
pyqt

#pyqt

Table of Contents

About 1

Chapter 1: Getting started with pyqt 2

Remarks 2

Examples 2

Installation of PyQt4 2

A basic application 3

Hello world 3

A Simple Drag & Drop Sample 4

Chapter 2: Using threads with PyQt 8

Remarks 8

Examples 8

The worker model 8

Credits 10

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: pyqt

It is an unofficial and free pyqt ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official pyqt.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/pyqt
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with pyqt

Remarks

PyQt is a Python binding to the popular cross-platform Qt application framework commonly used
to make graphical applications. PyQt4 supports Qt4 and PyQt5 supports Qt5. It runs on all
platforms supported by Qt (Windows, OS X, Linux, iOS and Android). The bindings are
implemented as a set of Python modules and classes.

For more information see the PyQt website.

Examples

Installation of PyQt4

Suggested Install Method

Windows: Download and run the binary setup file.

Linux(Debian): Run this command in your command line:

$ apt-get install python-qt4 pyqt4-dev-tools qt4-designer

OS X : Run this command in your command line:

$ brew install pyqt

Install Manually

You can also download the source code manually from here and then install and configure it
yourself.

Test your installation

If pyqt is installed correctly, you will be able to run the pyuic4 command. If it is installed correctly,
you will see the following error:

$ pyuic4
Error: one input ui-file must be specified

Installation Complete

You have now installed the PyQt4 library. Two useful applications have also been installed along
side PyQt4:

Qt Designer: An application for 'drag & drop' design of graphical interfaces (creates .ui files),•

https://riptutorial.com/ 2

https://riverbankcomputing.com/software/pyqt/intro
https://riverbankcomputing.com/software/pyqt/download
https://riverbankcomputing.com/software/pyqt/download

pyuic4: A command line application that can convert .ui files into Python code.•

A basic application

The following example shows a basic main GUI window with a label widget, a toolbar, and a status
bar using PyQt4.

import sys
from PyQt4 import QtGui

class App(QtGui.QApplication):
 def __init__(self, sys_argv):
 super(App, self).__init__(sys_argv)
 self.build_ui()

 def build_ui(self):
 # build a main GUI window
 self.main_window = QtGui.QMainWindow()
 self.main_window.setWindowTitle('App')
 self.main_window.show()

 # add a label to the main window
 label = QtGui.QLabel('Label')
 self.main_window.setCentralWidget(label)

 # add a toolbar with an action button to the main window
 action = QtGui.QAction('Toolbar action', self)
 toolbar = QtGui.QToolBar()
 toolbar.addAction(action)
 self.main_window.addToolBar(toolbar)

 # add a status bar to the main window
 status_bar = QtGui.QStatusBar()
 status_bar.showMessage('Status bar')
 self.main_window.setStatusBar(status_bar)

if __name__ == '__main__':
 app = App(sys.argv)
 sys.exit(app.exec_())

Hello world

This basic code will launch a "Hello world" GUI window using PyQt4:

import sys

https://riptutorial.com/ 3

http://i.stack.imgur.com/eFdBI.png

from PyQt4 import QtGui

create instance of QApplication
app = QtGui.QApplication(sys.argv)

create QLabel, without parent it will be shown as window
label = QtGui.QLabel('Hello world!')
label.show()

start the execution loop of the application
sys.exit(app.exec_())

This is the same code using PyQt5.

import sys
from PyQt5 import QtWidgets

create instance of QApplication
app = QtWidgets.QApplication(sys.argv)

create QLabel, without parent it will be shown as window
label = QtWidgets.QLabel('Hello world!')
label.show()

start the execution loop of the application
sys.exit(app.exec_())

A Simple Drag & Drop Sample

Make a simple GUI application in 3 easy steps.

1. Design

Open Qt Creator, create a new project and make your design. Save your result as .ui file (here:
mainwindow.ui).

https://riptutorial.com/ 4

2. Generate corresponding .py file

Now you can create a .py file from your .ui file that you generated in the previous step. Enter the
following into your command line:

$ pyuic4 mainwindow.ui -o GUI.py

If the above line is run successfully a GUI.py file is created.

3. Python codes

You can add your own code (e.g. signals and slots) in the GUI.py file but it's better to add them in a

https://riptutorial.com/ 5

http://i.stack.imgur.com/NrGot.png

new file. If you ever want to make changes to your GUI, the GUI.py file will be overwritten. That's
why using another file to add functionality is better in most cases.

Let's call the new file main.py.

from PyQt4 import QtGui
import sys
import GUI # Your generated .py file

class MyApp(QtGui.QMainWindow, GUI.Ui_MainWindow):
 def __init__(self, parent=None):
 super(ExampleApp, self).__init__(parent)
 self.setupUi(self)

 # Connect a button to a function
 self.btn_run.clicked.connect(self.run)

 def run(self):
 # Write here what happens after the button press
 print("run")

if __name__ == '__main__':
 app = QtGui.QApplication(sys.argv)
 form = ExampleApp()
 form.show()
 app.exec_()

Now you can run main.py and see your GUI.

https://riptutorial.com/ 6

Read Getting started with pyqt online: https://riptutorial.com/pyqt/topic/1715/getting-started-with-
pyqt

https://riptutorial.com/ 7

http://i.stack.imgur.com/ju0fm.png
https://riptutorial.com/pyqt/topic/1715/getting-started-with-pyqt
https://riptutorial.com/pyqt/topic/1715/getting-started-with-pyqt

Chapter 2: Using threads with PyQt

Remarks

While some parts of the Qt framework are thread safe, much of it is not. The Qt C++
documentation provides a good overview of which classes are reentrant (can be used to
instantiate objects in multiple threads). The following rules are the most widely sought:

You cannot create or access a Qt GUI object from outside the main thread (e.g. anything
that subclasses QWidget or similar).

•

Even if the Qt class is reentrant, you cannot share access to a Qt object between threads
unless the Qt documentation for that class explicitly states that instances are thread safe.

•

You can use QObject.moveToThread() if you need to move a Qt object from one thread to
another (does not apply to Qt GUI objects which must always remain in the main thread). But
note that the object must not have a parent.

•

As per this Stack Overflow QA, it is not recommended to use Python threads if your thread intends
to interact with PyQt in any way (even if that part of the Qt framework is thread safe).

Examples

The worker model

this method can be anything and anywhere as long as it is accessible for connection
@pyqtSlot()
def run_on_complete():

 pass

An object containing methods you want to run in a thread
class Worker(QObject):
 complete = pyqtSignal()

 @pyqtSlot()
 def a_method_to_run_in_the_thread(self):
 # your code

 # Emit the complete signal
 self.complete.emit()

instantiate a QThread
thread = QThread()
Instantiate the worker object
worker = Worker()
Relocate the Worker object to the thread
worker.moveToThread(thread)
Connect the 'started' signal of the QThread to the method you wish to run
thread.started.connect(worker.a_method_to_run_in_the_thread)
connect to the 'complete' signal which the code in the Worker object emits at the end of the
method you are running
worker.complete.connect(run_on_complete)

https://riptutorial.com/ 8

http://doc.qt.io/qt-4.8/threads-qobject.html
http://doc.qt.io/qt-4.8/threads-qobject.html
http://stackoverflow.com/q/1595649/1994235

start the thread (Which will emit the 'started' signal you have previously connected to)
thread.start()

Read Using threads with PyQt online: https://riptutorial.com/pyqt/topic/2775/using-threads-with-
pyqt

https://riptutorial.com/ 9

https://riptutorial.com/pyqt/topic/2775/using-threads-with-pyqt
https://riptutorial.com/pyqt/topic/2775/using-threads-with-pyqt

Credits

S.
No

Chapters Contributors

1
Getting started with
pyqt

101, Achayan, Community, Ian, Makoto, mehD,
three_pineapples, Trilarion

2
Using threads with
PyQt

ederag, ekhumoro, three_pineapples

https://riptutorial.com/ 10

https://riptutorial.com/contributor/1470749/101
https://riptutorial.com/contributor/503888/achayan
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5528308/ian
https://riptutorial.com/contributor/1079354/makoto
https://riptutorial.com/contributor/1295035/mehd
https://riptutorial.com/contributor/1994235/three-pineapples
https://riptutorial.com/contributor/1536976/trilarion
https://riptutorial.com/contributor/3565696/ederag
https://riptutorial.com/contributor/984421/ekhumoro
https://riptutorial.com/contributor/1994235/three-pineapples

	About
	Chapter 1: Getting started with pyqt
	Remarks
	Examples
	Installation of PyQt4
	A basic application
	Hello world
	A Simple Drag & Drop Sample

	Chapter 2: Using threads with PyQt
	Remarks
	Examples
	The worker model

	Credits

