, use dumps to convert bson raw bytes to json and loads to convert json to bson raw bytes:

import pymongo
import bsonjs
from pymongo import MongoClient
from bson.raw_bson import RawBSONDocument

configure mongo to use the RawBSONDocument representation
db = pymongo.MongoClient(document_class=RawBSONDocument).samples
convert json to a bson record
json_record = '{"_id": "some id", "title": "Awesome Movie"}'
raw_bson = bsonjs.loads(json_record)
bson_record = RawBSONDocument(raw_bson)
insert the record
result = db.movies.insert_one(bson_record)
print(result.acknowledged)

find some record
bson_record2 = db.movies.find_one()
convert the record to json
json_record2 = bsonjs.dumps(bson_record2.raw)
print(json_record2)

Using the json module with custom handlers

If all you need is serializing mongo results into json, it is possible to use the json module, provided
you define custom handlers to deal with non-serializable fields types. One advantage is that you
have full power on how you encode specific fields, like the datetime representation.

Here is a handler which encodes dates using the iso representation and the id as an hexadecimal
string:

import pymongo
import json
import datetime

https://riptutorial.com/ 8

https://pypi.python.org/pypi/python-bsonjs
http://api.mongodb.com/python/current/api/bson/raw_bson.html

import bson.objectid

def my_handler(x):
 if isinstance(x, datetime.datetime):
 return x.isoformat()
 elif isinstance(x, bson.objectid.ObjectId):
 return str(x)
 else:
 raise TypeError(x)

db = pymongo.MongoClient().samples
record = db.movies.find_one()
{u'_id': ObjectId('5692a15524de1e0ce2dfcfa3'), u'title': u'Toy Story 4',
u'released': datetime.datetime(2010, 6, 18, 4, 0),}

json_record = json.dumps(record, default=my_handler)
'{"_id": "5692a15524de1e0ce2dfcfa3", "title": "Toy Story 4",
"released": "2010-06-18T04:00:00"}'

Read Converting between BSON and JSON online:
https://riptutorial.com/pymongo/topic/9348/converting-between-bson-and-json

https://riptutorial.com/ 9

https://riptutorial.com/pymongo/topic/9348/converting-between-bson-and-json

Chapter 3: Filter documents by creation time
stored in ObjectId

Introduction

Includes pymongo query examples to filter documents by timestamp encapsulated in ObjectId

Examples

Documents created in the last 60 seconds

How to find documents created 60 seconds ago

seconds = 60

gen_time = datetime.datetime.today() - datetime.timedelta(seconds=seconds)
dummy_id = ObjectId.from_datetime(gen_time)

db.CollectionName.find({"_id": {"$gte": dummy_id}})

If you're in a different timezone, you may need to offset the datetime to UTC

seconds = 60

gen_time = datetime.datetime.today() - datetime.timedelta(seconds=seconds)
converts datetime to UTC
gen_time=datetime.datetime.utcfromtimestamp(gen_time.timestamp())

dummy_id = ObjectId.from_datetime(gen_time)

db.Collection.find({"_id": {"$gte": dummy_id}})

Read Filter documents by creation time stored in ObjectId online:
https://riptutorial.com/pymongo/topic/9855/filter-documents-by-creation-time-stored-in-objectid

https://riptutorial.com/ 10

https://riptutorial.com/pymongo/topic/9855/filter-documents-by-creation-time-stored-in-objectid

Credits

S.
No

Chapters Contributors

1
Getting started with
PyMongo

Community, Himavanth, Kheshav Sewnundun, tim

2
Converting between
BSON and JSON

Derlin

3
Filter documents by
creation time stored
in ObjectId

Sawan Vaidya

https://riptutorial.com/ 11

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5295905/himavanth
https://riptutorial.com/contributor/3620275/kheshav-sewnundun
https://riptutorial.com/contributor/5249708/tim
https://riptutorial.com/contributor/2667536/derlin
https://riptutorial.com/contributor/1643061/sawan-vaidya

	About
	Chapter 1: Getting started with PyMongo
	Remarks
	Examples
	Installation or Setup
	Hello, World

	Install PyMongo
	Create a connection
	Access Database Objects
	Access Collection Objects
	Basic CRUD Operation

	Create
	Update
	Read
	Query With Projection

	Delete

	Chapter 2: Converting between BSON and JSON
	Introduction
	Examples
	Using json_util

	Simple usage
	JSONOptions
	Using python-bsonjs

	Installation
	Usage
	Using the json module with custom handlers

	Chapter 3: Filter documents by creation time stored in ObjectId
	Introduction
	Examples
	Documents created in the last 60 seconds

	Credits

