
pyqt5

#pyqt5

Table of Contents

About 1

Chapter 1: Getting started with pyqt5 2

Remarks 2

Examples 2

Installation or Setup 2

Hello World Example 6

Adding an application icon 8

Showing a tooltip 10

Package your project into excutable/installer 12

Chapter 2: Introduction to Progress Bars 13

Introduction 13

Remarks 13

Examples 13

Basic PyQt Progress Bar 13

Credits 18

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: pyqt5

It is an unofficial and free pyqt5 ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official pyqt5.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/pyqt5
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with pyqt5

Remarks

This section provides an overview of what pyqt5 is, and why a developer might want to use it.

It should also mention any large subjects within pyqt5, and link out to the related topics. Since the
Documentation for pyqt5 is new, you may need to create initial versions of those related topics.

Examples

Installation or Setup

Install Anaconda(PyQt5 is build-in), especially for windows user. 1.

Integrate QtDesigner and QtUIConvert in PyCharm(External Tools)
Open PyCharm Settings > Tools > External Tools•
Create Tool(QtDesigner) - used to edit *.ui files •

2.

https://riptutorial.com/ 2

https://i.stack.imgur.com/oY4gz.png

Create Tool(PyUIConv) - used to convert *.ui to *.py •

Write Demo3.

https://riptutorial.com/ 3

https://i.stack.imgur.com/ESdG6.png
https://i.stack.imgur.com/3oImy.png

new window.ui by external tool(QtDesigner) •

convert to window.py by external tool(PyUIConv) •

https://riptutorial.com/ 4

https://i.stack.imgur.com/k1CBb.png

demo •

https://riptutorial.com/ 5

https://i.stack.imgur.com/em0LZ.png

import sys
from PyQt5.QtWidgets import QApplication,QMainWindow
from window import Ui_MainWindow

if __name__ == '__main__':
 app = QApplication(sys.argv)
 w = QMainWindow()
 ui = Ui_MainWindow()
 ui.setupUi(w)
 w.show()
 sys.exit(app.exec_())

Hello World Example

This example creates a simple window with a button and a line-edit in a layout. It also shows how
to connect a signal to a slot, so that clicking the button adds some text to the line-edit.

https://riptutorial.com/ 6

https://i.stack.imgur.com/wbe8n.png

import sys
from PyQt5.QtWidgets import QApplication, QWidget

if __name__ == '__main__':

 app = QApplication(sys.argv)

 w = QWidget()
 w.resize(250, 150)
 w.move(300, 300)
 w.setWindowTitle('Hello World')
 w.show()

 sys.exit(app.exec_())

Analysis

app = QtWidgets.QApplication(sys.argv)

Every PyQt5 application must create an application object. The sys.argv parameter is a list of
arguments from a command line. Python scripts can be run from the shell.

w = QWidget()

The QWidget widget is the base class of all user interface objects in PyQt5. We provide the default
constructor for QWidget. The default constructor has no parent. A widget with no parent is called a
window.

w.resize(250, 150)

The resize() method resizes the widget. It is 250px wide and 150px high.

w.move(300, 300)

The move() method moves the widget to a position on the screen at x=300, y=300 coordinates.

w.setWindowTitle('Hello World')

Here we set the title for our window. The title is shown in the titlebar.

w.show()

The show() method displays the widget on the screen. A widget is first created in memory and later
shown on the screen.

sys.exit(app.exec_())

Finally, we enter the mainloop of the application. The event handling starts from this point. The
mainloop receives events from the window system and dispatches them to the application widgets.

https://riptutorial.com/ 7

The mainloop ends if we call the exit() method or the main widget is destroyed. The sys.exit()
method ensures a clean exit. The environment will be informed how the application ended.

The exec_() method has an underscore. It is because the exec is a Python keyword. And thus,
exec_() was used instead.

Adding an application icon

import sys
from PyQt5.QtWidgets import QApplication, QWidget
from PyQt5.QtGui import QIcon

class Example(QWidget):

 def __init__(self):
 super().__init__()

 self.initUI()

 def initUI(self):

 self.setGeometry(300, 300, 300, 220)
 self.setWindowTitle('Icon')
 self.setWindowIcon(QIcon('web.png'))

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)
 ex = Example()
 sys.exit(app.exec_())

Analysis

Function arguments in Python

In Python, user-defined functions can take four different types of arguments.

Default arguments:1.

Function definition

def defaultArg(name, msg = "Hello!"):

•

Function call

defaultArg(name)

•

Required arguments:2.

Function definition•

https://riptutorial.com/ 8

def requiredArg (str,num):

Function call:

requiredArg ("Hello",12)

•

Keyword arguments:3.

Function definition

def keywordArg(name, role):

•

Function call

keywordArg(name = "Tom", role = "Manager")

or

keywordArg(role = "Manager", name = "Tom")

•

Variable number of arguments:4.

Function definition

def varlengthArgs(*varargs):

•

Function call

varlengthArgs(30,40,50,60)

•

class Example(QWidget):

 def __init__(self):
 super().__init__()
 ...

Three important things in object oriented programming are classes, data, and methods. Here we
create a new class called Example. The Example class inherits from the QWidget class. This means
that we call two constructors: the first one for the Example class and the second one for the
inherited class. The super() method returns the parent object of the Example class and we call its
constructor. The self variable refers to the object itself.

Why have we used __init__?

Check this out:

class A(object):
 def __init__(self):
 self.lst = []

class B(object):
 lst = []

and now try:

https://riptutorial.com/ 9

>>> x = B()
>>> y = B()
>>> x.lst.append(1)
>>> y.lst.append(2)
>>> x.lst
[1, 2]
>>> x.lst is y.lst
True

and this:

>>> x = A()
>>> y = A()
>>> x.lst.append(1)
>>> y.lst.append(2)
>>> x.lst
[1]
>>> x.lst is y.lst
False

Does this mean that x in class B is established before instantiation?

Yes, it's a class attribute (it is shared between instances). While in class A it's an instance
attribute.

self.initUI()

The creation of the GUI is delegated to the initUI() method.

self.setGeometry(300, 300, 300, 220)
self.setWindowTitle('Icon')
self.setWindowIcon(QIcon('web.png'))

All three methods have been inherited from the QWidget class. The setGeometry() does two things: it
locates the window on the screen and sets it size. The first two parameters are the x and y
positions of the window. The third is the width and the fourth is the height of the window. In fact, it
combines the resize() and move() methods in one method. The last method sets the application
icon. To do this, we have created a QIcon object. The QIcon receives the path to our icon to be
displayed.

if __name__ == '__main__':

 app = QApplication(sys.argv)
 ex = Example()
 sys.exit(app.exec_())

The application and example objects are created. The main loop is started.

Showing a tooltip

import sys

https://riptutorial.com/ 10

from PyQt5.QtWidgets import (QWidget, QToolTip,
 QPushButton, QApplication)
from PyQt5.QtGui import QFont

class Example(QWidget):

 def __init__(self):
 super().__init__()

 self.initUI()

 def initUI(self):

 QToolTip.setFont(QFont('SansSerif', 10))

 self.setToolTip('This is a QWidget widget')

 btn = QPushButton('Button', self)
 btn.setToolTip('This is a QPushButton widget')
 btn.resize(btn.sizeHint())
 btn.move(50, 50)

 self.setGeometry(300, 300, 300, 200)
 self.setWindowTitle('Tooltips')
 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)
 ex = Example()
 sys.exit(app.exec_())

Analysis

QToolTip.setFont(QFont('SansSerif', 10))

This static method sets a font used to render tooltips. We use a 10px SansSerif font.

self.setToolTip('This is a QWidget widget')

To create a tooltip, we call the setTooltip() method. We can use rich text formatting.

btn = QPushButton('Button', self)
btn.setToolTip('This is a QPushButton widget')

We create a push button widget and set a tooltip for it.

btn.resize(btn.sizeHint())
btn.move(50, 50)

The button is being resized and moved on the window. The sizeHint() method gives a
recommended size for the button.

https://riptutorial.com/ 11

Package your project into excutable/installer

cx_Freeze - a tool can package your project to excutable/installer

after install it by pip, to package demo.py, we need setup.py below.•

import sys
from cx_Freeze import setup, Executable

Dependencies are automatically detected, but it might need fine tuning.
build_exe_options = {
 "excludes": ["tkinter"],
 "include_files":[('./platforms','./platforms')] # need qwindows.dll for qt5 application
}

GUI applications require a different base on Windows (the default is for a
console application).
base = None
if sys.platform == "win32":
 base = "Win32GUI"

setup(name = "demo",
 version = "0.1",
 description = "demo",
 options = {"build_exe": build_exe_options},
 executables = [Executable("demo.py", base=base)])

then build•

python .\setup.py build

then dist•

python .\setup.py bdist_msi

Read Getting started with pyqt5 online: https://riptutorial.com/pyqt5/topic/7403/getting-started-with-
pyqt5

https://riptutorial.com/ 12

https://riptutorial.com/pyqt5/topic/7403/getting-started-with-pyqt5
https://riptutorial.com/pyqt5/topic/7403/getting-started-with-pyqt5

Chapter 2: Introduction to Progress Bars

Introduction

Progress Bars are an integral part of user experience and helps users get an idea on the time left
for a given process that runs on the GUI. This topic will go over the basics of implementing a
progress bar in your own application.

This topic will touch lightly on QThread and the new signals/slots mechanism. Some basic
knowledge of PyQt5 widgets is also expected of readers.

When adding examples only use PyQt5 and Python built-ins to demonstrate functionality.

PyQt5 Only

Remarks

Experimenting with these examples is the best way to get started learning.

Examples

Basic PyQt Progress Bar

This is a very basic progress bar that only uses what is needed at the bare minimum.

It would be wise to read this whole example to the end.

import sys
import time

from PyQt5.QtWidgets import (QApplication, QDialog,
 QProgressBar, QPushButton)

TIME_LIMIT = 100

class Actions(QDialog):
 """
 Simple dialog that consists of a Progress Bar and a Button.
 Clicking on the button results in the start of a timer and
 updates the progress bar.
 """
 def __init__(self):
 super().__init__()
 self.initUI()

 def initUI(self):
 self.setWindowTitle('Progress Bar')
 self.progress = QProgressBar(self)
 self.progress.setGeometry(0, 0, 300, 25)
 self.progress.setMaximum(100)

https://riptutorial.com/ 13

 self.button = QPushButton('Start', self)
 self.button.move(0, 30)
 self.show()

 self.button.clicked.connect(self.onButtonClick)

 def onButtonClick(self):
 count = 0
 while count < TIME_LIMIT:
 count += 1
 time.sleep(1)
 self.progress.setValue(count)

if __name__ == "__main__":
 app = QApplication(sys.argv)
 window = Actions()
 sys.exit(app.exec_())

The progress bar is first imported like so from PyQt5.QtWidgets import QProgressBar

Then it is initialized like any other widget in QtWidgets

The line self.progress.setGeometry(0, 0, 300, 25) method defines the x,y positions on the dialog
and width and height of the progress bar.

We then move the button using .move() by 30px downwards so that there will be a gap of 5px
between the two widgets.

Here self.progress.setValue(count) is used to update the progress. Setting a maximum value
using .setMaximum() will also automatically calculated the values for you. For example, if the
maximum value is set as 50 then since TIME_LIMIT is 100 it will hop from 0 to 2 to 4 percent instead
of 0 to 1 to 2 every second. You can also set a minimum value using .setMinimum() forcing the
progress bar to start from a given value.

Executing this program will produce a GUI similar to this.

As you can see, the GUI will most definitely freeze and be unresponsive until the counter meets
the TIME_LIMIT condition. This is because time.sleep causes the OS to believe that program has
become stuck in an infinite loop.

QThread

So how do we overcome this issue ? We can use the threading class that PyQt5 provides.

import sys
import time

from PyQt5.QtCore import QThread, pyqtSignal

https://riptutorial.com/ 14

https://i.stack.imgur.com/vQWzR.png

from PyQt5.QtWidgets import (QApplication, QDialog,
 QProgressBar, QPushButton)

TIME_LIMIT = 100

class External(QThread):
 """
 Runs a counter thread.
 """
 countChanged = pyqtSignal(int)

 def run(self):
 count = 0
 while count < TIME_LIMIT:
 count +=1
 time.sleep(1)
 self.countChanged.emit(count)

class Actions(QDialog):
 """
 Simple dialog that consists of a Progress Bar and a Button.
 Clicking on the button results in the start of a timer and
 updates the progress bar.
 """
 def __init__(self):
 super().__init__()
 self.initUI()

 def initUI(self):
 self.setWindowTitle('Progress Bar')
 self.progress = QProgressBar(self)
 self.progress.setGeometry(0, 0, 300, 25)
 self.progress.setMaximum(100)
 self.button = QPushButton('Start', self)
 self.button.move(0, 30)
 self.show()

 self.button.clicked.connect(self.onButtonClick)

 def onButtonClick(self):
 self.calc = External()
 self.calc.countChanged.connect(self.onCountChanged)
 self.calc.start()

 def onCountChanged(self, value):
 self.progress.setValue(value)

if __name__ == "__main__":
 app = QApplication(sys.argv)
 window = Actions()
 sys.exit(app.exec_())

Let's break down these modifications.

from PyQt5.QtCore import QThread, pyqtSignal

This line imports Qthread which is a PyQt5 implementation to divide and run some parts(eg:
functions, classes) of a program in the background(also know as multi-threading). These parts are
also called threads. All PyQt5 programs by default have a main thread and the others(worker

https://riptutorial.com/ 15

threads) are used to offload extra time consuming and process intensive tasks into the
background while still keeping the main program functioning.

The second import pyqtSignal is used to send data(signals) between worker and main threads. In
this instance we will be using it to tell the main thread to update the progress bar.

Now we have moved the while loop for the counter into a separate class called External.

class External(QThread):
 """
 Runs a counter thread.
 """
 countChanged = pyqtSignal(int)

 def run(self):
 count = 0
 while count < TIME_LIMIT:
 count +=1
 time.sleep(1)
 self.countChanged.emit(count)

By sub-classing QThread we are essentially converting External into a class that can be run in a
separate thread. Threads can also be started or stopped at any time adding to it's benefits.

Here countChanged is the current progress and pyqtSignal(int) tells the worker thread that signal
being sent is of type int. While, self.countChanged.emit(count) simply sends the signal to any
connections in the main thread(normally it can used to communicate with other worker threads as
well).

def onButtonClick(self):
 self.calc = External()
 self.calc.countChanged.connect(self.onCountChanged)
 self.calc.start()

def onCountChanged(self, value):
 self.progress.setValue(value)

When the button is clicked the self.onButtonClick will run and also start the thread. The thread is
started with .start(). It should also be noted that we connected the signal self.calc.countChanged
we created earlier to the method used to update the progress bar value. Every time
External::run::count is updated the int value is also sent to onCountChanged.

This is how the GUI could look after making these changes.

It should also feel much more responsive and will not freeze.

Read Introduction to Progress Bars online: https://riptutorial.com/pyqt5/topic/9544/introduction-to-

https://riptutorial.com/ 16

https://i.stack.imgur.com/D9e2a.png
https://riptutorial.com/pyqt5/topic/9544/introduction-to-progress-bars

progress-bars

https://riptutorial.com/ 17

https://riptutorial.com/pyqt5/topic/9544/introduction-to-progress-bars

Credits

S.
No

Chapters Contributors

1
Getting started with
pyqt5

Ansh Kumar, Community, ekhumoro, suiwenfeng

2
Introduction to
Progress Bars

daegontaven

https://riptutorial.com/ 18

https://riptutorial.com/contributor/4582711/ansh-kumar
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/984421/ekhumoro
https://riptutorial.com/contributor/1803356/suiwenfeng
https://riptutorial.com/contributor/5586359/daegontaven

	About
	Chapter 1: Getting started with pyqt5
	Remarks
	Examples
	Installation or Setup
	Hello World Example
	Adding an application icon
	Showing a tooltip
	Package your project into excutable/installer

	Chapter 2: Introduction to Progress Bars
	Introduction
	Remarks
	Examples
	Basic PyQt Progress Bar

	Credits

