
Python Language

#python

Table of Contents

About 1

Chapter 1: Getting started with Python Language 2

Remarks 2

Versions 3

Python 3.x 3

Python 2.x 3

Examples 4

Getting Started 4

Verify if Python is installed 4

Hello, World in Python using IDLE 5

Hello World Python file 5

Launch an interactive Python shell 6

Other Online Shells 7

Run commands as a string 7

Shells and Beyond 8

Creating variables and assigning values 8

User Input 12

IDLE - Python GUI 13

Troubleshooting 14

Datatypes 15

Built-in Types 15

Booleans 15

Numbers 15

Strings 16

Sequences and collections 16

Built-in constants 17

Testing the type of variables 18

Converting between datatypes 18

Explicit string type at definition of literals 19

Mutable and Immutable Data Types 19

Built in Modules and Functions 20

Block Indentation 24

Spaces vs. Tabs 25

Collection Types 25

Help Utility 30

Creating a module 31

String function - str() and repr() 32

repr() 33

str() 33

Installing external modules using pip 34

Finding / installing a package 34

Upgrading installed packages 34

Upgrading pip 35

Installation of Python 2.7.x and 3.x 35

Chapter 2: *args and **kwargs 38

Remarks 38

h11 38

h12 38

h13 38

Examples 39

Using *args when writing functions 39

Using **kwargs when writing functions 39

Using *args when calling functions 40

Using **kwargs when calling functions 41

Using *args when calling functions 41

Keyword-only and Keyword-required arguments 42

Populating kwarg values with a dictionary 42

**kwargs and default values 42

Chapter 3: 2to3 tool 43

Syntax 43

Parameters 43

Remarks 44

Examples 44

Basic Usage 44

Unix 44

Windows 44

Unix 45

Windows 45

Chapter 4: Abstract Base Classes (abc) 46

Examples 46

Setting the ABCMeta metaclass 46

Why/How to use ABCMeta and @abstractmethod 47

Chapter 5: Abstract syntax tree 49

Examples 49

Analyze functions in a python script 49

Chapter 6: Accessing Python source code and bytecode 51

Examples 51

Display the bytecode of a function 51

Exploring the code object of a function 51

Display the source code of an object 51

Objects that are not built-in 51

Objects defined interactively 52

Built-in objects 52

Chapter 7: Alternatives to switch statement from other languages 54

Remarks 54

Examples 54

Use what the language offers: the if/else construct. 54

Use a dict of functions 54

Use class introspection 55

Using a context manager 56

Chapter 8: ArcPy 58

Remarks 58

Examples 58

Printing one field's value for all rows of feature class in file geodatabase using Search 58

createDissolvedGDB to create a file gdb on the workspace 58

Chapter 9: Arrays 59

Introduction 59

Parameters 59

Examples 59

Basic Introduction to Arrays 59

Access individual elements through indexes 60

Append any value to the array using append() method 61

Insert value in an array using insert() method 61

Extend python array using extend() method 61

Add items from list into array using fromlist() method 61

Remove any array element using remove() method 61

Remove last array element using pop() method 62

Fetch any element through its index using index() method 62

Reverse a python array using reverse() method 62

Get array buffer information through buffer_info() method 62

Check for number of occurrences of an element using count() method 62

Convert array to string using tostring() method 63

Convert array to a python list with same elements using tolist() method 63

Append a string to char array using fromstring() method 63

Chapter 10: Asyncio Module 64

Examples 64

Coroutine and Delegation Syntax 64

Asynchronous Executors 65

Using UVLoop 66

Synchronization Primitive: Event 66

Concept 66

Example 66

A Simple Websocket 67

Common Misconception about asyncio 68

Chapter 11: Attribute Access 69

Syntax 69

Examples 69

Basic Attribute Access using the Dot Notation 69

Setters, Getters & Properties 69

Chapter 12: Audio 72

Examples 72

Audio With Pyglet 72

Working with WAV files 72

winsound 72

wave 72

Convert any soundfile with python and ffmpeg 73

Playing Windows' beeps 73

Chapter 13: Basic Curses with Python 74

Remarks 74

Examples 74

Basic Invocation Example 74

The wrapper() helper function. 74

Chapter 14: Basic Input and Output 76

Examples 76

Using input() and raw_input() 76

Using the print function 76

Function to prompt user for a number 76

Printing a string without a newline at the end 77

Read from stdin 78

Input from a File 78

Chapter 15: Binary Data 81

Syntax 81

Examples 81

Format a list of values into a byte object 81

Unpack a byte object according to a format string 81

Packing a structure 81

Chapter 16: Bitwise Operators 83

Introduction 83

Syntax 83

Examples 83

Bitwise AND 83

Bitwise OR 83

Bitwise XOR (Exclusive OR) 84

Bitwise Left Shift 84

Bitwise Right Shift 85

Bitwise NOT 85

Inplace Operations 87

Chapter 17: Boolean Operators 88

Examples 88

and 88

or 88

not 89

Short-circuit evaluation 89

`and` and `or` are not guaranteed to return a boolean 90

A simple example 90

Chapter 18: Call Python from C# 91

Introduction 91

Remarks 91

Examples 92

Python script to be called by C# application 92

C# code calling Python script 93

Chapter 19: Checking Path Existence and Permissions 95

Parameters 95

Examples 95

Perform checks using os.access 95

Chapter 20: ChemPy - python package 97

Introduction 97

Examples 97

Parsing formulae 97

Balancing stoichiometry of a chemical reaction 97

Balancing reactions 97

Chemical equilibria 98

Ionic strength 98

Chemical kinetics (system of ordinary differential equations) 98

Chapter 21: Classes 100

Introduction 100

Examples 100

Basic inheritance 100

Built-in functions that work with inheritance 101

Class and instance variables 101

Bound, unbound, and static methods 102

New-style vs. old-style classes 105

Default values for instance variables 106

Multiple Inheritance 107

Descriptors and Dotted Lookups 109

Class methods: alternate initializers 109

Class composition 111

Monkey Patching 112

Listing All Class Members 113

Introduction to classes 113

Properties 115

Singleton class 117

Chapter 22: CLI subcommands with precise help output 119

Introduction 119

Remarks 119

Examples 119

Native way (no libraries) 119

argparse (default help formatter) 120

argparse (custom help formatter) 120

Chapter 23: Code blocks, execution frames, and namespaces 123

Introduction 123

Examples 123

Code block namespaces 123

Chapter 24: Collections module 124

Introduction 124

Remarks 124

Examples 124

collections.Counter 124

collections.defaultdict 126

collections.OrderedDict 127

collections.namedtuple 128

collections.deque 129

collections.ChainMap 130

Chapter 25: Comments and Documentation 132

Syntax 132

Remarks 132

Examples 132

Single line, inline and multiline comments 132

Programmatically accessing docstrings 132

An example function 133

Another example function 133

Advantages of docstrings over regular comments 133

Write documentation using docstrings 134

Syntax conventions 134

PEP 257 134

Sphinx 135

Google Python Style Guide 136

Chapter 26: Common Pitfalls 137

Introduction 137

Examples 137

Changing the sequence you are iterating over 137

Mutable default argument 140

List multiplication and common references 141

Integer and String identity 145

Accessing int literals' attributes 146

Chaining of or operator 147

sys.argv[0] is the name of the file being executed 148

h14 148

Dictionaries are unordered 148

Global Interpreter Lock (GIL) and blocking threads 149

Variable leaking in list comprehensions and for loops 150

Multiple return 150

Pythonic JSON keys 151

Chapter 27: Commonwealth Exceptions 152

Introduction 152

Examples 152

IndentationErrors (or indentation SyntaxErrors) 152

IndentationError/SyntaxError: unexpected indent 152

Example 152

IndentationError/SyntaxError: unindent does not match any outer indentation level 153

Example 153

IndentationError: expected an indented block 153

Example 153

IndentationError: inconsistent use of tabs and spaces in indentation 153

Example 154

How to avoid this error 154

TypeErrors 154

TypeError: [definition/method] takes ? positional arguments but ? was given 154

Example 154

TypeError: unsupported operand type(s) for [operand]: '???' and '???' 155

Example 155

TypeError: '???' object is not iterable/subscriptable: 155

Example 155

TypeError: '???' object is not callable 156

Example 156

NameError: name '???' is not defined 156

It's simply not defined nowhere in the code 156

Maybe it's defined later: 156

Or it wasn't imported: 156

Python scopes and the LEGB Rule: 157

Other Errors 157

AssertError 157

KeyboardInterrupt 158

ZeroDivisionError 158

Syntax Error on good code 158

Chapter 28: Comparisons 160

Syntax 160

Parameters 160

Examples 160

Greater than or less than 160

Not equal to 161

Equal To 161

Chain Comparisons 162

Style 162

Side effects 162

Comparison by `is` vs `==` 163

Comparing Objects 164

Common Gotcha: Python does not enforce typing 165

Chapter 29: Complex math 166

Syntax 166

Examples 166

Advanced complex arithmetic 166

Basic complex arithmetic 167

Chapter 30: Conditionals 168

Introduction 168

Syntax 168

Examples 168

if, elif, and else 168

Conditional Expression (or "The Ternary Operator") 168

If statement 169

Else statement 169

Boolean Logic Expressions 170

And operator 170

Or operator 170

Lazy evaluation 170

Testing for multiple conditions 171

Truth Values 172

Using the cmp function to get the comparison result of two objects 172

Conditional Expression Evaluation Using List Comprehensions 173

Testing if an object is None and assigning it 174

Chapter 31: configparser 175

Introduction 175

Syntax 175

Remarks 175

Examples 175

Basic usage 175

Creating configuration file programatically 176

Chapter 32: Connecting Python to SQL Server 177

Examples 177

Connect to Server, Create Table, Query Data 177

Chapter 33: Context Managers (“with” Statement) 179

Introduction 179

Syntax 179

Remarks 179

Examples 180

Introduction to context managers and the with statement 180

Assigning to a target 180

Writing your own context manager 181

Writing your own contextmanager using generator syntax 181

Multiple context managers 183

Manage Resources 183

Chapter 34: Copying data 184

Examples 184

Performing a shallow copy 184

Performing a deep copy 184

Performing a shallow copy of a list 184

Copy a dictionary 184

Copy a set 185

Chapter 35: Counting 186

Examples 186

Counting all occurence of all items in an iterable: collections.Counter 186

Getting the most common value(-s): collections.Counter.most_common() 186

Counting the occurrences of one item in a sequence: list.count() and tuple.count() 187

Counting the occurrences of a substring in a string: str.count() 187

Counting occurences in numpy array 187

Chapter 36: Create virtual environment with virtualenvwrapper in windows 189

Examples 189

Virtual environment with virtualenvwrapper for windows 189

Chapter 37: Creating a Windows service using Python 191

Introduction 191

Examples 191

A Python script that can be run as a service 191

Running a Flask web application as a service 192

Chapter 38: Creating Python packages 194

Remarks 194

Examples 194

Introduction 194

Uploading to PyPI 195

Setup a .pypirc File 195

Register and Upload to testpypi (optional) 195

Testing 196

Register and Upload to PyPI 196

Documentation 196

Readme 197

Licensing 197

Making package executable 197

Chapter 39: ctypes 198

Introduction 198

Examples 198

Basic usage 198

Common pitfalls 198

Failing to load a file 198

Failing to access a function 199

Basic ctypes object 199

ctypes arrays 200

Wrapping functions for ctypes 200

Complex usage 201

Chapter 40: Data Serialization 203

Syntax 203

Parameters 203

Remarks 203

Examples 204

Serialization using JSON 204

Serialization using Pickle 204

Chapter 41: Data Visualization with Python 206

Examples 206

Matplotlib 206

Seaborn 207

MayaVI 210

Plotly 211

Chapter 42: Database Access 214

Remarks 214

Examples 214

Accessing MySQL database using MySQLdb 214

SQLite 215

The SQLite Syntax: An in-depth analysis 216

Getting started 216

h21 216

Important Attributes and Functions of Connection 216

Important Functions of Cursor 217

SQLite and Python data types 220

PostgreSQL Database access using psycopg2 221

Establishing a connection to the database and creating a table 221

Inserting data into the table: 221

Retrieving table data: 222

Oracle database 222

Connection 224

Using sqlalchemy 225

Chapter 43: Date and Time 226

Remarks 226

Examples 226

Parsing a string into a timezone aware datetime object 226

Simple date arithmetic 226

Basic datetime objects usage 227

Iterate over dates 227

Parsing a string with a short time zone name into a timezone aware datetime object 228

Constructing timezone-aware datetimes 229

Fuzzy datetime parsing (extracting datetime out of a text) 231

Switching between time zones 231

Parsing an arbitrary ISO 8601 timestamp with minimal libraries 231

Converting timestamp to datetime 232

Subtracting months from a date accurately 232

Computing time differences 233

Get an ISO 8601 timestamp 234

Without timezone, with microseconds 234

With timezone, with microseconds 234

With timezone, without microseconds 234

Chapter 44: Date Formatting 235

Examples 235

Time between two date-times 235

Parsing string to datetime object 235

Outputting datetime object to string 235

Chapter 45: Debugging 236

Examples 236

The Python Debugger: Step-through Debugging with _pdb_ 236

Via IPython and ipdb 237

Remote debugger 238

Chapter 46: Decorators 239

Introduction 239

Syntax 239

Parameters 239

Examples 239

Decorator function 239

Decorator class 240

Decorating Methods 241

Warning! 242

Making a decorator look like the decorated function 242

As a function 242

As a class 243

Decorator with arguments (decorator factory) 243

Decorator functions 243

Important Note: 244

Decorator classes 244

Create singleton class with a decorator 244

Using a decorator to time a function 245

Chapter 47: Defining functions with list arguments 246

Examples 246

Function and Call 246

Chapter 48: Deployment 247

Examples 247

Uploading a Conda Package 247

Chapter 49: Deque Module 249

Syntax 249

Parameters 249

Remarks 249

Examples 249

Basic deque using 249

limit deque size 249

Available methods in deque 250

Breadth First Search 251

Chapter 50: Descriptor 252

Examples 252

Simple descriptor 252

Two-way conversions 253

Chapter 51: Design Patterns 255

Introduction 255

Examples 255

Strategy Pattern 255

Introduction to design patterns and Singleton Pattern 256

Proxy 258

Chapter 52: Dictionary 261

Syntax 261

Parameters 261

Remarks 261

Examples 261

Accessing values of a dictionary 261

The dict() constructor 262

Avoiding KeyError Exceptions 262

Accessing keys and values 263

Introduction to Dictionary 264

creating a dict 264

literal syntax 264

dict comprehension 264

built-in class: dict() 264

modifying a dict 264

Dictionary with default values 265

Creating an ordered dictionary 265

Unpacking dictionaries using the ** operator 266

Merging dictionaries 266

Python 3.5+ 266

Python 3.3+ 267

Python 2.x, 3.x 267

The trailing comma 267

All combinations of dictionary values 267

Iterating Over a Dictionary 268

Creating a dictionary 269

Dictionaries Example 270

Chapter 53: Difference between Module and Package 271

Remarks 271

Examples 271

Modules 271

Packages 271

Chapter 54: Distribution 273

Examples 273

py2app 273

cx_Freeze 274

Chapter 55: Django 276

Introduction 276

Examples 276

Hello World with Django 276

Chapter 56: Dynamic code execution with `exec` and `eval` 278

Syntax 278

Parameters 278

Remarks 278

Examples 279

Evaluating statements with exec 279

Evaluating an expression with eval 279

Precompiling an expression to evaluate it multiple times 279

Evaluating an expression with eval using custom globals 279

Evaluating a string containing a Python literal with ast.literal_eval 280

Executing code provided by untrusted user using exec, eval, or ast.literal_eval 280

Chapter 57: Enum 281

Remarks 281

Examples 281

Creating an enum (Python 2.4 through 3.3) 281

Iteration 281

Chapter 58: Exceptions 282

Introduction 282

Syntax 282

Examples 282

Raising Exceptions 282

Catching Exceptions 282

Running clean-up code with finally 283

Re-raising exceptions 283

Chain exceptions with raise from 284

Exception Hierarchy 284

Exceptions are Objects too 286

Creating custom exception types 287

Do not catch everything! 288

Catching multiple exceptions 288

Practical examples of exception handling 289

User input 289

Dictionaries 289

Else 290

Chapter 59: Exponentiation 291

Syntax 291

Examples 291

Square root: math.sqrt() and cmath.sqrt 291

Exponentiation using builtins: ** and pow() 292

Exponentiation using the math module: math.pow() 292

Exponential function: math.exp() and cmath.exp() 293

Exponential function minus 1: math.expm1() 293

Magic methods and exponentiation: builtin, math and cmath 294

Modular exponentiation: pow() with 3 arguments 295

Roots: nth-root with fractional exponents 296

Computing large integer roots 296

Chapter 60: Files & Folders I/O 298

Introduction 298

Syntax 298

Parameters 298

Remarks 298

Avoiding the cross-platform Encoding Hell 298

Examples 299

File modes 299

Reading a file line-by-line 301

Getting the full contents of a file 301

Writing to a file 302

Copying contents of one file to a different file 303

Check whether a file or path exists 303

Copy a directory tree 304

Iterate files (recursively) 304

Read a file between a range of lines 305

Random File Access Using mmap 305

Replacing text in a file 305

Checking if a file is empty 306

Chapter 61: Filter 307

Syntax 307

Parameters 307

Remarks 307

Examples 307

Basic use of filter 307

Filter without function 308

Filter as short-circuit check 308

Complementary function: filterfalse, ifilterfalse 309

Chapter 62: Flask 311

Introduction 311

Syntax 311

Examples 311

The basics 311

Routing URLs 312

HTTP Methods 312

Files and Templates 313

Jinja Templating 314

The Request Object 315

URL Parameters 315

File Uploads 315

Cookies 316

Chapter 63: Functional Programming in Python 317

Introduction 317

Examples 317

Lambda Function 317

Map Function 317

Reduce Function 317

Filter Function 317

Chapter 64: Functions 319

Introduction 319

Syntax 319

Parameters 319

Remarks 319

Additional resources 320

Examples 320

Defining and calling simple functions 320

Returning values from functions 322

Defining a function with arguments 323

Defining a function with optional arguments 323

Warning 324

Defining a function with multiple arguments 324

Defining a function with an arbitrary number of arguments 324

Arbitrary number of positional arguments: 324

Arbitrary number of keyword arguments 325

Warning 326

Note on Naming 326

Note on Uniqueness 327

Note on Nesting Functions with Optional Arguments 327

Defining a function with optional mutable arguments 327

Explanation 327

Solution 328

Lambda (Inline/Anonymous) Functions 328

Argument passing and mutability 331

Closure 332

Recursive functions 333

Recursion limit 334

Nested functions 334

Iterable and dictionary unpacking 335

Forcing the use of named parameters 336

Recursive Lambda using assigned variable 337

Description of code 337

Chapter 65: Functools Module 339

Examples 339

partial 339

total_ordering 339

reduce 340

lru_cache 340

cmp_to_key 341

Chapter 66: Garbage Collection 342

Remarks 342

Generational Garbage Collection 342

Examples 344

Reference Counting 344

Garbage Collector for Reference Cycles 345

Effects of the del command 346

Reuse of primitive objects 346

Viewing the refcount of an object 347

Forcefully deallocating objects 347

Managing garbage collection 348

Do not wait for the garbage collection to clean up 349

Chapter 67: Generators 350

Introduction 350

Syntax 350

Examples 350

Iteration 350

The next() function 350

Sending objects to a generator 351

Generator expressions 352

Introduction 352

Using a generator to find Fibonacci Numbers 354

Infinite sequences 355

Classic example - Fibonacci numbers 356

Yielding all values from another iterable 356

Coroutines 356

Yield with recursion: recursively listing all files in a directory 357

Iterating over generators in parallel 358

Refactoring list-building code 358

Searching 359

Chapter 68: getting start with GZip 360

Introduction 360

Examples 360

Read and write GNU zip files 360

Chapter 69: graph-tool 361

Introduction 361

Examples 361

PyDotPlus 361

Installation 361

PyGraphviz 362

Chapter 70: groupby() 364

Introduction 364

Syntax 364

Parameters 364

Remarks 364

Examples 364

Example 1 364

Example 2 365

Example 3 366

Example 4 367

Chapter 71: hashlib 369

Introduction 369

Examples 369

MD5 hash of a string 369

algorithm provided by OpenSSL 370

Chapter 72: Heapq 371

Examples 371

Largest and smallest items in a collection 371

Smallest item in a collection 371

Chapter 73: Hidden Features 373

Examples 373

Operator Overloading 373

Chapter 74: HTML Parsing 375

Examples 375

Locate a text after an element in BeautifulSoup 375

Using CSS selectors in BeautifulSoup 375

PyQuery 376

Chapter 75: Idioms 377

Examples 377

Dictionary key initializations 377

Switching variables 377

Use truth value testing 377

Test for "__main__" to avoid unexpected code execution 378

Chapter 76: ijson 379

Introduction 379

Examples 379

Simple Example 379

Chapter 77: Immutable datatypes(int, float, str, tuple and frozensets) 380

Examples 380

Individual characters of strings are not assignable 380

Tuple's individual members aren't assignable 380

Frozenset's are immutable and not assignable 380

Chapter 78: Importing modules 381

Syntax 381

Remarks 381

Examples 381

Importing a module 381

Importing specific names from a module 383

Importing all names from a module 383

The __all__ special variable 384

Programmatic importing 385

Import modules from an arbitrary filesystem location 385

PEP8 rules for Imports 386

Importing submodules 386

__import__() function 386

Re-importing a module 387

Python 2 387

Python 3 387

Chapter 79: Incompatibilities moving from Python 2 to Python 3 389

Introduction 389

Remarks 389

Examples 390

Print statement vs. Print function 390

Strings: Bytes versus Unicode 391

Integer Division 393

Reduce is no longer a built-in 395

Differences between range and xrange functions 396

Compatibility 397

Unpacking Iterables 397

Raising and handling Exceptions 399

.next() method on iterators renamed 401

Comparison of different types 402

User Input 403

Dictionary method changes 403

exec statement is a function in Python 3 404

hasattr function bug in Python 2 405

Renamed modules 405

Compatibility 406

Octal Constants 406

All classes are "new-style classes" in Python 3. 406

Removed operators <> and ``, synonymous with != and repr() 407

encode/decode to hex no longer available 408

cmp function removed in Python 3 409

Leaked variables in list comprehension 409

map() 410

filter(), map() and zip() return iterators instead of sequences 411

Absolute/Relative Imports 412

More on Relative Imports 413

File I/O 414

The round() function tie-breaking and return type 414

round() tie breaking 414

round() return type 415

True, False and None 415

Return value when writing to a file object 416

long vs. int 416

Class Boolean Value 417

Chapter 80: Indentation 418

Examples 418

Indentation Errors 418

Simple example 418

Spaces or Tabs? 419

How Indentation is Parsed 419

Chapter 81: Indexing and Slicing 421

Syntax 421

Parameters 421

Remarks 421

Examples 421

Basic Slicing 421

Making a shallow copy of an array 422

Reversing an object 423

Indexing custom classes: __getitem__, __setitem__ and __delitem__ 423

Slice assignment 424

Slice objects 425

Basic Indexing 425

Chapter 82: Input, Subset and Output External Data Files using Pandas 427

Introduction 427

Examples 427

Basic Code to Import, Subset and Write External Data Files Using Pandas 427

Chapter 83: Introduction to RabbitMQ using AMQPStorm 429

Remarks 429

Examples 429

How to consume messages from RabbitMQ 429

How to publish messages to RabbitMQ 430

How to create a delayed queue in RabbitMQ 431

Chapter 84: IoT Programming with Python and Raspberry PI 433

Examples 433

Example - Temperature sensor 433

Chapter 85: Iterables and Iterators 436

Examples 436

Iterator vs Iterable vs Generator 436

What can be iterable 437

Iterating over entire iterable 437

Verify only one element in iterable 438

Extract values one by one 438

Iterator isn't reentrant! 438

Chapter 86: Itertools Module 439

Syntax 439

Examples 439

Grouping items from an iterable object using a function 439

Take a slice of a generator 440

itertools.product 440

itertools.count 441

itertools.takewhile 442

itertools.dropwhile 443

Zipping two iterators until they are both exhausted 444

Combinations method in Itertools Module 444

Chaining multiple iterators together 445

itertools.repeat 445

Get an accumulated sum of numbers in an iterable 445

Cycle through elements in an iterator 446

itertools.permutations 446

Chapter 87: JSON Module 447

Remarks 447

Types 447

Defaults 447

De-serialisation types: 447

Serialisation types: 447

Custom (de-)serialisation 448

Serialisation: 448

De-serialisation: 448

Further custom (de-)serialisation: 449

Examples 449

Creating JSON from Python dict 449

Creating Python dict from JSON 449

Storing data in a file 450

Retrieving data from a file 450

`load` vs `loads`, `dump` vs `dumps` 450

Calling `json.tool` from the command line to pretty-print JSON output 451

Formatting JSON output 452

Setting indentation to get prettier output 452

Sorting keys alphabetically to get consistent output 452

Getting rid of whitespace to get compact output 453

JSON encoding custom objects 453

Chapter 88: kivy - Cross-platform Python Framework for NUI Development 454

Introduction 454

Examples 454

First App 454

Chapter 89: Linked List Node 457

Examples 457

Write a simple Linked List Node in python 457

Chapter 90: Linked lists 458

Introduction 458

Examples 458

Single linked list example 458

Chapter 91: List 462

Introduction 462

Syntax 462

Remarks 462

Examples 462

Accessing list values 462

List methods and supported operators 464

Length of a list 469

Iterating over a list 469

Checking whether an item is in a list 470

Reversing list elements 470

Checking if list is empty 471

Concatenate and Merge lists 471

Any and All 472

Remove duplicate values in list 473

Accessing values in nested list 473

Comparison of lists 475

Initializing a List to a Fixed Number of Elements 475

Chapter 92: List comprehensions 476

Introduction 476

Syntax 476

Remarks 476

Examples 476

List Comprehensions 476

else 477

Double Iteration 478

In-place Mutation and Other Side Effects 478

Whitespace in list comprehensions 479

Dictionary Comprehensions 479

Generator Expressions 481

Use cases 483

Set Comprehensions 483

Avoid repetitive and expensive operations using conditional clause 484

Comprehensions involving tuples 486

Counting Occurrences Using Comprehension 486

Changing Types in a List 487

Chapter 93: List Comprehensions 488

Introduction 488

Syntax 488

Remarks 488

Examples 488

Conditional List Comprehensions 488

List Comprehensions with Nested Loops 490

Refactoring filter and map to list comprehensions 491

Refactoring - Quick Reference 492

Nested List Comprehensions 492

Iterate two or more list simultaneously within list comprehension 493

Chapter 94: List destructuring (aka packing and unpacking) 494

Examples 494

Destructuring assignment 494

Destructuring as values 494

Destructuring as a list 494

Ignoring values in destructuring assignments 495

Ignoring lists in destructuring assignments 495

Packing function arguments 495

Packing a list of arguments 496

Packing keyword arguments 496

Unpacking function arguments 498

Chapter 95: List slicing (selecting parts of lists) 499

Syntax 499

Remarks 499

Examples 499

Using the third "step" argument 499

Selecting a sublist from a list 499

Reversing a list with slicing 500

Shifting a list using slicing 500

Chapter 96: Logging 502

Examples 502

Introduction to Python Logging 502

Logging exceptions 503

Chapter 97: Loops 506

Introduction 506

Syntax 506

Parameters 506

Examples 506

Iterating over lists 506

For loops 507

Iterable objects and iterators 508

Break and Continue in Loops 508

break statement 508

continue statement 509

Nested Loops 509

Use return from within a function as a break 510

Loops with an "else" clause 510

Why would one use this strange construct? 512

Iterating over dictionaries 513

While Loop 514

The Pass Statement 515

Iterating different portion of a list with different step size 515

Iteration over the whole list 515

Iterate over sub-list 516

The "half loop" do-while 517

Looping and Unpacking 517

Chapter 98: Manipulating XML 518

Remarks 518

Examples 518

Opening and reading using an ElementTree 518

Modifying an XML File 518

Create and Build XML Documents 519

Opening and reading large XML files using iterparse (incremental parsing) 519

Searching the XML with XPath 520

Chapter 99: Map Function 522

Syntax 522

Parameters 522

Remarks 522

Examples 522

Basic use of map, itertools.imap and future_builtins.map 522

Mapping each value in an iterable 523

Mapping values of different iterables 524

Transposing with Map: Using "None" as function argument (python 2.x only) 525

Series and Parallel Mapping 526

Chapter 100: Math Module 529

Examples 529

Rounding: round, floor, ceil, trunc 529

Warning! 530

Warning about the floor, trunc, and integer division of negative numbers 530

Logarithms 530

Copying signs 531

Trigonometry 531

Calculating the length of the hypotenuse 531

Converting degrees to/from radians 531

Sine, cosine, tangent and inverse functions 531

Hyperbolic sine, cosine and tangent 532

Constants 532

Imaginary Numbers 533

Infinity and NaN ("not a number") 533

Pow for faster exponentiation 536

Complex numbers and the cmath module 536

Chapter 101: Metaclasses 540

Introduction 540

Remarks 540

Examples 540

Basic Metaclasses 540

Singletons using metaclasses 541

Using a metaclass 542

Metaclass syntax 542

Python 2 and 3 compatibility with six 542

Custom functionality with metaclasses 542

Introduction to Metaclasses 543

What is a metaclass? 543

The Simplest Metaclass 543

A Metaclass which does Something 543

The default metaclass 544

Chapter 102: Method Overriding 546

Examples 546

Basic method overriding 546

Chapter 103: Mixins 547

Syntax 547

Remarks 547

Examples 547

Mixin 547

Overriding Methods in Mixins 548

Chapter 104: Multidimensional arrays 550

Examples 550

Lists in lists 550

Lists in lists in lists in... 551

Chapter 105: Multiprocessing 552

Examples 552

Running Two Simple Processes 552

Using Pool and Map 553

Chapter 106: Multithreading 554

Introduction 554

Examples 554

Basics of multithreading 554

Communicating between threads 555

Creating a worker pool 556

Advanced use of multithreads 557

Advanced printer (logger) 557

Stoppable Thread with a while Loop 558

Chapter 107: Mutable vs Immutable (and Hashable) in Python 560

Examples 560

Mutable vs Immutable 560

Immutables 560

Exercise 561

Mutables 561

Exercise 562

Mutable and Immutable as Arguments 562

Exercise 563

Chapter 108: Neo4j and Cypher using Py2Neo 564

Examples 564

Importing and Authenticating 564

Adding Nodes to Neo4j Graph 564

Adding Relationships to Neo4j Graph 564

Query 1 : Autocomplete on News Titles 565

Query 2 : Get News Articles by Location on a particular date 565

Cypher Query Samples 565

Chapter 109: Non-official Python implementations 567

Examples 567

IronPython 567

Hello World 567

External links 567

Jython 567

Hello World 568

External links 568

Transcrypt 568

Code size and speed 568

Integration with HTML 568

Integration with JavaScript and DOM 569

Integration with other JavaScript libraries 569

Relation between Python and JavaScript code 570

External links 571

Chapter 110: Operator module 572

Examples 572

Operators as alternative to an infix operator 572

Methodcaller 572

Itemgetter 572

Chapter 111: Operator Precedence 574

Introduction 574

Remarks 574

Examples 575

Simple Operator Precedence Examples in python. 575

Chapter 112: Optical Character Recognition 576

Introduction 576

Examples 576

PyTesseract 576

PyOCR 576

Chapter 113: os.path 578

Introduction 578

Syntax 578

Examples 578

Join Paths 578

Absolute Path from Relative Path 578

Path Component Manipulation 579

Get the parent directory 579

If the given path exists. 579

check if the given path is a directory, file, symbolic link, mount point etc. 579

Chapter 114: Overloading 581

Examples 581

Magic/Dunder Methods 581

Container and sequence types 582

Callable types 583

Handling unimplemented behaviour 583

Operator overloading 584

Chapter 115: Pandas Transform: Preform operations on groups and concatenate the results 587

Examples 587

Simple transform 587

First, Lets create a dummy dataframe 587

Now, we will use pandas transform function to count the number of orders per customer 587

Multiple results per group 588

Using transform functions that return sub-calculations per group 588

Chapter 116: Parallel computation 590

Remarks 590

Examples 590

Using the multiprocessing module to parallelise tasks 590

Using Parent and Children scripts to execute code in parallel 590

Using a C-extension to parallelize tasks 591

Using PyPar module to parallelize 591

Chapter 117: Parsing Command Line arguments 593

Introduction 593

Examples 593

Hello world in argparse 593

Basic example with docopt 594

Setting mutually exclusive arguments with argparse 594

Using command line arguments with argv 595

Custom parser error message with argparse 596

Conceptual grouping of arguments with argparse.add_argument_group() 596

Advanced example with docopt and docopt_dispatch 598

Chapter 118: Partial functions 599

Introduction 599

Syntax 599

Parameters 599

Remarks 599

Examples 599

Raise the power 599

Chapter 119: Performance optimization 601

Remarks 601

Examples 601

Code profiling 601

Chapter 120: Pickle data serialisation 604

Syntax 604

Parameters 604

Remarks 604

Pickleable types 604

pickle and security 604

Examples 605

Using Pickle to serialize and deserialize an object 605

To serialize the object 605

To deserialize the object 605

Using pickle and byte objects 605

Customize Pickled Data 606

Chapter 121: Pillow 608

Examples 608

Read Image File 608

Convert files to JPEG 608

Chapter 122: pip: PyPI Package Manager 609

Introduction 609

Syntax 609

Remarks 609

Examples 610

Install Packages 610

Install from requirements files 610

Uninstall Packages 610

To list all packages installed using `pip` 610

Upgrade Packages 611

Updating all outdated packages on Linux 611

Updating all outdated packages on Windows 611

Create a requirements.txt file of all packages on the system 612

Create a requirements.txt file of packages only in the current virtualenv 612

Using a certain Python version with pip 612

Installing packages not yet on pip as wheels 613

Note on Installing Pre-Releases 614

Note on Installing Development Versions 614

Chapter 123: Plotting with Matplotlib 617

Introduction 617

Examples 617

A Simple Plot in Matplotlib 617

Adding more features to a simple plot : axis labels, title, axis ticks, grid, and legend 618

Making multiple plots in the same figure by superimposition similar to MATLAB 619

Making multiple Plots in the same figure using plot superimposition with separate plot com 620

Plots with Common X-axis but different Y-axis : Using twinx() 621

Plots with common Y-axis and different X-axis using twiny() 623

Chapter 124: Plugin and Extension Classes 626

Examples 626

Mixins 626

Plugins with Customized Classes 627

Chapter 125: Polymorphism 629

Examples 629

Basic Polymorphism 629

Duck Typing 631

Chapter 126: PostgreSQL 633

Examples 633

Getting Started 633

Installation using pip 633

Basic usage 633

Chapter 127: Processes and Threads 635

Introduction 635

Examples 635

Global Interpreter Lock 635

Running in Multiple Threads 637

Running in Multiple Processes 637

Sharing State Between Threads 637

Sharing State Between Processes 638

Chapter 128: Profiling 640

Examples 640

%%timeit and %timeit in IPython 640

timeit() function 640

timeit command line 640

line_profiler in command line 641

Using cProfile (Preferred Profiler) 641

Chapter 129: Property Objects 643

Remarks 643

Examples 643

Using the @property decorator 643

Using the @property decorator for read-write properties 643

Overriding just a getter, setter or a deleter of a property object 644

Using properties without decorators 644

Chapter 130: py.test 647

Examples 647

Setting up py.test 647

The Code to Test 647

The Testing Code 647

Running The Test 647

Failing Tests 648

Intro to Test Fixtures 648

py.test fixtures to the rescue! 649

Cleaning up after the tests are done. 651

Chapter 131: pyaudio 653

Introduction 653

Remarks 653

Examples 653

Callback Mode Audio I/O 653

Blocking Mode Audio I/O 654

Chapter 132: pyautogui module 656

Introduction 656

Examples 656

Mouse Functions 656

Keyboard Functions 656

ScreenShot And Image Recognition 656

Chapter 133: pygame 657

Introduction 657

Syntax 657

Parameters 657

Examples 657

Installing pygame 657

Pygame's mixer module 658

Initializing 658

Possible Actions 658

Channels 658

Chapter 134: Pyglet 660

Introduction 660

Examples 660

Hello World in Pyglet 660

Installation of Pyglet 660

Playing Sound in Pyglet 660

Using Pyglet for OpenGL 660

Drawing Points Using Pyglet and OpenGL 661

Chapter 135: PyInstaller - Distributing Python Code 662

Syntax 662

Remarks 662

Examples 662

Installation and Setup 662

Using Pyinstaller 663

Bundling to One Folder 663

Advantages: 663

Disadvantages 663

Bundling to a Single File 664

Chapter 136: Python and Excel 665

Examples 665

Put list data into a Excel's file. 665

OpenPyXL 665

Create excel charts with xlsxwriter 666

Read the excel data using xlrd module 668

Format Excel files with xlsxwriter 669

Chapter 137: Python Anti-Patterns 671

Examples 671

Overzealous except clause 671

Looking before you leap with processor-intensive function 672

Dictionary keys 672

Chapter 138: Python concurrency 674

Remarks 674

Examples 674

The threading module 674

The multiprocessing module 674

Passing data between multiprocessing processes 675

Chapter 139: Python Data Types 677

Introduction 677

Examples 677

Numbers data type 677

String Data Type 677

List Data Type 677

Tuple Data Type 677

Dictionary Data Type 678

Set Data Types 678

Chapter 140: Python HTTP Server 679

Examples 679

Running a simple HTTP server 679

Serving files 679

Programmatic API of SimpleHTTPServer 681

Basic handling of GET, POST, PUT using BaseHTTPRequestHandler 682

Chapter 141: Python Lex-Yacc 684

Introduction 684

Remarks 684

Examples 684

Getting Started with PLY 684

The "Hello, World!" of PLY - A Simple Calculator 684

Part 1: Tokenizing Input with Lex 686

Breakdown 687

h22 688

h23 688

h24 688

h25 689

h26 689

h27 689

h28 689

h29 689

h210 689

h211 690

Part 2: Parsing Tokenized Input with Yacc 690

Breakdown 691

h212 692

Chapter 142: Python Networking 694

Remarks 694

Examples 694

The simplest Python socket client-server example 694

Creating a Simple Http Server 694

Creating a TCP server 695

Creating a UDP Server 696

Start Simple HttpServer in a thread and open the browser 696

Chapter 143: Python Persistence 698

Syntax 698

Parameters 698

Examples 698

Python Persistence 698

Function utility for save and load 699

Chapter 144: Python Requests Post 700

Introduction 700

Examples 700

Simple Post 700

Form Encoded Data 701

File Upload 702

Responses 702

Authentication 703

Proxies 704

Chapter 145: Python Serial Communication (pyserial) 705

Syntax 705

Parameters 705

Remarks 705

Examples 705

Initialize serial device 705

Read from serial port 705

Check what serial ports are available on your machine 706

Chapter 146: Python Server Sent Events 707

Introduction 707

Examples 707

Flask SSE 707

Asyncio SSE 707

Chapter 147: Python speed of program 708

Examples 708

Notation 708

List operations 708

Deque operations 709

Set operations 710

Algorithmic Notations... 710

Chapter 148: Python Virtual Environment - virtualenv 712

Introduction 712

Examples 712

Installation 712

Usage 712

Install a package in your Virtualenv 713

Other useful virtualenv commands 713

Chapter 149: Queue Module 714

Introduction 714

Examples 714

Simple example 714

Chapter 150: Raise Custom Errors / Exceptions 715

Introduction 715

Examples 715

Custom Exception 715

Catch custom Exception 715

Chapter 151: Random module 717

Syntax 717

Examples 717

Random and sequences: shuffle, choice and sample 717

shuffle() 717

choice() 717

sample() 717

Creating random integers and floats: randint, randrange, random, and uniform 718

randint() 718

randrange() 718

random 719

uniform 719

Reproducible random numbers: Seed and State 719

Create cryptographically secure random numbers 720

Creating a random user password 721

Random Binary Decision 722

Chapter 152: Reading and Writing CSV 723

Examples 723

Writing a TSV file 723

Python 723

Output file 723

Using pandas 723

Chapter 153: Recursion 724

Remarks 724

Examples 724

Sum of numbers from 1 to n 724

The What, How, and When of Recursion 724

Tree exploration with recursion 728

Increasing the Maximum Recursion Depth 729

Tail Recursion - Bad Practice 729

Tail Recursion Optimization Through Stack Introspection 730

Chapter 154: Reduce 732

Syntax 732

Parameters 732

Remarks 732

Examples 732

Overview 732

Using reduce 733

Cumulative product 734

Non short-circuit variant of any/all 734

First truthy/falsy element of a sequence (or last element if there is none) 734

Chapter 155: Regular Expressions (Regex) 735

Introduction 735

Syntax 735

Examples 735

Matching the beginning of a string 735

Searching 736

Grouping 737

Named groups 738

Non-capturing groups 738

Escaping Special Characters 738

Replacing 739

Replacing strings 739

Using group references 739

Using a replacement function 740

Find All Non-Overlapping Matches 740

Precompiled patterns 740

Checking for allowed characters 741

Splitting a string using regular expressions 741

Flags 741

Flags keyword 741

Inline flags 742

Iterating over matches using `re.finditer` 742

Match an expression only in specific locations 743

Chapter 156: Searching 745

Remarks 745

Examples 745

Getting the index for strings: str.index(), str.rindex() and str.find(), str.rfind() 745

Searching for an element 745

List 745

Tuple 746

String 746

Set 746

Dict 746

Getting the index list and tuples: list.index(), tuple.index() 746

Searching key(s) for a value in dict 747

Getting the index for sorted sequences: bisect.bisect_left() 747

Searching nested sequences 748

Searching in custom classes: __contains__ and __iter__ 749

Chapter 157: Secure Shell Connection in Python 750

Parameters 750

Examples 750

ssh connection 750

Chapter 158: Security and Cryptography 751

Introduction 751

Syntax 751

Remarks 751

Examples 751

Calculating a Message Digest 751

Available Hashing Algorithms 752

Secure Password Hashing 752

File Hashing 752

Symmetric encryption using pycrypto 753

Generating RSA signatures using pycrypto 754

Asymmetric RSA encryption using pycrypto 755

Chapter 159: Set 756

Syntax 756

Remarks 756

Examples 756

Get the unique elements of a list 756

Operations on sets 757

Sets versus multisets 758

Set Operations using Methods and Builtins 759

Intersection 759

Union 759

Difference 759

Symmetric Difference 759

Subset and superset 760

Disjoint sets 760

Testing membership 760

Length 761

Set of Sets 761

Chapter 160: setup.py 762

Parameters 762

Remarks 762

Examples 762

Purpose of setup.py 762

Adding command line scripts to your python package 763

Using source control metadata in setup.py 763

Adding installation options 764

Chapter 161: shelve 766

Introduction 766

Remarks 766

Warning: 766

Restrictions 766

Examples 766

Sample code for shelve 766

To summarize the interface (key is a string, data is an arbitrary object): 767

Creating a new Shelf 767

Write-back 768

Chapter 162: Similarities in syntax, Differences in meaning: Python vs. JavaScript 770

Introduction 770

Examples 770

`in` with lists 770

Chapter 163: Simple Mathematical Operators 771

Introduction 771

Remarks 771

Numerical types and their metaclasses 771

Examples 771

Addition 771

Subtraction 772

Multiplication 772

Division 773

Exponentation 775

Special functions 775

Logarithms 776

Inplace Operations 776

Trigonometric Functions 777

Modulus 777

Chapter 164: Sockets 779

Introduction 779

Parameters 779

Examples 779

Sending data via UDP 779

Receiving data via UDP 779

Sending data via TCP 780

Multi-threaded TCP Socket Server 780

Raw Sockets on Linux 782

Chapter 165: Sockets And Message Encryption/Decryption Between Client and Server 783

Introduction 783

Remarks 783

Examples 786

Server side Implementation 786

Client side Implementation 788

Chapter 166: Sorting, Minimum and Maximum 791

Examples 791

Getting the minimum or maximum of several values 791

Using the key argument 791

Default Argument to max, min 791

Special case: dictionaries 792

By value 792

Getting a sorted sequence 793

Minimum and Maximum of a sequence 793

Make custom classes orderable 794

Extracting N largest or N smallest items from an iterable 796

Chapter 167: Sqlite3 Module 798

Examples 798

Sqlite3 - Not require separate server process. 798

Getting the values from the database and Error handling 798

Chapter 168: Stack 800

Introduction 800

Syntax 800

Remarks 800

Examples 800

Creating a Stack class with a List Object 800

Parsing Parentheses 801

Chapter 169: String Formatting 803

Introduction 803

Syntax 803

Remarks 803

Examples 803

Basics of String Formatting 803

Alignment and padding 805

Format literals (f-string) 805

String formatting with datetime 806

Format using Getitem and Getattr 806

Float formatting 807

Formatting Numerical Values 808

Custom formatting for a class 808

Nested formatting 809

Padding and truncating strings, combined 810

Named placeholders 811

Using a dictionary (Python 2.x) 811

Using a dictionary (Python 3.2+) 811

Without a dictionary: 811

Chapter 170: String Methods 812

Syntax 812

Remarks 813

Examples 813

Changing the capitalization of a string 813

str.casefold() 813

str.upper() 813

str.lower() 814

str.capitalize() 814

str.title() 814

str.swapcase() 814

Usage as str class methods 814

Split a string based on a delimiter into a list of strings 815

str.split(sep=None, maxsplit=-1) 815

str.rsplit(sep=None, maxsplit=-1) 816

Replace all occurrences of one substring with another substring 816

str.replace(old, new[, count]): 816

str.format and f-strings: Format values into a string 817

Counting number of times a substring appears in a string 818

str.count(sub[, start[, end]]) 818

Test the starting and ending characters of a string 819

str.startswith(prefix[, start[, end]]) 819

str.endswith(prefix[, start[, end]]) 819

Testing what a string is composed of 820

str.isalpha 820

str.isupper, str.islower, str.istitle 820

str.isdecimal, str.isdigit, str.isnumeric 821

str.isalnum 821

str.isspace 822

str.translate: Translating characters in a string 822

Stripping unwanted leading/trailing characters from a string 823

str.strip([chars]) 823

str.rstrip([chars]) and str.lstrip([chars]) 823

Case insensitive string comparisons 824

Join a list of strings into one string 825

String module's useful constants 825

string.ascii_letters: 825

string.ascii_lowercase: 826

string.ascii_uppercase: 826

string.digits: 826

string.hexdigits: 826

string.octaldigits: 826

string.punctuation: 826

string.whitespace: 826

string.printable: 827

Reversing a string 827

Justify strings 827

Conversion between str or bytes data and unicode characters 828

String Contains 829

Chapter 171: String representations of class instances: __str__ and __repr__ methods 830

Remarks 830

A note about implemeting both methods 830

Notes 830

Examples 830

Motivation 831

The Problem 832

The Solution (Part 1) 832

The Solution (Part 2) 833

About those duplicated functions... 834

Summary 835

Both methods implemented, eval-round-trip style __repr__() 835

Chapter 172: Subprocess Library 837

Syntax 837

Parameters 837

Examples 837

Calling External Commands 837

More flexibility with Popen 837

Launching a subprocess 838

Waiting on a subprocess to complete 838

Reading output from a subprocess 838

Interactive access to running subprocesses 838

Writing to a subprocess 838

Reading a stream from a subprocess 839

How to create the command list argument 839

Chapter 173: sys 840

Introduction 840

Syntax 840

Remarks 840

Examples 840

Command line arguments 840

Script name 840

Standard error stream 841

Ending the process prematurely and returning an exit code 841

Chapter 174: tempfile NamedTemporaryFile 842

Parameters 842

Examples 842

Create (and write to a) known, persistant temporary file 842

Chapter 175: Templates in python 844

Examples 844

Simple data output program using template 844

Changing delimiter 844

Chapter 176: The __name__ special variable 845

Introduction 845

Remarks 845

Examples 845

__name__ == '__main__' 845

Situation 1 845

Situation 2 845

function_class_or_module.__name__ 846

Use in logging 847

Chapter 177: The base64 Module 848

Introduction 848

Syntax 848

Parameters 848

Remarks 850

Examples 850

Encoding and Decoding Base64 850

Encoding and Decoding Base32 852

Encoding and Decoding Base16 852

Encoding and Decoding ASCII85 853

Encoding and Decoding Base85 853

Chapter 178: The dis module 855

Examples 855

Constants in the dis module 855

What is Python bytecode? 855

Disassembling modules 855

Chapter 179: The Interpreter (Command Line Console) 857

Examples 857

Getting general help 857

Referring to the last expression 857

Opening the Python console 858

The PYTHONSTARTUP variable 858

Command line arguments 858

Getting help about an object 859

Chapter 180: The locale Module 861

Remarks 861

Examples 861

Currency Formatting US Dollars Using the locale Module 861

Chapter 181: The os Module 862

Introduction 862

Syntax 862

Parameters 862

Examples 862

Create a directory 862

Get current directory 862

Determine the name of the operating system 862

Remove a directory 863

Follow a symlink (POSIX) 863

Change permissions on a file 863

makedirs - recursive directory creation 863

Chapter 182: The pass statement 865

Syntax 865

Remarks 865

Examples 867

Ignore an exception 867

Create a new Exception that can be caught 867

Chapter 183: The Print Function 868

Examples 868

Print basics 868

Print parameters 869

Chapter 184: tkinter 871

Introduction 871

Remarks 871

Examples 871

A minimal tkinter Application 871

Geometry Managers 872

Place 872

Pack 873

Grid 873

Chapter 185: Tuple 875

Introduction 875

Syntax 875

Remarks 875

Examples 875

Indexing Tuples 875

Tuples are immutable 876

Tuple Are Element-wise Hashable and Equatable 876

Tuple 877

Packing and Unpacking Tuples 878

Reversing Elements 879

Built-in Tuple Functions 879

Comparison 879

Tuple Length 879

Max of a tuple 880

Min of a tuple 880

Convert a list into tuple 880

Tuple concatenation 880

Chapter 186: Turtle Graphics 881

Examples 881

Ninja Twist (Turtle Graphics) 881

Chapter 187: Type Hints 882

Syntax 882

Remarks 882

Examples 882

Generic Types 882

Adding types to a function 882

Class Members and Methods 883

Variables and Attributes 884

NamedTuple 885

Type hints for keyword arguments 885

Chapter 188: Unicode 886

Examples 886

Encoding and decoding 886

Chapter 189: Unicode and bytes 887

Syntax 887

Parameters 887

Examples 887

Basics 887

Unicode to bytes 887

Bytes to unicode 888

Encoding/decoding error handling 888

Encoding 889

Decoding 889

Morale 889

File I/O 889

Chapter 190: Unit Testing 891

Remarks 891

Examples 891

Testing Exceptions 891

Mocking functions with unittest.mock.create_autospec 892

Test Setup and Teardown within a unittest.TestCase 893

Asserting on Exceptions 894

Choosing Assertions Within Unittests 895

Unit tests with pytest 896

Chapter 191: Unzipping Files 900

Introduction 900

Examples 900

Using Python ZipFile.extractall() to decompress a ZIP file 900

Using Python TarFile.extractall() to decompress a tarball 900

Chapter 192: urllib 901

Examples 901

HTTP GET 901

Python 2 901

Python 3 901

HTTP POST 901

Python 2 902

Python 3 902

Decode received bytes according to content type encoding 902

Chapter 193: Usage of "pip" module: PyPI Package Manager 904

Introduction 904

Syntax 904

Examples 905

Example use of commands 905

Handling ImportError Exception 905

Force install 906

Chapter 194: User-Defined Methods 907

Examples 907

Creating user-defined method objects 907

Turtle example 908

Chapter 195: Using loops within functions 909

Introduction 909

Examples 909

Return statement inside loop in a function 909

Chapter 196: Variable Scope and Binding 910

Syntax 910

Examples 910

Global Variables 910

Local Variables 911

Nonlocal Variables 912

Binding Occurrence 912

Functions skip class scope when looking up names 913

The del command 914

del v 914

del v.name 914

del v[item] 914

del v[a:b] 914

Local vs Global Scope 915

What are local and global scope? 915

What happens with name clashes? 915

Functions within functions 916

global vs nonlocal (Python 3 only) 917

Chapter 197: virtual environment with virtualenvwrapper 919

Introduction 919

Examples 919

Create virtual environment with virtualenvwrapper 919

Chapter 198: Virtual environments 921

Introduction 921

Remarks 921

Examples 921

Creating and using a virtual environment 921

Installing the virtualenv tool 921

Creating a new virtual environment 921

Activating an existing virtual environment 922

Saving and restoring dependencies 922

Exiting a virtual environment 922

Using a virtual environment in a shared host 923

Built-in virtual environments 923

Installing packages in a virtual environment 923

Creating a virtual environment for a different version of python 925

Managing multiple virtual enviroments with virtualenvwrapper 925

Installation 925

Usage 926

Project Directories 926

Discovering which virtual environment you are using 927

Specifying specific python version to use in script on Unix/Linux 927

Using virtualenv with fish shell 927

Making virtual environments using Anaconda 928

Create an environment 928

Activate and deactivate your environment 929

View a list of created environments 929

Remove an environment 929

Checking if running inside a virtual environment 929

Chapter 199: Web scraping with Python 930

Introduction 930

Remarks 930

Useful Python packages for web scraping (alphabetical order) 930

Making requests and collecting data 930

requests 930

requests-cache 930

scrapy 930

selenium 930

HTML parsing 930

BeautifulSoup 930

lxml 931

Examples 931

Basic example of using requests and lxml to scrape some data 931

Maintaining web-scraping session with requests 931

Scraping using the Scrapy framework 931

Modify Scrapy user agent 932

Scraping using BeautifulSoup4 933

Scraping using Selenium WebDriver 933

Simple web content download with urllib.request 933

Scraping with curl 934

Chapter 200: Web Server Gateway Interface (WSGI) 935

Parameters 935

Examples 935

Server Object (Method) 935

Chapter 201: Webbrowser Module 937

Introduction 937

Syntax 937

Parameters 937

Remarks 938

Examples 939

Opening a URL with Default Browser 939

Opening a URL with Different Browsers 939

Chapter 202: Websockets 941

Examples 941

Simple Echo with aiohttp 941

Wrapper Class with aiohttp 941

Using Autobahn as a Websocket Factory 942

Chapter 203: Working around the Global Interpreter Lock (GIL) 944

Remarks 944

Why is there a GIL? 944

Details on how the GIL operates: 944

Benefits of the GIL 944

Consequences of the GIL 945

References: 945

Examples 945

Multiprocessing.Pool 945

David Beazley's code that showed GIL threading problems 946

Cython nogil: 947

David Beazley's code that showed GIL threading problems 947

Re-written using nogil (ONLY WORKS IN CYTHON): 947

Chapter 204: Working with ZIP archives 949

Syntax 949

Remarks 949

Examples 949

Opening Zip Files 949

Examining Zipfile Contents 949

Extracting zip file contents to a directory 950

Creating new archives 950

Chapter 205: Writing extensions 952

Examples 952

Hello World with C Extension 952

Passing an open file to C Extensions 953

C Extension Using c++ and Boost 953

C++ Code 953

Chapter 206: Writing to CSV from String or List 955

Introduction 955

Parameters 955

Remarks 955

Examples 955

Basic Write Example 955

Appending a String as a newline in a CSV file 956

Credits 957

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: python-language

It is an unofficial and free Python Language ebook created for educational purposes. All the
content is extracted from Stack Overflow Documentation, which is written by many hardworking
individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official Python
Language.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/python-language
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Python
Language

Remarks

Python is a widely used programming language. It is:

High-level: Python automates low-level operations such as memory management. It leaves
the programmer with a bit less control but has many benefits including code readability and
minimal code expressions.

•

General-purpose: Python is built to be used in all contexts and environments. An example
for a non-general-purpose language is PHP: it is designed specifically as a server-side web-
development scripting language. In contrast, Python can be used for server-side web-
development, but also for building desktop applications.

•

Dynamically typed: Every variable in Python can reference any type of data. A single
expression may evaluate to data of different types at different times. Due to that, the
following code is possible:

if something:
 x = 1
else:
 x = 'this is a string'
print(x)

•

Strongly typed: During program execution, you are not allowed to do anything that's
incompatible with the type of data you're working with. For example, there are no hidden
conversions from strings to numbers; a string made out of digits will never be treated as a
number unless you convert it explicitly:

1 + '1' # raises an error
1 + int('1') # results with 2

•

Beginner friendly :): Python's syntax and structure are very intuitive. It is high level and
provides constructs intended to enable writing clear programs on both a small and large
scale. Python supports multiple programming paradigms, including object-oriented,
imperative and functional programming or procedural styles. It has a large, comprehensive
standard library and many easy-to-install 3rd party libraries.

•

Its design principles are outlined in The Zen of Python.

Currently, there are two major release branches of Python which have some significant

https://riptutorial.com/ 2

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/dev/peps/pep-0020/

differences. Python 2.x is the legacy version though it still sees widespread use. Python 3.x makes
a set of backwards-incompatible changes which aim to reduce feature duplication. For help
deciding which version is best for you, see this article.

The official Python documentation is also a comprehensive and useful resource, containing
documentation for all versions of Python as well as tutorials to help get you started.

There is one official implementation of the language supplied by Python.org, generally referred to
as CPython, and several alternative implementations of the language on other runtime platforms.
These include IronPython (running Python on the .NET platform), Jython (on the Java runtime)
and PyPy (implementing Python in a subset of itself).

Versions

Python 3.x

Version Release Date

[3.7] 2017-05-08

3.6 2016-12-23

3.5 2015-09-13

3.4 2014-03-17

3.3 2012-09-29

3.2 2011-02-20

3.1 2009-06-26

3.0 2008-12-03

Python 2.x

Version Release Date

2.7 2010-07-03

2.6 2008-10-02

2.5 2006-09-19

2.4 2004-11-30

2.3 2003-07-29

https://riptutorial.com/ 3

https://wiki.python.org/moin/Python2orPython3
https://docs.python.org
http://ironpython.net/
http://www.jython.org/
http://pypy.org/
https://www.python.org/downloads/release/python-360/
https://www.python.org/downloads/release/python-350/
https://www.python.org/download/releases/3.4.0/
https://www.python.org/download/releases/3.3.0/
https://www.python.org/download/releases/3.2/
https://www.python.org/download/releases/3.1/
https://www.python.org/download/releases/3.0/
https://www.python.org/download/releases/2.7/
https://www.python.org/download/releases/2.6/
https://www.python.org/download/releases/2.5/
https://www.python.org/download/releases/2.4/
https://www.python.org/download/releases/2.3/

Version Release Date

2.2 2001-12-21

2.1 2001-04-15

2.0 2000-10-16

Examples

Getting Started

Python is a widely used high-level programming language for general-purpose programming,
created by Guido van Rossum and first released in 1991. Python features a dynamic type system
and automatic memory management and supports multiple programming paradigms, including
object-oriented, imperative, functional programming, and procedural styles. It has a large and
comprehensive standard library.

Two major versions of Python are currently in active use:

Python 3.x is the current version and is under active development.•
Python 2.x is the legacy version and will receive only security updates until 2020. No new
features will be implemented. Note that many projects still use Python 2, although migrating
to Python 3 is getting easier.

•

You can download and install either version of Python here. See Python 3 vs. Python 2 for a
comparison between them. In addition, some third-parties offer re-packaged versions of Python
that add commonly used libraries and other features to ease setup for common use cases, such
as math, data analysis or scientific use. See the list at the official site.

Verify if Python is installed

To confirm that Python was installed correctly, you can verify that by running the following
command in your favorite terminal (If you are using Windows OS, you need to add path of python
to the environment variable before using it in command prompt):

$ python --version

Python 3.x3.0

If you have Python 3 installed, and it is your default version (see Troubleshooting for more
details) you should see something like this:

$ python --version
Python 3.6.0

Python 2.x2.7

https://riptutorial.com/ 4

https://www.python.org/download/releases/2.2/
https://www.python.org/download/releases/2.1/
https://www.python.org/download/releases/2.0/
https://www.python.org/downloads/
http://www.riptutorial.com/python/topic/809/incompatibilities-moving-from-python-2-to-python-3
https://www.python.org/download/alternatives/
http://www.riptutorial.com/python/example/2653/idle---python-gui

If you have Python 2 installed, and it is your default version (see Troubleshooting for more
details) you should see something like this:

$ python --version
Python 2.7.13

If you have installed Python 3, but $ python --version outputs a Python 2 version, you also have
Python 2 installed. This is often the case on MacOS, and many Linux distributions. Use $ python3
instead to explicitly use the Python 3 interpreter.

Hello, World in Python using IDLE

IDLE is a simple editor for Python, that comes bundled with Python.

How to create Hello, World program in IDLE

Open IDLE on your system of choice.
In older versions of Windows, it can be found at All Programs under the Windows menu.○

In Windows 8+, search for IDLE or find it in the apps that are present in your system.○

On Unix-based (including Mac) systems you can open it from the shell by typing $ idle
python_file.py.

○

•

It will open a shell with options along the top.•

In the shell, there is a prompt of three right angle brackets:

>>>

Now write the following code in the prompt:

>>> print("Hello, World")

Hit Enter.

>>> print("Hello, World")
Hello, World

Hello World Python file

Create a new file hello.py that contains the following line:

Python 3.x3.0

print('Hello, World')

Python 2.x2.6

https://riptutorial.com/ 5

http://www.riptutorial.com/python/example/2653/idle---python-gui
https://docs.python.org/2/library/idle.html

You can use the Python 3 print function in Python 2 with the following import statement:

from __future__ import print_function

Python 2 has a number of functionalities that can be optionally imported from Python 3 using the
__future__ module, as discussed here.

Python 2.x2.7

If using Python 2, you may also type the line below. Note that this is not valid in Python 3 and thus
not recommended because it reduces cross-version code compatibility.

print 'Hello, World'

In your terminal, navigate to the directory containing the file hello.py.

Type python hello.py, then hit the Enter key.

$ python hello.py
Hello, World

You should see Hello, World printed to the console.

You can also substitute hello.py with the path to your file. For example, if you have the file in your
home directory and your user is "user" on Linux, you can type python /home/user/hello.py.

Launch an interactive Python shell

By executing (running) the python command in your terminal, you are presented with an interactive
Python shell. This is also known as the Python Interpreter or a REPL (for 'Read Evaluate Print
Loop').

$ python
Python 2.7.12 (default, Jun 28 2016, 08:46:01)
[GCC 6.1.1 20160602] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> print 'Hello, World'
Hello, World
>>>

If you want to run Python 3 from your terminal, execute the command python3.

$ python3
Python 3.6.0 (default, Jan 13 2017, 00:00:00)
[GCC 6.1.1 20160602] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> print('Hello, World')
Hello, World
>>>

https://riptutorial.com/ 6

http://stackoverflow.com/documentation/python/809/incompatibility-between-python-3-and-python-2/6894/use-future-imports#t=201612062212456247425
https://docs.python.org/3.6/tutorial/interpreter.html

Alternatively, start the interactive prompt and load file with python -i <file.py>.

In command line, run:

$ python -i hello.py
"Hello World"
>>>

There are multiple ways to close the Python shell:

>>> exit()

or

>>> quit()

Alternatively, CTRL + D will close the shell and put you back on your terminal's command line.

If you want to cancel a command you're in the middle of typing and get back to a clean command
prompt, while staying inside the Interpreter shell, use CTRL + C.

Try an interactive Python shell online.

Other Online Shells

Various websites provide online access to Python shells.

Online shells may be useful for the following purposes:

Run a small code snippet from a machine which lacks python installation(smartphones,
tablets etc).

•

Learn or teach basic Python.•
Solve online judge problems.•

Examples:

Disclaimer: documentation author(s) are not affiliated with any resources listed below.

https://www.python.org/shell/ - The online Python shell hosted by the official Python website.•
https://ideone.com/ - Widely used on the Net to illustrate code snippet behavior.•
https://repl.it/languages/python3 - Powerful and simple online compiler, IDE and interpreter.
Code, compile, and run code in Python.

•

https://www.tutorialspoint.com/execute_python_online.php - Full-featured UNIX shell, and a
user-friendly project explorer.

•

http://rextester.com/l/python3_online_compiler - Simple and easy to use IDE which shows
execution time

•

https://riptutorial.com/ 7

https://www.python.org/shell/
https://www.python.org/shell/
https://ideone.com/
https://repl.it/languages/python3
https://www.tutorialspoint.com/execute_python_online.php
http://rextester.com/l/python3_online_compiler

Run commands as a string

Python can be passed arbitrary code as a string in the shell:

$ python -c 'print("Hello, World")'
Hello, World

This can be useful when concatenating the results of scripts together in the shell.

Shells and Beyond

Package Management - The PyPA recommended tool for installing Python packages is PIP. To
install, on your command line execute pip install <the package name>. For instance, pip install
numpy. (Note: On windows you must add pip to your PATH environment variables. To avoid this,
use python -m pip install <the package name>)

Shells - So far, we have discussed different ways to run code using Python's native interactive
shell. Shells use Python's interpretive power for experimenting with code real-time. Alternative
shells include IDLE - a pre-bundled GUI, IPython - known for extending the interactive experience,
etc.

Programs - For long-term storage you can save content to .py files and edit/execute them as
scripts or programs with external tools e.g. shell, IDEs (such as PyCharm), Jupyter notebooks, etc.
Intermediate users may use these tools; however, the methods discussed here are sufficient for
getting started.

Python tutor allows you to step through Python code so you can visualize how the program will
flow, and helps you to understand where your program went wrong.

PEP8 defines guidelines for formatting Python code. Formatting code well is important so you can
quickly read what the code does.

Creating variables and assigning values

To create a variable in Python, all you need to do is specify the variable name, and then assign a
value to it.

<variable name> = <value>

Python uses = to assign values to variables. There's no need to declare a variable in advance (or
to assign a data type to it), assigning a value to a variable itself declares and initializes the variable
with that value. There's no way to declare a variable without assigning it an initial value.

Integer
a = 2
print(a)

https://riptutorial.com/ 8

https://pip.pypa.io/en/stable/
https://docs.python.org/3/library/idle.html
https://ipython.org/install.html
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://www.jetbrains.com/pycharm/download/
https://github.com/jupyter/notebook
http://www.pythontutor.com/visualize.html#mode=edit
https://www.python.org/dev/peps/pep-0008/

Output: 2

Integer
b = 9223372036854775807
print(b)
Output: 9223372036854775807

Floating point
pi = 3.14
print(pi)
Output: 3.14

String
c = 'A'
print(c)
Output: A

String
name = 'John Doe'
print(name)
Output: John Doe

Boolean
q = True
print(q)
Output: True

Empty value or null data type
x = None
print(x)
Output: None

Variable assignment works from left to right. So the following will give you an syntax error.

0 = x
=> Output: SyntaxError: can't assign to literal

You can not use python's keywords as a valid variable name. You can see the list of keyword by:

import keyword
print(keyword.kwlist)

Rules for variable naming:

Variables names must start with a letter or an underscore.1.

 x = True # valid
 _y = True # valid

 9x = False # starts with numeral
 => SyntaxError: invalid syntax

 $y = False # starts with symbol
 => SyntaxError: invalid syntax

https://riptutorial.com/ 9

The remainder of your variable name may consist of letters, numbers and underscores.2.

has_0_in_it = "Still Valid"

Names are case sensitive.3.

x = 9
y = X*5
=>NameError: name 'X' is not defined

Even though there's no need to specify a data type when declaring a variable in Python, while
allocating the necessary area in memory for the variable, the Python interpreter automatically
picks the most suitable built-in type for it:

a = 2
print(type(a))
Output: <type 'int'>

b = 9223372036854775807
print(type(b))
Output: <type 'int'>

pi = 3.14
print(type(pi))
Output: <type 'float'>

c = 'A'
print(type(c))
Output: <type 'str'>

name = 'John Doe'
print(type(name))
Output: <type 'str'>

q = True
print(type(q))
Output: <type 'bool'>

x = None
print(type(x))
Output: <type 'NoneType'>

Now you know the basics of assignment, let's get this subtlety about assignment in python out of
the way.

When you use = to do an assignment operation, what's on the left of = is a name for the object on
the right. Finally, what = does is assign the reference of the object on the right to the name on the
left.

That is:

a_name = an_object # "a_name" is now a name for the reference to the object "an_object"

https://riptutorial.com/ 10

http://www.riptutorial.com/python/example/2926/datatypes

So, from many assignment examples above, if we pick pi = 3.14, then pi is a name (not the name,
since an object can have multiple names) for the object 3.14. If you don't understand something
below, come back to this point and read this again! Also, you can take a look at this for a better
understanding.

You can assign multiple values to multiple variables in one line. Note that there must be the same
number of arguments on the right and left sides of the = operator:

a, b, c = 1, 2, 3
print(a, b, c)
Output: 1 2 3

a, b, c = 1, 2
=> Traceback (most recent call last):
=> File "name.py", line N, in <module>
=> a, b, c = 1, 2
=> ValueError: need more than 2 values to unpack

a, b = 1, 2, 3
=> Traceback (most recent call last):
=> File "name.py", line N, in <module>
=> a, b = 1, 2, 3
=> ValueError: too many values to unpack

The error in last example can be obviated by assigning remaining values to equal number of
arbitrary variables. This dummy variable can have any name, but it is conventional to use the
underscore (_) for assigning unwanted values:

a, b, _ = 1, 2, 3
print(a, b)
Output: 1, 2

Note that the number of _ and number of remaining values must be equal. Otherwise 'too many
values to unpack error' is thrown as above:

a, b, _ = 1,2,3,4
=>Traceback (most recent call last):
=>File "name.py", line N, in <module>
=>a, b, _ = 1,2,3,4
=>ValueError: too many values to unpack (expected 3)

You can also assign a single value to several variables simultaneously.

a = b = c = 1
print(a, b, c)
Output: 1 1 1

When using such cascading assignment, it is important to note that all three variables a, b and c
refer to the same object in memory, an int object with the value of 1. In other words, a, b and c are
three different names given to the same int object. Assigning a different object to one of them
afterwards doesn't change the others, just as expected:

https://riptutorial.com/ 11

http://effbot.org/zone/python-objects.htm

a = b = c = 1 # all three names a, b and c refer to same int object with value 1
print(a, b, c)
Output: 1 1 1
b = 2 # b now refers to another int object, one with a value of 2
print(a, b, c)
Output: 1 2 1 # so output is as expected.

The above is also true for mutable types (like list, dict, etc.) just as it is true for immutable types
(like int, string, tuple, etc.):

x = y = [7, 8, 9] # x and y refer to the same list object just created, [7, 8, 9]
x = [13, 8, 9] # x now refers to a different list object just created, [13, 8, 9]
print(y) # y still refers to the list it was first assigned
Output: [7, 8, 9]

So far so good. Things are a bit different when it comes to modifying the object (in contrast to
assigning the name to a different object, which we did above) when the cascading assignment is
used for mutable types. Take a look below, and you will see it first hand:

x = y = [7, 8, 9] # x and y are two different names for the same list object just created,
[7, 8, 9]
x[0] = 13 # we are updating the value of the list [7, 8, 9] through one of its
names, x in this case
print(y) # printing the value of the list using its other name
Output: [13, 8, 9] # hence, naturally the change is reflected

Nested lists are also valid in python. This means that a list can contain another list as an element.

x = [1, 2, [3, 4, 5], 6, 7] # this is nested list
print x[2]
Output: [3, 4, 5]
print x[2][1]
Output: 4

Lastly, variables in Python do not have to stay the same type as which they were first defined --
you can simply use = to assign a new value to a variable, even if that value is of a different type.

a = 2
print(a)
Output: 2

a = "New value"
print(a)
Output: New value

If this bothers you, think about the fact that what's on the left of = is just a name for an object. First
you call the int object with value 2 a, then you change your mind and decide to give the name a to
a string object, having value 'New value'. Simple, right?

User Input

https://riptutorial.com/ 12

Interactive input

To get input from the user, use the input function (note: in Python 2.x, the function is called
raw_input instead, although Python 2.x has its own version of input that is completely different):

Python 2.x2.3

name = raw_input("What is your name? ")
Out: What is your name? _

Security Remark Do not use input() in Python2 - the entered text will be evaluated as
if it were a Python expression (equivalent to eval(input()) in Python3), which might
easily become a vulnerability. See this article for further information on the risks of
using this function.

Python 3.x3.0

name = input("What is your name? ")
Out: What is your name? _

The remainder of this example will be using Python 3 syntax.

The function takes a string argument, which displays it as a prompt and returns a string. The
above code provides a prompt, waiting for the user to input.

name = input("What is your name? ")
Out: What is your name?

If the user types "Bob" and hits enter, the variable name will be assigned to the string "Bob":

name = input("What is your name? ")
Out: What is your name? Bob
print(name)
Out: Bob

Note that the input is always of type str, which is important if you want the user to enter numbers.
Therefore, you need to convert the str before trying to use it as a number:

x = input("Write a number:")
Out: Write a number: 10
x / 2
Out: TypeError: unsupported operand type(s) for /: 'str' and 'int'
float(x) / 2
Out: 5.0

NB: It's recommended to use try/except blocks to catch exceptions when dealing with user inputs.
For instance, if your code wants to cast a raw_input into an int, and what the user writes is
uncastable, it raises a ValueError.

IDLE - Python GUI

https://riptutorial.com/ 13

https://docs.python.org/2/library/functions.html#input
https://medium.com/@GallegoDor/python-exploitation-1-input-ac10d3f4491f#.cr6w4z7q8
http://www.riptutorial.com/python/example/5530/catching-exceptions
http://www.riptutorial.com/python/example/5530/catching-exceptions
http://www.riptutorial.com/python/example/5530/catching-exceptions
http://www.riptutorial.com/python/example/5530/catching-exceptions
http://www.riptutorial.com/python/example/8484/practical-examples-of-exception-handling

IDLE is Python’s Integrated Development and Learning Environment and is an alternative to the
command line. As the name may imply, IDLE is very useful for developing new code or learning
python. On Windows this comes with the Python interpreter, but in other operating systems you
may need to install it through your package manager.

The main purposes of IDLE are:

Multi-window text editor with syntax highlighting, autocompletion, and smart indent•
Python shell with syntax highlighting•
Integrated debugger with stepping, persistent breakpoints, and call stack visibility•
Automatic indentation (useful for beginners learning about Python's indentation)•
Saving the Python program as .py files and run them and edit them later at any them using
IDLE.

•

In IDLE, hit F5 or run Python Shell to launch an interpreter. Using IDLE can be a better learning
experience for new users because code is interpreted as the user writes.

Note that there are lots of alternatives, see for example this discussion or this list.

Troubleshooting

Windows

If you're on Windows, the default command is python. If you receive a "'python' is not
recognized" error, the most likely cause is that Python's location is not in your system's PATH
environment variable. This can be accessed by right-clicking on 'My Computer' and selecting
'Properties' or by navigating to 'System' through 'Control Panel'. Click on 'Advanced system
settings' and then 'Environment Variables...'. Edit the PATH variable to include the directory of
your Python installation, as well as the Script folder (usually C:\Python27;C:\Python27\Scripts
). This requires administrative privileges and may require a restart.

When using multiple versions of Python on the same machine, a possible solution is to
rename one of the python.exe files. For example, naming one version python27.exe would
cause python27 to become the Python command for that version.

You can also use the Python Launcher for Windows, which is available through the installer
and comes by default. It allows you to select the version of Python to run by using py -[x.y]
instead of python[x.y]. You can use the latest version of Python 2 by running scripts with py
-2 and the latest version of Python 3 by running scripts with py -3.

•

Debian/Ubuntu/MacOS

This section assumes that the location of the python executable has been added to the PATH
environment variable.

If you're on Debian/Ubuntu/MacOS, open the terminal and type python for Python 2.x or
python3 for Python 3.x.

Type which python to see which Python interpreter will be used.

•

https://riptutorial.com/ 14

http://stackoverflow.com/questions/81584/what-ide-to-use-for-python
https://wiki.python.org/moin/PythonEditors

Arch Linux

The default Python on Arch Linux (and descendants) is Python 3, so use python or python3
for Python 3.x and python2 for Python 2.x.

•

Other systems

Python 3 is sometimes bound to python instead of python3. To use Python 2 on these
systems where it is installed, you can use python2.

•

Datatypes

Built-in Types

Booleans

bool: A boolean value of either True or False. Logical operations like and, or, not can be performed
on booleans.

x or y # if x is False then y otherwise x
x and y # if x is False then x otherwise y
not x # if x is True then False, otherwise True

In Python 2.x and in Python 3.x, a boolean is also an int. The bool type is a subclass of the int
type and True and False are its only instances:

issubclass(bool, int) # True

isinstance(True, bool) # True
isinstance(False, bool) # True

If boolean values are used in arithmetic operations, their integer values (1 and 0 for True and False)
will be used to return an integer result:

True + False == 1 # 1 + 0 == 1
True * True == 1 # 1 * 1 == 1

Numbers

int: Integer number

a = 2
b = 100
c = 123456789
d = 38563846326424324

Integers in Python are of arbitrary sizes.

•

https://riptutorial.com/ 15

Note: in older versions of Python, a long type was available and this was distinct from int.
The two have been unified.

float: Floating point number; precision depends on the implementation and system
architecture, for CPython the float datatype corresponds to a C double.

a = 2.0
b = 100.e0
c = 123456789.e1

•

complex: Complex numbers

a = 2 + 1j
b = 100 + 10j

•

The <, <=, > and >= operators will raise a TypeError exception when any operand is a complex
number.

Strings

Python 3.x3.0

str: a unicode string. The type of 'hello'•
bytes: a byte string. The type of b'hello'•

Python 2.x2.7

str: a byte string. The type of 'hello'•
bytes: synonym for str•
unicode: a unicode string. The type of u'hello'•

Sequences and collections

Python differentiates between ordered sequences and unordered collections (such as set and dict
).

strings (str, bytes, unicode) are sequences•

reversed: A reversed order of str with reversed function

a = reversed('hello')

•

tuple: An ordered collection of n values of any type (n >= 0).

a = (1, 2, 3)
b = ('a', 1, 'python', (1, 2))
b[2] = 'something else' # returns a TypeError

•

https://riptutorial.com/ 16

Supports indexing; immutable; hashable if all its members are hashable

list: An ordered collection of n values (n >= 0)

a = [1, 2, 3]
b = ['a', 1, 'python', (1, 2), [1, 2]]
b[2] = 'something else' # allowed

Not hashable; mutable.

•

set: An unordered collection of unique values. Items must be hashable.

a = {1, 2, 'a'}

•

dict: An unordered collection of unique key-value pairs; keys must be hashable.

a = {1: 'one',
 2: 'two'}

b = {'a': [1, 2, 3],
 'b': 'a string'}

•

An object is hashable if it has a hash value which never changes during its lifetime (it
needs a __hash__() method), and can be compared to other objects (it needs an
__eq__() method). Hashable objects which compare equality must have the same hash
value.

Built-in constants

In conjunction with the built-in datatypes there are a small number of built-in constants in the built-
in namespace:

True: The true value of the built-in type bool•
False: The false value of the built-in type bool•
None: A singleton object used to signal that a value is absent.•
Ellipsis or ...: used in core Python3+ anywhere and limited usage in Python2.7+ as part of
array notation. numpy and related packages use this as a 'include everything' reference in
arrays.

•

NotImplemented: a singleton used to indicate to Python that a special method doesn't support
the specific arguments, and Python will try alternatives if available.

•

a = None # No value will be assigned. Any valid datatype can be assigned later

Python 3.x3.0

None doesn't have any natural ordering. Using ordering comparison operators (<, <=, >=, >) isn't
supported anymore and will raise a TypeError.

Python 2.x2.7

https://riptutorial.com/ 17

https://docs.python.org/3.5/glossary.html
https://docs.python.org/3.5/glossary.html

None is always less than any number (None < -32 evaluates to True).

Testing the type of variables

In python, we can check the datatype of an object using the built-in function type.

a = '123'
print(type(a))
Out: <class 'str'>
b = 123
print(type(b))
Out: <class 'int'>

In conditional statements it is possible to test the datatype with isinstance. However, it is usually
not encouraged to rely on the type of the variable.

i = 7
if isinstance(i, int):
 i += 1
elif isinstance(i, str):
 i = int(i)
 i += 1

For information on the differences between type() and isinstance() read: Differences between
isinstance and type in Python

To test if something is of NoneType:

x = None
if x is None:
 print('Not a surprise, I just defined x as None.')

Converting between datatypes

You can perform explicit datatype conversion.

For example, '123' is of str type and it can be converted to integer using int function.

a = '123'
b = int(a)

Converting from a float string such as '123.456' can be done using float function.

a = '123.456'
b = float(a)
c = int(a) # ValueError: invalid literal for int() with base 10: '123.456'
d = int(b) # 123

https://riptutorial.com/ 18

https://stackoverflow.com/questions/1549801/differences-between-isinstance-and-type-in-python
https://stackoverflow.com/questions/1549801/differences-between-isinstance-and-type-in-python

You can also convert sequence or collection types

a = 'hello'
list(a) # ['h', 'e', 'l', 'l', 'o']
set(a) # {'o', 'e', 'l', 'h'}
tuple(a) # ('h', 'e', 'l', 'l', 'o')

Explicit string type at definition of literals

With one letter labels just in front of the quotes you can tell what type of string you want to define.

b'foo bar': results bytes in Python 3, str in Python 2•
u'foo bar': results str in Python 3, unicode in Python 2•
'foo bar': results str•
r'foo bar': results so called raw string, where escaping special characters is not necessary,
everything is taken verbatim as you typed

•

normal = 'foo\nbar' # foo
 # bar
escaped = 'foo\\nbar' # foo\nbar
raw = r'foo\nbar' # foo\nbar

Mutable and Immutable Data Types

An object is called mutable if it can be changed. For example, when you pass a list to some
function, the list can be changed:

def f(m):
 m.append(3) # adds a number to the list. This is a mutation.

x = [1, 2]
f(x)
x == [1, 2] # False now, since an item was added to the list

An object is called immutable if it cannot be changed in any way. For example, integers are
immutable, since there's no way to change them:

def bar():
 x = (1, 2)
 g(x)
 x == (1, 2) # Will always be True, since no function can change the object (1, 2)

Note that variables themselves are mutable, so we can reassign the variable x, but this does not
change the object that x had previously pointed to. It only made x point to a new object.

Data types whose instances are mutable are called mutable data types, and similarly for
immutable objects and datatypes.

https://riptutorial.com/ 19

Examples of immutable Data Types:

int, long, float, complex•
str•
bytes•
tuple•
frozenset•

Examples of mutable Data Types:

bytearray•
list•
set•
dict•

Built in Modules and Functions

A module is a file containing Python definitions and statements. Function is a piece of code which
execute some logic.

>>> pow(2,3) #8

To check the built in function in python we can use dir(). If called without an argument, return the
names in the current scope. Else, return an alphabetized list of names comprising (some of) the
attribute of the given object, and of attributes reachable from it.

>>> dir(__builtins__)
[
 'ArithmeticError',
 'AssertionError',
 'AttributeError',
 'BaseException',
 'BufferError',
 'BytesWarning',
 'DeprecationWarning',
 'EOFError',
 'Ellipsis',
 'EnvironmentError',
 'Exception',
 'False',
 'FloatingPointError',
 'FutureWarning',
 'GeneratorExit',
 'IOError',
 'ImportError',
 'ImportWarning',
 'IndentationError',
 'IndexError',
 'KeyError',
 'KeyboardInterrupt',
 'LookupError',
 'MemoryError',
 'NameError',
 'None',
 'NotImplemented',
 'NotImplementedError',

https://riptutorial.com/ 20

 'OSError',
 'OverflowError',
 'PendingDeprecationWarning',
 'ReferenceError',
 'RuntimeError',
 'RuntimeWarning',
 'StandardError',
 'StopIteration',
 'SyntaxError',
 'SyntaxWarning',
 'SystemError',
 'SystemExit',
 'TabError',
 'True',
 'TypeError',
 'UnboundLocalError',
 'UnicodeDecodeError',
 'UnicodeEncodeError',
 'UnicodeError',
 'UnicodeTranslateError',
 'UnicodeWarning',
 'UserWarning',
 'ValueError',
 'Warning',
 'ZeroDivisionError',
 '__debug__',
 '__doc__',
 '__import__',
 '__name__',
 '__package__',
 'abs',
 'all',
 'any',
 'apply',
 'basestring',
 'bin',
 'bool',
 'buffer',
 'bytearray',
 'bytes',
 'callable',
 'chr',
 'classmethod',
 'cmp',
 'coerce',
 'compile',
 'complex',
 'copyright',
 'credits',
 'delattr',
 'dict',
 'dir',
 'divmod',
 'enumerate',
 'eval',
 'execfile',
 'exit',
 'file',
 'filter',
 'float',
 'format',

https://riptutorial.com/ 21

 'frozenset',
 'getattr',
 'globals',
 'hasattr',
 'hash',
 'help',
 'hex',
 'id',
 'input',
 'int',
 'intern',
 'isinstance',
 'issubclass',
 'iter',
 'len',
 'license',
 'list',
 'locals',
 'long',
 'map',
 'max',
 'memoryview',
 'min',
 'next',
 'object',
 'oct',
 'open',
 'ord',
 'pow',
 'print',
 'property',
 'quit',
 'range',
 'raw_input',
 'reduce',
 'reload',
 'repr',
 'reversed',
 'round',
 'set',
 'setattr',
 'slice',
 'sorted',
 'staticmethod',
 'str',
 'sum',
 'super',
 'tuple',
 'type',
 'unichr',
 'unicode',
 'vars',
 'xrange',
 'zip'
]

To know the functionality of any function, we can use built in function help .

>>> help(max)
Help on built-in function max in module __builtin__:

https://riptutorial.com/ 22

max(...)
 max(iterable[, key=func]) -> value
 max(a, b, c, ...[, key=func]) -> value
 With a single iterable argument, return its largest item.
 With two or more arguments, return the largest argument.

Built in modules contains extra functionalities.For example to get square root of a number we need
to include math module.

>>> import math
>>> math.sqrt(16) # 4.0

To know all the functions in a module we can assign the functions list to a variable, and then print
the variable.

>>> import math
>>> dir(math)

 ['__doc__', '__name__', '__package__', 'acos', 'acosh',
 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'copysign',
 'cos', 'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1',
 'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma',
 'hypot', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log', 'log10',
 'log1p', 'modf', 'pi', 'pow', 'radians', 'sin', 'sinh', 'sqrt',
 'tan', 'tanh', 'trunc']

it seems __doc__ is useful to provide some documentation in, say, functions

>>> math.__doc__
'This module is always available. It provides access to the\nmathematical
 functions defined by the C standard.'

In addition to functions, documentation can also be provided in modules. So, if you have a file
named helloWorld.py like this:

"""This is the module docstring."""

def sayHello():
 """This is the function docstring."""
 return 'Hello World'

You can access its docstrings like this:

>>> import helloWorld
>>> helloWorld.__doc__
'This is the module docstring.'
>>> helloWorld.sayHello.__doc__
'This is the function docstring.'

For any user defined type, its attributes, its class's attributes, and recursively the attributes of
its class's base classes can be retrieved using dir()

•

https://riptutorial.com/ 23

>>> class MyClassObject(object):
... pass
...
>>> dir(MyClassObject)
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__',
'__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__',
'__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__']

Any data type can be simply converted to string using a builtin function called str. This function is
called by default when a data type is passed to print

>>> str(123) # "123"

Block Indentation

Python uses indentation to define control and loop constructs. This contributes to Python's
readability, however, it requires the programmer to pay close attention to the use of whitespace.
Thus, editor miscalibration could result in code that behaves in unexpected ways.

Python uses the colon symbol (:) and indentation for showing where blocks of code begin and end
(If you come from another language, do not confuse this with somehow being related to the
ternary operator). That is, blocks in Python, such as functions, loops, if clauses and other
constructs, have no ending identifiers. All blocks start with a colon and then contain the indented
lines below it.

For example:

def my_function(): # This is a function definition. Note the colon (:)
 a = 2 # This line belongs to the function because it's indented
 return a # This line also belongs to the same function
print(my_function()) # This line is OUTSIDE the function block

or

if a > b: # If block starts here
 print(a) # This is part of the if block
else: # else must be at the same level as if
 print(b) # This line is part of the else block

Blocks that contain exactly one single-line statement may be put on the same line, though this
form is generally not considered good style:

if a > b: print(a)
else: print(b)

Attempting to do this with more than a single statement will not work:

if x > y: y = x
 print(y) # IndentationError: unexpected indent

https://riptutorial.com/ 24

https://en.wikipedia.org/wiki/%3F:

if x > y: while y != z: y -= 1 # SyntaxError: invalid syntax

An empty block causes an IndentationError. Use pass (a command that does nothing) when you
have a block with no content:

def will_be_implemented_later():
 pass

Spaces vs. Tabs

In short: always use 4 spaces for indentation.

Using tabs exclusively is possible but PEP 8, the style guide for Python code, states that spaces
are preferred.

Python 3.x3.0

Python 3 disallows mixing the use of tabs and spaces for indentation. In such case a compile-time
error is generated: Inconsistent use of tabs and spaces in indentation and the program will not
run.

Python 2.x2.7

Python 2 allows mixing tabs and spaces in indentation; this is strongly discouraged. The tab
character completes the previous indentation to be a multiple of 8 spaces. Since it is common that
editors are configured to show tabs as multiple of 4 spaces, this can cause subtle bugs.

Citing PEP 8:

When invoking the Python 2 command line interpreter with the -t option, it issues
warnings about code that illegally mixes tabs and spaces. When using -tt these
warnings become errors. These options are highly recommended!

Many editors have "tabs to spaces" configuration. When configuring the editor, one should
differentiate between the tab character ('\t') and the Tab key.

The tab character should be configured to show 8 spaces, to match the language semantics
- at least in cases when (accidental) mixed indentation is possible. Editors can also
automatically convert the tab character to spaces.

•

However, it might be helpful to configure the editor so that pressing the Tab key will insert 4
spaces, instead of inserting a tab character.

•

Python source code written with a mix of tabs and spaces, or with non-standard number of
indentation spaces can be made pep8-conformant using autopep8. (A less powerful alternative
comes with most Python installations: reindent.py)

Collection Types

https://riptutorial.com/ 25

https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://docs.python.org/2/reference/lexical_analysis.html#indentation
https://docs.python.org/2/reference/lexical_analysis.html#indentation
https://docs.python.org/2/reference/lexical_analysis.html#indentation
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
http://stackoverflow.com/questions/2625294/how-do-i-autoformat-some-python-code-to-be-correctly-formatted
https://pypi.python.org/pypi/Reindent/0.1.0

There are a number of collection types in Python. While types such as int and str hold a single
value, collection types hold multiple values.

Lists

The list type is probably the most commonly used collection type in Python. Despite its name, a
list is more like an array in other languages, mostly JavaScript. In Python, a list is merely an
ordered collection of valid Python values. A list can be created by enclosing values, separated by
commas, in square brackets:

int_list = [1, 2, 3]
string_list = ['abc', 'defghi']

A list can be empty:

empty_list = []

The elements of a list are not restricted to a single data type, which makes sense given that
Python is a dynamic language:

mixed_list = [1, 'abc', True, 2.34, None]

A list can contain another list as its element:

nested_list = [['a', 'b', 'c'], [1, 2, 3]]

The elements of a list can be accessed via an index, or numeric representation of their position.
Lists in Python are zero-indexed meaning that the first element in the list is at index 0, the second
element is at index 1 and so on:

names = ['Alice', 'Bob', 'Craig', 'Diana', 'Eric']
print(names[0]) # Alice
print(names[2]) # Craig

Indices can also be negative which means counting from the end of the list (-1 being the index of
the last element). So, using the list from the above example:

print(names[-1]) # Eric
print(names[-4]) # Bob

Lists are mutable, so you can change the values in a list:

names[0] = 'Ann'
print(names)
Outputs ['Ann', 'Bob', 'Craig', 'Diana', 'Eric']

Besides, it is possible to add and/or remove elements from a list:

https://riptutorial.com/ 26

Append object to end of list with L.append(object), returns None.

names = ['Alice', 'Bob', 'Craig', 'Diana', 'Eric']
names.append("Sia")
print(names)
Outputs ['Alice', 'Bob', 'Craig', 'Diana', 'Eric', 'Sia']

Add a new element to list at a specific index. L.insert(index, object)

names.insert(1, "Nikki")
print(names)
Outputs ['Alice', 'Nikki', 'Bob', 'Craig', 'Diana', 'Eric', 'Sia']

Remove the first occurrence of a value with L.remove(value), returns None

names.remove("Bob")
print(names) # Outputs ['Alice', 'Nikki', 'Craig', 'Diana', 'Eric', 'Sia']

Get the index in the list of the first item whose value is x. It will show an error if there is no such
item.

name.index("Alice")
0

Count length of list

len(names)
6

count occurrence of any item in list

a = [1, 1, 1, 2, 3, 4]
a.count(1)
3

Reverse the list

a.reverse()
[4, 3, 2, 1, 1, 1]
or
a[::-1]
[4, 3, 2, 1, 1, 1]

Remove and return item at index (defaults to the last item) with L.pop([index]), returns the item

names.pop() # Outputs 'Sia'

You can iterate over the list elements like below:

for element in my_list:

https://riptutorial.com/ 27

 print (element)

Tuples

A tuple is similar to a list except that it is fixed-length and immutable. So the values in the tuple
cannot be changed nor the values be added to or removed from the tuple. Tuples are commonly
used for small collections of values that will not need to change, such as an IP address and port.
Tuples are represented with parentheses instead of square brackets:

ip_address = ('10.20.30.40', 8080)

The same indexing rules for lists also apply to tuples. Tuples can also be nested and the values
can be any valid Python valid.

A tuple with only one member must be defined (note the comma) this way:

one_member_tuple = ('Only member',)

or

one_member_tuple = 'Only member', # No brackets

or just using tuple syntax

one_member_tuple = tuple(['Only member'])

Dictionaries

A dictionary in Python is a collection of key-value pairs. The dictionary is surrounded by curly
braces. Each pair is separated by a comma and the key and value are separated by a colon. Here
is an example:

state_capitals = {
 'Arkansas': 'Little Rock',
 'Colorado': 'Denver',
 'California': 'Sacramento',
 'Georgia': 'Atlanta'
}

To get a value, refer to it by its key:

ca_capital = state_capitals['California']

You can also get all of the keys in a dictionary and then iterate over them:

for k in state_capitals.keys():
 print('{} is the capital of {}'.format(state_capitals[k], k))

https://riptutorial.com/ 28

Dictionaries strongly resemble JSON syntax. The native json module in the Python standard
library can be used to convert between JSON and dictionaries.

set

A set is a collection of elements with no repeats and without insertion order but sorted order. They
are used in situations where it is only important that some things are grouped together, and not
what order they were included. For large groups of data, it is much faster to check whether or not
an element is in a set than it is to do the same for a list.

Defining a set is very similar to defining a dictionary:

first_names = {'Adam', 'Beth', 'Charlie'}

Or you can build a set using an existing list:

my_list = [1,2,3]
my_set = set(my_list)

Check membership of the set using in:

if name in first_names:
 print(name)

You can iterate over a set exactly like a list, but remember: the values will be in a arbitrary,
implementation-defined order.

defaultdict

A defaultdict is a dictionary with a default value for keys, so that keys for which no value has been
explicitly defined can be accessed without errors. defaultdict is especially useful when the values
in the dictionary are collections (lists, dicts, etc) in the sense that it does not need to be initialized
every time when a new key is used.

A defaultdict will never raise a KeyError. Any key that does not exist gets the default value
returned.

For example, consider the following dictionary

>>> state_capitals = {
 'Arkansas': 'Little Rock',
 'Colorado': 'Denver',
 'California': 'Sacramento',
 'Georgia': 'Atlanta'
}

If we try to access a non-existent key, python returns us an error as follows

>>> state_capitals['Alabama']
Traceback (most recent call last):

https://riptutorial.com/ 29

 File "<ipython-input-61-236329695e6f>", line 1, in <module>
 state_capitals['Alabama']

KeyError: 'Alabama'

Let us try with a defaultdict. It can be found in the collections module.

>>> from collections import defaultdict
>>> state_capitals = defaultdict(lambda: 'Boston')

What we did here is to set a default value (Boston) in case the give key does not exist. Now
populate the dict as before:

>>> state_capitals['Arkansas'] = 'Little Rock'
>>> state_capitals['California'] = 'Sacramento'
>>> state_capitals['Colorado'] = 'Denver'
>>> state_capitals['Georgia'] = 'Atlanta'

If we try to access the dict with a non-existent key, python will return us the default value i.e.
Boston

>>> state_capitals['Alabama']
'Boston'

and returns the created values for existing key just like a normal dictionary

>>> state_capitals['Arkansas']
'Little Rock'

Help Utility

Python has several functions built into the interpreter. If you want to get information of keywords,
built-in functions, modules or topics open a Python console and enter:

>>> help()

You will receive information by entering keywords directly:

>>> help(help)

or within the utility:

help> help

which will show an explanation:

Help on _Helper in module _sitebuiltins object:

https://riptutorial.com/ 30

class _Helper(builtins.object)
 | Define the builtin 'help'.
 |
 | This is a wrapper around pydoc.help that provides a helpful message
 | when 'help' is typed at the Python interactive prompt.
 |
 | Calling help() at the Python prompt starts an interactive help session.
 | Calling help(thing) prints help for the python object 'thing'.
 |
 | Methods defined here:
 |
 | __call__(self, *args, **kwds)
 |
 | __repr__(self)
 |
 | --
 | Data descriptors defined here:
 |
 | __dict__
 | dictionary for instance variables (if defined)
 |
 | __weakref__
 | list of weak references to the object (if defined)

You can also request subclasses of modules:

help(pymysql.connections)

You can use help to access the docstrings of the different modules you have imported, e.g., try the
following:

>>> help(math)

and you'll get an error

>>> import math
>>> help(math)

And now you will get a list of the available methods in the module, but only AFTER you have
imported it.

Close the helper with quit

Creating a module

A module is an importable file containing definitions and statements.

A module can be created by creating a .py file.

hello.py
def say_hello():
 print("Hello!")

https://riptutorial.com/ 31

Functions in a module can be used by importing the module.

For modules that you have made, they will need to be in the same directory as the file that you are
importing them into. (However, you can also put them into the Python lib directory with the pre-
included modules, but should be avoided if possible.)

$ python
>>> import hello
>>> hello.say_hello()
=> "Hello!"

Modules can be imported by other modules.

greet.py
import hello
hello.say_hello()

Specific functions of a module can be imported.

greet.py
from hello import say_hello
say_hello()

Modules can be aliased.

greet.py
import hello as ai
ai.say_hello()

A module can be stand-alone runnable script.

run_hello.py
if __name__ == '__main__':
 from hello import say_hello
 say_hello()

Run it!

$ python run_hello.py
=> "Hello!"

If the module is inside a directory and needs to be detected by python, the directory should contain
a file named __init__.py.

String function - str() and repr()

There are two functions that can be used to obtain a readable representation of an object.

repr(x) calls x.__repr__(): a representation of x. eval will usually convert the result of this function
back to the original object.

https://riptutorial.com/ 32

str(x) calls x.__str__(): a human-readable string that describes the object. This may elide some
technical detail.

repr()

For many types, this function makes an attempt to return a string that would yield an object with
the same value when passed to eval(). Otherwise, the representation is a string enclosed in angle
brackets that contains the name of the type of the object along with additional information. This
often includes the name and address of the object.

str()

For strings, this returns the string itself. The difference between this and repr(object) is that
str(object) does not always attempt to return a string that is acceptable to eval(). Rather, its goal
is to return a printable or 'human readable' string. If no argument is given, this returns the empty
string, ''.

Example 1:

s = """w'o"w"""
repr(s) # Output: '\'w\\\'o"w\''
str(s) # Output: 'w\'o"w'
eval(str(s)) == s # Gives a SyntaxError
eval(repr(s)) == s # Output: True

Example 2:

import datetime
today = datetime.datetime.now()
str(today) # Output: '2016-09-15 06:58:46.915000'
repr(today) # Output: 'datetime.datetime(2016, 9, 15, 6, 58, 46, 915000)'

When writing a class, you can override these methods to do whatever you want:

class Represent(object):

 def __init__(self, x, y):
 self.x, self.y = x, y

 def __repr__(self):
 return "Represent(x={},y=\"{}\")".format(self.x, self.y)

 def __str__(self):
 return "Representing x as {} and y as {}".format(self.x, self.y)

Using the above class we can see the results:

r = Represent(1, "Hopper")
print(r) # prints __str__

https://riptutorial.com/ 33

print(r.__repr__) # prints __repr__: '<bound method Represent.__repr__ of
Represent(x=1,y="Hopper")>'
rep = r.__repr__() # sets the execution of __repr__ to a new variable
print(rep) # prints 'Represent(x=1,y="Hopper")'
r2 = eval(rep) # evaluates rep
print(r2) # prints __str__ from new object
print(r2 == r) # prints 'False' because they are different objects

Installing external modules using pip

pip is your friend when you need to install any package from the plethora of choices available at
the python package index (PyPI). pip is already installed if you're using Python 2 >= 2.7.9 or
Python 3 >= 3.4 downloaded from python.org. For computers running Linux or another *nix with a
native package manager, pip must often be manually installed.

On instances with both Python 2 and Python 3 installed, pip often refers to Python 2 and pip3 to
Python 3. Using pip will only install packages for Python 2 and pip3 will only install packages for
Python 3.

Finding / installing a package

Searching for a package is as simple as typing

$ pip search <query>
Searches for packages whose name or summary contains <query>

Installing a package is as simple as typing (in a terminal / command-prompt, not in the Python
interpreter)

$ pip install [package_name] # latest version of the package

$ pip install [package_name]==x.x.x # specific version of the package

$ pip install '[package_name]>=x.x.x' # minimum version of the package

where x.x.x is the version number of the package you want to install.

When your server is behind proxy, you can install package by using below command:

$ pip --proxy http://<server address>:<port> install

Upgrading installed packages

When new versions of installed packages appear they are not automatically installed to your
system. To get an overview of which of your installed packages have become outdated, run:

$ pip list --outdated

https://riptutorial.com/ 34

https://pip.pypa.io/en/stable/installing/

To upgrade a specific package use

$ pip install [package_name] --upgrade

Updating all outdated packages is not a standard functionality of pip.

Upgrading pip

You can upgrade your existing pip installation by using the following commands

On Linux or macOS X:

$ pip install -U pip

You may need to use sudo with pip on some Linux Systems

•

On Windows:

py -m pip install -U pip

or

python -m pip install -U pip

•

For more information regarding pip do read here.

Installation of Python 2.7.x and 3.x

Note: Following instructions are written for Python 2.7 (unless specified): instructions
for Python 3.x are similar.

WINDOWS

First, download the latest version of Python 2.7 from the official Website (
https://www.python.org/downloads/). Version is provided as an MSI package. To install it
manually, just double-click the file.

By default, Python installs to a directory:

 C:\Python27\

Warning: installation does not automatically modify the PATH environment variable.

Assuming that your Python installation is in C:\Python27, add this to your PATH:

C:\Python27\;C:\Python27\Scripts\

https://riptutorial.com/ 35

https://pip.pypa.io/en/stable/
https://www.python.org/downloads/)

Now to check if Python installation is valid write in cmd:

python --version

Python 2.x and 3.x Side-By-Side

To install and use both Python 2.x and 3.x side-by-side on a Windows machine:

Install Python 2.x using the MSI installer.

Ensure Python is installed for all users.•
Optional: add Python to PATH to make Python 2.x callable from the command-line using
python.

•

1.

Install Python 3.x using its respective installer.

Again, ensure Python is installed for all users.•
Optional: add Python to PATH to make Python 3.x callable from the command-line using
python. This may override Python 2.x PATH settings, so double-check your PATH and
ensure it's configured to your preferences.

•

Make sure to install the py launcher for all users.•

2.

Python 3 will install the Python launcher which can be used to launch Python 2.x and Python 3.x
interchangeably from the command-line:

P:\>py -3
Python 3.6.1 (v3.6.1:69c0db5, Mar 21 2017, 17:54:52) [MSC v.1900 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

C:\>py -2
Python 2.7.13 (v2.7.13:a06454b1afa1, Dec 17 2016, 20:42:59) [MSC v.1500 32 Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

To use the corresponding version of pip for a specific Python version, use:

C:\>py -3 -m pip -V
pip 9.0.1 from C:\Python36\lib\site-packages (python 3.6)

C:\>py -2 -m pip -V
pip 9.0.1 from C:\Python27\lib\site-packages (python 2.7)

LINUX

The latest versions of CentOS, Fedora, Redhat Enterprise (RHEL) and Ubuntu come with Python
2.7.

To install Python 2.7 on linux manually, just do the following in terminal:

wget --no-check-certificate https://www.python.org/ftp/python/2.7.X/Python-2.7.X.tgz

https://riptutorial.com/ 36

tar -xzf Python-2.7.X.tgz
cd Python-2.7.X
./configure
make
sudo make install

Also add the path of new python in PATH environment variable. If new python is in /root/python-
2.7.X then run export PATH = $PATH:/root/python-2.7.X

Now to check if Python installation is valid write in terminal:

python --version

Ubuntu (From Source)

If you need Python 3.6 you can install it from source as shown below (Ubuntu 16.10 and 17.04
have 3.6 version in the universal repository). Below steps have to be followed for Ubuntu 16.04
and lower versions:

sudo apt install build-essential checkinstall
sudo apt install libreadline-gplv2-dev libncursesw5-dev libssl-dev libsqlite3-dev tk-dev
libgdbm-dev libc6-dev libbz2-dev
wget https://www.python.org/ftp/python/3.6.1/Python-3.6.1.tar.xz
tar xvf Python-3.6.1.tar.xz
cd Python-3.6.1/
./configure --enable-optimizations
sudo make altinstall

macOS

As we speak, macOS comes installed with Python 2.7.10, but this version is outdated and slightly
modified from the regular Python.

The version of Python that ships with OS X is great for learning but it’s not good for
development. The version shipped with OS X may be out of date from the official
current Python release, which is considered the stable production version. (source)

Install Homebrew:

/usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

Install Python 2.7:

brew install python

For Python 3.x, use the command brew install python3 instead.

Read Getting started with Python Language online: https://riptutorial.com/python/topic/193/getting-
started-with-python-language

https://riptutorial.com/ 37

http://docs.python-guide.org/en/latest/starting/install/osx/
https://brew.sh/
https://riptutorial.com/python/topic/193/getting-started-with-python-language
https://riptutorial.com/python/topic/193/getting-started-with-python-language

Chapter 2: *args and **kwargs

Remarks

There a few things to note:

The names args and kwargs are used by convention, they are not a part of the language
specification. Thus, these are equivalent:

 def func(*args, **kwargs):
 print(args)
 print(kwargs)

 def func(*a, **b):
 print(a)
 print(b)

1.

You may not have more than one args or more than one kwargs parameters (however they
are not required)

 def func(*args1, *args2):
 # File "<stdin>", line 1
 # def test(*args1, *args2):
 # ^
 # SyntaxError: invalid syntax

 def test(**kwargs1, **kwargs2):
 # File "<stdin>", line 1
 # def test(**kwargs1, **kwargs2):
 # ^
 # SyntaxError: invalid syntax

2.

If any positional argument follow *args, they are keyword-only arguments that can only be
passed by name. A single star may be used instead of *args to force values to be keyword
arguments without providing a variadic parameter list. Keyword-only parameter lists are only
available in Python 3.

 def func(a, b, *args, x, y):
 print(a, b, args, x, y)

 func(1, 2, 3, 4, x=5, y=6)
 #>>> 1, 2, (3, 4), 5, 6

 def func(a, b, *, x, y):

3.

https://riptutorial.com/ 38

 print(a, b, x, y)

 func(1, 2, x=5, y=6)
 #>>> 1, 2, 5, 6

**kwargs must come last in the parameter list.

 def test(**kwargs, *args):
 # File "<stdin>", line 1
 # def test(**kwargs, *args):
 # ^
 # SyntaxError: invalid syntax

4.

Examples

Using *args when writing functions

You can use the star * when writing a function to collect all positional (ie. unnamed) arguments in
a tuple:

def print_args(farg, *args):
 print("formal arg: %s" % farg)
 for arg in args:
 print("another positional arg: %s" % arg)

Calling method:

print_args(1, "two", 3)

In that call, farg will be assigned as always, and the two others will be fed into the args tuple, in the
order they were received.

Using **kwargs when writing functions

You can define a function that takes an arbitrary number of keyword (named) arguments by using
the double star ** before a parameter name:

def print_kwargs(**kwargs):
 print(kwargs)

When calling the method, Python will construct a dictionary of all keyword arguments and make it
available in the function body:

print_kwargs(a="two", b=3)
prints: "{a: "two", b=3}"

Note that the **kwargs parameter in the function definition must always be the last parameter, and
it will only match the arguments that were passed in after the previous ones.

https://riptutorial.com/ 39

def example(a, **kw):
 print kw

example(a=2, b=3, c=4) # => {'b': 3, 'c': 4}

Inside the function body, kwargs is manipulated in the same way as a dictionary; in order to access
individual elements in kwargs you just loop through them as you would with a normal dictionary:

def print_kwargs(**kwargs):
 for key in kwargs:
 print("key = {0}, value = {1}".format(key, kwargs[key]))

Now, calling print_kwargs(a="two", b=1) shows the following output:

print_kwargs(a = "two", b = 1)
key = a, value = "two"
key = b, value = 1

Using *args when calling functions

A common use case for *args in a function definition is to delegate processing to either a wrapped
or inherited function. A typical example might be in a class's __init__ method

class A(object):
 def __init__(self, b, c):
 self.y = b
 self.z = c

class B(A):
 def __init__(self, a, *args, **kwargs):
 super(B, self).__init__(*args, **kwargs)
 self.x = a

Here, the a parameter is processed by the child class after all other arguments (positional and
keyword) are passed onto - and processed by - the base class.

For instance:

b = B(1, 2, 3)
b.x # 1
b.y # 2
b.z # 3

What happens here is the class B __init__ function sees the arguments 1, 2, 3. It knows it needs
to take one positional argument (a), so it grabs the first argument passed in (1), so in the scope of
the function a == 1.

Next, it sees that it needs to take an arbitrary number of positional arguments (*args) so it takes
the rest of the positional arguments passed in (1, 2) and stuffs them into *args. Now (in the scope
of the function) args == [2, 3].

https://riptutorial.com/ 40

Then, it calls class A's __init__ function with *args. Python sees the * in front of args and
"unpacks" the list into arguments. In this example, when class B's __init__ function calls class A's
__init__ function, it will be passed the arguments 2, 3 (i.e. A(2, 3)).

Finally, it sets its own x property to the first positional argument a, which equals 1.

Using **kwargs when calling functions

You can use a dictionary to assign values to the function's parameters; using parameters name as
keys in the dictionary and the value of these arguments bound to each key:

def test_func(arg1, arg2, arg3): # Usual function with three arguments
 print("arg1: %s" % arg1)
 print("arg2: %s" % arg2)
 print("arg3: %s" % arg3)

Note that dictionaries are unordered, so we can switch arg2 and arg3. Only the names matter.
kwargs = {"arg3": 3, "arg2": "two"}

Bind the first argument (ie. arg1) to 1, and use the kwargs dictionary to bind the others
test_var_args_call(1, **kwargs)

Using *args when calling functions

The effect of using the * operator on an argument when calling a function is that of unpacking the
list or a tuple argument

def print_args(arg1, arg2):
 print(str(arg1) + str(arg2))

a = [1,2]
b = tuple([3,4])

print_args(*a)
12
print_args(*b)
34

Note that the length of the starred argument need to be equal to the number of the function's
arguments.

A common python idiom is to use the unpacking operator * with the zip function to reverse its
effects:

a = [1,3,5,7,9]
b = [2,4,6,8,10]

zipped = zip(a,b)
[(1,2), (3,4), (5,6), (7,8), (9,10)]

zip(*zipped)
(1,3,5,7,9), (2,4,6,8,10)

https://riptutorial.com/ 41

Keyword-only and Keyword-required arguments

Python 3 allows you to define function arguments which can only be assigned by keyword, even
without default values. This is done by using star * to consume additional positional parameters
without setting the keyword parameters. All arguments after the * are keyword-only (i.e. non-
positional) arguments. Note that if keyword-only arguments aren't given a default, they are still
required when calling the function.

def print_args(arg1, *args, keyword_required, keyword_only=True):
 print("first positional arg: {}".format(arg1))
 for arg in args:
 print("another positional arg: {}".format(arg))
 print("keyword_required value: {}".format(keyword_required))
 print("keyword_only value: {}".format(keyword_only))

print(1, 2, 3, 4) # TypeError: print_args() missing 1 required keyword-only argument:
'keyword_required'
print(1, 2, 3, keyword_required=4)
first positional arg: 1
another positional arg: 2
another positional arg: 3
keyword_required value: 4
keyword_only value: True

Populating kwarg values with a dictionary

def foobar(foo=None, bar=None):
 return "{}{}".format(foo, bar)

values = {"foo": "foo", "bar": "bar"}

foobar(**values) # "foobar"

**kwargs and default values

To use default values with **kwargs

def fun(**kwargs):
 print kwargs.get('value', 0)

fun()
print 0
fun(value=1)
print 1

Read *args and **kwargs online: https://riptutorial.com/python/topic/2475/-args-and---kwargs

https://riptutorial.com/ 42

https://riptutorial.com/python/topic/2475/-args-and---kwargs

Chapter 3: 2to3 tool

Syntax

$ 2to3 [-options] path/to/file.py•

Parameters

Parameter Description

filename / directory_name
2to3 accepts a list of files or directories which is to be
transformed as its argument. The directories are
recursively traversed for Python sources.

Option Option Description

-f FIX, --fix=FIX
Specify transformations to be applied; default: all. List
available transformations with --list-fixes

-j PROCESSES, --
processes=PROCESSES

Run 2to3 concurrently

-x NOFIX, --nofix=NOFIX Exclude a transformation

-l, --list-fixes List available transformations

-p, --print-function
Change the grammar so that print() is considered a
function

-v, --verbose More verbose output

--no-diffs Do not output diffs of the refactoring

-w Write back modified files

-n, --nobackups Do not create backups of modified files

-o OUTPUT_DIR, --output-
dir=OUTPUT_DIR

Place output files in this directory instead of overwriting
input files. Requires the -n flag, as backup files are
unnecessary when the input files are not modified.

-W, --write-unchanged-files
Write output files even is no changes were required. Useful
with -o so that a complete source tree is translated and
copied. Implies -w.

Specify a string to be appended to all output filenames.
Requires -n if non-empty. Ex.: --add-suffix='3' will

--add-suffix=ADD_SUFFIX

https://riptutorial.com/ 43

Parameter Description

generate .py3 files.

Remarks

The 2to3 tool is an python program which is used to convert the code written in Python 2.x to
Python 3.x code. The tool reads Python 2.x source code and applies a series of fixers to transform
it into valid Python 3.x code.

The 2to3 tool is available in the standard library as lib2to3 which contains a rich set of fixers that
will handle almost all code. Since lib2to3 is a generic library, it is possible to write your own fixers
for 2to3.

Examples

Basic Usage

Consider the following Python2.x code. Save the file as example.py

Python 2.x2.0

def greet(name):
 print "Hello, {0}!".format(name)
print "What's your name?"
name = raw_input()
greet(name)

In the above file, there are several incompatible lines. The raw_input() method has been replaced
with input() in Python 3.x and print is no longer a statement, but a function. This code can be
converted to Python 3.x code using the 2to3 tool.

Unix

$ 2to3 example.py

Windows

> path/to/2to3.py example.py

Running the above code will output the differences against the original source file as shown below.

RefactoringTool: Skipping implicit fixer: buffer
RefactoringTool: Skipping implicit fixer: idioms
RefactoringTool: Skipping implicit fixer: set_literal
RefactoringTool: Skipping implicit fixer: ws_comma
RefactoringTool: Refactored example.py

https://riptutorial.com/ 44

https://docs.python.org/2/library/2to3.html#module-lib2to3

--- example.py (original)
+++ example.py (refactored)
@@ -1,5 +1,5 @@
 def greet(name):
- print "Hello, {0}!".format(name)
-print "What's your name?"
-name = raw_input()
+ print("Hello, {0}!".format(name))
+print("What's your name?")
+name = input()
 greet(name)
RefactoringTool: Files that need to be modified:
RefactoringTool: example.py

The modifications can be written back to the source file using the -w flag. A backup of the original
file called example.py.bak is created, unless the -n flag is given.

Unix

$ 2to3 -w example.py

Windows

> path/to/2to3.py -w example.py

Now the example.py file has been converted from Python 2.x to Python 3.x code.

Once finished, example.py will contain the following valid Python3.x code:

Python 3.x3.0

def greet(name):
 print("Hello, {0}!".format(name))
print("What's your name?")
name = input()
greet(name)

Read 2to3 tool online: https://riptutorial.com/python/topic/5320/2to3-tool

https://riptutorial.com/ 45

https://riptutorial.com/python/topic/5320/2to3-tool

Chapter 4: Abstract Base Classes (abc)

Examples

Setting the ABCMeta metaclass

Abstract classes are classes that are meant to be inherited but avoid implementing specific
methods, leaving behind only method signatures that subclasses must implement.

Abstract classes are useful for defining and enforcing class abstractions at a high level, similar to
the concept of interfaces in typed languages, without the need for method implementation.

One conceptual approach to defining an abstract class is to stub out the class methods, and then
raise a NotImplementedError if accessed. This prevents children classes from accessing parent
methods without overriding them first. Like so:

class Fruit:

 def check_ripeness(self):
 raise NotImplementedError("check_ripeness method not implemented!")

class Apple(Fruit):
 pass

a = Apple()
a.check_ripeness() # raises NotImplementedError

Creating an abstract class in this way prevents improper usage of methods that are not overriden,
and certainly encourages methods to be defined in child classes, but it does not enforce their
definition. With the abc module we can prevent child classes from being instantiated when they fail
to override abstract class methods of their parents and ancestors:

from abc import ABCMeta

class AbstractClass(object):
 # the metaclass attribute must always be set as a class variable
 __metaclass__ = ABCMeta

 # the abstractmethod decorator registers this method as undefined
 @abstractmethod
 def virtual_method_subclasses_must_define(self):
 # Can be left completely blank, or a base implementation can be provided
 # Note that ordinarily a blank interpretation implicitly returns `None`,
 # but by registering, this behaviour is no longer enforced.

It is now possible to simply subclass and override:

class Subclass(AbstractClass):
 def virtual_method_subclasses_must_define(self):

https://riptutorial.com/ 46

 return

Why/How to use ABCMeta and @abstractmethod

Abstract base classes (ABCs) enforce what derived classes implement particular methods from
the base class.

To understand how this works and why we should use it, let's take a look at an example that Van
Rossum would enjoy. Let's say we have a Base class "MontyPython" with two methods (joke &
punchline) that must be implemented by all derived classes.

class MontyPython:
 def joke(self):
 raise NotImplementedError()

 def punchline(self):
 raise NotImplementedError()

class ArgumentClinic(MontyPython):
 def joke(self):
 return "Hahahahahah"

When we instantiate an object and call it's two methods, we'll get an error (as expected) with the
punchline() method.

 >>> sketch = ArgumentClinic()
 >>> sketch.punchline()
NotImplementedError

However, this still allows us to instantiate an object of the ArgumentClinic class without getting an
error. In fact we don't get an error until we look for the punchline().

This is avoided by using the Abstract Base Class (ABC) module. Let's see how this works with the
same example:

from abc import ABCMeta, abstractmethod

class MontyPython(metaclass=ABCMeta):
 @abstractmethod
 def joke(self):
 pass

@abstractmethod
def punchline(self):
 pass

class ArgumentClinic(MontyPython):
 def joke(self):
 return "Hahahahahah"

This time when we try to instantiate an object from the incomplete class, we immediately get a
TypeError!

https://riptutorial.com/ 47

>>> c = ArgumentClinic()
TypeError:
"Can't instantiate abstract class ArgumentClinic with abstract methods punchline"

In this case, it's easy to complete the class to avoid any TypeErrors:

class ArgumentClinic(MontyPython):
 def joke(self):
 return "Hahahahahah"

 def punchline(self):
 return "Send in the constable!"

This time when you instantiate an object it works!

Read Abstract Base Classes (abc) online: https://riptutorial.com/python/topic/5442/abstract-base-
classes--abc-

https://riptutorial.com/ 48

https://riptutorial.com/python/topic/5442/abstract-base-classes--abc-
https://riptutorial.com/python/topic/5442/abstract-base-classes--abc-

Chapter 5: Abstract syntax tree

Examples

Analyze functions in a python script

This analyzes a python script and, for each defined function, reports the line number where the
function began, where the signature ends, where the docstring ends, and where the function
definition ends.

#!/usr/local/bin/python3

import ast
import sys

""" The data we collect. Each key is a function name; each value is a dict
with keys: firstline, sigend, docend, and lastline and values of line numbers
where that happens. """
functions = {}

def process(functions):
 """ Handle the function data stored in functions. """
 for funcname,data in functions.items():
 print("function:",funcname)
 print("\tstarts at line:",data['firstline'])
 print("\tsignature ends at line:",data['sigend'])
 if (data['sigend'] < data['docend']):
 print("\tdocstring ends at line:",data['docend'])
 else:
 print("\tno docstring")
 print("\tfunction ends at line:",data['lastline'])
 print()

class FuncLister(ast.NodeVisitor):
 def visit_FunctionDef(self, node):
 """ Recursively visit all functions, determining where each function
 starts, where its signature ends, where the docstring ends, and where
 the function ends. """
 functions[node.name] = {'firstline':node.lineno}
 sigend = max(node.lineno,lastline(node.args))
 functions[node.name]['sigend'] = sigend
 docstring = ast.get_docstring(node)
 docstringlength = len(docstring.split('\n')) if docstring else -1
 functions[node.name]['docend'] = sigend+docstringlength
 functions[node.name]['lastline'] = lastline(node)
 self.generic_visit(node)

def lastline(node):
 """ Recursively find the last line of a node """
 return max([node.lineno if hasattr(node,'lineno') else -1 ,]
 +[lastline(child) for child in ast.iter_child_nodes(node)])

def readin(pythonfilename):
 """ Read the file name and store the function data into functions. """
 with open(pythonfilename) as f:
 code = f.read()

https://riptutorial.com/ 49

 FuncLister().visit(ast.parse(code))

def analyze(file,process):
 """ Read the file and process the function data. """
 readin(file)
 process(functions)

if __name__ == '__main__':
 if len(sys.argv)>1:
 for file in sys.argv[1:]:
 analyze(file,process)
 else:
 analyze(sys.argv[0],process)

Read Abstract syntax tree online: https://riptutorial.com/python/topic/5370/abstract-syntax-tree

https://riptutorial.com/ 50

https://riptutorial.com/python/topic/5370/abstract-syntax-tree

Chapter 6: Accessing Python source code
and bytecode

Examples

Display the bytecode of a function

The Python interpreter compiles code to bytecode before executing it on the Python's virtual
machine (see also What is python bytecode?.

Here's how to view the bytecode of a Python function

import dis

def fib(n):
 if n <= 2: return 1
 return fib(n-1) + fib(n-2)

Display the disassembled bytecode of the function.
dis.dis(fib)

The function dis.dis in the dis module will return a decompiled bytecode of the function passed to
it.

Exploring the code object of a function

CPython allows access to the code object for a function object.

The __code__object contains the raw bytecode (co_code) of the function as well as other information
such as constants and variable names.

def fib(n):
 if n <= 2: return 1
 return fib(n-1) + fib(n-2)
dir(fib.__code__)

def fib(n):
 if n <= 2: return 1
 return fib(n-1) + fib(n-2)
dir(fib.__code__)

Display the source code of an object

Objects that are not built-in

To print the source code of a Python object use inspect. Note that this won't work for built-in
objects nor for objects defined interactively. For these you will need other methods explained later.

https://riptutorial.com/ 51

http://www.riptutorial.com/python/example/5729/what-is-python-bytecode-
https://docs.python.org/2/library/dis.html#dis.dis
http://www.riptutorial.com/python/topic/1763/the-dis-module

Here's how to print the source code of the method randint from the random module:

import random
import inspect

print(inspect.getsource(random.randint))
Output:
def randint(self, a, b):
"""Return random integer in range [a, b], including both end points.
"""

return self.randrange(a, b+1)

To just print the documentation string

print(inspect.getdoc(random.randint))
Output:
Return random integer in range [a, b], including both end points.

Print full path of the file where the method random.randint is defined:

print(inspect.getfile(random.randint))
c:\Python35\lib\random.py
print(random.randint.__code__.co_filename) # equivalent to the above
c:\Python35\lib\random.py

Objects defined interactively

If an object is defined interactively inspect cannot provide the source code but you can use
dill.source.getsource instead

define a new function in the interactive shell
def add(a, b):
 return a + b
print(add.__code__.co_filename) # Output: <stdin>

import dill
print dill.source.getsource(add)
def add(a, b):
 return a + b

Built-in objects

The source code for Python's built-in functions is written in c and can only be accessed by looking
at the Python's source code (hosted on Mercurial or downloadable from
https://www.python.org/downloads/source/).

print(inspect.getsource(sorted)) # raises a TypeError
type(sorted) # <class 'builtin_function_or_method'>

Read Accessing Python source code and bytecode online:

https://riptutorial.com/ 52

https://hg.python.org/
https://www.python.org/downloads/source/)

https://riptutorial.com/python/topic/4351/accessing-python-source-code-and-bytecode

https://riptutorial.com/ 53

https://riptutorial.com/python/topic/4351/accessing-python-source-code-and-bytecode

Chapter 7: Alternatives to switch statement
from other languages

Remarks

There is NO switch statement in python as a language design choice. There has been a PEP (
PEP-3103) covering the topic that has been rejected.

You can find many list of recipes on how to do your own switch statements in python, and here I'm
trying to suggest the most sensible options. Here are a few places to check:

http://stackoverflow.com/questions/60208/replacements-for-switch-statement-in-python•
http://code.activestate.com/recipes/269708-some-python-style-switches/•
http://code.activestate.com/recipes/410692-readable-switch-construction-without-lambdas-
or-di/

•

…•

Examples

Use what the language offers: the if/else construct.

Well, if you want a switch/case construct, the most straightforward way to go is to use the good old
if/else construct:

def switch(value):
 if value == 1:
 return "one"
 if value == 2:
 return "two"
 if value == 42:
 return "the answer to the question about life, the universe and everything"
 raise Exception("No case found!")

it might look redundant, and not always pretty, but that's by far the most efficient way to go, and it
does the job:

>>> switch(1)
one
>>> switch(2)
two
>>> switch(3)
…
Exception: No case found!
>>> switch(42)
the answer to the question about life the universe and everything

Use a dict of functions

https://riptutorial.com/ 54

https://www.python.org/dev/peps/pep-3103/
http://stackoverflow.com/questions/60208/replacements-for-switch-statement-in-python
http://code.activestate.com/recipes/269708-some-python-style-switches/
http://code.activestate.com/recipes/410692-readable-switch-construction-without-lambdas-or-di/
http://code.activestate.com/recipes/410692-readable-switch-construction-without-lambdas-or-di/

Another straightforward way to go is to create a dictionary of functions:

switch = {
 1: lambda: 'one',
 2: lambda: 'two',
 42: lambda: 'the answer of life the universe and everything',
}

then you add a default function:

def default_case():
 raise Exception('No case found!')

and you use the dictionary's get method to get the function given the value to check and run it. If
value does not exists in dictionary, then default_case is run.

>>> switch.get(1, default_case)()
one
>>> switch.get(2, default_case)()
two
>>> switch.get(3, default_case)()
…
Exception: No case found!
>>> switch.get(42, default_case)()
the answer of life the universe and everything

you can also make some syntactic sugar so the switch looks nicer:

def run_switch(value):
 return switch.get(value, default_case)()

>>> run_switch(1)
one

Use class introspection

You can use a class to mimic the switch/case structure. The following is using introspection of a
class (using the getattr() function that resolves a string into a bound method on an instance) to
resolve the "case" part.

Then that introspecting method is aliased to the __call__ method to overload the () operator.

class SwitchBase:
 def switch(self, case):
 m = getattr(self, 'case_{}'.format(case), None)
 if not m:
 return self.default
 return m

 __call__ = switch

Then to make it look nicer, we subclass the SwitchBase class (but it could be done in one class),

https://riptutorial.com/ 55

and there we define all the case as methods:

class CustomSwitcher:
 def case_1(self):
 return 'one'

 def case_2(self):
 return 'two'

 def case_42(self):
 return 'the answer of life, the universe and everything!'

 def default(self):
 raise Exception('Not a case!')

so then we can finally use it:

>>> switch = CustomSwitcher()
>>> print(switch(1))
one
>>> print(switch(2))
two
>>> print(switch(3))
…
Exception: Not a case!
>>> print(switch(42))
the answer of life, the universe and everything!

Using a context manager

Another way, which is very readable and elegant, but far less efficient than a if/else structure, is to
build a class such as follows, that will read and store the value to compare with, expose itself
within the context as a callable that will return true if it matches the stored value:

class Switch:
 def __init__(self, value):
 self._val = value
 def __enter__(self):
 return self
 def __exit__(self, type, value, traceback):
 return False # Allows traceback to occur
 def __call__(self, cond, *mconds):
 return self._val in (cond,)+mconds

then defining the cases is almost a match to the real switch/case construct (exposed within a
function below, to make it easier to show off):

def run_switch(value):
 with Switch(value) as case:
 if case(1):
 return 'one'
 if case(2):
 return 'two'
 if case(3):
 return 'the answer to the question about life, the universe and everything'

https://riptutorial.com/ 56

 # default
 raise Exception('Not a case!')

So the execution would be:

>>> run_switch(1)
one
>>> run_switch(2)
two
>>> run_switch(3)
…
Exception: Not a case!
>>> run_switch(42)
the answer to the question about life, the universe and everything

Nota Bene:

This solution is being offered as the switch module available on pypi.•

Read Alternatives to switch statement from other languages online:
https://riptutorial.com/python/topic/4268/alternatives-to-switch-statement-from-other-languages

https://riptutorial.com/ 57

https://pypi.python.org/pypi/switch/1.0.3
https://pypi.python.org/pypi/switch/1.0.3
https://riptutorial.com/python/topic/4268/alternatives-to-switch-statement-from-other-languages

Chapter 8: ArcPy

Remarks

This example uses a Search Cursor from the Data Access (da) module of ArcPy.

Do not confuse arcpy.da.SearchCursor syntax with the earlier and slower arcpy.SearchCursor().

The Data Access module (arcpy.da) has only been available since ArcGIS 10.1 for Desktop.

Examples

Printing one field's value for all rows of feature class in file geodatabase using
Search Cursor

To print a test field (TestField) from a test feature class (TestFC) in a test file geodatabase
(Test.gdb) located in a temporary folder (C:\Temp):

with arcpy.da.SearchCursor(r"C:\Temp\Test.gdb\TestFC",["TestField"]) as cursor:
 for row in cursor:
 print row[0]

createDissolvedGDB to create a file gdb on the workspace

def createDissolvedGDB(workspace, gdbName):
 gdb_name = workspace + "/" + gdbName + ".gdb"

 if(arcpy.Exists(gdb_name):
 arcpy.Delete_management(gdb_name)
 arcpy.CreateFileGDB_management(workspace, gdbName, "")
 else:
 arcpy.CreateFileGDB_management(workspace, gdbName, "")

 return gdb_name

Read ArcPy online: https://riptutorial.com/python/topic/4693/arcpy

https://riptutorial.com/ 58

https://riptutorial.com/python/topic/4693/arcpy

Chapter 9: Arrays

Introduction

"Arrays" in Python are not the arrays in conventional programming languages like C and Java, but
closer to lists. A list can be a collection of either homogeneous or heterogeneous elements, and
may contain ints, strings or other lists.

Parameters

Parameter Details

b Represents signed integer of size 1 byte

B Represents unsigned integer of size 1 byte

c Represents character of size 1 byte

u Represents unicode character of size 2 bytes

h Represents signed integer of size 2 bytes

H Represents unsigned integer of size 2 bytes

i Represents signed integer of size 2 bytes

I Represents unsigned integer of size 2 bytes

w Represents unicode character of size 4 bytes

l Represents signed integer of size 4 bytes

L Represents unsigned integer of size 4 bytes

f Represents floating point of size 4 bytes

d Represents floating point of size 8 bytes

Examples

Basic Introduction to Arrays

An array is a data structure that stores values of same data type. In Python, this is the main
difference between arrays and lists.

While python lists can contain values corresponding to different data types, arrays in python can

https://riptutorial.com/ 59

only contain values corresponding to same data type. In this tutorial, we will understand the
Python arrays with few examples.

If you are new to Python, get started with the Python Introduction article.

To use arrays in python language, you need to import the standard array module. This is because
array is not a fundamental data type like strings, integer etc. Here is how you can import array
module in python :

from array import *

Once you have imported the array module, you can declare an array. Here is how you do it:

arrayIdentifierName = array(typecode, [Initializers])

In the declaration above, arrayIdentifierName is the name of array, typecode lets python know the
type of array and Initializers are the values with which array is initialized.

Typecodes are the codes that are used to define the type of array values or the type of array. The
table in the parameters section shows the possible values you can use when declaring an array
and it's type.

Here is a real world example of python array declaration :

my_array = array('i',[1,2,3,4])

In the example above, typecode used is i. This typecode represents signed integer whose size is
2 bytes.

Here is a simple example of an array containing 5 integers

from array import *
my_array = array('i', [1,2,3,4,5])
for i in my_array:
 print(i)
1
2
3
4
5

Access individual elements through indexes

Individual elements can be accessed through indexes. Python arrays are zero-indexed. Here is an
example :

my_array = array('i', [1,2,3,4,5])
print(my_array[1])
2
print(my_array[2])

https://riptutorial.com/ 60

3
print(my_array[0])
1

Append any value to the array using append() method

my_array = array('i', [1,2,3,4,5])
my_array.append(6)
array('i', [1, 2, 3, 4, 5, 6])

Note that the value 6 was appended to the existing array values.

Insert value in an array using insert() method

We can use the insert() method to insert a value at any index of the array. Here is an example :

my_array = array('i', [1,2,3,4,5])
my_array.insert(0,0)
#array('i', [0, 1, 2, 3, 4, 5])

In the above example, the value 0 was inserted at index 0. Note that the first argument is the index
while second argument is the value.

Extend python array using extend() method

A python array can be extended with more than one value using extend() method. Here is an
example :

my_array = array('i', [1,2,3,4,5])
my_extnd_array = array('i', [7,8,9,10])
my_array.extend(my_extnd_array)
array('i', [1, 2, 3, 4, 5, 7, 8, 9, 10])

We see that the array my_array was extended with values from my_extnd_array.

Add items from list into array using fromlist() method

Here is an example:

my_array = array('i', [1,2,3,4,5])
c=[11,12,13]
my_array.fromlist(c)
array('i', [1, 2, 3, 4, 5, 11, 12, 13])

So we see that the values 11,12 and 13 were added from list c to my_array.

Remove any array element using remove() method

Here is an example :

https://riptutorial.com/ 61

my_array = array('i', [1,2,3,4,5])
my_array.remove(4)
array('i', [1, 2, 3, 5])

We see that the element 4 was removed from the array.

Remove last array element using pop() method

pop removes the last element from the array. Here is an example :

my_array = array('i', [1,2,3,4,5])
my_array.pop()
array('i', [1, 2, 3, 4])

So we see that the last element (5) was popped out of array.

Fetch any element through its index using index() method

index() returns first index of the matching value. Remember that arrays are zero-indexed.

my_array = array('i', [1,2,3,4,5])
print(my_array.index(5))
5
my_array = array('i', [1,2,3,3,5])
print(my_array.index(3))
3

Note in that second example that only one index was returned, even though the value exists twice
in the array

Reverse a python array using reverse() method

The reverse() method does what the name says it will do - reverses the array. Here is an example
:

my_array = array('i', [1,2,3,4,5])
my_array.reverse()
array('i', [5, 4, 3, 2, 1])

Get array buffer information through buffer_info() method

This method provides you the array buffer start address in memory and number of elements in
array. Here is an example:

my_array = array('i', [1,2,3,4,5])
my_array.buffer_info()
(33881712, 5)

Check for number of occurrences of an element using count() method

https://riptutorial.com/ 62

count() will return the number of times and element appears in an array. In the following example
we see that the value 3 occurs twice.

my_array = array('i', [1,2,3,3,5])
my_array.count(3)
2

Convert array to string using tostring() method

tostring() converts the array to a string.

my_char_array = array('c', ['g','e','e','k'])
array('c', 'geek')
print(my_char_array.tostring())
geek

Convert array to a python list with same elements using tolist() method

When you need a Python list object, you can utilize the tolist() method to convert your array to
a list.

my_array = array('i', [1,2,3,4,5])
c = my_array.tolist()
[1, 2, 3, 4, 5]

Append a string to char array using fromstring() method

You are able to append a string to a character array using fromstring()

my_char_array = array('c', ['g','e','e','k'])
my_char_array.fromstring("stuff")
print(my_char_array)
#array('c', 'geekstuff')

Read Arrays online: https://riptutorial.com/python/topic/4866/arrays

https://riptutorial.com/ 63

https://riptutorial.com/python/topic/4866/arrays

Chapter 10: Asyncio Module

Examples

Coroutine and Delegation Syntax

Before Python 3.5+ was released, the asyncio module used generators to mimic asynchronous
calls and thus had a different syntax than the current Python 3.5 release.

Python 3.x3.5

Python 3.5 introduced the async and await keywords. Note the lack of parentheses around the
await func() call.

import asyncio

async def main():
 print(await func())

async def func():
 # Do time intensive stuff...
 return "Hello, world!"

if __name__ == "__main__":
 loop = asyncio.get_event_loop()
 loop.run_until_complete(main())

Python 3.x3.33.5

Before Python 3.5, the @asyncio.coroutine decorator was used to define a coroutine. The yield from
expression was used for generator delegation. Note the parentheses around the yield from func()
.

import asyncio

@asyncio.coroutine
def main():
 print((yield from func()))

@asyncio.coroutine
def func():
 # Do time intensive stuff..
 return "Hello, world!"

if __name__ == "__main__":
 loop = asyncio.get_event_loop()
 loop.run_until_complete(main())

Python 3.x3.5

Here is an example that shows how two functions can be run asynchronously:

https://riptutorial.com/ 64

import asyncio

async def cor1():
 print("cor1 start")
 for i in range(10):
 await asyncio.sleep(1.5)
 print("cor1", i)

async def cor2():
 print("cor2 start")
 for i in range(15):
 await asyncio.sleep(1)
 print("cor2", i)

loop = asyncio.get_event_loop()
cors = asyncio.wait([cor1(), cor2()])
loop.run_until_complete(cors)

Asynchronous Executors

Note: Uses the Python 3.5+ async/await syntax

asyncio supports the use of Executor objects found in concurrent.futures for scheduling tasks
asynchronously. Event loops have the function run_in_executor() which takes an Executor object, a
Callable, and the Callable's parameters.

Scheduling a task for an Executor

import asyncio
from concurrent.futures import ThreadPoolExecutor

def func(a, b):
 # Do time intensive stuff...
 return a + b

async def main(loop):
 executor = ThreadPoolExecutor()
 result = await loop.run_in_executor(executor, func, "Hello,", " world!")
 print(result)

if __name__ == "__main__":
 loop = asyncio.get_event_loop()
 loop.run_until_complete(main(loop))

Each event loop also has a "default" Executor slot that can be assigned to an Executor. To assign
an Executor and schedule tasks from the loop you use the set_default_executor() method.

import asyncio
from concurrent.futures import ThreadPoolExecutor

def func(a, b):
 # Do time intensive stuff...
 return a + b

async def main(loop):

https://riptutorial.com/ 65

 # NOTE: Using `None` as the first parameter designates the `default` Executor.
 result = await loop.run_in_executor(None, func, "Hello,", " world!")
 print(result)

if __name__ == "__main__":
 loop = asyncio.get_event_loop()
 loop.set_default_executor(ThreadPoolExecutor())
 loop.run_until_complete(main(loop))

There are two main types of Executor in concurrent.futures, the ThreadPoolExecutor and the
ProcessPoolExecutor. The ThreadPoolExecutor contains a pool of threads which can either be
manually set to a specific number of threads through the constructor or defaults to the number of
cores on the machine times 5. The ThreadPoolExecutor uses the pool of threads to execute tasks
assigned to it and is generally better at CPU-bound operations rather than I/O bound operations.
Contrast that to the ProcessPoolExecutor which spawns a new process for each task assigned to it.
The ProcessPoolExecutor can only take tasks and parameters that are picklable. The most common
non-picklable tasks are the methods of objects. If you must schedule an object's method as a task
in an Executor you must use a ThreadPoolExecutor.

Using UVLoop

uvloop is an implementation for the asyncio.AbstractEventLoop based on libuv (Used by nodejs). It is
compliant with 99% of asyncio features and is much faster than the traditional asyncio.EventLoop.
uvloop is currently not available on Windows, install it with pip install uvloop.

import asyncio
import uvloop

if __name__ == "__main__":
 asyncio.set_event_loop(uvloop.new_event_loop())
 # Do your stuff here ...

One can also change the event loop factory by setting the EventLoopPolicy to the one in uvloop.

import asyncio
import uvloop

if __name__ == "__main__":
 asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())
 loop = asyncio.new_event_loop()

Synchronization Primitive: Event

Concept

Use an Event to synchronize the scheduling of multiple coroutines.

Put simply, an event is like the gun shot at a running race: it lets the runners off the starting blocks.

https://riptutorial.com/ 66

Example

import asyncio

event trigger function
def trigger(event):
 print('EVENT SET')
 event.set() # wake up coroutines waiting

event consumers
async def consumer_a(event):
 consumer_name = 'Consumer A'
 print('{} waiting'.format(consumer_name))
 await event.wait()
 print('{} triggered'.format(consumer_name))

async def consumer_b(event):
 consumer_name = 'Consumer B'
 print('{} waiting'.format(consumer_name))
 await event.wait()
 print('{} triggered'.format(consumer_name))

event
event = asyncio.Event()

wrap coroutines in one future
main_future = asyncio.wait([consumer_a(event),
 consumer_b(event)])

event loop
event_loop = asyncio.get_event_loop()
event_loop.call_later(0.1, functools.partial(trigger, event)) # trigger event in 0.1 sec

complete main_future
done, pending = event_loop.run_until_complete(main_future)

Output:

Consumer B waiting
Consumer A waiting
EVENT SET
Consumer B triggered
Consumer A triggered

A Simple Websocket

Here we make a simple echo websocket using asyncio. We define coroutines for connecting to a
server and sending/receiving messages. The communcations of the websocket are run in a main
coroutine, which is run by an event loop. This example is modified from a prior post.

import asyncio
import aiohttp

session = aiohttp.ClientSession() # handles the context manager

https://riptutorial.com/ 67

https://stackoverflow.com/questions/37369849/how-can-i-implement-asyncio-websockets-in-a-class

class EchoWebsocket:

 async def connect(self):
 self.websocket = await session.ws_connect("wss://echo.websocket.org")

 async def send(self, message):
 self.websocket.send_str(message)

 async def receive(self):
 result = (await self.websocket.receive())
 return result.data

async def main():
 echo = EchoWebsocket()
 await echo.connect()
 await echo.send("Hello World!")
 print(await echo.receive()) # "Hello World!"

if __name__ == '__main__':
 # The main loop
 loop = asyncio.get_event_loop()
 loop.run_until_complete(main())

Common Misconception about asyncio

probably the most common misconception about asnycio is that it lets you run any task in parallel -
sidestepping the GIL (global interpreter lock) and therefore execute blocking jobs in parallel (on
separate threads). it does not!

asyncio (and libraries that are built to collaborate with asyncio) build on coroutines: functions that
(collaboratively) yield the control flow back to the calling function. note asyncio.sleep in the
examples above. this is an example of a non-blocking coroutine that waits 'in the background' and
gives the control flow back to the calling function (when called with await). time.sleep is an
example of a blocking function. the execution flow of the program will just stop there and only
return after time.sleep has finished.

a real-live example is the requests library which consists (for the time being) on blocking functions
only. there is no concurrency if you call any of its functions within asyncio. aiohttp on the other
hand was built with asyncio in mind. its coroutines will run concurrently.

if you have long-running CPU-bound tasks you would like to run in parallel asyncio is not for
you. for that you need threads or multiprocessing.

•

if you have IO-bound jobs running, you may run them concurrently using asyncio.•

Read Asyncio Module online: https://riptutorial.com/python/topic/1319/asyncio-module

https://riptutorial.com/ 68

http://docs.python-requests.org/en/master/
https://aiohttp.readthedocs.io/en/stable/
https://docs.python.org/3/library/threading.html?highlight=threading#module-threading
https://docs.python.org/3/library/multiprocessing.html?#module-multiprocessing
https://riptutorial.com/python/topic/1319/asyncio-module

Chapter 11: Attribute Access

Syntax

x.title # Accesses the title attribute using the dot notation•
x.title = "Hello World" # Sets the property of the title attribute using the dot notation•
@property # Used as a decorator before the getter method for properties•
@title.setter # Used as a decorator before the setter method for properties•

Examples

Basic Attribute Access using the Dot Notation

Let's take a sample class.

class Book:
 def __init__(self, title, author):
 self.title = title
 self.author = author

book1 = Book(title="Right Ho, Jeeves", author="P.G. Wodehouse")

In Python you can access the attribute title of the class using the dot notation.

>>> book1.title
'P.G. Wodehouse'

If an attribute doesn't exist, Python throws an error:

>>> book1.series
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Book' object has no attribute 'series'

Setters, Getters & Properties

For the sake of data encapsulation, sometimes you want to have an attribute which value comes
from other attributes or, in general, which value shall be computed at the moment. The standard
way to deal with this situation is to create a method, called getter or a setter.

class Book:
 def __init__(self, title, author):
 self.title = title
 self.author = author

In the example above, it's easy to see what happens if we create a new Book that contains a title
and a author. If all books we're to add to our Library have authors and titles, then we can skip the
getters and setters and use the dot notation. However, suppose we have some books that do not

https://riptutorial.com/ 69

have an author and we want to set the author to "Unknown". Or if they have multiple authors and
we plan to return a list of authors.

In this case we can create a getter and a setter for the author attribute.

class P:
 def __init__(self,title,author):
 self.title = title
 self.setAuthor(author)

 def get_author(self):
 return self.author

 def set_author(self, author):
 if not author:
 self.author = "Unknown"
 else:
 self.author = author

This scheme is not recommended.

One reason is that there is a catch: Let's assume we have designed our class with the public
attribute and no methods. People have already used it a lot and they have written code like this:

>>> book = Book(title="Ancient Manuscript", author="Some Guy")
>>> book.author = "" #Cos Some Guy didn't write this one!

Now we have a problem. Because author is not an attribute! Python offers a solution to this
problem called properties. A method to get properties is decorated with the @property before it's
header. The method that we want to function as a setter is decorated with @attributeName.setter
before it.

Keeping this in mind, we now have our new updated class.

class Book:
 def __init__(self, title, author):
 self.title = title
 self.author = author

 @property
 def author(self):
 return self.__author

 @author.setter
 def author(self, author):
 if not author:
 self.author = "Unknown"
 else:
 self.author = author

Note, normally Python doesn't allow you to have multiple methods with the same name and
different number of parameters. However, in this case Python allows this because of the
decorators used.

https://riptutorial.com/ 70

If we test the code:

>>> book = Book(title="Ancient Manuscript", author="Some Guy")
>>> book.author = "" #Cos Some Guy didn't write this one!
>>> book.author
Unknown

Read Attribute Access online: https://riptutorial.com/python/topic/4392/attribute-access

https://riptutorial.com/ 71

https://riptutorial.com/python/topic/4392/attribute-access

Chapter 12: Audio

Examples

Audio With Pyglet

import pyglet
audio = pyglet.media.load("audio.wav")
audio.play()

For further information, see pyglet

Working with WAV files

winsound

Windows environment•

import winsound
winsound.PlaySound("path_to_wav_file.wav", winsound.SND_FILENAME)

wave

Support mono/stereo•
Doesn't support compression/decompression•

import wave
with wave.open("path_to_wav_file.wav", "rb") as wav_file: # Open WAV file in read-only
mode.
 # Get basic information.
 n_channels = wav_file.getnchannels() # Number of channels. (1=Mono, 2=Stereo).
 sample_width = wav_file.getsampwidth() # Sample width in bytes.
 framerate = wav_file.getframerate() # Frame rate.
 n_frames = wav_file.getnframes() # Number of frames.
 comp_type = wav_file.getcomptype() # Compression type (only supports "NONE").
 comp_name = wav_file.getcompname() # Compression name.

 # Read audio data.
 frames = wav_file.readframes(n_frames) # Read n_frames new frames.
 assert len(frames) == sample_width * n_frames

Duplicate to a new WAV file.
with wave.open("path_to_new_wav_file.wav", "wb") as wav_file: # Open WAV file in write-only
mode.
 # Write audio data.
 params = (n_channels, sample_width, framerate, n_frames, comp_type, comp_name)
 wav_file.setparams(params)
 wav_file.writeframes(frames)

https://riptutorial.com/ 72

https://pyglet.readthedocs.io/en/pyglet-1.2-maintenance/programming_guide/media.html

Convert any soundfile with python and ffmpeg

from subprocess import check_call

ok = check_call(['ffmpeg','-i','input.mp3','output.wav'])
if ok:
 with open('output.wav', 'rb') as f:
 wav_file = f.read()

note:

http://superuser.com/questions/507386/why-would-i-choose-libav-over-ffmpeg-or-is-there-
even-a-difference

•

What are the differences and similarities between ffmpeg, libav, and avconv?•

Playing Windows' beeps

Windows provides an explicit interface through which the winsound module allows you to play raw
beeps at a given frequency and duration.

import winsound
freq = 2500 # Set frequency To 2500 Hertz
dur = 1000 # Set duration To 1000 ms == 1 second
winsound.Beep(freq, dur)

Read Audio online: https://riptutorial.com/python/topic/8189/audio

https://riptutorial.com/ 73

http://superuser.com/questions/507386/why-would-i-choose-libav-over-ffmpeg-or-is-there-even-a-difference
http://superuser.com/questions/507386/why-would-i-choose-libav-over-ffmpeg-or-is-there-even-a-difference
http://stackoverflow.com/questions/9477115/what-are-the-differences-and-similarities-between-ffmpeg-libav-and-avconv
https://riptutorial.com/python/topic/8189/audio

Chapter 13: Basic Curses with Python

Remarks

Curses is a basic terminal (or character display) handling module from Python. This can be used
to create Terminal based User interfaces or TUIs.

This is a python port of a more popular C library 'ncurses'

Examples

Basic Invocation Example

import curses
import traceback

try:
 # -- Initialize --
 stdscr = curses.initscr() # initialize curses screen
 curses.noecho() # turn off auto echoing of keypress on to screen
 curses.cbreak() # enter break mode where pressing Enter key
 # after keystroke is not required for it to register
 stdscr.keypad(1) # enable special Key values such as curses.KEY_LEFT etc

 # -- Perform an action with Screen --
 stdscr.border(0)
 stdscr.addstr(5, 5, 'Hello from Curses!', curses.A_BOLD)
 stdscr.addstr(6, 5, 'Press q to close this screen', curses.A_NORMAL)

 while True:
 # stay in this loop till the user presses 'q'
 ch = stdscr.getch()
 if ch == ord('q'):
 break

 # -- End of user code --

except:
 traceback.print_exc() # print trace back log of the error

finally:
 # --- Cleanup on exit ---
 stdscr.keypad(0)
 curses.echo()
 curses.nocbreak()
 curses.endwin()

The wrapper() helper function.

While the basic invocation above is easy enough, the curses package provides the wrapper(func,
...) helper function. The example below contains the equivalent of above:

https://riptutorial.com/ 74

main(scr, *args):
 # -- Perform an action with Screen --
 scr.border(0)
 scr.addstr(5, 5, 'Hello from Curses!', curses.A_BOLD)
 scr.addstr(6, 5, 'Press q to close this screen', curses.A_NORMAL)

 while True:
 # stay in this loop till the user presses 'q'
 ch = scr.getch()
 if ch == ord('q'):

curses.wrapper(main)

Here, wrapper will initialize curses, create stdscr, a WindowObject and pass both stdscr, and any
further arguments to func. When func returns, wrapper will restore the terminal before the program
exits.

Read Basic Curses with Python online: https://riptutorial.com/python/topic/5851/basic-curses-with-
python

https://riptutorial.com/ 75

https://riptutorial.com/python/topic/5851/basic-curses-with-python
https://riptutorial.com/python/topic/5851/basic-curses-with-python

Chapter 14: Basic Input and Output

Examples

Using input() and raw_input()

Python 2.x2.3

raw_input will wait for the user to enter text and then return the result as a string.

foo = raw_input("Put a message here that asks the user for input")

In the above example foo will store whatever input the user provides.

Python 3.x3.0

input will wait for the user to enter text and then return the result as a string.

foo = input("Put a message here that asks the user for input")

In the above example foo will store whatever input the user provides.

Using the print function

Python 3.x3.0

In Python 3, print functionality is in the form of a function:

print("This string will be displayed in the output")
This string will be displayed in the output

print("You can print \n escape characters too.")
You can print escape characters too.

Python 2.x2.3

In Python 2, print was originally a statement, as shown below.

print "This string will be displayed in the output"
This string will be displayed in the output

print "You can print \n escape characters too."
You can print escape characters too.

Note: using from __future__ import print_function in Python 2 will allow users to use the print()
function the same as Python 3 code. This is only available in Python 2.6 and above.

Function to prompt user for a number

https://riptutorial.com/ 76

def input_number(msg, err_msg=None):
 while True:
 try:
 return float(raw_input(msg))
 except ValueError:
 if err_msg is not None:
 print(err_msg)

def input_number(msg, err_msg=None):
 while True:
 try:
 return float(input(msg))
 except ValueError:
 if err_msg is not None:
 print(err_msg)

And to use it:

user_number = input_number("input a number: ", "that's not a number!")

Or, if you do not want an "error message":

user_number = input_number("input a number: ")

Printing a string without a newline at the end

Python 2.x2.3

In Python 2.x, to continue a line with print, end the print statement with a comma. It will
automatically add a space.

print "Hello,",
print "World!"
Hello, World!

Python 3.x3.0

In Python 3.x, the print function has an optional end parameter that is what it prints at the end of
the given string. By default it's a newline character, so equivalent to this:

print("Hello, ", end="\n")
print("World!")
Hello,
World!

But you could pass in other strings

print("Hello, ", end="")
print("World!")
Hello, World!

print("Hello, ", end="
")

https://riptutorial.com/ 77

print("World!")
Hello,
World!

print("Hello, ", end="BREAK")
print("World!")
Hello, BREAKWorld!

If you want more control over the output, you can use sys.stdout.write:

import sys

sys.stdout.write("Hello, ")
sys.stdout.write("World!")
Hello, World!

Read from stdin

Python programs can read from unix pipelines. Here is a simple example how to read from stdin:

import sys

for line in sys.stdin:
 print(line)

Be aware that sys.stdin is a stream. It means that the for-loop will only terminate when the stream
has ended.

You can now pipe the output of another program into your python program as follows:

$ cat myfile | python myprogram.py

In this example cat myfile can be any unix command that outputs to stdout.

Alternatively, using the fileinput module can come in handy:

import fileinput
for line in fileinput.input():
 process(line)

Input from a File

Input can also be read from files. Files can be opened using the built-in function open. Using a with
<command> as <name> syntax (called a 'Context Manager') makes using open and getting a handle for
the file super easy:

with open('somefile.txt', 'r') as fileobj:
 # write code here using fileobj

This ensures that when code execution leaves the block the file is automatically closed.

https://riptutorial.com/ 78

https://en.wikipedia.org/wiki/Pipeline_(Unix)
https://docs.python.org/2/library/sys.html#sys.stdin
https://docs.python.org/2/library/fileinput.html
http://www.riptutorial.com/python/topic/928/context-managers---with--statement-
http://www.riptutorial.com/python/topic/928/context-managers---with--statement-

Files can be opened in different modes. In the above example the file is opened as read-only. To
open an existing file for reading only use r. If you want to read that file as bytes use rb. To append
data to an existing file use a. Use w to create a file or overwrite any existing files of the same
name. You can use r+ to open a file for both reading and writing. The first argument of open() is
the filename, the second is the mode. If mode is left blank, it will default to r.

let's create an example file:
with open('shoppinglist.txt', 'w') as fileobj:
 fileobj.write('tomato\npasta\ngarlic')

with open('shoppinglist.txt', 'r') as fileobj:
 # this method makes a list where each line
 # of the file is an element in the list
 lines = fileobj.readlines()

print(lines)
['tomato\n', 'pasta\n', 'garlic']

with open('shoppinglist.txt', 'r') as fileobj:
 # here we read the whole content into one string:
 content = fileobj.read()
 # get a list of lines, just like int the previous example:
 lines = content.split('\n')

print(lines)
['tomato', 'pasta', 'garlic']

If the size of the file is tiny, it is safe to read the whole file contents into memory. If the file is very
large it is often better to read line-by-line or by chunks, and process the input in the same loop. To
do that:

with open('shoppinglist.txt', 'r') as fileobj:
 # this method reads line by line:
 lines = []
 for line in fileobj:
 lines.append(line.strip())

When reading files, be aware of the operating system-specific line-break characters. Although for
line in fileobj automatically strips them off, it is always safe to call strip() on the lines read, as it
is shown above.

Opened files (fileobj in the above examples) always point to a specific location in the file. When
they are first opened the file handle points to the very beginning of the file, which is the position 0.
The file handle can display it's current position with tell:

fileobj = open('shoppinglist.txt', 'r')
pos = fileobj.tell()
print('We are at %u.' % pos) # We are at 0.

Upon reading all the content, the file handler's position will be pointed at the end of the file:

content = fileobj.read()
end = fileobj.tell()

https://riptutorial.com/ 79

print('This file was %u characters long.' % end)
This file was 22 characters long.
fileobj.close()

The file handler position can be set to whatever is needed:

fileobj = open('shoppinglist.txt', 'r')
fileobj.seek(7)
pos = fileobj.tell()
print('We are at character #%u.' % pos)

You can also read any length from the file content during a given call. To do this pass an argument
for read(). When read() is called with no argument it will read until the end of the file. If you pass
an argument it will read that number of bytes or characters, depending on the mode (rb and r
respectively):

reads the next 4 characters
starting at the current position
next4 = fileobj.read(4)
what we got?
print(next4) # 'cucu'
where we are now?
pos = fileobj.tell()
print('We are at %u.' % pos) # We are at 11, as we was at 7, and read 4 chars.

fileobj.close()

To demonstrate the difference between characters and bytes:

with open('shoppinglist.txt', 'r') as fileobj:
 print(type(fileobj.read())) # <class 'str'>

with open('shoppinglist.txt', 'rb') as fileobj:
 print(type(fileobj.read())) # <class 'bytes'>

Read Basic Input and Output online: https://riptutorial.com/python/topic/266/basic-input-and-output

https://riptutorial.com/ 80

https://riptutorial.com/python/topic/266/basic-input-and-output

Chapter 15: Binary Data

Syntax

pack(fmt, v1, v2, ...)•
unpack(fmt, buffer)•

Examples

Format a list of values into a byte object

from struct import pack

print(pack('I3c', 123, b'a', b'b', b'c')) # b'{\x00\x00\x00abc'

Unpack a byte object according to a format string

from struct import unpack

print(unpack('I3c', b'{\x00\x00\x00abc')) # (123, b'a', b'b', b'c')

Packing a structure

The module "struct" provides facility to pack python objects as contiguous chunk of bytes or
dissemble a chunk of bytes to python structures.

The pack function takes a format string and one or more arguments, and returns a binary string.
This looks very much like you are formatting a string except that the output is not a string but a
chunk of bytes.

import struct
import sys
print "Native byteorder: ", sys.byteorder
If no byteorder is specified, native byteorder is used
buffer = struct.pack("ihb", 3, 4, 5)
print "Byte chunk: ", repr(buffer)
print "Byte chunk unpacked: ", struct.unpack("ihb", buffer)
Last element as unsigned short instead of unsigned char (2 Bytes)
buffer = struct.pack("ihh", 3, 4, 5)
print "Byte chunk: ", repr(buffer)

Output:

Native byteorder: little Byte chunk: '\x03\x00\x00\x00\x04\x00\x05' Byte chunk
unpacked: (3, 4, 5) Byte chunk: '\x03\x00\x00\x00\x04\x00\x05\x00'

You could use network byte order with data received from network or pack data to send it to

https://riptutorial.com/ 81

network.

import struct
If no byteorder is specified, native byteorder is used
buffer = struct.pack("hhh", 3, 4, 5)
print "Byte chunk native byte order: ", repr(buffer)
buffer = struct.pack("!hhh", 3, 4, 5)
print "Byte chunk network byte order: ", repr(buffer)

Output:

Byte chunk native byte order: '\x03\x00\x04\x00\x05\x00'

Byte chunk network byte order: '\x00\x03\x00\x04\x00\x05'

You can optimize by avoiding the overhead of allocating a new buffer by providing a buffer that
was created earlier.

import struct
from ctypes import create_string_buffer
bufferVar = create_string_buffer(8)
bufferVar2 = create_string_buffer(8)
We use a buffer that has already been created
provide format, buffer, offset and data
struct.pack_into("hhh", bufferVar, 0, 3, 4, 5)
print "Byte chunk: ", repr(bufferVar.raw)
struct.pack_into("hhh", bufferVar2, 2, 3, 4, 5)
print "Byte chunk: ", repr(bufferVar2.raw)

Output:

Byte chunk: '\x03\x00\x04\x00\x05\x00\x00\x00'

Byte chunk: '\x00\x00\x03\x00\x04\x00\x05\x00'

Read Binary Data online: https://riptutorial.com/python/topic/2978/binary-data

https://riptutorial.com/ 82

https://riptutorial.com/python/topic/2978/binary-data

Chapter 16: Bitwise Operators

Introduction

Bitwise operations alter binary strings at the bit level. These operations are incredibly basic and
are directly supported by the processor. These few operations are necessary in working with
device drivers, low-level graphics, cryptography, and network communications. This section
provides useful knowledge and examples of Python's bitwise operators.

Syntax

x << y # Bitwise Left Shift•

x >> y # Bitwise Right Shift•

x & y # Bitwise AND•

x | y # Bitwise OR•

~ x # Bitwise NOT•

x ^ y # Bitwise XOR•

Examples

Bitwise AND

The & operator will perform a binary AND, where a bit is copied if it exists in both operands. That
means:

0 & 0 = 0
0 & 1 = 0
1 & 0 = 0
1 & 1 = 1

60 = 0b111100
30 = 0b011110
60 & 30
Out: 28
28 = 0b11100

bin(60 & 30)
Out: 0b11100

Bitwise OR

The | operator will perform a binary "or," where a bit is copied if it exists in either operand. That
means:

https://riptutorial.com/ 83

0 | 0 = 0
0 | 1 = 1
1 | 0 = 1
1 | 1 = 1

60 = 0b111100
30 = 0b011110
60 | 30
Out: 62
62 = 0b111110

bin(60 | 30)
Out: 0b111110

Bitwise XOR (Exclusive OR)

The ^ operator will perform a binary XOR in which a binary 1 is copied if and only if it is the value
of exactly one operand. Another way of stating this is that the result is 1 only if the operands are
different. Examples include:

0 ^ 0 = 0
0 ^ 1 = 1
1 ^ 0 = 1
1 ^ 1 = 0

60 = 0b111100
30 = 0b011110
60 ^ 30
Out: 34
34 = 0b100010

bin(60 ^ 30)
Out: 0b100010

Bitwise Left Shift

The << operator will perform a bitwise "left shift," where the left operand's value is moved left by
the number of bits given by the right operand.

2 = 0b10
2 << 2
Out: 8
8 = 0b1000

bin(2 << 2)
Out: 0b1000

Performing a left bit shift of 1 is equivalent to multiplication by 2:

7 << 1
Out: 14

Performing a left bit shift of n is equivalent to multiplication by 2**n:

https://riptutorial.com/ 84

3 << 4
Out: 48

Bitwise Right Shift

The >> operator will perform a bitwise "right shift," where the left operand's value is moved right by
the number of bits given by the right operand.

8 = 0b1000
8 >> 2
Out: 2
2 = 0b10

bin(8 >> 2)
Out: 0b10

Performing a right bit shift of 1 is equivalent to integer division by 2:

36 >> 1
Out: 18

15 >> 1
Out: 7

Performing a right bit shift of n is equivalent to integer division by 2**n:

48 >> 4
Out: 3

59 >> 3
Out: 7

Bitwise NOT

The ~ operator will flip all of the bits in the number. Since computers use signed number
representations — most notably, the two's complement notation to encode negative binary
numbers where negative numbers are written with a leading one (1) instead of a leading zero (0).

This means that if you were using 8 bits to represent your two's-complement numbers, you would
treat patterns from 0000 0000 to 0111 1111 to represent numbers from 0 to 127 and reserve 1xxx
xxxx to represent negative numbers.

Eight-bit two's-complement numbers

Bits Unsigned Value Two's-complement Value

0000 0000 0 0

0000 0001 1 1

0000 0010 2 2

https://riptutorial.com/ 85

https://en.wikipedia.org/wiki/Signed_number_representations
https://en.wikipedia.org/wiki/Signed_number_representations
https://en.wikipedia.org/wiki/Two%27s_complement

Bits Unsigned Value Two's-complement Value

0111 1110 126 126

0111 1111 127 127

1000 0000 128 -128

1000 0001 129 -127

1000 0010 130 -126

1111 1110 254 -2

1111 1111 255 -1

In essence, this means that whereas 1010 0110 has an unsigned value of 166 (arrived at by adding
(128 * 1) + (64 * 0) + (32 * 1) + (16 * 0) + (8 * 0) + (4 * 1) + (2 * 1) + (1 * 0)), it has a
two's-complement value of -90 (arrived at by adding (128 * 1) - (64 * 0) - (32 * 1) - (16 * 0) -
(8 * 0) - (4 * 1) - (2 * 1) - (1 * 0), and complementing the value).

In this way, negative numbers range down to -128 (1000 0000). Zero (0) is represented as 0000 0000
, and minus one (-1) as 1111 1111.

In general, though, this means ~n = -n - 1.

0 = 0b0000 0000
~0
Out: -1
-1 = 0b1111 1111

1 = 0b0000 0001
~1
Out: -2
-2 = 1111 1110

2 = 0b0000 0010
~2
Out: -3
-3 = 0b1111 1101

123 = 0b0111 1011
~123
Out: -124
-124 = 0b1000 0100

Note, the overall effect of this operation when applied to positive numbers can be summarized:

~n -> -|n+1|

And then, when applied to negative numbers, the corresponding effect is:

~-n -> |n-1|

https://riptutorial.com/ 86

The following examples illustrate this last rule...

-0 = 0b0000 0000
~-0
Out: -1
-1 = 0b1111 1111
0 is the obvious exception to this rule, as -0 == 0 always

-1 = 0b1000 0001
~-1
Out: 0
0 = 0b0000 0000

-2 = 0b1111 1110
~-2
Out: 1
1 = 0b0000 0001

-123 = 0b1111 1011
~-123
Out: 122
122 = 0b0111 1010

Inplace Operations

All of the Bitwise operators (except ~) have their own in place versions

a = 0b001
a &= 0b010
a = 0b000

a = 0b001
a |= 0b010
a = 0b011

a = 0b001
a <<= 2
a = 0b100

a = 0b100
a >>= 2
a = 0b001

a = 0b101
a ^= 0b011
a = 0b110

Read Bitwise Operators online: https://riptutorial.com/python/topic/730/bitwise-operators

https://riptutorial.com/ 87

https://riptutorial.com/python/topic/730/bitwise-operators

Chapter 17: Boolean Operators

Examples

and

Evaluates to the second argument if and only if both of the arguments are truthy. Otherwise
evaluates to the first falsey argument.

x = True
y = True
z = x and y # z = True

x = True
y = False
z = x and y # z = False

x = False
y = True
z = x and y # z = False

x = False
y = False
z = x and y # z = False

x = 1
y = 1
z = x and y # z = y, so z = 1, see `and` and `or` are not guaranteed to be a boolean

x = 0
y = 1
z = x and y # z = x, so z = 0 (see above)

x = 1
y = 0
z = x and y # z = y, so z = 0 (see above)

x = 0
y = 0
z = x and y # z = x, so z = 0 (see above)

The 1's in the above example can be changed to any truthy value, and the 0's can be changed to
any falsey value.

or

Evaluates to the first truthy argument if either one of the arguments is truthy. If both arguments are
falsey, evaluates to the second argument.

x = True
y = True
z = x or y # z = True

https://riptutorial.com/ 88

x = True
y = False
z = x or y # z = True

x = False
y = True
z = x or y # z = True

x = False
y = False
z = x or y # z = False

x = 1
y = 1
z = x or y # z = x, so z = 1, see `and` and `or` are not guaranteed to be a boolean

x = 1
y = 0
z = x or y # z = x, so z = 1 (see above)

x = 0
y = 1
z = x or y # z = y, so z = 1 (see above)

x = 0
y = 0
z = x or y # z = y, so z = 0 (see above)

The 1's in the above example can be changed to any truthy value, and the 0's can be changed to
any falsey value.

not

It returns the opposite of the following statement:

x = True
y = not x # y = False

x = False
y = not x # y = True

Short-circuit evaluation

Python minimally evaluates Boolean expressions.

>>> def true_func():
... print("true_func()")
... return True
...
>>> def false_func():
... print("false_func()")
... return False
...
>>> true_func() or false_func()
true_func()
True

https://riptutorial.com/ 89

https://en.wikipedia.org/wiki/Short-circuit_evaluation

>>> false_func() or true_func()
false_func()
true_func()
True
>>> true_func() and false_func()
true_func()
false_func()
False
>>> false_func() and false_func()
false_func()
False

`and` and `or` are not guaranteed to return a boolean

When you use or, it will either return the first value in the expression if it's true, else it will blindly
return the second value. I.e. or is equivalent to:

def or_(a, b):
 if a:
 return a
 else:
 return b

For and, it will return its first value if it's false, else it returns the last value:

def and_(a, b):
 if not a:
 return a
 else:
 return b

A simple example

In Python you can compare a single element using two binary operators--one on either side:

if 3.14 < x < 3.142:
 print("x is near pi")

In many (most?) programming languages, this would be evaluated in a way contrary to regular
math: (3.14 < x) < 3.142, but in Python it is treated like 3.14 < x and x < 3.142, just like most non-
programmers would expect.

Read Boolean Operators online: https://riptutorial.com/python/topic/1731/boolean-operators

https://riptutorial.com/ 90

https://riptutorial.com/python/topic/1731/boolean-operators

Chapter 18: Call Python from C#

Introduction

The documentation provides a sample implementation of the inter-process communication
between C# and Python scripts.

Remarks

Note that in the example above data is serialized using MongoDB.Bson library that can be
installed via NuGet manager.

Otherwise, you can use any JSON serialization library of your choice.

Below are inter-process communication implementation steps:

Input arguments are serialized into JSON string and saved in a temporary text file:

 BsonDocument argsBson = BsonDocument.Parse("{ 'x' : '1', 'y' : '2' }");
 string argsFile = string.Format("{0}\\{1}.txt", Path.GetDirectoryName(pyScriptPath),
Guid.NewGuid());

•

Python interpreter python.exe runs the python script that reads JSON string from a
temporary text file and backs-out input arguments:

 filename = sys.argv[1]
 with open(filename) as data_file:
 input_args = json.loads(data_file.read())

 x, y = [float(input_args.get(key)) for key in ['x', 'y']]

•

Python script is executed and output dictionary is serialized into JSON string and printed to
the command window:

 print json.dumps({ 'sum' : x + y , 'subtract' : x - y })

•

Read output JSON string from C# application:

 using (StreamReader myStreamReader = process.StandardOutput)
 {

•

https://riptutorial.com/ 91

https://github.com/JulijJegorov/tandem-algorithms

 outputString = myStreamReader.ReadLine();
 process.WaitForExit();
 }

I am using the inter-process communication between C# and Python scripts in one of my projects
that allows calling Python scripts directly from Excel spreadsheets.

The project utilizes ExcelDNA add-in for C# - Excel binding.

The source-code is stored in the GitHub repository.

Below are links to wiki pages that provide an overview of the project and help to get started in 4
easy steps.

Getting Started•
Implementation Overview•
Examples•
Object-Wizard•
Functions•

I hope you find the example and the project useful.

Examples

Python script to be called by C# application

import sys
import json

load input arguments from the text file
filename = sys.argv[1]
with open(filename) as data_file:
 input_args = json.loads(data_file.read())

cast strings to floats
x, y = [float(input_args.get(key)) for key in ['x', 'y']]

print json.dumps({ 'sum' : x + y , 'subtract' : x - y })

https://riptutorial.com/ 92

https://i.stack.imgur.com/zDdC1.jpg
https://github.com/JulijJegorov/tandem-algorithms
https://github.com/JulijJegorov/tandem-algorithms/wiki/Getting-Started
https://github.com/JulijJegorov/tandem-algorithms/wiki/Getting-Started
https://github.com/JulijJegorov/tandem-algorithms/wiki/Getting-Started
https://github.com/JulijJegorov/tandem-algorithms/wiki/Implementation-Overview
https://github.com/JulijJegorov/tandem-algorithms/wiki/Examples
https://github.com/JulijJegorov/tandem-algorithms/wiki/Object-Wizard
https://github.com/JulijJegorov/tandem-algorithms/wiki/Functions

C# code calling Python script

using MongoDB.Bson;
using System;
using System.Diagnostics;
using System.IO;

namespace python_csharp
{
 class Program
 {
 static void Main(string[] args)
 {
 // full path to .py file
 string pyScriptPath = "...../sum.py";
 // convert input arguments to JSON string
 BsonDocument argsBson = BsonDocument.Parse("{ 'x' : '1', 'y' : '2' }");

 bool saveInputFile = false;

 string argsFile = string.Format("{0}\\{1}.txt",
Path.GetDirectoryName(pyScriptPath), Guid.NewGuid());

 string outputString = null;
 // create new process start info
 ProcessStartInfo prcStartInfo = new ProcessStartInfo
 {
 // full path of the Python interpreter 'python.exe'
 FileName = "python.exe", // string.Format(@"""{0}""", "python.exe"),
 UseShellExecute = false,
 RedirectStandardOutput = true,
 CreateNoWindow = false
 };

 try
 {
 // write input arguments to .txt file
 using (StreamWriter sw = new StreamWriter(argsFile))
 {
 sw.WriteLine(argsBson);
 prcStartInfo.Arguments = string.Format("{0} {1}",
string.Format(@"""{0}""", pyScriptPath), string.Format(@"""{0}""", argsFile));
 }
 // start process
 using (Process process = Process.Start(prcStartInfo))
 {
 // read standard output JSON string
 using (StreamReader myStreamReader = process.StandardOutput)
 {
 outputString = myStreamReader.ReadLine();
 process.WaitForExit();
 }
 }
 }
 finally
 {
 // delete/save temporary .txt file
 if (!saveInputFile)
 {
 File.Delete(argsFile);

https://riptutorial.com/ 93

 }
 }
 Console.WriteLine(outputString);
 }
 }
}

Read Call Python from C# online: https://riptutorial.com/python/topic/10759/call-python-from-
csharp

https://riptutorial.com/ 94

https://riptutorial.com/python/topic/10759/call-python-from-csharp
https://riptutorial.com/python/topic/10759/call-python-from-csharp

Chapter 19: Checking Path Existence and
Permissions

Parameters

Parameter Details

os.F_OK Value to pass as the mode parameter of access() to test the existence of path.

os.R_OK
Value to include in the mode parameter of access() to test the readability of
path.

os.W_OK Value to include in the mode parameter of access() to test the writability of path.

os.X_OK
Value to include in the mode parameter of access() to determine if path can be
executed.

Examples

Perform checks using os.access

os.access is much better solution to check whether directory exists and it's accesable for reading
and writing.

import os
path = "/home/myFiles/directory1"

Check if path exists
os.access(path, os.F_OK)

Check if path is Readable
os.access(path, os.R_OK)

Check if path is Wriable
os.access(path, os.W_OK)

Check if path is Execuatble
os.access(path, os.E_OK)

also it's possible to perfrom all checks together

os.access(path, os.F_OK & os.R_OK & os.W_OK & os.E_OK)

All the above returns True if access is allowed and False if not allowed. These are available on unix
and windows.

Read Checking Path Existence and Permissions online:

https://riptutorial.com/ 95

https://riptutorial.com/python/topic/1262/checking-path-existence-and-permissions

https://riptutorial.com/ 96

https://riptutorial.com/python/topic/1262/checking-path-existence-and-permissions

Chapter 20: ChemPy - python package

Introduction

ChemPy is a python package designed mainly to solve and address problems in physical,
analytical and inorganic Chemistry. It is a free, open-source Python toolkit for chemistry, chemical
engineering, and materials science applications.

Examples

Parsing formulae

from chempy import Substance
ferricyanide = Substance.from_formula('Fe(CN)6-3')
ferricyanide.composition == {0: -3, 26: 1, 6: 6, 7: 6}
True
print(ferricyanide.unicode_name)
Fe(CN)₆³⁻
 print(ferricyanide.latex_name + ", " + ferricyanide.html_name)
Fe(CN)_{6}^{3-}, Fe(CN)₆³⁻
 print('%.3f' % ferricyanide.mass)
211.955

In composition, the atomic numbers (and 0 for charge) is used as keys and the count of each kind
became respective value.

Balancing stoichiometry of a chemical reaction

 from chempy import balance_stoichiometry # Main reaction in NASA's booster rockets:
 reac, prod = balance_stoichiometry({'NH4ClO4', 'Al'}, {'Al2O3', 'HCl', 'H2O', 'N2'})
 from pprint import pprint
 pprint(reac)
{'Al': 10, 'NH4ClO4': 6}
 pprint(prod)
{'Al2O3': 5, 'H2O': 9, 'HCl': 6, 'N2': 3}
 from chempy import mass_fractions
 for fractions in map(mass_fractions, [reac, prod]):
... pprint({k: '{0:.3g} wt%'.format(v*100) for k, v in fractions.items()})
...
{'Al': '27.7 wt%', 'NH4ClO4': '72.3 wt%'}
{'Al2O3': '52.3 wt%', 'H2O': '16.6 wt%', 'HCl': '22.4 wt%', 'N2': '8.62 wt%'}

Balancing reactions

from chempy import Equilibrium
 from sympy import symbols
 K1, K2, Kw = symbols('K1 K2 Kw')
 e1 = Equilibrium({'MnO4-': 1, 'H+': 8, 'e-': 5}, {'Mn+2': 1, 'H2O': 4}, K1)
 e2 = Equilibrium({'O2': 1, 'H2O': 2, 'e-': 4}, {'OH-': 4}, K2)
 coeff = Equilibrium.eliminate([e1, e2], 'e-')

https://riptutorial.com/ 97

 coeff
[4, -5]
 redox = e1*coeff[0] + e2*coeff[1]
 print(redox)
20 OH- + 32 H+ + 4 MnO4- = 26 H2O + 4 Mn+2 + 5 O2; K1**4/K2**5
 autoprot = Equilibrium({'H2O': 1}, {'H+': 1, 'OH-': 1}, Kw)
 n = redox.cancel(autoprot)
 n
20
 redox2 = redox + n*autoprot
 print(redox2)
12 H+ + 4 MnO4- = 4 Mn+2 + 5 O2 + 6 H2O; K1**4*Kw**20/K2**5

Chemical equilibria

 from chempy import Equilibrium
 from chempy.chemistry import Species
 water_autop = Equilibrium({'H2O'}, {'H+', 'OH-'}, 10**-14) # unit "molar" assumed
 ammonia_prot = Equilibrium({'NH4+'}, {'NH3', 'H+'}, 10**-9.24) # same here
 from chempy.equilibria import EqSystem
 substances = map(Species.from_formula, 'H2O OH- H+ NH3 NH4+'.split())
 eqsys = EqSystem([water_autop, ammonia_prot], substances)
 print('\n'.join(map(str, eqsys.rxns))) # "rxns" short for "reactions"
H2O = H+ + OH-; 1e-14
NH4+ = H+ + NH3; 5.75e-10
 from collections import defaultdict
 init_conc = defaultdict(float, {'H2O': 1, 'NH3': 0.1})
 x, sol, sane = eqsys.root(init_conc)
 assert sol['success'] and sane
 print(sorted(sol.keys())) # see package "pyneqsys" for more info
['fun', 'intermediate_info', 'internal_x_vecs', 'nfev', 'njev', 'success', 'x', 'x_vecs']
 print(', '.join('%.2g' % v for v in x))
1, 0.0013, 7.6e-12, 0.099, 0.0013

Ionic strength

 from chempy.electrolytes import ionic_strength
 ionic_strength({'Fe+3': 0.050, 'ClO4-': 0.150}) == .3
 True

Chemical kinetics (system of ordinary differential equations)

from chempy import ReactionSystem # The rate constants below are arbitrary
 rsys = ReactionSystem.from_string("""2 Fe+2 + H2O2 -> 2 Fe+3 + 2 OH-; 42
 2 Fe+3 + H2O2 -> 2 Fe+2 + O2 + 2 H+; 17
 H+ + OH- -> H2O; 1e10
 H2O -> H+ + OH-; 1e-4
 Fe+3 + 2 H2O -> FeOOH(s) + 3 H+; 1
 FeOOH(s) + 3 H+ -> Fe+3 + 2 H2O; 2.5""") # "[H2O]" = 1.0 (actually 55.4 at RT)
 from chempy.kinetics.ode import get_odesys
 odesys, extra = get_odesys(rsys)
 from collections import defaultdict
 import numpy as np
 tout = sorted(np.concatenate((np.linspace(0, 23), np.logspace(-8, 1))))
 c0 = defaultdict(float, {'Fe+2': 0.05, 'H2O2': 0.1, 'H2O': 1.0, 'H+': 1e-7, 'OH-': 1e-7})
 result = odesys.integrate(tout, c0, atol=1e-12, rtol=1e-14)

https://riptutorial.com/ 98

 import matplotlib.pyplot as plt
 _ = plt.subplot(1, 2, 1)
 _ = result.plot(names=[k for k in rsys.substances if k != 'H2O'])
 _ = plt.legend(loc='best', prop={'size': 9}); _ = plt.xlabel('Time'); _ =
plt.ylabel('Concentration')
 _ = plt.subplot(1, 2, 2)
 _ = result.plot(names=[k for k in rsys.substances if k != 'H2O'], xscale='log', yscale='log')
 _ = plt.legend(loc='best', prop={'size': 9}); _ = plt.xlabel('Time'); _ =
plt.ylabel('Concentration')
 _ = plt.tight_layout()
 plt.show()

Read ChemPy - python package online: https://riptutorial.com/python/topic/10625/chempy---
python-package

https://riptutorial.com/ 99

https://i.stack.imgur.com/wcAJR.png
https://riptutorial.com/python/topic/10625/chempy---python-package
https://riptutorial.com/python/topic/10625/chempy---python-package

Chapter 21: Classes

Introduction

Python offers itself not only as a popular scripting language, but also supports the object-oriented
programming paradigm. Classes describe data and provide methods to manipulate that data, all
encompassed under a single object. Furthermore, classes allow for abstraction by separating
concrete implementation details from abstract representations of data.

Code utilizing classes is generally easier to read, understand, and maintain.

Examples

Basic inheritance

Inheritance in Python is based on similar ideas used in other object oriented languages like Java,
C++ etc. A new class can be derived from an existing class as follows.

class BaseClass(object):
 pass

class DerivedClass(BaseClass):
 pass

The BaseClass is the already existing (parent) class, and the DerivedClass is the new (child) class
that inherits (or subclasses) attributes from BaseClass. Note: As of Python 2.2, all classes implicitly
inherit from the object class, which is the base class for all built-in types.

We define a parent Rectangle class in the example below, which implicitly inherits from object:

class Rectangle():
 def __init__(self, w, h):
 self.w = w
 self.h = h

 def area(self):
 return self.w * self.h

 def perimeter(self):
 return 2 * (self.w + self.h)

The Rectangle class can be used as a base class for defining a Square class, as a square is a
special case of rectangle.

class Square(Rectangle):
 def __init__(self, s):
 # call parent constructor, w and h are both s
 super(Square, self).__init__(s, s)
 self.s = s

https://riptutorial.com/ 100

https://docs.python.org/release/2.2.3/whatsnew/sect-rellinks.html
https://docs.python.org/release/2.2.3/whatsnew/sect-rellinks.html
https://docs.python.org/release/2.2.3/whatsnew/sect-rellinks.html
https://docs.python.org/release/2.2.3/whatsnew/sect-rellinks.html

The Square class will automatically inherit all attributes of the Rectangle class as well as the object
class. super() is used to call the __init__() method of Rectangle class, essentially calling any
overridden method of the base class. Note: in Python 3, super() does not require arguments.

Derived class objects can access and modify the attributes of its base classes:

r.area()
Output: 12
r.perimeter()
Output: 14

s.area()
Output: 4
s.perimeter()
Output: 8

Built-in functions that work with inheritance

issubclass(DerivedClass, BaseClass): returns True if DerivedClass is a subclass of the BaseClass

isinstance(s, Class): returns True if s is an instance of Class or any of the derived classes of Class

subclass check
issubclass(Square, Rectangle)
Output: True

instantiate
r = Rectangle(3, 4)
s = Square(2)

isinstance(r, Rectangle)
Output: True
isinstance(r, Square)
Output: False
A rectangle is not a square

isinstance(s, Rectangle)
Output: True
A square is a rectangle
isinstance(s, Square)
Output: True

Class and instance variables

Instance variables are unique for each instance, while class variables are shared by all instances.

class C:
 x = 2 # class variable

 def __init__(self, y):
 self.y = y # instance variable

C.x

https://riptutorial.com/ 101

2
C.y
AttributeError: type object 'C' has no attribute 'y'

c1 = C(3)
c1.x
2
c1.y
3

c2 = C(4)
c2.x
2
c2.y
4

Class variables can be accessed on instances of this class, but assigning to the class attribute will
create an instance variable which shadows the class variable

c2.x = 4
c2.x
4
C.x
2

Note that mutating class variables from instances can lead to some unexpected consequences.

class D:
 x = []
 def __init__(self, item):
 self.x.append(item) # note that this is not an assigment!

d1 = D(1)
d2 = D(2)

d1.x
[1, 2]
d2.x
[1, 2]
D.x
[1, 2]

Bound, unbound, and static methods

The idea of bound and unbound methods was removed in Python 3. In Python 3 when you declare
a method within a class, you are using a def keyword, thus creating a function object. This is a
regular function, and the surrounding class works as its namespace. In the following example we
declare method f within class A, and it becomes a function A.f:

Python 3.x3.0

class A(object):
 def f(self, x):
 return 2 * x
A.f

https://riptutorial.com/ 102

https://python-history.blogspot.com/2009/02/first-class-everything.html

<function A.f at ...> (in Python 3.x)

In Python 2 the behavior was different: function objects within the class were implicitly replaced
with objects of type instancemethod, which were called unbound methods because they were not
bound to any particular class instance. It was possible to access the underlying function using
.__func__ property.

Python 2.x2.3

A.f
<unbound method A.f> (in Python 2.x)
A.f.__class__
<type 'instancemethod'>
A.f.__func__
<function f at ...>

The latter behaviors are confirmed by inspection - methods are recognized as functions in Python
3, while the distinction is upheld in Python 2.

Python 3.x3.0

import inspect

inspect.isfunction(A.f)
True
inspect.ismethod(A.f)
False

Python 2.x2.3

import inspect

inspect.isfunction(A.f)
False
inspect.ismethod(A.f)
True

In both versions of Python function/method A.f can be called directly, provided that you pass an
instance of class A as the first argument.

A.f(1, 7)
Python 2: TypeError: unbound method f() must be called with
A instance as first argument (got int instance instead)
Python 3: 14
a = A()
A.f(a, 20)
Python 2 & 3: 40

Now suppose a is an instance of class A, what is a.f then? Well, intuitively this should be the same
method f of class A, only it should somehow "know" that it was applied to the object a – in Python
this is called method bound to a.

https://riptutorial.com/ 103

The nitty-gritty details are as follows: writing a.f invokes the magic __getattribute__ method of a,
which first checks whether a has an attribute named f (it doesn't), then checks the class A whether
it contains a method with such a name (it does), and creates a new object m of type method which
has the reference to the original A.f in m.__func__, and a reference to the object a in m.__self__.
When this object is called as a function, it simply does the following: m(...) =>
m.__func__(m.__self__, ...). Thus this object is called a bound method because when invoked it
knows to supply the object it was bound to as the first argument. (These things work same way in
Python 2 and 3).

a = A()
a.f
<bound method A.f of <__main__.A object at ...>>
a.f(2)
4

Note: the bound method object a.f is recreated *every time* you call it:
a.f is a.f # False
As a performance optimization you can store the bound method in the object's
__dict__, in which case the method object will remain fixed:
a.f = a.f
a.f is a.f # True

Finally, Python has class methods and static methods – special kinds of methods. Class
methods work the same way as regular methods, except that when invoked on an object they bind
to the class of the object instead of to the object. Thus m.__self__ = type(a). When you call such
bound method, it passes the class of a as the first argument. Static methods are even simpler:
they don't bind anything at all, and simply return the underlying function without any
transformations.

class D(object):
 multiplier = 2

 @classmethod
 def f(cls, x):
 return cls.multiplier * x

 @staticmethod
 def g(name):
 print("Hello, %s" % name)

D.f
<bound method type.f of <class '__main__.D'>>
D.f(12)
24
D.g
<function D.g at ...>
D.g("world")
Hello, world

Note that class methods are bound to the class even when accessed on the instance:

d = D()
d.multiplier = 1337
(D.multiplier, d.multiplier)

https://riptutorial.com/ 104

(2, 1337)
d.f
<bound method D.f of <class '__main__.D'>>
d.f(10)
20

It is worth noting that at the lowest level, functions, methods, staticmethods, etc. are actually
descriptors that invoke __get__, __set__ and optionally __del__ special methods. For more details
on classmethods and staticmethods:

What is the difference between @staticmethod and @classmethod in Python?•
Meaning of @classmethod and @staticmethod for beginner?•

New-style vs. old-style classes

Python 2.x2.2.0

New-style classes were introduced in Python 2.2 to unify classes and types. They inherit from the
top-level object type. A new-style class is a user-defined type, and is very similar to built-in types.

new-style class
class New(object):
 pass

new-style instance
new = New()

new.__class__
<class '__main__.New'>
type(new)
<class '__main__.New'>
issubclass(New, object)
True

Old-style classes do not inherit from object. Old-style instances are always implemented with a
built-in instance type.

old-style class
class Old:
 pass

old-style instance
old = Old()

old.__class__
<class __main__.Old at ...>
type(old)
<type 'instance'>
issubclass(Old, object)
False

Python 3.x3.0.0

In Python 3, old-style classes were removed.

https://riptutorial.com/ 105

http://www.riptutorial.com/python/example/11716/simple-descriptor
http://stackoverflow.com/questions/136097/what-is-the-difference-between-staticmethod-and-classmethod-in-python
http://stackoverflow.com/questions/12179271/python-classmethod-and-staticmethod-for-beginner

New-style classes in Python 3 implicitly inherit from object, so there is no need to specify
MyClass(object) anymore.

class MyClass:
 pass

my_inst = MyClass()

type(my_inst)
<class '__main__.MyClass'>
my_inst.__class__
<class '__main__.MyClass'>
issubclass(MyClass, object)
True

Default values for instance variables

If the variable contains a value of an immutable type (e.g. a string) then it is okay to assign a
default value like this

class Rectangle(object):
 def __init__(self, width, height, color='blue'):
 self.width = width
 self.height = height
 self.color = color

 def area(self):
 return self.width * self.height

Create some instances of the class
default_rectangle = Rectangle(2, 3)
print(default_rectangle.color) # blue

red_rectangle = Rectangle(2, 3, 'red')
print(red_rectangle.color) # red

One needs to be careful when initializing mutable objects such as lists in the constructor. Consider
the following example:

class Rectangle2D(object):
 def __init__(self, width, height, pos=[0,0], color='blue'):
 self.width = width
 self.height = height
 self.pos = pos
 self.color = color

r1 = Rectangle2D(5,3)
r2 = Rectangle2D(7,8)
r1.pos[0] = 4
r1.pos # [4, 0]
r2.pos # [4, 0] r2's pos has changed as well

This behavior is caused by the fact that in Python default parameters are bound at function
execution and not at function declaration. To get a default instance variable that's not shared
among instances, one should use a construct like this:

https://riptutorial.com/ 106

class Rectangle2D(object):
 def __init__(self, width, height, pos=None, color='blue'):
 self.width = width
 self.height = height
 self.pos = pos or [0, 0] # default value is [0, 0]
 self.color = color

r1 = Rectangle2D(5,3)
r2 = Rectangle2D(7,8)
r1.pos[0] = 4
r1.pos # [4, 0]
r2.pos # [0, 0] r2's pos hasn't changed

See also Mutable Default Arguments and “Least Astonishment” and the Mutable Default Argument
.

Multiple Inheritance

Python uses the C3 linearization algorithm to determine the order in which to resolve class
attributes, including methods. This is known as the Method Resolution Order (MRO).

Here's a simple example:

class Foo(object):
 foo = 'attr foo of Foo'

class Bar(object):
 foo = 'attr foo of Bar' # we won't see this.
 bar = 'attr bar of Bar'

class FooBar(Foo, Bar):
 foobar = 'attr foobar of FooBar'

Now if we instantiate FooBar, if we look up the foo attribute, we see that Foo's attribute is found
first

fb = FooBar()

and

>>> fb.foo
'attr foo of Foo'

Here's the MRO of FooBar:

>>> FooBar.mro()
[<class '__main__.FooBar'>, <class '__main__.Foo'>, <class '__main__.Bar'>, <type 'object'>]

It can be simply stated that Python's MRO algorithm is

Depth first (e.g. FooBar then Foo) unless1.

https://riptutorial.com/ 107

http://docs.python-guide.org/en/latest/writing/gotchas/#mutable-default-arguments
http://stackoverflow.com/questions/1132941/least-astonishment-and-the-mutable-default-argument
https://en.wikipedia.org/wiki/C3_linearization

a shared parent (object) is blocked by a child (Bar) and2.
no circular relationships allowed.3.

That is, for example, Bar cannot inherit from FooBar while FooBar inherits from Bar.

For a comprehensive example in Python, see the wikipedia entry.

Another powerful feature in inheritance is super. super can fetch parent classes features.

class Foo(object):
 def foo_method(self):
 print "foo Method"

class Bar(object):
 def bar_method(self):
 print "bar Method"

class FooBar(Foo, Bar):
 def foo_method(self):
 super(FooBar, self).foo_method()

Multiple inheritance with init method of class, when every class has own init method then we try for
multiple ineritance then only init method get called of class which is inherit first.

for below example only Foo class init method getting called Bar class init not getting called

 class Foo(object):
 def __init__(self):
 print "foo init"

 class Bar(object):
 def __init__(self):
 print "bar init"

 class FooBar(Foo, Bar):
 def __init__(self):
 print "foobar init"
 super(FooBar, self).__init__()

 a = FooBar()

Output:

 foobar init
 foo init

But it doesn't mean that Bar class is not inherit. Instance of final FooBar class is also instance of
Bar class and Foo class.

print isinstance(a,FooBar)
print isinstance(a,Foo)
print isinstance(a,Bar)

Output:

https://riptutorial.com/ 108

https://en.wikipedia.org/wiki/C3_linearization

True
True
True

Descriptors and Dotted Lookups

Descriptors are objects that are (usually) attributes of classes and that have any of __get__,
__set__, or __delete__ special methods.

Data Descriptors have any of __set__, or __delete__

These can control the dotted lookup on an instance, and are used to implement functions,
staticmethod, classmethod, and property. A dotted lookup (e.g. instance foo of class Foo looking up
attribute bar - i.e. foo.bar) uses the following algorithm:

bar is looked up in the class, Foo. If it is there and it is a Data Descriptor, then the data
descriptor is used. That's how property is able to control access to data in an instance, and
instances cannot override this. If a Data Descriptor is not there, then

1.

bar is looked up in the instance __dict__. This is why we can override or block methods being
called from an instance with a dotted lookup. If bar exists in the instance, it is used. If not, we
then

2.

look in the class Foo for bar. If it is a Descriptor, then the descriptor protocol is used. This is
how functions (in this context, unbound methods), classmethod, and staticmethod are
implemented. Else it simply returns the object there, or there is an AttributeError

3.

Class methods: alternate initializers

Class methods present alternate ways to build instances of classes. To illustrate, let's look at an
example.

Let's suppose we have a relatively simple Person class:

class Person(object):

 def __init__(self, first_name, last_name, age):
 self.first_name = first_name
 self.last_name = last_name
 self.age = age
 self.full_name = first_name + " " + last_name

 def greet(self):
 print("Hello, my name is " + self.full_name + ".")

It might be handy to have a way to build instances of this class specifying a full name instead of
first and last name separately. One way to do this would be to have last_name be an optional
parameter, and assuming that if it isn't given, we passed the full name in:

class Person(object):

https://riptutorial.com/ 109

 def __init__(self, first_name, age, last_name=None):
 if last_name is None:
 self.first_name, self.last_name = first_name.split(" ", 2)
 else:
 self.first_name = first_name
 self.last_name = last_name

 self.full_name = self.first_name + " " + self.last_name
 self.age = age

 def greet(self):
 print("Hello, my name is " + self.full_name + ".")

However, there are two main problems with this bit of code:

The parameters first_name and last_name are now misleading, since you can enter a full
name for first_name. Also, if there are more cases and/or more parameters that have this
kind of flexibility, the if/elif/else branching can get annoying fast.

1.

Not quite as important, but still worth pointing out: what if last_name is None, but first_name
doesn't split into two or more things via spaces? We have yet another layer of input
validation and/or exception handling...

2.

Enter class methods. Rather than having a single initializer, we will create a separate initializer,
called from_full_name, and decorate it with the (built-in) classmethod decorator.

class Person(object):

 def __init__(self, first_name, last_name, age):
 self.first_name = first_name
 self.last_name = last_name
 self.age = age
 self.full_name = first_name + " " + last_name

 @classmethod
 def from_full_name(cls, name, age):
 if " " not in name:
 raise ValueError
 first_name, last_name = name.split(" ", 2)
 return cls(first_name, last_name, age)

 def greet(self):
 print("Hello, my name is " + self.full_name + ".")

Notice cls instead of self as the first argument to from_full_name. Class methods are applied to the
overall class, not an instance of a given class (which is what self usually denotes). So, if cls is our
Person class, then the returned value from the from_full_name class method is Person(first_name,
last_name, age), which uses Person's __init__ to create an instance of the Person class. In
particular, if we were to make a subclass Employee of Person, then from_full_name would work in the
Employee class as well.

To show that this works as expected, let's create instances of Person in more than one way without
the branching in __init__:

https://riptutorial.com/ 110

In [2]: bob = Person("Bob", "Bobberson", 42)

In [3]: alice = Person.from_full_name("Alice Henderson", 31)

In [4]: bob.greet()
Hello, my name is Bob Bobberson.

In [5]: alice.greet()
Hello, my name is Alice Henderson.

Other references:

Python @classmethod and @staticmethod for beginner?•

https://docs.python.org/2/library/functions.html#classmethod•

https://docs.python.org/3.5/library/functions.html#classmethod•

Class composition

Class composition allows explicit relations between objects. In this example, people live in cities
that belong to countries. Composition allows people to access the number of all people living in
their country:

class Country(object):
 def __init__(self):
 self.cities=[]

 def addCity(self,city):
 self.cities.append(city)

class City(object):
 def __init__(self, numPeople):
 self.people = []
 self.numPeople = numPeople

 def addPerson(self, person):
 self.people.append(person)

 def join_country(self,country):
 self.country = country
 country.addCity(self)

 for i in range(self.numPeople):
 person(i).join_city(self)

class Person(object):
 def __init__(self, ID):
 self.ID=ID

 def join_city(self, city):
 self.city = city
 city.addPerson(self)

https://riptutorial.com/ 111

http://stackoverflow.com/questions/12179271/python-classmethod-and-staticmethod-for-beginner
https://docs.python.org/2/library/functions.html#classmethod
https://docs.python.org/3.5/library/functions.html#classmethod

 def people_in_my_country(self):
 x= sum([len(c.people) for c in self.city.country.cities])
 return x

US=Country()
NYC=City(10).join_country(US)
SF=City(5).join_country(US)

print(US.cities[0].people[0].people_in_my_country())

15

Monkey Patching

In this case, "monkey patching" means adding a new variable or method to a class after it's been
defined. For instance, say we defined class A as

class A(object):
 def __init__(self, num):
 self.num = num

 def __add__(self, other):
 return A(self.num + other.num)

But now we want to add another function later in the code. Suppose this function is as follows.

def get_num(self):
 return self.num

But how do we add this as a method in A? That's simple we just essentially place that function into
A with an assignment statement.

A.get_num = get_num

Why does this work? Because functions are objects just like any other object, and methods are
functions that belong to the class.

The function get_num shall be available to all existing (already created) as well to the new instances
of A

These additions are available on all instances of that class (or its subclasses) automatically. For
example:

foo = A(42)

A.get_num = get_num

bar = A(6);

foo.get_num() # 42

bar.get_num() # 6

https://riptutorial.com/ 112

Note that, unlike some other languages, this technique does not work for certain built-in types, and
it is not considered good style.

Listing All Class Members

The dir() function can be used to get a list of the members of a class:

dir(Class)

For example:

>>> dir(list)
['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__',
'__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__',
'__iadd__', '__imul__', '__init__', '__iter__', '__le__', '__len__', '__lt__', '__mul__',
'__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__',
'__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'clear',
'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']

It is common to look only for "non-magic" members. This can be done using a simple
comprehension that lists members with names not starting with __:

>>> [m for m in dir(list) if not m.startswith('__')]
['append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse',
'sort']

Caveats:

Classes can define a __dir__() method. If that method exists calling dir() will call __dir__(),
otherwise Python will try to create a list of members of the class. This means that the dir function
can have unexpected results. Two quotes of importance from the official python documentation:

If the object does not provide dir(), the function tries its best to gather information from
the object’s dict attribute, if defined, and from its type object. The resulting list is not
necessarily complete, and may be inaccurate when the object has a custom getattr().

Note: Because dir() is supplied primarily as a convenience for use at an interactive
prompt, it tries to supply an interesting set of names more than it tries to supply a
rigorously or consistently defined set of names, and its detailed behavior may change
across releases. For example, metaclass attributes are not in the result list when the
argument is a class.

Introduction to classes

A class, functions as a template that defines the basic characteristics of a particular object. Here's
an example:

class Person(object):
 """A simple class.""" # docstring
 species = "Homo Sapiens" # class attribute

https://riptutorial.com/ 113

https://docs.python.org/3.4/library/functions.html#dir

 def __init__(self, name): # special method
 """This is the initializer. It's a special
 method (see below).
 """
 self.name = name # instance attribute

 def __str__(self): # special method
 """This method is run when Python tries
 to cast the object to a string. Return
 this string when using print(), etc.
 """
 return self.name

 def rename(self, renamed): # regular method
 """Reassign and print the name attribute."""
 self.name = renamed
 print("Now my name is {}".format(self.name))

There are a few things to note when looking at the above example.

The class is made up of attributes (data) and methods (functions).1.
Attributes and methods are simply defined as normal variables and functions.2.
As noted in the corresponding docstring, the __init__() method is called the initializer. It's
equivalent to the constructor in other object oriented languages, and is the method that is
first run when you create a new object, or new instance of the class.

3.

Attributes that apply to the whole class are defined first, and are called class attributes.4.
Attributes that apply to a specific instance of a class (an object) are called instance attributes
. They are generally defined inside __init__(); this is not necessary, but it is recommended
(since attributes defined outside of __init__() run the risk of being accessed before they are
defined).

5.

Every method, included in the class definition passes the object in question as its first
parameter. The word self is used for this parameter (usage of self is actually by convention,
as the word self has no inherent meaning in Python, but this is one of Python's most
respected conventions, and you should always follow it).

6.

Those used to object-oriented programming in other languages may be surprised by a few
things. One is that Python has no real concept of private elements, so everything, by default,
imitates the behavior of the C++/Java public keyword. For more information, see the "Private
Class Members" example on this page.

7.

Some of the class's methods have the following form: __functionname__(self, other_stuff).
All such methods are called "magic methods" and are an important part of classes in Python.
For instance, operator overloading in Python is implemented with magic methods. For more
information, see the relevant documentation.

8.

Now let's make a few instances of our Person class!

>>> # Instances
>>> kelly = Person("Kelly")
>>> joseph = Person("Joseph")
>>> john_doe = Person("John Doe")

We currently have three Person objects, kelly, joseph, and john_doe.

https://riptutorial.com/ 114

http://www.riptutorial.com/python/example/1113/magic-dunder-methods

We can access the attributes of the class from each instance using the dot operator . Note again
the difference between class and instance attributes:

>>> # Attributes
>>> kelly.species
'Homo Sapiens'
>>> john_doe.species
'Homo Sapiens'
>>> joseph.species
'Homo Sapiens'
>>> kelly.name
'Kelly'
>>> joseph.name
'Joseph'

We can execute the methods of the class using the same dot operator .:

>>> # Methods
>>> john_doe.__str__()
'John Doe'
>>> print(john_doe)
'John Doe'
>>> john_doe.rename("John")
'Now my name is John'

Properties

Python classes support properties, which look like regular object variables, but with the possibility
of attaching custom behavior and documentation.

class MyClass(object):

 def __init__(self):
 self._my_string = ""

 @property
 def string(self):
 """A profoundly important string."""
 return self._my_string

 @string.setter
 def string(self, new_value):
 assert isinstance(new_value, str), \
 "Give me a string, not a %r!" % type(new_value)
 self._my_string = new_value

 @string.deleter
 def x(self):
 self._my_string = None

The object's of class MyClass will appear to have have a property .string, however it's behavior is
now tightly controlled:

mc = MyClass()
mc.string = "String!"

https://riptutorial.com/ 115

print(mc.string)
del mc.string

As well as the useful syntax as above, the property syntax allows for validation, or other
augmentations to be added to those attributes. This could be especially useful with public APIs -
where a level of help should be given to the user.

Another common use of properties is to enable the class to present 'virtual attributes' - attributes
which aren't actually stored but are computed only when requested.

class Character(object):
 def __init__(name, max_hp):
 self._name = name
 self._hp = max_hp
 self._max_hp = max_hp

 # Make hp read only by not providing a set method
 @property
 def hp(self):
 return self._hp

 # Make name read only by not providing a set method
 @property
 def name(self):
 return self.name

 def take_damage(self, damage):
 self.hp -= damage
 self.hp = 0 if self.hp <0 else self.hp

 @property
 def is_alive(self):
 return self.hp != 0

 @property
 def is_wounded(self):
 return self.hp < self.max_hp if self.hp > 0 else False

 @property
 def is_dead(self):
 return not self.is_alive

bilbo = Character('Bilbo Baggins', 100)
bilbo.hp
out : 100
bilbo.hp = 200
out : AttributeError: can't set attribute
hp attribute is read only.

bilbo.is_alive
out : True
bilbo.is_wounded
out : False
bilbo.is_dead
out : False

bilbo.take_damage(50)

bilbo.hp

https://riptutorial.com/ 116

out : 50

bilbo.is_alive
out : True
bilbo.is_wounded
out : True
bilbo.is_dead
out : False

bilbo.take_damage(50)
bilbo.hp
out : 0

bilbo.is_alive
out : False
bilbo.is_wounded
out : False
bilbo.is_dead
out : True

Singleton class

A singleton is a pattern that restricts the instantiation of a class to one instance/object. For more
info on python singleton design patterns, see here.

class Singleton:
 def __new__(cls):
 try:
 it = cls.__it__
 except AttributeError:
 it = cls.__it__ = object.__new__(cls)
 return it

 def __repr__(self):
 return '<{}>'.format(self.__class__.__name__.upper())

 def __eq__(self, other):
 return other is self

Another method is to decorate your class. Following the example from this answer create a
Singleton class:

class Singleton:
 """
 A non-thread-safe helper class to ease implementing singletons.
 This should be used as a decorator -- not a metaclass -- to the
 class that should be a singleton.

 The decorated class can define one `__init__` function that
 takes only the `self` argument. Other than that, there are
 no restrictions that apply to the decorated class.

 To get the singleton instance, use the `Instance` method. Trying
 to use `__call__` will result in a `TypeError` being raised.

 Limitations: The decorated class cannot be inherited from.

https://riptutorial.com/ 117

http://python-3-patterns-idioms-test.readthedocs.io/en/latest/Singleton.html
http://stackoverflow.com/a/7346105/3462319

 """

 def __init__(self, decorated):
 self._decorated = decorated

 def Instance(self):
 """
 Returns the singleton instance. Upon its first call, it creates a
 new instance of the decorated class and calls its `__init__` method.
 On all subsequent calls, the already created instance is returned.

 """
 try:
 return self._instance
 except AttributeError:
 self._instance = self._decorated()
 return self._instance

 def __call__(self):
 raise TypeError('Singletons must be accessed through `Instance()`.')

 def __instancecheck__(self, inst):
 return isinstance(inst, self._decorated)

To use you can use the Instance method

@Singleton
class Single:
 def __init__(self):
 self.name=None
 self.val=0
 def getName(self):
 print(self.name)

x=Single.Instance()
y=Single.Instance()
x.name='I\'m single'
x.getName() # outputs I'm single
y.getName() # outputs I'm single

Read Classes online: https://riptutorial.com/python/topic/419/classes

https://riptutorial.com/ 118

https://riptutorial.com/python/topic/419/classes

Chapter 22: CLI subcommands with precise
help output

Introduction

Different ways to create subcommands like in hg or svn with the exact command line interface and
help output as shown in Remarks section.

Parsing Command Line arguments covers broader topic of arguments parsing.

Remarks

Different ways to create subcommands like in hg or svn with the command line interface shown in
the help message:

usage: sub <command>

commands:

 status - show status
 list - print list

Examples

Native way (no libraries)

"""
usage: sub <command>

commands:

 status - show status
 list - print list
"""

import sys

def check():
 print("status")
 return 0

if sys.argv[1:] == ['status']:
 sys.exit(check())
elif sys.argv[1:] == ['list']:
 print("list")
else:
 print(__doc__.strip())

Output without arguments:

https://riptutorial.com/ 119

http://www.riptutorial.com/python/topic/1382/parsing-command-line-arguments

usage: sub <command>

commands:

 status - show status
 list - print list

Pros:

no deps•
everybody should be able to read that•
complete control over help formatting•

argparse (default help formatter)

import argparse
import sys

def check():
 print("status")
 return 0

parser = argparse.ArgumentParser(prog="sub", add_help=False)
subparser = parser.add_subparsers(dest="cmd")

subparser.add_parser('status', help='show status')
subparser.add_parser('list', help='print list')

hack to show help when no arguments supplied
if len(sys.argv) == 1:
 parser.print_help()
 sys.exit(0)

args = parser.parse_args()

if args.cmd == 'list':
 print('list')
elif args.cmd == 'status':
 sys.exit(check())

Output without arguments:

usage: sub {status,list} ...

positional arguments:
 {status,list}
 status show status
 list print list

Pros:

comes with Python•
option parsing is included•

argparse (custom help formatter)

https://riptutorial.com/ 120

Extended version of http://www.riptutorial.com/python/example/25282/argparse--default-help-
formatter- that fixed help output.

import argparse
import sys

class CustomHelpFormatter(argparse.HelpFormatter):
 def _format_action(self, action):
 if type(action) == argparse._SubParsersAction:
 # inject new class variable for subcommand formatting
 subactions = action._get_subactions()
 invocations = [self._format_action_invocation(a) for a in subactions]
 self._subcommand_max_length = max(len(i) for i in invocations)

 if type(action) == argparse._SubParsersAction._ChoicesPseudoAction:
 # format subcommand help line
 subcommand = self._format_action_invocation(action) # type: str
 width = self._subcommand_max_length
 help_text = ""
 if action.help:
 help_text = self._expand_help(action)
 return " {:{width}} - {}\n".format(subcommand, help_text, width=width)

 elif type(action) == argparse._SubParsersAction:
 # process subcommand help section
 msg = '\n'
 for subaction in action._get_subactions():
 msg += self._format_action(subaction)
 return msg
 else:
 return super(CustomHelpFormatter, self)._format_action(action)

def check():
 print("status")
 return 0

parser = argparse.ArgumentParser(usage="sub <command>", add_help=False,
 formatter_class=CustomHelpFormatter)

subparser = parser.add_subparsers(dest="cmd")
subparser.add_parser('status', help='show status')
subparser.add_parser('list', help='print list')

custom help messge
parser._positionals.title = "commands"

hack to show help when no arguments supplied
if len(sys.argv) == 1:
 parser.print_help()
 sys.exit(0)

args = parser.parse_args()

if args.cmd == 'list':
 print('list')
elif args.cmd == 'status':
 sys.exit(check())

Output without arguments:

https://riptutorial.com/ 121

http://www.riptutorial.com/python/example/25282/argparse--default-help-formatter-
http://www.riptutorial.com/python/example/25282/argparse--default-help-formatter-

usage: sub <command>

commands:

 status - show status
 list - print list

Read CLI subcommands with precise help output online:
https://riptutorial.com/python/topic/7701/cli-subcommands-with-precise-help-output

https://riptutorial.com/ 122

https://riptutorial.com/python/topic/7701/cli-subcommands-with-precise-help-output

Chapter 23: Code blocks, execution frames,
and namespaces

Introduction

A code block is a piece of Python program text that can be executed as a unit, such as a module,
a class definition or a function body. Some code blocks (like modules) are normally executed only
once, others (like function bodies) may be executed many times. Code blocks may textually
contain other code blocks. Code blocks may invoke other code blocks (that may or may not be
textually contained in them) as part of their execution, e.g., by invoking (calling) a function.

Examples

Code block namespaces

Code Block Type Global Namespace Local Namespace

Module n.s. for the module same as global

Script (file or command) n.s. for __main__ same as global

Interactive command n.s. for __main__ same as global

Class definition
global n.s. of containing
block

new namespace

Function body
global n.s. of containing
block

new namespace

String passed to exec
statement

global n.s. of containing
block

local namespace of containing
block

String passed to eval() global n.s. of caller local n.s. of caller

File read by execfile() global n.s. of caller local n.s. of caller

Expression read by input() global n.s. of caller local n.s. of caller

Read Code blocks, execution frames, and namespaces online:
https://riptutorial.com/python/topic/10741/code-blocks--execution-frames--and-namespaces

https://riptutorial.com/ 123

https://riptutorial.com/python/topic/10741/code-blocks--execution-frames--and-namespaces

Chapter 24: Collections module

Introduction

The built-in collections package provides several specialized, flexible collection types that are
both high-performance and provide alternatives to the general collection types of dict, list, tuple
and set. The module also defines abstract base classes describing different types of collection
functionality (such as MutableSet and ItemsView).

Remarks

There are three other types available in the collections module, namely:

UserDict1.
UserList2.
UserString3.

They each act as a wrapper around the tied object, e.g., UserDict acts as a wrapper around a dict
object. In each case, the class simulates its named type. The instance's contents are kept in a
regular type object, which is accessible via the data attribute of the wrapper instance. In each of
these three cases, the need for these types has been partially supplanted by the ability to subclass
directly from the basic type; however, the wrapper class can be easier to work with because the
underlying type is accessible as an attribute.

Examples

collections.Counter

Counter is a dict sub class that allows you to easily count objects. It has utility methods for working
with the frequencies of the objects that you are counting.

import collections
counts = collections.Counter([1,2,3])

the above code creates an object, counts, which has the frequencies of all the elements passed to
the constructor. This example has the value Counter({1: 1, 2: 1, 3: 1})

Constructor examples

Letter Counter

>>> collections.Counter('Happy Birthday')
Counter({'a': 2, 'p': 2, 'y': 2, 'i': 1, 'r': 1, 'B': 1, ' ': 1, 'H': 1, 'd': 1, 'h': 1, 't':
1})

https://riptutorial.com/ 124

https://docs.python.org/2/library/collections.html#collections.Counter

Word Counter

>>> collections.Counter('I am Sam Sam I am That Sam-I-am That Sam-I-am! I do not like that
Sam-I-am'.split())
Counter({'I': 3, 'Sam': 2, 'Sam-I-am': 2, 'That': 2, 'am': 2, 'do': 1, 'Sam-I-am!': 1, 'that':
1, 'not': 1, 'like': 1})

Recipes

>>> c = collections.Counter({'a': 4, 'b': 2, 'c': -2, 'd': 0})

Get count of individual element

>>> c['a']
4

Set count of individual element

>>> c['c'] = -3
>>> c
Counter({'a': 4, 'b': 2, 'd': 0, 'c': -3})

Get total number of elements in counter (4 + 2 + 0 - 3)

>>> sum(c.itervalues()) # negative numbers are counted!
3

Get elements (only those with positive counter are kept)

>>> list(c.elements())
['a', 'a', 'a', 'a', 'b', 'b']

Remove keys with 0 or negative value

>>> c - collections.Counter()
Counter({'a': 4, 'b': 2})

Remove everything

>>> c.clear()
>>> c
Counter()

Add remove individual elements

>>> c.update({'a': 3, 'b':3})
>>> c.update({'a': 2, 'c':2}) # adds to existing, sets if they don't exist
>>> c
Counter({'a': 5, 'b': 3, 'c': 2})
>>> c.subtract({'a': 3, 'b': 3, 'c': 3}) # subtracts (negative values are allowed)

https://riptutorial.com/ 125

>>> c
Counter({'a': 2, 'b': 0, 'c': -1})

collections.defaultdict

collections.defaultdict(default_factory) returns a subclass of dict that has a default value for
missing keys. The argument should be a function that returns the default value when called with
no arguments. If there is nothing passed, it defaults to None.

>>> state_capitals = collections.defaultdict(str)
>>> state_capitals
defaultdict(<class 'str'>, {})

returns a reference to a defaultdict that will create a string object with its default_factory method.

A typical usage of defaultdict is to use one of the builtin types such as str, int, list or dict as the
default_factory, since these return empty types when called with no arguments:

>>> str()
''
>>> int()
0
>>> list
[]

Calling the defaultdict with a key that does not exist does not produce an error as it would in a
normal dictionary.

>>> state_capitals['Alaska']
''
>>> state_capitals
defaultdict(<class 'str'>, {'Alaska': ''})

Another example with int:

>>> fruit_counts = defaultdict(int)
>>> fruit_counts['apple'] += 2 # No errors should occur
>>> fruit_counts
default_dict(int, {'apple': 2})
>>> fruit_counts['banana'] # No errors should occur
0
>>> fruit_counts # A new key is created
default_dict(int, {'apple': 2, 'banana': 0})

Normal dictionary methods work with the default dictionary

>>> state_capitals['Alabama'] = 'Montgomery'
>>> state_capitals
defaultdict(<class 'str'>, {'Alabama': 'Montgomery', 'Alaska': ''})

Using list as the default_factory will create a list for each new key.

https://riptutorial.com/ 126

https://docs.python.org/2/library/collections.html#collections.defaultdict

>>> s = [('NC', 'Raleigh'), ('VA', 'Richmond'), ('WA', 'Seattle'), ('NC', 'Asheville')]
>>> dd = collections.defaultdict(list)
>>> for k, v in s:
... dd[k].append(v)
>>> dd
defaultdict(<class 'list'>,
 {'VA': ['Richmond'],
 'NC': ['Raleigh', 'Asheville'],
 'WA': ['Seattle']})

collections.OrderedDict

The order of keys in Python dictionaries is arbitrary: they are not governed by the order in which
you add them.

For example:

>>> d = {'foo': 5, 'bar': 6}
>>> print(d)
{'foo': 5, 'bar': 6}
>>> d['baz'] = 7
>>> print(a)
{'baz': 7, 'foo': 5, 'bar': 6}
>>> d['foobar'] = 8
>>> print(a)
{'baz': 7, 'foo': 5, 'bar': 6, 'foobar': 8}
```

(The arbitrary ordering implied above means that you may get different results with the above 
code to that shown here.)

The order in which the keys appear is the order which they would be iterated over, e.g. using a for 
loop.

The collections.OrderedDict class provides dictionary objects that retain the order of keys. 
OrderedDicts can be created as shown below with a series of ordered items (here, a list of tuple 
key-value pairs):

>>> from collections import OrderedDict 
>>> d = OrderedDict([('foo', 5), ('bar', 6)]) 
>>> print(d) 
OrderedDict([('foo', 5), ('bar', 6)]) 
>>> d['baz'] = 7 
>>> print(d) 
OrderedDict([('foo', 5), ('bar', 6), ('baz', 7)]) 
>>> d['foobar'] = 8 
>>> print(d) 
OrderedDict([('foo', 5), ('bar', 6), ('baz', 7), ('foobar', 8)])

Or we can create an empty OrderedDict and then add items:

>>> o = OrderedDict() 
>>> o['key1'] = "value1" 
>>> o['key2'] = "value2" 

https://riptutorial.com/ 127



>>> print(o) 
OrderedDict([('key1', 'value1'), ('key2', 'value2')])

Iterating through an OrderedDict allows key access in the order they were added.

What happens if we assign a new value to an existing key?

>>> d['foo'] = 4 
>>> print(d) 
OrderedDict([('foo', 4), ('bar', 6), ('baz', 7), ('foobar', 8)])

The key retains its original place in the OrderedDict.

collections.namedtuple

Define a new type Person using namedtuple like this:

Person = namedtuple('Person', ['age', 'height', 'name'])

The second argument is the list of attributes that the tuple will have. You can list these attributes 
also as either space or comma separated string:

Person = namedtuple('Person', 'age, height, name')

or

Person = namedtuple('Person', 'age height name')

Once defined, a named tuple can be instantiated by calling the object with the necessary 
parameters, e.g.:

dave = Person(30, 178, 'Dave')

Named arguments can also be used:

jack = Person(age=30, height=178, name='Jack S.')

Now you can access the attributes of the namedtuple:

print(jack.age)  # 30 
print(jack.name)  # 'Jack S.'

The first argument to the namedtuple constructor (in our example 'Person') is the typename. It is 
typical to use the same word for the constructor and the typename, but they can be different:

Human = namedtuple('Person',  'age, height, name') 
dave = Human(30, 178, 'Dave') 
print(dave)  # yields: Person(age=30, height=178, name='Dave')

https://riptutorial.com/ 128

https://docs.python.org/2/library/collections.html#collections.namedtuple


collections.deque

Returns a new deque object initialized left-to-right (using append()) with data from iterable. If 
iterable is not specified, the new deque is empty.

Deques are a generalization of stacks and queues (the name is pronounced “deck” and is short for 
“double-ended queue”). Deques support thread-safe, memory efficient appends and pops from 
either side of the deque with approximately the same O(1) performance in either direction.

Though list objects support similar operations, they are optimized for fast fixed-length operations 
and incur O(n) memory movement costs for pop(0) and insert(0, v) operations which change both 
the size and position of the underlying data representation.

New in version 2.4.

If maxlen is not specified or is None, deques may grow to an arbitrary length. Otherwise, the deque is 
bounded to the specified maximum length. Once a bounded length deque is full, when new items 
are added, a corresponding number of items are discarded from the opposite end. Bounded length 
deques provide functionality similar to the tail filter in Unix. They are also useful for tracking 
transactions and other pools of data where only the most recent activity is of interest.

Changed in version 2.6: Added maxlen parameter.

>>> from collections import deque 
>>> d = deque('ghi')                 # make a new deque with three items 
>>> for elem in d:                   # iterate over the deque's elements 
...     print elem.upper() 
G 
H 
I 
 
>>> d.append('j')                    # add a new entry to the right side 
>>> d.appendleft('f')                # add a new entry to the left side 
>>> d                                # show the representation of the deque 
deque(['f', 'g', 'h', 'i', 'j']) 
 
>>> d.pop()                          # return and remove the rightmost item 
'j' 
>>> d.popleft()                      # return and remove the leftmost item 
'f' 
>>> list(d)                          # list the contents of the deque 
['g', 'h', 'i'] 
>>> d[0]                             # peek at leftmost item 
'g' 
>>> d[-1]                            # peek at rightmost item 
'i' 
 
>>> list(reversed(d))                # list the contents of a deque in reverse 
['i', 'h', 'g'] 
>>> 'h' in d                         # search the deque 
True 
>>> d.extend('jkl')                  # add multiple elements at once 
>>> d 
deque(['g', 'h', 'i', 'j', 'k', 'l']) 
>>> d.rotate(1)                      # right rotation 

https://riptutorial.com/ 129



>>> d 
deque(['l', 'g', 'h', 'i', 'j', 'k']) 
>>> d.rotate(-1)                     # left rotation 
>>> d 
deque(['g', 'h', 'i', 'j', 'k', 'l']) 
 
>>> deque(reversed(d))               # make a new deque in reverse order 
deque(['l', 'k', 'j', 'i', 'h', 'g']) 
>>> d.clear()                        # empty the deque 
>>> d.pop()                          # cannot pop from an empty deque 
Traceback (most recent call last): 
  File "<pyshell#6>", line 1, in -toplevel- 
    d.pop() 
IndexError: pop from an empty deque 
 
>>> d.extendleft('abc')              # extendleft() reverses the input order 
>>> d 
deque(['c', 'b', 'a'])

Source: https://docs.python.org/2/library/collections.html

collections.ChainMap

ChainMap is new in version 3.3

Returns a new ChainMap object given a number of maps. This object groups multiple dicts or other 
mappings together to create a single, updateable view.

ChainMaps are useful managing nested contexts and overlays. An example in the python world is 
found in the implementation of the Context class in Django's template engine. It is useful for quickly 
linking a number of mappings so that the result can be treated as a single unit. It is often much 
faster than creating a new dictionary and running multiple update() calls.

Anytime one has a chain of lookup values there can be a case for ChainMap. An example includes 
having both user specified values and a dictionary of default values. Another example is the POST 
and GET parameter maps found in web use, e.g. Django or Flask. Through the use of ChainMap one 
returns a combined view of two distinct dictionaries.

The maps parameter list is ordered from first-searched to last-searched. Lookups search the 
underlying mappings successively until a key is found. In contrast, writes, updates, and deletions 
only operate on the first mapping.

import collections 
 
# define two dictionaries with at least some keys overlapping. 
dict1 = {'apple': 1, 'banana': 2} 
dict2 = {'coconut': 1, 'date': 1, 'apple': 3} 
 
# create two ChainMaps with different ordering of those dicts. 
combined_dict = collections.ChainMap(dict1, dict2) 
reverse_ordered_dict = collections.ChainMap(dict2, dict1)

Note the impact of order on which value is found first in the subsequent lookup

https://riptutorial.com/ 130

https://docs.python.org/2/library/collections.html


for k, v in combined_dict.items(): 
    print(k, v) 
 
date 1 
apple 1 
banana 2 
coconut 1 
 
for k, v in reverse_ordered_dict.items(): 
    print(k, v) 
 
date 1 
apple 3 
banana 2 
coconut 1

Read Collections module online: https://riptutorial.com/python/topic/498/collections-module

https://riptutorial.com/ 131

https://riptutorial.com/python/topic/498/collections-module


Chapter 25: Comments and Documentation

Syntax

# This is a single line comment•
print("")  # This is an inline comment•
"""
This is
a multi-line comment
"""

•

Remarks

Developers should follow the PEP257 - Docstring Conventions guidelines. In some cases, style 
guides (such as Google Style Guide ones) or documentation rendering third-parties (such as 
Sphinx) may detail additional conventions for docstrings.

Examples

Single line, inline and multiline comments

Comments are used to explain code when the basic code itself isn't clear.

Python ignores comments, and so will not execute code in there, or raise syntax errors for plain 
english sentences.

Single-line comments begin with the hash character (#) and are terminated by the end of line.

Single line comment:•

# This is a single line comment in Python

Inline comment:•

print("Hello World")  # This line prints "Hello World"

Comments spanning multiple lines have """ or ''' on either end. This is the same as a 
multiline string, but they can be used as comments:

•

""" 
This type of comment spans multiple lines. 
These are mostly used for documentation of functions, classes and modules. 
"""

Programmatically accessing docstrings

https://riptutorial.com/ 132

https://www.python.org/dev/peps/pep-0257/
https://google.github.io/styleguide/pyguide.html?showone=Comments#Comments
http://www.sphinx-doc.org/en/stable/


Docstrings are - unlike regular comments - stored as an attribute of the function they document, 
meaning that you can access them programmatically.

An example function

def func(): 
    """This is a function that does nothing at all""" 
    return

The docstring can be accessed using the __doc__ attribute:

print(func.__doc__)

This is a function that does nothing at all

help(func)

Help on function func in module __main__:

func()

     This is a function that does nothing at all

Another example function

function.__doc__ is just the actual docstring as a string, while the help function provides general 
information about a function, including the docstring. Here's a more helpful example:

def greet(name, greeting="Hello"): 
    """Print a greeting to the user `name` 
 
    Optional parameter `greeting` can change what they're greeted with.""" 
 
    print("{} {}".format(greeting, name))

help(greet)

Help on function greet in module __main__:

greet(name, greeting='Hello')

    Print a greeting to the user name 
    Optional parameter greeting can change what they're greeted with.

Advantages of docstrings over regular comments

Just putting no docstring or a regular comment in a function makes it a lot less helpful.

https://riptutorial.com/ 133



def greet(name, greeting="Hello"): 
    # Print a greeting to the user `name` 
    # Optional parameter `greeting` can change what they're greeted with. 
 
    print("{} {}".format(greeting, name))

print(greet.__doc__)

None

help(greet)

Help on function greet in module main:

greet(name, greeting='Hello')

Write documentation using docstrings

A docstring is a multi-line comment used to document modules, classes, functions and methods. It 
has to be the first statement of the component it describes.

def hello(name): 
    """Greet someone. 
 
    Print a greeting ("Hello") for the person with the given name. 
    """ 
 
    print("Hello "+name)

class Greeter: 
    """An object used to greet people. 
 
    It contains multiple greeting functions for several languages 
    and times of the  day. 
    """

The value of the docstring can be accessed within the program and is - for example - used by the 
help command.

Syntax conventions

PEP 257

PEP 257 defines a syntax standard for docstring comments. It basically allows two types:

One-line Docstrings:•

According to PEP 257, they should be used with short and simple functions. Everything is placed 
in one line, e.g:

https://riptutorial.com/ 134

https://www.python.org/dev/peps/pep-0257/
http://www.riptutorial.com/python/example/14491/single-line--inline-and-multiline-comments
http://www.riptutorial.com/python/example/19891/programmatically-accessing-docstrings
https://www.python.org/dev/peps/pep-0257/


def hello(): 
    """Say hello to your friends.""" 
    print("Hello my friends!")

The docstring shall end with a period, the verb should be in the imperative form.

Multi-line Docstrings:•

Multi-line docstring should be used for longer, more complex functions, modules or classes.

def hello(name, language="en"): 
    """Say hello to a person. 
 
    Arguments: 
    name: the name of the person 
    language: the language in which the person should be greeted 
    """ 
 
    print(greeting[language]+" "+name)

They start with a short summary (equivalent to the content of a one-line docstring) which can be 
on the same line as the quotation marks or on the next line, give additional detail and list 
parameters and return values.

Note PEP 257 defines what information should be given within a docstring, it doesn't define in 
which format it should be given. This was the reason for other parties and documentation parsing 
tools to specify their own standards for documentation, some of which are listed below and in this 
question.

Sphinx

Sphinx is a tool to generate HTML based documentation for Python projects based on docstrings. 
Its markup language used is reStructuredText. They define their own standards for documentation, 
pythonhosted.org hosts a very good description of them. The Sphinx format is for example used 
by the pyCharm IDE.

A function would be documented like this using the Sphinx/reStructuredText format:

def hello(name, language="en"): 
    """Say hello to a person. 
 
    :param name: the name of the person 
    :type name: str 
    :param language: the language in which the person should be greeted 
    :type language: str 
    :return: a number 
    :rtype: int 
    """ 
 
    print(greeting[language]+" "+name) 
    return 4

https://riptutorial.com/ 135

https://www.python.org/dev/peps/pep-0257/#multi-line-docstrings
https://stackoverflow.com/questions/5334531/using-javadoc-for-python-documentation
https://stackoverflow.com/questions/5334531/using-javadoc-for-python-documentation
http://www.sphinx-doc.org/en/stable/
http://docutils.sourceforge.net/rst.html
https://pythonhosted.org/an_example_pypi_project/sphinx.html
https://www.jetbrains.com/pycharm/


Google Python Style Guide

Google has published Google Python Style Guide which defines coding conventions for Python, 
including documentation comments. In comparison to the Sphinx/reST many people say that 
documentation according to Google's guidelines is better human-readable.

The pythonhosted.org page mentioned above also provides some examples for good 
documentation according to the Google Style Guide.

Using the Napoleon plugin, Sphinx can also parse documentation in the Google Style Guide-
compliant format.

A function would be documented like this using the Google Style Guide format:

def hello(name, language="en"): 
    """Say hello to a person. 
 
    Args: 
        name: the name of the person as string 
        language: the language code string 
 
    Returns: 
        A number. 
    """ 
 
    print(greeting[language]+" "+name) 
    return 4

Read Comments and Documentation online: https://riptutorial.com/python/topic/4144/comments-
and-documentation

https://riptutorial.com/ 136

https://google.github.io/styleguide/pyguide.html?showone=Comments#Comments
https://pythonhosted.org/an_example_pypi_project/sphinx.html
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/
https://riptutorial.com/python/topic/4144/comments-and-documentation
https://riptutorial.com/python/topic/4144/comments-and-documentation


Chapter 26: Common Pitfalls

Introduction

Python is a language meant to be clear and readable without any ambiguities and unexpected 
behaviors. Unfortunately, these goals are not achievable in all cases, and that is why Python does 
have a few corner cases where it might do something different than what you were expecting.

This section will show you some issues that you might encounter when writing Python code.

Examples

Changing the sequence you are iterating over

A for loop iterates over a sequence, so altering this sequence inside the loop could lead to 
unexpected results (especially when adding or removing elements):

alist = [0, 1, 2] 
for index, value in enumerate(alist): 
    alist.pop(index) 
print(alist) 
# Out: [1]

Note: list.pop() is being used to remove elements from the list.

The second element was not deleted because the iteration goes through the indices in order. The 
above loop iterates twice, with the following results:

# Iteration #1 
index = 0 
alist = [0, 1, 2] 
alist.pop(0) # removes '0' 
 
# Iteration #2 
index = 1 
alist = [1, 2] 
alist.pop(1) # removes '2' 
 
# loop terminates, but alist is not empty: 
alist = [1]

This problem arises because the indices are changing while iterating in the direction of increasing 
index. To avoid this problem, you can iterate through the loop backwards:

alist = [1,2,3,4,5,6,7] 
for index, item in reversed(list(enumerate(alist))): 
    # delete all even items 
    if item % 2 == 0: 
        alist.pop(index) 

https://riptutorial.com/ 137



print(alist) 
# Out: [1, 3, 5, 7]

By iterating through the loop starting at the end, as items are removed (or added), it does not 
affect the indices of items earlier in the list. So this example will properly remove all items that are 
even from alist.

A similar problem arises when inserting or appending elements to a list that you are iterating 
over, which can result in an infinite loop:

alist = [0, 1, 2] 
for index, value in enumerate(alist): 
    # break to avoid infinite loop: 
    if index == 20: 
        break 
    alist.insert(index, 'a') 
print(alist) 
# Out (abbreviated): ['a', 'a', ..., 'a', 'a',  0,   1,   2]

Without the break condition the loop would insert 'a' as long as the computer does not run out of 
memory and the program is allowed to continue. In a situation like this, it is usually preferred to 
create a new list, and add items to the new list as you loop through the original list.

When using a for loop, you cannot modify the list elements with the placeholder variable:

alist = [1,2,3,4] 
for item in alist: 
    if item % 2 == 0: 
        item = 'even' 
print(alist) 
# Out: [1,2,3,4]

In the above example, changing item doesn't actually change anything in the original list. You 
need to use the list index (alist[2]), and enumerate() works well for this:

alist = [1,2,3,4] 
for index, item in enumerate(alist): 
    if item % 2 == 0: 
        alist[index] = 'even' 
print(alist) 
# Out: [1, 'even', 3, 'even']

A while loop might be a better choice in some cases:

If you are going to delete all the items in the list:

zlist = [0, 1, 2] 
while zlist: 
    print(zlist[0]) 
    zlist.pop(0) 

https://riptutorial.com/ 138



print('After: zlist =', zlist) 
 
# Out: 0 
#      1 
#      2 
# After: zlist = []

Although simply resetting zlist will accomplish the same result;

zlist = []

The above example can also be combined with len() to stop after a certain point, or to delete all 
but x items in the list:

zlist = [0, 1, 2] 
x = 1 
while len(zlist) > x: 
    print(zlist[0]) 
    zlist.pop(0) 
print('After: zlist =', zlist) 
 
# Out: 0 
#      1 
# After: zlist = [2]

Or to loop through a list while deleting elements that meet a certain condition (in this case 
deleting all even elements):

zlist = [1,2,3,4,5] 
i = 0 
while i < len(zlist): 
    if zlist[i] % 2 == 0: 
        zlist.pop(i) 
    else: 
        i += 1 
print(zlist) 
# Out: [1, 3, 5]

Notice that you don't increment i after deleting an element. By deleting the element at zlist[i], 
the index of the next item has decreased by one, so by checking zlist[i] with the same value for 
i on the next iteration, you will be correctly checking the next item in the list.

A contrary way to think about removing unwanted items from a list, is to add wanted items to a 
new list. The following example is an alternative to the latter while loop example:

zlist = [1,2,3,4,5] 
 
z_temp = [] 
for item in zlist: 
    if item % 2 != 0: 
        z_temp.append(item) 
zlist = z_temp 
print(zlist) 

https://riptutorial.com/ 139



# Out: [1, 3, 5]

Here we are funneling desired results into a new list. We can then optionally reassign the 
temporary list to the original variable.

With this trend of thinking, you can invoke one of Python's most elegant and powerful features, list 
comprehensions, which eliminates temporary lists and diverges from the previously discussed in-
place list/index mutation ideology.

zlist = [1,2,3,4,5] 
[item for item in zlist if item % 2 != 0] 
# Out: [1, 3, 5]

Mutable default argument

def foo(li=[]): 
    li.append(1) 
    print(li) 
 
foo([2]) 
# Out: [2, 1] 
foo([3]) 
# Out: [3, 1]

This code behaves as expected, but what if we don't pass an argument?

foo() 
# Out: [1] As expected... 
 
foo() 
# Out: [1, 1]  Not as expected...

This is because default arguments of functions and methods are evaluated at definition time 
rather than run time. So we only ever have a single instance of the li list.

The way to get around it is to use only immutable types for default arguments:

def foo(li=None): 
    if not li: 
        li = [] 
    li.append(1) 
    print(li) 
 
foo() 
# Out: [1] 
 
foo() 
# Out: [1]

While an improvement and although if not li correctly evaluates to False, many other objects do 
as well, such as zero-length sequences. The following example arguments can cause unintended 
results:

https://riptutorial.com/ 140



x = [] 
foo(li=x) 
# Out: [1] 
 
foo(li="") 
# Out: [1] 
 
foo(li=0) 
# Out: [1]

The idiomatic approach is to directly check the argument against the None object:

def foo(li=None): 
    if li is None: 
        li = [] 
    li.append(1) 
    print(li) 
 
foo() 
# Out: [1]

List multiplication and common references

Consider the case of creating a nested list structure by multiplying:

li = [[]] * 3 
print(li) 
# Out: [[], [], []]

At first glance we would think we have a list of containing 3 different nested lists. Let's try to 
append 1 to the first one:

li[0].append(1) 
print(li) 
# Out: [[1], [1], [1]]

1 got appended to all of the lists in li.

The reason is that [[]] * 3 doesn't create a list of 3 different lists. Rather, it creates a list 
holding 3 references to the same list object. As such, when we append to li[0] the change is 
visible in all sub-elements of li. This is equivalent of:

li = [] 
element = [[]] 
li = element + element + element 
print(li) 
# Out: [[], [], []] 
element.append(1) 
print(li) 
# Out: [[1], [1], [1]]

This can be further corroborated if we print the memory addresses of the contained list by using 
id:

https://riptutorial.com/ 141



li = [[]] * 3 
print([id(inner_list) for inner_list in li]) 
# Out: [6830760, 6830760, 6830760]

The solution is to create the inner lists with a loop:

li = [[] for _ in range(3)]

Instead of creating a single list and then making 3 references to it, we now create 3 different 
distinct lists. This, again, can be verified by using the id function:

print([id(inner_list) for inner_list in li]) 
# Out: [6331048, 6331528, 6331488]

You can also do this. It causes a new empty list to be created in each append call.

>>> li = [] 
>>> li.append([]) 
>>> li.append([]) 
>>> li.append([]) 
>>> for k in li: print(id(k)) 
... 
4315469256 
4315564552 
4315564808

Don't use index to loop over a sequence.

Don't:

for i in range(len(tab)): 
    print(tab[i])

Do:

for elem in tab: 
    print(elem)

for will automate most iteration operations for you.

Use enumerate if you really need both the index and the element.

for i, elem in enumerate(tab): 
     print((i, elem))

Be careful when using "==" to check against True or False

if (var == True): 
    # this will execute if var is True or 1, 1.0, 1L 
 
if (var != True): 

https://riptutorial.com/ 142



    # this will execute if var is neither True nor 1 
 
if (var == False): 
    # this will execute if var is False or 0 (or 0.0, 0L, 0j) 
 
if (var == None): 
    # only execute if var is None 
 
if var: 
    # execute if var is a non-empty string/list/dictionary/tuple, non-0, etc 
 
if not var: 
    # execute if var is "", {}, [], (), 0, None, etc. 
 
if var is True: 
    # only execute if var is boolean True, not 1 
 
if var is False: 
    # only execute if var is boolean False, not 0 
 
if var is None: 
    # same as var == None

Do not check if you can, just do it and handle the error

Pythonistas usually say "It's easier to ask for forgiveness than permission".

Don't:

if os.path.isfile(file_path): 
    file = open(file_path) 
else: 
    # do something

Do:

try: 
    file = open(file_path) 
except OSError as e: 
    # do something

Or even better with Python 2.6+:

with open(file_path) as file:

It is much better because it is much more generic. You can apply try/except to almost anything. 
You don't need to care about what to do to prevent it, just care about the error you are risking.

Do not check against type

Python is dynamically typed, therefore checking for type makes you lose flexibility. Instead, use 
duck typing by checking behavior. If you expect a string in a function, then use str() to convert 
any object to a string. If you expect a list, use list() to convert any iterable to a list.

https://riptutorial.com/ 143

https://stackoverflow.com/questions/4205130/what-is-duck-typing


Don't:

def foo(name): 
    if isinstance(name, str): 
        print(name.lower()) 
 
def bar(listing): 
    if isinstance(listing, list): 
        listing.extend((1, 2, 3)) 
        return ", ".join(listing)

Do:

def foo(name) : 
    print(str(name).lower()) 
 
def bar(listing) : 
    l = list(listing) 
    l.extend((1, 2, 3)) 
    return ", ".join(l)

Using the last way, foo will accept any object. bar will accept strings, tuples, sets, lists and much 
more. Cheap DRY.

Don't mix spaces and tabs

Use object as first parent

This is tricky, but it will bite you as your program grows. There are old and new classes in Python 
2.x. The old ones are, well, old. They lack some features, and can have awkward behavior with 
inheritance. To be usable, any of your class must be of the "new style". To do so, make it inherit 
from object.

Don't:

class Father: 
    pass 
 
class Child(Father): 
    pass

Do:

class Father(object): 
    pass 
 
 
class Child(Father): 
    pass

In Python 3.x all classes are new style so you don't need to do that.

Don't initialize class attributes outside the init method

https://riptutorial.com/ 144



People coming from other languages find it tempting because that is what you do in Java or PHP. 
You write the class name, then list your attributes and give them a default value. It seems to work 
in Python, however, this doesn't work the way you think. Doing that will setup class attributes 
(static attributes), then when you will try to get the object attribute, it will gives you its value unless 
it's empty. In that case it will return the class attributes. It implies two big hazards:

If the class attribute is changed, then the initial value is changed.•

If you set a mutable object as a default value, you'll get the same object shared across 
instances.

•

Don't (unless you want static):

class Car(object): 
    color = "red" 
    wheels = [Wheel(), Wheel(), Wheel(), Wheel()]

Do :

class Car(object): 
    def __init__(self): 
        self.color = "red" 
        self.wheels = [Wheel(), Wheel(), Wheel(), Wheel()]

Integer and String identity

Python uses internal caching for a range of integers to reduce unnecessary overhead from their 
repeated creation.

In effect, this can lead to confusing behavior when comparing integer identities:

>>> -8 is (-7 - 1) 
False 
>>> -3 is (-2 - 1) 
True

and, using another example:

>>> (255 + 1) is (255 + 1) 
True 
>>> (256 + 1) is (256 + 1) 
False

Wait what?

We can see that the identity operation is yields True for some integers (-3, 256) but no for others (-
8, 257).

To be more specific, integers in the range [-5, 256] are internally cached during interpreter startup 
and are only created once. As such, they are identical and comparing their identities with is 

https://riptutorial.com/ 145



yields True; integers outside this range are (usually) created on-the-fly and their identities compare 
to False.

This is a common pitfall since this is a common range for testing, but often enough, the code fails 
in the later staging process (or worse - production) with no apparent reason after working perfectly 
in development.

The solution is to always compare values using the equality (==) operator and not the identity (
is) operator.

Python also keeps references to commonly used strings and can result in similarly confusing 
behavior when comparing identities (i.e. using is) of strings.

>>> 'python' is 'py' + 'thon' 
True

The string 'python' is commonly used, so Python has one object that all references to the string 
'python' use.

For uncommon strings, comparing identity fails even when the strings are equal.

>>> 'this is not a common string' is 'this is not' + ' a common string' 
False 
>>> 'this is not a common string' == 'this is not' + ' a common string' 
True

So, just like the rule for Integers, always compare string values using the equality (==) operator 
and not the identity (is) operator.

Accessing int literals' attributes

You might have heard that everything in Python is an object, even literals. This means, for 
example, 7 is an object as well, which means it has attributes. For example, one of these attributes 
is the bit_length. It returns the amount of bits needed to represent the value it is called upon.

x = 7 
x.bit_length() 
# Out: 3

Seeing the above code works, you might intuitively think that 7.bit_length() would work as well, 
only to find out it raises a SyntaxError. Why? because the interpreter needs to differentiate 
between an attribute access and a floating number (for example 7.2 or 7.bit_length()). It can't, 
and that's why an exception is raised.

There are a few ways to access an int literals' attributes:

# parenthesis 
(7).bit_length() 
# a space 

https://riptutorial.com/ 146



7 .bit_length()

Using two dots (like this 7..bit_length()) doesn't work in this case, because that creates a float 
literal and floats don't have the bit_length() method.

This problem doesn't exist when accessing float literals' attributes since the interperter is "smart" 
enough to know that a float literal can't contain two ., for example:

7.2.as_integer_ratio() 
# Out: (8106479329266893, 1125899906842624)

Chaining of or operator

When testing for any of several equality comparisons:

if a == 3 or b == 3 or c == 3:

it is tempting to abbreviate this to

if a or b or c == 3: # Wrong

This is wrong; the or operator has lower precedence than ==, so the expression will be evaluated 
as if (a) or (b) or (c == 3):. The correct way is explicitly checking all the conditions:

if a == 3 or b == 3 or c == 3:  # Right Way

Alternately, the built-in any() function may be used in place of chained or operators:

if any([a == 3, b == 3, c == 3]): # Right

Or, to make it more efficient:

if any(x == 3 for x in (a, b, c)): # Right

Or, to make it shorter:

if 3 in (a, b, c): # Right

Here, we use the in operator to test if the value is present in a tuple containing the values we want 
to compare against.

Similarly, it is incorrect to write

if a == 1 or 2 or 3:

which should be written as

https://riptutorial.com/ 147

https://docs.python.org/3/reference/expressions.html#operator-precedence


if a in (1, 2, 3):

sys.argv[0] is the name of the file being executed

The first element of sys.argv[0] is the name of the python file being executed. The remaining 
elements are the script arguments.

# script.py 
import sys 
 
print(sys.argv[0]) 
print(sys.argv)

$ python script.py 
=> script.py 
=> ['script.py'] 
 
$ python script.py fizz 
=> script.py 
=> ['script.py', 'fizz'] 
 
$ python script.py fizz buzz 
=> script.py 
=> ['script.py', 'fizz', 'buzz']

Dictionaries are unordered

You might expect a Python dictionary to be sorted by keys like, for example, a C++ std::map, but 
this is not the case:

myDict = {'first': 1, 'second': 2, 'third': 3} 
print(myDict) 
# Out: {'first': 1, 'second': 2, 'third': 3} 
 
print([k for k in myDict]) 
# Out: ['second', 'third', 'first']

Python doesn't have any built-in class that automatically sorts its elements by key.

However, if sorting is not a must, and you just want your dictionary to remember the order of 
insertion of its key/value pairs, you can use collections.OrderedDict:

from collections import OrderedDict 
 
oDict = OrderedDict([('first', 1), ('second', 2), ('third', 3)]) 
 
print([k for k in oDict]) 
# Out: ['first', 'second', 'third']

Keep in mind that initializing an OrderedDict with a standard dictionary won't sort in any way the 

https://riptutorial.com/ 148



dictionary for you. All that this structure does is to preserve the order of key insertion.

The implementation of dictionaries was changed in Python 3.6 to improve their memory 
consumption. A side effect of this new implementation is that it also preserves the order of 
keyword arguments passed to a function:

Python 3.x3.6

def func(**kw): print(kw.keys()) 
 
func(a=1, b=2, c=3, d=4, e=5) 
dict_keys(['a', 'b', 'c', 'd', 'e']) # expected order 

Caveat: beware that “the order-preserving aspect of this new implementation is 
considered an implementation detail and should not be relied upon”, as it may change 
in the future.

Global Interpreter Lock (GIL) and blocking threads

Plenty has been written about Python's GIL. It can sometimes cause confusion when dealing with 
multi-threaded (not to be confused with multiprocess) applications.

Here's an example:

import math 
from threading import Thread 
 
def calc_fact(num): 
    math.factorial(num) 
 
num = 600000 
t = Thread(target=calc_fact, daemon=True, args=[num]) 
print("About to calculate: {}!".format(num)) 
t.start() 
print("Calculating...") 
t.join() 
print("Calculated")

You would expect to see Calculating... printed out immediately after the thread is started, we 
wanted the calculation to happen in a new thread after all! But in actuality, you see it get printed 
after the calculation is complete. That is because the new thread relies on a C function (
math.factorial) which will lock the GIL while it executes.

There are a couple ways around this. The first is to implement your factorial function in native 
Python. This will allow the main thread to grab control while you are inside your loop. The 
downside is that this solution will be a lot slower, since we're not using the C function anymore.

def calc_fact(num): 
    """ A slow version of factorial in native Python """ 
    res = 1 
    while num >= 1: 
        res = res * num 

https://riptutorial.com/ 149

https://docs.python.org/3.6/whatsnew/3.6.html#new-dict-implementation
https://docs.python.org/3.6/whatsnew/3.6.html#new-dict-implementation
https://docs.python.org/3.6/whatsnew/3.6.html#new-dict-implementation
https://docs.python.org/3.6/whatsnew/3.6.html#new-dict-implementation
https://docs.python.org/3.6/whatsnew/3.6.html#new-dict-implementation
https://en.wikipedia.org/wiki/Global_interpreter_lock
https://wiki.python.org/moin/GlobalInterpreterLock
https://docs.python.org/3/glossary.html#term-global-interpreter-lock
http://python-notes.curiousefficiency.org/en/latest/python3/multicore_python.html


        num -= 1 
    return res

You can also sleep for a period of time before starting your execution. Note: this won't actually 
allow your program to interrupt the computation happening inside the C function, but it will allow 
your main thread to continue after the spawn, which is what you may expect.

def calc_fact(num): 
    sleep(0.001) 
    math.factorial(num)

Variable leaking in list comprehensions and for loops

Consider the following list comprehension

Python 2.x2.7

i = 0 
a = [i for i in range(3)] 
print(i) # Outputs 2

This occurs only in Python 2 due to the fact that the list comprehension “leaks” the loop control 
variable into the surrounding scope (source). This behavior can lead to hard-to-find bugs and it 
has been fixed in Python 3.

Python 3.x3.0

i = 0 
a = [i for i in range(3)] 
print(i) # Outputs 0

Similarly, for loops have no private scope for their iteration variable

i = 0 
for i in range(3): 
    pass 
print(i) # Outputs 2

This type of behavior occurs both in Python 2 and Python 3.

To avoid issues with leaking variables, use new variables in list comprehensions and for loops as 
appropriate.

Multiple return

Function xyz returns two values a and b:

def xyz(): 
  return a, b

https://riptutorial.com/ 150

http://python-history.blogspot.com/2010/06/from-list-comprehensions-to-generator.html


Code calling xyz stores result into one variable assuming xyz returns only one value:

t = xyz()

Value of t is actually a tuple (a, b) so any action on t assuming it is not a tuple may fail deep in 
the code with a an unexpected error about tuples.

TypeError: type tuple doesn't define ... method

The fix would be to do:

a, b = xyz()

Beginners will have trouble finding the reason of this message by only reading the tuple error 
message !

Pythonic JSON keys

my_var = 'bla'; 
api_key = 'key'; 
...lots of code here... 
params = {"language": "en", my_var: api_key}

If you are used to JavaScript, variable evaluation in Python dictionaries won't be what you expect 
it to be. This statement in JavaScript would result in the params object as follows:

{ 
    "language": "en", 
    "my_var": "key" 
}

In Python, however, it would result in the following dictionary:

{ 
    "language": "en", 
    "bla": "key" 
}

my_var is evaluated and its value is used as the key.

Read Common Pitfalls online: https://riptutorial.com/python/topic/3553/common-pitfalls

https://riptutorial.com/ 151

https://riptutorial.com/python/topic/3553/common-pitfalls


Chapter 27: Commonwealth Exceptions

Introduction

Here in Stack Overflow we often see duplicates talking about the same errors: "ImportError: No 
module named '??????', SyntaxError: invalid syntax or NameError: name '???' is not defined. This is 
an effort to reduce them and to have some documentation to link to.

Examples

IndentationErrors (or indentation SyntaxErrors)

In most other languages indentation is not compulsory, but in Python (and other languages: early 
versions of FORTRAN, Makefiles, Whitespace (esoteric language), etc.) that is not the case, what 
can be confusing if you come from another language, if you were copying code from an example 
to your own, or simply if you are new.

IndentationError/SyntaxError: unexpected 
indent

This exception is raised when the indentation level increases with no reason.

Example

There is no reason to increase the level here:

Python 2.x2.02.7

 print "This line is ok" 
     print "This line isn't ok"

Python 3.x3.0

 print("This line is ok") 
     print("This line isn't ok")

Here there are two errors: the last one and that the indentation does not match any indentation 
level. However just one is shown:

Python 2.x2.02.7

 print "This line is ok" 
  print "This line isn't ok"

Python 3.x3.0

https://riptutorial.com/ 152



 print("This line is ok") 
  print("This line isn't ok")

IndentationError/SyntaxError: unindent does 
not match any outer indentation level

Appears you didn't unindent completely.

Example

Python 2.x2.02.7

def foo(): 
    print "This should be part of foo()" 
   print "ERROR!" 
print "This is not a part of foo()"

Python 3.x3.0

 print("This line is ok") 
  print("This line isn't ok")

IndentationError: expected an indented block

After a colon (and then a new line) the indentation level has to increase. This error is raised when 
that didn't happen.

Example

if ok: 
doStuff()

Note: Use the keyword pass (that makes absolutely nothing) to just put an if, else, except, class, 
method or definition but not say what will happen if called/condition is true (but do it later, or in the 
case of except: just do nothing):

def foo(): 
    pass

IndentationError: inconsistent use of tabs 

https://riptutorial.com/ 153



and spaces in indentation

Example

def foo(): 
    if ok: 
      return "Two != Four != Tab" 
        return "i dont care i do whatever i want"

How to avoid this error

Don't use tabs. It is discouraged by PEP8, the style guide for Python.

Set your editor to use 4 spaces for indentation.1. 
Make a search and replace to replace all tabs with 4 spaces.2. 
Make sure your editor is set to display tabs as 8 spaces, so that you can realize easily that 
error and fix it.

3. 

See this question if you want to learn more.

TypeErrors

These exceptions are caused when the type of some object should be different

TypeError: [definition/method] takes ? 
positional arguments but ? was given

A function or method was called with more (or less) arguments than the ones it can accept.

Example

If more arguments are given:

def foo(a): return a 
foo(a,b,c,d) #And a,b,c,d are defined

If less arguments are given:

def foo(a,b,c,d): return a += b + c + d 
foo(a) #And a is defined

Note: if you want use an unknown number of arguments, you can use *args or **kwargs. See *args 

https://riptutorial.com/ 154

http://stackoverflow.com/a/1017404/7237719
http://www.riptutorial.com/python/topic/2475/-args-and---kwargs


and **kwargs

TypeError: unsupported operand type(s) for 
[operand]: '???' and '???'

Some types cannot be operated together, depending on the operand.

Example

For example: + is used to concatenate and add, but you can't use any of them for both types. For 
instance, trying to make a set by concatenating (+ing) 'set1' and 'tuple1' gives the error. Code:

set1, tuple1 = {1,2}, (3,4) 
a = set1 + tuple1

Some types (eg: int and string) use both + but for different things:

b = 400 + 'foo'

Or they may not be even used for anything:

c = ["a","b"] - [1,2]

But you can for example add a float to an int:

d = 1 + 1.0

TypeError: '???' object is not 
iterable/subscriptable:

For an object to be iterable it can take sequential indexes starting from zero until the indexes are 
no longer valid and a IndexError is raised (More technically: it has to have an __iter__ method 
which returns an __iterator__, or which defines a __getitem__ method that does what was 
previously mentioned).

Example

Here we are saying that bar is the zeroth item of 1. Nonsense:

foo = 1 

https://riptutorial.com/ 155

http://www.riptutorial.com/python/topic/2475/-args-and---kwargs


bar = foo[0]

This is a more discrete version: In this example for tries to set x to amount[0], the first item in an 
iterable but it can't because amount is an int:

amount = 10 
for x in amount: print(x)

TypeError: '???' object is not callable

You are defining a variable and calling it later (like what you do with a function or method)

Example

foo = "notAFunction" 
foo()

NameError: name '???' is not defined

Is raised when you tried to use a variable, method or function that is not initialized (at least not 
before). In other words, it is raised when a requested local or global name is not found. It's 
possible that you misspelt the name of the object or forgot to import something. Also maybe it's in 
another scope. We'll cover those with separate examples.

It's simply not defined nowhere in the code

It's possible that you forgot to initialize it, specially if it is a constant

foo   # This variable is not defined 
bar() # This function is not defined

Maybe it's defined later:

baz() 
 
def baz(): 
    pass

Or it wasn't imported:

#needs import math 
 

https://riptutorial.com/ 156



def sqrt(): 
    x = float(input("Value: ")) 
    return math.sqrt(x)

Python scopes and the LEGB Rule:

The so-called LEGB Rule talks about the Python scopes. It's name is based on the different 
scopes, ordered by the correspondent priorities:

Local → Enclosed → Global → Built-in.

Local: Variables not declared global or assigned in a function.•
Enclosing: Variables defined in a function that is wrapped inside another function.•
Global: Variables declared global, or assigned at the top-level of a file.•
Built-in: Variables preassigned in the built-in names module.•

As an example:

for i in range(4): 
    d = i * 2 
print(d)

d is accesible because the for loop does not mark a new scope, but if it did, we would have an 
error and its behavior would be similar to:

def noaccess(): 
    for i in range(4): 
        d = i * 2 
noaccess() 
print(d)

Python says NameError: name 'd' is not defined

Other Errors

AssertError

The assert statement exists in almost every programming language. When you do:

assert condition

or:

assert condition, message

It's equivalent to this:

https://riptutorial.com/ 157



if __debug__: 
    if not condition: raise AssertionError(message)

Assertions can include an optional message, and you can disable them when you're done 
debugging.

Note: the built-in variable debug is True under normal circumstances, False when optimization is 
requested (command line option -O). Assignments to debug are illegal. The value for the built-in 
variable is determined when the interpreter starts.

KeyboardInterrupt

Error raised when the user presses the interrupt key, normally Ctrl + C or del.

ZeroDivisionError

You tried to calculate 1/0 which is undefined. See this example to find the divisors of a number:

Python 2.x2.02.7

div = float(raw_input("Divisors of: ")) 
for x in xrange(div+1): #includes the number itself and zero 
    if div/x == div//x: 
        print x, "is a divisor of", div

Python 3.x3.0

div = int(input("Divisors of: ")) 
for x in range(div+1): #includes the number itself and zero 
    if div/x == div//x: 
        print(x, "is a divisor of", div)

It raises ZeroDivisionError because the for loop assigns that value to x. Instead it should be:

Python 2.x2.02.7

div = float(raw_input("Divisors of: ")) 
for x in xrange(1,div+1): #includes the number itself but not zero 
    if div/x == div//x: 
        print x, "is a divisor of", div

Python 3.x3.0

div = int(input("Divisors of: ")) 
for x in range(1,div+1): #includes the number itself but not zero 
    if div/x == div//x: 
        print(x, "is a divisor of", div)

Syntax Error on good code

https://riptutorial.com/ 158



The gross majority of the time a SyntaxError which points to an uninteresting line means there is 
an issue on the line before it (in this example, it's a missing parenthesis):

def my_print(): 
    x = (1 + 1 
    print(x)

Returns

  File "<input>", line 3 
    print(x) 
        ^ 
SyntaxError: invalid syntax

The most common reason for this issue is mismatched parentheses/brackets, as the example 
shows.

There is one major caveat for print statements in Python 3:

Python 3.x3.0

 >>> print "hello world" 
  File "<stdin>", line 1 
    print "hello world" 
                      ^ 
SyntaxError: invalid syntax

Because the print statement was replaced with the print() function, so you want:

print("hello world")  # Note this is valid for both Py2 & Py3

Read Commonwealth Exceptions online: https://riptutorial.com/python/topic/9300/commonwealth-
exceptions

https://riptutorial.com/ 159

https://docs.python.org/3/whatsnew/3.0.html#print-is-a-function
https://docs.python.org/3/whatsnew/3.0.html#print-is-a-function
https://docs.python.org/3/whatsnew/3.0.html#print-is-a-function
https://docs.python.org/3/whatsnew/3.0.html#print-is-a-function
https://docs.python.org/3/whatsnew/3.0.html#print-is-a-function
https://riptutorial.com/python/topic/9300/commonwealth-exceptions
https://riptutorial.com/python/topic/9300/commonwealth-exceptions


Chapter 28: Comparisons

Syntax

!= - Is not equal to•

== - Is equal to•

> - greater than•

< - less than•

>= - greater than or equal to•

<= - less than or equal to•

is - test if objects are the exact same object•

is not = test if objects are not the exact same object•

Parameters

Parameter Details

x First item to be compared

y Second item to be compared

Examples

Greater than or less than

x > y 
x < y

These operators compare two types of values, they're the less than and greater than operators. 
For numbers this simply compares the numerical values to see which is larger:

12 > 4 
# True 
12 < 4 
# False 
1 < 4 
# True

For strings they will compare lexicographically, which is similar to alphabetical order but not quite 

https://riptutorial.com/ 160



the same.

"alpha" < "beta" 
# True 
"gamma" > "beta" 
# True 
"gamma" < "OMEGA" 
# False

In these comparisons, lowercase letters are considered 'greater than' uppercase, which is why 
"gamma" < "OMEGA" is false. If they were all uppercase it would return the expected alphabetical 
ordering result:

"GAMMA" < "OMEGA" 
# True

Each type defines it's calculation with the < and > operators differently, so you should investigate 
what the operators mean with a given type before using it.

Not equal to

x != y 

This returns True if x and y are not equal and otherwise returns False.

12 != 1 
# True 
12 != '12' 
# True 
'12' != '12' 
# False

Equal To

x == y 

This expression evaluates if x and y are the same value and returns the result as a boolean value. 
Generally both type and value need to match, so the int 12 is not the same as the string '12'.

12 == 12 
# True 
12 == 1 
# False 
'12' == '12' 
# True 
'spam' == 'spam' 
# True 
'spam' == 'spam ' 
# False 
'12' == 12 
# False

https://riptutorial.com/ 161



Note that each type has to define a function that will be used to evaluate if two values are the 
same. For builtin types these functions behave as you'd expect, and just evaluate things based on 
being the same value. However custom types could define equality testing as whatever they'd like, 
including always returning True or always returning False.

Chain Comparisons

You can compare multiple items with multiple comparison operators with chain comparison. For 
example

x > y > z

is just a short form of:

x > y and y > z

This will evaluate to True only if both comparisons are True.

The general form is

a OP b OP c OP d ...

Where OP represents one of the multiple comparison operations you can use, and the letters 
represent arbitrary valid expressions.

Note that 0 != 1 != 0 evaluates to True, even though 0 != 0 is False. Unlike the 
common mathematical notation in which x != y != z means that x, y and z have 
different values. Chaining == operations has the natural meaning in most cases, since 
equality is generally transitive.

Style

There is no theoretical limit on how many items and comparison operations you use as long you 
have proper syntax:

1 > -1 < 2 > 0.5 < 100 != 24

The above returns True if each comparison returns True. However, using convoluted chaining is not 
a good style. A good chaining will be "directional", not more complicated than

1 > x > -4 > y != 8

Side effects

https://riptutorial.com/ 162



As soon as one comparison returns False, the expression evaluates immediately to False, skipping 
all remaining comparisons.

Note that the expression exp in a > exp > b will be evaluated only once, whereas in the case of

a > exp and exp > b

exp will be computed twice if a > exp is true.

Comparison by `is` vs `==`

A common pitfall is confusing the equality comparison operators is and ==.

a == b compares the value of a and b.

a is b will compare the identities of a and b.

To illustrate:

a = 'Python is fun!' 
b = 'Python is fun!' 
a == b # returns True 
a is b # returns False 
 
a = [1, 2, 3, 4, 5] 
b = a      # b references a 
a == b     # True 
a is b     # True 
b = a[:]   # b now references a copy of a 
a == b     # True 
a is b     # False [!!]

Basically, is can be thought of as shorthand for id(a) == id(b).

Beyond this, there are quirks of the run-time environment that further complicate things. Short 
strings and small integers will return True when compared with is, due to the Python machine 
attempting to use less memory for identical objects.

a = 'short' 
b = 'short' 
c = 5 
d = 5 
a is b # True 
c is d # True

But longer strings and larger integers will be stored separately.

a = 'not so short' 
b = 'not so short' 
c = 1000 
d = 1000 
a is b # False 
c is d # False

https://riptutorial.com/ 163



You should use is to test for None:

if myvar is not None: 
    # not None 
    pass 
if myvar is None: 
    # None 
    pass

A use of is is to test for a “sentinel” (i.e. a unique object).

sentinel = object() 
def myfunc(var=sentinel): 
    if var is sentinel: 
        # value wasn’t provided 
        pass 
    else: 
        # value was provided 
        pass

Comparing Objects

In order to compare the equality of custom classes, you can override == and != by defining __eq__ 
and __ne__ methods. You can also override __lt__ (<), __le__ (<=), __gt__ (>), and __ge__ (>). Note 
that you only need to override two comparison methods, and Python can handle the rest (== is the 
same as not < and not >, etc.)

class Foo(object): 
    def __init__(self, item): 
        self.my_item = item 
    def __eq__(self, other): 
        return self.my_item == other.my_item 
 
a = Foo(5) 
b = Foo(5) 
a == b     # True 
a != b     # False 
a is b     # False

Note that this simple comparison assumes that other (the object being compared to) is the same 
object type. Comparing to another type will throw an error:

class Bar(object): 
    def __init__(self, item): 
        self.other_item = item 
    def __eq__(self, other): 
        return self.other_item == other.other_item 
    def __ne__(self, other): 
        return self.other_item != other.other_item 
 
c = Bar(5) 
a == c    # throws AttributeError: 'Foo' object has no attribute 'other_item'

Checking isinstance() or similar will help prevent this (if desired).

https://riptutorial.com/ 164



Common Gotcha: Python does not enforce typing

In many other languages, if you run the following (Java example)

if("asgdsrf" == 0) { 
    //do stuff 
}

... you'll get an error. You can't just go comparing strings to integers like that. In Python, this is a 
perfectly legal statement - it'll just resolve to False.

A common gotcha is the following

myVariable = "1" 
if 1 == myVariable: 
    #do stuff

This comparison will evaluate to False without an error, every time, potentially hiding a bug or 
breaking a conditional.

Read Comparisons online: https://riptutorial.com/python/topic/248/comparisons

https://riptutorial.com/ 165

https://riptutorial.com/python/topic/248/comparisons


Chapter 29: Complex math

Syntax

cmath.rect(AbsoluteValue, Phase)•

Examples

Advanced complex arithmetic

The module cmath includes additional functions to use complex numbers.

import cmath

This module can calculate the phase of a complex number, in radians:

z = 2+3j # A complex number 
cmath.phase(z) # 0.982793723247329

It allows the conversion between the cartesian (rectangular) and polar representations of complex 
numbers:

cmath.polar(z) # (3.605551275463989, 0.982793723247329) 
cmath.rect(2, cmath.pi/2) # (0+2j)

The module contains the complex version of

Exponential and logarithmic functions (as usual, log is the natural logarithm and log10 the 
decimal logarithm):

  cmath.exp(z) # (-7.315110094901103+1.0427436562359045j) 
  cmath.log(z) # (1.2824746787307684+0.982793723247329j) 
  cmath.log10(-100) # (2+1.3643763538418412j)

•

Square roots:

  cmath.sqrt(z) # (1.6741492280355401+0.8959774761298381j)

•

Trigonometric functions and their inverses:

  cmath.sin(z)  # (9.15449914691143-4.168906959966565j) 
  cmath.cos(z)  # (-4.189625690968807-9.109227893755337j) 
  cmath.tan(z)  # (-0.003764025641504249+1.00323862735361j) 
  cmath.asin(z) # (0.5706527843210994+1.9833870299165355j) 
  cmath.acos(z) # (1.0001435424737972-1.9833870299165355j) 
  cmath.atan(z) # (1.4099210495965755+0.22907268296853878j) 
  cmath.sin(z)**2 + cmath.cos(z)**2 # (1+0j)

•

https://riptutorial.com/ 166



Hyperbolic functions and their inverses:

  cmath.sinh(z)  # (-3.59056458998578+0.5309210862485197j) 
  cmath.cosh(z)  # (-3.7245455049153224+0.5118225699873846j) 
  cmath.tanh(z)  # (0.965385879022133-0.009884375038322495j) 
  cmath.asinh(z) # (0.5706527843210994+1.9833870299165355j) 
  cmath.acosh(z) # (1.9833870299165355+1.0001435424737972j) 
  cmath.atanh(z) # (0.14694666622552977+1.3389725222944935j) 
  cmath.cosh(z)**2 - cmath.sin(z)**2  # (1+0j) 
  cmath.cosh((0+1j)*z) - cmath.cos(z) # 0j

•

Basic complex arithmetic

Python has built-in support for complex arithmetic. The imaginary unit is denoted by j:

z = 2+3j # A complex number 
w = 1-7j # Another complex number

Complex numbers can be summed, subtracted, multiplied, divided and exponentiated:

z + w # (3-4j) 
z - w # (1+10j) 
z * w # (23-11j) 
z / w # (-0.38+0.34j) 
z**3  # (-46+9j)

Python can also extract the real and imaginary parts of complex numbers, and calculate their 
absolute value and conjugate:

z.real # 2.0 
z.imag # 3.0 
abs(z) # 3.605551275463989 
z.conjugate() # (2-3j)

Read Complex math online: https://riptutorial.com/python/topic/1142/complex-math

https://riptutorial.com/ 167

http://stackoverflow.com/questions/24812444/why-are-complex-numbers-in-python-denoted-with-j-instead-of-i#24812657
https://riptutorial.com/python/topic/1142/complex-math


Chapter 30: Conditionals

Introduction

Conditional expressions, involving keywords such as if, elif, and else, provide Python programs 
with the ability to perform different actions depending on a boolean condition: True or False. This 
section covers the use of Python conditionals, boolean logic, and ternary statements.

Syntax

<expression> if <conditional> else <expression> # Ternary Operator•

Examples

if, elif, and else

In Python you can define a series of conditionals using if for the first one, elif for the rest, up until 
the final (optional) else for anything not caught by the other conditionals.

number = 5 
 
if number > 2: 
    print("Number is bigger than 2.") 
elif number < 2:  # Optional clause (you can have multiple elifs) 
    print("Number is smaller than 2.") 
else:  # Optional clause (you can only have one else) 
    print("Number is 2.")

Outputs Number is bigger than 2

Using else if instead of elif will trigger a syntax error and is not allowed.

Conditional Expression (or "The Ternary Operator")

The ternary operator is used for inline conditional expressions. It is best used in simple, concise 
operations that are easily read.

The order of the arguments is different from many other languages (such as C, Ruby, Java, 
etc.), which may lead to bugs when people unfamiliar with Python's "surprising" behaviour 
use it (they may reverse the order).

•

Some find it "unwieldy", since it goes contrary to the normal flow of thought (thinking of the 
condition first and then the effects).

•

n = 5 
 
"Greater than 2" if n > 2 else "Smaller than or equal to 2" 
# Out: 'Greater than 2'

https://riptutorial.com/ 168



The result of this expression will be as it is read in English - if the conditional expression is True, 
then it will evaluate to the expression on the left side, otherwise, the right side.

Tenary operations can also be nested, as here:

n = 5 
"Hello" if n > 10 else "Goodbye" if n > 5 else "Good day"

They also provide a method of including conditionals in lambda functions.

If statement

if condition: 
    body

The if statements checks the condition. If it evaluates to True, it executes the body of the if 
statement. If it evaluates to False, it skips the body.

if True: 
    print "It is true!" 
>> It is true! 
 
if False: 
    print "This won't get printed.."

The condition can be any valid expression:

if 2 + 2 == 4: 
    print "I know math!" 
>> I know math!

Else statement

if condition: 
    body 
else: 
    body

The else statement will execute it's body only if preceding conditional statements all evaluate to 
False.

if True: 
    print "It is true!" 
else: 
    print "This won't get printed.." 
 
# Output: It is true! 
 
if False: 
    print "This won't get printed.." 
else: 

https://riptutorial.com/ 169

http://www.riptutorial.com/python/example/2172/lambda--inline-anonymous--functions


    print "It is false!" 
 
# Output: It is false!

Boolean Logic Expressions

Boolean logic expressions, in addition to evaluating to True or False, return the value that was 
interpreted as True or False. It is Pythonic way to represent logic that might otherwise require an if-
else test.

And operator

The and operator evaluates all expressions and returns the last expression if all expressions 
evaluate to True. Otherwise it returns the first value that evaluates to False:

>>> 1 and 2 
2 
 
>>> 1 and 0 
0 
 
>>> 1 and "Hello World" 
"Hello World" 
 
>>> "" and "Pancakes" 
""

Or operator

The or operator evaluates the expressions left to right and returns the first value that evaluates to 
True or the last value (if none are True).

>>> 1 or 2 
1 
 
>>> None or 1 
1 
 
>>> 0 or [] 
[]

Lazy evaluation

When you use this approach, remember that the evaluation is lazy. Expressions that are not 
required to be evaluated to determine the result are not evaluated. For example:

https://riptutorial.com/ 170



>>> def print_me(): 
        print('I am here!') 
>>> 0 and print_me() 
0

In the above example, print_me is never executed because Python can determine the entire 
expression is False when it encounters the 0 (False). Keep this in mind if print_me needs to execute 
to serve your program logic.

Testing for multiple conditions

A common mistake when checking for multiple conditions is to apply the logic incorrectly.

This example is trying to check if two variables are each greater than 2. The statement is 
evaluated as - if (a) and (b > 2). This produces an unexpected result because bool(a) evaluates 
as True when a is not zero.

>>> a = 1 
>>> b = 6 
>>> if a and b > 2: 
...     print('yes') 
... else: 
...     print('no') 
 
yes

Each variable needs to be compared separately.

>>> if a > 2 and b > 2: 
...     print('yes') 
... else: 
...     print('no') 
 
no

Another, similar, mistake is made when checking if a variable is one of multiple values. The 
statement in this example is evaluated as - if (a == 3) or (4) or (6). This produces an 
unexpected result because bool(4) and bool(6) each evaluate to True

>>> a = 1 
>>> if a == 3 or 4 or 6: 
...     print('yes') 
... else: 
...     print('no') 
 
yes

Again each comparison must be made separately

>>> if a == 3 or a == 4 or a == 6: 

https://riptutorial.com/ 171



...     print('yes') 

... else: 

...     print('no') 
 
no

Using the in operator is the canonical way to write this.

>>> if a in (3, 4, 6): 
...     print('yes') 
... else: 
...     print('no') 
 
no

Truth Values

The following values are considered falsey, in that they evaluate to False when applied to a 
boolean operator.

None•
False•
0, or any numerical value equivalent to zero, for example 0L, 0.0, 0j•
Empty sequences: '', "", (), []•
Empty mappings: {}•
User-defined types where the __bool__ or __len__ methods return 0 or False•

All other values in Python evaluate to True.

 

Note: A common mistake is to simply check for the Falseness of an operation which returns 
different Falsey values where the difference matters. For example, using if foo() rather than the 
more explicit if foo() is None

Using the cmp function to get the comparison result of two objects

Python 2 includes a cmp function which allows you to determine if one object is less than, equal to, 
or greater than another object. This function can be used to pick a choice out of a list based on 
one of those three options.

Suppose you need to print 'greater than' if x > y, 'less than' if x < y and 'equal' if x == y.

['equal', 'greater than', 'less than', ][cmp(x,y)] 
 
# x,y = 1,1 output: 'equal' 
# x,y = 1,2 output: 'less than' 
# x,y = 2,1 output: 'greater than'

cmp(x,y) returns the following values

https://riptutorial.com/ 172



Comparison Result

x < y -1

x == y 0

x > y 1

This function is removed on Python 3. You can use the cmp_to_key(func) helper function located in 
functools in Python 3 to convert old comparison functions to key functions.

Conditional Expression Evaluation Using List Comprehensions

Python allows you to hack list comprehensions to evaluate conditional expressions.

For instance,

[value_false, value_true][<conditional-test>]

Example:

>> n = 16 
>> print [10, 20][n <= 15] 
10

Here n<=15 returns False (which equates to 0 in Python). So what Python is evaluating is:

[10, 20][n <= 15] 
==> [10, 20][False] 
==> [10, 20][0]     #False==0, True==1 (Check Boolean Equivalencies in Python) 
==> 10

Python 2.x2.7

The inbuilt __cmp__ method returned 3 possible values: 0, 1, -1, where cmp(x,y) returned 0: if both 
objecs were the same 1: x > y -1: x < y

This could be used with list comprehensions to return the first(ie. index 0), second(ie. index 1) and 
last(ie. index -1) element of the list. Giving us a conditional of this type:

[value_equals, value_greater, value_less][<conditional-test>]

Finally, in all the examples above Python evaluates both branches before choosing one. To only 
evaluate the chosen branch:

[lambda: value_false, lambda: value_true][<test>]()

where adding the () at the end ensures that the lambda functions are only called/evaluated at the 
end. Thus, we only evaluate the chosen branch.

https://riptutorial.com/ 173

https://docs.python.org/3/library/functools.html#functools.cmp_to_key
http://www.riptutorial.com/python/topic/2492/functools-module


Example:

count = [lambda:0, lambda:N+1][count==N]()

Testing if an object is None and assigning it

You'll often want to assign something to an object if it is None, indicating it has not been assigned. 
We'll use aDate.

The simplest way to do this is to use the is None test.

if aDate is None: 
    aDate=datetime.date.today()

(Note that it is more Pythonic to say is None instead of == None.)

But this can be optimized slightly by exploiting the notion that not None will evaluate to True in a 
boolean expression. The following code is equivalent:

if not aDate: 
    aDate=datetime.date.today()

But there is a more Pythonic way. The following code is also equivalent:

aDate=aDate or datetime.date.today()

This does a Short Circuit evaluation. If aDate is initialized and is not None, then it gets assigned to 
itself with no net effect. If it is None, then the datetime.date.today() gets assigned to aDate.

Read Conditionals online: https://riptutorial.com/python/topic/1111/conditionals

https://riptutorial.com/ 174

http://www.riptutorial.com/python/example/5836/short-circuit-evaluation
https://riptutorial.com/python/topic/1111/conditionals


Chapter 31: configparser

Introduction

This module provides the ConfigParser class which implements a basic configuration language in 
INI files. You can use this to write Python programs which can be customized by end users easily.

Syntax

Each new line contains a new key value pair separated by the = sign•
Keys can be separated in sections•
In the INI file, each section title is written between brackets: []•

Remarks

All return values from ConfigParser.ConfigParser().get are strings. It can be converted to more 
common types thanks to eval

Examples

Basic usage

In config.ini:

[DEFAULT] 
debug = True 
name = Test 
password = password 
 
[FILES] 
path = /path/to/file

In Python:

from ConfigParser import ConfigParser 
config = ConfigParser() 
 
#Load configuration file 
config.read("config.ini") 
 
# Access the key "debug" in "DEFAULT" section 
config.get("DEFAULT", "debug") 
# Return 'True' 
 
# Access the key "path" in "FILES" destion 
config.get("FILES", "path") 
# Return '/path/to/file'

https://riptutorial.com/ 175



Creating configuration file programatically

Configuration file contains sections, each section contains keys and values. configparser module 
can be used to read and write config files. Creating the configuration file:-

import configparser 
config = configparser.ConfigParser() 
config['settings']={'resolution':'320x240', 
                    'color':'blue'} 
with open('example.ini', 'w') as configfile: 
    config.write(configfile)

The output file contains below structure

[settings] 
resolution = 320x240 
color = blue

If you want to change particular field ,get the field and assign the value

settings=config['settings'] 
settings['color']='red'

Read configparser online: https://riptutorial.com/python/topic/9186/configparser

https://riptutorial.com/ 176

https://riptutorial.com/python/topic/9186/configparser


Chapter 32: Connecting Python to SQL 
Server

Examples

Connect to Server, Create Table, Query Data

Install the package:

$ pip install pymssql

import pymssql 
 
SERVER = "servername" 
USER = "username" 
PASSWORD = "password" 
DATABASE = "dbname" 
 
connection = pymssql.connect(server=SERVER, user=USER, 
                password=PASSWORD, database=DATABASE) 
 
cursor = connection.cursor() # to access field as dictionary use cursor(as_dict=True) 
cursor.execute("SELECT TOP 1 * FROM TableName") 
row = cursor.fetchone() 
 
######## CREATE TABLE ######## 
cursor.execute(""" 
CREATE TABLE posts ( 
    post_id INT PRIMARY KEY NOT NULL, 
    message TEXT, 
    publish_date DATETIME 
) 
""") 
 
######## INSERT DATA IN TABLE ######## 
cursor.execute(""" 
    INSERT INTO posts VALUES(1, "Hey There", "11.23.2016") 
""") 
# commit your work to database 
connection.commit() 
 
######## ITERATE THROUGH RESULTS  ######## 
cursor.execute("SELECT TOP 10 * FROM posts ORDER BY publish_date DESC") 
for row in cursor: 
    print("Message: " + row[1] + " | " + "Date: " + row[2]) 
    # if you pass as_dict=True to cursor 
    # print(row["message"]) 
 
connection.close() 
 

You can do anything if your work is related with SQL expressions, just pass this expressions to the 
execute method(CRUD operations).

https://riptutorial.com/ 177



For with statement, calling stored procedure, error handling or more example check: pymssql.org

Read Connecting Python to SQL Server online: 
https://riptutorial.com/python/topic/7985/connecting-python-to-sql-server

https://riptutorial.com/ 178

http://pymssql.org
https://riptutorial.com/python/topic/7985/connecting-python-to-sql-server


Chapter 33: Context Managers (“with” 
Statement)

Introduction

While Python's context managers are widely used, few understand the purpose behind their use. 
These statements, commonly used with reading and writing files, assist the application in 
conserving system memory and improve resource management by ensuring specific resources 
are only in use for certain processes. This topic explains and demonstrates the use of Python's 
context managers.

Syntax

with "context_manager"( as "alias")(, "context_manager"( as "alias")?)*:•

Remarks

Context managers are defined in PEP 343. They are intended to be used as more succinct 
mechanism for resource management than try ... finally constructs. The formal definition is as 
follows.

In this PEP, context managers provide __enter__() and __exit__() methods that are 
invoked on entry to and exit from the body of the with statement.

It then goes on to define the with statement as follows.

with EXPR as VAR: 
    BLOCK

The translation of the above statement is:

   mgr = (EXPR) 
   exit = type(mgr).__exit__  # Not calling it yet 
   value = type(mgr).__enter__(mgr) 
   exc = True 
   try: 
       try: 
           VAR = value  # Only if "as VAR" is present 
           BLOCK 
       except: 
           # The exceptional case is handled here 
           exc = False 
           if not exit(mgr, *sys.exc_info()): 
               raise 
           # The exception is swallowed if exit() returns true 
   finally: 
       # The normal and non-local-goto cases are handled here 

https://riptutorial.com/ 179

https://www.python.org/dev/peps/pep-0343


       if exc: 
           exit(mgr, None, None, None)

Examples

Introduction to context managers and the with statement

A context manager is an object that is notified when a context (a block of code) starts and ends. 
You commonly use one with the with statement. It takes care of the notifying.

For example, file objects are context managers. When a context ends, the file object is closed 
automatically:

open_file = open(filename) 
with open_file: 
    file_contents = open_file.read() 
 
# the open_file object has automatically been closed.

The above example is usually simplified by using the as keyword:

with open(filename) as open_file: 
    file_contents = open_file.read() 
 
# the open_file object has automatically been closed.

Anything that ends execution of the block causes the context manager's exit method to be called. 
This includes exceptions, and can be useful when an error causes you to prematurely exit from an 
open file or connection. Exiting a script without properly closing files/connections is a bad idea, 
that may cause data loss or other problems. By using a context manager you can ensure that 
precautions are always taken to prevent damage or loss in this way. This feature was added in 
Python 2.5.

Assigning to a target

Many context managers return an object when entered. You can assign that object to a new name 
in the with statement.

For example, using a database connection in a with statement could give you a cursor object:

with database_connection as cursor: 
    cursor.execute(sql_query)

File objects return themselves, this makes it possible to both open the file object and use it as a 
context manager in one expression:

with open(filename) as open_file: 
    file_contents = open_file.read()

https://riptutorial.com/ 180



Writing your own context manager

A context manager is any object that implements two magic methods __enter__() and __exit__() 
(although it can implement other methods as well):

class AContextManager(): 
 
    def __enter__(self): 
        print("Entered") 
        # optionally return an object 
        return "A-instance" 
 
    def __exit__(self, exc_type, exc_value, traceback): 
        print("Exited" + (" (with an exception)" if exc_type else "")) 
        # return True if you want to suppress the exception

If the context exits with an exception, the information about that exception will be passed as a 
triple exc_type, exc_value, traceback (these are the same variables as returned by the 
sys.exc_info() function). If the context exits normally, all three of these arguments will be None.

If an exception occurs and is passed to the __exit__ method, the method can return True in order 
to suppress the exception, or the exception will be re-raised at the end of the __exit__ function.

with AContextManager() as a: 
    print("a is %r" % a) 
# Entered 
# a is 'A-instance' 
# Exited 
 
with AContextManager() as a: 
    print("a is %d" % a) 
# Entered 
# Exited (with an exception) 
# Traceback (most recent call last): 
#   File "<stdin>", line 2, in <module> 
# TypeError: %d format: a number is required, not str

Note that in the second example even though an exception occurs in the middle of the body of the 
with-statement, the __exit__ handler still gets executed, before the exception propagates to the 
outer scope.

If you only need an __exit__ method, you can return the instance of the context manager:

class MyContextManager: 
    def __enter__(self): 
        return self 
 
    def __exit__(self): 
        print('something')

Writing your own contextmanager using generator syntax

It is also possible to write a context manager using generator syntax thanks to the 

https://riptutorial.com/ 181



contextlib.contextmanager decorator:

import contextlib 
 
@contextlib.contextmanager 
def context_manager(num): 
    print('Enter') 
    yield num + 1 
    print('Exit') 
 
with context_manager(2) as cm: 
    # the following instructions are run when the 'yield' point of the context 
    # manager is reached. 
    # 'cm' will have the value that was yielded 
    print('Right in the middle with cm = {}'.format(cm))

produces:

Enter 
Right in the middle with cm = 3 
Exit

The decorator simplifies the task of writing a context manager by converting a generator into one. 
Everything before the yield expression becomes the __enter__ method, the value yielded becomes 
the value returned by the generator (which can be bound to a variable in the with statement), and 
everything after the yield expression becomes the __exit__ method.

If an exception needs to be handled by the context manager, a try..except..finally-block can be 
written in the generator and any exception raised in the with-block will be handled by this 
exception block.

@contextlib.contextmanager 
def error_handling_context_manager(num): 
    print("Enter") 
    try: 
        yield num + 1 
    except ZeroDivisionError: 
        print("Caught error") 
    finally: 
        print("Cleaning up") 
    print("Exit") 
 
with error_handling_context_manager(-1) as cm: 
    print("Dividing by cm = {}".format(cm)) 
    print(2 / cm)

This produces:

Enter 
Dividing by cm = 0 
Caught error 
Cleaning up 
Exit

https://riptutorial.com/ 182

https://docs.python.org/3/library/contextlib.html#contextlib.contextmanager


Multiple context managers

You can open several content managers at the same time:

with open(input_path) as input_file, open(output_path, 'w') as output_file: 
 
    # do something with both files. 
 
    # e.g. copy the contents of input_file into output_file 
    for line in input_file: 
        output_file.write(line + '\n')

It has the same effect as nesting context managers:

with open(input_path) as input_file: 
    with open(output_path, 'w') as output_file: 
        for line in input_file: 
            output_file.write(line + '\n')

Manage Resources

class File(): 
    def __init__(self, filename, mode): 
        self.filename = filename 
        self.mode = mode 
 
    def __enter__(self): 
        self.open_file = open(self.filename, self.mode) 
        return self.open_file 
 
    def __exit__(self, *args): 
        self.open_file.close()

__init__() method sets up the object, in this case setting up the file name and mode to open file. 
__enter__() opens and returns the file and __exit__() just closes it.

Using these magic methods (__enter__, __exit__) allows you to implement objects which can be 
used easily with the with statement.

Use File class:

for _ in range(10000): 
    with File('foo.txt', 'w') as f: 
        f.write('foo')

Read Context Managers (“with” Statement) online: https://riptutorial.com/python/topic/928/context-
managers---with--statement-

https://riptutorial.com/ 183

https://riptutorial.com/python/topic/928/context-managers---with--statement-
https://riptutorial.com/python/topic/928/context-managers---with--statement-


Chapter 34: Copying data

Examples

Performing a shallow copy

A shallow copy is a copy of a collection without performing a copy of its elements.

>>> import copy 
>>> c = [[1,2]] 
>>> d = copy.copy(c) 
>>> c is d 
False 
>>> c[0] is d[0] 
True

Performing a deep copy

If you have nested lists, it is desireable to clone the nested lists as well. This action is called deep 
copy.

>>> import copy 
>>> c = [[1,2]] 
>>> d = copy.deepcopy(c) 
>>> c is d 
False 
>>> c[0] is d[0] 
False

Performing a shallow copy of a list

You can create shallow copies of lists using slices.

>>> l1 = [1,2,3] 
>>> l2 = l1[:]     # Perform the shallow copy. 
>>> l2 
[1,2,3] 
>>> l1 is l2 
False

Copy a dictionary

A dictionary object has the method copy. It performs a shallow copy of the dictionary.

>>> d1 = {1:[]} 
>>> d2 = d1.copy() 
>>> d1 is d2 
False 
>>> d1[1] is d2[1] 

https://riptutorial.com/ 184



True

Copy a set

Sets also have a copymethod. You can use this method to perform a shallow copy.

>>> s1 = {()} 
>>> s2 = s1.copy() 
>>> s1 is s2 
False 
>>> s2.add(3) 
>>> s1 
{[]} 
>>> s2 
{3,[]}

Read Copying data online: https://riptutorial.com/python/topic/920/copying-data

https://riptutorial.com/ 185

https://riptutorial.com/python/topic/920/copying-data


Chapter 35: Counting

Examples

Counting all occurence of all items in an iterable: collections.Counter

from collections import Counter 
 
c = Counter(["a", "b", "c", "d", "a", "b", "a", "c", "d"]) 
c 
# Out: Counter({'a': 3, 'b': 2, 'c': 2, 'd': 2}) 
c["a"] 
# Out: 3 
 
c[7]     # not in the list (7 occurred 0 times!) 
# Out: 0

The collections.Counter can be used for any iterable and counts every occurrence for every 
element.

Note: One exception is if a dict or another collections.Mapping-like class is given, then it will not 
count them, rather it creates a Counter with these values:

Counter({"e": 2}) 
# Out: Counter({"e": 2}) 
 
Counter({"e": "e"})        # warning Counter does not verify the values are int 
# Out: Counter({"e": "e"})

Getting the most common value(-s): collections.Counter.most_common()

Counting the keys of a Mapping isn't possible with collections.Counter but we can count the values:

from collections import Counter 
adict = {'a': 5, 'b': 3, 'c': 5, 'd': 2, 'e':2, 'q': 5} 
Counter(adict.values()) 
# Out: Counter({2: 2, 3: 1, 5: 3})

The most common elements are avaiable by the most_common-method:

# Sorting them from most-common to least-common value: 
Counter(adict.values()).most_common() 
# Out: [(5, 3), (2, 2), (3, 1)] 
 
# Getting the most common value 
Counter(adict.values()).most_common(1) 
# Out: [(5, 3)] 
 
# Getting the two most common values 
Counter(adict.values()).most_common(2) 
# Out: [(5, 3), (2, 2)]

https://riptutorial.com/ 186



Counting the occurrences of one item in a sequence: list.count() and 
tuple.count()

alist = [1, 2, 3, 4, 1, 2, 1, 3, 4] 
alist.count(1) 
# Out: 3 
 
atuple = ('bear', 'weasel', 'bear', 'frog') 
atuple.count('bear') 
# Out: 2 
atuple.count('fox') 
# Out: 0

Counting the occurrences of a substring in a string: str.count()

astring = 'thisisashorttext' 
astring.count('t') 
# Out: 4

This works even for substrings longer than one character:

astring.count('th') 
# Out: 1 
astring.count('is') 
# Out: 2 
astring.count('text') 
# Out: 1

which would not be possible with collections.Counter which only counts single characters:

from collections import Counter 
Counter(astring) 
# Out: Counter({'a': 1, 'e': 1, 'h': 2, 'i': 2, 'o': 1, 'r': 1, 's': 3, 't': 4, 'x': 1})

Counting occurences in numpy array

To count the occurences of a value in a numpy array. This will work:

>>> import numpy as np 
>>> a=np.array([0,3,4,3,5,4,7]) 
>>> print np.sum(a==3) 
2

The logic is that the boolean statement produces a array where all occurences of the requested 
values are 1 and all others are zero. So summing these gives the number of occurencies. This 
works for arrays of any shape or dtype.

There are two methods I use to count occurences of all unique values in numpy. Unique and 
bincount. Unique automatically flattens multidimensional arrays, while bincount only works with 1d 
arrays only containing positive integers.

https://riptutorial.com/ 187



>>> unique,counts=np.unique(a,return_counts=True) 
>>> print unique,counts # counts[i] is equal to occurrences of unique[i] in a 
[0 3 4 5 7] [1 2 2 1 1] 
>>> bin_count=np.bincount(a) 
>>> print bin_count # bin_count[i] is equal to occurrences of i in a 
[1 0 0 2 2 1 0 1] 

If your data are numpy arrays it is generally much faster to use numpy methods then to convert 
your data to generic methods.

Read Counting online: https://riptutorial.com/python/topic/476/counting

https://riptutorial.com/ 188

https://riptutorial.com/python/topic/476/counting


Chapter 36: Create virtual environment with 
virtualenvwrapper in windows

Examples

Virtual environment with virtualenvwrapper for windows

Suppose you need to work on three different projects project A, project B and project C. project A 
and project B need python 3 and some required libraries. But for project C you need python 2.7 
and dependent libraries.

So best practice for this is to separate those project environments. For creating separate python 
virtual environment need to follow below steps:

Step 1: Install pip with this command: python -m pip install -U pip

Step 2: Then install "virtualenvwrapper-win" package by using command (command can be 
executed windows power shell):

pip install virtualenvwrapper-win

Step 3: Create a new virtualenv environment by using command: mkvirtualenv python_3.5

Step 4: Activate the environment by using command:

workon < environment name>

Main commands for virtualenvwrapper:

mkvirtualenv <name> 
Create a new virtualenv environment named <name>. The environment will be created in 
WORKON_HOME. 
 
lsvirtualenv 
List all of the enviornments stored in WORKON_HOME. 
 
rmvirtualenv <name> 
Remove the environment <name>. Uses folder_delete.bat. 
 
workon [<name>] 
If <name> is specified, activate the environment named <name> (change the working virtualenv 
to <name>). If a project directory has been defined, we will change into it. If no argument is 
specified, list the available environments. One can pass additional option -c after virtualenv 
name to cd to virtualenv directory if no projectdir is set. 
 
deactivate 
Deactivate the working virtualenv and switch back to the default system Python. 
 
add2virtualenv <full or relative path> 
If a virtualenv environment is active, appends <path> to virtualenv_path_extensions.pth inside 

https://riptutorial.com/ 189



the environment’s site-packages, which effectively adds <path> to the environment’s 
PYTHONPATH. If a virtualenv environment is not active, appends <path> to 
virtualenv_path_extensions.pth inside the default Python’s site-packages. If <path> doesn’t 
exist, it will be created.

Read Create virtual environment with virtualenvwrapper in windows online: 
https://riptutorial.com/python/topic/9984/create-virtual-environment-with-virtualenvwrapper-in-
windows

https://riptutorial.com/ 190

https://riptutorial.com/python/topic/9984/create-virtual-environment-with-virtualenvwrapper-in-windows
https://riptutorial.com/python/topic/9984/create-virtual-environment-with-virtualenvwrapper-in-windows


Chapter 37: Creating a Windows service 
using Python

Introduction

Headless processes (with no UI) in Windows are called Services. They can be controlled (started, 
stopped, etc) using standard Windows controls such as the command console, Powershell or the 
Services tab in Task Manager. A good example might be an application that provides network 
services, such as a web application, or maybe a backup application that performs various 
background archival tasks. There are several ways to create and install a Python application as a 
Service in Windows.

Examples

A Python script that can be run as a service

The modules used in this example are part of pywin32 (Python for Windows extensions). 
Depending on how you installed Python, you might need to install this separately.

import win32serviceutil 
import win32service 
import win32event 
import servicemanager 
import socket 
 
 
class AppServerSvc (win32serviceutil.ServiceFramework): 
    _svc_name_ = "TestService" 
    _svc_display_name_ = "Test Service" 
 
    def __init__(self,args): 
        win32serviceutil.ServiceFramework.__init__(self,args) 
        self.hWaitStop = win32event.CreateEvent(None,0,0,None) 
        socket.setdefaulttimeout(60) 
 
    def SvcStop(self): 
        self.ReportServiceStatus(win32service.SERVICE_STOP_PENDING) 
        win32event.SetEvent(self.hWaitStop) 
 
    def SvcDoRun(self): 
        servicemanager.LogMsg(servicemanager.EVENTLOG_INFORMATION_TYPE, 
                              servicemanager.PYS_SERVICE_STARTED, 
                              (self._svc_name_,'')) 
        self.main() 
 
    def main(self): 
        pass 
 
if __name__ == '__main__': 
    win32serviceutil.HandleCommandLine(AppServerSvc)

https://riptutorial.com/ 191

https://sourceforge.net/projects/pywin32/


This is just boilerplate. Your application code, probably invoking a separate script, would go in the 
main() function.

You will also need to install this as a service. The best solution for this at the moment appears to 
be to use Non-sucking Service Manager. This allows you to install a service and provides a GUI 
for configuring the command line the service executes. For Python you can do this, which creates 
the service in one go:

nssm install MyServiceName c:\python27\python.exe c:\temp\myscript.py

Where my_script.py is the boilerplate script above, modified to invoke your application script or 
code in the main() function. Note that the service doesn't run the Python script directly, it runs the 
Python interpreter and passes it the main script on the command line.

Alternatively you can use tools provided in the Windows Server Resource Kit for your operating 
system version so create the service.

Running a Flask web application as a service

This is a variation on the generic example. You just need to import your app script and invoke it's 
run() method in the service's main() function. In this case we're also using the multiprocessing 
module due to an issue accessing WSGIRequestHandler.

import win32serviceutil 
import win32service 
import win32event 
import servicemanager 
from multiprocessing import Process 
 
from app import app 
 
 
class Service(win32serviceutil.ServiceFramework): 
    _svc_name_ = "TestService" 
    _svc_display_name_ = "Test Service" 
    _svc_description_ = "Tests Python service framework by receiving and echoing messages over 
a named pipe" 
 
    def __init__(self, *args): 
        super().__init__(*args) 
 
    def SvcStop(self): 
        self.ReportServiceStatus(win32service.SERVICE_STOP_PENDING) 
        self.process.terminate() 
        self.ReportServiceStatus(win32service.SERVICE_STOPPED) 
 
    def SvcDoRun(self): 
        self.process = Process(target=self.main) 
        self.process.start() 
        self.process.run() 
 
    def main(self): 
        app.run() 
 

https://riptutorial.com/ 192

http://nssm.cc/


 
if __name__ == '__main__': 
    win32serviceutil.HandleCommandLine(Service)

Adapted from http://stackoverflow.com/a/25130524/318488

Read Creating a Windows service using Python online: 
https://riptutorial.com/python/topic/9065/creating-a-windows-service-using-python

https://riptutorial.com/ 193

http://stackoverflow.com/a/25130524/318488
https://riptutorial.com/python/topic/9065/creating-a-windows-service-using-python


Chapter 38: Creating Python packages

Remarks

The pypa sample project contains a complete, easily modifiable template setup.py that 
demonstrates a large range of capabilities setup-tools has to offer.

Examples

Introduction

Every package requires a setup.py file which describes the package.

Consider the following directory structure for a simple package:

+-- package_name 
|       | 
|       +-- __init__.py 
| 
+-- setup.py

The __init__.py contains only the line def foo(): return 100.

The following setup.py will define the package:

from setuptools import setup 
 
 
setup( 
    name='package_name',                    # package name 
    version='0.1',                          # version 
    description='Package Description',      # short description 
    url='http://example.com',               # package URL 
    install_requires=[],                    # list of packages this package depends 
                                            # on. 
    packages=['package_name'],              # List of module names that installing 
                                            # this package will provide. 
)

virtualenv is great to test package installs without modifying your other Python environments:

$ virtualenv .virtualenv 
... 
$ source .virtualenv/bin/activate 
$ python setup.py install 
running install 
... 
Installed .../package_name-0.1-....egg 
... 
$ python 
>>> import package_name 

https://riptutorial.com/ 194

https://github.com/pypa/sampleproject
https://docs.python.org/3/distutils/setupscript.html#writing-the-setup-script
https://virtualenv.pypa.io/en/stable/


>>> package_name.foo() 
100

Uploading to PyPI

Once your setup.py is fully functional (see Introduction), it is very easy to upload your package to 
PyPI.

Setup a .pypirc File

This file stores logins and passwords to authenticate your accounts. It is typically stored in your 
home directory.

# .pypirc file 
 
[distutils] 
index-servers = 
  pypi 
  pypitest 
 
[pypi] 
repository=https://pypi.python.org/pypi 
username=your_username 
password=your_password 
 
[pypitest] 
repository=https://testpypi.python.org/pypi 
username=your_username 
password=your_password

It is safer to use twine for uploading packages, so make sure that is installed.

$ pip install twine

Register and Upload to testpypi (optional)

Note: PyPI does not allow overwriting uploaded packages, so it is prudent to first test your 
deployment on a dedicated test server, e.g. testpypi. This option will be discussed. Consider a 
versioning scheme for your package prior to uploading such as calendar versioning or semantic 
versioning.

Either log in, or create a new account at testpypi. Registration is only required the first time, 
although registering more than once is not harmful.

$ python setup.py register -r pypitest

While in the root directory of your package:

https://riptutorial.com/ 195

http://www.riptutorial.com/python/example/4500/introduction
https://pypi.python.org/
https://packaging.python.org/distributing/#upload-your-distributions
https://bitbucket.org/pypa/pypi/issues/206/cannot-overwrite-package-files
https://caremad.io/2016/02/versioning-software/
http://sedimental.org/designing_a_version.html#calendar_versioning
http://semver.org/
http://semver.org/
https://testpypi.python.org/pypi


$ twine upload dist/* -r pypitest

Your package should now be accessible through your account.

Testing

Make a test virtual environment. Try to pip install your package from either testpypi or PyPI.

# Using virtualenv 
$ mkdir testenv 
$ cd testenv 
$ virtualenv .virtualenv 
... 
$ source .virtualenv/bin/activate 
# Test from testpypi 
(.virtualenv)  pip install --verbose --extra-index-url https://testpypi.python.org/pypi 
package_name 
... 
# Or test from PyPI 
(.virtualenv) $ pip install package_name 
... 
 
(.virtualenv) $ python 
Python 3.5.1 (default, Jan 27 2016, 19:16:39) 
[GCC 4.2.1 Compatible Apple LLVM 7.0.2 (clang-700.1.81)] on darwin 
Type "help", "copyright", "credits" or "license" for more information. 
>>> import package_name 
>>> package_name.foo() 
100

If successful, your package is least importable. You might consider testing your API as well before 
your final upload to PyPI. If you package failed during testing, do not worry. You can still fix it, re-
upload to testpypi and test again.

Register and Upload to PyPI

Make sure twine is installed:

$ pip install twine

Either log in, or create a new account at PyPI.

$ python setup.py register -r pypi 
$ twine upload dist/*

That's it! Your package is now live.

If you discover a bug, simply upload a new version of your package.

https://riptutorial.com/ 196

https://pypi.python.org/pypi
https://pypi.python.org/pypi/package_name


Documentation

Don't forget to include at least some kind of documentation for your package. PyPi takes as the 
default formatting language reStructuredText.

Readme

If your package doesn't have a big documentation, include what can help other users in README.rst 
file. When the file is ready, another one is needed to tell PyPi to show it.

Create setup.cfg file and put these two lines in it:

[metadata] 
description-file = README.rst

Note that if you try to put Markdown file into your package, PyPi will read it as a pure text file 
without any formatting.

Licensing

It's often more than welcome to put a LICENSE.txt file in your package with one of the OpenSource 
licenses to tell users if they can use your package for example in commercial projects or if your 
code is usable with their license.

In more readable way some licenses are explained at TL;DR.

Making package executable

If your package isn't only a library, but has a piece of code that can be used either as a showcase 
or a standalone application when your package is installed, put that piece of code into __main__.py 
file.

Put the __main__.py in the package_name folder. This way you will be able to run it directly from 
console:

python -m package_name

If there's no __main__.py file available, the package won't run with this command and this error will 
be printed:

python: No module named package_name.__main__; 'package_name' is a package and 
cannot be directly executed.

Read Creating Python packages online: https://riptutorial.com/python/topic/1381/creating-python-
packages

https://riptutorial.com/ 197

http://stackoverflow.com/documentation/restructuredtext
http://www.riptutorial.com/markdown/topic/529/getting-started-with-markdown
https://opensource.org/licenses
https://opensource.org/licenses
https://tldrlegal.com/
https://riptutorial.com/python/topic/1381/creating-python-packages
https://riptutorial.com/python/topic/1381/creating-python-packages


Chapter 39: ctypes

Introduction

ctypes is a python built-in library that invokes exported functions from native compiled libraries.

Note: Since this library handles compiled code, it is relatively OS dependent.

Examples

Basic usage

Let's say we want to use libc's ntohl function.

First, we must load libc.so:

>>> from ctypes import * 
>>> libc = cdll.LoadLibrary('libc.so.6') 
>>> libc 
<CDLL 'libc.so.6', handle baadf00d at 0xdeadbeef>

Then, we get the function object:

>>> ntohl = libc.ntohl 
>>> ntohl 
<_FuncPtr object at 0xbaadf00d>

And now, we can simply invoke the function:

>>> ntohl(0x6C) 
1811939328 
>>> hex(_) 
'0x6c000000'

Which does exactly what we expect it to do.

Common pitfalls

Failing to load a file

The first possible error is failing to load the library. In that case an OSError is usually raised.

This is either because the file doesn't exists (or can't be found by the OS):

>>> cdll.LoadLibrary("foobar.so") 
Traceback (most recent call last): 

https://riptutorial.com/ 198



File "<stdin>", line 1, in <module> 
File "/usr/lib/python3.5/ctypes/__init__.py", line 425, in LoadLibrary 
    return self._dlltype(name) 
File "/usr/lib/python3.5/ctypes/__init__.py", line 347, in __init__ 
    self._handle = _dlopen(self._name, mode) 
OSError: foobar.so: cannot open shared object file: No such file or directory

As you can see, the error is clear and pretty indicative.

The second reason is that the file is found, but is not of the correct format.

>>> cdll.LoadLibrary("libc.so") 
Traceback (most recent call last): 
File "<stdin>", line 1, in <module> 
File "/usr/lib/python3.5/ctypes/__init__.py", line 425, in LoadLibrary 
    return self._dlltype(name) 
File "/usr/lib/python3.5/ctypes/__init__.py", line 347, in __init__ 
    self._handle = _dlopen(self._name, mode) 
OSError: /usr/lib/i386-linux-gnu/libc.so: invalid ELF header

In this case, the file is a script file and not a .so file. This might also happen when trying to open a 
.dll file on a Linux machine or a 64bit file on a 32bit python interpreter. As you can see, in this 
case the error is a bit more vague, and requires some digging around.

Failing to access a function

Assuming we successfully loaded the .so file, we then need to access our function like we've done 
on the first example.

When a non-existing function is used, an AttributeError is raised:

>>> libc.foo 
Traceback (most recent call last): 
File "<stdin>", line 1, in <module> 
File "/usr/lib/python3.5/ctypes/__init__.py", line 360, in __getattr__ 
    func = self.__getitem__(name) 
File "/usr/lib/python3.5/ctypes/__init__.py", line 365, in __getitem__ 
    func = self._FuncPtr((name_or_ordinal, self)) 
AttributeError: /lib/i386-linux-gnu/libc.so.6: undefined symbol: foo

Basic ctypes object

The most basic object is an int:

>>> obj = ctypes.c_int(12) 
>>> obj 
c_long(12)

Now, obj refers to a chunk of memory containing the value 12.

That value can be accessed directly, and even modified:

https://riptutorial.com/ 199



>>> obj.value 
12 
>>> obj.value = 13 
>>> obj 
c_long(13)

Since obj refers to a chunk of memory, we can also find out it's size and location:

>>> sizeof(obj) 
4 
>>> hex(addressof(obj)) 
'0xdeadbeef'

ctypes arrays

As any good C programmer knows, a single value won't get you that far. What will really get us 
going are arrays!

>>> c_int * 16 
<class '__main__.c_long_Array_16'>

This is not an actual array, but it's pretty darn close! We created a class that denotes an array of 
16 ints.

Now all we need to do is to initialize it:

>>> arr = (c_int * 16)(*range(16)) 
>>> arr 
<__main__.c_long_Array_16 object at 0xbaddcafe>

Now arr is an actual array that contains the numbers from 0 to 15.

They can be accessed just like any list:

>>> arr[5] 
5 
>>> arr[5] = 20 
>>> arr[5] 
20

And just like any other ctypes object, it also has a size and a location:

>>> sizeof(arr) 
64 # sizeof(c_int) * 16 
>>> hex(addressof(arr)) 
'0xc000l0ff'

Wrapping functions for ctypes

In some cases, a C function accepts a function pointer. As avid ctypes users, we would like to use 
those functions, and even pass python function as arguments.

https://riptutorial.com/ 200



Let's define a function:

>>> def max(x, y): 
        return x if x >= y else y

Now, that function takes two arguments and returns a result of the same type. For the sake of the 
example, let's assume that type is an int.

Like we did on the array example, we can define an object that denotes that prototype:

>>> CFUNCTYPE(c_int, c_int, c_int) 
<CFunctionType object at 0xdeadbeef>

That prototype denotes a function that returns an c_int (the first argument), and accepts two c_int 
arguments (the other arguments).

Now let's wrap the function:

>>> CFUNCTYPE(c_int, c_int, c_int)(max) 
<CFunctionType object at 0xdeadbeef>

Function prototypes have on more usage: They can wrap ctypes function (like libc.ntohl) and 
verify that the correct arguments are used when invoking the function.

>>> libc.ntohl() # garbage in - garbage out 
>>> CFUNCTYPE(c_int, c_int)(libc.ntohl)() 
Traceback (most recent call last): 
    File "<stdin>", line 1, in <module> 
TypeError: this function takes at least 1 argument (0 given)

Complex usage

Let's combine all of the examples above into one complex scenario: using libc's lfind function.

For more details about the function, read the man page. I urge you to read it before going on.

First, we'll define the proper prototypes:

>>> compar_proto = CFUNCTYPE(c_int, POINTER(c_int), POINTER(c_int)) 
>>> lfind_proto = CFUNCTYPE(c_void_p, c_void_p, c_void_p, POINTER(c_uint), c_uint, 
compar_proto)

Then, let's create the variables:

>>> key = c_int(12) 
>>> arr = (c_int * 16)(*range(16)) 
>>> nmemb = c_uint(16)

And now we define the comparison function:

https://riptutorial.com/ 201

https://linux.die.net/man/3/lfind


>>> def compar(x, y): 
        return x.contents.value - y.contents.value

Notice that x, and y are POINTER(c_int), so we need to dereference them and take their values in 
order to actually compare the value stored in the memory.

Now we can combine everything together:

>>> lfind = lfind_proto(libc.lfind) 
>>> ptr = lfind(byref(key), byref(arr), byref(nmemb), sizeof(c_int), compar_proto(compar))

ptr is the returned void pointer. If key wasn't found in arr, the value would be None, but in this case 
we got a valid value.

Now we can convert it and access the value:

>>> cast(ptr, POINTER(c_int)).contents 
c_long(12)

Also, we can see that ptr points to the correct value inside arr:

>>> addressof(arr) + 12 * sizeof(c_int) == ptr 
True

Read ctypes online: https://riptutorial.com/python/topic/9050/ctypes

https://riptutorial.com/ 202

https://riptutorial.com/python/topic/9050/ctypes


Chapter 40: Data Serialization

Syntax

unpickled_string = pickle.loads(string)•
unpickled_string = pickle.load(file_object)•
pickled_string = pickle.dumps([('', 'cmplx'), {('object',): None}], pickle.HIGHEST_PROTOCOL)•
pickle.dump(('', 'cmplx'), {('object',): None}], file_object, pickle.HIGHEST_PROTOCOL)•
unjsoned_string = json.loads(string)•
unjsoned_string = json.load(file_object)•
jsoned_string = json.dumps(('a', 'b', 'c', [1, 2, 3]))•
json.dump(('a', 'b', 'c', [1, 2, 3]), file_object)•

Parameters

Parameter Details

protocol
Using pickle or cPickle, it is the method that objects are being 
Serialized/Unserialized. You probably want to use pickle.HIGHEST_PROTOCOL here, 
which means the newest method.

Remarks

Why using JSON?

Cross language support•
Human readable•
Unlike pickle, it doesn't have the danger of running arbitrary code•

Why not using JSON?

Doesn't support Pythonic data types•
Keys in dictionaries must not be other than string data types.•

Why Pickle?

Great way for serializing Pythonic (tuples, functions, classes)•
Keys in dictionaries can be of any data type.•

Why not Pickle?

Cross language support is missing•
It is not safe for loading arbitrary data•

https://riptutorial.com/ 203



Examples

Serialization using JSON

JSON is a cross language, widely used method to serialize data

Supported data types : int, float, boolean, string, list and dict. See -> JSON Wiki for more

Here is an example demonstrating the basic usage of JSON :-

import json 
 
families = (['John'], ['Mark', 'David', {'name': 'Avraham'}]) 
 
# Dumping it into string 
json_families = json.dumps(families) 
# [["John"], ["Mark", "David", {"name": "Avraham"}]] 
 
# Dumping it to file 
with open('families.json', 'w') as json_file: 
    json.dump(families, json_file) 
 
# Loading it from string 
json_families = json.loads(json_families) 
 
# Loading it from file 
with open('families.json', 'r') as json_file: 
    json_families = json.load(json_file)

See JSON-Module for detailed information about JSON.

Serialization using Pickle

Here is an example demonstrating the basic usage of pickle:-

# Importing pickle 
try: 
    import cPickle as pickle  # Python 2 
except ImportError: 
    import pickle  # Python 3 
 
# Creating Pythonic object: 
class Family(object): 
    def __init__(self, names): 
        self.sons = names 
 
    def __str__(self): 
        return ' '.join(self.sons) 
 
my_family = Family(['John', 'David']) 
 
# Dumping to string 
pickle_data = pickle.dumps(my_family, pickle.HIGHEST_PROTOCOL) 
 
# Dumping to file 

https://riptutorial.com/ 204

https://en.wikipedia.org/wiki/JSON
http://www.riptutorial.com/python/topic/272/json-module


with open('family.p', 'w') as pickle_file: 
    pickle.dump(families, pickle_file, pickle.HIGHEST_PROTOCOL) 
 
# Loading from string 
my_family = pickle.loads(pickle_data) 
 
# Loading from file 
with open('family.p', 'r') as pickle_file: 
    my_family = pickle.load(pickle_file)

See Pickle for detailed information about Pickle.

WARNING: The official documentation for pickle makes it clear that there are no security 
guarantees. Don't load any data you don't trust its origin.

Read Data Serialization online: https://riptutorial.com/python/topic/3347/data-serialization

https://riptutorial.com/ 205

http://www.riptutorial.com/python/topic/2606/pickle-data-serialisation
https://riptutorial.com/python/topic/3347/data-serialization


Chapter 41: Data Visualization with Python

Examples

Matplotlib

Matplotlib is a mathematical plotting library for Python that provides a variety of different plotting 
functionality.

The matplotlib documentation can be found here, with the SO Docs being available here.

Matplotlib provides two distinct methods for plotting, though they are interchangable for the most 
part:

Firstly, matplotlib provides the pyplot interface, direct and simple-to-use interface that allows 
plotting of complex graphs in a MATLAB-like style.

•

Secondly, matplotlib allows the user to control the different aspects (axes, lines, ticks, etc) 
directly using an object-based system. This is more difficult but allows complete control over 
the entire plot.

•

Below is an example of using the pyplot interface to plot some generated data:

import matplotlib.pyplot as plt 
 
# Generate some data for plotting. 
x = [0, 1, 2, 3, 4, 5, 6] 
y = [i**2 for i in x] 
 
# Plot the data x, y with some keyword arguments that control the plot style. 
# Use two different plot commands to plot both points (scatter) and a line (plot). 
 
plt.scatter(x, y, c='blue', marker='x', s=100) # Create blue markers of shape "x" and size 100 
plt.plot(x, y, color='red', linewidth=2) # Create a red line with linewidth 2. 
 
# Add some text to the axes and a title. 
plt.xlabel('x data') 
plt.ylabel('y data') 
plt.title('An example plot') 
 
# Generate the plot and show to the user. 
plt.show()

https://riptutorial.com/ 206

http://matplotlib.org/index.html
http://matplotlib.org/contents.html
http://www.riptutorial.com/topic/881


Note that plt.show() is known to be problematic in some environments due to running 
matplotlib.pyplot in interactive mode, and if so, the blocking behaviour can be overridden explicitly 
by passing in an optional argument, plt.show(block=True), to alleviate the issue.

Seaborn

Seaborn is a wrapper around Matplotlib that makes creating common statistical plots easy. The list 
of supported plots includes univariate and bivariate distribution plots, regression plots, and a 
number of methods for plotting categorical variables. The full list of plots Seaborn provides is in 
their API reference.

Creating graphs in Seaborn is as simple as calling the appropriate graphing function. Here is an 
example of creating a histogram, kernel density estimation, and rug plot for randomly generated 
data.

import numpy as np  # numpy used to create data from plotting 
import seaborn as sns  # common form of importing seaborn 
 
# Generate normally distributed data 

https://riptutorial.com/ 207

http://i.stack.imgur.com/MESUU.png
http://stackoverflow.com/questions/38238612/matplot-program-gives-unresponsive-window-when-run/38238681#38238681
https://stanford.edu/~mwaskom/software/seaborn/tutorial.html
https://stanford.edu/~mwaskom/software/seaborn/api.html


data = np.random.randn(1000) 
 
# Plot a histogram with both a rugplot and kde graph superimposed 
sns.distplot(data, kde=True, rug=True)

The style of the plot can also be controled using a declarative syntax.

# Using previously created imports and data. 
 
# Use a dark background with no grid. 
sns.set_style('dark') 
# Create the plot again 
sns.distplot(data, kde=True, rug=True)

https://riptutorial.com/ 208

http://i.imgur.com/CyxeSfj.png


As an added bonus, normal matplotlib commands can still be applied to Seaborn plots. Here's an 
example of adding axis titles to our previously created histogram.

# Using previously created data and style 
 
# Access to matplotlib commands 
import matplotlib.pyplot as plt 
 
# Previously created plot. 
sns.distplot(data, kde=True, rug=True) 
# Set the axis labels. 
plt.xlabel('This is my x-axis') 
plt.ylabel('This is my y-axis')

https://riptutorial.com/ 209

http://i.imgur.com/JMjHv6C.png


MayaVI

MayaVI is a 3D visualization tool for scientific data. It uses the Visualization Tool Kit or VTK under 
the hood. Using the power of VTK, MayaVI is capable of producing a variety of 3-Dimensional 
plots and figures. It is available as a separate software application and also as a library. Similar to 
Matplotlib, this library provides an object oriented programming language interface to create plots 
without having to know about VTK.

MayaVI is available only in Python 2.7x series! It is hoped to be available in Python 3-x 
series soon! (Although some success is noticed when using its dependencies in Python 3)

Documentation can be found here. Some gallery examples are found here

Here is a sample plot created using MayaVI from the documentation.

# Author: Gael Varoquaux <gael.varoquaux@normalesup.org> 
# Copyright (c) 2007, Enthought, Inc. 
# License: BSD Style. 
 
 
from numpy import sin, cos, mgrid, pi, sqrt 
from mayavi import mlab 

https://riptutorial.com/ 210

http://i.imgur.com/ei2fa17.png
http://docs.enthought.com/mayavi/mayavi/
http://www.vtk.org/
http://www.vtk.org/
http://matplotlib.org/
http://docs.enthought.com/mayavi/mayavi/
http://docs.enthought.com/mayavi/mayavi/auto/examples.html


 
mlab.figure(fgcolor=(0, 0, 0), bgcolor=(1, 1, 1)) 
u, v = mgrid[- 0.035:pi:0.01, - 0.035:pi:0.01] 
 
X = 2 / 3. * (cos(u) * cos(2 * v) 
        + sqrt(2) * sin(u) * cos(v)) * cos(u) / (sqrt(2) - 
                                                 sin(2 * u) * sin(3 * v)) 
Y = 2 / 3. * (cos(u) * sin(2 * v) - 
        sqrt(2) * sin(u) * sin(v)) * cos(u) / (sqrt(2) 
        - sin(2 * u) * sin(3 * v)) 
Z = -sqrt(2) * cos(u) * cos(u) / (sqrt(2) - sin(2 * u) * sin(3 * v)) 
S = sin(u) 
 
mlab.mesh(X, Y, Z, scalars=S, colormap='YlGnBu', ) 
 
# Nice view from the front 
mlab.view(.0, - 5.0, 4) 
mlab.show()

Plotly

Plotly is a modern platform for plotting and data visualization. Useful for producing a variety of 
plots, especially for data sciences, Plotly is available as a library for Python, R, JavaScript, Julia 
and, MATLAB. It can also be used as a web application with these languages.

Users can install plotly library and use it offline after user authentication. The installation of this 
library and offline authentication is given here. Also, the plots can be made in Jupyter Notebooks 
as well.

Usage of this library requires an account with username and password. This gives the workspace 
to save plots and data on the cloud.

The free version of the library has some slightly limited features and designed for making 250 plots 
per day. The paid version has all the features, unlimited plot downloads and more private data 
storage. For more details, one can visit the main page here.

https://riptutorial.com/ 211

https://plot.ly/
https://plot.ly/python/getting-started/
https://plot.ly/


For documentation and examples, one can go here

A sample plot from the documentation examples:

import plotly.graph_objs as go 
import plotly as ply 
 
# Create random data with numpy 
import numpy as np 
 
N = 100 
random_x = np.linspace(0, 1, N) 
random_y0 = np.random.randn(N)+5 
random_y1 = np.random.randn(N) 
random_y2 = np.random.randn(N)-5 
 
# Create traces 
trace0 = go.Scatter( 
    x = random_x, 
y = random_y0, 
mode = 'lines', 
name = 'lines' 
) 
trace1 = go.Scatter( 
    x = random_x, 
    y = random_y1, 
    mode = 'lines+markers', 
    name = 'lines+markers' 
) 
trace2 = go.Scatter( 
    x = random_x, 
    y = random_y2, 
    mode = 'markers', 
    name = 'markers' 
) 
data = [trace0, trace1, trace2] 
 
ply.offline.plot(data, filename='line-mode')

https://riptutorial.com/ 212

https://plot.ly/python/#fundamentals


Read Data Visualization with Python online: https://riptutorial.com/python/topic/2388/data-
visualization-with-python

https://riptutorial.com/ 213

https://riptutorial.com/python/topic/2388/data-visualization-with-python
https://riptutorial.com/python/topic/2388/data-visualization-with-python


Chapter 42: Database Access

Remarks

Python can handle many different types of databases. For each of these types a different API 
exists. So encourage similarity between those different API's, PEP 249 has been introduced.

This API has been defined to encourage similarity between the Python modules that 
are used to access databases. By doing this, we hope to achieve a consistency leading 
to more easily understood modules, code that is generally more portable across 
databases, and a broader reach of database connectivity from Python. PEP-249

Examples

Accessing MySQL database using MySQLdb

The first thing you need to do is create a connection to the database using the connect method. 
After that, you will need a cursor that will operate with that connection.

Use the execute method of the cursor to interact with the database, and every once in a while, 
commit the changes using the commit method of the connection object.

Once everything is done, don't forget to close the cursor and the connection.

Here is a Dbconnect class with everything you'll need.

import MySQLdb 
 
class Dbconnect(object): 
 
    def __init__(self): 
 
        self.dbconection = MySQLdb.connect(host='host_example', 
                                           port=int('port_example'), 
                                           user='user_example', 
                                           passwd='pass_example', 
                                           db='schema_example') 
        self.dbcursor = self.dbconection.cursor() 
 
    def commit_db(self): 
        self.dbconection.commit() 
 
    def close_db(self): 
        self.dbcursor.close() 
        self.dbconection.close()

Interacting with the database is simple. After creating the object, just use the execute method.

db = Dbconnect() 
db.dbcursor.execute('SELECT * FROM %s' % 'table_example')

https://riptutorial.com/ 214

https://www.python.org/dev/peps/pep-0249/


If you want to call a stored procedure, use the following syntax. Note that the parameters list is 
optional.

db = Dbconnect() 
db.callproc('stored_procedure_name', [parameters] )

After the query is done, you can access the results multiple ways. The cursor object is a generator 
that can fetch all the results or be looped.

results = db.dbcursor.fetchall() 
for individual_row in results: 
    first_field = individual_row[0]

If you want a loop using directly the generator:

for individual_row in db.dbcursor: 
    first_field = individual_row[0]

If you want to commit changes to the database:

db.commit_db()

If you want to close the cursor and the connection:

db.close_db()

SQLite

SQLite is a lightweight, disk-based database. Since it does not require a separate database 
server, it is often used for prototyping or for small applications that are often used by a single user 
or by one user at a given time.

import sqlite3 
 
conn = sqlite3.connect("users.db") 
c = conn.cursor() 
 
c.execute("CREATE TABLE user (name text, age integer)") 
 
c.execute("INSERT INTO user VALUES ('User A', 42)") 
c.execute("INSERT INTO user VALUES ('User B', 43)") 
 
conn.commit() 
 
c.execute("SELECT * FROM user") 
print(c.fetchall()) 
 
conn.close()

The code above connects to the database stored in the file named users.db, creating the file first if 
it doesn't already exist. You can interact with the database via SQL statements.

https://riptutorial.com/ 215



The result of this example should be:

[(u'User A', 42), (u'User B', 43)]

The SQLite Syntax: An in-depth analysis

Getting started

Import the sqlite module using

>>> import sqlite3

1. 

To use the module, you must first create a Connection object that represents the database. 
Here the data will be stored in the example.db file:

>>> conn = sqlite3.connect('users.db')

Alternatively, you can also supply the special name :memory: to create a temporary database 
in RAM, as follows:

>>> conn = sqlite3.connect(':memory:')

2. 

Once you have a Connection, you can create a Cursor object and call its execute() method to 
perform SQL commands:

c = conn.cursor() 
 
# Create table 
c.execute('''CREATE TABLE stocks 
            (date text, trans text, symbol text, qty real, price real)''') 
 
# Insert a row of data 
c.execute("INSERT INTO stocks VALUES ('2006-01-05','BUY','RHAT',100,35.14)") 
 
# Save (commit) the changes 
conn.commit() 
 
# We can also close the connection if we are done with it. 
# Just be sure any changes have been committed or they will be lost. 
conn.close()

3. 

Important Attributes and Functions of Connection

isolation_level

It is an attribute used to get or set the current isolation level. None for autocommit mode or 
one of DEFERRED, IMMEDIATE or EXCLUSIVE.

1. 

https://riptutorial.com/ 216



cursor

The cursor object is used to execute SQL commands and queries.

2. 

commit()

Commits the current transaction.

3. 

rollback()

Rolls back any changes made since the previous call to commit()

4. 

close()

Closes the database connection. It does not call commit() automatically. If close() is called 
without first calling commit() (assuming you are not in autocommit mode) then all changes 
made will be lost.

5. 

total_changes

An attribute that logs the total number of rows modified, deleted or inserted since the 
database was opened.

6. 

execute, executemany, and executescript

These functions perform the same way as those of the cursor object. This is a shortcut since 
calling these functions through the connection object results in the creation of an 
intermediate cursor object and calls the corresponding method of the cursor object

7. 

row_factory

You can change this attribute to a callable that accepts the cursor and the original row as a 
tuple and will return the real result row.

def dict_factory(cursor, row): 
    d = {} 
    for i, col in enumerate(cursor.description): 
        d[col[0]] = row[i] 
    return d 
 
conn = sqlite3.connect(":memory:") 
conn.row_factory = dict_factory

8. 

Important Functions of Cursor

execute(sql[, parameters])

Executes a single SQL statement. The SQL statement may be parametrized (i. e. 
placeholders instead of SQL literals). The sqlite3 module supports two kinds of placeholders: 
question marks ? (“qmark style”) and named placeholders :name (“named style”).

import sqlite3 
conn = sqlite3.connect(":memory:") 
cur = conn.cursor() 

1. 

https://riptutorial.com/ 217



cur.execute("create table people (name, age)") 
 
who = "Sophia" 
age = 37 
# This is the qmark style: 
cur.execute("insert into people values (?, ?)", 
            (who, age)) 
 
# And this is the named style: 
cur.execute("select * from people where name=:who and age=:age", 
            {"who": who, "age": age})  # the keys correspond to the placeholders in SQL 
 
print(cur.fetchone())

Beware: don't use %s for inserting strings into SQL commands as it can make your 
program vulnerable to an SQL injection attack (see SQL Injection ).

executemany(sql, seq_of_parameters)

Executes an SQL command against all parameter sequences or mappings found in the 
sequence sql. The sqlite3 module also allows using an iterator yielding parameters instead 
of a sequence.

L = [(1, 'abcd', 'dfj', 300),    # A list of tuples to be inserted into the database 
     (2, 'cfgd', 'dyfj', 400), 
     (3, 'sdd', 'dfjh', 300.50)] 
 
conn = sqlite3.connect("test1.db") 
conn.execute("create table if not exists book (id int, name text, author text, price 
real)") 
conn.executemany("insert into book values (?, ?, ?, ?)", L) 
 
for row in conn.execute("select * from book"): 
    print(row)

You can also pass iterator objects as a parameter to executemany, and the function will 
iterate over the each tuple of values that the iterator returns. The iterator must return a tuple 
of values.

import sqlite3 
 
class IterChars: 
    def __init__(self): 
        self.count = ord('a') 
 
    def __iter__(self): 
        return self 
 
    def __next__(self):            # (use next(self) for Python 2) 
        if self.count > ord('z'): 
            raise StopIteration 
        self.count += 1 
        return (chr(self.count - 1),) 
 
conn = sqlite3.connect("abc.db") 
cur = conn.cursor() 

2. 

https://riptutorial.com/ 218

http://www.riptutorial.com/sql/topic/3517/sql-injection


cur.execute("create table characters(c)") 
 
theIter = IterChars() 
cur.executemany("insert into characters(c) values (?)", theIter) 
 
rows = cur.execute("select c from characters") 
for row in rows: 
    print(row[0]),

executescript(sql_script)

This is a nonstandard convenience method for executing multiple SQL statements at once. It 
issues a COMMIT statement first, then executes the SQL script it gets as a parameter.

sql_script can be an instance of str or bytes.

import sqlite3 
conn = sqlite3.connect(":memory:") 
cur = conn.cursor() 
cur.executescript(""" 
     create table person( 
         firstname, 
         lastname, 
         age 
     ); 
 
     create table book( 
         title, 
         author, 
         published 
     ); 
 
     insert into book(title, author, published) 
     values ( 
         'Dirk Gently''s Holistic Detective Agency', 
         'Douglas Adams', 
         1987 
     ); 
     """)

The next set of functions are used in conjunction with SELECT statements in SQL. To retrieve 
data after executing a SELECT statement, you can either treat the cursor as an iterator, call the 
cursor’s fetchone() method to retrieve a single matching row, or call fetchall() to get a list of 
the matching rows.

Example of the iterator form:

import sqlite3 
stocks = [('2006-01-05', 'BUY', 'RHAT', 100, 35.14), 
          ('2006-03-28', 'BUY', 'IBM', 1000, 45.0), 
          ('2006-04-06', 'SELL', 'IBM', 500, 53.0), 
          ('2006-04-05', 'BUY', 'MSFT', 1000, 72.0)] 
conn = sqlite3.connect(":memory:") 
conn.execute("create table stocks (date text, buysell text, symb text, amount int, price 
real)") 
conn.executemany("insert into stocks values (?, ?, ?, ?, ?)", stocks) 

3. 

https://riptutorial.com/ 219



cur = conn.cursor() 
 
for row in cur.execute('SELECT * FROM stocks ORDER BY price'): 
    print(row) 
 
# Output: 
# ('2006-01-05', 'BUY', 'RHAT', 100, 35.14) 
# ('2006-03-28', 'BUY', 'IBM', 1000, 45.0) 
# ('2006-04-06', 'SELL', 'IBM', 500, 53.0) 
# ('2006-04-05', 'BUY', 'MSFT', 1000, 72.0)

fetchone()

Fetches the next row of a query result set, returning a single sequence, or None when no 
more data is available.

cur.execute('SELECT * FROM stocks ORDER BY price') 
i = cur.fetchone() 
while(i): 
    print(i) 
    i = cur.fetchone() 
 
# Output: 
# ('2006-01-05', 'BUY', 'RHAT', 100, 35.14) 
# ('2006-03-28', 'BUY', 'IBM', 1000, 45.0) 
# ('2006-04-06', 'SELL', 'IBM', 500, 53.0) 
# ('2006-04-05', 'BUY', 'MSFT', 1000, 72.0)

4. 

fetchmany(size=cursor.arraysize)

Fetches the next set of rows of a query result (specified by size), returning a list. If size is 
omitted, fetchmany returns a single row. An empty list is returned when no more rows are 
available.

cur.execute('SELECT * FROM stocks ORDER BY price') 
print(cur.fetchmany(2)) 
 
# Output: 
# [('2006-01-05', 'BUY', 'RHAT', 100, 35.14), ('2006-03-28', 'BUY', 'IBM', 1000, 45.0)]

5. 

fetchall()

Fetches all (remaining) rows of a query result, returning a list.

cur.execute('SELECT * FROM stocks ORDER BY price') 
print(cur.fetchall()) 
 
# Output: 
# [('2006-01-05', 'BUY', 'RHAT', 100, 35.14), ('2006-03-28', 'BUY', 'IBM', 1000, 45.0), 
('2006-04-06', 'SELL', 'IBM', 500, 53.0), ('2006-04-05', 'BUY', 'MSFT', 1000, 72.0)]

6. 

SQLite and Python data types

SQLite natively supports the following types: NULL, INTEGER, REAL, TEXT, BLOB.

https://riptutorial.com/ 220



This is how the data types are converted when moving from SQL to Python or vice versa.

                None     <->     NULL 
                int      <->     INTEGER/INT 
                float    <->     REAL/FLOAT 
                str      <->     TEXT/VARCHAR(n) 
                bytes    <->     BLOB

PostgreSQL Database access using psycopg2

psycopg2 is the most popular PostgreSQL database adapter that is both lightweight and efficient. 
It is the current implementation of the PostgreSQL adapter.

Its main features are the complete implementation of the Python DB API 2.0 
specification and the thread safety (several threads can share the same connection)

Establishing a connection to the database and creating a 
table

import psycopg2 
 
# Establish a connection to the database. 
# Replace parameter values with database credentials. 
conn = psycopg2.connect(database="testpython", 
                        user="postgres", 
                        host="localhost", 
                        password="abc123", 
                        port="5432") 
 
# Create a cursor. The cursor allows you to execute database queries. 
cur = conn.cursor() 
 
# Create a table. Initialise the table name, the column names and data type. 
cur.execute("""CREATE TABLE FRUITS ( 
                    id          INT , 
                    fruit_name  TEXT, 
                    color       TEXT, 
                    price       REAL 
            )""") 
conn.commit() 
conn.close()

Inserting data into the table:

# After creating the table as shown above, insert values into it. 
cur.execute("""INSERT INTO FRUITS (id, fruit_name, color, price) 
               VALUES (1, 'Apples', 'green', 1.00)""") 
 
cur.execute("""INSERT INTO FRUITS (id, fruit_name, color, price) 
               VALUES (1, 'Bananas', 'yellow', 0.80)""")

https://riptutorial.com/ 221



Retrieving table data:

# Set up a query and execute it 
cur.execute("""SELECT id, fruit_name, color, price 
             FROM fruits""") 
 
# Fetch the data 
rows = cur.fetchall() 
 
# Do stuff with the data 
for row in rows: 
    print "ID = {} ".format(row[0]) 
    print "FRUIT NAME = {}".format(row[1]) 
    print("COLOR = {}".format(row[2])) 
    print("PRICE = {}".format(row[3]))

The output of the above would be:

ID = 1 
NAME = Apples 
COLOR = green 
PRICE = 1.0 
 
ID = 2 
NAME = Bananas 
COLOR = yellow 
PRICE = 0.8

And so, there you go, you now know half of all you need to know about psycopg2! :)

Oracle database

Pre-requisites:

cx_Oracle package - See here for all versions•
Oracle instant client - For Windows x64, Linux x64•

Setup:

Install the cx_Oracle package as:

sudo rpm -i <YOUR_PACKAGE_FILENAME>

•

Extract the Oracle instant client and set environment variables as:•

ORACLE_HOME=<PATH_TO_INSTANTCLIENT> 
PATH=$ORACLE_HOME:$PATH 
LD_LIBRARY_PATH=<PATH_TO_INSTANTCLIENT>:$LD_LIBRARY_PATH

Creating a connection:

import cx_Oracle 
 

https://riptutorial.com/ 222

https://pypi.python.org/pypi/cx_Oracle/5.2.1
http://www.oracle.com/technetwork/topics/winx64soft-089540.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html


class OraExec(object): 
    _db_connection = None 
    _db_cur = None 
 
    def __init__(self): 
        self._db_connection = 
            cx_Oracle.connect('<USERNAME>/<PASSWORD>@<HOSTNAME>:<PORT>/<SERVICE_NAME>') 
        self._db_cur = self._db_connection.cursor()

Get database version:

ver = con.version.split(".") 
print ver

Sample Output: ['12', '1', '0', '2', '0']

Execute query: SELECT

_db_cur.execute("select * from employees order by emp_id") 
for result in _db_cur: 
    print result

Output will be in Python tuples:

(10, 'SYSADMIN', 'IT-INFRA', 7)

(23, 'HR ASSOCIATE', 'HUMAN RESOURCES', 6)

Execute query: INSERT

_db_cur.execute("insert into employees(emp_id, title, dept, grade) 
                values (31, 'MTS', 'ENGINEERING', 7) 
_db_connection.commit()

When you perform insert/update/delete operations in an Oracle Database, the changes are only 
available within your session until commit is issued. When the updated data is committed to the 
database, it is then available to other users and sessions.

Execute query: INSERT using Bind variables

Reference

Bind variables enable you to re-execute statements with new values, without the overhead of re-
parsing the statement. Bind variables improve code re-usability, and can reduce the risk of SQL 
Injection attacks.

rows = [ (1, "First" ), 
     (2, "Second" ), 
     (3, "Third" ) ] 
_db_cur.bindarraysize = 3 
_db_cur.setinputsizes(int, 10) 
_db_cur.executemany("insert into mytab(id, data) values (:1, :2)", rows) 

https://riptutorial.com/ 223

http://www.oracle.com/technetwork/articles/dsl/python-091105.html


_db_connection.commit()

Close connection:

_db_connection.close()

The close() method closes the connection. Any connections not explicitly closed will be 
automatically released when the script ends.

Connection

Creating a connection

According to PEP 249, the connection to a database should be established using a connect() 
constructor, which returns a Connection object. The arguments for this constructor are database 
dependent. Refer to the database specific topics for the relevant arguments.

import MyDBAPI 
 
con = MyDBAPI.connect(*database_dependent_args)

This connection object has four methods:

1: close

con.close()

Closes the connection instantly. Note that the connection is automatically closed if the 
Connection.__del___ method is called. Any pending transactions will implicitely be rolled back.

2: commit

con.commit()

Commits any pending transaction the to database.

3: rollback

con.rollback()

Rolls back to the start of any pending transaction. In other words: this cancels any non-committed 
transaction to the database.

4: cursor

cur = con.cursor()

Returns a Cursor object. This is used to do transactions on the database.

https://riptutorial.com/ 224



Using sqlalchemy

To use sqlalchemy for database:

from sqlalchemy import create_engine 
from sqlalchemy.engine.url import URL 
 
 
url = URL(drivername='mysql', 
          username='user', 
          password='passwd', 
          host='host', 
          database='db') 
 
engine = create_engine(url)  # sqlalchemy engine

Now this engine can be used: e.g. with pandas to fetch dataframes directly from mysql

import pandas as pd 
 
con = engine.connect() 
dataframe = pd.read_sql(sql=query, con=con)

Read Database Access online: https://riptutorial.com/python/topic/4240/database-access

https://riptutorial.com/ 225

https://riptutorial.com/python/topic/4240/database-access


Chapter 43: Date and Time

Remarks

Python provides both builtin methods and external libraries for creating, modifying, parsing, and 
manipulating dates and times.

Examples

Parsing a string into a timezone aware datetime object

Python 3.2+ has support for %z format when parsing a string into a datetime object.

UTC offset in the form +HHMM or -HHMM (empty string if the object is naive).

Python 3.x3.2

import datetime 
dt = datetime.datetime.strptime("2016-04-15T08:27:18-0500", "%Y-%m-%dT%H:%M:%S%z")

For other versions of Python, you can use an external library such as dateutil, which makes 
parsing a string with timezone into a datetime object is quick.

import dateutil.parser 
dt = dateutil.parser.parse("2016-04-15T08:27:18-0500")

The dt variable is now a datetime object with the following value:

datetime.datetime(2016, 4, 15, 8, 27, 18, tzinfo=tzoffset(None, -18000))

Simple date arithmetic

Dates don't exist in isolation. It is common that you will need to find the amount of time between 
dates or determine what the date will be tomorrow. This can be accomplished using timedelta 
objects

import datetime 
 
today = datetime.date.today() 
print('Today:', today) 
 
yesterday = today - datetime.timedelta(days=1) 
print('Yesterday:', yesterday) 
 
tomorrow = today + datetime.timedelta(days=1) 
print('Tomorrow:', tomorrow) 
 

https://riptutorial.com/ 226

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
https://dateutil.readthedocs.org/en/latest/
https://docs.python.org/3/library/datetime.html#timedelta-objects


print('Time between tomorrow and yesterday:', tomorrow - yesterday)

This will produce results similar to:

Today: 2016-04-15 
Yesterday: 2016-04-14 
Tomorrow: 2016-04-16 
Difference between tomorrow and yesterday: 2 days, 0:00:00

Basic datetime objects usage

The datetime module contains three primary types of objects - date, time, and datetime.

import datetime 
 
# Date object 
today = datetime.date.today() 
new_year = datetime.date(2017, 01, 01) #datetime.date(2017, 1, 1) 
 
# Time object 
noon = datetime.time(12, 0, 0) #datetime.time(12, 0) 
 
# Current datetime 
now = datetime.datetime.now() 
 
# Datetime object 
millenium_turn = datetime.datetime(2000, 1, 1, 0, 0, 0) #datetime.datetime(2000, 1, 1, 0, 0)

Arithmetic operations for these objects are only supported within same datatype and performing 
simple arithmetic with instances of different types will result in a TypeError.

# subtraction of noon from today 
noon-today 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: unsupported operand type(s) for -: 'datetime.time' and 'datetime.date' 
However, it is straightforward to convert between types. 
 
# Do this instead 
print('Time since the millenium at midnight: ', 
      datetime.datetime(today.year, today.month, today.day) - millenium_turn) 
 
# Or this 
print('Time since the millenium at noon: ', 
      datetime.datetime.combine(today, noon) - millenium_turn)

Iterate over dates

Sometimes you want to iterate over a range of dates from a start date to some end date. You can 
do it using datetime library and timedelta object:

import datetime 
 

https://riptutorial.com/ 227



# The size of each step in days 
day_delta = datetime.timedelta(days=1) 
 
start_date = datetime.date.today() 
end_date = start_date + 7*day_delta 
 
for i in range((end_date - start_date).days): 
    print(start_date + i*day_delta)

Which produces:

2016-07-21 
2016-07-22 
2016-07-23 
2016-07-24 
2016-07-25 
2016-07-26 
2016-07-27

Parsing a string with a short time zone name into a timezone aware datetime 
object

Using the dateutil library as in the previous example on parsing timezone-aware timestamps, it is 
also possible to parse timestamps with a specified "short" time zone name.

For dates formatted with short time zone names or abbreviations, which are generally ambiguous 
(e.g. CST, which could be Central Standard Time, China Standard Time, Cuba Standard Time, etc 
- more can be found here) or not necessarily available in a standard database, it is necessary to 
specify a mapping between time zone abbreviation and tzinfo object.

from dateutil import tz 
from dateutil.parser import parse 
 
ET = tz.gettz('US/Eastern') 
CT = tz.gettz('US/Central') 
MT = tz.gettz('US/Mountain') 
PT = tz.gettz('US/Pacific') 
 
us_tzinfos = {'CST': CT, 'CDT': CT, 
              'EST': ET, 'EDT': ET, 
              'MST': MT, 'MDT': MT, 
              'PST': PT, 'PDT': PT} 
 
dt_est = parse('2014-01-02 04:00:00 EST', tzinfos=us_tzinfos) 
dt_pst = parse('2016-03-11 16:00:00 PST', tzinfos=us_tzinfos)

After running this:

dt_est 
# datetime.datetime(2014, 1, 2, 4, 0, tzinfo=tzfile('/usr/share/zoneinfo/US/Eastern')) 
dt_pst 
# datetime.datetime(2016, 3, 11, 16, 0, tzinfo=tzfile('/usr/share/zoneinfo/US/Pacific'))

It is worth noting that if using a pytz time zone with this method, it will not be properly localized:

https://riptutorial.com/ 228

https://dateutil.readthedocs.io
http://www.riptutorial.com/python/example/1592/parsing-a-string-into-a-timezone-aware-datetime-object
https://www.timeanddate.com/time/zones/


from dateutil.parser import parse 
import pytz 
 
EST = pytz.timezone('America/New_York') 
dt = parse('2014-02-03 09:17:00 EST', tzinfos={'EST': EST})

This simply attaches the pytz time zone to the datetime:

dt.tzinfo # Will be in Local Mean Time! 
# <DstTzInfo 'America/New_York' LMT-1 day, 19:04:00 STD>

If using this method, you should probably re-localize the naive portion of the datetime after 
parsing:

dt_fixed = dt.tzinfo.localize(dt.replace(tzinfo=None)) 
dt_fixed.tzinfo # Now it's EST. 
# <DstTzInfo 'America/New_York' EST-1 day, 19:00:00 STD>)

Constructing timezone-aware datetimes

By default all datetime objects are naive. To make them timezone-aware, you must attach a tzinfo 
object, which provides the UTC offset and timezone abbreviation as a function of date and time.

Fixed Offset Time Zones

For time zones that are a fixed offset from UTC, in Python 3.2+, the datetime module provides the 
timezone class, a concrete implementation of tzinfo, which takes a timedelta and an (optional) 
name parameter:

Python 3.x3.2

from datetime import datetime, timedelta, timezone 
JST = timezone(timedelta(hours=+9)) 
 
dt = datetime(2015, 1, 1, 12, 0, 0, tzinfo=JST) 
print(dt) 
# 2015-01-01 12:00:00+09:00 
 
print(dt.tzname()) 
# UTC+09:00 
 
dt = datetime(2015, 1, 1, 12, 0, 0, tzinfo=timezone(timedelta(hours=9), 'JST')) 
print(dt.tzname) 
# 'JST'

For Python versions before 3.2, it is necessary to use a third party library, such as dateutil. 
dateutil provides an equivalent class, tzoffset, which (as of version 2.5.3) takes arguments of the 
form dateutil.tz.tzoffset(tzname, offset), where offset is specified in seconds:

Python 3.x3.2
Python 2.x2.7

https://riptutorial.com/ 229

http://dateutil.readthedocs.io


from datetime import datetime, timedelta 
from dateutil import tz 
 
JST = tz.tzoffset('JST', 9 * 3600) # 3600 seconds per hour 
dt = datetime(2015, 1, 1, 12, 0, tzinfo=JST) 
print(dt) 
# 2015-01-01 12:00:00+09:00 
print(dt.tzname) 
# 'JST'

Zones with daylight savings time

For zones with daylight savings time, python standard libraries do not provide a standard class, so 
it is necessary to use a third party library. pytz and dateutil are popular libraries providing time 
zone classes.

In addition to static time zones, dateutil provides time zone classes that use daylight savings time 
(see the documentation for the tz module). You can use the tz.gettz() method to get a time zone 
object, which can then be passed directly to the datetime constructor:

from datetime import datetime 
from dateutil import tz 
local = tz.gettz() # Local time 
PT = tz.gettz('US/Pacific') # Pacific time 
 
dt_l = datetime(2015, 1, 1, 12, tzinfo=local) # I am in EST 
dt_pst = datetime(2015, 1, 1, 12, tzinfo=PT) 
dt_pdt = datetime(2015, 7, 1, 12, tzinfo=PT) # DST is handled automatically 
print(dt_l) 
# 2015-01-01 12:00:00-05:00 
print(dt_pst) 
# 2015-01-01 12:00:00-08:00 
print(dt_pdt) 
# 2015-07-01 12:00:00-07:00

CAUTION: As of version 2.5.3, dateutil does not handle ambiguous datetimes correctly, and will 
always default to the later date. There is no way to construct an object with a dateutil timezone 
representing, for example 2015-11-01 1:30 EDT-4, since this is during a daylight savings time 
transition.

All edge cases are handled properly when using pytz, but pytz time zones should not be directly 
attached to time zones through the constructor. Instead, a pytz time zone should be attached 
using the time zone's localize method:

from datetime import datetime, timedelta 
import pytz 
 
PT = pytz.timezone('US/Pacific') 
dt_pst = PT.localize(datetime(2015, 1, 1, 12)) 
dt_pdt = PT.localize(datetime(2015, 11, 1, 0, 30)) 
print(dt_pst) 
# 2015-01-01 12:00:00-08:00 
print(dt_pdt) 
# 2015-11-01 00:30:00-07:00

https://riptutorial.com/ 230

http://pytz.sourceforge.net/
http://dateutil.readthedocs.io/en/stable/tz.html
http://dateutil.readthedocs.io/en/stable/tz.html
http://dateutil.readthedocs.io/en/stable/tz.html


Be aware that if you perform datetime arithmetic on a pytz-aware time zone, you must either 
perform the calculations in UTC (if you want absolute elapsed time), or you must call normalize() 
on the result:

dt_new = dt_pdt + timedelta(hours=3) # This should be 2:30 AM PST 
print(dt_new) 
# 2015-11-01 03:30:00-07:00 
dt_corrected = PT.normalize(dt_new) 
print(dt_corrected) 
# 2015-11-01 02:30:00-08:00

Fuzzy datetime parsing (extracting datetime out of a text)

It is possible to extract a date out of a text using the dateutil parser in a "fuzzy" mode, where 
components of the string not recognized as being part of a date are ignored.

from dateutil.parser import parse 
 
dt = parse("Today is January 1, 2047 at 8:21:00AM", fuzzy=True) 
print(dt)

dt is now a datetime object and you would see datetime.datetime(2047, 1, 1, 8, 21) printed.

Switching between time zones

To switch between time zones, you need datetime objects that are timezone-aware.

from datetime import datetime 
from dateutil import tz 
 
utc = tz.tzutc() 
local = tz.tzlocal() 
 
utc_now = datetime.utcnow() 
utc_now # Not timezone-aware. 
 
utc_now = utc_now.replace(tzinfo=utc) 
utc_now # Timezone-aware. 
 
local_now = utc_now.astimezone(local) 
local_now # Converted to local time.

Parsing an arbitrary ISO 8601 timestamp with minimal libraries

Python has only limited support for parsing ISO 8601 timestamps. For strptime you need to know 
exactly what format it is in. As a complication the stringification of a datetime is an ISO 8601 
timestamp, with space as a separator and 6 digit fraction:

str(datetime.datetime(2016, 7, 22, 9, 25, 59, 555555)) 
# '2016-07-22 09:25:59.555555'

https://riptutorial.com/ 231

https://dateutil.readthedocs.io/en/stable/parser.html#dateutil.parser.parse
https://dateutil.readthedocs.io/en/stable/parser.html#dateutil.parser.parse


but if the fraction is 0, no fractional part is output

str(datetime.datetime(2016, 7, 22, 9, 25, 59, 0)) 
# '2016-07-22 09:25:59'

But these 2 forms need a different format for strptime. Furthermore, strptime' does not support at 
all parsing minute timezones that have a:in it, thus2016-07-22 09:25:59+0300can be parsed, but 
the standard format2016-07-22 09:25:59+03:00` cannot.

There is a single-file library called iso8601 which properly parses ISO 8601 timestamps and only 
them.

It supports fractions and timezones, and the T separator all with a single function:

import iso8601 
iso8601.parse_date('2016-07-22 09:25:59') 
# datetime.datetime(2016, 7, 22, 9, 25, 59, tzinfo=<iso8601.Utc>) 
iso8601.parse_date('2016-07-22 09:25:59+03:00') 
# datetime.datetime(2016, 7, 22, 9, 25, 59, tzinfo=<FixedOffset '+03:00' ...>) 
iso8601.parse_date('2016-07-22 09:25:59Z') 
# datetime.datetime(2016, 7, 22, 9, 25, 59, tzinfo=<iso8601.Utc>) 
iso8601.parse_date('2016-07-22T09:25:59.000111+03:00') 
# datetime.datetime(2016, 7, 22, 9, 25, 59, 111, tzinfo=<FixedOffset '+03:00' ...>)

If no timezone is set, iso8601.parse_date defaults to UTC. The default zone can be changed with 
default_zone keyword argument. Notably, if this is None instead of the default, then those 
timestamps that do not have an explicit timezone are returned as naive datetimes instead:

iso8601.parse_date('2016-07-22T09:25:59', default_timezone=None) 
# datetime.datetime(2016, 7, 22, 9, 25, 59) 
iso8601.parse_date('2016-07-22T09:25:59Z', default_timezone=None) 
# datetime.datetime(2016, 7, 22, 9, 25, 59, tzinfo=<iso8601.Utc>)

Converting timestamp to datetime

The datetime module can convert a POSIX timestamp to a ITC datetime object.

The Epoch is January 1st, 1970 midnight.

import time 
from datetime import datetime 
seconds_since_epoch=time.time()  #1469182681.709 
 
utc_date=datetime.utcfromtimestamp(seconds_since_epoch) #datetime.datetime(2016, 7, 22, 10, 
18, 1, 709000)

Subtracting months from a date accurately

Using the calendar module

import calendar 

https://riptutorial.com/ 232

https://bitbucket.org/micktwomey/pyiso8601/src/43c6749d06c4aac6b1156911e85a0b952ca8a324/iso8601/iso8601.py?at=default&fileviewer=file-view-default
https://pypi.python.org/pypi/iso8601


from datetime import date 
 
def monthdelta(date, delta): 
    m, y = (date.month+delta) % 12, date.year + ((date.month)+delta-1) // 12 
    if not m: m = 12 
    d = min(date.day, calendar.monthrange(y, m)[1]) 
    return date.replace(day=d,month=m, year=y) 
 
next_month = monthdelta(date.today(), 1) #datetime.date(2016, 10, 23)

Using the dateutils module

import datetime 
import dateutil.relativedelta 
 
d = datetime.datetime.strptime("2013-03-31", "%Y-%m-%d") 
d2 = d - dateutil.relativedelta.relativedelta(months=1)  #datetime.datetime(2013, 2, 28, 0, 0)

Computing time differences

the timedelta module comes in handy to compute differences between times:

from datetime import datetime, timedelta 
now = datetime.now() 
then = datetime(2016, 5, 23)     # datetime.datetime(2016, 05, 23, 0, 0, 0)

Specifying time is optional when creating a new datetime object

delta = now-then

delta is of type timedelta

print(delta.days) 
# 60 
print(delta.seconds) 
# 40826

To get n day's after and n day's before date we could use :

n day's after date:

def get_n_days_after_date(date_format="%d %B %Y", add_days=120): 
 
    date_n_days_after = datetime.datetime.now() + timedelta(days=add_days) 
    return date_n_days_after.strftime(date_format)

n day's before date:

 def get_n_days_before_date(self, date_format="%d %B %Y", days_before=120): 
 
        date_n_days_ago = datetime.datetime.now() - timedelta(days=days_before) 
        return date_n_days_ago.strftime(date_format)

https://riptutorial.com/ 233



Get an ISO 8601 timestamp

Without timezone, with microseconds

from datetime import datetime 
 
datetime.now().isoformat() 
# Out: '2016-07-31T23:08:20.886783'

With timezone, with microseconds

from datetime import datetime 
from dateutil.tz import tzlocal 
 
datetime.now(tzlocal()).isoformat() 
# Out: '2016-07-31T23:09:43.535074-07:00'

With timezone, without microseconds

from datetime import datetime 
from dateutil.tz import tzlocal 
 
datetime.now(tzlocal()).replace(microsecond=0).isoformat() 
# Out: '2016-07-31T23:10:30-07:00'

See ISO 8601 for more information about the ISO 8601 format.

Read Date and Time online: https://riptutorial.com/python/topic/484/date-and-time

https://riptutorial.com/ 234

https://en.wikipedia.org/wiki/ISO_8601
https://riptutorial.com/python/topic/484/date-and-time


Chapter 44: Date Formatting

Examples

Time between two date-times

from datetime import datetime 
 
a = datetime(2016,10,06,0,0,0) 
b = datetime(2016,10,01,23,59,59) 
 
a-b 
# datetime.timedelta(4, 1) 
 
(a-b).days 
# 4 
(a-b).total_seconds() 
# 518399.0

Parsing string to datetime object

Uses C standard format codes.

from datetime import datetime 
datetime_string = 'Oct 1 2016, 00:00:00' 
datetime_string_format = '%b %d %Y, %H:%M:%S' 
datetime.strptime(datetime_string, datetime_string_format) 
# datetime.datetime(2016, 10, 1, 0, 0)

Outputting datetime object to string

Uses C standard format codes.

from datetime import datetime 
datetime_for_string = datetime(2016,10,1,0,0) 
datetime_string_format = '%b %d %Y, %H:%M:%S' 
datetime.strftime(datetime_for_string,datetime_string_format) 
# Oct 01 2016, 00:00:00

Read Date Formatting online: https://riptutorial.com/python/topic/7284/date-formatting

https://riptutorial.com/ 235

https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior
https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior
https://riptutorial.com/python/topic/7284/date-formatting


Chapter 45: Debugging

Examples

The Python Debugger: Step-through Debugging with _pdb_

The Python Standard Library includes an interactive debugging library called pdb. pdb has 
extensive capabilities, the most commonly used being the ability to 'step-through' a program.

To immediately enter into step-through debugging use:

python -m pdb <my_file.py>

This will start the debugger at the first line of the program.

Usually you will want to target a specific section of the code for debugging. To do this we import 
the pdb library and use set_trace() to interrupt the flow of this troubled example code.

import pdb 
 
def divide(a, b): 
    pdb.set_trace() 
    return a/b 
    # What's wrong with this? Hint: 2 != 3 
 
print divide(1, 2)

Running this program will launch the interactive debugger.

python foo.py 
> ~/scratch/foo.py(5)divide() 
-> return a/b 
(Pdb) 

Often this command is used on one line so it can be commented out with a single # character

 import pdf; pdb.set_trace()

At the (Pdb) prompt commands can be entered. These commands can be debugger commands or 
python. To print variables we can use p from the debugger, or python's print.

(Pdb) p a 
1 
(Pdb) print a 
1

To see list of all local variables use

https://riptutorial.com/ 236

https://docs.python.org/2/library/
https://docs.python.org/2/library/pdb.html


locals

build-in function

These are good debugger commands to know:

b <n> | <f>: set breakpoint at line *n* or function named *f*. 
# b 3 
# b divide 
b: show all breakpoints. 
c: continue until the next breakpoint. 
s: step through this line (will enter a function). 
n: step over this line (jumps over a function). 
r: continue until the current function returns. 
l: list a window of code around this line. 
p <var>: print variable named *var*. 
# p x 
q: quit debugger. 
bt: print the traceback of the current execution call stack 
up: move your scope up the function call stack to the caller of the current function 
down: Move your scope back down the function call stack one level 
step: Run the program until the next line of execution in the program, then return control 
back to the debugger 
next: run the program until the next line of execution in the current function, then return 
control back to the debugger 
return: run the program until the current function returns, then return control back to the 
debugger 
continue: continue running the program until the next breakpoint (or set_trace si called 
again)

The debugger can also evaluate python interactively:

-> return a/b 
(Pdb) p a+b 
3 
(Pdb) [ str(m) for m in [a,b]] 
['1', '2'] 
(Pdb) [ d for d in xrange(5)] 
[0, 1, 2, 3, 4]

Note:

If any of your variable names coincide with the debugger commands, use an exclamation mark '!' 
before the var to explicitly refer to the variable and not the debugger command. For example, often 
it might so happen that you use the variable name 'c' for a counter, and you might want to print it 
while in the debugger. a simple 'c' command would continue execution till the next breakpoint. 
Instead use '!c' to print the value of the variable as follows:

(Pdb) !c 
4

Via IPython and ipdb

If IPython (or Jupyter) are installed, the debugger can be invoked using:

https://riptutorial.com/ 237

http://ipython.org/
http://jupyter.org/


import ipdb 
ipdb.set_trace()

When reached, the code will exit and print:

 /home/usr/ook.py(3)<module>() 
      1 import ipdb 
      2 ipdb.set_trace() 
----> 3 print("Hello world!") 
 
ipdb>

Clearly, this means that one has to edit the code. There is a simpler way:

from IPython.core import ultratb 
sys.excepthook = ultratb.FormattedTB(mode='Verbose', 
                                     color_scheme='Linux', 
                                     call_pdb=1)

This will cause the debugger to be called if there is an uncaught exception raised.

Remote debugger

Some times you need to debug python code which is executed by another process and and in this 
cases rpdb comes in handy.

rpdb is a wrapper around pdb that re-routes stdin and stdout to a socket handler. By 
default it opens the debugger on port 4444

Usage:

# In the Python file you want to debug. 
import rpdb 
rpdb.set_trace()

And then you need run this in terminal to connect to this process.

# Call in a terminal to see the output 
$ nc 127.0.0.1 4444

And you will get pdb promt

> /home/usr/ook.py(3)<module>() 
-> print("Hello world!") 
(Pdb)

Read Debugging online: https://riptutorial.com/python/topic/2077/debugging

https://riptutorial.com/ 238

https://github.com/tamentis/rpdb/
https://riptutorial.com/python/topic/2077/debugging


Chapter 46: Decorators

Introduction

Decorator functions are software design patterns. They dynamically alter the functionality of a 
function, method, or class without having to directly use subclasses or change the source code of 
the decorated function. When used correctly, decorators can become powerful tools in the 
development process. This topic covers implementation and applications of decorator functions in 
Python.

Syntax

def decorator_function(f): pass # defines a decorator named decorator_function•

@decorator_function 
def decorated_function(): pass # the function is now wrapped (decorated by) 
decorator_function

•

decorated_function = decorator_function(decorated_function) # this is equivalent to using the 
syntactic sugar @decorator_function

•

Parameters

Parameter Details

f The function to be decorated (wrapped)

Examples

Decorator function

Decorators augment the behavior of other functions or methods. Any function that takes a function 
as a parameter and returns an augmented function can be used as a decorator.

# This simplest decorator does nothing to the function being decorated. Such 
# minimal decorators can occasionally be used as a kind of code markers. 
def super_secret_function(f): 
    return f 
 
@super_secret_function 
def my_function(): 
    print("This is my secret function.")

The @-notation is syntactic sugar that is equivalent to the following:

https://riptutorial.com/ 239



my_function = super_secret_function(my_function)

It is important to bear this in mind in order to understand how the decorators work. This 
"unsugared" syntax makes it clear why the decorator function takes a function as an argument, 
and why it should return another function. It also demonstrates what would happen if you don't 
return a function:

def disabled(f): 
    """ 
    This function returns nothing, and hence removes the decorated function 
    from the local scope. 
    """ 
    pass 
 
@disabled 
def my_function(): 
    print("This function can no longer be called...") 
 
my_function() 
# TypeError: 'NoneType' object is not callable

Thus, we usually define a new function inside the decorator and return it. This new function would 
first do something that it needs to do, then call the original function, and finally process the return 
value. Consider this simple decorator function that prints the arguments that the original function 
receives, then calls it.

#This is the decorator 
def print_args(func): 
    def inner_func(*args, **kwargs): 
        print(args) 
        print(kwargs) 
        return func(*args, **kwargs) #Call the original function with its arguments. 
    return inner_func 
 
@print_args 
def multiply(num_a, num_b): 
    return num_a * num_b 
 
print(multiply(3, 5)) 
#Output: 
# (3,5) - This is actually the 'args' that the function receives. 
# {} - This is the 'kwargs', empty because we didn't specify keyword arguments. 
# 15 - The result of the function.

Decorator class

As mentioned in the introduction, a decorator is a function that can be applied to another function 
to augment its behavior. The syntactic sugar is equivalent to the following: my_func = 
decorator(my_func). But what if the decorator was instead a class? The syntax would still work, 
except that now my_func gets replaced with an instance of the decorator class. If this class 
implements the __call__() magic method, then it would still be possible to use my_func as if it was a 
function:

https://riptutorial.com/ 240



class Decorator(object): 
    """Simple decorator class.""" 
 
    def __init__(self, func): 
        self.func = func 
 
    def __call__(self, *args, **kwargs): 
        print('Before the function call.') 
        res = self.func(*args, **kwargs) 
        print('After the function call.') 
        return res 
 
@Decorator 
def testfunc(): 
    print('Inside the function.') 
 
testfunc() 
# Before the function call. 
# Inside the function. 
# After the function call.

Note that a function decorated with a class decorator will no longer be considered a "function" 
from type-checking perspective:

import types 
isinstance(testfunc, types.FunctionType) 
# False 
type(testfunc) 
# <class '__main__.Decorator'>

Decorating Methods

For decorating methods you need to define an additional __get__-method:

from types import MethodType 
 
class Decorator(object): 
    def __init__(self, func): 
        self.func = func 
 
    def __call__(self, *args, **kwargs): 
        print('Inside the decorator.') 
        return self.func(*args, **kwargs) 
 
    def __get__(self, instance, cls): 
        # Return a Method if it is called on an instance 
        return self if instance is None else MethodType(self, instance) 
 
class Test(object): 
    @Decorator 
    def __init__(self): 
        pass 
 
a = Test()

https://riptutorial.com/ 241



Inside the decorator.

Warning!

Class Decorators only produce one instance for a specific function so decorating a method with a 
class decorator will share the same decorator between all instances of that class:

from types import MethodType 
 
class CountCallsDecorator(object): 
    def __init__(self, func): 
        self.func = func 
        self.ncalls = 0    # Number of calls of this method 
 
    def __call__(self, *args, **kwargs): 
        self.ncalls += 1   # Increment the calls counter 
        return self.func(*args, **kwargs) 
 
    def __get__(self, instance, cls): 
        return self if instance is None else MethodType(self, instance) 
 
class Test(object): 
    def __init__(self): 
        pass 
 
    @CountCallsDecorator 
    def do_something(self): 
        return 'something was done' 
 
a = Test() 
a.do_something() 
a.do_something.ncalls   # 1 
b = Test() 
b.do_something() 
b.do_something.ncalls   # 2

Making a decorator look like the decorated function

Decorators normally strip function metadata as they aren't the same. This can cause problems 
when using meta-programming to dynamically access function metadata. Metadata also includes 
function's docstrings and its name. functools.wraps makes the decorated function look like the 
original function by copying several attributes to the wrapper function.

from functools import wraps

The two methods of wrapping a decorator are achieving the same thing in hiding that the original 
function has been decorated. There is no reason to prefer the function version to the class version 
unless you're already using one over the other.

As a function

https://riptutorial.com/ 242

https://docs.python.org/3.5/library/functools.html#functools.wraps


def decorator(func): 
    # Copies the docstring, name, annotations and module to the decorator 
    @wraps(func) 
    def wrapped_func(*args, **kwargs): 
        return func(*args, **kwargs) 
    return wrapped_func 
 
@decorator 
def test(): 
    pass 
 
test.__name__

'test'

As a class

class Decorator(object): 
    def __init__(self, func): 
        # Copies name, module, annotations and docstring to the instance. 
        self._wrapped = wraps(func)(self) 
 
    def __call__(self, *args, **kwargs): 
        return self._wrapped(*args, **kwargs) 
 
@Decorator 
def test(): 
    """Docstring of test.""" 
    pass 
 
test.__doc__

'Docstring of test.'

Decorator with arguments (decorator factory)

A decorator takes just one argument: the function to be decorated. There is no way to pass other 
arguments.

But additional arguments are often desired. The trick is then to make a function which takes 
arbitrary arguments and returns a decorator.

Decorator functions

def decoratorfactory(message): 
    def decorator(func): 
        def wrapped_func(*args, **kwargs): 
            print('The decorator wants to tell you: {}'.format(message)) 
            return func(*args, **kwargs) 
        return wrapped_func 
    return decorator 
 

https://riptutorial.com/ 243



@decoratorfactory('Hello World') 
def test(): 
    pass 
 
test()

The decorator wants to tell you: Hello World

Important Note:

With such decorator factories you must call the decorator with a pair of parentheses:

@decoratorfactory # Without parentheses 
def test(): 
    pass 
 
test()

TypeError: decorator() missing 1 required positional argument: 'func'

Decorator classes

def decoratorfactory(*decorator_args, **decorator_kwargs): 
 
    class Decorator(object): 
        def __init__(self, func): 
            self.func = func 
 
        def __call__(self, *args, **kwargs): 
            print('Inside the decorator with arguments {}'.format(decorator_args)) 
            return self.func(*args, **kwargs) 
 
    return Decorator 
 
@decoratorfactory(10) 
def test(): 
    pass 
 
test()

Inside the decorator with arguments (10,)

Create singleton class with a decorator

A singleton is a pattern that restricts the instantiation of a class to one instance/object. Using a 
decorator, we can define a class as a singleton by forcing the class to either return an existing 
instance of the class or create a new instance (if it doesn't exist).

def singleton(cls): 
    instance = [None] 

https://riptutorial.com/ 244



    def wrapper(*args, **kwargs): 
        if instance[0] is None: 
            instance[0] = cls(*args, **kwargs) 
        return instance[0] 
 
    return wrapper

This decorator can be added to any class declaration and will make sure that at most one instance 
of the class is created. Any subsequent calls will return the already existing class instance.

@singleton 
class SomeSingletonClass: 
    x = 2 
    def __init__(self): 
        print("Created!") 
 
instance = SomeSingletonClass()  # prints: Created! 
instance = SomeSingletonClass()  # doesn't print anything 
print(instance.x)                # 2 
 
instance.x = 3 
print(SomeSingletonClass().x)    # 3

So it doesn't matter whether you refer to the class instance via your local variable or whether you 
create another "instance", you always get the same object.

Using a decorator to time a function

import time 
def timer(func): 
    def inner(*args, **kwargs): 
        t1 = time.time() 
        f = func(*args, **kwargs) 
        t2 = time.time() 
        print 'Runtime took {0} seconds'.format(t2-t1) 
        return f 
    return inner 
 
@timer 
def example_function(): 
    #do stuff 
 
 
example_function()

Read Decorators online: https://riptutorial.com/python/topic/229/decorators

https://riptutorial.com/ 245

https://riptutorial.com/python/topic/229/decorators


Chapter 47: Defining functions with list 
arguments

Examples

Function and Call

Lists as arguments are just another variable:

def func(myList): 
    for item in myList: 
        print(item)

and can be passed in the function call itself:

func([1,2,3,5,7]) 
 
1 
2 
3 
5 
7

Or as a variable:

aList = ['a','b','c','d'] 
func(aList) 
 
a 
b 
c 
d

Read Defining functions with list arguments online: 
https://riptutorial.com/python/topic/7744/defining-functions-with-list-arguments

https://riptutorial.com/ 246

https://riptutorial.com/python/topic/7744/defining-functions-with-list-arguments


Chapter 48: Deployment

Examples

Uploading a Conda Package

Before starting you must have:

Anaconda installed on your system Account on Binstar If you are not using Anaconda 1.6+ install 
the binstar command line client:

$ conda install binstar 
$ conda update binstar

If you are not using Anaconda the Binstar is also available on pypi:

$ pip install binstar

Now we can login:

$ binstar login

Test your login with the whoami command:

$ binstar whoami

We are going to be uploading a package with a simple ‘hello world’ function. To follow along start 
by getting my demonstration package repo from Github:

$ git clone https://github.com/<NAME>/<Package>

This a small directory that looks like this:

package/ 
        setup.py 
        test_package/ 
           __init__.py 
           hello.py 
           bld.bat 
           build.sh 
           meta.yaml

Setup.py is the standard python build file and hello.py has our single hello_world() function.

The bld.bat, build.sh, and meta.yaml are scripts and metadata for the Conda package. You can read 
the Conda build page for more info on those three files and their purpose.

https://riptutorial.com/ 247

https://docs.continuum.io/anaconda/install
https://conda.anaconda.org/binstar
http://conda.pydata.org/docs/building/build.html


Now we create the package by running:

$ conda build test_package/

That is all it takes to create a Conda package.

The final step is uploading to binstar by copying and pasting the last line of the print out after 
running the conda build test_package/ command. On my system the command is:

$ binstar upload /home/xavier/anaconda/conda-bld/linux-64/test_package-0.1.0-py27_0.tar.bz2

Since it is your first time creating a package and release you will be prompted to fill out some text 
fields which could alternatively be done through the web app.

You will see a done printed out to confirm you have successfully uploaded your Conda package to 
Binstar.

Read Deployment online: https://riptutorial.com/python/topic/4064/deployment

https://riptutorial.com/ 248

https://riptutorial.com/python/topic/4064/deployment


Chapter 49: Deque Module

Syntax

dq = deque() # Creates an empty deque•
dq = deque(iterable) # Creates a deque with some elements•
dq.append(object) # Adds object to the right of the deque•
dq.appendleft(object) # Adds object to the left of the deque•
dq.pop() -> object # Removes and returns the right most object•
dq.popleft() -> object # Removes and returns the left most object•
dq.extend(iterable) # Adds some elements to the right of the deque•
dq.extendleft(iterable) # Adds some elements to the left of the deque•

Parameters

Parameter Details

iterable Creates the deque with initial elements copied from another iterable.

maxlen Limits how large the deque can be, pushing out old elements as new are added.

Remarks

This class is useful when you need an object similar to a list that allows fast append and pop 
operations from either side (the name deque stands for “double-ended queue”).

The methods provided are indeed very similar, except that some like pop, append, or extend can be 
suffixed with left. The deque data structure should be preferred to a list if one needs to frequently 
insert and delete elements at both ends because it allows to do so in constant time O(1).

Examples

Basic deque using

The main methods that are useful with this class are popleft and appendleft

from collections import deque 
 
d = deque([1, 2, 3]) 
p = d.popleft()        # p = 1, d = deque([2, 3]) 
d.appendleft(5)        # d = deque([5, 2, 3])

limit deque size

https://riptutorial.com/ 249

http://www.riptutorial.com/python/topic/209/list


Use the maxlen parameter while creating a deque to limit the size of the deque:

from collections import deque 
d = deque(maxlen=3)  # only holds 3 items 
d.append(1)  # deque([1]) 
d.append(2)  # deque([1, 2]) 
d.append(3)  # deque([1, 2, 3]) 
d.append(4)  # deque([2, 3, 4]) (1 is removed because its maxlen is 3)

Available methods in deque

Creating empty deque:

dl = deque()  # deque([]) creating empty deque

Creating deque with some elements:

dl = deque([1, 2, 3, 4])  # deque([1, 2, 3, 4])

Adding element to deque:

dl.append(5)  # deque([1, 2, 3, 4, 5])

Adding element left side of deque:

dl.appendleft(0)  # deque([0, 1, 2, 3, 4, 5])

Adding list of elements to deque:

dl.extend([6, 7])  # deque([0, 1, 2, 3, 4, 5, 6, 7])

Adding list of elements to from the left side:

dl.extendleft([-2, -1])  # deque([-1, -2, 0, 1, 2, 3, 4, 5, 6, 7])

Using .pop() element will naturally remove an item from the right side:

dl.pop()  # 7 => deque([-1, -2, 0, 1, 2, 3, 4, 5, 6])

Using .popleft() element to remove an item from the left side:

dl.popleft()  # -1 deque([-2, 0, 1, 2, 3, 4, 5, 6])

Remove element by its value:

dl.remove(1)  # deque([-2, 0, 2, 3, 4, 5, 6])

https://riptutorial.com/ 250



Reverse the order of the elements in deque:

dl.reverse()  # deque([6, 5, 4, 3, 2, 0, -2])

Breadth First Search

The Deque is the only Python data structure with fast Queue operations. (Note queue.Queue isn't 
normally suitable, since it's meant for communication between threads.) A basic use case of a 
Queue is the breadth first search.

from collections import deque 
 
def bfs(graph, root): 
    distances = {} 
    distances[root] = 0 
    q = deque([root]) 
    while q: 
        # The oldest seen (but not yet visited) node will be the left most one. 
        current = q.popleft() 
        for neighbor in graph[current]: 
            if neighbor not in distances: 
                distances[neighbor] = distances[current] + 1 
                # When we see a new node, we add it to the right side of the queue. 
                q.append(neighbor) 
    return distances

Say we have a simple directed graph:

graph = {1:[2,3], 2:[4], 3:[4,5], 4:[3,5], 5:[]}

We can now find the distances from some starting position:

>>> bfs(graph, 1) 
{1: 0, 2: 1, 3: 1, 4: 2, 5: 2} 
 
>>> bfs(graph, 3) 
{3: 0, 4: 1, 5: 1}

Read Deque Module online: https://riptutorial.com/python/topic/1976/deque-module

https://riptutorial.com/ 251

https://en.wikipedia.org/wiki/Queue_(abstract_data_type)
https://en.wikipedia.org/wiki/Breadth-first_search
https://riptutorial.com/python/topic/1976/deque-module


Chapter 50: Descriptor

Examples

Simple descriptor

There are two different types of descriptors. Data descriptors are defined as objects that define 
both a __get__() and a __set__() method, whereas non-data descriptors only define a __get__() 
method. This distinction is important when considering overrides and the namespace of an 
instance's dictionary. If a data descriptor and an entry in an instance's dictionary share the same 
name, the data descriptor will take precedence. However, if instead a non-data descriptor and an 
entry in an instance's dictionary share the same name, the instance dictionary's entry will take 
precedence.

To make a read-only data descriptor, define both get() and set() with the set() raising an 
AttributeError when called. Defining the set() method with an exception raising placeholder is 
enough to make it a data descriptor.

descr.__get__(self, obj, type=None) --> value 
descr.__set__(self, obj, value) --> None 
descr.__delete__(self, obj) --> None

An implemented example:

class DescPrinter(object): 
    """A data descriptor that logs activity.""" 
    _val = 7 
 
    def __get__(self, obj, objtype=None): 
        print('Getting ...') 
        return self._val 
 
    def __set__(self, obj, val): 
        print('Setting', val) 
        self._val = val 
 
    def __delete__(self, obj): 
        print('Deleting ...') 
        del self._val 
 
 
class Foo(): 
    x = DescPrinter() 
 
i = Foo() 
i.x 
# Getting ... 
# 7 
 
i.x = 100 
# Setting 100 
i.x 

https://riptutorial.com/ 252



# Getting ... 
# 100 
 
del i.x 
# Deleting ... 
i.x 
# Getting ... 
# 7

Two-way conversions

Descriptor objects can allow related object attributes to react to changes automatically.

Suppose we want to model an oscillator with a given frequency (in Hertz) and period (in seconds). 
When we update the frequency we want the period to update, and when we update the period we 
want the frequency to update:

 >>> oscillator = Oscillator(freq=100.0)  # Set frequency to 100.0 Hz 
>>> oscillator.period  # Period is 1 / frequency, i.e. 0.01 seconds 
0.01 
>>> oscillator.period = 0.02  # Set period to 0.02 seconds 
>>> oscillator.freq # The frequency is automatically adjusted 
50.0 
>>> oscillator.freq = 200.0  # Set the frequency to 200.0 Hz 
>>> oscillator.period  # The period is automatically adjusted 
0.005

We pick one of the values (frequency, in Hertz) as the "anchor," i.e. the one that can be set with 
no conversion, and write a descriptor class for it:

class Hertz(object): 
    def __get__(self, instance, owner): 
        return self.value 
 
    def __set__(self, instance, value): 
        self.value = float(value)

The "other" value (period, in seconds) is defined in terms of the anchor. We write a descriptor 
class that does our conversions:

class Second(object): 
    def __get__(self, instance, owner): 
        # When reading period, convert from frequency 
        return 1 / instance.freq 
 
    def __set__(self, instance, value): 
        # When setting period, update the frequency 
        instance.freq = 1 / float(value)

Now we can write the Oscillator class:

class Oscillator(object): 
    period = Second()  # Set the other value as a class attribute 

https://riptutorial.com/ 253



 
    def __init__(self, freq): 
        self.freq = Hertz()  # Set the anchor value as an instance attribute 
        self.freq = freq  # Assign the passed value - self.period will be adjusted

Read Descriptor online: https://riptutorial.com/python/topic/3405/descriptor

https://riptutorial.com/ 254

https://riptutorial.com/python/topic/3405/descriptor


Chapter 51: Design Patterns

Introduction

A design pattern is a general solution to a commonly occurring problem in software development. 
This documentation topic is specifically aimed at providing examples of common design patterns 
in Python.

Examples

Strategy Pattern

This design pattern is called Strategy Pattern. It is used to define a family of algorithms, 
encapsulates each one, and make them interchangeable. Strategy design pattern lets an 
algorithm vary independently from clients that use it.

For example, animals can "walk" in many different ways. Walking could be considered a strategy 
that is implemented by different types of animals:

from types import MethodType 
 
 
class Animal(object): 
 
    def __init__(self, *args, **kwargs): 
        self.name = kwargs.pop('name', None) or 'Animal' 
        if kwargs.get('walk', None): 
            self.walk = MethodType(kwargs.pop('walk'), self) 
 
    def walk(self): 
        """ 
        Cause animal instance to walk 
 
        Walking funcionallity is a strategy, and is intended to 
        be implemented separately by different types of animals. 
        """ 
        message = '{} should implement a walk method'.format( 
            self.__class__.__name__) 
        raise NotImplementedError(message) 
 
 
# Here are some different walking algorithms that can be used with Animal 
def snake_walk(self): 
    print('I am slithering side to side because I am a {}.'.format(self.name)) 
 
def four_legged_animal_walk(self): 
    print('I am using all four of my legs to walk because I am a(n) {}.'.format( 
        self.name)) 
 
def two_legged_animal_walk(self): 
    print('I am standing up on my two legs to walk because I am a {}.'.format( 
        self.name))

https://riptutorial.com/ 255



Running this example would produce the following output:

generic_animal = Animal() 
king_cobra = Animal(name='King Cobra', walk=snake_walk) 
elephant = Animal(name='Elephant', walk=four_legged_animal_walk) 
kangaroo = Animal(name='Kangaroo', walk=two_legged_animal_walk) 
 
kangaroo.walk() 
elephant.walk() 
king_cobra.walk() 
# This one will Raise a NotImplementedError to let the programmer 
# know that the walk method is intended to be used as a strategy. 
generic_animal.walk() 
 
    # OUTPUT: 
    # 
    # I am standing up on my two legs to walk because I am a Kangaroo. 
    # I am using all four of my legs to walk because I am a(n) Elephant. 
    # I am slithering side to side because I am a King Cobra. 
    # Traceback (most recent call last): 
    #   File "./strategy.py", line 56, in <module> 
    #     generic_animal.walk() 
    #   File "./strategy.py", line 30, in walk 
    #     raise NotImplementedError(message) 
    # NotImplementedError: Animal should implement a walk method 

Note that in languages like C++ or Java, this pattern is implemented using an abstract class or an 
interface to define a a strategy. In Python it makes more sense to just define some functions 
externally that can be added dynamically to a class using types.MethodType.

Introduction to design patterns and Singleton Pattern

Design Patterns provide solutions to the commonly occurring problems in software design. The 
design patterns were first introduced by GoF(Gang of Four) where they described the common 
patterns as problems which occur over and over again and solutions to those problems.

Design patterns have four essential elements:

The pattern name is a handle we can use to describe a design problem, its solutions, and 
consequences in a word or two.

1. 

The problem describes when to apply the pattern.2. 
The solution describes the elements that make up the design, their relationships, 
responsibilities, and collaborations.

3. 

The consequences are the results and trade-offs of applying the pattern.4. 

Advantages of design patterns:

They are reusable across multiple projects.1. 
The architectural level of problems can be solved2. 
They are time-tested and well-proven, which is the experience of developers and architects3. 
They have reliability and dependence4. 

Design patterns can be classified into three categories:

https://riptutorial.com/ 256



Creational Pattern1. 
Structural Pattern2. 
Behavioral Pattern3. 

Creational Pattern - They are concerned with how the object can be created and they isolate the 
details of object creation.

Structural Pattern - They design the structure of classes and objects so that they can compose to 
achieve larger results.

Behavioral Pattern - They are concerned with interaction among objects and responsibility of 
objects.

Singleton Pattern:

It is a type of creational pattern which provides a mechanism to have only one and one object of a 
given type and provides a global point of access.

e.g. Singleton can be used in database operations, where we want database object to maintain 
data consistency.

Implementation

We can implement Singleton Pattern in Python by creating only one instance of Singleton class 
and serving the same object again.

class Singleton(object): 
    def __new__(cls): 
        # hasattr method checks if the class object an instance property or not. 
        if not hasattr(cls, 'instance'): 
            cls.instance = super(Singleton, cls).__new__(cls) 
        return cls.instance 
 
s = Singleton() 
print ("Object created", s) 
 
s1 = Singleton() 
print ("Object2 created", s1)

Output:

('Object created', <__main__.Singleton object at 0x10a7cc310>) 
('Object2 created', <__main__.Singleton object at 0x10a7cc310>)

Note that in languages like C++ or Java, this pattern is implemented by making the constructor 
private and creating a static method that does the object initialization. This way, one object gets 
created on the first call and class returns the same object thereafter. But in Python, we do not 
have any way to create private constructors.

Factory Pattern

Factory pattern is also a Creational pattern. The term factory means that a class is responsible for 

https://riptutorial.com/ 257



creating objects of other types. There is a class that acts as a factory which has objects and 
methods associated with it. The client creates an object by calling the methods with certain 
parameters and factory creates the object of the desired type and return it to the client.

from abc import ABCMeta, abstractmethod 
 
class Music(): 
    __metaclass__ = ABCMeta 
    @abstractmethod 
    def do_play(self): 
        pass 
 
class Mp3(Music): 
    def do_play(self): 
        print ("Playing .mp3 music!") 
 
class Ogg(Music): 
    def do_play(self): 
        print ("Playing .ogg music!") 
 
class MusicFactory(object): 
    def play_sound(self, object_type): 
        return eval(object_type)().do_play() 
 
if __name__ == "__main__": 
    mf = MusicFactory() 
    music = input("Which music you want to play Mp3 or Ogg") 
    mf.play_sound(music)

Output:

Which music you want to play Mp3 or Ogg"Ogg" 
Playing .ogg music!

MusicFactory is the factory class here that creates either an object of type Mp3 or Ogg depending on 
the choice user provides.

Proxy

Proxy object is often used to ensure guarded access to another object, which internal business 
logic we don't want to pollute with safety requirements.

Suppose we'd like to guarantee that only user of specific permissions can access resource.

Proxy definition: (it ensure that only users which actually can see reservations will be able to 
consumer reservation_service)

from datetime import date 
from operator import attrgetter 
 
class Proxy: 
    def __init__(self, current_user, reservation_service): 
        self.current_user = current_user 
        self.reservation_service = reservation_service 

https://riptutorial.com/ 258



 
    def highest_total_price_reservations(self, date_from, date_to, reservations_count): 
        if self.current_user.can_see_reservations: 
            return self.reservation_service.highest_total_price_reservations( 
                date_from, 
                date_to, 
                reservations_count 
              ) 
        else: 
            return [] 
 
#Models and ReservationService: 
 
class Reservation: 
    def __init__(self, date, total_price): 
        self.date = date 
        self.total_price = total_price 
 
class ReservationService: 
    def highest_total_price_reservations(self, date_from, date_to, reservations_count): 
        # normally it would be read from database/external service 
        reservations = [ 
            Reservation(date(2014, 5, 15), 100), 
            Reservation(date(2017, 5, 15), 10), 
            Reservation(date(2017, 1, 15), 50) 
        ] 
 
        filtered_reservations = [r for r in reservations if (date_from <= r.date <= date_to)] 
 
        sorted_reservations = sorted(filtered_reservations, key=attrgetter('total_price'), 
reverse=True) 
 
        return sorted_reservations[0:reservations_count] 
 
 
class User: 
    def __init__(self, can_see_reservations, name): 
        self.can_see_reservations = can_see_reservations 
        self.name = name 
 
#Consumer service: 
 
class StatsService: 
    def __init__(self, reservation_service): 
        self.reservation_service = reservation_service 
 
    def year_top_100_reservations_average_total_price(self, year): 
        reservations = self.reservation_service.highest_total_price_reservations( 
            date(year, 1, 1), 
            date(year, 12, 31), 
            1 
        ) 
 
        if len(reservations) > 0: 
            total = sum(r.total_price for r in reservations) 
 
            return total / len(reservations) 
        else: 
            return 0 
 
#Test: 

https://riptutorial.com/ 259



def test(user, year): 
    reservations_service = Proxy(user, ReservationService()) 
    stats_service = StatsService(reservations_service) 
    average_price = stats_service.year_top_100_reservations_average_total_price(year) 
    print("{0} will see: {1}".format(user.name, average_price)) 
 
test(User(True, "John the Admin"), 2017) 
test(User(False, "Guest"),         2017)

BENEFITS

we're avoiding any changes in ReservationService when access restrictions are 
changed.

•

we're not mixing business related data (date_from, date_to, reservations_count) with 
domain unrelated concepts (user permissions) in service.

•

Consumer (StatsService) is free from permissions related logic as well•

CAVEATS

Proxy interface is always exactly the same as the object it hides, so that user that consumes 
service wrapped by proxy wasn't even aware of proxy presence.

•

Read Design Patterns online: https://riptutorial.com/python/topic/8056/design-patterns

https://riptutorial.com/ 260

https://riptutorial.com/python/topic/8056/design-patterns


Chapter 52: Dictionary

Syntax

mydict = {}•
mydict[k] = value•
value = mydict[k]•
value = mydict.get(k)•
value = mydict.get(k, "default_value")•

Parameters

Parameter Details

key The desired key to lookup

value The value to set or return

Remarks

Helpful items to remember when creating a dictionary:

Every key must be unique (otherwise it will be overridden)•
Every key must be hashable (can use the hash function to hash it; otherwise TypeError will be 
thrown)

•

There is no particular order for the keys.•

Examples

Accessing values of a dictionary

dictionary = {"Hello": 1234, "World": 5678} 
print(dictionary["Hello"])

The above code will print 1234.

The string "Hello" in this example is called a key. It is used to lookup a value in the dict by placing 
the key in square brackets.

The number 1234 is seen after the respective colon in the dict definition. This is called the value 
that "Hello" maps to in this dict.

Looking up a value like this with a key that does not exist will raise a KeyError exception, halting 
execution if uncaught. If we want to access a value without risking a KeyError, we can use the 

https://riptutorial.com/ 261



dictionary.get method. By default if the key does not exist, the method will return None. We can 
pass it a second value to return instead of None in the event of a failed lookup.

w = dictionary.get("whatever") 
x = dictionary.get("whatever", "nuh-uh")

In this example w will get the value None and x will get the value "nuh-uh".

The dict() constructor

The dict() constructor can be used to create dictionaries from keyword arguments, or from a 
single iterable of key-value pairs, or from a single dictionary and keyword arguments.

dict(a=1, b=2, c=3)                   # {'a': 1, 'b': 2, 'c': 3} 
dict([('d', 4), ('e', 5), ('f', 6)])  # {'d': 4, 'e': 5, 'f': 6} 
dict([('a', 1)], b=2, c=3)            # {'a': 1, 'b': 2, 'c': 3} 
dict({'a' : 1, 'b' : 2}, c=3)         # {'a': 1, 'b': 2, 'c': 3}

Avoiding KeyError Exceptions

One common pitfall when using dictionaries is to access a non-existent key. This typically results 
in a KeyError exception

mydict = {} 
mydict['not there']

Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
KeyError: 'not there'

One way to avoid key errors is to use the dict.get method, which allows you to specify a default 
value to return in the case of an absent key.

value = mydict.get(key, default_value)

Which returns mydict[key] if it exists, but otherwise returns default_value. Note that this doesn't 
add key to mydict. So if you want to retain that key value pair, you should use 
mydict.setdefault(key, default_value), which does store the key value pair.

mydict = {} 
print(mydict) 
# {} 
print(mydict.get("foo", "bar")) 
# bar 
print(mydict) 
# {} 
print(mydict.setdefault("foo", "bar")) 
# bar 
print(mydict) 
# {'foo': 'bar'}

https://riptutorial.com/ 262



An alternative way to deal with the problem is catching the exception

try: 
    value = mydict[key] 
except KeyError: 
    value = default_value

You could also check if the key is in the dictionary.

if key in mydict: 
    value = mydict[key] 
else: 
    value = default_value

Do note, however, that in multi-threaded environments it is possible for the key to be removed 
from the dictionary after you check, creating a race condition where the exception can still be 
thrown.

Another option is to use a subclass of dict, collections.defaultdict, that has a default_factory to 
create new entries in the dict when given a new_key.

Accessing keys and values

When working with dictionaries, it's often necessary to access all the keys and values in the 
dictionary, either in a for loop, a list comprehension, or just as a plain list.

Given a dictionary like:

mydict = { 
    'a': '1', 
    'b': '2' 
}

You can get a list of keys using the keys() method:

print(mydict.keys()) 
# Python2: ['a', 'b'] 
# Python3: dict_keys(['b', 'a'])

If instead you want a list of values, use the values() method:

print(mydict.values()) 
# Python2: ['1', '2'] 
# Python3: dict_values(['2', '1'])

If you want to work with both the key and its corresponding value, you can use the items() method:

print(mydict.items()) 
# Python2: [('a', '1'), ('b', '2')] 
# Python3: dict_items([('b', '2'), ('a', '1')])

https://riptutorial.com/ 263



NOTE: Because a dict is unsorted, keys(), values(), and items() have no sort order. Use sort(), 
sorted(), or an OrderedDict if you care about the order that these methods return.

Python 2/3 Difference: In Python 3, these methods return special iterable objects, not lists, and 
are the equivalent of the Python 2 iterkeys(), itervalues(), and iteritems() methods. These 
objects can be used like lists for the most part, though there are some differences. See PEP 3106 
for more details.

Introduction to Dictionary

A dictionary is an example of a key value store also known as Mapping in Python. It allows you to 
store and retrieve elements by referencing a key. As dictionaries are referenced by key, they have 
very fast lookups. As they are primarily used for referencing items by key, they are not sorted.

creating a dict

Dictionaries can be initiated in many ways:

literal syntax

d = {}                        # empty dict 
d = {'key': 'value'}          # dict with initial values

Python 3.x3.5

# Also unpacking one or multiple dictionaries with the literal syntax is possible 
 
# makes a shallow copy of otherdict 
d = {**otherdict} 
# also updates the shallow copy with the contents of the yetanotherdict. 
d = {**otherdict, **yetanotherdict}

dict comprehension

d = {k:v for k,v in [('key', 'value',)]}

see also: Comprehensions

built-in class: dict()

d = dict()                    # emtpy dict 
d = dict(key='value')         # explicit keyword arguments 
d = dict([('key', 'value')])  # passing in a list of key/value pairs 
# make a shallow copy of another dict (only possible if keys are only strings!) 
d = dict(**otherdict) 

https://riptutorial.com/ 264

https://www.python.org/dev/peps/pep-3106/
http://www.riptutorial.com/python/topic/196/list-comprehensions


modifying a dict

To add items to a dictionary, simply create a new key with a value:

d['newkey'] = 42

It also possible to add list and dictionary as value:

d['new_list'] = [1, 2, 3] 
d['new_dict'] = {'nested_dict': 1}

To delete an item, delete the key from the dictionary:

del d['newkey']

Dictionary with default values

Available in the standard library as defaultdict

from collections import defaultdict 
 
d = defaultdict(int) 
d['key']                         # 0 
d['key'] = 5 
d['key']                         # 5 
 
d = defaultdict(lambda: 'empty') 
d['key']                         # 'empty' 
d['key'] = 'full' 
d['key']                         # 'full'

[*] Alternatively, if you must use the built-in dict class, using dict.setdefault() will allow you to 
create a default whenever you access a key that did not exist before:

>>> d = {} 
{} 
>>> d.setdefault('Another_key', []).append("This worked!") 
>>> d 
{'Another_key': ['This worked!']}

Keep in mind that if you have many values to add, dict.setdefault() will create a new instance of 
the initial value (in this example a []) every time it's called - which may create unnecessary 
workloads.

[*] Python Cookbook, 3rd edition, by David Beazley and Brian K. Jones (O’Reilly). Copyright 2013 
David Beazley and Brian Jones, 978-1-449-34037-7.

Creating an ordered dictionary

https://riptutorial.com/ 265

https://docs.python.org/3/library/collections.html#collections.defaultdict


You can create an ordered dictionary which will follow a determined order when iterating over the 
keys in the dictionary.

Use OrderedDict from the collections module. This will always return the dictionary elements in the 
original insertion order when iterated over.

from collections import OrderedDict 
 
d = OrderedDict() 
d['first'] = 1 
d['second'] = 2 
d['third'] = 3 
d['last'] = 4 
 
# Outputs "first 1", "second 2", "third 3", "last 4" 
for key in d: 
    print(key, d[key])

Unpacking dictionaries using the ** operator

You can use the ** keyword argument unpacking operator to deliver the key-value pairs in a 
dictionary into a function's arguments. A simplified example from the official documentation:

>>> 
>>> def parrot(voltage, state, action): 
...     print("This parrot wouldn't", action, end=' ') 
...     print("if you put", voltage, "volts through it.", end=' ') 
...     print("E's", state, "!") 
... 
>>> d = {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"} 
>>> parrot(**d) 
 
This parrot wouldn't VOOM if you put four million volts through it. E's bleedin' demised !

As of Python 3.5 you can also use this syntax to merge an arbitrary number of dict objects.

>>> fish = {'name': "Nemo", 'hands': "fins", 'special': "gills"} 
>>> dog = {'name': "Clifford", 'hands': "paws", 'color': "red"} 
>>> fishdog = {**fish, **dog} 
>>> fishdog 
 
{'hands': 'paws', 'color': 'red', 'name': 'Clifford', 'special': 'gills'}

As this example demonstrates, duplicate keys map to their lattermost value (for example "Clifford" 
overrides "Nemo").

Merging dictionaries

Consider the following dictionaries:

>>> fish = {'name': "Nemo", 'hands': "fins", 'special': "gills"} 
>>> dog = {'name': "Clifford", 'hands': "paws", 'color': "red"}

https://riptutorial.com/ 266

https://docs.python.org/3/tutorial/controlflow.html#unpacking-argument-lists


Python 3.5+

>>> fishdog = {**fish, **dog} 
>>> fishdog 
{'hands': 'paws', 'color': 'red', 'name': 'Clifford', 'special': 'gills'}

As this example demonstrates, duplicate keys map to their lattermost value (for example "Clifford" 
overrides "Nemo").

Python 3.3+

>>> from collections import ChainMap 
>>> dict(ChainMap(fish, dog)) 
{'hands': 'fins', 'color': 'red', 'special': 'gills', 'name': 'Nemo'}

With this technique the foremost value takes precedence for a given key rather than the last 
("Clifford" is thrown out in favor of "Nemo").

Python 2.x, 3.x

>>> from itertools import chain 
>>> dict(chain(fish.items(), dog.items())) 
{'hands': 'paws', 'color': 'red', 'name': 'Clifford', 'special': 'gills'}

This uses the lattermost value, as with the **-based technique for merging ("Clifford" overrides 
"Nemo").

>>> fish.update(dog) 
>>> fish 
{'color': 'red', 'hands': 'paws', 'name': 'Clifford', 'special': 'gills'}

dict.update uses the latter dict to overwrite the previous one.

The trailing comma

Like lists and tuples, you can include a trailing comma in your dictionary.

role = {"By day": "A typical programmer", 
        "By night": "Still a typical programmer", }

PEP 8 dictates that you should leave a space between the trailing comma and the closing brace.

All combinations of dictionary values

https://riptutorial.com/ 267



options = { 
    "x": ["a", "b"], 
    "y": [10, 20, 30] 
}

Given a dictionary such as the one shown above, where there is a list representing a set of values 
to explore for the corresponding key. Suppose you want to explore "x"="a" with "y"=10, then 
"x"="a" with"y"=10, and so on until you have explored all possible combinations.

You can create a list that returns all such combinations of values using the following code.

import itertools 
 
options = { 
    "x": ["a", "b"], 
    "y": [10, 20, 30]} 
 
keys = options.keys() 
values = (options[key] for key in keys) 
combinations = [dict(zip(keys, combination)) for combination in itertools.product(*values)] 
print combinations

This gives us the following list stored in the variable combinations:

[{'x': 'a', 'y': 10}, 
 {'x': 'b', 'y': 10}, 
 {'x': 'a', 'y': 20}, 
 {'x': 'b', 'y': 20}, 
 {'x': 'a', 'y': 30}, 
 {'x': 'b', 'y': 30}]

Iterating Over a Dictionary

If you use a dictionary as an iterator (e.g. in a for statement), it traverses the keys of the 
dictionary. For example:

d = {'a': 1, 'b': 2, 'c':3} 
for key in d: 
    print(key, d[key]) 
# c 3 
# b 2 
# a 1

The same is true when used in a comprehension

print([key for key in d]) 
# ['c', 'b', 'a']

Python 3.x3.0

The items() method can be used to loop over both the key and value simultaneously:

https://riptutorial.com/ 268



for key, value in d.items(): 
    print(key, value) 
# c 3 
# b 2 
# a 1

While the values() method can be used to iterate over only the values, as would be expected:

for key, value in d.values(): 
    print(key, value) 
    # 3 
    # 2 
    # 1

Python 2.x2.2

Here, the methods keys(), values() and items() return lists, and there are the three extra methods 
iterkeys() itervalues() and iteritems() to return iteraters.

Creating a dictionary

Rules for creating a dictionary:

Every key must be unique (otherwise it will be overridden)•
Every key must be hashable (can use the hash function to hash it; otherwise TypeError will be 
thrown)

•

There is no particular order for the keys.•

# Creating and populating it with values 
stock = {'eggs': 5, 'milk': 2} 
 
# Or creating an empty dictionary 
dictionary = {} 
 
# And populating it after 
dictionary['eggs'] = 5 
dictionary['milk'] = 2 
 
# Values can also be lists 
mydict = {'a': [1, 2, 3], 'b': ['one', 'two', 'three']} 
 
# Use list.append() method to add new elements to the values list 
mydict['a'].append(4)   # => {'a': [1, 2, 3, 4], 'b': ['one', 'two', 'three']} 
mydict['b'].append('four')  # => {'a': [1, 2, 3, 4], 'b': ['one', 'two', 'three', 'four']} 
 
# We can also create a dictionary using a list of two-items tuples 
iterable = [('eggs', 5), ('milk', 2)] 
dictionary = dict(iterables) 
 
# Or using keyword argument: 
dictionary = dict(eggs=5, milk=2) 
 
# Another way will be to use the dict.fromkeys: 
dictionary = dict.fromkeys((milk, eggs))  # => {'milk': None, 'eggs': None} 
dictionary = dict.fromkeys((milk, eggs), (2, 5))  # => {'milk': 2, 'eggs': 5}

https://riptutorial.com/ 269



Dictionaries Example

Dictionaries map keys to values.

car = {} 
car["wheels"] = 4 
car["color"] = "Red" 
car["model"] = "Corvette"

Dictionary values can be accessed by their keys.

print "Little " + car["color"] + " " + car["model"] + "!" 
# This would print out "Little Red Corvette!" 

Dictionaries can also be created in a JSON style:

car = {"wheels": 4, "color": "Red", "model": "Corvette"}

Dictionary values can be iterated over:

for key in car: 
  print key + ": " + car[key] 
 
# wheels: 4 
# color: Red 
# model: Corvette

Read Dictionary online: https://riptutorial.com/python/topic/396/dictionary

https://riptutorial.com/ 270

https://riptutorial.com/python/topic/396/dictionary


Chapter 53: Difference between Module and 
Package

Remarks

It is possible to put a Python package in a ZIP file, and use it that way if you add these lines to the 
beginning of your script:

import sys 
sys.path.append("package.zip")

Examples

Modules

A module is a single Python file that can be imported. Using a module looks like this:

module.py

def hi(): 
    print("Hello world!")

my_script.py

import module 
module.hi()

in an interpreter

>>> from module import hi 
>>> hi() 
# Hello world!

Packages

A package is made up of multiple Python files (or modules), and can even include libraries written 
in C or C++. Instead of being a single file, it is an entire folder structure which might look like this:

Folder package

__init__.py•
dog.py•
hi.py•

__init__.py

https://riptutorial.com/ 271



from package.dog import woof 
from package.hi import hi

dog.py

def woof(): 
    print("WOOF!!!")

hi.py

def hi(): 
    print("Hello world!")

All Python packages must contain an __init__.py file. When you import a package in your script (
import package), the __init__.py script will be run, giving you access to the all of the functions in the 
package. In this case, it allows you to use the package.hi and package.woof functions.

Read Difference between Module and Package online: 
https://riptutorial.com/python/topic/3142/difference-between-module-and-package

https://riptutorial.com/ 272

https://riptutorial.com/python/topic/3142/difference-between-module-and-package


Chapter 54: Distribution

Examples

py2app

To use the py2app framework you must install it first. Do this by opening terminal and entering the 
following command:

sudo easy_install -U py2app

You can also pip install the packages as :

pip install py2app 

Then create the setup file for your python script:

py2applet --make-setup MyApplication.py

Edit the settings of the setup file to your liking, this is the default:

""" 
This is a setup.py script generated by py2applet 
 
Usage: 
    python setup.py py2app 
""" 
 
from setuptools import setup 
 
APP = ['test.py'] 
DATA_FILES = [] 
OPTIONS = {'argv_emulation': True} 
 
setup( 
    app=APP, 
    data_files=DATA_FILES, 
    options={'py2app': OPTIONS}, 
    setup_requires=['py2app'], 
)

To add an icon file (this file must have a .icns extension), or include images in your application as 
reference, change your options as shown:

DATA_FILES = ['myInsertedImage.jpg'] 
OPTIONS = {'argv_emulation': True, 'iconfile': 'myCoolIcon.icns'}

Finally enter this into terminal:

https://riptutorial.com/ 273



python setup.py py2app

The script should run and you will find your finished application in the dist folder.

Use the following options for more customization:

optimize (-O)         optimization level: -O1 for "python -O", -O2 for 
                      "python -OO", and -O0 to disable [default: -O0] 
 
includes (-i)         comma-separated list of modules to include 
 
packages (-p)         comma-separated list of packages to include 
 
extension             Bundle extension [default:.app for app, .plugin for 
                      plugin] 
 
extra-scripts         comma-separated list of additional scripts to include 
                      in an application or plugin.

cx_Freeze

Install cx_Freeze from here

Unzip the folder and run these commands from that directory:

python setup.py build 
sudo python setup.py install

Create a new directory for your python script and create a "setup.py" file in the same directory 
with the following content:

application_title = "My Application" # Use your own application name 
main_python_file = "my_script.py" # Your python script 
 
import sys 
 
from cx_Freeze import setup, Executable 
 
base = None 
if sys.platform == "win32": 
    base = "Win32GUI" 
 
includes = ["atexit","re"] 
 
setup( 
        name = application_title, 
        version = "0.1", 
        description = "Your Description", 
        options = {"build_exe" : {"includes" : includes }}, 
        executables = [Executable(main_python_file, base = base)])

Now run your setup.py from terminal:

python setup.py bdist_mac

https://riptutorial.com/ 274

https://sourceforge.net/projects/cx-freeze/files/4.3.1/cx_Freeze-4.3.1.tar.gz/download?use_mirror=kent&download=


NOTE: On El Capitan this will need to be run as root with SIP mode disabled.

Read Distribution online: https://riptutorial.com/python/topic/2026/distribution

https://riptutorial.com/ 275

https://riptutorial.com/python/topic/2026/distribution


Chapter 55: Django

Introduction

Django is a high-level Python Web framework that encourages rapid development and clean, 
pragmatic design. Built by experienced developers, it takes care of much of the hassle of Web 
development, so you can focus on writing your app without needing to reinvent the wheel. It’s free 
and open source.

Examples

Hello World with Django

Make a simple Hello World Example using your django.

let's make sure that you have django installed on your PC first.

open a terminal and type: python -c "import django" 
-->if no error comes that means django is already installed.

Now lets create a project in django. For that write below command on terminal: 
django-admin startproject HelloWorld

Above command will create a directory named HelloWorld. 
Directory structure will be like: 
HelloWorld 
|--helloworld 
| |--init.py 
| |--settings.py 
| |--urls.py 
| |--wsgi.py 
|--manage.py

Writing Views (Reference from django documentation)

A view function, or view for short, is simply a Python function that takes a Web request and returns 
a Web response. This response can be the HTML contents of a Web page or 
anything.Documentation says we can write views function any where but its better to write in 
views.py placed in our project directory.

Here's a view that returns a hello world message.(views.py)

from django.http import HttpResponse 
 
define helloWorld(request): 
    return HttpResponse("Hello World!! Django Welcomes You.")

https://riptutorial.com/ 276



let's understand the code, step by step.

First, we import the class HttpResponse from the django.http module.•

Next, we define a function called helloWorld. This is the view function. Each view function 
takes an HttpRequest object as its first parameter, which is typically named request.

Note that the name of the view function doesn’t matter; it doesn’t have to be named in a 
certain way in order for Django to recognise it. we called it helloWorld here, so that, it will be 
clear what it does.

•

The view returns an HttpResponse object that contains the generated response. Each view 
function is responsible for returning an HttpResponse object.

•

For more info on django views click here

Mapping URLs to views 
To display this view at a particular URL, you’ll need to create a URLconf;

Before that let's understand how django processes requests.

Django determines the root URLconf module to use.•
Django loads that Python module and looks for the variable urlpatterns. This should be a 
Python list of django.conf.urls.url() instances.

•

Django runs through each URL pattern, in order, and stops at the first one that matches the 
requested URL.

•

Once one of the regexes matches, Django imports and calls the given view, which is a 
simple Python function.

•

Here’s how our URLconf look alike:

from django.conf.urls import url 
from . import views #import the views.py from current directory 
 
urlpatterns = [ 
   url(r'^helloworld/$', views.helloWorld), 
]

For more info on django Urls click here

Now change directory to HelloWorld and write below command on terminal. 
python manage.py runserver

by default the server will be run at 127.0.0.1:8000

Open your browser and type 127.0.0.1:8000/helloworld/. The page will show you "Hello World!! 
Django Welcomes You."

Read Django online: https://riptutorial.com/python/topic/8994/django

https://riptutorial.com/ 277

https://docs.djangoproject.com/en/1.11/topics/http/views/
https://docs.djangoproject.com/en/1.11/topics/http/urls/
https://riptutorial.com/python/topic/8994/django


Chapter 56: Dynamic code execution with 
`exec` and `eval`

Syntax

eval(expression[, globals=None[, locals=None]])•
exec(object)•
exec(object, globals)•
exec(object, globals, locals)•

Parameters

Argument Details

expression The expression code as a string, or a code object

object The statement code as a string, or a code object

globals
The dictionary to use for global variables. If locals is not specified, this is also 
used for locals. If omitted, the globals() of calling scope are used.

locals
A mapping object that is used for local variables. If omitted, the one passed for 
globals is used instead. If both are omitted, then the globals() and locals() of 
the calling scope are used for globals and locals respectively.

Remarks

In exec, if globals is locals (i.e. they refer to the same object), the code is executed as if it is on the 
module level. If globals and locals are distinct objects, the code is executed as if it were in a class 
body.

If the globals object is passed in, but doesn't specify __builtins__ key, then Python built-in 
functions and names are automatically added to the global scope. To suppress the availability of 
functions such as print or isinstance in the executed scope, let globals have the key __builtins__ 
mapped to value None. However, this is not a security feature.

The Python 2 -specific syntax shouldn't be used; the Python 3 syntax will work in Python 2. Thus 
the following forms are deprecated: <s>

exec object•
exec object in globals•
exec object in globals, locals•

https://riptutorial.com/ 278



Examples

Evaluating statements with exec

>>> code = """for i in range(5):\n    print('Hello world!')""" 
>>> exec(code) 
Hello world! 
Hello world! 
Hello world! 
Hello world! 
Hello world!

Evaluating an expression with eval

>>> expression = '5 + 3 * a' 
>>> a = 5 
>>> result = eval(expression) 
>>> result 
20

Precompiling an expression to evaluate it multiple times

compile built-in function can be used to precompile an expression to a code object; this code object 
can then be passed to eval. This will speed up the repeated executions of the evaluated code. The 
3rd parameter to compile needs to be the string 'eval'.

>>> code = compile('a * b + c', '<string>', 'eval') 
>>> code 
<code object <module> at 0x7f0e51a58830, file "<string>", line 1> 
>>> a, b, c = 1, 2, 3 
>>> eval(code) 
5

Evaluating an expression with eval using custom globals

>>> variables = {'a': 6, 'b': 7} 
>>> eval('a * b', globals=variables) 
42

As a plus, with this the code cannot accidentally refer to the names defined outside:

>>> eval('variables') 
{'a': 6, 'b': 7} 
>>> eval('variables', globals=variables) 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
  File "<string>", line 1, in <module> 
NameError: name 'variables' is not defined

Using defaultdict allows for example having undefined variables set to zero:

https://riptutorial.com/ 279



>>> from collections import defaultdict 
>>> variables = defaultdict(int, {'a': 42}) 
>>> eval('a * c', globals=variables)  # note that 'c' is not explicitly defined 
0

Evaluating a string containing a Python literal with ast.literal_eval

If you have a string that contains Python literals, such as strings, floats etc, you can use 
ast.literal_eval to evaluate its value instead of eval. This has the added feature of allowing only 
certain syntax.

>>> import ast 
>>> code = """(1, 2, {'foo': 'bar'})""" 
>>> object = ast.literal_eval(code) 
>>> object 
(1, 2, {'foo': 'bar'}) 
>>> type(object) 
<class 'tuple'>

However, this is not secure for execution of code provided by untrusted user, and it is 
trivial to crash an interpreter with carefully crafted input

>>> import ast 
>>> ast.literal_eval('()' * 1000000) 
[5]    21358 segmentation fault (core dumped)  python3

Here, the input is a string of () repeated one million times, which causes a crash in CPython 
parser. CPython developers do not consider bugs in parser as security issues.

Executing code provided by untrusted user using exec, eval, or 
ast.literal_eval

It is not possible to use eval or exec to execute code from untrusted user securely. Even 
ast.literal_eval is prone to crashes in the parser. It is sometimes possible to guard against 
malicious code execution, but it doesn't exclude the possibility of outright crashes in the parser or 
the tokenizer.

To evaluate code by an untrusted user you need to turn to some third-party module, or perhaps 
write your own parser and your own virtual machine in Python.

Read Dynamic code execution with `exec` and `eval` online: 
https://riptutorial.com/python/topic/2251/dynamic-code-execution-with--exec--and--eval-

https://riptutorial.com/ 280

https://riptutorial.com/python/topic/2251/dynamic-code-execution-with--exec--and--eval-


Chapter 57: Enum

Remarks

Enums were added to Python in version 3.4 by PEP 435.

Examples

Creating an enum (Python 2.4 through 3.3)

Enums have been backported from Python 3.4 to Python 2.4 through Python 3.3. You can get this 
the enum34 backport from PyPI.

pip install enum34

Creation of an enum is identical to how it works in Python 3.4+

from enum import Enum 
 
class Color(Enum): 
    red = 1 
    green = 2 
    blue = 3 
 
print(Color.red)  # Color.red 
print(Color(1))  # Color.red 
print(Color['red'])  # Color.red 

Iteration

Enums are iterable:

class Color(Enum): 
    red = 1 
    green = 2 
    blue = 3 
 
[c for c in Color]  # [<Color.red: 1>, <Color.green: 2>, <Color.blue: 3>]

Read Enum online: https://riptutorial.com/python/topic/947/enum

https://riptutorial.com/ 281

https://www.python.org/dev/peps/pep-0435/
https://pypi.python.org/pypi/enum34
https://riptutorial.com/python/topic/947/enum


Chapter 58: Exceptions

Introduction

Errors detected during execution are called exceptions and are not unconditionally fatal. Most 
exceptions are not handled by programs; it is possible to write programs that handle selected 
exceptions. There are specific features in Python to deal with exceptions and exception logic. 
Furthermore, exceptions have a rich type hierarchy, all inheriting from the BaseException type.

Syntax

raise exception•
raise # re-raise an exception that’s already been raised•
raise exception from cause # Python 3 - set exception cause•
raise exception from None # Python 3 - suppress all exception context•
try:•
except [exception types] [ as identifier ]:•
else:•
finally:•

Examples

Raising Exceptions

If your code encounters a condition it doesn't know how to handle, such as an incorrect parameter, 
it should raise the appropriate exception.

def even_the_odds(odds): 
    if odds % 2 != 1: 
        raise ValueError("Did not get an odd number") 
 
    return odds + 1

Catching Exceptions

Use try...except: to catch exceptions. You should specify as precise an exception as you can:

try: 
    x = 5 / 0 
except ZeroDivisionError as e: 
    # `e` is the exception object 
    print("Got a divide by zero! The exception was:", e) 
    # handle exceptional case 
    x = 0 
finally: 
    print "The END" 
    # it runs no matter what execute.

https://riptutorial.com/ 282



The exception class that is specified - in this case, ZeroDivisionError - catches any exception that 
is of that class or of any subclass of that exception.

For example, ZeroDivisionError is a subclass of ArithmeticError:

>>> ZeroDivisionError.__bases__ 
(<class 'ArithmeticError'>,)

And so, the following will still catch the ZeroDivisionError:

try: 
    5 / 0 
except ArithmeticError: 
    print("Got arithmetic error")

Running clean-up code with finally

Sometimes, you may want something to occur regardless of whatever exception happened, for 
example, if you have to clean up some resources.

The finally block of a try clause will happen regardless of whether any exceptions were raised.

resource = allocate_some_expensive_resource() 
try: 
    do_stuff(resource) 
except SomeException as e: 
    log_error(e) 
    raise  # re-raise the error 
finally: 
    free_expensive_resource(resource)

This pattern is often better handled with context managers (using the with statement).

Re-raising exceptions

Sometimes you want to catch an exception just to inspect it, e.g. for logging purposes. After the 
inspection, you want the exception to continue propagating as it did before.

In this case, simply use the raise statement with no parameters.

try: 
    5 / 0 
except ZeroDivisionError: 
    print("Got an error") 
    raise

Keep in mind, though, that someone further up in the caller stack can still catch the exception and 
handle it somehow. The done output could be a nuisance in this case because it will happen in 
any case (caught or not caught). So it might be a better idea to raise a different exception, 
containing your comment about the situation as well as the original exception:

https://riptutorial.com/ 283

http://www.riptutorial.com/python/topic/928/context-managers---with--statement-
http://www.riptutorial.com/python/topic/928/context-managers---with--statement-
http://www.riptutorial.com/python/topic/928/context-managers---with--statement-


try: 
    5 / 0 
except ZeroDivisionError as e: 
    raise ZeroDivisionError("Got an error", e)

But this has the drawback of reducing the exception trace to exactly this raise while the raise 
without argument retains the original exception trace.

In Python 3 you can keep the original stack by using the raise-from syntax:

    raise ZeroDivisionError("Got an error") from e

Chain exceptions with raise from

In the process of handling an exception, you may want to raise another exception. For example, if 
you get an IOError while reading from a file, you may want to raise an application-specific error to 
present to the users of your library, instead.

Python 3.x3.0

You can chain exceptions to show how the handling of exceptions proceeded:

>>> try: 
    5 / 0 
except ZeroDivisionError as e: 
    raise ValueError("Division failed") from e 
 
Traceback (most recent call last): 
  File "<stdin>", line 2, in <module> 
ZeroDivisionError: division by zero 
 
The above exception was the direct cause of the following exception: 
 
Traceback (most recent call last): 
  File "<stdin>", line 4, in <module> 
ValueError: Division failed

Exception Hierarchy

Exception handling occurs based on an exception hierarchy, determined by the inheritance 
structure of the exception classes.

For example, IOError and OSError are both subclasses of EnvironmentError. Code that catches an 
IOError will not catch an OSError. However, code that catches an EnvironmentError will catch both 
IOErrors and OSErrors.

The hierarchy of built-in exceptions:

Python 2.x2.3

BaseException 
 +-- SystemExit 

https://riptutorial.com/ 284



 +-- KeyboardInterrupt 
 +-- GeneratorExit 
 +-- Exception 
      +-- StopIteration 
      +-- StandardError 
      |    +-- BufferError 
      |    +-- ArithmeticError 
      |    |    +-- FloatingPointError 
      |    |    +-- OverflowError 
      |    |    +-- ZeroDivisionError 
      |    +-- AssertionError 
      |    +-- AttributeError 
      |    +-- EnvironmentError 
      |    |    +-- IOError 
      |    |    +-- OSError 
      |    |         +-- WindowsError (Windows) 
      |    |         +-- VMSError (VMS) 
      |    +-- EOFError 
      |    +-- ImportError 
      |    +-- LookupError 
      |    |    +-- IndexError 
      |    |    +-- KeyError 
      |    +-- MemoryError 
      |    +-- NameError 
      |    |    +-- UnboundLocalError 
      |    +-- ReferenceError 
      |    +-- RuntimeError 
      |    |    +-- NotImplementedError 
      |    +-- SyntaxError 
      |    |    +-- IndentationError 
      |    |         +-- TabError 
      |    +-- SystemError 
      |    +-- TypeError 
      |    +-- ValueError 
      |         +-- UnicodeError 
      |              +-- UnicodeDecodeError 
      |              +-- UnicodeEncodeError 
      |              +-- UnicodeTranslateError 
      +-- Warning 
           +-- DeprecationWarning 
           +-- PendingDeprecationWarning 
           +-- RuntimeWarning 
           +-- SyntaxWarning 
           +-- UserWarning 
           +-- FutureWarning 
       +-- ImportWarning 
       +-- UnicodeWarning 
       +-- BytesWarning

Python 3.x3.0

BaseException 
 +-- SystemExit 
 +-- KeyboardInterrupt 
 +-- GeneratorExit 
 +-- Exception 
      +-- StopIteration 
      +-- StopAsyncIteration 
      +-- ArithmeticError 
      |    +-- FloatingPointError 

https://riptutorial.com/ 285



      |    +-- OverflowError 
      |    +-- ZeroDivisionError 
      +-- AssertionError 
      +-- AttributeError 
      +-- BufferError 
      +-- EOFError 
      +-- ImportError 
      +-- LookupError 
      |    +-- IndexError 
      |    +-- KeyError 
      +-- MemoryError 
      +-- NameError 
      |    +-- UnboundLocalError 
      +-- OSError 
      |    +-- BlockingIOError 
      |    +-- ChildProcessError 
      |    +-- ConnectionError 
      |    |    +-- BrokenPipeError 
      |    |    +-- ConnectionAbortedError 
      |    |    +-- ConnectionRefusedError 
      |    |    +-- ConnectionResetError 
      |    +-- FileExistsError 
      |    +-- FileNotFoundError 
      |    +-- InterruptedError 
      |    +-- IsADirectoryError 
      |    +-- NotADirectoryError 
      |    +-- PermissionError 
      |    +-- ProcessLookupError 
      |    +-- TimeoutError 
      +-- ReferenceError 
      +-- RuntimeError 
      |    +-- NotImplementedError 
      |    +-- RecursionError 
      +-- SyntaxError 
      |    +-- IndentationError 
      |         +-- TabError 
      +-- SystemError 
      +-- TypeError 
      +-- ValueError 
      |    +-- UnicodeError 
      |         +-- UnicodeDecodeError 
      |         +-- UnicodeEncodeError 
      |         +-- UnicodeTranslateError 
      +-- Warning 
           +-- DeprecationWarning 
           +-- PendingDeprecationWarning 
           +-- RuntimeWarning 
           +-- SyntaxWarning 
           +-- UserWarning 
           +-- FutureWarning 
           +-- ImportWarning 
           +-- UnicodeWarning 
           +-- BytesWarning 
           +-- ResourceWarning

Exceptions are Objects too

Exceptions are just regular Python objects that inherit from the built-in BaseException. A Python 
script can use the raise statement to interrupt execution, causing Python to print a stack trace of 

https://riptutorial.com/ 286



the call stack at that point and a representation of the exception instance. For example:

>>> def failing_function(): 
...     raise ValueError('Example error!') 
>>> failing_function() 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
  File "<stdin>", line 2, in failing_function 
ValueError: Example error!

which says that a ValueError with the message 'Example error!' was raised by our 
failing_function(), which was executed in the interpreter.

Calling code can choose to handle any and all types of exception that a call can raise:

>>> try: 
...     failing_function() 
... except ValueError: 
...     print('Handled the error') 
Handled the error

You can get hold of the exception objects by assigning them in the except... part of the exception 
handling code:

>>> try: 
...     failing_function() 
... except ValueError as e: 
...     print('Caught exception', repr(e)) 
Caught exception ValueError('Example error!',)

A complete list of built-in Python exceptions along with their descriptions can be found in the 
Python Documentation: https://docs.python.org/3.5/library/exceptions.html. And here is the full list 
arranged hierarchically: Exception Hierarchy.

Creating custom exception types

Create a class inheriting from Exception:

class FooException(Exception): 
    pass 
try: 
    raise FooException("insert description here") 
except FooException: 
    print("A FooException was raised.")

or another exception type:

class NegativeError(ValueError): 
      pass 
 
def foo(x): 
    # function that only accepts positive values of x 

https://riptutorial.com/ 287

https://docs.python.org/3.5/library/exceptions.html
http://www.riptutorial.com/python/example/5535/exception-hierarchy


    if x < 0: 
        raise NegativeError("Cannot process negative numbers") 
    ...  # rest of function body 
try: 
    result = foo(int(input("Enter a positive integer: ")))  # raw_input in Python 2.x 
except NegativeError: 
    print("You entered a negative number!") 
else: 
    print("The result was " + str(result))

Do not catch everything!

While it's often tempting to catch every Exception:

try: 
    very_difficult_function() 
except Exception: 
    # log / try to reconnect / exit gratiously 
finally: 
    print "The END" 
    # it runs no matter what execute.

Or even everything (that includes BaseException and all its children including Exception):

try: 
    even_more_difficult_function() 
except: 
    pass  # do whatever needed

In most cases it's bad practice. It might catch more than intended, such as SystemExit, 
KeyboardInterrupt and MemoryError - each of which should generally be handled differently than 
usual system or logic errors. It also means there's no clear understanding for what the internal 
code may do wrong and how to recover properly from that condition. If you're catching every error, 
you wont know what error occurred or how to fix it.

This is more commonly referred to as 'bug masking' and should be avoided. Let your program 
crash instead of silently failing or even worse, failing at deeper level of execution. (Imagine it's a 
transactional system)

Usually these constructs are used at the very outer level of the program, and will log the details of 
the error so that the bug can be fixed, or the error can be handled more specifically.

Catching multiple exceptions

There are a few ways to catch multiple exceptions.

The first is by creating a tuple of the exception types you wish to catch and handle in the same 
manner. This example will cause the code to ignore KeyError and AttributeError exceptions.

try: 
    d = {} 
    a = d[1] 

https://riptutorial.com/ 288

https://docs.python.org/3/tutorial/errors.html#handling-exceptions


    b = d.non_existing_field 
except (KeyError, AttributeError) as e: 
    print("A KeyError or an AttributeError exception has been caught.")

If you wish to handle different exceptions in different ways, you can provide a separate exception 
block for each type. In this example, we still catch the KeyError and AttributeError, but handle the 
exceptions in different manners.

try: 
    d = {} 
    a = d[1] 
    b = d.non_existing_field 
except KeyError as e: 
    print("A KeyError has occurred. Exception message:", e) 
except AttributeError as e: 
    print("An AttributeError has occurred. Exception message:", e)

Practical examples of exception handling

User input

Imagine you want a user to enter a number via input. You want to ensure that the input is a 
number. You can use try/except for this:

Python 3.x3.0

while True: 
    try: 
        nb = int(input('Enter a number: ')) 
        break 
    except ValueError: 
        print('This is not a number, try again.')

Note: Python 2.x would use raw_input instead; the function input exists in Python 2.x but has 
different semantics. In the above example, input would also accept expressions such as 2 + 2 
which evaluate to a number.

If the input could not be converted to an integer, a ValueError is raised. You can catch it with except
. If no exception is raised, break jumps out of the loop. After the loop, nb contains an integer.

Dictionaries

Imagine you are iterating over a list of consecutive integers, like range(n), and you have a list of 
dictionaries d that contains information about things to do when you encounter some particular 
integers, say skip the d[i] next ones.

d = [{7: 3}, {25: 9}, {38: 5}] 

https://riptutorial.com/ 289



 
for i in range(len(d)): 
    do_stuff(i) 
    try: 
       dic = d[i] 
       i += dic[i] 
    except KeyError: 
       i += 1

A KeyError will be raised when you try to get a value from a dictionary for a key that doesn’t exist.

Else

Code in an else block will only be run if no exceptions were raised by the code in the try block. 
This is useful if you have some code you don’t want to run if an exception is thrown, but you don’t 
want exceptions thrown by that code to be caught.

For example:

try: 
    data = {1: 'one', 2: 'two'} 
    print(data[1]) 
except KeyError as e: 
    print('key not found') 
else: 
    raise ValueError() 
# Output: one 
# Output: ValueError

Note that this kind of else: cannot be combined with an if starting the else-clause to an elif. If 
you have a following if it needs to stay indented below that else::

try: 
    ... 
except ...: 
    ... 
else: 
    if ...: 
        ... 
    elif ...: 
        ... 
    else: 
        ...

Read Exceptions online: https://riptutorial.com/python/topic/1788/exceptions

https://riptutorial.com/ 290

https://riptutorial.com/python/topic/1788/exceptions


Chapter 59: Exponentiation

Syntax

value1 ** value2•
pow(value1, value2[, value3])•
value1.__pow__(value2[, value3])•
value2.__rpow__(value1)•
operator.pow(value1, value2)•
operator.__pow__(value1, value2)•
math.pow(value1, value2)•
math.sqrt(value1)•
math.exp(value1)•
cmath.exp(value1)•
math.expm1(value1)•

Examples

Square root: math.sqrt() and cmath.sqrt

The math module contains the math.sqrt()-function that can compute the square root of any 
number (that can be converted to a float) and the result will always be a float:

import math 
 
math.sqrt(9)                # 3.0 
math.sqrt(11.11)            # 3.3331666624997918 
math.sqrt(Decimal('6.25'))  # 2.5

The math.sqrt() function raises a ValueError if the result would be complex:

math.sqrt(-10) 

ValueError: math domain error

math.sqrt(x) is faster than math.pow(x, 0.5) or x ** 0.5 but the precision of the results is the same. 
The cmath module is extremely similar to the math module, except for the fact it can compute 
complex numbers and all of its results are in the form of a + bi. It can also use .sqrt():

import cmath 
 
cmath.sqrt(4)  # 2+0j 
cmath.sqrt(-4) # 2j

What's with the j? j is the equivalent to the square root of -1. All numbers can be put into the form 
a + bi, or in this case, a + bj. a is the real part of the number like the 2 in 2+0j. Since it has no 

https://riptutorial.com/ 291



imaginary part, b is 0. b represents part of the imaginary part of the number like the 2 in 2j. Since 
there is no real part in this, 2j can also be written as 0 + 2j.

Exponentiation using builtins: ** and pow()

Exponentiation can be used by using the builtin pow-function or the ** operator:

2 ** 3    # 8 
pow(2, 3) # 8

For most (all in Python 2.x) arithmetic operations the result's type will be that of the wider operand. 
This is not true for **; the following cases are exceptions from this rule:

Base: int, exponent: int < 0:

2 ** -3 
# Out: 0.125 (result is a float)

•

This is also valid for Python 3.x.•

Before Python 2.2.0, this raised a ValueError.•

Base: int < 0 or float < 0, exponent: float != int

(-2) ** (0.5)  # also (-2.) ** (0.5) 
# Out: (8.659560562354934e-17+1.4142135623730951j) (result is complex)

•

Before python 3.0.0, this raised a ValueError.•

The operator module contains two functions that are equivalent to the **-operator:

import operator 
operator.pow(4, 2)      # 16 
operator.__pow__(4, 3)  # 64

or one could directly call the __pow__ method:

val1, val2 = 4, 2 
val1.__pow__(val2)      # 16 
val2.__rpow__(val1)     # 16 
# in-place power operation isn't supported by immutable classes like int, float, complex: 
# val1.__ipow__(val2) 

Exponentiation using the math module: math.pow()

The math-module contains another math.pow() function. The difference to the builtin pow()-function 
or ** operator is that the result is always a float:

import math 
math.pow(2, 2)    # 4.0 

https://riptutorial.com/ 292

https://en.wikipedia.org/wiki/Exponentiation


math.pow(-2., 2)  # 4.0

Which excludes computations with complex inputs:

math.pow(2, 2+0j) 

TypeError: can't convert complex to float

and computations that would lead to complex results:

math.pow(-2, 0.5)

ValueError: math domain error

Exponential function: math.exp() and cmath.exp()

Both the math and cmath-module contain the Euler number: e and using it with the builtin pow()-
function or **-operator works mostly like math.exp():

import math 
 
math.e ** 2  # 7.3890560989306495 
math.exp(2)  # 7.38905609893065 
 
import cmath 
cmath.e ** 2 # 7.3890560989306495 
cmath.exp(2) # (7.38905609893065+0j)

However the result is different and using the exponential function directly is more reliable than 
builtin exponentiation with base math.e:

print(math.e ** 10)       # 22026.465794806703 
print(math.exp(10))       # 22026.465794806718 
print(cmath.exp(10).real) # 22026.465794806718 
#     difference starts here ---------------^

Exponential function minus 1: math.expm1()

The math module contains the expm1()-function that can compute the expression math.e ** x - 1 for 
very small x with higher precision than math.exp(x) or cmath.exp(x) would allow:

import math 
 
print(math.e ** 1e-3 - 1)  # 0.0010005001667083846 
print(math.exp(1e-3) - 1)  # 0.0010005001667083846 
print(math.expm1(1e-3))    # 0.0010005001667083417 
#                            ------------------^

For very small x the difference gets bigger:

https://riptutorial.com/ 293

https://en.wikipedia.org/wiki/E_%28mathematical_constant%29


print(math.e ** 1e-15 - 1) # 1.1102230246251565e-15 
print(math.exp(1e-15) - 1) # 1.1102230246251565e-15 
print(math.expm1(1e-15))   # 1.0000000000000007e-15 
#                              ^-------------------

The improvement is significant in scientic computing. For example the Planck's law contains an 
exponential function minus 1:

def planks_law(lambda_, T): 
    from scipy.constants import h, k, c  # If no scipy installed hardcode these! 
    return 2 * h * c ** 2 / (lambda_ ** 5 * math.expm1(h * c / (lambda_ * k * T))) 
 
def planks_law_naive(lambda_, T): 
    from scipy.constants import h, k, c  # If no scipy installed hardcode these! 
    return 2 * h * c ** 2 / (lambda_ ** 5 * (math.e ** (h * c / (lambda_ * k * T)) - 1)) 
 
planks_law(100, 5000)        # 4.139080074896474e-19 
planks_law_naive(100, 5000)  # 4.139080073488451e-19 
#                                        ^---------- 
 
planks_law(1000, 5000)       # 4.139080128493406e-23 
planks_law_naive(1000, 5000) # 4.139080233183142e-23 
#                                      ^------------

Magic methods and exponentiation: builtin, math and cmath

Supposing you have a class that stores purely integer values:

class Integer(object): 
    def __init__(self, value): 
        self.value = int(value) # Cast to an integer 
 
    def __repr__(self): 
        return '{cls}({val})'.format(cls=self.__class__.__name__, 
                                     val=self.value) 
 
    def __pow__(self, other, modulo=None): 
        if modulo is None: 
            print('Using __pow__') 
            return self.__class__(self.value ** other) 
        else: 
            print('Using __pow__ with modulo') 
            return self.__class__(pow(self.value, other, modulo)) 
 
    def __float__(self): 
        print('Using __float__') 
        return float(self.value) 
 
    def __complex__(self): 
        print('Using __complex__') 
        return complex(self.value, 0)

Using the builtin pow function or ** operator always calls __pow__:

Integer(2) ** 2                 # Integer(4) 
# Prints: Using __pow__ 

https://riptutorial.com/ 294

https://en.wikipedia.org/wiki/Planck%27s_law


Integer(2) ** 2.5               # Integer(5) 
# Prints: Using __pow__ 
pow(Integer(2), 0.5)            # Integer(1) 
# Prints: Using __pow__ 
operator.pow(Integer(2), 3)     # Integer(8) 
# Prints: Using __pow__ 
operator.__pow__(Integer(3), 3) # Integer(27) 
# Prints: Using __pow__

The second argument of the __pow__() method can only be supplied by using the builtin-pow() or by 
directly calling the method:

pow(Integer(2), 3, 4)           # Integer(0) 
# Prints: Using __pow__ with modulo 
Integer(2).__pow__(3, 4)        # Integer(0) 
# Prints: Using __pow__ with modulo 

While the math-functions always convert it to a float and use the float-computation:

import math 
 
math.pow(Integer(2), 0.5) # 1.4142135623730951 
# Prints: Using __float__

cmath-functions try to convert it to complex but can also fallback to float if there is no explicit 
conversion to complex:

import cmath 
 
cmath.exp(Integer(2))     # (7.38905609893065+0j) 
# Prints: Using __complex__ 
 
del Integer.__complex__   # Deleting __complex__ method - instances cannot be cast to complex 
 
cmath.exp(Integer(2))     # (7.38905609893065+0j) 
# Prints: Using __float__

Neither math nor cmath will work if also the __float__()-method is missing:

del Integer.__float__  # Deleting __complex__ method 
 
math.sqrt(Integer(2))  # also cmath.exp(Integer(2))

TypeError: a float is required

Modular exponentiation: pow() with 3 arguments

Supplying pow() with 3 arguments pow(a, b, c) evaluates the modular exponentiation ab mod c:

pow(3, 4, 17)   # 13 
 
# equivalent unoptimized expression: 
3 ** 4 % 17     # 13 

https://riptutorial.com/ 295

https://en.wikipedia.org/wiki/Modular_exponentiation


 
# steps: 
3 ** 4          # 81 
81 % 17         # 13

For built-in types using modular exponentiation is only possible if:

First argument is an int•
Second argument is an int >= 0•
Third argument is an int != 0•

These restrictions are also present in python 3.x

For example one can use the 3-argument form of pow to define a modular inverse function:

def modular_inverse(x, p): 
    """Find a such as  a·x ≡ 1 (mod p), assuming p is prime.""" 
    return pow(x, p-2, p) 
 
[modular_inverse(x, 13) for x in range(1,13)] 
# Out: [1, 7, 9, 10, 8, 11, 2, 5, 3, 4, 6, 12]

Roots: nth-root with fractional exponents

While the math.sqrt function is provided for the specific case of square roots, it's often convenient 
to use the exponentiation operator (**) with fractional exponents to perform nth-root operations, 
like cube roots.

The inverse of an exponentiation is exponentiation by the exponent's reciprocal. So, if you can 
cube a number by putting it to the exponent of 3, you can find the cube root of a number by putting 
it to the exponent of 1/3.

>>> x = 3 
>>> y = x ** 3 
>>> y 
27 
>>> z = y ** (1.0 / 3) 
>>> z 
3.0 
>>> z == x 
True

Computing large integer roots

Even though Python natively supports big integers, taking the nth root of very large numbers can 
fail in Python.

x = 2 ** 100 
cube = x ** 3 
root = cube ** (1.0 / 3)

https://riptutorial.com/ 296

https://en.wikipedia.org/wiki/Modular_multiplicative_inverse


OverflowError: long int too large to convert to float

When dealing with such large integers, you will need to use a custom function to compute the nth 
root of a number.

def nth_root(x, n): 
    # Start with some reasonable bounds around the nth root. 
    upper_bound = 1 
    while upper_bound ** n <= x: 
        upper_bound *= 2 
    lower_bound = upper_bound // 2 
    # Keep searching for a better result as long as the bounds make sense. 
    while lower_bound < upper_bound: 
        mid = (lower_bound + upper_bound) // 2 
        mid_nth = mid ** n 
        if lower_bound < mid and mid_nth < x: 
            lower_bound = mid 
        elif upper_bound > mid and mid_nth > x: 
            upper_bound = mid 
        else: 
            # Found perfect nth root. 
            return mid 
    return mid + 1 
 
x = 2 ** 100 
cube = x ** 3 
root = nth_root(cube, 3) 
x == root 
# True

Read Exponentiation online: https://riptutorial.com/python/topic/347/exponentiation

https://riptutorial.com/ 297

https://riptutorial.com/python/topic/347/exponentiation


Chapter 60: Files & Folders I/O

Introduction

When it comes to storing, reading, or communicating data, working with the files of an operating 
system is both necessary and easy with Python. Unlike other languages where file input and 
output requires complex reading and writing objects, Python simplifies the process only needing 
commands to open, read/write and close the file. This topic explains how Python can interface with 
files on the operating system.

Syntax

file_object = open(filename [, access_mode][, buffering])•

Parameters

Parameter Details

filename
the path to your file or, if the file is in the working directory, the filename of 
your file

access_mode a string value that determines how the file is opened

buffering an integer value used for optional line buffering

Remarks

Avoiding the cross-platform Encoding Hell

When using Python's built-in open(), it is best-practice to always pass the encoding argument, if you 
intend your code to be run cross-platform. The Reason for this, is that a system's default encoding 
differs from platform to platform.

While linux systems do indeed use utf-8 as default, this is not necessarily true for MAC and 
Windows.

To check a system's default encoding, try this:

import sys 
sys.getdefaultencoding()

from any python interpreter.

https://riptutorial.com/ 298



Hence, it is wise to always sepcify an encoding, to make sure the strings you're working with are 
encoded as what you think they are, ensuring cross-platform compatiblity.

with open('somefile.txt', 'r', encoding='UTF-8') as f: 
    for line in f: 
        print(line)

Examples

File modes

There are different modes you can open a file with, specified by the mode parameter. These 
include:

'r' - reading mode. The default. It allows you only to read the file, not to modify it. When 
using this mode the file must exist.

•

'w' - writing mode. It will create a new file if it does not exist, otherwise will erase the file and 
allow you to write to it.

•

'a' - append mode. It will write data to the end of the file. It does not erase the file, and the 
file must exist for this mode.

•

'rb' - reading mode in binary. This is similar to r except that the reading is forced in binary 
mode. This is also a default choice.

•

'r+' - reading mode plus writing mode at the same time. This allows you to read and write 
into files at the same time without having to use r and w.

•

'rb+' - reading and writing mode in binary. The same as r+ except the data is in binary•

'wb' - writing mode in binary. The same as w except the data is in binary.•

'w+' - writing and reading mode. The exact same as r+ but if the file does not exist, a new 
one is made. Otherwise, the file is overwritten.

•

'wb+' - writing and reading mode in binary mode. The same as w+ but the data is in binary.•

'ab' - appending in binary mode. Similar to a except that the data is in binary.•

'a+' - appending and reading mode. Similar to w+ as it will create a new file if the file does not 
exist. Otherwise, the file pointer is at the end of the file if it exists.

•

'ab+' - appending and reading mode in binary. The same as a+ except that the data is in 
binary.

 with open(filename, 'r') as f: 
     f.read() 
 with open(filename, 'w') as f: 
     f.write(filedata) 

•

https://riptutorial.com/ 299



 with open(filename, 'a') as f: 
     f.write('\n' + newdata)

r r+ w w+ a a+

Read ✔ ✔ ✘ ✔ ✘ ✔

Write ✘ ✔ ✔ ✔ ✔ ✔

Creates file ✘ ✘ ✔ ✔ ✔ ✔

Erases file ✘ ✘ ✔ ✔ ✘ ✘

Initial position Start Start Start Start End End

Python 3 added a new mode for exclusive creation so that you will not accidentally truncate or 
overwrite and existing file.

'x' - open for exclusive creation, will raise FileExistsError if the file already exists•
'xb' - open for exclusive creation writing mode in binary. The same as x except the data is in 
binary.

•

'x+' - reading and writing mode. Similar to w+ as it will create a new file if the file does not 
exist. Otherwise, will raise FileExistsError.

•

'xb+' - writing and reading mode. The exact same as x+ but the data is binary•

x x+

Read ✘ ✔

Write ✔ ✔

Creates file ✔ ✔

Erases file ✘ ✘

Initial position Start Start

Allow one to write your file open code in a more pythonic manner:

Python 3.x3.3

try: 
    with open("fname", "r") as fout: 
        # Work with your open file 
except FileExistsError: 
    # Your error handling goes here

In Python 2 you would have done something like

https://riptutorial.com/ 300



Python 2.x2.0

import os.path 
if os.path.isfile(fname): 
    with open("fname", "w") as fout: 
        # Work with your open file 
else: 
    # Your error handling goes here

Reading a file line-by-line

The simplest way to iterate over a file line-by-line:

with open('myfile.txt', 'r') as fp: 
    for line in fp: 
        print(line)

readline() allows for more granular control over line-by-line iteration. The example below is 
equivalent to the one above:

with open('myfile.txt', 'r') as fp: 
    while True: 
        cur_line = fp.readline() 
        # If the result is an empty string 
        if cur_line == '': 
            # We have reached the end of the file 
            break 
        print(cur_line)

Using the for loop iterator and readline() together is considered bad practice.

More commonly, the readlines() method is used to store an iterable collection of the file's lines:

with open("myfile.txt", "r") as fp: 
    lines = fp.readlines() 
for i in range(len(lines)): 
    print("Line " + str(i) + ": " + line)

This would print the following:

Line 0: hello

Line 1: world

Getting the full contents of a file

The preferred method of file i/o is to use the with keyword. This will ensure the file handle is closed 
once the reading or writing has been completed.

with open('myfile.txt') as in_file: 
    content = in_file.read() 
 
print(content)

https://riptutorial.com/ 301



or, to handle closing the file manually, you can forgo with and simply call close yourself:

in_file = open('myfile.txt', 'r') 
content = in_file.read() 
print(content) 
in_file.close()

Keep in mind that without using a with statement, you might accidentally keep the file open in case 
an unexpected exception arises like so:

in_file = open('myfile.txt', 'r') 
raise Exception("oops") 
in_file.close()  # This will never be called

Writing to a file

with open('myfile.txt', 'w') as f: 
    f.write("Line 1") 
    f.write("Line 2") 
    f.write("Line 3") 
    f.write("Line 4")

If you open myfile.txt, you will see that its contents are:

Line 1Line 2Line 3Line 4

Python doesn't automatically add line breaks, you need to do that manually:

with open('myfile.txt', 'w') as f: 
    f.write("Line 1\n") 
    f.write("Line 2\n") 
    f.write("Line 3\n") 
    f.write("Line 4\n")

Line 1 
Line 2 
Line 3 
Line 4

Do not use os.linesep as a line terminator when writing files opened in text mode (the default); use 
\n instead.

If you want to specify an encoding, you simply add the encoding parameter to the open function:

with open('my_file.txt', 'w', encoding='utf-8') as f: 
    f.write('utf-8 text')

It is also possible to use the print statement to write to a file. The mechanics are different in Python 
2 vs Python 3, but the concept is the same in that you can take the output that would have gone to 
the screen and send it to a file instead.

https://riptutorial.com/ 302



Python 3.x3.0

with open('fred.txt', 'w') as outfile: 
    s = "I'm Not Dead Yet!" 
    print(s) # writes to stdout 
    print(s, file = outfile) # writes to outfile 
 
    #Note: it is possible to specify the file parameter AND write to the screen 
    #by making sure file ends up with a None value either directly or via a variable 
    myfile = None 
    print(s, file = myfile) # writes to stdout 
    print(s, file = None)   # writes to stdout

In Python 2 you would have done something like

Python 2.x2.0

outfile = open('fred.txt', 'w') 
s = "I'm Not Dead Yet!" 
print s   # writes to stdout 
print >> outfile, s   # writes to outfile

Unlike using the write function, the print function does automatically add line breaks.

Copying contents of one file to a different file

with open(input_file, 'r') as in_file, open(output_file, 'w') as out_file: 
    for line in in_file: 
        out_file.write(line)

Using the shutil module:•

import shutil 
shutil.copyfile(src, dst)

Check whether a file or path exists

Employ the EAFP coding style and try to open it.

import errno 
 
try: 
    with open(path) as f: 
        # File exists 
except IOError as e: 
    # Raise the exception if it is not ENOENT (No such file or directory) 
    if e.errno != errno.ENOENT: 
        raise 
    # No such file or directory

This will also avoid race-conditions if another process deleted the file between the check and 
when it is used. This race condition could happen in the following cases:

https://riptutorial.com/ 303

https://docs.python.org/glossary.html#term-eafp


Using the os module:

import os 
os.path.isfile('/path/to/some/file.txt')

•

Python 3.x3.4

Using pathlib:

import pathlib 
path = pathlib.Path('/path/to/some/file.txt') 
if path.is_file(): 
    ...

•

To check whether a given path exists or not, you can follow the above EAFP procedure, or 
explicitly check the path:

import os 
path = "/home/myFiles/directory1" 
 
if os.path.exists(path): 
    ## Do stuff

Copy a directory tree

import shutil 
source='//192.168.1.2/Daily Reports' 
destination='D:\\Reports\\Today' 
shutil.copytree(source, destination) 

The destination directory must not exist already.

Iterate files (recursively)

To iterate all files, including in sub directories, use os.walk:

import os 
for root, folders, files in os.walk(root_dir): 
    for filename in files: 
        print root, filename

root_dir can be "." to start from current directory, or any other path to start from.

Python 3.x3.5

If you also wish to get information about the file, you may use the more efficient method os.scandir 
like so:

for entry in os.scandir(path): 

https://riptutorial.com/ 304

https://docs.python.org/3/library/os.html#os.scandir


   if not entry.name.startswith('.') and entry.is_file(): 
       print(entry.name)

Read a file between a range of lines

So let's suppose you want to iterate only between some specific lines of a file

You can make use of itertools for that

import itertools 
 
with open('myfile.txt', 'r') as f: 
    for line in itertools.islice(f, 12, 30): 
        # do something here

This will read through the lines 13 to 20 as in python indexing starts from 0. So line number 1 is 
indexed as 0

As can also read some extra lines by making use of the next() keyword here.

And when you are using the file object as an iterable, please don't use the readline() statement 
here as the two techniques of traversing a file are not to be mixed together

Random File Access Using mmap

Using the mmap module allows the user to randomly access locations in a file by mapping the file 
into memory. This is an alternative to using normal file operations.

import mmap 
 
with open('filename.ext', 'r') as fd: 
    # 0: map the whole file 
    mm = mmap.mmap(fd.fileno(), 0) 
 
    # print characters at indices 5 through 10 
    print mm[5:10] 
 
    # print the line starting from mm's current position 
    print mm.readline() 
 
    # write a character to the 5th index 
    mm[5] = 'a' 
 
    # return mm's position to the beginning of the file 
    mm.seek(0) 
 
    # close the mmap object 
    mm.close()

Replacing text in a file

import fileinput 
 

https://riptutorial.com/ 305

https://docs.python.org/2/library/mmap.html


replacements = {'Search1': 'Replace1', 
                'Search2': 'Replace2'} 
 
for line in fileinput.input('filename.txt', inplace=True): 
    for search_for in replacements: 
        replace_with = replacements[search_for] 
        line = line.replace(search_for, replace_with) 
    print(line, end='')

Checking if a file is empty

>>> import os 
>>> os.stat(path_to_file).st_size == 0

or

>>> import os 
>>> os.path.getsize(path_to_file) > 0

However, both will throw an exception if the file does not exist. To avoid having to catch such an 
error, do this:

import os 
def is_empty_file(fpath): 
    return os.path.isfile(fpath) and os.path.getsize(fpath) > 0

which will return a bool value.

Read Files & Folders I/O online: https://riptutorial.com/python/topic/267/files---folders-i-o

https://riptutorial.com/ 306

https://riptutorial.com/python/topic/267/files---folders-i-o


Chapter 61: Filter

Syntax

filter(function, iterable)•
itertools.ifilter(function, iterable)•
future_builtins.filter(function, iterable)•
itertools.ifilterfalse(function, iterable)•
itertools.filterfalse(function, iterable)•

Parameters

Parameter Details

function
callable that determines the condition or None then use the identity function for 
filtering (positional-only)

iterable iterable that will be filtered (positional-only)

Remarks

In most cases a comprehension or generator expression is more readable, more powerful and 
more efficient than filter() or ifilter().

Examples

Basic use of filter

To filter discards elements of a sequence based on some criteria:

names = ['Fred', 'Wilma', 'Barney'] 
 
def long_name(name): 
    return len(name) > 5

Python 2.x2.0

filter(long_name, names) 
# Out: ['Barney'] 
 
[name for name in names if len(name) > 5] # equivalent list comprehension 
# Out: ['Barney'] 
 
 
from itertools import ifilter 
ifilter(long_name, names)       # as generator (similar to python 3.x filter builtin) 

https://riptutorial.com/ 307

http://www.riptutorial.com/python/topic/196/list-comprehensions


# Out: <itertools.ifilter at 0x4197e10> 
list(ifilter(long_name, names)) # equivalent to filter with lists 
# Out: ['Barney'] 
 
(name for name in names if len(name) > 5) # equivalent generator expression 
# Out: <generator object <genexpr> at 0x0000000003FD5D38>

Python 2.x2.6

# Besides the options for older python 2.x versions there is a future_builtin function: 
from future_builtins import filter 
filter(long_name, names)       # identical to itertools.ifilter 
# Out: <itertools.ifilter at 0x3eb0ba8>

Python 3.x3.0

filter(long_name, names)        # returns a generator 
# Out: <filter at 0x1fc6e443470> 
list(filter(long_name, names))  # cast to list 
# Out: ['Barney'] 
 
(name for name in names if len(name) > 5) # equivalent generator expression 
# Out: <generator object <genexpr> at 0x000001C6F49BF4C0>

Filter without function

If the function parameter is None, then the identity function will be used:

list(filter(None, [1, 0, 2, [], '', 'a']))  # discards 0, [] and '' 
# Out: [1, 2, 'a']

Python 2.x2.0.1

[i for i in [1, 0, 2, [], '', 'a'] if i] # equivalent list comprehension

Python 3.x3.0.0

(i for i in [1, 0, 2, [], '', 'a'] if i) # equivalent generator expression

Filter as short-circuit check

filter (python 3.x) and ifilter (python 2.x) return a generator so they can be very handy when 
creating a short-circuit test like or or and:

Python 2.x2.0.1

 # not recommended in real use but keeps the example short: 
from itertools import ifilter as filter

Python 2.x2.6.1

 from future_builtins import filter

https://riptutorial.com/ 308



To find the first element that is smaller than 100:

car_shop = [('Toyota', 1000), ('rectangular tire', 80), ('Porsche', 5000)] 
def find_something_smaller_than(name_value_tuple): 
    print('Check {0}, {1}$'.format(*name_value_tuple) 
    return name_value_tuple[1] < 100 
next(filter(find_something_smaller_than, car_shop)) 
# Print: Check Toyota, 1000$ 
#        Check rectangular tire, 80$ 
# Out: ('rectangular tire', 80)

The next-function gives the next (in this case first) element of and is therefore the reason why it's 
short-circuit.

Complementary function: filterfalse, ifilterfalse

There is a complementary function for filter in the itertools-module:

Python 2.x2.0.1

 # not recommended in real use but keeps the example valid for python 2.x and python 3.x 
from itertools import ifilterfalse as filterfalse

Python 3.x3.0.0

from itertools import filterfalse

which works exactly like the generator filter but keeps only the elements that are False:

# Usage without function (None): 
list(filterfalse(None, [1, 0, 2, [], '', 'a']))  # discards 1, 2, 'a' 
# Out: [0, [], '']

# Usage with function 
names = ['Fred', 'Wilma', 'Barney'] 
 
def long_name(name): 
    return len(name) > 5 
 
list(filterfalse(long_name, names)) 
# Out: ['Fred', 'Wilma']

# Short-circuit useage with next: 
car_shop = [('Toyota', 1000), ('rectangular tire', 80), ('Porsche', 5000)] 
def find_something_smaller_than(name_value_tuple): 
    print('Check {0}, {1}$'.format(*name_value_tuple) 
    return name_value_tuple[1] < 100 
next(filterfalse(find_something_smaller_than, car_shop)) 
# Print: Check Toyota, 1000$ 
# Out: ('Toyota', 1000)

https://riptutorial.com/ 309



# Using an equivalent generator: 
car_shop = [('Toyota', 1000), ('rectangular tire', 80), ('Porsche', 5000)] 
generator = (car for car in car_shop if not car[1] < 100) 
next(generator)

Read Filter online: https://riptutorial.com/python/topic/201/filter

https://riptutorial.com/ 310

https://riptutorial.com/python/topic/201/filter


Chapter 62: Flask

Introduction

Flask is a Python micro web framework used to run major websites including Pintrest, Twilio, and 
Linkedin. This topic explains and demonstrates the variety of features Flask offers for both front 
and back end web development.

Syntax

@app.route("/urlpath", methods=["GET", "POST", "DELETE", "PUTS", "HEAD", 
"OPTIONS"])

•

@app.route("/urlpath/<param>", methods=["GET", "POST", "DELETE", "PUTS", "HEAD", 
"OPTIONS"])

•

Examples

The basics

The following example is an example of a basic server:

# Imports the Flask class 
from flask import Flask 
# Creates an app and checks if its the main or imported 
app = Flask(__name__) 
 
# Specifies what URL triggers hello_world() 
@app.route('/') 
# The function run on the index route 
def hello_world(): 
    # Returns the text to be displayed 
    return "Hello World!" 
 
# If this script isn't an import 
if __name__ == "__main__": 
    # Run the app until stopped 
    app.run()

Running this script (with all the right dependencies installed) should start up a local server. The 
host is 127.0.0.1 commonly known as localhost. This server by default runs on port 5000. To 
access your webserver, open a web browser and enter the URL localhost:5000 or 127.0.0.1:5000 
(no difference). Currently, only your computer can access the webserver.

app.run() has three parameters, host, port, and debug. The host is by default 127.0.0.1, but 
setting this to 0.0.0.0 will make your web server accessible from any device on your network using 
your private IP address in the URL. the port is by default 5000 but if the parameter is set to port 80, 
users will not need to specify a port number as browsers use port 80 by default. As for the debug 
option, during the development process (never in production) it helps to set this parameter to True, 

https://riptutorial.com/ 311



as your server will restart when changes made to your Flask project.

if __name__ == "__main__": 
    app.run(host="0.0.0.0", port=80, debug=True)

Routing URLs

With Flask, URL routing is traditionally done using decorators. These decorators can be used for 
static routing, as well as routing URLs with parameters. For the following example, imagine this 
Flask script is running the website www.example.com.

@app.route("/") 
def index(): 
    return "You went to www.example.com" 
 
@app.route("/about") 
def about(): 
    return "You went to www.example.com/about" 
 
@app.route("/users/guido-van-rossum") 
    return "You went to www.example.com/guido-van-rossum"

With that last route, you can see that given a URL with /users/ and the profile name, we could 
return a profile. Since it would be horribly inefficient and messy to include a @app.route() for every 
user, Flask offers to take parameters from the URL:

@app.route("/users/<username>") 
def profile(username): 
    return "Welcome to the profile of " + username 
 
cities = ["OMAHA", "MELBOURNE", "NEPAL", "STUTTGART", "LIMA", "CAIRO", "SHANGHAI"] 
 
@app.route("/stores/locations/<city>") 
def storefronts(city): 
    if city in cities: 
        return "Yes! We are located in " + city 
    else: 
        return "No. We are not located in " + city

HTTP Methods

The two most common HTTP methods are GET and POST. Flask can run different code from the 
same URL dependent on the HTTP method used. For example, in a web service with accounts, it 
is most convenient to route the sign in page and the sign in process through the same URL. A 
GET request, the same that is made when you open a URL in your browser should show the login 
form, while a POST request (carrying login data) should be processed separately. A route is also 
created to handle the DELETE and PUT HTTP method.

@app.route("/login", methods=["GET"]) 
def login_form(): 
    return "This is the login form" 
@app.route("/login", methods=["POST"]) 

https://riptutorial.com/ 312



def login_auth(): 
    return "Processing your data" 
@app.route("/login", methods=["DELETE", "PUT"]) 
def deny(): 
    return "This method is not allowed"

To simplify the code a bit, we can import the request package from flask.

from flask import request 
 
@app.route("/login", methods=["GET", "POST", "DELETE", "PUT"]) 
def login(): 
    if request.method == "DELETE" or request.method == "PUT": 
        return "This method is not allowed" 
    elif request.method == "GET": 
        return "This is the login forum" 
    elif request.method == "POST": 
        return "Processing your data"

To retrieve data from the POST request, we must use the request package:

from flask import request 
@app.route("/login", methods=["GET", "POST", "DELETE", "PUT"]) 
def login(): 
    if request.method == "DELETE" or request.method == "PUT": 
        return "This method is not allowed" 
    elif request.method == "GET": 
        return "This is the login forum" 
    elif request.method == "POST": 
        return "Username was " + request.form["username"] + " and password was " + 
request.form["password"]

Files and Templates

Instead of typing our HTML markup into the return statements, we can use the render_template() 
function:

from flask import Flask 
from flask import render_template 
app = Flask(__name__) 
 
@app.route("/about") 
def about(): 
    return render_template("about-us.html") 
 
if __name__ == "__main__": 
    app.run(host="0.0.0.0", port=80, debug=True)

This will use our template file about-us.html. To ensure our application can find this file we must 
organize our directory in the following format:

- application.py 
/templates 
    - about-us.html 

https://riptutorial.com/ 313



    - login-form.html 
/static 
    /styles 
        - about-style.css 
        - login-style.css 
    /scripts 
        - about-script.js 
        - login-script.js

Most importantly, references to these files in the HTML must look like this:

<link rel="stylesheet" type="text/css", href="{{url_for('static', filename='styles/about-
style.css')}}">

which will direct the application to look for about-style.css in the styles folder under the static 
folder. The same format of path applies to all references to images, styles, scripts, or files.

Jinja Templating

Similar to Meteor.js, Flask integrates well with front end templating services. Flask uses by default 
Jinja Templating. Templates allow small snippets of code to be used in the HTML file such as 
conditionals or loops.

When we render a template, any parameters beyond the template file name are passed into the 
HTML templating service. The following route will pass the username and joined date (from a 
function somewhere else) into the HTML.

@app.route("/users/<username>) 
def profile(username): 
    joinedDate = get_joined_date(username) # This function's code is irrelevant 
    awards = get_awards(username) # This function's code is irrelevant 
    # The joinDate is a string and awards is an array of strings 
    return render_template("profile.html", username=username, joinDate=joinDate, 
awards=awards)

When this template is rendered, it can use the variables passed to it from the render_template() 
function. Here are the contents of profile.html:

<!DOCTYPE html> 
<html> 
    <head> 
        # if username 
            <title>Profile of {{ username }}</title> 
        # else 
            <title>No User Found</title> 
        # endif 
    <head> 
    <body> 
        {% if username %} 
            <h1>{{ username }} joined on the date {{ date }}</h1> 
            {% if len(awards) > 0 %} 
                <h3>{{ username }} has the following awards:</h3> 
                <ul> 
                {% for award in awards %} 
                    <li>{{award}}</li> 

https://riptutorial.com/ 314



                {% endfor %} 
                </ul> 
            {% else %} 
                <h3>{{ username }} has no awards</h3> 
            {% endif %} 
        {% else %} 
            <h1>No user was found under that username</h1> 
        {% endif %} 
        {# This is a comment and doesn't affect the output #} 
    </body> 
</html>

The following delimiters are used for different interpretations:

{% ... %} denotes a statement•
{{ ... }} denotes an expression where a template is outputted•
{# ... #} denotes a comment (not included in template output)•
{# ... ## implies the rest of the line should be interpreted as a statement•

The Request Object

The request object provides information on the request that was made to the route. To utilize this 
object, it must be imported from the flask module:

from flask import request

URL Parameters

In previous examples request.method and request.form were used, however we can also use the 
request.args property to retrieve a dictionary of the keys/values in the URL parameters.

@app.route("/api/users/<username>") 
def user_api(username): 
    try: 
        token = request.args.get("key") 
        if key == "pA55w0Rd": 
            if isUser(username): # The code of this method is irrelevant 
                joined = joinDate(username) # The code of this method is irrelevant 
                return "User " + username + " joined on " + joined 
            else: 
                return "User not found" 
        else: 
            return "Incorrect key" 
    # If there is no key parameter 
    except KeyError: 
        return "No key provided"

To correctly authenticate in this context, the following URL would be needed (replacing the 
username with any username:

www.example.com/api/users/guido-van-rossum?key=pa55w0Rd

https://riptutorial.com/ 315



File Uploads

If a file upload was part of the submitted form in a POST request, the files can be handled using 
the request object:

@app.route("/upload", methods=["POST"]) 
def upload_file(): 
    f = request.files["wordlist-upload"] 
    f.save("/var/www/uploads/" + f.filename) # Store with the original filename

Cookies

The request may also include cookies in a dictionary similar to the URL parameters.

@app.route("/home") 
def home(): 
    try: 
        username = request.cookies.get("username") 
        return "Your stored username is " + username 
    except KeyError: 
        return "No username cookies was found")

Read Flask online: https://riptutorial.com/python/topic/8682/flask

https://riptutorial.com/ 316

https://riptutorial.com/python/topic/8682/flask


Chapter 63: Functional Programming in 
Python

Introduction

Functional programming decomposes a problem into a set of functions. Ideally, functions only take 
inputs and produce outputs, and don’t have any internal state that affects the output produced for 
a given input.below are functional techniques common to many languages: such as lambda, map, 
reduce.

Examples

Lambda Function

An anonymous, inlined function defined with lambda. The parameters of the lambda are defined to 
the left of the colon. The function body is defined to the right of the colon. The result of running the 
function body is (implicitly) returned.

s=lambda x:x*x 
s(2)    =>4

Map Function

Map takes a function and a collection of items. It makes a new, empty collection, runs the function 
on each item in the original collection and inserts each return value into the new collection. It 
returns the new collection.

This is a simple map that takes a list of names and returns a list of the lengths of those names:

name_lengths = map(len, ["Mary", "Isla", "Sam"]) 
print(name_lengths)    =>[4, 4, 3]

Reduce Function

Reduce takes a function and a collection of items. It returns a value that is created by combining 
the items.

This is a simple reduce. It returns the sum of all the items in the collection.

total = reduce(lambda a, x: a + x, [0, 1, 2, 3, 4]) 
print(total)    =>10

Filter Function

https://riptutorial.com/ 317



Filter takes a function and a collection. It returns a collection of every item for which the function 
returned True.

arr=[1,2,3,4,5,6] 
[i for i in filter(lambda x:x>4,arr)]    # outputs[5,6]

Read Functional Programming in Python online: 
https://riptutorial.com/python/topic/9552/functional-programming-in-python

https://riptutorial.com/ 318

https://riptutorial.com/python/topic/9552/functional-programming-in-python


Chapter 64: Functions

Introduction

Functions in Python provide organized, reusable and modular code to perform a set of specific 
actions. Functions simplify the coding process, prevent redundant logic, and make the code easier 
to follow. This topic describes the declaration and utilization of functions in Python.

Python has many built-in functions like print(), input(), len(). Besides built-ins you can also 
create your own functions to do more specific jobs—these are called user-defined functions.

Syntax

def function_name(arg1, ... argN, *args, kw1, kw2=default, ..., **kwargs): statements•
lambda arg1, ... argN, *args, kw1, kw2=default, ..., **kwargs: expression•

Parameters

Parameter Details

arg1, ..., argN Regular arguments

*args Unnamed positional arguments

kw1, ..., kwN Keyword-only arguments

**kwargs The rest of keyword arguments

Remarks

5 basic things you can do with functions:

Assign functions to variables

def f(): 
  print(20) 
y = f 
y() 
# Output: 20

•

Define functions within other functions (Nested functions )

def f(a, b, y): 
    def inner_add(a, b):      # inner_add is hidden from outer code 
        return a + b 

•

https://riptutorial.com/ 319

http://www.riptutorial.com/python/example/8717/nested-functions


    return inner_add(a, b)**y

Functions can return other functions

def f(y): 
    def nth_power(x): 
        return x ** y 
    return nth_power    # returns a function 
 
squareOf = f(2)         # function that returns the square of a number 
cubeOf = f(3)           # function that returns the cube of a number 
squareOf(3)             # Output: 9 
cubeOf(2)               # Output: 8

•

Functions can be passed as parameters to other functions

def a(x, y): 
    print(x, y) 
def b(fun, str):        # b has two arguments: a function and a string 
    fun('Hello', str) 
b(a, 'Sophia')           # Output: Hello Sophia

•

Inner functions have access to the enclosing scope (Closure )

def outer_fun(name): 
    def inner_fun():     # the variable name is available to the inner function 
        return "Hello "+ name + "!" 
    return inner_fun 
greet = outer_fun("Sophia") 
print(greet())            # Output: Hello Sophia!

•

Additional resources

More on functions and decorators: https://www.thecodeship.com/patterns/guide-to-python-
function-decorators/

•

Examples

Defining and calling simple functions

Using the def statement is the most common way to define a function in python. This statement is 
a so called single clause compound statement with the following syntax:

def function_name(parameters): 
    statement(s)

function_name is known as the identifier of the function. Since a function definition is an executable 
statement its execution binds the function name to the function object which can be called later on 
using the identifier.

https://riptutorial.com/ 320

http://www.riptutorial.com/python/example/3885/closure
https://www.thecodeship.com/patterns/guide-to-python-function-decorators/
https://www.thecodeship.com/patterns/guide-to-python-function-decorators/


parameters is an optional list of identifiers that get bound to the values supplied as arguments when 
the function is called. A function may have an arbitrary number of arguments which are separated 
by commas.

statement(s) – also known as the function body – are a nonempty sequence of statements 
executed each time the function is called. This means a function body cannot be empty, just like 
any indented block.

Here’s an example of a simple function definition which purpose is to print Hello each time it’s 
called:

def greet(): 
    print("Hello")

Now let’s call the defined greet() function:

greet() 
# Out: Hello

That’s an other example of a function definition which takes one single argument and displays the 
passed in value each time the function is called:

def greet_two(greeting): 
    print(greeting)

After that the greet_two() function must be called with an argument:

greet_two("Howdy") 
# Out: Howdy

Also you can give a default value to that function argument:

def greet_two(greeting="Howdy"): 
    print(greeting)

Now you can call the function without giving a value:

greet_two() 
# Out: Howdy 

You'll notice that unlike many other languages, you do not need to explicitly declare a return type 
of the function. Python functions can return values of any type via the return keyword. One 
function can return any number of different types!

def many_types(x): 
    if x < 0: 
        return "Hello!" 
    else: 
        return 0 

https://riptutorial.com/ 321

http://www.riptutorial.com/python/example/3952/block-indentation


 
print(many_types(1)) 
print(many_types(-1)) 
 
# Output: 
0 
Hello!

As long as this is handled correctly by the caller, this is perfectly valid Python code.

A function that reaches the end of execution without a return statement will always return None:

def do_nothing(): 
    pass 
 
print(do_nothing()) 
# Out: None

As mentioned previously a function definition must have a function body, a nonempty sequence of 
statements. Therefore the pass statement is used as function body, which is a null operation – 
when it is executed, nothing happens. It does what it means, it skips. It is useful as a placeholder 
when a statement is required syntactically, but no code needs to be executed.

Returning values from functions

Functions can return a value that you can use directly:

def give_me_five(): 
    return 5 
 
print(give_me_five())  # Print the returned value 
# Out: 5

or save the value for later use:

num = give_me_five() 
print(num)             # Print the saved returned value 
# Out: 5

or use the value for any operations:

print(give_me_five() + 10) 
# Out: 15

If return is encountered in the function the function will be exited immediately and subsequent 
operations will not be evaluated:

def give_me_another_five(): 
    return 5 
    print('This statement will not be printed. Ever.') 
 
print(give_me_another_five()) 

https://riptutorial.com/ 322



# Out: 5

You can also return multiple values (in the form of a tuple):

def give_me_two_fives(): 
    return 5, 5  # Returns two 5 
 
first, second = give_me_two_fives() 
print(first) 
# Out: 5 
print(second) 
# Out: 5

A function with no return statement implicitly returns None. Similarly a function with a return 
statement, but no return value or variable returns None.

Defining a function with arguments

Arguments are defined in parentheses after the function name:

def divide(dividend, divisor):  # The names of the function and its arguments 
    # The arguments are available by name in the body of the function 
    print(dividend / divisor)

The function name and its list of arguments are called the signature of the function. Each named 
argument is effectively a local variable of the function.

When calling the function, give values for the arguments by listing them in order

divide(10, 2) 
# output: 5

or specify them in any order using the names from the function definition:

divide(divisor=2, dividend=10) 
# output: 5

Defining a function with optional arguments

Optional arguments can be defined by assigning (using =) a default value to the argument-name:

def make(action='nothing'): 
    return action

Calling this function is possible in 3 different ways:

make("fun") 
# Out: fun 
 
make(action="sleep") 

https://riptutorial.com/ 323



# Out: sleep 
 
# The argument is optional so the function will use the default value if the argument is 
# not passed in. 
make() 
# Out: nothing

Warning

Mutable types (list, dict, set, etc.) should be treated with care when given as default 
attribute. Any mutation of the default argument will change it permanently. See 
Defining a function with optional mutable arguments.

Defining a function with multiple arguments

One can give a function as many arguments as one wants, the only fixed rules are that each 
argument name must be unique and that optional arguments must be after the not-optional ones:

def func(value1, value2, optionalvalue=10): 
    return '{0} {1} {2}'.format(value1, value2, optionalvalue1)

When calling the function you can either give each keyword without the name but then the order 
matters:

print(func(1, 'a', 100)) 
# Out: 1 a 100 
 
print(func('abc', 14)) 
# abc 14 10

Or combine giving the arguments with name and without. Then the ones with name must follow 
those without but the order of the ones with name doesn't matter:

print(func('This', optionalvalue='StackOverflow Documentation', value2='is')) 
# Out: This is StackOverflow Documentation

Defining a function with an arbitrary number of arguments

Arbitrary number of positional arguments:

Defining a function capable of taking an arbitrary number of arguments can be done by prefixing 
one of the arguments with a *

def func(*args): 
    # args will be a tuple containing all values that are passed in 
    for i in args: 
        print(i) 

https://riptutorial.com/ 324

http://www.riptutorial.com/python/example/972/defining-a-function-with-optional-mutable-arguments


 
func(1, 2, 3)  # Calling it with 3 arguments 
# Out: 1 
#      2 
#      3 
 
list_of_arg_values = [1, 2, 3] 
func(*list_of_arg_values)  # Calling it with list of values, * expands the list 
# Out: 1 
#      2 
#      3 
 
func()  # Calling it without arguments 
# No Output 

You can't provide a default for args, for example func(*args=[1, 2, 3]) will raise a syntax error 
(won't even compile).

You can't provide these by name when calling the function, for example func(*args=[1, 2, 3]) will 
raise a TypeError.

But if you already have your arguments in an array (or any other Iterable), you can invoke your 
function like this: func(*my_stuff).

These arguments (*args) can be accessed by index, for example args[0] will return the first 
argument

Arbitrary number of keyword arguments

You can take an arbitrary number of arguments with a name by defining an argument in the 
definition with two * in front of it:

def func(**kwargs): 
    # kwargs will be a dictionary containing the names as keys and the values as values 
    for name, value in kwargs.items(): 
        print(name, value) 
 
func(value1=1, value2=2, value3=3)   # Calling it with 3 arguments 
# Out: value1 1 
#      value2 2 
#      value3 3 
 
func()                               # Calling it without arguments 
# No Out put 
 
my_dict = {'foo': 1, 'bar': 2} 
func(**my_dict)                      # Calling it with a dictionary 
# Out: foo 1 
#      bar 2

You can't provide these without names, for example func(1, 2, 3) will raise a TypeError.

kwargs is a plain native python dictionary. For example, args['value1'] will give the value for 

https://riptutorial.com/ 325



argument value1. Be sure to check beforehand that there is such an argument or a KeyError will be 
raised.

Warning

You can mix these with other optional and required arguments but the order inside the definition 
matters.

The positional/keyword arguments come first. (Required arguments). 
Then comes the arbitrary *arg arguments. (Optional). 
Then keyword-only arguments come next. (Required). 
Finally the arbitrary keyword **kwargs come. (Optional).

#       |-positional-|-optional-|---keyword-only--|-optional-| 
def func(arg1, arg2=10 , *args, kwarg1, kwarg2=2, **kwargs): 
     pass

arg1 must be given, otherwise a TypeError is raised. It can be given as positional (func(10)) or 
keyword argument (func(arg1=10)).

•

kwarg1 must also be given, but it can only be provided as keyword-argument: func(kwarg1=10).•
arg2 and kwarg2 are optional. If the value is to be changed the same rules as for arg1 (either 
positional or keyword) and kwarg1 (only keyword) apply.

•

*args catches additional positional parameters. But note, that arg1 and arg2 must be provided 
as positional arguments to pass arguments to *args: func(1, 1, 1, 1).

•

**kwargs catches all additional keyword parameters. In this case any parameter that is not 
arg1, arg2, kwarg1 or kwarg2. For example: func(kwarg3=10).

•

In Python 3, you can use * alone to indicate that all subsequent arguments must be specified 
as keywords. For instance the math.isclose function in Python 3.5 and higher is defined 
using def math.isclose (a, b, *, rel_tol=1e-09, abs_tol=0.0), which means the first two 
arguments can be supplied positionally but the optional third and fourth parameters can only 
be supplied as keyword arguments.

•

Python 2.x doesn't support keyword-only parameters. This behavior can be emulated with kwargs:

def func(arg1, arg2=10, **kwargs): 
    try: 
        kwarg1 = kwargs.pop("kwarg1") 
    except KeyError: 
        raise TypeError("missing required keyword-only argument: 'kwarg1'") 
 
    kwarg2 = kwargs.pop("kwarg2", 2) 
    # function body ...

Note on Naming

The convention of naming optional positional arguments args and optional keyword arguments 
kwargs is just a convention you can use any names you like but it is useful to follow the convention 

https://riptutorial.com/ 326



so that others know what you are doing, or even yourself later so please do.

Note on Uniqueness

Any function can be defined with none or one *args and none or one **kwargs but not with more 
than one of each. Also *args must be the last positional argument and **kwargs must be the last 
parameter. Attempting to use more than one of either will result in a Syntax Error exception.

Note on Nesting Functions with Optional Arguments

It is possible to nest such functions and the usual convention is to remove the items that the code 
has already handled but if you are passing down the parameters you need to pass optional 
positional args with a * prefix and optional keyword args with a ** prefix, otherwise args with be 
passed as a list or tuple and kwargs as a single dictionary. e.g.:

def fn(**kwargs): 
    print(kwargs) 
    f1(**kwargs) 
 
def f1(**kwargs): 
    print(len(kwargs)) 
 
fn(a=1, b=2) 
# Out: 
# {'a': 1, 'b': 2} 
# 2

Defining a function with optional mutable arguments

There is a problem when using optional arguments with a mutable default type (described in 
Defining a function with optional arguments), which can potentially lead to unexpected behaviour.

Explanation

This problem arises because a function's default arguments are initialised once, at the point when 
the function is defined, and not (like many other languages) when the function is called. The 
default values are stored inside the function object's __defaults__ member variable.

def f(a, b=42, c=[]): 
    pass 
 
print(f.__defaults__) 
# Out: (42, [])

For immutable types (see Argument passing and mutability) this is not a problem because there 
is no way to mutate the variable; it can only ever be reassigned, leaving the original value 
unchanged. Hence, subsequent are guaranteed to have the same default value. However, for a 
mutable type, the original value can mutate, by making calls to its various member functions. 

https://riptutorial.com/ 327

http://www.riptutorial.com/python/example/930/defining-a-function-with-optional-arguments
http://www.riptutorial.com/python/example/2920/argument-passing-and-mutability


Therefore, successive calls to the function are not guaranteed to have the initial default value.

def append(elem, to=[]): 
    to.append(elem)      # This call to append() mutates the default variable "to" 
    return to 
 
append(1) 
# Out: [1] 
 
append(2)  # Appends it to the internally stored list 
# Out: [1, 2] 
 
append(3, [])  # Using a new created list gives the expected result 
# Out: [3] 
 
# Calling it again without argument will append to the internally stored list again 
append(4) 
# Out: [1, 2, 4]

Note: Some IDEs like PyCharm will issue a warning when a mutable type is specified 
as a default attribute.

Solution

If you want to ensure that the default argument is always the one you specify in the function 
definition, then the solution is to always use an immutable type as your default argument.

A common idiom to achieve this when a mutable type is needed as the default, is to use None 
(immutable) as the default argument and then assign the actual default value to the argument 
variable if it is equal to None.

def append(elem, to=None): 
    if to is None: 
        to = [] 
 
    to.append(elem) 
    return to

Lambda (Inline/Anonymous) Functions

The lambda keyword creates an inline function that contains a single expression. The value of this 
expression is what the function returns when invoked.

Consider the function:

def greeting(): 
    return "Hello"

which, when called as:

print(greeting())

https://riptutorial.com/ 328



prints:

Hello

This can be written as a lambda function as follows:

greet_me = lambda: "Hello"

See note at the bottom of this section regarding the assignment of lambdas to 
variables. Generally, don't do it.

This creates an inline function with the name greet_me that returns Hello. Note that you don't write 
return when creating a function with lambda. The value after : is automatically returned.

Once assigned to a variable, it can be used just like a regular function:

print(greet_me())

prints:

Hello

lambdas can take arguments, too:

strip_and_upper_case = lambda s: s.strip().upper() 
 
strip_and_upper_case("  Hello   ")

returns the string:

HELLO

They can also take arbitrary number of arguments / keyword arguments, like normal functions.

greeting = lambda x, *args, **kwargs: print(x, args, kwargs) 
greeting('hello', 'world', world='world')

prints:

hello ('world',) {'world': 'world'}

lambdas are commonly used for short functions that are convenient to define at the point where 
they are called (typically with sorted, filter and map).

For example, this line sorts a list of strings ignoring their case and ignoring whitespace at the 
beginning and at the end:

sorted( [" foo ", "    bAR", "BaZ    "], key=lambda s: s.strip().upper()) 

https://riptutorial.com/ 329



# Out: 
# ['    bAR', 'BaZ    ', ' foo ']

Sort list just ignoring whitespaces:

sorted( [" foo ", "    bAR", "BaZ    "], key=lambda s: s.strip()) 
# Out: 
# ['BaZ    ', '    bAR', ' foo ']

Examples with map:

sorted( map( lambda s: s.strip().upper(), [" foo ", "    bAR", "BaZ    "])) 
# Out: 
# ['BAR', 'BAZ', 'FOO'] 
 
sorted( map( lambda s: s.strip(), [" foo ", "    bAR", "BaZ    "])) 
# Out: 
# ['BaZ', 'bAR', 'foo']

Examples with numerical lists:

my_list = [3, -4, -2, 5, 1, 7] 
sorted( my_list, key=lambda x: abs(x)) 
# Out: 
# [1, -2, 3, -4, 5, 7] 
 
list( filter( lambda x: x>0, my_list)) 
# Out: 
# [3, 5, 1, 7] 
 
list( map( lambda x: abs(x), my_list)) 
# Out: 
[3, 4, 2, 5, 1, 7]

One can call other functions (with/without arguments) from inside a lambda function.

def foo(msg): 
    print(msg) 
 
greet = lambda x = "hello world": foo(x) 
greet()

prints:

hello world

This is useful because lambda may contain only one expression and by using a subsidiary function 
one can run multiple statements.

NOTE

https://riptutorial.com/ 330



Bear in mind that PEP-8 (the official Python style guide) does not recommend assigning lambdas 
to variables (as we did in the first two examples):

Always use a def statement instead of an assignment statement that binds a lambda 
expression directly to an identifier.

Yes:

def f(x): return 2*x

No:

f = lambda x: 2*x

The first form means that the name of the resulting function object is specifically f 
instead of the generic <lambda>. This is more useful for tracebacks and string 
representations in general. The use of the assignment statement eliminates the sole 
benefit a lambda expression can offer over an explicit def statement (i.e. that it can be 
embedded inside a larger expression).

Argument passing and mutability

First, some terminology:

argument (actual parameter): the actual variable being passed to a function;•
parameter (formal parameter): the receiving variable that is used in a function.•

In Python, arguments are passed by assignment (as opposed to other languages, where 
arguments can be passed by value/reference/pointer).

Mutating a parameter will mutate the argument (if the argument's type is mutable).

def foo(x):        # here x is the parameter 
    x[0] = 9       # This mutates the list labelled by both x and y 
    print(x) 
 
y = [4, 5, 6] 
foo(y)             # call foo with y as argument 
# Out: [9, 5, 6]   # list labelled by x has been mutated 
print(y) 
# Out: [9, 5, 6]   # list labelled by y has been mutated too

•

Reassigning the parameter won’t reassign the argument.

def foo(x):        # here x is the parameter, when we call foo(y) we assign y to x 
    x[0] = 9       # This mutates the list labelled by both x and y 
    x = [1, 2, 3]  # x is now labeling a different list (y is unaffected) 
    x[2] = 8       # This mutates x's list, not y's list 
 
y = [4, 5, 6]      # y is the argument, x is the parameter 
foo(y)             # Pretend that we wrote "x = y", then go to line 1 

•

https://riptutorial.com/ 331

https://www.python.org/dev/peps/pep-0008/#programming-recommendations


y 
# Out: [9, 5, 6]

In Python, we don’t really assign values to variables, instead we bind (i.e. assign, attach) 
variables (considered as names) to objects.

Immutable: Integers, strings, tuples, and so on. All operations make copies.•
Mutable: Lists, dictionaries, sets, and so on. Operations may or may not mutate.•

x = [3, 1, 9] 
y = x 
x.append(5)    # Mutates the list labelled by x and y, both x and y are bound to [3, 1, 9] 
x.sort()       # Mutates the list labelled by x and y (in-place sorting) 
x = x + [4]    # Does not mutate the list (makes a copy for x only, not y) 
z = x          # z is x ([1, 3, 9, 4]) 
x += [6]       # Mutates the list labelled by both x and z (uses the extend function). 
x = sorted(x)  # Does not mutate the list (makes a copy for x only). 
x 
# Out: [1, 3, 4, 5, 6, 9] 
y 
# Out: [1, 3, 5, 9] 
z 
# Out: [1, 3, 5, 9, 4, 6]

Closure

Closures in Python are created by function calls. Here, the call to makeInc creates a binding for x 
that is referenced inside the function inc. Each call to makeInc creates a new instance of this 
function, but each instance has a link to a different binding of x.

def makeInc(x): 
  def inc(y): 
     # x is "attached" in the definition of inc 
     return y + x 
 
  return inc 
 
incOne = makeInc(1) 
incFive = makeInc(5) 
 
incOne(5) # returns 6 
incFive(5) # returns 10

Notice that while in a regular closure the enclosed function fully inherits all variables from its 
enclosing environment, in this construct the enclosed function has only read access to the 
inherited variables but cannot make assignments to them

def makeInc(x): 
  def inc(y): 
     # incrementing x is not allowed 
     x += y 
     return x 
 
  return inc 

https://riptutorial.com/ 332



 
incOne = makeInc(1) 
incOne(5) # UnboundLocalError: local variable 'x' referenced before assignment

Python 3 offers the nonlocal statement (Nonlocal Variables ) for realizing a full closure with nested 
functions.

Python 3.x3.0

def makeInc(x): 
  def inc(y): 
     nonlocal x 
     # now assigning a value to x is allowed 
     x += y 
     return x 
 
  return inc 
 
incOne = makeInc(1) 
incOne(5) # returns 6

Recursive functions

A recursive function is a function that calls itself in its definition. For example the mathematical 
function, factorial, defined by factorial(n) = n*(n-1)*(n-2)*...*3*2*1. can be programmed as

def factorial(n): 
    #n here should be an integer 
    if n == 0: 
        return 1 
    else: 
        return n*factorial(n-1)

the outputs here are:

factorial(0) 
#out 1 
factorial(1) 
#out 1 
factorial(2) 
#out 2 
factorial(3) 
#out 6

as expected. Notice that this function is recursive because the second return factorial(n-1), 
where the function calls itself in its definition.

Some recursive functions can be implemented using lambda, the factorial function using lambda 
would be something like this:

factorial = lambda n: 1 if n == 0 else n*factorial(n-1)

The function outputs the same as above.

https://riptutorial.com/ 333

http://www.riptutorial.com/python/example/5712/nonlocal-variables
http://www.riptutorial.com/python/example/2172/lambda--inline-anonymous--functions


Recursion limit

There is a limit to the depth of possible recursion, which depends on the Python implementation. 
When the limit is reached, a RuntimeError exception is raised:

def cursing(depth): 
  try: 
    cursing(depth + 1) # actually, re-cursing 
  except RuntimeError as RE: 
    print('I recursed {} times!'.format(depth)) 
 
cursing(0) 
# Out: I recursed 1083 times!

It is possible to change the recursion depth limit by using sys.setrecursionlimit(limit) and check 
this limit by sys.getrecursionlimit().

sys.setrecursionlimit(2000) 
cursing(0) 
# Out: I recursed 1997 times!

From Python 3.5, the exception is a RecursionError, which is derived from RuntimeError.

Nested functions

Functions in python are first-class objects. They can be defined in any scope

def fibonacci(n): 
    def step(a,b): 
        return b, a+b 
    a, b = 0, 1 
    for i in range(n): 
        a, b = step(a, b) 
    return a

Functions capture their enclosing scope can be passed around like any other sort of object

def make_adder(n): 
    def adder(x): 
        return n + x 
    return adder 
add5 = make_adder(5) 
add6 = make_adder(6) 
add5(10) 
#Out: 15 
add6(10) 
#Out: 16 
 
def repeatedly_apply(func, n, x): 
    for i in range(n): 
        x = func(x) 
    return x 
 
repeatedly_apply(add5, 5, 1) 

https://riptutorial.com/ 334



#Out: 26

Iterable and dictionary unpacking

Functions allow you to specify these types of parameters: positional, named, variable positional, 
Keyword args (kwargs). Here is a clear and concise use of each type.

def unpacking(a, b, c=45, d=60, *args, **kwargs): 
    print(a, b, c, d, args, kwargs) 
 
>>> unpacking(1, 2) 
1 2 45 60 () {} 
>>> unpacking(1, 2, 3, 4) 
1 2 3 4 () {} 
>>> unpacking(1, 2, c=3, d=4) 
1 2 3 4 () {} 
>>> unpacking(1, 2, d=4, c=3) 
1 2 3 4 () {} 
 
 
>>> pair = (3,) 
>>> unpacking(1, 2, *pair, d=4) 
1 2 3 4 () {} 
>>> unpacking(1, 2, d=4, *pair) 
1 2 3 4 () {} 
>>> unpacking(1, 2, *pair, c=3) 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: unpacking() got multiple values for argument 'c' 
>>> unpacking(1, 2, c=3, *pair) 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: unpacking() got multiple values for argument 'c' 
 
>>> args_list = [3] 
>>> unpacking(1, 2, *args_list, d=4) 
1 2 3 4 () {} 
>>> unpacking(1, 2, d=4, *args_list) 
1 2 3 4 () {} 
>>> unpacking(1, 2, c=3, *args_list) 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: unpacking() got multiple values for argument 'c' 
>>> unpacking(1, 2, *args_list, c=3) 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: unpacking() got multiple values for argument 'c' 
 
 
>>> pair = (3, 4) 
>>> unpacking(1, 2, *pair) 
1 2 3 4 () {} 
>>> unpacking(1, 2, 3, 4, *pair) 
1 2 3 4 (3, 4) {} 
>>> unpacking(1, 2, d=4, *pair) 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: unpacking() got multiple values for argument 'd' 
>>> unpacking(1, 2, *pair, d=4) 

https://riptutorial.com/ 335



Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: unpacking() got multiple values for argument 'd' 
 
 
 
>>> args_list = [3, 4] 
>>> unpacking(1, 2, *args_list) 
1 2 3 4 () {} 
>>> unpacking(1, 2, 3, 4, *args_list) 
1 2 3 4 (3, 4) {} 
>>> unpacking(1, 2, d=4, *args_list) 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: unpacking() got multiple values for argument 'd' 
>>> unpacking(1, 2, *args_list, d=4) 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: unpacking() got multiple values for argument 'd' 
 
 
>>> arg_dict = {'c':3, 'd':4} 
>>> unpacking(1, 2, **arg_dict) 
1 2 3 4 () {} 
>>> arg_dict = {'d':4, 'c':3} 
>>> unpacking(1, 2, **arg_dict) 
1 2 3 4 () {} 
>>> arg_dict = {'c':3, 'd':4, 'not_a_parameter': 75} 
>>> unpacking(1, 2, **arg_dict) 
1 2 3 4 () {'not_a_parameter': 75} 
 
 
>>> unpacking(1, 2, *pair, **arg_dict) 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: unpacking() got multiple values for argument 'd' 
>>> unpacking(1, 2, 3, 4, **arg_dict) 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: unpacking() got multiple values for argument 'd' 
 
# Positional arguments take priority over any other form of argument passing 
>>> unpacking(1, 2, **arg_dict, c=3) 
1 2 3 4 () {'not_a_parameter': 75} 
>>> unpacking(1, 2, 3, **arg_dict, c=3) 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: unpacking() got multiple values for argument 'c'

Forcing the use of named parameters

All parameters specified after the first asterisk in the function signature are keyword-only.

def f(*a, b): 
    pass 
 
f(1, 2, 3) 
# TypeError: f() missing 1 required keyword-only argument: 'b'

https://riptutorial.com/ 336



In Python 3 it's possible to put a single asterisk in the function signature to ensure that the 
remaining arguments may only be passed using keyword arguments.

def f(a, b, *, c): 
    pass 
 
f(1, 2, 3) 
# TypeError: f() takes 2 positional arguments but 3 were given 
f(1, 2, c=3) 
# No error

Recursive Lambda using assigned variable

One method for creating recursive lambda functions involves assigning the function to a variable 
and then referencing that variable within the function itself. A common example of this is the 
recursive calculation of the factorial of a number - such as shown in the following code:

lambda_factorial = lambda i:1 if i==0 else i*lambda_factorial(i-1) 
print(lambda_factorial(4)) # 4 * 3 * 2 * 1 = 12 * 2 = 24

Description of code

The lambda function, through its variable assignment, is passed a value (4) which it evaluates and 
returns 1 if it is 0 or else it returns the current value (i) * another calculation by the lambda function 
of the value - 1 (i-1). This continues until the passed value is decremented to 0 (return 1). A 
process which can be visualized as:

https://riptutorial.com/ 337



Read Functions online: https://riptutorial.com/python/topic/228/functions

https://riptutorial.com/ 338

http://i.stack.imgur.com/uitTM.jpg
https://riptutorial.com/python/topic/228/functions


Chapter 65: Functools Module

Examples

partial

The partial function creates partial function application from another function. It is used to bind 
values to some of the function's arguments (or keyword arguments) and produce a callable 
without the already defined arguments.

>>> from functools import partial 
>>> unhex = partial(int, base=16) 
>>> unhex.__doc__ = 'Convert base16 string to int' 
>>> unhex('ca11ab1e') 
3390155550

partial(), as the name suggests, allows a partial evaluation of a function. Let's look at at following 
example:

In [2]: from functools import partial 
 
In [3]: def f(a, b, c, x): 
   ...:     return 1000*a + 100*b + 10*c + x 
   ...: 
 
In [4]: g = partial(f, 1, 1, 1) 
 
In [5]: print g(2) 
1112

When g is created, f, which takes four arguments(a, b, c, x), is also partially evaluated for the 
first three arguments, a, b, c,. Evaluation of f is completed when g is called, g(2), which passes 
the fourth argument to f.

One way to think of partial is a shift register; pushing in one argument at the time into some 
function. partial comes handy for cases where data is coming in as stream and we cannot pass 
more than one argument.

total_ordering

When we want to create an orderable class, normally we need to define the methods __eq()__, 
__lt__(), __le__(), __gt__() and __ge__().

The total_ordering decorator, applied to a class, permits the definition of __eq__() and only one 
between __lt__(), __le__(), __gt__() and __ge__(), and still allow all the ordering operations on the 
class.

@total_ordering 

https://riptutorial.com/ 339



class Employee: 
 
    ... 
 
    def __eq__(self, other): 
        return ((self.surname, self.name) == (other.surname, other.name)) 
 
    def __lt__(self, other): 
        return ((self.surname, self.name) < (other.surname, other.name))

The decorator uses a composition of the provided methods and algebraic operations to derive the 
other comparison methods. For example if we defined __lt__() and __eq()__ and we want to derive 
__gt__(), we can simply check not __lt__() and not __eq()__.

Note: The total_ordering function is only available since Python 2.7.

reduce

In Python 3.x, the reduce function already explained here has been removed from the built-ins and 
must now be imported from functools.

from functools import reduce 
def factorial(n): 
    return reduce(lambda a, b: (a*b), range(1, n+1))

lru_cache

The @lru_cache decorator can be used wrap an expensive, computationally-intensive function with 
a Least Recently Used cache. This allows function calls to be memoized, so that future calls with 
the same parameters can return instantly instead of having to be recomputed.

@lru_cache(maxsize=None)  # Boundless cache 
def fibonacci(n): 
    if n < 2: 
        return n 
    return fibonacci(n-1) + fibonacci(n-2) 
 
>>> fibonacci(15)

In the example above, the value of fibonacci(3) is only calculated once, whereas if fibonacci didn't 
have an LRU cache, fibonacci(3) would have been computed upwards of 230 times. Hence, 
@lru_cache is especially great for recursive functions or dynamic programming, where an expensive 
function could be called multiple times with the same exact parameters.

@lru_cache has two arguments

maxsize: Number of calls to save. When the number of unique calls exceeds maxsize, the LRU 
cache will remove the least recently used calls.

•

typed (added in 3.3): Flag for determining if equivalent arguments of different types belong to 
different cache records (i.e. if 3.0 and 3 count as different arguments)

•

https://riptutorial.com/ 340

http://www.riptutorial.com/python/topic/328/reduce
https://en.wikipedia.org/wiki/Cache_algorithms#Examples


We can see cache stats too:

>>> fib.cache_info() 
CacheInfo(hits=13, misses=16, maxsize=None, currsize=16)

NOTE: Since @lru_cache uses dictionaries to cache results, all parameters for the function must be 
hashable for the cache to work.

Official Python docs for @lru_cache. @lru_cache was added in 3.2.

cmp_to_key

Python changed it's sorting methods to accept a key function. Those functions take a value and 
return a key which is used to sort the arrays.

Old comparison functions used to take two values and return -1, 0 or +1 if the first argument is 
small, equal or greater than the second argument respectively. This is incompatible to the new 
key-function.

That's where functools.cmp_to_key comes in:

>>> import functools 
>>> import locale 
>>> sorted(["A", "S", "F", "D"], key=functools.cmp_to_key(locale.strcoll)) 
['A', 'D', 'F', 'S']

Example taken and adapted from the Python Standard Library Documentation.

Read Functools Module online: https://riptutorial.com/python/topic/2492/functools-module

https://riptutorial.com/ 341

https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.cmp_to_key
https://riptutorial.com/python/topic/2492/functools-module


Chapter 66: Garbage Collection

Remarks

At its core, Python's garbage collector (as of 3.5) is a simple reference counting implementation. 
Every time you make a reference to an object (for example, a = myobject) the reference count on 
that object (myobject) is incremented. Every time a reference gets removed, the reference count is 
decremented, and once the reference count reaches 0, we know that nothing holds a reference to 
that object and we can deallocate it!

One common misunderstanding about how Python memory management works is that the del 
keyword frees objects memory. This is not true. What actually happens is that the del keyword 
merely decrements the objects refcount, meaning that if you call it enough times for the refcount to 
reach zero the object may be garbage collected (even if there are actually still references to the 
object available elsewhere in your code).

Python aggresively creates or cleans up objects the first time it needs them If I perform the 
assignment a = object(), the memory for object is allocated at that time (cpython will sometimes 
reuse certain types of object, eg. lists under the hood, but mostly it doesn't keep a free object pool 
and will perform allocation when you need it). Similarly, as soon as the refcount is decremented to 
0, GC cleans it up.

Generational Garbage Collection

In the 1960's John McCarthy discovered a fatal flaw in refcounting garbage collection when he 
implemented the refcounting algorithm used by Lisp: What happens if two objects refer to each 
other in a cyclic reference? How can you ever garbage collect those two objects even if there are 
no external references to them if they will always refer to eachother? This problem also extends to 
any cyclic data structure, such as a ring buffers or any two consecutive entries in a doubly linked 
list. Python attempts to fix this problem using a slightly interesting twist on another garbage 
collection algorithm called Generational Garbage Collection.

In essence, any time you create an object in Python it adds it to the end of a doubly linked list. On 
occasion Python loops through this list, checks what objects the objects in the list refer too, and if 
they're also in the list (we'll see why they might not be in a moment), further decrements their 
refcounts. At this point (actually, there are some heuristics that determine when things get moved, 
but let's assume it's after a single collection to keep things simple) anything that still has a refcount 
greater than 0 gets promoted to another linked list called "Generation 1" (this is why all objects 
aren't always in the generation 0 list) which has this loop applied to it less often. This is where the 
generational garbage collection comes in. There are 3 generations by default in Python (three 
linked lists of objects): The first list (generation 0) contains all new objects; if a GC cycle happens 
and the objects are not collected, they get moved to the second list (generation 1), and if a GC 
cycle happens on the second list and they are still not collected they get moved to the third list 
(generation 2). The third generation list (called "generation 2", since we're zero indexing) is 
garbage collected much less often than the first two, the idea being that if your object is long lived 

https://riptutorial.com/ 342



it's not as likely to be GCed, and may never be GCed during the lifetime of your application so 
there's no point in wasting time checking it on every single GC run. Furthermore, it's observed that 
most objects are garbage collected relatively quickly. From now on, we'll call these "good objects" 
since they die young. This is called the "weak generational hypothesis" and was also first 
observed in the 60s.

A quick aside: unlike the first two generations, the long lived third generation list is not garbage 
collected on a regular schedule. It is checked when the ratio of long lived pending objects (those 
that are in the third generation list, but haven't actually had a GC cycle yet) to the total long lived 
objects in the list is greater than 25%. This is because the third list is unbounded (things are never 
moved off of it to another list, so they only go away when they're actually garbage collected), 
meaning that for applications where you are creating lots of long lived objects, GC cycles on the 
third list can get quite long. By using a ratio we achieve "amortized linear performance in the total 
number of objects"; aka, the longer the list, the longer GC takes, but the less often we perform GC 
(here's the original 2008 proposal for this heuristic by Martin von Löwis for futher reading). The act 
of performing a garbage collection on the third generation or "mature" list is called "full garbage 
collection".

So the generational garbage collection speeds things up tremdously by not requiring that we scan 
over objects that aren't likely to need GC all the time, but how does it help us break cyclic 
references? Probably not very well, it turns out. The function for actually breaking these reference 
cycles starts out like this:

/* Break reference cycles by clearing the containers involved.  This is 
 * tricky business as the lists can be changing and we don't know which 
 * objects may be freed.  It is possible I screwed something up here. 
 */ 
static void 
delete_garbage(PyGC_Head *collectable, PyGC_Head *old)

The reason generational garbage collection helps with this is that we can keep the length of the list 
as a separate count; each time we add a new object to the generation we increment this count, 
and any time we move an object to another generation or dealloc it we decrement the count. 
Theoretically at the end of a GC cycle this count (for the first two generations anyways) should 
always be 0. If it's not, anything in the list that's left over is some form of circular reference and we 
can drop it. However, there's one more problem here: What if the leftover objects have Python's 
magic method __del__ on them? __del__ is called any time a Python object is destroyed. However, 
if two objects in a circular reference have __del__ methods, we can't be sure that destroying one 
won't break the others __del__ method. For a contrived example, imagine we wrote the following:

class A(object): 
    def __init__(self, b=None): 
        self.b = b 
 
    def __del__(self): 
        print("We're deleting an instance of A containing:", self.b) 
 
class B(object): 
    def __init__(self, a=None): 
        self.a = a 

https://riptutorial.com/ 343

https://mail.python.org/pipermail/python-dev/2008-June/080579.html
https://github.com/python/cpython/blob/8f33d77/Modules/gcmodule.c#L847


 
    def __del__(self): 
        print("We're deleting an instance of B containing:", self.a)

and we set an instance of A and an instance of B to point to one another and then they end up in 
the same garbage collection cycle? Let's say we pick one at random and dealloc our instance of A 
first; A's __del__ method will be called, it will print, then A will be freed. Next we come to B, we call 
its __del__ method, and oops! Segfault! A no longer exists. We could fix this by calling everything 
that's left over's __del__ methods first, then doing another pass to actually dealloc everything, 
however, this introduces another, issue: What if one objects __del__ method saves a reference of 
the other object that's about to be GCed and has a reference to us somewhere else? We still have 
a reference cycle, but now it's not possible to actually GC either object, even if they're no longer in 
use. Note that even if an object is not part of a circular data structure, it could revive itself in its 
own __del__ method; Python does have a check for this and will stop GCing if an objects refcount 
has increased after its __del__ method has been called.

CPython deals with this is by sticking those un-GC-able objects (anything with some form of 
circular reference and a __del__ method) onto a global list of uncollectable garbage and then 
leaving it there for all eternity:

/* list of uncollectable objects */ 
static PyObject *garbage = NULL;

Examples

Reference Counting

The vast majority of Python memory management is handled with reference counting.

Every time an object is referenced (e.g. assigned to a variable), its reference count is 
automatically increased. When it is dereferenced (e.g. variable goes out of scope), its reference 
count is automatically decreased.

When the reference count reaches zero, the object is immediately destroyed and the memory is 
immediately freed. Thus for the majority of cases, the garbage collector is not even needed.

>>> import gc; gc.disable()  # disable garbage collector 
>>> class Track: 
        def __init__(self): 
            print("Initialized") 
        def __del__(self): 
            print("Destructed") 
>>> def foo(): 
        Track() 
        # destructed immediately since no longer has any references 
        print("---") 
        t = Track() 
        # variable is referenced, so it's not destructed yet 
        print("---") 
        # variable is destructed when function exits 

https://riptutorial.com/ 344



>>> foo() 
Initialized 
Destructed 
--- 
Initialized 
--- 
Destructed

To demonstrate further the concept of references:

>>> def bar(): 
        return Track() 
>>> t = bar() 
Initialized 
>>> another_t = t  # assign another reference 
>>> print("...") 
... 
>>> t = None          # not destructed yet - another_t still refers to it 
>>> another_t = None  # final reference gone, object is destructed 
Destructed

Garbage Collector for Reference Cycles

The only time the garbage collector is needed is if you have a reference cycle. The simples 
example of a reference cycle is one in which A refers to B and B refers to A, while nothing else 
refers to either A or B. Neither A or B are accessible from anywhere in the program, so they can 
safely be destructed, yet their reference counts are 1 and so they cannot be freed by the reference 
counting algorithm alone.

>>> import gc; gc.disable()  # disable garbage collector 
>>> class Track: 
        def __init__(self): 
            print("Initialized") 
        def __del__(self): 
            print("Destructed") 
>>> A = Track() 
Initialized 
>>> B = Track() 
Initialized 
>>> A.other = B 
>>> B.other = A 
>>> del A; del B  # objects are not destructed due to reference cycle 
>>> gc.collect()  # trigger collection 
Destructed 
Destructed 
4

A reference cycle can be arbitrary long. If A points to B points to C points to ... points to Z which 
points to A, then neither A through Z will be collected, until the garbage collection phase:

>>> objs = [Track() for _ in range(10)] 
Initialized 
Initialized 
Initialized 
Initialized 

https://riptutorial.com/ 345



Initialized 
Initialized 
Initialized 
Initialized 
Initialized 
Initialized 
>>> for i in range(len(objs)-1): 
...     objs[i].other = objs[i + 1] 
... 
>>> objs[-1].other = objs[0]  # complete the cycle 
>>> del objs                  # no one can refer to objs now - still not destructed 
>>> gc.collect() 
Destructed 
Destructed 
Destructed 
Destructed 
Destructed 
Destructed 
Destructed 
Destructed 
Destructed 
Destructed 
20

Effects of the del command

Removing a variable name from the scope using del v, or removing an object from a collection 
using del v[item] or del[i:j], or removing an attribute using del v.name, or any other way of 
removing references to an object, does not trigger any destructor calls or any memory being freed 
in and of itself. Objects are only destructed when their reference count reaches zero.

>>> import gc 
>>> gc.disable()  # disable garbage collector 
>>> class Track: 
        def __init__(self): 
            print("Initialized") 
        def __del__(self): 
            print("Destructed") 
>>> def bar(): 
    return Track() 
>>> t = bar() 
Initialized 
>>> another_t = t  # assign another reference 
>>> print("...") 
... 
>>> del t          # not destructed yet - another_t still refers to it 
>>> del another_t  # final reference gone, object is destructed 
Destructed

Reuse of primitive objects

An interesting thing to note which may help optimize your applications is that primitives are 
actually also refcounted under the hood. Let's take a look at numbers; for all integers between -5 
and 256, Python always reuses the same object:

https://riptutorial.com/ 346



>>> import sys 
>>> sys.getrefcount(1) 
797 
>>> a = 1 
>>> b = 1 
>>> sys.getrefcount(1) 
799

Note that the refcount increases, meaning that a and b reference the same underlying object when 
they refer to the 1 primitive. However, for larger numbers, Python actually doesn't reuse the 
underlying object:

>>> a = 999999999 
>>> sys.getrefcount(999999999) 
3 
>>> b = 999999999 
>>> sys.getrefcount(999999999) 
3

Because the refcount for 999999999 does not change when assigning it to a and b we can infer that 
they refer to two different underlying objects, even though they both are assigned the same 
primitive.

Viewing the refcount of an object

>>> import sys 
>>> a = object() 
>>> sys.getrefcount(a) 
2 
>>> b = a 
>>> sys.getrefcount(a) 
3 
>>> del b 
>>> sys.getrefcount(a) 
2

Forcefully deallocating objects

You can force deallocate objects even if their refcount isn't 0 in both Python 2 and 3.

Both versions use the ctypes module to do so.

WARNING: doing this will leave your Python environment unstable and prone to crashing without 
a traceback! Using this method could also introduce security problems (quite unlikely) Only 
deallocate objects you're sure you'll never reference again. Ever.

Python 3.x3.0

import ctypes 
deallocated = 12345 
ctypes.pythonapi._Py_Dealloc(ctypes.py_object(deallocated))

Python 2.x2.3

https://riptutorial.com/ 347



import ctypes, sys 
deallocated = 12345 
(ctypes.c_char * sys.getsizeof(deallocated)).from_address(id(deallocated))[:4] = '\x00' * 4

After running, any reference to the now deallocated object will cause Python to either produce 
undefined behavior or crash - without a traceback. There was probably a reason why the garbage 
collector didn't remove that object...

If you deallocate None, you get a special message - Fatal Python error: deallocating None before 
crashing.

Managing garbage collection

There are two approaches for influencing when a memory cleanup is performed. They are 
influencing how often the automatic process is performed and the other is manually triggering a 
cleanup.

The garbage collector can be manipulated by tuning the collection thresholds which affect the 
frequency at which the collector runs. Python uses a generation based memory management 
system. New objects are saved in the newest generation - generation0 and with each survived 
collection, objects are promoted to older generations. After reaching the last generation - 
generation2, they are no longer promoted.

The thresholds can be changed using the following snippet:

import gc 
gc.set_threshold(1000, 100, 10) # Values are just for demonstration purpose

The first argument represents the threshold for collecting generation0. Every time the number of 
allocations exceeds the number of deallocations by 1000 the garbage collector will be called.

The older generations are not cleaned at each run to optimize the process. The second and third 
arguments are optional and control how frequently the older generations are cleaned. If 
generation0 was processed 100 times without cleaning generation1, then generation1 will be 
processed. Similarly, objects in generation2 will be processed only when the ones in generation1 
were cleaned 10 times without touching generation2.

One instance in which manually setting the thresholds is beneficial is when the program allocates 
a lot of small objects without deallocating them which leads to the garbage collector running too 
often (each generation0_threshold object allocations). Even though, the collector is pretty fast, 
when it runs on huge numbers of objects it poses a performance issue. Anyway, there's no one 
size fits all strategy for choosing the thresholds and it's use case dependable.

Manually triggering a collection can be done as in the following snippet:

import gc 
gc.collect()

The garbage collection is automatically triggered based on the number of allocations and 

https://riptutorial.com/ 348



deallocations, not on the consumed or available memory. Consequently, when working with big 
objects, the memory might get depleted before the automated cleanup is triggered. This makes a 
good use case for manually calling the garbage collector.

Even though it's possible, it's not an encouraged practice. Avoiding memory leaks is the best 
option. Anyway, in big projects detecting the memory leak can be a though task and manually 
triggering a garbage collection can be used as a quick solution until further debugging.

For long-running programs, the garbage collection can be triggered on a time basis or on an event 
basis. An example for the first one is a web server that triggers a collection after a fixed number of 
requests. For the later, a web server that triggers a garbage collection when a certain type of 
request is received.

Do not wait for the garbage collection to clean up

The fact that the garbage collection will clean up does not mean that you should wait for the 
garbage collection cycle to clean up.

In particular you should not wait for garbage collection to close file handles, database connections 
and open network connections.

for example:

In the following code, you assume that the file will be closed on the next garbage collection cycle, 
if f was the last reference to the file.

>>> f = open("test.txt") 
>>> del f

A more explicit way to clean up is to call f.close(). You can do it even more elegant, that is by 
using the with statement, also known as the context manager :

>>> with open("test.txt") as f: 
...     pass 
...     # do something with f 
>>> #now the f object still exists, but it is closed

The with statement allows you to indent your code under the open file. This makes it explicit and 
easier to see how long a file is kept open. It also always closes a file, even if an exception is raised 
in the while block.

Read Garbage Collection online: https://riptutorial.com/python/topic/2532/garbage-collection

https://riptutorial.com/ 349

http://www.riptutorial.com/python/topic/928/context-managers---with--statement-
https://riptutorial.com/python/topic/2532/garbage-collection


Chapter 67: Generators

Introduction

Generators are lazy iterators created by generator functions (using yield) or generator 
expressions (using (an_expression for x in an_iterator)).

Syntax

yield <expr>•
yield from <expr>•
<var> = yield <expr>•
next(<iter>)•

Examples

Iteration

A generator object supports the iterator protocol. That is, it provides a next() method (__next__() in 
Python 3.x), which is used to step through its execution, and its __iter__ method returns itself. This 
means that a generator can be used in any language construct which supports generic iterable 
objects.

# naive partial implementation of the Python 2.x xrange() 
def xrange(n): 
    i = 0 
    while i < n: 
        yield i 
        i += 1 
 
# looping 
for i in xrange(10): 
    print(i)  # prints the values 0, 1, ..., 9 
 
# unpacking 
a, b, c = xrange(3)  # 0, 1, 2 
 
# building a list 
l = list(xrange(10))  # [0, 1, ..., 9]

The next() function

The next() built-in is a convenient wrapper which can be used to receive a value from any iterator 
(including a generator iterator) and to provide a default value in case the iterator is exhausted.

def nums(): 
    yield 1 
    yield 2 

https://riptutorial.com/ 350

https://docs.python.org/3/library/functions.html#next


    yield 3 
generator = nums() 
 
next(generator, None)  # 1 
next(generator, None)  # 2 
next(generator, None)  # 3 
next(generator, None)  # None 
next(generator, None)  # None 
# ...

The syntax is next(iterator[, default]). If iterator ends and a default value was passed, it is 
returned. If no default was provided, StopIteration is raised.

Sending objects to a generator

In addition to receiving values from a generator, it is possible to send an object to a generator 
using the send() method.

def accumulator(): 
    total = 0 
    value = None 
    while True: 
        # receive sent value 
        value = yield total 
        if value is None: break 
        # aggregate values 
        total += value 
 
generator = accumulator() 
 
# advance until the first "yield" 
next(generator)      # 0 
 
# from this point on, the generator aggregates values 
generator.send(1)    # 1 
generator.send(10)   # 11 
generator.send(100)  # 111 
# ... 
 
# Calling next(generator) is equivalent to calling generator.send(None) 
next(generator)      # StopIteration

What happens here is the following:

When you first call next(generator), the program advances to the first yield statement, and 
returns the value of total at that point, which is 0. The execution of the generator suspends 
at this point.

•

When you then call generator.send(x), the interpreter takes the argument x and makes it the 
return value of the last yield statement, which gets assigned to value. The generator then 
proceeds as usual, until it yields the next value.

•

When you finally call next(generator), the program treats this as if you're sending None to the 
generator. There is nothing special about None, however, this example uses None as a special 
value to ask the generator to stop.

•

https://riptutorial.com/ 351



Generator expressions

It's possible to create generator iterators using a comprehension-like syntax.

generator = (i * 2 for i in range(3)) 
 
next(generator)  # 0 
next(generator)  # 2 
next(generator)  # 4 
next(generator)  # raises StopIteration

If a function doesn't necessarily need to be passed a list, you can save on characters (and 
improve readability) by placing a generator expression inside a function call. The parenthesis from 
the function call implicitly make your expression a generator expression.

sum(i ** 2 for i in range(4))  # 0^2 + 1^2 + 2^2 + 3^2 = 0 + 1 + 4 + 9 = 14

Additionally, you will save on memory because instead of loading the entire list you are iterating 
over ([0, 1, 2, 3] in the above example), the generator allows Python to use values as needed.

Introduction

Generator expressions are similar to list, dictionary and set comprehensions, but are enclosed 
with parentheses. The parentheses do not have to be present when they are used as the sole 
argument for a function call.

expression = (x**2 for x in range(10))

This example generates the 10 first perfect squares, including 0 (in which x = 0).

Generator functions are similar to regular functions, except that they have one or more yield 
statements in their body. Such functions cannot return any values (however empty returns are 
allowed if you want to stop the generator early).

def function(): 
    for x in range(10): 
        yield x**2

This generator function is equivalent to the previous generator expression, it outputs the same.

Note: all generator expressions have their own equivalent functions, but not vice versa.

A generator expression can be used without parentheses if both parentheses would be repeated 
otherwise:

sum(i for i in range(10) if i % 2 == 0)   #Output: 20 
any(x = 0 for x in foo)                   #Output: True or False depending on foo 
type(a > b for a in foo if a % 2 == 1)    #Output: <class 'generator'>

https://riptutorial.com/ 352

https://docs.python.org/3/reference/simple_stmts.html#yield


Instead of:

sum((i for i in range(10) if i % 2 == 0)) 
any((x = 0 for x in foo)) 
type((a > b for a in foo if a % 2 == 1))

But not:

fooFunction(i for i in range(10) if i % 2 == 0,foo,bar) 
return x = 0 for x in foo 
barFunction(baz, a > b for a in foo if a % 2 == 1)

Calling a generator function produces a generator object, which can later be iterated over. Unlike 
other types of iterators, generator objects may only be traversed once.

g1 = function() 
print(g1)  # Out: <generator object function at 0x1012e1888>

Notice that a generator's body is not immediately executed: when you call function() in the 
example above, it immediately returns a generator object, without executing even the first print 
statement. This allows generators to consume less memory than functions that return a list, and it 
allows creating generators that produce infinitely long sequences.

For this reason, generators are often used in data science, and other contexts involving large 
amounts of data. Another advantage is that other code can immediately use the values yielded by 
a generator, without waiting for the complete sequence to be produced.

However, if you need to use the values produced by a generator more than once, and if 
generating them costs more than storing, it may be better to store the yielded values as a list 
than to re-generate the sequence. See 'Resetting a generator' below for more details.

Typically a generator object is used in a loop, or in any function that requires an iterable:

for x in g1: 
    print("Received", x) 
 
# Output: 
# Received 0 
# Received 1 
# Received 4 
# Received 9 
# Received 16 
# Received 25 
# Received 36 
# Received 49 
# Received 64 
# Received 81 
 
arr1 = list(g1) 
# arr1 = [], because the loop above already consumed all the values. 
g2 = function() 
arr2 = list(g2)  # arr2 = [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

https://riptutorial.com/ 353



Since generator objects are iterators, one can iterate over them manually using the next() 
function. Doing so will return the yielded values one by one on each subsequent invocation.

Under the hood, each time you call next() on a generator, Python executes statements in the body 
of the generator function until it hits the next yield statement. At this point it returns the argument 
of the yield command, and remembers the point where that happened. Calling next() once again 
will resume execution from that point and continue until the next yield statement.

If Python reaches the end of the generator function without encountering any more yields, a 
StopIteration exception is raised (this is normal, all iterators behave in the same way).

g3 = function() 
a = next(g3)  # a becomes 0 
b = next(g3)  # b becomes 1 
c = next(g3)  # c becomes 2 
... 
j = next(g3)  # Raises StopIteration, j remains undefined

Note that in Python 2 generator objects had .next() methods that could be used to iterate through 
the yielded values manually. In Python 3 this method was replaced with the .__next__() standard 
for all iterators.

Resetting a generator

Remember that you can only iterate through the objects generated by a generator once. If you 
have already iterated through the objects in a script, any further attempt do so will yield None.

If you need to use the objects generated by a generator more than once, you can either define the 
generator function again and use it a second time, or, alternatively, you can store the output of the 
generator function in a list on first use. Re-defining the generator function will be a good option if 
you are dealing with large volumes of data, and storing a list of all data items would take up a lot of 
disc space. Conversely, if it is costly to generate the items initially, you may prefer to store the 
generated items in a list so that you can re-use them.

Using a generator to find Fibonacci Numbers

A practical use case of a generator is to iterate through values of an infinite series. Here's an 
example of finding the first ten terms of the Fibonacci Sequence.

def fib(a=0, b=1): 
    """Generator that yields Fibonacci numbers. `a` and `b` are the seed values""" 
    while True: 
        yield a 
        a, b = b, a + b 
 
f = fib() 
print(', '.join(str(next(f)) for _ in range(10)))

0, 1, 1, 2, 3, 5, 8, 13, 21, 34

https://riptutorial.com/ 354

https://docs.python.org/3/library/functions.html#next
https://oeis.org/A000045


Infinite sequences

Generators can be used to represent infinite sequences:

def integers_starting_from(n): 
    while True: 
        yield n 
        n += 1 
 
natural_numbers = integers_starting_from(1)

Infinite sequence of numbers as above can also be generated with the help of itertools.count. 
The above code could be written as below

natural_numbers = itertools.count(1)

You can use generator comprehensions on infinite generators to produce new generators:

multiples_of_two = (x * 2 for x in natural_numbers) 
multiples_of_three = (x for x in natural_numbers if x % 3 == 0)

Be aware that an infinite generator does not have an end, so passing it to any function that will 
attempt to consume the generator entirely will have dire consequences:

list(multiples_of_two)  # will never terminate, or raise an OS-specific error

Instead, use list/set comprehensions with range (or xrange for python < 3.0):

first_five_multiples_of_three = [next(multiples_of_three) for _ in range(5)] 
# [3, 6, 9, 12, 15]

or use itertools.islice() to slice the iterator to a subset:

from itertools import islice 
multiples_of_four = (x * 4 for x in integers_starting_from(1)) 
first_five_multiples_of_four = list(islice(multiples_of_four, 5)) 
# [4, 8, 12, 16, 20]

Note that the original generator is updated too, just like all other generators coming from the same 
"root":

next(natural_numbers)    # yields 16 
next(multiples_of_two)   # yields 34 
next(multiples_of_four)  # yields 24

An infinite sequence can also be iterated with a for-loop. Make sure to include a conditional break 
statement so that the loop would terminate eventually:

for idx, number in enumerate(multiplies_of_two): 

https://riptutorial.com/ 355

https://docs.python.org/3/library/itertools.html#itertools.count
https://docs.python.org/3/library/functions.html#func-range
https://docs.python.org/3/library/itertools.html#itertools.islice
http://www.riptutorial.com/python/example/862/for-loops
http://www.riptutorial.com/python/example/862/for-loops


    print(number) 
    if idx == 9: 
        break  # stop after taking the first 10 multiplies of two

Classic example - Fibonacci numbers

import itertools 
 
def fibonacci(): 
    a, b = 1, 1 
    while True: 
        yield a 
        a, b = b, a + b 
 
first_ten_fibs = list(itertools.islice(fibonacci(), 10)) 
# [1, 1, 2, 3, 5, 8, 13, 21, 34, 55] 
 
def nth_fib(n): 
    return next(itertools.islice(fibonacci(), n - 1, n)) 
 
ninety_nineth_fib = nth_fib(99)  # 354224848179261915075

Yielding all values from another iterable

Python 3.x3.3

Use yield from if you want to yield all values from another iterable:

def foob(x): 
    yield from range(x * 2) 
    yield from range(2) 
 
list(foob(5))  # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1]

This works with generators as well.

def fibto(n): 
    a, b = 1, 1 
    while True: 
        if a >= n: break 
        yield a 
        a, b = b, a + b 
 
def usefib(): 
    yield from fibto(10) 
    yield from fibto(20) 
 
list(usefib())  # [1, 1, 2, 3, 5, 8, 1, 1, 2, 3, 5, 8, 13]

Coroutines

Generators can be used to implement coroutines:

https://riptutorial.com/ 356



# create and advance generator to the first yield 
def coroutine(func): 
    def start(*args,**kwargs): 
        cr = func(*args,**kwargs) 
        next(cr) 
        return cr 
    return start 
 
# example coroutine 
@coroutine 
def adder(sum = 0): 
    while True: 
        x = yield sum 
        sum += x 
 
# example use 
s = adder() 
s.send(1) # 1 
s.send(2) # 3

Coroutines are commonly used to implement state machines, as they are primarily useful for 
creating single-method procedures that require a state to function properly. They operate on an 
existing state and return the value obtained on completion of the operation.

Yield with recursion: recursively listing all files in a directory

First, import the libraries that work with files:

from os import listdir 
from os.path import isfile, join, exists

A helper function to read only files from a directory:

def get_files(path): 
    for file in listdir(path): 
        full_path = join(path, file) 
        if isfile(full_path): 
            if exists(full_path): 
                yield full_path

Another helper function to get only the subdirectories:

def get_directories(path): 
    for directory in listdir(path): 
        full_path = join(path, directory) 
        if not isfile(full_path): 
            if exists(full_path): 
                yield full_path

Now use these functions to recursively get all files within a directory and all its subdirectories 
(using generators):

def get_files_recursive(directory): 
    for file in get_files(directory): 

https://riptutorial.com/ 357



        yield file 
    for subdirectory in get_directories(directory): 
        for file in get_files_recursive(subdirectory): # here the recursive call 
            yield file

This function can be simplified using yield from:

def get_files_recursive(directory): 
    yield from get_files(directory) 
    for subdirectory in get_directories(directory): 
        yield from get_files_recursive(subdirectory)

Iterating over generators in parallel

To iterate over several generators in parallel, use the zip builtin:

for x, y in zip(a,b): 
    print(x,y)

Results in:

1 x 
2 y 
3 z

In python 2 you should use itertools.izip instead. Here we can also see that the all the zip 
functions yield tuples.

Note that zip will stop iterating as soon as one of the iterables runs out of items. If you'd like to 
iterate for as long as the longest iterable, use itertools.zip_longest().

Refactoring list-building code

Suppose you have complex code that creates and returns a list by starting with a blank list and 
repeatedly appending to it:

def create(): 
    result = [] 
    # logic here... 
    result.append(value) # possibly in several places 
    # more logic... 
    return result # possibly in several places 
 
values = create()

When it's not practical to replace the inner logic with a list comprehension, you can turn the entire 
function into a generator in-place, and then collect the results:

def create_gen(): 
    # logic... 
    yield value 

https://riptutorial.com/ 358

http://www.riptutorial.com/python/example/6943/zipping-two-iterators-until-they-are-both-exhausted


    # more logic 
    return # not needed if at the end of the function, of course 
 
values = list(create_gen())

If the logic is recursive, use yield from to include all the values from the recursive call in a 
"flattened" result:

def preorder_traversal(node): 
    yield node.value 
    for child in node.children: 
        yield from preorder_traversal(child)

Searching

The next function is useful even without iterating. Passing a generator expression to next is a quick 
way to search for the first occurrence of an element matching some predicate. Procedural code 
like

def find_and_transform(sequence, predicate, func): 
    for element in sequence: 
        if predicate(element): 
            return func(element) 
    raise ValueError 
 
item = find_and_transform(my_sequence, my_predicate, my_func)

can be replaced with:

item = next(my_func(x) for x in my_sequence if my_predicate(x)) 
# StopIteration will be raised if there are no matches; this exception can 
# be caught and transformed, if desired.

For this purpose, it may be desirable to create an alias, such as first = next, or a wrapper 
function to convert the exception:

def first(generator): 
    try: 
        return next(generator) 
    except StopIteration: 
        raise ValueError

Read Generators online: https://riptutorial.com/python/topic/292/generators

https://riptutorial.com/ 359

https://riptutorial.com/python/topic/292/generators


Chapter 68: getting start with GZip

Introduction

This module provides a simple interface to compress and decompress files just like the GNU 
programs gzip and gunzip would.

The data compression is provided by the zlib module.

The gzip module provides the GzipFile class which is modeled after Python’s File Object. The 
GzipFile class reads and writes gzip-format files, automatically compressing or decompressing the 
data so that it looks like an ordinary file object.

Examples

Read and write GNU zip files

import gzip 
import os 
 
outfilename = 'example.txt.gz' 
output = gzip.open(outfilename, 'wb') 
try: 
    output.write('Contents of the example file go here.\n') 
finally: 
    output.close() 
 
print outfilename, 'contains', os.stat(outfilename).st_size, 'bytes of compressed data' 
os.system('file -b --mime %s' % outfilename)

Save it as 1gzip_write.py1.Run it through terminal.

$ python gzip_write.py 
 
application/x-gzip; charset=binary 
example.txt.gz contains 68 bytes of compressed data

Read getting start with GZip online: https://riptutorial.com/python/topic/8993/getting-start-with-gzip

https://riptutorial.com/ 360

https://riptutorial.com/python/topic/8993/getting-start-with-gzip


Chapter 69: graph-tool

Introduction

The python tools can be used to generate graph

Examples

PyDotPlus

PyDotPlus is an improved version of the old pydot project that provides a Python Interface to 
Graphviz’s Dot language.

Installation

For the latest stable version:

pip install pydotplus

For the development version:

pip install https://github.com/carlos-jenkins/pydotplus/archive/master.zip

Load graph as defined by a DOT file

The file is assumed to be in DOT format. It will be loaded, parsed and a Dot class will be 
returned, representing the graph. For example,a simple demo.dot:

•

digraph demo1{ a -> b -> c; c ->a; }

import pydotplus 
graph_a = pydotplus.graph_from_dot_file('demo.dot') 
graph_a.write_svg('test.svg') # generate graph in svg.

You will get a svg(Scalable Vector Graphics) like this:

https://riptutorial.com/ 361



PyGraphviz

Get PyGraphviz from the Python Package Index at http://pypi.python.org/pypi/pygraphviz

or install it with:

pip install pygraphviz

and an attempt will be made to find and install an appropriate version that matches your operating 
system and Python version.

You can install the development version (at github.com) with:

pip install git://github.com/pygraphviz/pygraphviz.git#egg=pygraphviz

Get PyGraphviz from the Python Package Index at http://pypi.python.org/pypi/pygraphviz

or install it with:

easy_install pygraphviz

and an attempt will be made to find and install an appropriate version that matches your operating 
system and Python version.

Load graph as defined by a DOT file

The file is assumed to be in DOT format. It will be loaded, parsed and a Dot class will be 
returned, representing the graph. For example,a simple demo.dot:

•

digraph demo1{ a -> b -> c; c ->a; }

Load it and draw it.•

import pygraphviz as pgv 
G = pgv.AGraph("demo.dot") 
G.draw('test', format='svg', prog='dot')

You will get a svg(Scalable Vector Graphics) like this:

https://riptutorial.com/ 362

https://i.stack.imgur.com/Wz3LU.png
http://pypi.python.org/pypi/pygraphviz
http://pypi.python.org/pypi/pygraphviz


Read graph-tool online: https://riptutorial.com/python/topic/9483/graph-tool

https://riptutorial.com/ 363

https://i.stack.imgur.com/Wz3LU.png
https://riptutorial.com/python/topic/9483/graph-tool


Chapter 70: groupby()

Introduction

In Python, the itertools.groupby() method allows developers to group values of an iterable class 
based on a specified property into another iterable set of values.

Syntax

itertools.groupby(iterable, key=None or some function)•

Parameters

Parameter Details

iterable Any python iterable

key Function(criteria) on which to group the iterable

Remarks

groupby() is tricky but a general rule to keep in mind when using it is this:

Always sort the items you want to group with the same key you want to use for grouping

It is recommended that the reader take a look at the documentation here and see how it is 
explained using a class definition.

Examples

Example 1

Say you have the string

s = 'AAAABBBCCDAABBB'

and you would like to split it so all the 'A's are in one list and so with all the 'B's and 'C', etc. You 
could do something like this

s = 'AAAABBBCCDAABBB' 
s_dict = {} 
for i in s: 
    if i not in s_dict.keys(): 
        s_dict[i] = [i] 

https://riptutorial.com/ 364

https://docs.python.org/3/library/itertools.html#itertools.groupby


    else: 
        s_dict[i].append(i) 
s_dict

Results in

{'A': ['A', 'A', 'A', 'A', 'A', 'A'], 
 'B': ['B', 'B', 'B', 'B', 'B', 'B'], 
 'C': ['C', 'C'], 
 'D': ['D']}

But for large data set you would be building up these items in memory. This is where groupby() 
comes in

We could get the same result in a more efficient manner by doing the following

# note that we get a {key : value} pair for iterating over the items just like in python 
dictionary 
from itertools import groupby 
s = 'AAAABBBCCDAABBB' 
c = groupby(s) 
 
dic = {} 
for k, v in c: 
    dic[k] = list(v) 
dic

Results in

{'A': ['A', 'A'], 'B': ['B', 'B', 'B'], 'C': ['C', 'C'], 'D': ['D']}

Notice that the number of 'A's in the result when we used group by is less than the actual number 
of 'A's in the original string. We can avoid that loss of information by sorting the items in s before 
passing it to c as shown below

c = groupby(sorted(s)) 
 
dic = {} 
for k, v in c: 
    dic[k] = list(v) 
dic

Results in

{'A': ['A', 'A', 'A', 'A', 'A', 'A'], 'B': ['B', 'B', 'B', 'B', 'B', 'B'], 'C': ['C', 'C'], 
'D': ['D']}

Now we have all our 'A's.

Example 2

https://riptutorial.com/ 365



This example illustrates how the default key is chosen if we do not specify any

c = groupby(['goat', 'dog', 'cow', 1, 1, 2, 3, 11, 10, ('persons', 'man', 'woman')]) 
dic = {} 
for k, v in c: 
    dic[k] = list(v) 
dic

Results in

{1: [1, 1], 
 2: [2], 
 3: [3], 
 ('persons', 'man', 'woman'): [('persons', 'man', 'woman')], 
 'cow': ['cow'], 
 'dog': ['dog'], 
 10: [10], 
 11: [11], 
 'goat': ['goat']}

Notice here that the tuple as a whole counts as one key in this list

Example 3

Notice in this example that mulato and camel don't show up in our result. Only the last element 
with the specified key shows up. The last result for c actually wipes out two previous results. But 
watch the new version where I have the data sorted first on same key.

list_things = ['goat', 'dog', 'donkey', 'mulato', 'cow', 'cat', ('persons', 'man', 'woman'), \ 
               'wombat', 'mongoose', 'malloo', 'camel'] 
c = groupby(list_things, key=lambda x: x[0]) 
dic = {} 
for k, v in c: 
    dic[k] = list(v) 
dic

Results in

{'c': ['camel'], 
 'd': ['dog', 'donkey'], 
 'g': ['goat'], 
 'm': ['mongoose', 'malloo'], 
 'persons': [('persons', 'man', 'woman')], 
 'w': ['wombat']}

Sorted Version

list_things = ['goat', 'dog', 'donkey', 'mulato', 'cow', 'cat', ('persons', 'man', 'woman'), \ 
               'wombat', 'mongoose', 'malloo', 'camel'] 
sorted_list = sorted(list_things, key = lambda x: x[0]) 
print(sorted_list) 
print() 
c = groupby(sorted_list, key=lambda x: x[0]) 

https://riptutorial.com/ 366



dic = {} 
for k, v in c: 
    dic[k] = list(v) 
dic

Results in

['cow', 'cat', 'camel', 'dog', 'donkey', 'goat', 'mulato', 'mongoose', 'malloo', ('persons', 
'man', 'woman'), 'wombat'] 
 
{'c': ['cow', 'cat', 'camel'], 
 'd': ['dog', 'donkey'], 
 'g': ['goat'], 
 'm': ['mulato', 'mongoose', 'malloo'], 
 'persons': [('persons', 'man', 'woman')], 
 'w': ['wombat']}

Example 4

In this example we see what happens when we use different types of iterable.

things = [("animal", "bear"), ("animal", "duck"), ("plant", "cactus"), ("vehicle", "harley"), 
\ 
          ("vehicle", "speed boat"), ("vehicle", "school bus")] 
dic = {} 
f = lambda x: x[0] 
for key, group in groupby(sorted(things, key=f), f): 
    dic[key] = list(group) 
dic

Results in

{'animal': [('animal', 'bear'), ('animal', 'duck')], 
 'plant': [('plant', 'cactus')], 
 'vehicle': [('vehicle', 'harley'), 
  ('vehicle', 'speed boat'), 
  ('vehicle', 'school bus')]}

This example below is essentially the same as the one above it. The only difference is that I have 
changed all the tuples to lists.

things = [["animal", "bear"], ["animal", "duck"], ["vehicle", "harley"], ["plant", "cactus"], 
\ 
          ["vehicle", "speed boat"], ["vehicle", "school bus"]] 
dic = {} 
f = lambda x: x[0] 
for key, group in groupby(sorted(things, key=f), f): 
    dic[key] = list(group) 
dic

Results

{'animal': [['animal', 'bear'], ['animal', 'duck']], 

https://riptutorial.com/ 367



 'plant': [['plant', 'cactus']], 
 'vehicle': [['vehicle', 'harley'], 
  ['vehicle', 'speed boat'], 
  ['vehicle', 'school bus']]}

Read groupby() online: https://riptutorial.com/python/topic/8690/groupby--

https://riptutorial.com/ 368

https://riptutorial.com/python/topic/8690/groupby--


Chapter 71: hashlib

Introduction

hashlib implements a common interface to many different secure hash and message digest 
algorithms. Included are the FIPS secure hash algorithms SHA1, SHA224, SHA256, SHA384, and 
SHA512.

Examples

MD5 hash of a string

This module implements a common interface to many different secure hash and message digest 
algorithms. Included are the FIPS secure hash algorithms SHA1, SHA224, SHA256, SHA384, and 
SHA512 (defined in FIPS 180-2) as well as RSA’s MD5 algorithm (defined in Internet RFC 1321).

There is one constructor method named for each type of hash. All return a hash object with the 
same simple interface. For example: use sha1() to create a SHA1 hash object.

hash.sha1()

Constructors for hash algorithms that are always present in this module are md5(), sha1(), sha224(), 
sha256(), sha384(), and sha512().

You can now feed this object with arbitrary strings using the update() method. At any point you can 
ask it for the digest of the concatenation of the strings fed to it so far using the digest() or 
hexdigest() methods.

hash.update(arg)

Update the hash object with the string arg. Repeated calls are equivalent to a single 
call with the concatenation of all the arguments: m.update(a); m.update(b) is equivalent 
to m.update(a+b).

hash.digest()

Return the digest of the strings passed to the update() method so far. This is a string of 
digest_size bytes which may contain non-ASCII characters, including null bytes.

hash.hexdigest()

Like digest() except the digest is returned as a string of double length, containing only 
hexadecimal digits. This may be used to exchange the value safely in email or other 
non-binary environments.

https://riptutorial.com/ 369



Here is an example:

>>> import hashlib 
>>> m = hashlib.md5() 
>>> m.update("Nobody inspects") 
>>> m.update(" the spammish repetition") 
>>> m.digest() 
'\xbbd\x9c\x83\xdd\x1e\xa5\xc9\xd9\xde\xc9\xa1\x8d\xf0\xff\xe9' 
>>> m.hexdigest() 
'bb649c83dd1ea5c9d9dec9a18df0ffe9' 
>>> m.digest_size 
16 
>>> m.block_size 
64

or:

hashlib.md5("Nobody inspects the spammish repetition").hexdigest() 
    'bb649c83dd1ea5c9d9dec9a18df0ffe9'

algorithm provided by OpenSSL

A generic new() constructor that takes the string name of the desired algorithm as its first 
parameter also exists to allow access to the above listed hashes as well as any other algorithms 
that your OpenSSL library may offer. The named constructors are much faster than new() and 
should be preferred.

Using new() with an algorithm provided by OpenSSL:

>>> h = hashlib.new('ripemd160') 
>>> h.update("Nobody inspects the spammish repetition") 
>>> h.hexdigest() 
'cc4a5ce1b3df48aec5d22d1f16b894a0b894eccc'

Read hashlib online: https://riptutorial.com/python/topic/8980/hashlib

https://riptutorial.com/ 370

https://riptutorial.com/python/topic/8980/hashlib


Chapter 72: Heapq

Examples

Largest and smallest items in a collection

To find the largest items in a collection, heapq module has a function called nlargest, we pass it two 
arguments, the first one is the number of items that we want to retrieve, the second one is the 
collection name:

import heapq 
 
 
numbers = [1, 4, 2, 100, 20, 50, 32, 200, 150, 8] 
print(heapq.nlargest(4, numbers))  # [200, 150, 100, 50]

Similarly, to find the smallest items in a collection, we use nsmallest function:

print(heapq.nsmallest(4, numbers))  # [1, 2, 4, 8]

Both nlargest and nsmallest functions take an optional argument (key parameter) for complicated 
data structures. The following example shows the use of age property to retrieve the oldest and the 
youngest people from people dictionary:

people = [ 
    {'firstname': 'John', 'lastname': 'Doe', 'age': 30}, 
    {'firstname': 'Jane', 'lastname': 'Doe', 'age': 25}, 
    {'firstname': 'Janie', 'lastname': 'Doe', 'age': 10}, 
    {'firstname': 'Jane', 'lastname': 'Roe', 'age': 22}, 
    {'firstname': 'Johnny', 'lastname': 'Doe', 'age': 12}, 
    {'firstname': 'John', 'lastname': 'Roe', 'age': 45} 
] 
 
oldest = heapq.nlargest(2, people, key=lambda s: s['age']) 
print(oldest) 
# Output: [{'firstname': 'John', 'age': 45, 'lastname': 'Roe'}, {'firstname': 'John', 'age': 
30, 'lastname': 'Doe'}] 
 
youngest = heapq.nsmallest(2, people, key=lambda s: s['age']) 
print(youngest) 
# Output: [{'firstname': 'Janie', 'age': 10, 'lastname': 'Doe'}, {'firstname': 'Johnny', 
'age': 12, 'lastname': 'Doe'}]

Smallest item in a collection

The most interesting property of a heap is that its smallest element is always the first element: 
heap[0]

import heapq 
 

https://riptutorial.com/ 371



 
numbers = [10, 4, 2, 100, 20, 50, 32, 200, 150, 8] 
 
heapq.heapify(numbers) 
print(numbers) 
# Output: [2, 4, 10, 100, 8, 50, 32, 200, 150, 20] 
 
heapq.heappop(numbers)  # 2 
print(numbers) 
# Output: [4, 8, 10, 100, 20, 50, 32, 200, 150] 
 
heapq.heappop(numbers)  # 4 
print(numbers) 
# Output:  [8, 20, 10, 100, 150, 50, 32, 200]

Read Heapq online: https://riptutorial.com/python/topic/7489/heapq

https://riptutorial.com/ 372

https://riptutorial.com/python/topic/7489/heapq


Chapter 73: Hidden Features

Examples

Operator Overloading

Everything in Python is an object. Each object has some special internal methods which it uses to 
interact with other objects. Generally, these methods follow the __action__ naming convention. 
Collectively, this is termed as the Python Data Model.

You can overload any of these methods. This is commonly used in operator overloading in Python. 
Below is an example of operator overloading using Python's data model. The Vector class creates 
a simple vector of two variables. We'll add appropriate support for mathematical operations of two 
vectors using operator overloading.

class Vector(object): 
    def __init__(self, x, y): 
        self.x = x 
        self.y = y 
 
    def __add__(self, v): 
        # Addition with another vector. 
        return Vector(self.x + v.x, self.y + v.y) 
 
    def __sub__(self, v): 
        # Subtraction with another vector. 
        return Vector(self.x - v.x, self.y - v.y) 
 
    def __mul__(self, s): 
        # Multiplication with a scalar. 
        return Vector(self.x * s, self.y * s) 
 
    def __div__(self, s): 
        # Division with a scalar. 
        float_s = float(s) 
        return Vector(self.x / float_s, self.y / float_s) 
 
    def __floordiv__(self, s): 
        # Division with a scalar (value floored). 
        return Vector(self.x // s, self.y // s) 
 
    def __repr__(self): 
        # Print friendly representation of Vector class. Else, it would 
        # show up like, <__main__.Vector instance at 0x01DDDDC8>. 
        return '<Vector (%f, %f)>' % (self.x, self.y, ) 
 
a = Vector(3, 5) 
b = Vector(2, 7) 
 
print a + b # Output: <Vector (5.000000, 12.000000)> 
print b - a # Output: <Vector (-1.000000, 2.000000)> 
print b * 1.3 # Output: <Vector (2.600000, 9.100000)> 
print a // 17 # Output: <Vector (0.000000, 0.000000)> 
print a / 17 # Output: <Vector (0.176471, 0.294118)>

https://riptutorial.com/ 373

https://docs.python.org/2/reference/datamodel.html


The above example demonstrates overloading of basic numeric operators. A comprehensive list 
can be found here.

Read Hidden Features online: https://riptutorial.com/python/topic/946/hidden-features

https://riptutorial.com/ 374

https://docs.python.org/2/reference/datamodel.html?object.__getattr__#emulating-numeric-types
https://riptutorial.com/python/topic/946/hidden-features


Chapter 74: HTML Parsing

Examples

Locate a text after an element in BeautifulSoup

Imagine you have the following HTML:

<div> 
    <label>Name:</label> 
    John Smith 
</div>

And you need to locate the text "John Smith" after the label element.

In this case, you can locate the label element by text and then use .next_sibling property:

from bs4 import BeautifulSoup 
 
data = """ 
<div> 
    <label>Name:</label> 
    John Smith 
</div> 
""" 
 
soup = BeautifulSoup(data, "html.parser") 
 
label = soup.find("label", text="Name:") 
print(label.next_sibling.strip())

Prints John Smith.

Using CSS selectors in BeautifulSoup

BeautifulSoup has a limited support for CSS selectors, but covers most commonly used ones. Use 
select() method to find multiple elements and select_one() to find a single element.

Basic example:

from bs4 import BeautifulSoup 
 
data = """ 
<ul> 
    <li class="item">item1</li> 
    <li class="item">item2</li> 
    <li class="item">item3</li> 
</ul> 
""" 
 
soup = BeautifulSoup(data, "html.parser") 

https://riptutorial.com/ 375

https://www.crummy.com/software/BeautifulSoup/bs4/doc/#next-sibling-and-previous-sibling
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#next-sibling-and-previous-sibling
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#css-selectors


 
for item in soup.select("li.item"): 
    print(item.get_text())

Prints:

item1 
item2 
item3

PyQuery

pyquery is a jquery-like library for python. It has very well support for css selectors.

from pyquery import PyQuery 
 
html = """ 
<h1>Sales</h1> 
<table id="table"> 
<tr> 
    <td>Lorem</td> 
    <td>46</td> 
</tr> 
<tr> 
    <td>Ipsum</td> 
    <td>12</td> 
</tr> 
<tr> 
    <td>Dolor</td> 
    <td>27</td> 
</tr> 
<tr> 
    <td>Sit</td> 
    <td>90</td> 
</tr> 
</table> 
""" 
 
doc = PyQuery(html) 
 
title = doc('h1').text() 
 
print title 
 
table_data = [] 
 
rows = doc('#table > tr') 
for row in rows: 
    name = PyQuery(row).find('td').eq(0).text() 
    value = PyQuery(row).find('td').eq(1).text() 
 
    print "%s\t  %s" % (name, value) 

Read HTML Parsing online: https://riptutorial.com/python/topic/1384/html-parsing

https://riptutorial.com/ 376

https://riptutorial.com/python/topic/1384/html-parsing


Chapter 75: Idioms

Examples

Dictionary key initializations

Prefer dict.get method if you are not sure if the key is present. It allows you to return a default 
value if key is not found. The traditional method dict[key] would raise a KeyError exception.

Rather than doing

def add_student(): 
    try: 
        students['count'] += 1 
    except KeyError: 
        students['count'] = 1

Do

def add_student(): 
        students['count'] = students.get('count', 0) + 1

Switching variables

To switch the value of two variables you can use tuple unpacking.

x = True 
y = False 
x, y = y, x 
x 
# False 
y 
# True

Use truth value testing

Python will implicitly convert any object to a Boolean value for testing, so use it wherever possible.

# Good examples, using implicit truth testing 
if attr: 
    # do something 
 
if not attr: 
    # do something 
 
# Bad examples, using specific types 
if attr == 1: 
    # do something 
 
if attr == True: 

https://riptutorial.com/ 377



    # do something 
 
if attr != '': 
    # do something 
 
# If you are looking to specifically check for None, use 'is' or 'is not' 
if attr is None: 
    # do something

This generally produces more readable code, and is usually much safer when dealing with 
unexpected types.

Click here for a list of what will be evaluated to False.

Test for "__main__" to avoid unexpected code execution

It is good practice to test the calling program's __name__ variable before executing your code.

import sys 
 
def main(): 
    # Your code starts here 
 
    # Don't forget to provide a return code 
    return 0 
 
if __name__ == "__main__": 
    sys.exit(main())

Using this pattern ensures that your code is only executed when you expect it to be; for example, 
when you run your file explicitly:

python my_program.py

The benefit, however, comes if you decide to import your file in another program (for example if 
you are writing it as part of a library). You can then import your file, and the __main__ trap will 
ensure that no code is executed unexpectedly:

# A new program file 
import my_program        # main() is not run 
 
# But you can run main() explicitly if you really want it to run: 
my_program.main()

Read Idioms online: https://riptutorial.com/python/topic/3070/idioms

https://riptutorial.com/ 378

https://docs.python.org/3/library/stdtypes.html#truth-value-testing
https://riptutorial.com/python/topic/3070/idioms


Chapter 76: ijson

Introduction

ijson is a great library for working with JSON files in Python. Unfortunately, by default it uses a 
pure Python JSON parser as its backend. Much higher performance can be achieved by using a C 
backend.

Examples

Simple Example

Sample Example Taken from one benchmarking

import ijson 
 
def load_json(filename): 
    with open(filename, 'r') as fd: 
        parser = ijson.parse(fd) 
        ret = {'builders': {}} 
        for prefix, event, value in parser: 
            if (prefix, event) == ('builders', 'map_key'): 
                buildername = value 
                ret['builders'][buildername] = {} 
            elif prefix.endswith('.shortname'): 
                ret['builders'][buildername]['shortname'] = value 
 
        return ret 
 
if __name__ == "__main__": 
    load_json('allthethings.json')

JSON FILE LINK

Read ijson online: https://riptutorial.com/python/topic/8342/ijson

https://riptutorial.com/ 379

http://explique.me/Ijson/
https://secure.pub.build.mozilla.org/builddata/reports/allthethings.json
https://riptutorial.com/python/topic/8342/ijson


Chapter 77: Immutable datatypes(int, float, 
str, tuple and frozensets)

Examples

Individual characters of strings are not assignable

foo = "bar" 
foo[0] = "c" # Error 

Immutable variable value can not be changed once they are created.

Tuple's individual members aren't assignable

foo = ("bar", 1, "Hello!",) 
foo[1] = 2 # ERROR!! 

Second line would return an error since tuple members once created aren't assignable. Because 
of tuple's immutability. 

Frozenset's are immutable and not assignable

foo = frozenset(["bar", 1, "Hello!"]) 
foo[2] = 7 # ERROR 
foo.add(3) # ERROR

Second line would return an error since frozenset members once created aren't assignable. Third 
line would return error as frozensets do not support functions that can manipulate members.

Read Immutable datatypes(int, float, str, tuple and frozensets) online: 
https://riptutorial.com/python/topic/4806/immutable-datatypes-int--float--str--tuple-and-frozensets-

https://riptutorial.com/ 380

https://riptutorial.com/python/topic/4806/immutable-datatypes-int--float--str--tuple-and-frozensets-


Chapter 78: Importing modules

Syntax

import module_name•
import module_name.submodule_name•
from module_name import *•
from module_name import submodule_name [, class_name, function_name, ...etc]•
from module_name import some_name as new_name•
from module_name.submodule_name import class_name [, function_name, ...etc]•

Remarks

Importing a module will make Python evaluate all top-level code in this module so it learns all the 
functions, classes, and variables that the module contains. When you want a module of yours to 
be imported somewhere else, be careful with your top-level code, and encapsulate it into if 
__name__ == '__main__': if you don't want it to be executed when the module gets imported.

Examples

Importing a module

Use the import statement:

>>> import random 
>>> print(random.randint(1, 10)) 
4

import module will import a module and then allow you to reference its objects -- values, functions 
and classes, for example -- using the module.name syntax. In the above example, the random module 
is imported, which contains the randint function. So by importing random you can call randint with 
random.randint.

You can import a module and assign it to a different name:

>>> import random as rn 
>>> print(rn.randint(1, 10)) 
4

If your python file main.py is in the same folder as custom.py. You can import it like this:

import custom

It is also possible to import a function from a module:

https://riptutorial.com/ 381



>>> from math import sin 
>>> sin(1) 
0.8414709848078965

To import specific functions deeper down into a module, the dot operator may be used only on the 
left side of the import keyword:

from urllib.request import urlopen

In python, we have two ways to call function from top level. One is import and another is from. We 
should use import when we have a possibility of name collision. Suppose we have hello.py file and 
world.py files having same function named function. Then import statement will work good.

from hello import function 
from world import function 
 
function() #world's function will be invoked. Not hello's 

In general import will provide you a namespace.

import hello 
import world 
 
hello.function() # exclusively hello's function will be invoked 
world.function() # exclusively world's function will be invoked

But if you are sure enough, in your whole project there is no way having same function name you 
should use from statement

Multiple imports can be made on the same line:

>>> # Multiple modules 
>>> import time, sockets, random 
>>> # Multiple functions 
>>> from math import sin, cos, tan 
>>> # Multiple constants 
>>> from math import pi, e 
 
>>> print(pi) 
3.141592653589793 
>>> print(cos(45)) 
0.5253219888177297 
>>> print(time.time()) 
1482807222.7240417

The keywords and syntax shown above can also be used in combinations:

>>> from urllib.request import urlopen as geturl, pathname2url as path2url, getproxies 
>>> from math import factorial as fact, gamma, atan as arctan 
>>> import random.randint, time, sys 
 
>>> print(time.time()) 
1482807222.7240417 

https://riptutorial.com/ 382



>>> print(arctan(60)) 
1.554131203080956 
>>> filepath = "/dogs/jumping poodle (december).png" 
>>> print(path2url(filepath)) 
/dogs/jumping%20poodle%20%28december%29.png

Importing specific names from a module

Instead of importing the complete module you can import only specified names:

from random import randint # Syntax "from MODULENAME import NAME1[, NAME2[, ...]]" 
print(randint(1, 10))      # Out: 5

from random is needed, because the python interpreter has to know from which resource it should 
import a function or class and import randint specifies the function or class itself.

Another example below (similar to the one above):

from math import pi 
print(pi)                  # Out: 3.14159265359

The following example will raise an error, because we haven't imported a module:

random.randrange(1, 10)    # works only if "import random" has been run before

Outputs:

NameError: name 'random' is not defined

The python interpreter does not understand what you mean with random. It needs to be declared by 
adding import random to the example:

import random 
random.randrange(1, 10)

Importing all names from a module

from module_name import *

for example:

from math import * 
sqrt(2)    # instead of math.sqrt(2) 
ceil(2.7)  # instead of math.ceil(2.7)

This will import all names defined in the math module into the global namespace, other than names 
that begin with an underscore (which indicates that the writer feels that it is for internal use only).

https://riptutorial.com/ 383



Warning: If a function with the same name was already defined or imported, it will be overwritten. 
Almost always importing only specific names from math import sqrt, ceil is the recommended 
way:

def sqrt(num): 
    print("I don't know what's the square root of {}.".format(num)) 
 
sqrt(4) 
# Output: I don't know what's the square root of 4. 
 
from math import * 
sqrt(4) 
# Output: 2.0

Starred imports are only allowed at the module level. Attempts to perform them in class or function 
definitions result in a SyntaxError.

def f(): 
    from math import *

and

class A: 
    from math import *

both fail with:

SyntaxError: import * only allowed at module level

The __all__ special variable

Modules can have a special variable named __all__ to restrict what variables are imported when 
using from mymodule import *.

Given the following module:

# mymodule.py 
 
__all__ = ['imported_by_star'] 
 
imported_by_star = 42 
not_imported_by_star = 21

Only imported_by_star is imported when using from mymodule import *:

>>> from mymodule import * 
>>> imported_by_star 
42 
>>> not_imported_by_star 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 

https://riptutorial.com/ 384



NameError: name 'not_imported_by_star' is not defined

However, not_imported_by_star can be imported explicitly:

>>> from mymodule import not_imported_by_star 
>>> not_imported_by_star 
21

Programmatic importing

Python 2.x2.7

To import a module through a function call, use the importlib module (included in Python starting 
in version 2.7):

import importlib 
random = importlib.import_module("random")

The importlib.import_module() function will also import the submodule of a package directly:

collections_abc = importlib.import_module("collections.abc")

For older versions of Python, use the imp module.

Python 2.x2.7

Use the functions imp.find_module and imp.load_module to perform a programmatic import.

Taken from standard library documentation

import imp, sys 
def import_module(name): 
    fp, pathname, description = imp.find_module(name) 
    try: 
        return imp.load_module(name, fp, pathname, description) 
    finally: 
        if fp: 
            fp.close()

Do NOT use __import__() to programmatically import modules! There are subtle details involving 
sys.modules, the fromlist argument, etc. that are easy to overlook which importlib.import_module() 
handles for you.

Import modules from an arbitrary filesystem location

If you want to import a module that doesn't already exist as a built-in module in the Python 
Standard Library nor as a side-package, you can do this by adding the path to the directory where 
your module is found to sys.path. This may be useful where multiple python environments exist on 
a host.

https://riptutorial.com/ 385

https://docs.python.org/2/library/imp.html#examples
https://docs.python.org/3/library/
https://docs.python.org/3/library/
https://docs.python.org/3/library/sys.html#sys.path


import sys 
sys.path.append("/path/to/directory/containing/your/module") 
import mymodule

It is important that you append the path to the directory in which mymodule is found, not the path to 
the module itself.

PEP8 rules for Imports

Some recommended PEP8 style guidelines for imports:

Imports should be on separate lines:

 from math import sqrt, ceil      # Not recommended 
 from math import sqrt            # Recommended 
 from math import ceil

1. 

Order imports as follows at the top of the module:

Standard library imports•
Related third party imports•
Local application/library specific imports•

2. 

Wildcard imports should be avoided as it leads to confusion in names in the current 
namespace. If you do from module import *, it can be unclear if a specific name in your code 
comes from module or not. This is doubly true if you have multiple from module import *-type 
statements.

3. 

Avoid using relative imports; use explicit imports instead.4. 

Importing submodules

from module.submodule import function

This imports function from module.submodule.

__import__() function

The __import__() function can be used to import modules where the name is only known at 
runtime

if user_input == "os": 
    os = __import__("os") 
 
# equivalent to import os

This function can also be used to specify the file path to a module

mod = __import__(r"C:/path/to/file/anywhere/on/computer/module.py")

https://riptutorial.com/ 386

https://www.python.org/dev/peps/pep-0008/#imports


Re-importing a module

When using the interactive interpreter, you might want to reload a module. This can be useful if 
you're editing a module and want to import the newest version, or if you've monkey-patched an 
element of an existing module and want to revert your changes.

Note that you can't just import the module again to revert:

import math 
math.pi = 3 
print(math.pi)    # 3 
import math 
print(math.pi)    # 3

This is because the interpreter registers every module you import. And when you try to reimport a 
module, the interpreter sees it in the register and does nothing. So the hard way to reimport is to 
use import after removing the corresponding item from the register:

print(math.pi)    # 3 
import sys 
if 'math' in sys.modules:  # Is the ``math`` module in the register? 
    del sys.modules['math']  # If so, remove it. 
import math 
print(math.pi)    # 3.141592653589793

But there is more a straightforward and simple way.

Python 2

Use the reload function:

Python 2.x2.3

import math 
math.pi = 3 
print(math.pi)    # 3 
reload(math) 
print(math.pi)    # 3.141592653589793

Python 3

The reload function has moved to importlib:

Python 3.x3.0

import math 
math.pi = 3 
print(math.pi)    # 3 

https://riptutorial.com/ 387



from importlib import reload 
reload(math) 
print(math.pi)    # 3.141592653589793

Read Importing modules online: https://riptutorial.com/python/topic/249/importing-modules

https://riptutorial.com/ 388

https://riptutorial.com/python/topic/249/importing-modules


Chapter 79: Incompatibilities moving from 
Python 2 to Python 3

Introduction

Unlike most languages, Python supports two major versions. Since 2008 when Python 3 was 
released, many have made the transition, while many have not. In order to understand both, this 
section covers the important differences between Python 2 and Python 3.

Remarks

There are currently two supported versions of Python: 2.7 (Python 2) and 3.6 (Python 3). 
Additionally versions 3.3 and 3.4 receive security updates in source format.

Python 2.7 is backwards-compatible with most earlier versions of Python, and can run Python 
code from most 1.x and 2.x versions of Python unchanged. It is broadly available, with an 
extensive collection of packages. It is also considered deprecated by the CPython developers, and 
receives only security and bug-fix development. The CPython developers intend to abandon this 
version of the language in 2020.

According to Python Enhancement Proposal 373 there are no planned future releases of Python 2 
after 25 June 2016, but bug fixes and security updates will be supported until 2020. (It doesn't 
specify what exact date in 2020 will be the sunset date of Python 2.)

Python 3 intentionally broke backwards-compatibility, to address concerns the language 
developers had with the core of the language. Python 3 receives new development and new 
features. It is the version of the language that the language developers intend to move forward 
with.

Over the time between the initial release of Python 3.0 and the current version, some features of 
Python 3 were back-ported into Python 2.6, and other parts of Python 3 were extended to have 
syntax compatible with Python 2. Therefore it is possible to write Python that will work on both 
Python 2 and Python 3, by using future imports and special modules (like six).

Future imports have to be at the beginning of your module:

from __future__ import print_function 
# other imports and instructions go after __future__ 
print('Hello world')

For further information on the __future__ module, see the relevant page in the Python 
documentation.

The 2to3 tool is a Python program that converts Python 2.x code to Python 3.x code, see also the 
Python documentation.

https://riptutorial.com/ 389

https://docs.python.org/devguide/#status-of-python-branches
http://legacy.python.org/dev/peps/pep-0373/
https://docs.python.org/2/library/__future__.html
https://docs.python.org/2/library/__future__.html
http://www.riptutorial.com/python/topic/5320/2to3-tool
https://docs.python.org/3.5/library/2to3.html


The package six provides utilities for Python 2/3 compatibility:

unified access to renamed libraries•
variables for string/unicode types•
functions for method that got removed or has been renamed•

A reference for differences between Python 2 and Python 3 can be found here.

Examples

Print statement vs. Print function

In Python 2, print is a statement:

Python 2.x2.7

print "Hello World" 
print                         # print a newline 
print "No newline",           # add trailing comma to remove newline 
print >>sys.stderr, "Error"   # print to stderr 
print("hello")                # print "hello", since ("hello") == "hello" 
print()                       # print an empty tuple "()" 
print 1, 2, 3                 # print space-separated arguments: "1 2 3" 
print(1, 2, 3)                # print tuple "(1, 2, 3)"

In Python 3, print() is a function, with keyword arguments for common uses:

Python 3.x3.0

print "Hello World"              # SyntaxError 
print("Hello World") 
print()                          # print a newline (must use parentheses) 
print("No newline", end="")      # end specifies what to append (defaults to newline) 
print("Error", file=sys.stderr)  # file specifies the output buffer 
print("Comma", "separated", "output", sep=",")  # sep specifies the separator 
print("A", "B", "C", sep="")     # null string for sep: prints as ABC 
print("Flush this", flush=True)  # flush the output buffer, added in Python 3.3 
print(1, 2, 3)                   # print space-separated arguments: "1 2 3" 
print((1, 2, 3))                 # print tuple "(1, 2, 3)"

The print function has the following parameters:

print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False)

sep is what separates the objects you pass to print. For example:

print('foo', 'bar', sep='~') # out: foo~bar 
print('foo', 'bar', sep='.') # out: foo.bar

end is what the end of the print statement is followed by. For example:

https://riptutorial.com/ 390

http://six.readthedocs.io
https://wiki.python.org/moin/Python2orPython3
https://docs.python.org/2/library/functions.html#print
https://docs.python.org/3/library/functions.html#print


print('foo', 'bar', end='!') # out: foo bar!

Printing again following a non-newline ending print statement will print to the same line:

print('foo', end='~') 
print('bar') 
# out: foo~bar

Note : For future compatibility, print function is also available in Python 2.6 onwards; however it 
cannot be used unless parsing of the print statement is disabled with

from __future__ import print_function

This function has exactly same format as Python 3's, except that it lacks the flush parameter.

See PEP 3105 for rationale.

Strings: Bytes versus Unicode

Python 2.x2.7

In Python 2 there are two variants of string: those made of bytes with type (str) and those made of 
text with type (unicode).

In Python 2, an object of type str is always a byte sequence, but is commonly used for both text 
and binary data.

A string literal is interpreted as a byte string.

s = 'Cafe'    # type(s) == str

There are two exceptions: You can define a Unicode (text) literal explicitly by prefixing the literal 
with u:

s = u'Café'   # type(s) == unicode 
b = 'Lorem ipsum'  # type(b) == str

Alternatively, you can specify that a whole module's string literals should create Unicode (text) 
literals:

from __future__ import unicode_literals 
 
s = 'Café'   # type(s) == unicode 
b = 'Lorem ipsum'  # type(b) == unicode

In order to check whether your variable is a string (either Unicode or a byte string), you can use:

isinstance(s, basestring)

Python 3.x3.0

https://riptutorial.com/ 391

https://docs.python.org/2/library/functions.html#print
https://www.python.org/dev/peps/pep-3105/
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#unicode


In Python 3, the str type is a Unicode text type.

s = 'Cafe'           # type(s) == str 
s = 'Café'           # type(s) == str (note the accented trailing e)

Additionally, Python 3 added a bytes object, suitable for binary "blobs" or writing to encoding-
independent files. To create a bytes object, you can prefix b to a string literal or call the string's 
encode method:

# Or, if you really need a byte string: 
s = b'Cafe'          # type(s) == bytes 
s = 'Café'.encode()  # type(s) == bytes

To test whether a value is a string, use:

isinstance(s, str)

Python 3.x3.3

It is also possible to prefix string literals with a u prefix to ease compatibility between Python 2 and 
Python 3 code bases. Since, in Python 3, all strings are Unicode by default, prepending a string 
literal with u has no effect:

u'Cafe' == 'Cafe'

Python 2’s raw Unicode string prefix ur is not supported, however:

>>> ur'Café' 
  File "<stdin>", line 1 
    ur'Café' 
           ^ 
SyntaxError: invalid syntax

Note that you must encode a Python 3 text (str) object to convert it into a bytes representation of 
that text. The default encoding of this method is UTF-8.

You can use decode to ask a bytes object for what Unicode text it represents:

>>> b.decode() 
'Café'

Python 2.x2.6

While the bytes type exists in both Python 2 and 3, the unicode type only exists in Python 2. To use 
Python 3's implicit Unicode strings in Python 2, add the following to the top of your code file:

from __future__ import unicode_literals 
print(repr("hi")) 
# u'hi'

Python 3.x3.0

https://riptutorial.com/ 392

https://docs.python.org/3/library/functions.html#func-bytes
https://docs.python.org/3/library/functions.html#func-bytes
https://docs.python.org/3/library/stdtypes.html#str.encode
https://en.wikipedia.org/wiki/UTF-8
https://docs.python.org/3/library/stdtypes.html#bytes.decode


Another important difference is that indexing bytes in Python 3 results in an int output like so:

b"abc"[0] == 97

Whilst slicing in a size of one results in a length 1 bytes object:

b"abc"[0:1] == b"a"

In addition, Python 3 fixes some unusual behavior with unicode, i.e. reversing byte strings in 
Python 2. For example, the following issue is resolved:

# -*- coding: utf8 -*- 
print("Hi, my name is Łukasz Langa.") 
print(u"Hi, my name is Łukasz Langa."[::-1]) 
print("Hi, my name is Łukasz Langa."[::-1]) 
 
# Output in Python 2 
# Hi, my name is Łukasz Langa. 
# .agnaL zsakuŁ si eman ym ,iH 
# .agnaL zsaku�� si eman ym ,iH 
 
# Output in Python 3 
# Hi, my name is Łukasz Langa. 
# .agnaL zsakuŁ si eman ym ,iH 
# .agnaL zsakuŁ si eman ym ,iH

Integer Division

The standard division symbol (/) operates differently in Python 3 and Python 2 when applied to 
integers.

When dividing an integer by another integer in Python 3, the division operation x / y represents a 
true division (uses __truediv__ method) and produces a floating point result. Meanwhile, the 
same operation in Python 2 represents a classic division that rounds the result down toward 
negative infinity (also known as taking the floor).

For example:

Code Python 2 output Python 3 output

3 / 2 1 1.5

2 / 3 0 0.6666666666666666

-3 / 2 -2 -1.5

The rounding-towards-zero behavior was deprecated in Python 2.2, but remains in Python 2.7 for 
the sake of backward compatibility and was removed in Python 3.

Note: To get a float result in Python 2 (without floor rounding) we can specify one of the operands 

https://riptutorial.com/ 393

https://eev.ee/blog/2016/11/23/a-rebuttal-for-python-3/
https://stackoverflow.com/questions/34015615/python-reversing-an-utf-8-string
https://docs.python.org/2.2/whatsnew/node7.html
https://docs.python.org/3/library/operator.html#operator.__truediv__
https://docs.python.org/2.2/whatsnew/node7.html
https://www.python.org/download/releases/2.2/


with the decimal point. The above example of 2/3 which gives 0 in Python 2 shall be used as 2 / 
3.0 or 2.0 / 3 or 2.0/3.0 to get 0.6666666666666666

Code Python 2 output Python 3 output

3.0 / 2.0 1.5 1.5

2 / 3.0 0.6666666666666666 0.6666666666666666

-3.0 / 2 -1.5 -1.5

There is also the floor division operator (//), which works the same way in both versions: it 
rounds down to the nearest integer. (although a float is returned when used with floats) In both 
versions the // operator maps to __floordiv__.

Code Python 2 output Python 3 output

3 // 2 1 1

2 // 3 0 0

-3 // 2 -2 -2

3.0 // 2.0 1.0 1.0

2.0 // 3 0.0 0.0

-3 // 2.0 -2.0 -2.0

One can explicitly enforce true division or floor division using native functions in the operator 
module:

from operator import truediv, floordiv 
assert truediv(10, 8) == 1.25            # equivalent to `/` in Python 3 
assert floordiv(10, 8) == 1              # equivalent to `//`

While clear and explicit, using operator functions for every division can be tedious. Changing the 
behavior of the / operator will often be preferred. A common practice is to eliminate typical division 
behavior by adding from __future__ import division as the first statement in each module:

# needs to be the first statement in a module 
from __future__ import division

Code Python 2 output Python 3 output

3 / 2 1.5 1.5

2 / 3 0.6666666666666666 0.6666666666666666

https://riptutorial.com/ 394

http://python-reference.readthedocs.io/en/latest/docs/operators/floor_division.html
https://docs.python.org/3/library/operator.html#operator.__floordiv__
https://docs.python.org/3/library/operator.html


Code Python 2 output Python 3 output

-3 / 2 -1.5 -1.5

from __future__ import division guarantees that the / operator represents true division and only 
within the modules that contain the __future__ import, so there are no compelling reasons for not 
enabling it in all new modules.

Note: Some other programming languages use rounding toward zero (truncation) rather than 
rounding down toward negative infinity as Python does (i.e. in those languages -3 / 2 == -1). This 
behavior may create confusion when porting or comparing code.

Note on float operands: As an alternative to from __future__ import division, one could use the 
usual division symbol / and ensure that at least one of the operands is a float: 3 / 2.0 == 1.5. 
However, this can be considered bad practice. It is just too easy to write average = sum(items) / 
len(items) and forget to cast one of the arguments to float. Moreover, such cases may frequently 
evade notice during testing, e.g., if you test on an array containing floats but receive an array of 
ints in production. Additionally, if the same code is used in Python 3, programs that expect 3 / 2 
== 1 to be True will not work correctly.

See PEP 238 for more detailed rationale why the division operator was changed in Python 3 and 
why old-style division should be avoided.

See the Simple Math topic for more about division.

Reduce is no longer a built-in

In Python 2, reduce is available either as a built-in function or from the functools package (version 
2.6 onwards), whereas in Python 3 reduce is available only from functools. However the syntax for 
reduce in both Python2 and Python3 is the same and is reduce(function_to_reduce, list_to_reduce)
.

As an example, let us consider reducing a list to a single value by dividing each of the adjacent 
numbers. Here we use truediv function from the operator library.

In Python 2.x it is as simple as:

Python 2.x2.3

>>> my_list = [1, 2, 3, 4, 5] 
>>> import operator 
>>> reduce(operator.truediv, my_list) 
0.008333333333333333

In Python 3.x the example becomes a bit more complicated:

Python 3.x3.0

https://riptutorial.com/ 395

https://www.python.org/dev/peps/pep-0238/
http://www.riptutorial.com/python/example/1065/division
http://www.riptutorial.com/python/example/1065/division
https://docs.python.org/2/library/operator.html#operator.truediv


>>> my_list = [1, 2, 3, 4, 5] 
>>> import operator, functools 
>>> functools.reduce(operator.truediv, my_list) 
0.008333333333333333

We can also use from functools import reduce to avoid calling reduce with the namespace name.

Differences between range and xrange functions

In Python 2, range function returns a list while xrange creates a special xrange object, which is an 
immutable sequence, which unlike other built-in sequence types, doesn't support slicing and has 
neither index nor count methods:

Python 2.x2.3

print(range(1, 10)) 
# Out: [1, 2, 3, 4, 5, 6, 7, 8, 9] 
 
print(isinstance(range(1, 10), list)) 
# Out: True 
 
print(xrange(1, 10)) 
# Out: xrange(1, 10) 
 
print(isinstance(xrange(1, 10), xrange)) 
# Out: True

In Python 3, xrange was expanded to the range sequence, which thus now creates a range object. 
There is no xrange type:

Python 3.x3.0

print(range(1, 10)) 
# Out: range(1, 10) 
 
print(isinstance(range(1, 10), range)) 
# Out: True 
 
# print(xrange(1, 10)) 
# The output will be: 
#Traceback (most recent call last): 
#  File "<stdin>", line 1, in <module> 
#NameError: name 'xrange' is not defined

Additionally, since Python 3.2, range also supports slicing, index and count:

print(range(1, 10)[3:7]) 
# Out: range(3, 7) 
print(range(1, 10).count(5)) 
# Out: 1 
print(range(1, 10).index(7)) 
# Out: 6

https://riptutorial.com/ 396

https://docs.python.org/2/library/functions.html#range
https://docs.python.org/2/library/functions.html#xrange
https://docs.python.org/3/library/functions.html#func-range


The advantage of using a special sequence type instead of a list is that the interpreter does not 
have to allocate memory for a list and populate it:

Python 2.x2.3

# range(10000000000000000) 
# The output would be: 
# Traceback (most recent call last): 
#  File "<stdin>", line 1, in <module> 
# MemoryError 
 
print(xrange(100000000000000000)) 
# Out: xrange(100000000000000000)

Since the latter behaviour is generally desired, the former was removed in Python 3. If you still 
want to have a list in Python 3, you can simply use the list() constructor on a range object:

Python 3.x3.0

print(list(range(1, 10))) 
# Out: [1, 2, 3, 4, 5, 6, 7, 8, 9]

Compatibility

In order to maintain compatibility between both Python 2.x and Python 3.x versions, you can use 
the builtins module from the external package future to achieve both forward-compatiblity and 
backward-compatiblity:

Python 2.x2.0

#forward-compatible 
from builtins import range 
 
for i in range(10**8): 
    pass

Python 3.x3.0

#backward-compatible 
from past.builtins import xrange 
 
for i in xrange(10**8): 
    pass

The range in future library supports slicing, index and count in all Python versions, just like the built-
in method on Python 3.2+.

Unpacking Iterables

Python 3.x3.0

https://riptutorial.com/ 397

http://python-future.org/compatible_idioms.html#xrange
http://python-future.org/


In Python 3, you can unpack an iterable without knowing the exact number of items in it, and even 
have a variable hold the end of the iterable. For that, you provide a variable that may collect a list 
of values. This is done by placing an asterisk before the name. For example, unpacking a list:

first, second, *tail, last = [1, 2, 3, 4, 5] 
print(first) 
# Out: 1 
print(second) 
# Out: 2 
print(tail) 
# Out: [3, 4] 
print(last) 
# Out: 5

Note: When using the *variable syntax, the variable will always be a list, even if the original type 
wasn't a list. It may contain zero or more elements depending on the number of elements in the 
original list.

first, second, *tail, last = [1, 2, 3, 4] 
print(tail) 
# Out: [3] 
 
first, second, *tail, last = [1, 2, 3] 
print(tail) 
# Out: [] 
print(last) 
# Out: 3

Similarly, unpacking a str:

begin, *tail = "Hello" 
print(begin) 
# Out: 'H' 
print(tail) 
# Out: ['e', 'l', 'l', 'o']

Example of unpacking a date; _ is used in this example as a throwaway variable (we are interested 
only in year value):

person = ('John', 'Doe', (10, 16, 2016)) 
*_, (*_, year_of_birth) = person 
print(year_of_birth) 
# Out: 2016

It is worth mentioning that, since * eats up a variable number of items, you cannot have two *s for 
the same iterable in an assignment - it wouldn't know how many elements go into the first 
unpacking, and how many in the second:

*head, *tail = [1, 2] 
# Out: SyntaxError: two starred expressions in assignment

Python 3.x3.5

https://riptutorial.com/ 398



So far we have discussed unpacking in assignments. * and ** were extended in Python 3.5. It's 
now possible to have several unpacking operations in one expression:

{*range(4), 4, *(5, 6, 7)} 
# Out: {0, 1, 2, 3, 4, 5, 6, 7}

Python 2.x2.0

It is also possible to unpack an iterable into function arguments:

iterable = [1, 2, 3, 4, 5] 
print(iterable) 
# Out: [1, 2, 3, 4, 5] 
print(*iterable) 
# Out: 1 2 3 4 5

Python 3.x3.5

Unpacking a dictionary uses two adjacent stars ** (PEP 448):

tail = {'y': 2, 'z': 3} 
{'x': 1, **tail} 
 # Out: {'x': 1, 'y': 2, 'z': 3}

This allows for both overriding old values and merging dictionaries.

dict1 = {'x': 1, 'y': 1} 
dict2 = {'y': 2, 'z': 3} 
{**dict1, **dict2} 
# Out: {'x': 1, 'y': 2, 'z': 3}

Python 3.x3.0

Python 3 removed tuple unpacking in functions. Hence the following doesn't work in Python 3

# Works in Python 2, but syntax error in Python 3: 
map(lambda (x, y): x + y, zip(range(5), range(5))) 
# Same is true for non-lambdas: 
def example((x, y)): 
    pass 
 
# Works in both Python 2 and Python 3: 
map(lambda x: x[0] + x[1], zip(range(5), range(5))) 
# And non-lambdas, too: 
def working_example(x_y): 
    x, y = x_y 
    pass

See PEP 3113 for detailed rationale.

Raising and handling Exceptions

This is the Python 2 syntax, note the commas , on the raise and except lines:

https://riptutorial.com/ 399

https://docs.python.org/3/whatsnew/3.5.html#pep-448-additional-unpacking-generalizations
https://www.python.org/dev/peps/pep-0448/
https://www.python.org/dev/peps/pep-3113/


Python 2.x2.3

try: 
    raise IOError, "input/output error" 
except IOError, exc: 
    print exc

In Python 3, the , syntax is dropped and replaced by parenthesis and the as keyword:

try: 
    raise IOError("input/output error") 
except IOError as exc: 
    print(exc)

For backwards compatibility, the Python 3 syntax is also available in Python 2.6 onwards, so it 
should be used for all new code that does not need to be compatible with previous versions.

Python 3.x3.0

Python 3 also adds exception chaining, wherein you can signal that some other exception was the 
cause for this exception. For example

try: 
    file = open('database.db') 
except FileNotFoundError as e: 
    raise DatabaseError('Cannot open {}') from e

The exception raised in the except statement is of type DatabaseError, but the original exception is 
marked as the __cause__ attribute of that exception. When the traceback is displayed, the original 
exception will also be displayed in the traceback:

Traceback (most recent call last): 
  File "<stdin>", line 2, in <module> 
FileNotFoundError 
 
The above exception was the direct cause of the following exception: 
 
Traceback (most recent call last): 
  File "<stdin>", line 4, in <module> 
DatabaseError('Cannot open database.db')

If you throw in an except block without explicit chaining:

try: 
    file = open('database.db') 
except FileNotFoundError as e: 
    raise DatabaseError('Cannot open {}')

The traceback is

Traceback (most recent call last): 
  File "<stdin>", line 2, in <module> 
FileNotFoundError 

https://riptutorial.com/ 400

http://www.riptutorial.com/python/example/5533/chain-exceptions-with-raise-from


 
During handling of the above exception, another exception occurred: 
 
Traceback (most recent call last): 
  File "<stdin>", line 4, in <module> 
DatabaseError('Cannot open database.db')

Python 2.x2.0

Neither one is supported in Python 2.x; the original exception and its traceback will be lost if 
another exception is raised in the except block. The following code can be used for compatibility:

import sys 
import traceback 
 
try: 
    funcWithError() 
except: 
    sys_vers = getattr(sys, 'version_info', (0,)) 
    if sys_vers < (3, 0): 
        traceback.print_exc() 
    raise Exception("new exception")

Python 3.x3.3

To "forget" the previously thrown exception, use raise from None

try: 
    file = open('database.db') 
except FileNotFoundError as e: 
    raise DatabaseError('Cannot open {}') from None

Now the traceback would simply be

Traceback (most recent call last): 
  File "<stdin>", line 4, in <module> 
DatabaseError('Cannot open database.db')

Or in order to make it compatible with both Python 2 and 3 you may use the six package like so:

import six 
try: 
    file = open('database.db') 
except FileNotFoundError as e: 
    six.raise_from(DatabaseError('Cannot open {}'), None)

.next() method on iterators renamed

In Python 2, an iterator can be traversed by using a method called next on the iterator itself:

Python 2.x2.3

g = (i for i in range(0, 3)) 

https://riptutorial.com/ 401

https://pythonhosted.org/six


g.next()  # Yields 0 
g.next()  # Yields 1 
g.next()  # Yields 2

In Python 3 the .next method has been renamed to .__next__, acknowledging its “magic” role, so 
calling .next will raise an AttributeError. The correct way to access this functionality in both 
Python 2 and Python 3 is to call the next function with the iterator as an argument.

Python 3.x3.0

g = (i for i in range(0, 3)) 
next(g)  # Yields 0 
next(g)  # Yields 1 
next(g)  # Yields 2

This code is portable across versions from 2.6 through to current releases.

Comparison of different types

Python 2.x2.3

Objects of different types can be compared. The results are arbitrary, but consistent. They are 
ordered such that None is less than anything else, numeric types are smaller than non-numeric 
types, and everything else is ordered lexicographically by type. Thus, an int is less than a str and 
a tuple is greater than a list:

[1, 2] > 'foo' 
# Out: False 
(1, 2) > 'foo' 
# Out: True 
[1, 2] > (1, 2) 
# Out: False 
100 < [1, 'x'] < 'xyz' < (1, 'x') 
# Out: True

This was originally done so a list of mixed types could be sorted and objects would be grouped 
together by type:

l = [7, 'x', (1, 2), [5, 6], 5, 8.0, 'y', 1.2, [7, 8], 'z'] 
sorted(l) 
# Out: [1.2, 5, 7, 8.0, [5, 6], [7, 8], 'x', 'y', 'z', (1, 2)]

Python 3.x3.0

An exception is raised when comparing different (non-numeric) types:

1 < 1.5 
# Out: True 
 
[1, 2] > 'foo' 
# TypeError: unorderable types: list() > str() 
(1, 2) > 'foo' 

https://riptutorial.com/ 402



# TypeError: unorderable types: tuple() > str() 
[1, 2] > (1, 2) 
# TypeError: unorderable types: list() > tuple()

To sort mixed lists in Python 3 by types and to achieve compatibility between versions, you have 
to provide a key to the sorted function:

>>> list = [1, 'hello', [3, 4], {'python': 2}, 'stackoverflow', 8, {'python': 3}, [5, 6]] 
>>> sorted(list, key=str) 
# Out: [1, 8, [3, 4], [5, 6], 'hello', 'stackoverflow', {'python': 2}, {'python': 3}]

Using str as the key function temporarily converts each item to a string only for the purposes of 
comparison. It then sees the string representation starting with either [, ', { or 0-9 and it's able to 
sort those (and all the following characters).

User Input

In Python 2, user input is accepted using the raw_input function,

Python 2.x2.3

user_input = raw_input()

While in Python 3 user input is accepted using the input function.

Python 3.x3.0

user_input = input()

In Python 2, the input function will accept input and interpret it. While this can be useful, it has 
several security considerations and was removed in Python 3. To access the same functionality, 
eval(input()) can be used.

To keep a script portable across the two versions, you can put the code below near the top of your 
Python script:

try: 
    input = raw_input 
except NameError: 
    pass

Dictionary method changes

In Python 3, many of the dictionary methods are quite different in behaviour from Python 2, and 
many were removed as well: has_key, iter* and view* are gone. Instead of d.has_key(key), which 
had been long deprecated, one must now use key in d.

In Python 2, dictionary methods keys, values and items return lists. In Python 3 they return view 
objects instead; the view objects are not iterators, and they differ from them in two ways, namely:

https://riptutorial.com/ 403



they have size (one can use the len function on them)•
they can be iterated over many times•

Additionally, like with iterators, the changes in the dictionary are reflected in the view objects.

Python 2.7 has backported these methods from Python 3; they're available as viewkeys, viewvalues 
and viewitems. To transform Python 2 code to Python 3 code, the corresponding forms are:

d.keys(), d.values() and d.items() of Python 2 should be changed to list(d.keys()), 
list(d.values()) and list(d.items())

•

d.iterkeys(), d.itervalues() and d.iteritems() should be changed to iter(d.keys()), or even 
better, iter(d); iter(d.values()) and iter(d.items()) respectively

•

and finally Python 2.7 method calls d.viewkeys(), d.viewvalues() and d.viewitems() can be 
replaced with d.keys(), d.values() and d.items().

•

Porting Python 2 code that iterates over dictionary keys, values or items while mutating it is 
sometimes tricky. Consider:

d = {'a': 0, 'b': 1, 'c': 2, '!': 3} 
for key in d.keys(): 
    if key.isalpha(): 
        del d[key]

The code looks as if it would work similarly in Python 3, but there the keys method returns a view 
object, not a list, and if the dictionary changes size while being iterated over, the Python 3 code 
will crash with RuntimeError: dictionary changed size during iteration. The solution is of course to 
properly write for key in list(d).

Similarly, view objects behave differently from iterators: one cannot use next() on them, and one 
cannot resume iteration; it would instead restart; if Python 2 code passes the return value of 
d.iterkeys(), d.itervalues() or d.iteritems() to a method that expects an iterator instead of an 
iterable, then that should be iter(d), iter(d.values()) or iter(d.items()) in Python 3.

exec statement is a function in Python 3

In Python 2, exec is a statement, with special syntax: exec code [in globals[, locals]]. In Python 3 
exec is now a function: exec(code, [, globals[, locals]]), and the Python 2 syntax will raise a 
SyntaxError.

As print was changed from statement into a function, a __future__ import was also added. 
However, there is no from __future__ import exec_function, as it is not needed: the exec statement 
in Python 2 can be also used with syntax that looks exactly like the exec function invocation in 
Python 3. Thus you can change the statements

Python 2.x2.3

exec 'code' 
exec 'code' in global_vars 
exec 'code' in global_vars, local_vars

https://riptutorial.com/ 404



to forms

Python 3.x3.0

exec('code') 
exec('code', global_vars) 
exec('code', global_vars, local_vars)

and the latter forms are guaranteed to work identically in both Python 2 and Python 3.

hasattr function bug in Python 2

In Python 2, when a property raise a error, hasattr will ignore this property, returning False.

class A(object): 
    @property 
    def get(self): 
        raise IOError 
 
 
class B(object): 
    @property 
    def get(self): 
        return 'get in b' 
 
a = A() 
b = B() 
 
print 'a hasattr get: ', hasattr(a, 'get') 
# output False in Python 2 (fixed, True in Python 3) 
print 'b hasattr get', hasattr(b, 'get') 
# output True in Python 2 and Python 3

This bug is fixed in Python3. So if you use Python 2, use

try: 
    a.get 
except AttributeError: 
    print("no get property!")

or use getattr instead

p = getattr(a, "get", None) 
if p is not None: 
    print(p) 
else: 
    print("no get property!")

Renamed modules

A few modules in the standard library have been renamed:

https://riptutorial.com/ 405



Old name New name

_winreg winreg

ConfigParser configparser

copy_reg copyreg

Queue queue

SocketServer socketserver

_markupbase markupbase

repr reprlib

test.test_support test.support

Tkinter tkinter

tkFileDialog tkinter.filedialog

urllib / urllib2
urllib, urllib.parse, urllib.error, urllib.response, urllib.request, 
urllib.robotparser

Some modules have even been converted from files to libraries. Take tkinter and urllib from above 
as an example.

Compatibility

When maintaining compatibility between both Python 2.x and 3.x versions, you can use the future 
external package to enable importing top-level standard library packages with Python 3.x names 
on Python 2.x versions.

Octal Constants

In Python 2, an octal literal could be defined as

>>> 0755  # only Python 2

To ensure cross-compatibility, use

0o755  # both Python 2 and Python 3

All classes are "new-style classes" in Python 3.

In Python 3.x all classes are new-style classes; when defining a new class python implicitly makes 
it inherit from object. As such, specifying object in a class definition is a completely optional:

https://riptutorial.com/ 406

http://python-future.org/imports.html#standard-library-imports
http://python-future.org/imports.html#standard-library-imports
http://python-future.org/imports.html#standard-library-imports


Python 3.x3.0

class X: pass 
class Y(object): pass

Both of these classes now contain object in their mro (method resolution order):

Python 3.x3.0

>>> X.__mro__ 
(__main__.X, object) 
 
>>> Y.__mro__ 
(__main__.Y, object)

In Python 2.x classes are, by default, old-style classes; they do not implicitly inherit from object. 
This causes the semantics of classes to differ depending on if we explicitly add object as a base 
class:

Python 2.x2.3

class X: pass 
class Y(object): pass

In this case, if we try to print the __mro__ of Y, similar output as that in the Python 3.x case will 
appear:

Python 2.x2.3

>>> Y.__mro__ 
(<class '__main__.Y'>, <type 'object'>)

This happens because we explicitly made Y inherit from object when defining it: class Y(object): 
pass. For class X which does not inherit from object the __mro__ attribute does not exist, trying to 
access it results in an AttributeError.

In order to ensure compatibility between both versions of Python, classes can be defined with 
object as a base class:

class mycls(object): 
    """I am fully compatible with Python 2/3"""

Alternatively, if the __metaclass__ variable is set to type at global scope, all subsequently defined 
classes in a given module are implicitly new-style without needing to explicitly inherit from object:

__metaclass__ = type 
 
class mycls: 
    """I am also fully compatible with Python 2/3"""

Removed operators <> and ``, synonymous with != and repr()

https://riptutorial.com/ 407



In Python 2, <> is a synonym for !=; likewise, `foo` is a synonym for repr(foo).

Python 2.x2.7

>>> 1 <> 2 
True 
>>> 1 <> 1 
False 
>>> foo = 'hello world' 
>>> repr(foo) 
"'hello world'" 
>>> `foo` 
"'hello world'"

Python 3.x3.0

>>> 1 <> 2 
  File "<stdin>", line 1 
    1 <> 2 
       ^ 
SyntaxError: invalid syntax 
>>> `foo` 
  File "<stdin>", line 1 
    `foo` 
    ^ 
SyntaxError: invalid syntax

encode/decode to hex no longer available

Python 2.x2.7

"1deadbeef3".decode('hex') 
# Out: '\x1d\xea\xdb\xee\xf3' 
'\x1d\xea\xdb\xee\xf3'.encode('hex') 
# Out: 1deadbeef3

Python 3.x3.0

"1deadbeef3".decode('hex') 
# Traceback (most recent call last): 
#   File "<stdin>", line 1, in <module> 
# AttributeError: 'str' object has no attribute 'decode' 
 
b"1deadbeef3".decode('hex') 
# Traceback (most recent call last): 
#   File "<stdin>", line 1, in <module> 
# LookupError: 'hex' is not a text encoding; use codecs.decode() to handle arbitrary codecs 
 
'\x1d\xea\xdb\xee\xf3'.encode('hex') 
# Traceback (most recent call last): 
#   File "<stdin>", line 1, in <module> 
# LookupError: 'hex' is not a text encoding; use codecs.encode() to handle arbitrary codecs 
 
b'\x1d\xea\xdb\xee\xf3'.encode('hex') 
# Traceback (most recent call last): 
#  File "<stdin>", line 1, in <module> 
# AttributeError: 'bytes' object has no attribute 'encode'

https://riptutorial.com/ 408



However, as suggested by the error message, you can use the codecs module to achieve the same 
result:

import codecs 
codecs.decode('1deadbeef4', 'hex') 
# Out: b'\x1d\xea\xdb\xee\xf4' 
codecs.encode(b'\x1d\xea\xdb\xee\xf4', 'hex') 
# Out: b'1deadbeef4'

Note that codecs.encode returns a bytes object. To obtain a str object just decode to ASCII:

codecs.encode(b'\x1d\xea\xdb\xee\xff', 'hex').decode('ascii') 
# Out: '1deadbeeff'

cmp function removed in Python 3

In Python 3 the cmp built-in function was removed, together with the __cmp__ special method.

From the documentation:

The cmp() function should be treated as gone, and the __cmp__() special method is no 
longer supported. Use __lt__() for sorting, __eq__() with __hash__(), and other rich 
comparisons as needed. (If you really need the cmp() functionality, you could use the 
expression (a > b) - (a < b) as the equivalent for cmp(a, b).)

Moreover all built-in functions that accepted the cmp parameter now only accept the key keyword 
only parameter.

In the functools module there is also useful function cmp_to_key(func) that allows you to convert 
from a cmp-style function to a key-style function:

Transform an old-style comparison function to a key function. Used with tools that 
accept key functions (such as sorted(), min(), max(), heapq.nlargest(), heapq.nsmallest()
, itertools.groupby()). This function is primarily used as a transition tool for programs 
being converted from Python 2 which supported the use of comparison functions.

Leaked variables in list comprehension

Python 2.x2.3

x = 'hello world!' 
vowels = [x for x in 'AEIOU'] 
 
print (vowels) 
# Out: ['A', 'E', 'I', 'O', 'U'] 
print(x) 
# Out: 'U' 

Python 3.x3.0

x = 'hello world!' 

https://riptutorial.com/ 409

https://docs.python.org/3/library/codecs.html
https://docs.python.org/3/library/codecs.html#codecs.encode
https://docs.python.org/2/library/functions.html#cmp
https://docs.python.org/2/reference/datamodel.html#object.__cmp__
https://docs.python.org/2/library/functions.html#cmp
https://docs.python.org/2/reference/datamodel.html#object.__cmp__
https://docs.python.org/3/reference/datamodel.html#object.__lt__
https://docs.python.org/3/reference/datamodel.html#object.__eq__
https://docs.python.org/3/reference/datamodel.html#object.__hash__
https://docs.python.org/2/library/functions.html#cmp
https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/functools.html#functools.cmp_to_key
https://docs.python.org/3/library/functions.html#sorted
https://docs.python.org/3/library/functions.html#min
https://docs.python.org/3/library/functions.html#max
https://docs.python.org/3/library/heapq.html#heapq.nlargest
https://docs.python.org/3/library/heapq.html#heapq.nsmallest
https://docs.python.org/3/library/itertools.html#itertools.groupby


vowels = [x for x in 'AEIOU'] 
 
print (vowels) 
# Out: ['A', 'E', 'I', 'O', 'U'] 
print(x) 
# Out: 'hello world!'

As can be seen from the example, in Python 2 the value of x was leaked: it masked hello world! 
and printed out U, since this was the last value of x when the loop ended.

However, in Python 3 x prints the originally defined hello world!, since the local variable from the 
list comprehension does not mask variables from the surrounding scope.

Additionally, neither generator expressions (available in Python since 2.5) nor dictionary or set 
comprehensions (which were backported to Python 2.7 from Python 3) leak variables in Python 2.

Note that in both Python 2 and Python 3, variables will leak into the surrounding scope when using 
a for loop:

x = 'hello world!' 
vowels = [] 
for x in 'AEIOU': 
    vowels.append(x) 
print(x) 
# Out: 'U'

map()

map() is a builtin that is useful for applying a function to elements of an iterable. In Python 2, map 
returns a list. In Python 3, map returns a map object, which is a generator.

# Python 2.X 
>>> map(str, [1, 2, 3, 4, 5]) 
['1', '2', '3', '4', '5'] 
>>> type(_) 
>>> <class 'list'> 
 
# Python 3.X 
>>> map(str, [1, 2, 3, 4, 5]) 
<map object at 0x*> 
>>> type(_) 
<class 'map'> 
 
# We need to apply map again because we "consumed" the previous map.... 
>>> map(str, [1, 2, 3, 4, 5]) 
>>> list(_) 
['1', '2', '3', '4', '5']

In Python 2, you can pass None to serve as an identity function. This no longer works in Python 3.

Python 2.x2.3

>>> map(None, [0, 1, 2, 3, 0, 4]) 
[0, 1, 2, 3, 0, 4]

https://riptutorial.com/ 410



Python 3.x3.0

>>> list(map(None, [0, 1, 2, 3, 0, 5])) 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: 'NoneType' object is not callable

Moreover, when passing more than one iterable as argument in Python 2, map pads the shorter 
iterables with None (similar to itertools.izip_longest). In Python 3, iteration stops after the shortest 
iterable.

In Python 2:

Python 2.x2.3

>>> map(None, [1, 2, 3], [1, 2], [1, 2, 3, 4, 5]) 
[(1, 1, 1), (2, 2, 2), (3, None, 3), (None, None, 4), (None, None, 5)]

In Python 3:

Python 3.x3.0

>>> list(map(lambda x, y, z: (x, y, z), [1, 2, 3], [1, 2], [1, 2, 3, 4, 5])) 
[(1, 1, 1), (2, 2, 2)] 
 
# to obtain the same padding as in Python 2 use zip_longest from itertools 
>>> import itertools 
>>> list(itertools.zip_longest([1, 2, 3], [1, 2], [1, 2, 3, 4, 5])) 
[(1, 1, 1), (2, 2, 2), (3, None, 3), (None, None, 4), (None, None, 5)]

Note: instead of map consider using list comprehensions, which are Python 2/3 compatible. 
Replacing map(str, [1, 2, 3, 4, 5]):

>>> [str(i) for i in [1, 2, 3, 4, 5]] 
['1', '2', '3', '4', '5']

filter(), map() and zip() return iterators instead of sequences

Python 2.x2.7

In Python 2 filter, map and zip built-in functions return a sequence. map and zip always return a list 
while with filter the return type depends on the type of given parameter:

>>> s = filter(lambda x: x.isalpha(), 'a1b2c3') 
>>> s 
'abc' 
>>> s = map(lambda x: x * x, [0, 1, 2]) 
>>> s 
[0, 1, 4] 
>>> s = zip([0, 1, 2], [3, 4, 5]) 
>>> s 
[(0, 3), (1, 4), (2, 5)]

Python 3.x3.0

https://riptutorial.com/ 411

https://docs.python.org/2/library/functions.html#filter
https://docs.python.org/2/library/functions.html#map
https://docs.python.org/2/library/functions.html#zip


In Python 3 filter, map and zip return iterator instead:

>>> it = filter(lambda x: x.isalpha(), 'a1b2c3') 
>>> it 
<filter object at 0x00000098A55C2518> 
>>> ''.join(it) 
'abc' 
>>> it = map(lambda x: x * x, [0, 1, 2]) 
>>> it 
<map object at 0x000000E0763C2D30> 
>>> list(it) 
[0, 1, 4] 
>>> it = zip([0, 1, 2], [3, 4, 5]) 
>>> it 
<zip object at 0x000000E0763C52C8> 
>>> list(it) 
[(0, 3), (1, 4), (2, 5)]

Since Python 2 itertools.izip is equivalent of Python 3 zip izip has been removed on Python 3.

Absolute/Relative Imports

In Python 3, PEP 404 changes the way imports work from Python 2. Implicit relative imports are 
no longer allowed in packages and from ... import * imports are only allowed in module level 
code.

To achieve Python 3 behavior in Python 2:

the absolute imports feature can be enabled with from __future__ import absolute_import•
explicit relative imports are encouraged in place of implicit relative imports•

For clarification, in Python 2, a module can import the contents of another module located in the 
same directory as follows:

import foo

Notice the location of foo is ambiguous from the import statement alone. This type of implicit 
relative import is thus discouraged in favor of explicit relative imports, which look like the following:

from .moduleY import spam 
from .moduleY import spam as ham 
from . import moduleY 
from ..subpackage1 import moduleY 
from ..subpackage2.moduleZ import eggs 
from ..moduleA import foo 
from ...package import bar 
from ...sys import path

The dot . allows an explicit declaration of the module location within the directory tree.

https://riptutorial.com/ 412

https://docs.python.org/3.5/library/functions.html#filter
https://docs.python.org/3.5/library/functions.html#map
https://docs.python.org/3.5/library/functions.html#zip
https://docs.python.org/2.7/library/itertools.html#itertools.izip
https://www.python.org/dev/peps/pep-0404/#id18
https://www.python.org/dev/peps/pep-0328/
https://www.python.org/dev/peps/pep-0328/#guido-s-decision


More on Relative Imports

Consider some user defined package called shapes. The directory structure is as follows:

shapes 
├── __init__.py 
| 
├── circle.py 
| 
├── square.py 
| 
└── triangle.py

circle.py, square.py and triangle.py all import util.py as a module. How will they refer to a module 
in the same level?

 from . import util # use util.PI, util.sq(x), etc

OR

 from .util import * #use PI, sq(x), etc to call functions

The . is used for same-level relative imports.

Now, consider an alternate layout of the shapes module:

shapes 
├── __init__.py 
| 
├── circle 
│   ├── __init__.py 
│   └── circle.py 
| 
├── square 
│   ├── __init__.py 
│   └── square.py 
| 
├── triangle 
│   ├── __init__.py 
│   ├── triangle.py 
| 
└── util.py

Now, how will these 3 classes refer to util.py?

 from .. import util # use util.PI, util.sq(x), etc

OR

 from ..util import * # use PI, sq(x), etc to call functions

The .. is used for parent-level relative imports. Add more .s with number of levels between the 

https://riptutorial.com/ 413



parent and child.

File I/O

file is no longer a builtin name in 3.x (open still works).

Internal details of file I/O have been moved to the standard library io module, which is also the 
new home of StringIO:

import io 
assert io.open is open # the builtin is an alias 
buffer = io.StringIO() 
buffer.write('hello, ') # returns number of characters written 
buffer.write('world!\n') 
buffer.getvalue() # 'hello, world!\n'

The file mode (text vs binary) now determines the type of data produced by reading a file (and 
type required for writing):

with open('data.txt') as f: 
    first_line = next(f) 
    assert type(first_line) is str 
with open('data.bin', 'rb') as f: 
    first_kb = f.read(1024) 
    assert type(first_kb) is bytes

The encoding for text files defaults to whatever is returned by locale.getpreferredencoding(False). 
To specify an encoding explicitly, use the encoding keyword parameter:

with open('old_japanese_poetry.txt', 'shift_jis') as text: 
    haiku = text.read()

The round() function tie-breaking and return type

round() tie breaking

In Python 2, using round() on a number equally close to two integers will return the one furthest 
from 0. For example:

Python 2.x2.7

round(1.5)  # Out: 2.0 
round(0.5)  # Out: 1.0 
round(-0.5)  # Out: -1.0 
round(-1.5)  # Out: -2.0

In Python 3 however, round() will return the even integer (aka bankers' rounding). For example:

Python 3.x3.0

round(1.5)  # Out: 2 

https://riptutorial.com/ 414

https://docs.python.org/2/library/functions.html#round
https://docs.python.org/3/library/functions.html#round


round(0.5)  # Out: 0 
round(-0.5)  # Out: 0 
round(-1.5)  # Out: -2

The round() function follows the half to even rounding strategy that will round half-way numbers to 
the nearest even integer (for example, round(2.5) now returns 2 rather than 3.0).

As per reference in Wikipedia, this is also known as unbiased rounding, convergent rounding, 
statistician's rounding, Dutch rounding, Gaussian rounding, or odd-even rounding.

Half to even rounding is part of the IEEE 754 standard and it's also the default rounding mode in 
Microsoft's .NET.

This rounding strategy tends to reduce the total rounding error. Since on average the amount of 
numbers that are rounded up is the same as the amount of numbers that are rounded down, 
rounding errors cancel out. Other rounding methods instead tend to have an upwards or 
downwards bias in the average error.

round() return type

The round() function returns a float type in Python 2.7

Python 2.x2.7

round(4.8) 
# 5.0

Starting from Python 3.0, if the second argument (number of digits) is omitted, it returns an int.

Python 3.x3.0

round(4.8) 
# 5

True, False and None

In Python 2, True, False and None are built-in constants. Which means it's possible to reassign 
them.

Python 2.x2.0

True, False = False, True 
True   # False 
False  # True

You can't do this with None since Python 2.4.

Python 2.x2.4

https://riptutorial.com/ 415

https://en.wikipedia.org/wiki/Rounding#Round_half_to_even
https://en.wikipedia.org/wiki/Rounding#Round_half_to_even
https://en.wikipedia.org/wiki/IEEE_floating_point#Roundings_to_nearest


None = None  # SyntaxError: cannot assign to None

In Python 3, True, False, and None are now keywords.

Python 3.x3.0

True, False = False, True  # SyntaxError: can't assign to keyword 
 
None = None  # SyntaxError: can't assign to keyword

Return value when writing to a file object

In Python 2, writing directly to a file handle returns None:

Python 2.x2.3

hi = sys.stdout.write('hello world\n') 
# Out: hello world 
type(hi) 
# Out: <type 'NoneType'>

In Python 3, writing to a handle will return the number of characters written when writing text, and 
the number of bytes written when writing bytes:

Python 3.x3.0

import sys 
 
char_count = sys.stdout.write('hello world �\n') 
# Out: hello world � 
char_count 
# Out: 14 
 
byte_count = sys.stdout.buffer.write(b'hello world \xf0\x9f\x90\x8d\n') 
# Out: hello world � 
byte_count 
# Out: 17

long vs. int

In Python 2, any integer larger than a C ssize_t would be converted into the long data type, 
indicated by an L suffix on the literal. For example, on a 32 bit build of Python:

Python 2.x2.7

>>> 2**31 
2147483648L 
>>> type(2**31) 
<type 'long'> 
>>> 2**30 
1073741824 
>>> type(2**30) 
<type 'int'> 

https://riptutorial.com/ 416



>>> 2**31 - 1  # 2**31 is long and long - int is long 
2147483647L

However, in Python 3, the long data type was removed; no matter how big the integer is, it will be 
an int.

Python 3.x3.0

2**1024 
# Output: 
179769313486231590772930519078902473361797697894230657273430081157732675805500963132708477322407536021120113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082952085005768838150682342462881473913110540827237163350510684586298239947245938479716304835356329624224137216
 
print(-(2**1024)) 
# Output: -
179769313486231590772930519078902473361797697894230657273430081157732675805500963132708477322407536021120113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082952085005768838150682342462881473913110540827237163350510684586298239947245938479716304835356329624224137216
 
type(2**1024) 
# Output: <class 'int'>

Class Boolean Value

Python 2.x2.7

In Python 2, if you want to define a class boolean value by yourself, you need to implement the 
__nonzero__ method on your class. The value is True by default.

class MyClass: 
    def __nonzero__(self): 
        return False 
 
my_instance = MyClass() 
print bool(MyClass)       # True 
print bool(my_instance)   # False

Python 3.x3.0

In Python 3, __bool__ is used instead of __nonzero__

class MyClass: 
    def __bool__(self): 
        return False 
 
my_instance = MyClass() 
print(bool(MyClass))       # True 
print(bool(my_instance))   # False

Read Incompatibilities moving from Python 2 to Python 3 online: 
https://riptutorial.com/python/topic/809/incompatibilities-moving-from-python-2-to-python-3

https://riptutorial.com/ 417

https://riptutorial.com/python/topic/809/incompatibilities-moving-from-python-2-to-python-3


Chapter 80: Indentation

Examples

Indentation Errors

The spacing should be even and uniform throughout. Improper indentation can cause an 
IndentationError or cause the program to do something unexpected. The following example raises 
an IndentationError:

a = 7 
if a > 5: 
  print "foo" 
else: 
  print "bar" 
 print "done"

Or if the line following a colon is not indented, an IndentationError will also be raised:

if True: 
print "true"

If you add indentation where it doesn't belong, an IndentationError will be raised:

if  True: 
    a = 6 
        b = 5

If you forget to un-indent functionality could be lost. In this example None is returned instead of the 
expected False:

def isEven(a): 
    if a%2 ==0: 
        return True 
        #this next line should be even with the if 
        return False 
print isEven(7)

Simple example

For Python, Guido van Rossum based the grouping of statements on indentation. The reasons for 
this are explained in the first section of the "Design and History Python FAQ". Colons, :, are used 
to declare an indented code block, such as the following example:

class ExampleClass: 
    #Every function belonging to a class must be indented equally 
    def __init__(self): 
        name = "example" 

https://riptutorial.com/ 418

https://docs.python.org/3/faq/design.html
https://docs.python.org/3/faq/design.html#why-are-colons-required-for-the-if-while-def-class-statements


 
    def someFunction(self, a): 
        #Notice everything belonging to a function must be indented 
        if a > 5: 
            return True 
        else: 
            return False 
 
#If a function is not indented to the same level it will not be considers as part of the 
parent class 
def separateFunction(b): 
    for i in b: 
    #Loops are also indented and nested conditions start a new indentation 
        if i == 1: 
            return True 
    return False 
 
separateFunction([2,3,5,6,1])

Spaces or Tabs?

The recommended indentation is 4 spaces but tabs or spaces can be used so long as they are 
consistent. Do not mix tabs and spaces in Python as this will cause an error in Python 3 and 
can causes errors in Python 2.

How Indentation is Parsed

Whitespace is handled by the lexical analyzer before being parsed.

The lexical analyzer uses a stack to store indentation levels. At the beginning, the stack contains 
just the value 0, which is the leftmost position. Whenever a nested block begins, the new 
indentation level is pushed on the stack, and an "INDENT" token is inserted into the token stream 
which is passed to the parser. There can never be more than one "INDENT" token in a row (
IndentationError).

When a line is encountered with a smaller indentation level, values are popped from the stack until 
a value is on top which is equal to the new indentation level (if none is found, a syntax error 
occurs). For each value popped, a "DEDENT" token is generated. Obviously, there can be multiple 
"DEDENT" tokens in a row.

The lexical analyzer skips empty lines (those containing only whitespace and possibly comments), 
and will never generate either "INDENT" or "DEDENT" tokens for them.

At the end of the source code, "DEDENT" tokens are generated for each indentation level left on 
the stack, until just the 0 is left.

For example:

if foo: 
    if bar: 
        x = 42 
else: 

https://riptutorial.com/ 419

https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
http://stackoverflow.com/questions/2034517/pythons-interpretation-of-tabs-and-spaces-to-indent/25471702#25471702


    print foo

is analyzed as:

<if> <foo> <:>                    [0] 
<INDENT> <if> <bar> <:>           [0, 4] 
<INDENT> <x> <=> <42>             [0, 4, 8] 
<DEDENT> <DEDENT> <else> <:>      [0] 
<INDENT> <print> <foo>            [0, 2] 
<DEDENT> 

The parser than handles the "INDENT" and "DEDENT" tokens as block delimiters.

Read Indentation online: https://riptutorial.com/python/topic/2597/indentation

https://riptutorial.com/ 420

https://riptutorial.com/python/topic/2597/indentation


Chapter 81: Indexing and Slicing

Syntax

obj[start:stop:step]•
slice(stop)•
slice(start, stop[, step])•

Parameters

Paramer Description

obj The object that you want to extract a "sub-object" from

start
The index of obj that you want the sub-object to start from (keep in mind that 
Python is zero-indexed, meaning that the first item of obj has an index of 0). If 
omitted, defaults to 0.

stop
The (non-inclusive) index of obj that you want the sub-object to end at. If omitted, 
defaults to len(obj).

step Allows you to select only every step item. If omitted, defaults to 1.

Remarks

You can unify the concept of slicing strings with that of slicing other sequences by viewing strings 
as an immutable collection of characters, with the caveat that a unicode character is represented 
by a string of length 1.

In mathematical notation you can consider slicing to use a half-open interval of [start, end), that 
is to say that the start is included but the end is not. The half-open nature of the interval has the 
advantage that len(x[:n]) = n where len(x) > =n, while the interval being closed at the start has 
the advantage that x[n:n+1] = [x[n]] where x is a list with len(x) >= n, thus keeping consistency 
between indexing and slicing notation.

Examples

Basic Slicing

For any iterable (for eg. a string, list, etc), Python allows you to slice and return a substring or 
sublist of its data.

Format for slicing:

https://riptutorial.com/ 421



iterable_name[start:stop:step]

where,

start is the first index of the slice. Defaults to 0 (the index of the first element)•
stop one past the last index of the slice. Defaults to len(iterable)•
step is the step size (better explained by the examples below)•

Examples:

a = "abcdef" 
a            # "abcdef" 
             # Same as a[:] or a[::] since it uses the defaults for all three indices 
a[-1]        # "f" 
a[:]         # "abcdef" 
a[::]        # "abcdef" 
a[3:]        # "def" (from index 3, to end(defaults to size of iterable)) 
a[:4]        # "abcd" (from beginning(default 0) to position 4 (excluded)) 
a[2:4]       # "cd" (from position 2, to position 4 (excluded)) 

In addition, any of the above can be used with the step size defined:

a[::2]       # "ace" (every 2nd element) 
a[1:4:2]     # "bd" (from index 1, to index 4 (excluded), every 2nd element)

Indices can be negative, in which case they're computed from the end of the sequence

a[:-1]     # "abcde" (from index 0 (default), to the second last element (last element - 1)) 
a[:-2]     # "abcd" (from index 0 (default), to the third last element (last element -2)) 
a[-1:]     # "f" (from the last element to the end (default len()) 

Step sizes can also be negative, in which case slice will iterate through the list in reverse order:

a[3:1:-1]   # "dc" (from index 2 to None (default), in reverse order)

This construct is useful for reversing an iterable

a[::-1]     # "fedcba" (from last element (default len()-1), to first, in reverse order(-1))

Notice that for negative steps the default end_index is None (see 
http://stackoverflow.com/a/12521981 )

a[5:None:-1] # "fedcba" (this is equivalent to a[::-1]) 
a[5:0:-1]    # "fedcb" (from the last element (index 5) to second element (index 1)

Making a shallow copy of an array

A quick way to make a copy of an array (as opposed to assigning a variable with another 
reference to the original array) is:

https://riptutorial.com/ 422

http://stackoverflow.com/a/12521981


arr[:]

Let's examine the syntax. [:] means that start, end, and slice are all omitted. They default to 0, 
len(arr), and 1, respectively, meaning that subarray that we are requesting will have all of the 
elements of arr from the beginning until the very end.

In practice, this looks something like:

arr = ['a', 'b', 'c'] 
copy = arr[:] 
arr.append('d') 
print(arr)    # ['a', 'b', 'c', 'd'] 
print(copy)   # ['a', 'b', 'c']

As you can see, arr.append('d') added d to arr, but copy remained unchanged!

Note that this makes a shallow copy, and is identical to arr.copy().

Reversing an object

You can use slices to very easily reverse a str, list, or tuple (or basically any collection object 
that implements slicing with the step parameter). Here is an example of reversing a string, 
although this applies equally to the other types listed above:

s = 'reverse me!' 
s[::-1]    # '!em esrever'

Let's quickly look at the syntax. [::-1] means that the slice should be from the beginning until the 
end of the string (because start and end are omitted) and a step of -1 means that it should move 
through the string in reverse.

Indexing custom classes: __getitem__, __setitem__ and __delitem__

class MultiIndexingList: 
    def __init__(self, value): 
        self.value = value 
 
    def __repr__(self): 
        return repr(self.value) 
 
    def __getitem__(self, item): 
        if isinstance(item, (int, slice)): 
            return self.__class__(self.value[item]) 
        return [self.value[i] for i in item] 
 
    def __setitem__(self, item, value): 
        if isinstance(item, int): 
            self.value[item] = value 
        elif isinstance(item, slice): 
            raise ValueError('Cannot interpret slice with multiindexing') 
        else: 
            for i in item: 
                if isinstance(i, slice): 

https://riptutorial.com/ 423



                    raise ValueError('Cannot interpret slice with multiindexing') 
                self.value[i] = value 
 
    def __delitem__(self, item): 
        if isinstance(item, int): 
            del self.value[item] 
        elif isinstance(item, slice): 
            del self.value[item] 
        else: 
            if any(isinstance(elem, slice) for elem in item): 
                raise ValueError('Cannot interpret slice with multiindexing') 
            item = sorted(item, reverse=True) 
            for elem in item: 
                del self.value[elem]

This allows slicing and indexing for element access:

a = MultiIndexingList([1,2,3,4,5,6,7,8]) 
a 
# Out: [1, 2, 3, 4, 5, 6, 7, 8] 
a[1,5,2,6,1] 
# Out: [2, 6, 3, 7, 2] 
a[4, 1, 5:, 2, ::2] 
# Out: [5, 2, [6, 7, 8], 3, [1, 3, 5, 7]] 
#       4|1-|----50:---|2-|-----::2-----   <-- indicated which element came from which index

While setting and deleting elements only allows for comma seperated integer indexing (no slicing):

a[4] = 1000 
a 
# Out: [1, 2, 3, 4, 1000, 6, 7, 8] 
a[2,6,1] = 100 
a 
# Out: [1, 100, 100, 4, 1000, 6, 100, 8] 
del a[5] 
a 
# Out: [1, 100, 100, 4, 1000, 100, 8] 
del a[4,2,5] 
a 
# Out: [1, 100, 4, 8]

Slice assignment

Another neat feature using slices is slice assignment. Python allows you to assign new slices to 
replace old slices of a list in a single operation.

This means that if you have a list, you can replace multiple members in a single assignment:

lst = [1, 2, 3] 
lst[1:3] = [4, 5] 
print(lst) # Out: [1, 4, 5]

The assignment shouldn't match in size as well, so if you wanted to replace an old slice with a new 
slice that is different in size, you could:

https://riptutorial.com/ 424



lst = [1, 2, 3, 4, 5] 
lst[1:4] = [6] 
print(lst) # Out: [1, 6, 5]

It's also possible to use the known slicing syntax to do things like replacing the entire list:

lst = [1, 2, 3] 
lst[:] = [4, 5, 6] 
print(lst) # Out: [4, 5, 6]

Or just the last two members:

lst = [1, 2, 3] 
lst[-2:] = [4, 5, 6] 
print(lst) # Out: [1, 4, 5, 6]

Slice objects

Slices are objects in themselves and can be stored in variables with the built-in slice() function. 
Slice variables can be used to make your code more readable and to promote reuse.

>>> programmer_1 = [ 1956, 'Guido', 'van Rossum', 'Python', 'Netherlands'] 
>>> programmer_2 = [ 1815, 'Ada', 'Lovelace', 'Analytical Engine', 'England'] 
>>> name_columns = slice(1, 3) 
>>> programmer_1[name_columns] 
['Guido', 'van Rossum'] 
>>> programmer_2[name_columns] 
['Ada', 'Lovelace']

Basic Indexing

Python lists are 0-based i.e. the first element in the list can be accessed by the index 0

arr = ['a', 'b', 'c', 'd'] 
print(arr[0]) 
>> 'a'

You can access the second element in the list by index 1, third element by index 2 and so on:

print(arr[1]) 
>> 'b' 
print(arr[2]) 
>> 'c'

You can also use negative indices to access elements from the end of the list. eg. index -1 will 
give you the last element of the list and index -2 will give you the second-to-last element of the list:

print(arr[-1]) 
>> 'd' 
print(arr[-2]) 
>> 'c'

https://riptutorial.com/ 425



If you try to access an index which is not present in the list, an IndexError will be raised:

print arr[6] 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
IndexError: list index out of range

Read Indexing and Slicing online: https://riptutorial.com/python/topic/289/indexing-and-slicing

https://riptutorial.com/ 426

https://riptutorial.com/python/topic/289/indexing-and-slicing


Chapter 82: Input, Subset and Output 
External Data Files using Pandas

Introduction

This section shows basic code for reading, sub-setting and writing external data files using 
pandas.

Examples

Basic Code to Import, Subset and Write External Data Files Using Pandas

# Print the working directory 
import os 
print os.getcwd() 
# C:\Python27\Scripts 
 
# Set the working directory 
os.chdir('C:/Users/general1/Documents/simple Python files') 
print os.getcwd() 
# C:\Users\general1\Documents\simple Python files 
 
# load pandas 
import pandas as pd 
 
# read a csv data file named 'small_dataset.csv' containing 4 lines and 3 variables 
my_data = pd.read_csv("small_dataset.csv") 
my_data 
#     x   y   z 
# 0   1   2   3 
# 1   4   5   6 
# 2   7   8   9 
# 3  10  11  12 
 
my_data.shape       # number of rows and columns in data set 
# (4, 3) 
 
my_data.shape[0]    # number of rows in data set 
# 4 
 
my_data.shape[1]    # number of columns in data set 
# 3 
 
# Python uses 0-based indexing.  The first row or column in a data set is located 
# at position 0.  In R the first row or column in a data set is located 
# at position 1. 
 
# Select the first two rows 
my_data[0:2] 
#    x   y   z 
#0   1   2   3 
#1   4   5   6 
 

https://riptutorial.com/ 427



# Select the second and third rows 
my_data[1:3] 
#    x  y  z 
# 1  4  5  6 
# 2  7  8  9 
 
# Select the third row 
my_data[2:3] 
#    x   y   z 
#2   7   8   9 
 
# Select the first two elements of the first column 
my_data.iloc[0:2, 0:1] 
#    x 
# 0  1 
# 1  4 
 
# Select the first element of the variables y and z 
my_data.loc[0, ['y', 'z']] 
# y    2 
# z    3 
 
# Select the first three elements of the variables y and z 
my_data.loc[0:2, ['y', 'z']] 
#    y  z 
# 0  2  3 
# 1  5  6 
# 2  8  9 
 
# Write the first three elements of the variables y and z 
# to an external file.  Here index = 0 means do not write row names. 
 
my_data2 = my_data.loc[0:2, ['y', 'z']] 
 
my_data2.to_csv('my.output.csv', index = 0)

Read Input, Subset and Output External Data Files using Pandas online: 
https://riptutorial.com/python/topic/8854/input--subset-and-output-external-data-files-using-pandas

https://riptutorial.com/ 428

https://riptutorial.com/python/topic/8854/input--subset-and-output-external-data-files-using-pandas


Chapter 83: Introduction to RabbitMQ using 
AMQPStorm

Remarks

The latest version of AMQPStorm is available at pypi or you can install it using pip

pip install amqpstorm

Examples

How to consume messages from RabbitMQ

Start with importing the library.

from amqpstorm import Connection

When consuming messages, we first need to define a function to handle the incoming messages. 
This can be any callable function, and has to take a message object, or a message tuple 
(depending on the to_tuple parameter defined in start_consuming).

Besides processing the data from the incoming message, we will also have to Acknowledge or 
Reject the message. This is important, as we need to let RabbitMQ know that we properly 
received and processed the message.

def on_message(message): 
    """This function is called on message received. 
 
    :param message: Delivered message. 
    :return: 
    """ 
    print("Message:", message.body) 
 
    # Acknowledge that we handled the message without any issues. 
    message.ack() 
 
    # Reject the message. 
    # message.reject() 
 
    # Reject the message, and put it back in the queue. 
    # message.reject(requeue=True)

Next we need to set up the connection to the RabbitMQ server.

connection = Connection('127.0.0.1', 'guest', 'guest')

After that we need to set up a channel. Each connection can have multiple channels, and in 

https://riptutorial.com/ 429

https://github.com/eandersson/amqpstorm
https://pypi.python.org/pypi/AMQPStorm
https://pip.pypa.io/en/stable/


general when performing multi-threaded tasks, it's recommended (but not required) to have one 
per thread.

channel = connection.channel()

Once we have our channel set up, we need to let RabbitMQ know that we want to start consuming 
messages. In this case we will use our previously defined on_message function to handle all our 
consumed messages.

The queue we will be listening to on the RabbitMQ server is going to be simple_queue, and we are 
also telling RabbitMQ that we will be acknowledging all incoming messages once we are done 
with them.

channel.basic.consume(callback=on_message, queue='simple_queue', no_ack=False)

Finally we need to start the IO loop to start processing messages delivered by the RabbitMQ 
server.

channel.start_consuming(to_tuple=False)

How to publish messages to RabbitMQ

Start with importing the library.

from amqpstorm import Connection 
from amqpstorm import Message

Next we need to open a connection to the RabbitMQ server.

connection = Connection('127.0.0.1', 'guest', 'guest')

After that we need to set up a channel. Each connection can have multiple channels, and in 
general when performing multi-threaded tasks, it's recommended (but not required) to have one 
per thread.

channel = connection.channel()

Once we have our channel set up, we can start to prepare our message.

# Message Properties. 
properties = { 
    'content_type': 'text/plain', 
    'headers': {'key': 'value'} 
} 
 
# Create the message. 
message = Message.create(channel=channel, body='Hello World!', properties=properties)

https://riptutorial.com/ 430



Now we can publish the message by simply calling publish and providing a routing_key. In this 
case we are going to send the message to a queue called simple_queue.

message.publish(routing_key='simple_queue')

How to create a delayed queue in RabbitMQ

First we need to set up two basic channels, one for the main queue, and one for the delay queue. 
In my example at the end, I include a couple of additional flags that are not required, but makes 
the code more reliable; such as confirm delivery, delivery_mode and durable. You can find more 
information on these in the RabbitMQ manual.

After we have set up the channels we add a binding to the main channel that we can use to send 
messages from the delay channel to our main queue.

channel.queue.bind(exchange='amq.direct', routing_key='hello', queue='hello')

Next we need to configure our delay channel to forward messages to the main queue once they 
have expired.

delay_channel.queue.declare(queue='hello_delay', durable=True, arguments={ 
    'x-message-ttl': 5000, 
    'x-dead-letter-exchange': 'amq.direct', 
    'x-dead-letter-routing-key': 'hello' 
})

x-message-ttl (Message - Time To Live)

This is normally used to automatically remove old messages in the queue after a specific 
duration, but by adding two optional arguments we can change this behaviour, and instead 
have this parameter determine in milliseconds how long messages will stay in the delay 
queue.

•

x-dead-letter-routing-key

This variable allows us to transfer the message to a different queue once they have expired, 
instead of the default behaviour of removing it completely.

•

x-dead-letter-exchange

This variable determines which Exchange used to transfer the message from hello_delay to 
hello queue.

•

Publishing to the delay queue

When we are done setting up all the basic Pika parameters you simply send a message to the 
delay queue using basic publish.

delay_channel.basic.publish(exchange='', 

https://riptutorial.com/ 431

http://www.rabbitmq.com/tutorials/amqp-concepts.html
https://www.rabbitmq.com/ttl.html
http://www.rabbitmq.com/dlx.html
http://www.rabbitmq.com/dlx.html


                            routing_key='hello_delay', 
                            body='test', 
                            properties={'delivery_mod': 2})

Once you have executed the script you should see the following queues created in your RabbitMQ 
management module. 

Example.

from amqpstorm import Connection 
 
connection = Connection('127.0.0.1', 'guest', 'guest') 
 
# Create normal 'Hello World' type channel. 
channel = connection.channel() 
channel.confirm_deliveries() 
channel.queue.declare(queue='hello', durable=True) 
 
# We need to bind this channel to an exchange, that will be used to transfer 
# messages from our delay queue. 
channel.queue.bind(exchange='amq.direct', routing_key='hello', queue='hello') 
 
# Create our delay channel. 
delay_channel = connection.channel() 
delay_channel.confirm_deliveries() 
 
# This is where we declare the delay, and routing for our delay channel. 
delay_channel.queue.declare(queue='hello_delay', durable=True, arguments={ 
    'x-message-ttl': 5000, # Delay until the message is transferred in milliseconds. 
    'x-dead-letter-exchange': 'amq.direct', # Exchange used to transfer the message from A to 
B. 
    'x-dead-letter-routing-key': 'hello' # Name of the queue we want the message transferred 
to. 
}) 
 
delay_channel.basic.publish(exchange='', 
                            routing_key='hello_delay', 
                            body='test', 
                            properties={'delivery_mode': 2}) 
 
print("[x] Sent")

Read Introduction to RabbitMQ using AMQPStorm online: 
https://riptutorial.com/python/topic/3373/introduction-to-rabbitmq-using-amqpstorm

https://riptutorial.com/ 432

https://riptutorial.com/python/topic/3373/introduction-to-rabbitmq-using-amqpstorm


Chapter 84: IoT Programming with Python 
and Raspberry PI

Examples

Example - Temperature sensor

Interfacing of DS18B20 with Raspberry pi

Connection of DS18B20 with Raspberry pi

You can see there are three terminal

Vcc1. 
Gnd2. 
Data (One wire protocol)3. 

https://riptutorial.com/ 433

https://i.stack.imgur.com/OBA2X.png


R1 is 4.7k ohm resistance for pulling up the voltage level

Vcc should be connected to any of the 5v or 3.3v pins of Raspberry pi (PIN : 01, 02, 04, 17).1. 
Gnd should be connected to any of the Gnd pins of Raspberry pi (PIN : 06, 09, 14, 20, 25).2. 
DATA should be connected to (PIN : 07)3. 

Enabling the one-wire interface from the RPi side

Login to Raspberry pi using putty or any other linux/unix terminal.4. 

After login, open the /boot/config.txt file in your favourite browser.

nano /boot/config.txt

5. 

Now add the this line dtoverlay=w1–gpio to the end of the file.6. 

Now reboot the Raspberry pi sudo reboot.7. 

Log in to Raspberry pi, and run sudo modprobe g1-gpio8. 

Then run sudo modprobe w1-therm9. 

Now go to the directory /sys/bus/w1/devices cd /sys/bus/w1/devices10. 

Now you will found out a virtual directory created of your temperature sensor starting from 
28-********.

11. 

https://riptutorial.com/ 434

https://i.stack.imgur.com/dSFFQ.png


Go to this directory cd 28-********12. 

Now there is a file name w1-slave, This file contains the temperature and other information 
like CRC. cat w1-slave.

13. 

Now write a module in python to read the temperature

import glob 
import time 
 
RATE = 30 
sensor_dirs = glob.glob("/sys/bus/w1/devices/28*") 
 
if len(sensor_dirs) != 0: 
    while True: 
        time.sleep(RATE) 
        for directories in sensor_dirs: 
            temperature_file = open(directories + "/w1_slave") 
            # Reading the files 
            text = temperature_file.read() 
            temperature_file.close() 
            # Split the text with new lines (\n) and select the second line. 
            second_line = text.split("\n")[1] 
            # Split the line into words, and select the 10th word 
            temperature_data = second_line.split(" ")[9] 
            # We will read after ignoring first two character. 
            temperature = float(temperature_data[2:]) 
            # Now normalise the temperature by dividing 1000. 
            temperature = temperature / 1000 
            print 'Address : '+str(directories.split('/')[-1])+', Temperature : 
'+str(temperature)

Above python module will print the temperature vs address for infinite time. RATE parameter is 
defined to change or adjust the frequency of temperature query from the sensor.

GPIO pin diagram

[https://www.element14.com/community/servlet/JiveServlet/previewBody/73950-102-11-
339300/pi3_gpio.png][3]

1. 

Read IoT Programming with Python and Raspberry PI online: 
https://riptutorial.com/python/topic/10735/iot-programming-with-python-and-raspberry-pi

https://riptutorial.com/ 435

https://www.element14.com/community/servlet/JiveServlet/previewBody/73950-102-11-339300/pi3_gpio.png%5D%5B3%5D
https://www.element14.com/community/servlet/JiveServlet/previewBody/73950-102-11-339300/pi3_gpio.png%5D%5B3%5D
https://riptutorial.com/python/topic/10735/iot-programming-with-python-and-raspberry-pi


Chapter 85: Iterables and Iterators

Examples

Iterator vs Iterable vs Generator

An iterable is an object that can return an iterator. Any object with state that has an __iter__ 
method and returns an iterator is an iterable. It may also be an object without state that 
implements a __getitem__ method. - The method can take indices (starting from zero) and raise an 
IndexError when the indices are no longer valid.

Python's str class is an example of a __getitem__ iterable.

An Iterator is an object that produces the next value in a sequence when you call next(*object*) 
on some object. Moreover, any object with a __next__ method is an iterator. An iterator raises 
StopIteration after exhausting the iterator and cannot be re-used at this point.

Iterable classes:

Iterable classes define an __iter__ and a __next__ method. Example of an iterable class :

class MyIterable: 
 
    def __iter__(self): 
 
         return self 
 
    def __next__(self): 
         #code 
 
#Classic iterable object in older versions of python, __getitem__ is still supported... 
class MySequence: 
 
    def __getitem__(self, index): 
 
         if (condition): 
             raise IndexError 
         return (item) 
 
 #Can produce a plain `iterator` instance by using iter(MySequence())

Trying to instantiate the abstract class from the collections module to better see this.

Example:

Python 2.x2.3

import collections 
>>> collections.Iterator() 
>>> TypeError: Cant instantiate abstract class Iterator with abstract methods next

Python 3.x3.0

https://riptutorial.com/ 436



>>> TypeError: Cant instantiate abstract class Iterator with abstract methods __next__

Handle Python 3 compatibility for iterable classes in Python 2 by doing the following:

Python 2.x2.3

class MyIterable(object): #or collections.Iterator, which I'd recommend.... 
 
     .... 
 
     def __iter__(self): 
 
          return self 
 
     def next(self): #code 
 
     __next__ = next

Both of these are now iterators and can be looped through:

ex1 = MyIterableClass() 
ex2 = MySequence() 
 
for (item) in (ex1): #code 
for (item) in (ex2): #code

Generators are simple ways to create iterators. A generator is an iterator and an iterator is an 
iterable.

What can be iterable

Iterable can be anything for which items are received one by one, forward only. Built-in Python 
collections are iterable:

[1, 2, 3]     # list, iterate over items 
(1, 2, 3)     # tuple 
{1, 2, 3}     # set 
{1: 2, 3: 4}  # dict, iterate over keys

Generators return iterables:

def foo():  # foo isn't iterable yet... 
    yield 1 
 
res = foo()  # ...but res already is

Iterating over entire iterable

s = {1, 2, 3} 
 
# get every element in s 
for a in s: 

https://riptutorial.com/ 437



    print a  # prints 1, then 2, then 3 
 
# copy into list 
l1 = list(s)  # l1 = [1, 2, 3] 
 
# use list comprehension 
l2 = [a * 2 for a in s if a > 2]  # l2 = [6]

Verify only one element in iterable

Use unpacking to extract the first element and ensure it's the only one:

a, = iterable 
 
def foo(): 
    yield 1 
 
a, = foo()  # a = 1 
 
nums = [1, 2, 3] 
a, = nums  # ValueError: too many values to unpack

Extract values one by one

Start with iter() built-in to get iterator over iterable and use next() to get elements one by one 
until StopIteration is raised signifying the end:

s = {1, 2}   # or list or generator or even iterator 
i = iter(s)  # get iterator 
a = next(i)  # a = 1 
b = next(i)  # b = 2 
c = next(i)  # raises StopIteration

Iterator isn't reentrant!

def gen(): 
    yield 1 
 
iterable = gen() 
for a in iterable: 
    print a 
 
# What was the first item of iterable? No way to get it now. 
# Only to get a new iterator 
gen()

Read Iterables and Iterators online: https://riptutorial.com/python/topic/2343/iterables-and-iterators

https://riptutorial.com/ 438

https://riptutorial.com/python/topic/2343/iterables-and-iterators


Chapter 86: Itertools Module

Syntax

import itertools•

Examples

Grouping items from an iterable object using a function

Start with an iterable which needs to be grouped

lst = [("a", 5, 6), ("b", 2, 4), ("a", 2, 5), ("c", 2, 6)]

Generate the grouped generator, grouping by the second element in each tuple:

def testGroupBy(lst): 
    groups = itertools.groupby(lst, key=lambda x: x[1]) 
    for key, group in groups: 
        print(key, list(group)) 
 
testGroupBy(lst) 
 
# 5 [('a', 5, 6)] 
# 2 [('b', 2, 4), ('a', 2, 5), ('c', 2, 6)]

Only groups of consecutive elements are grouped. You may need to sort by the same key before 
calling groupby For E.g, (Last element is changed)

lst = [("a", 5, 6), ("b", 2, 4), ("a", 2, 5), ("c", 5, 6)] 
testGroupBy(lst) 
 
# 5 [('a', 5, 6)] 
# 2 [('b', 2, 4), ('a', 2, 5)] 
# 5 [('c', 5, 6)]

The group returned by groupby is an iterator that will be invalid before next iteration. E.g the 
following will not work if you want the groups to be sorted by key. Group 5 is empty below because 
when group 2 is fetched it invalidates 5

lst = [("a", 5, 6), ("b", 2, 4), ("a", 2, 5), ("c", 2, 6)] 
groups = itertools.groupby(lst, key=lambda x: x[1]) 
for key, group in sorted(groups): 
    print(key, list(group)) 
 
# 2 [('c', 2, 6)] 
# 5 []

To correctly do sorting, create a list from the iterator before sorting

https://riptutorial.com/ 439



groups = itertools.groupby(lst, key=lambda x: x[1]) 
for key, group in sorted((key, list(group)) for key, group in groups): 
    print(key, list(group)) 
 
# 2 [('b', 2, 4), ('a', 2, 5), ('c', 2, 6)] 
# 5 [('a', 5, 6)]

Take a slice of a generator

Itertools "islice" allows you to slice a generator:

results = fetch_paged_results()  # returns a generator 
limit = 20  # Only want the first 20 results 
for data in itertools.islice(results, limit): 
    print(data)

Normally you cannot slice a generator:

def gen(): 
    n = 0 
    while n < 20: 
        n += 1 
        yield n 
 
for part in gen()[:3]: 
    print(part)

Will give

Traceback (most recent call last): 
  File "gen.py", line 6, in <module> 
    for part in gen()[:3]: 
TypeError: 'generator' object is not subscriptable

However, this works:

import itertools 
 
def gen(): 
    n = 0 
    while n < 20: 
        n += 1 
        yield n 
 
for part in itertools.islice(gen(), 3): 
    print(part)

Note that like a regular slice, you can also use start, stop and step arguments:

itertools.islice(iterable, 1, 30, 3)

itertools.product

https://riptutorial.com/ 440



This function lets you iterate over the Cartesian product of a list of iterables.

For example,

for x, y in itertools.product(xrange(10), xrange(10)): 
    print x, y

is equivalent to

for x in xrange(10): 
    for y in xrange(10): 
        print x, y

Like all python functions that accept a variable number of arguments, we can pass a list to 
itertools.product for unpacking, with the * operator.

Thus,

its = [xrange(10)] * 2 
for x,y in itertools.product(*its): 
    print x, y

produces the same results as both of the previous examples.

>>> from itertools import product 
>>> a=[1,2,3,4] 
>>> b=['a','b','c'] 
>>> product(a,b) 
<itertools.product object at 0x0000000002712F78> 
>>> for i in product(a,b): 
...     print i 
... 
(1, 'a') 
(1, 'b') 
(1, 'c') 
(2, 'a') 
(2, 'b') 
(2, 'c') 
(3, 'a') 
(3, 'b') 
(3, 'c') 
(4, 'a') 
(4, 'b') 
(4, 'c')

itertools.count

Introduction:

This simple function generates infinite series of numbers. For example...

for number in itertools.count(): 
    if number > 20: 

https://riptutorial.com/ 441



        break 
    print(number)

Note that we must break or it prints forever!

Output:

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10

Arguments:

count() takes two arguments, start and step:

for number in itertools.count(start=10, step=4): 
    print(number) 
    if number > 20: 
        break

Output:

10 
14 
18 
22

itertools.takewhile

itertools.takewhile enables you to take items from a sequence until a condition first becomes False.

def is_even(x): 
    return x % 2 == 0 
 
 
lst = [0, 2, 4, 12, 18, 13, 14, 22, 23, 44] 
result = list(itertools.takewhile(is_even, lst)) 
 
print(result) 
 

This outputs [0, 2, 4, 12, 18].

Note that, the first number that violates the predicate (i.e.: the function returning a Boolean value) 
is_even

https://riptutorial.com/ 442



is, 13. Once takewhile encounters a value that produces False for the given predicate, it breaks out.

The output produced by takewhile is similar to the output generated from the code below.

def takewhile(predicate, iterable): 
    for x in iterable: 
        if predicate(x): 
            yield x 
        else: 
            break

Note: The concatenation of results produced by takewhile and dropwhile produces the original 
iterable.

result = list(itertools.takewhile(is_even, lst)) + list(itertools.dropwhile(is_even, lst))

itertools.dropwhile

itertools.dropwhile enables you to take items from a sequence after a condition first becomes False
.

def is_even(x): 
    return x % 2 == 0 
 
 
lst = [0, 2, 4, 12, 18, 13, 14, 22, 23, 44] 
result = list(itertools.dropwhile(is_even, lst)) 
 
print(result) 
 

This outputs [13, 14, 22, 23, 44].

(This example is same as the example for takewhile but using dropwhile.)

Note that, the first number that violates the predicate (i.e.: the function returning a Boolean value) 
is_even is, 13. All the elements before that, are discarded.

The output produced by dropwhile is similar to the output generated from the code below.

def dropwhile(predicate, iterable): 
    iterable = iter(iterable) 
    for x in iterable: 
        if not predicate(x): 
            yield x 
            break 
    for x in iterable: 
        yield x

The concatenation of results produced by takewhile and dropwhile produces the original iterable.

result = list(itertools.takewhile(is_even, lst)) + list(itertools.dropwhile(is_even, lst))

https://riptutorial.com/ 443



Zipping two iterators until they are both exhausted

Similar to the built-in function zip(), itertools.zip_longest will continue iterating beyond the end of 
the shorter of two iterables.

from itertools import zip_longest 
a = [i for i in range(5)] # Length is 5 
b = ['a', 'b', 'c', 'd', 'e', 'f', 'g'] # Length is 7 
for i in zip_longest(a, b): 
    x, y = i  # Note that zip longest returns the values as a tuple 
    print(x, y)

An optional fillvalue argument can be passed (defaults to '') like so:

for i in zip_longest(a, b, fillvalue='Hogwash!'): 
    x, y = i  # Note that zip longest returns the values as a tuple 
    print(x, y)

In Python 2.6 and 2.7, this function is called itertools.izip_longest.

Combinations method in Itertools Module

itertools.combinations will return a generator of the k-combination sequence of a list.

In other words: It will return a generator of tuples of all the possible k-wise combinations of the 
input list.

For Example:

If you have a list:

a = [1,2,3,4,5] 
b = list(itertools.combinations(a, 2)) 
print b

Output:

[(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)]

The above output is a generator converted to a list of tuples of all the possible pair-wise 
combinations of the input list a

You can also find all the 3-combinations:

a = [1,2,3,4,5] 
b = list(itertools.combinations(a, 3)) 
print b

Output:

[(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4), 

https://riptutorial.com/ 444



 (1, 3, 5), (1, 4, 5), (2, 3, 4), (2, 3, 5), 
 (2, 4, 5), (3, 4, 5)]

Chaining multiple iterators together

Use itertools.chain to create a single generator which will yield the values from several 
generators in sequence.

from itertools import chain 
a = (x for x in ['1', '2', '3', '4']) 
b = (x for x in ['x', 'y', 'z']) 
' '.join(chain(a, b))

Results in:

'1 2 3 4 x y z'

As an alternate constructor, you can use the classmethod chain.from_iterable which takes as its 
single parameter an iterable of iterables. To get the same result as above:

' '.join(chain.from_iterable([a,b])

While chain can take an arbitrary number of arguments, chain.from_iterable is the only way to 
chain an infinite number of iterables.

itertools.repeat

Repeat something n times:

>>> import itertools 
>>> for i in itertools.repeat('over-and-over', 3): 
...    print(i) 
over-and-over 
over-and-over 
over-and-over

Get an accumulated sum of numbers in an iterable

Python 3.x3.2

accumulate yields a cumulative sum (or product) of numbers.

>>> import itertools as it 
>>> import operator 
 
>>> list(it.accumulate([1,2,3,4,5])) 
[1, 3, 6, 10, 15] 
 
>>> list(it.accumulate([1,2,3,4,5], func=operator.mul)) 
[1, 2, 6, 24, 120]

https://riptutorial.com/ 445

https://docs.python.org/3.4/library/itertools.html#itertools.chain


Cycle through elements in an iterator

cycle is an infinite iterator.

>>> import itertools as it 
>>> it.cycle('ABCD') 
A B C D A B C D A B C D ...

Therefore, take care to give boundaries when using this to avoid an infinite loop. Example:

>>> # Iterate over each element in cycle for a fixed range 
>>> cycle_iterator = it.cycle('abc123') 
>>> [next(cycle_iterator) for i in range(0, 10)] 
['a', 'b', 'c', '1', '2', '3', 'a', 'b', 'c', '1']

itertools.permutations

itertools.permutations returns a generator with successive r-length permutations of elements in 
the iterable.

a = [1,2,3] 
list(itertools.permutations(a)) 
# [(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)] 
 
list(itertools.permutations(a, 2)) 
[(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)]

if the list a has duplicate elements, the resulting permutations will have duplicate elements, you 
can use set to get unique permutations:

a = [1,2,1] 
list(itertools.permutations(a)) 
# [(1, 2, 1), (1, 1, 2), (2, 1, 1), (2, 1, 1), (1, 1, 2), (1, 2, 1)] 
 
set(itertools.permutations(a)) 
# {(1, 1, 2), (1, 2, 1), (2, 1, 1)}

Read Itertools Module online: https://riptutorial.com/python/topic/1564/itertools-module

https://riptutorial.com/ 446

https://riptutorial.com/python/topic/1564/itertools-module


Chapter 87: JSON Module

Remarks

For full documentation including version-specific functionality, please check the official 
documentation.

Types

Defaults

the json module will handle encoding and decoding of the below types by default:

De-serialisation types:

JSON Python

object dict

array list

string str

number (int) int

number (real) float

true, false True, False

null None

The json module also understands NaN, Infinity, and -Infinity as their corresponding float values, 
which is outside the JSON spec.

Serialisation types:

Python JSON

dict object

list, tuple array

str string

int, float, (int/float)-derived Enums number

https://riptutorial.com/ 447

https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html


Python JSON

True true

False false

None null

To disallow encoding of NaN, Infinity, and -Infinity you must encode with allow_nan=False. This 
will then raise a ValueError if you attempt to encode these values.

Custom (de-)serialisation

There are various hooks which allow you to handle data that needs to be represented differently. 
Use of functools.partial allows you to partially apply the relevant parameters to these functions 
for convenience.

Serialisation:

You can provide a function that operates on objects before they are serialised like so:

# my_json module 
 
import json 
from functools import partial 
 
def serialise_object(obj): 
    # Do something to produce json-serialisable data 
    return dict_obj 
 
dump = partial(json.dump, default=serialise_object) 
dumps = partial(json.dumps, default=serialise_object)

De-serialisation:

There are various hooks that are handled by the json functions, such as object_hook and 
parse_float. For an exhaustive list for your version of python, see here.

# my_json module 
 
import json 
from functools import partial 
 
def deserialise_object(dict_obj): 
    # Do something custom 
    return obj 
 
def deserialise_float(str_obj): 
    # Do something custom 
    return obj 
 
load = partial(json.load, object_hook=deserialise_object, parse_float=deserialise_float) 

https://riptutorial.com/ 448

https://docs.python.org/3/library/json.html#json.load


loads = partial(json.loads, object_hook=deserialise_object, parse_float=deserialise_float)

Further custom (de-)serialisation:

The json module also allows for extension/substitution of the json.JSONEncoder and json.JSONDecoder 
to handle miscellaneous types. The hooks documented above can be added as defaults by 
creating an equivalently named method. To use these simply pass the class as the cls parameter 
to the relevant function. Use of functools.partial allows you to partially apply the cls parameter to 
these functions for convenience, e.g.

# my_json module 
 
import json 
from functools import partial 
 
class MyEncoder(json.JSONEncoder): 
    # Do something custom 
 
class MyDecoder(json.JSONDecoder): 
    # Do something custom 
 
dump = partial(json.dump, cls=MyEncoder) 
dumps = partial(json.dumps, cls=MyEncoder) 
load = partial(json.load, cls=MyDecoder) 
loads = partial(json.loads, cls=MyDecoder)

Examples

Creating JSON from Python dict

import json 
d = { 
    'foo': 'bar', 
    'alice': 1, 
    'wonderland': [1, 2, 3] 
} 
json.dumps(d)

The above snippet will return the following:

'{"wonderland": [1, 2, 3], "foo": "bar", "alice": 1}'

Creating Python dict from JSON

import json 
s = '{"wonderland": [1, 2, 3], "foo": "bar", "alice": 1}' 
json.loads(s)

The above snippet will return the following:

https://riptutorial.com/ 449



{u'alice': 1, u'foo': u'bar', u'wonderland': [1, 2, 3]}

Storing data in a file

The following snippet encodes the data stored in d into JSON and stores it in a file (replace 
filename with the actual name of the file).

import json 
 
d = { 
    'foo': 'bar', 
    'alice': 1, 
    'wonderland': [1, 2, 3] 
} 
 
with open(filename, 'w') as f: 
    json.dump(d, f)

Retrieving data from a file

The following snippet opens a JSON encoded file (replace filename with the actual name of the 
file) and returns the object that is stored in the file.

import json 
 
with open(filename, 'r') as f: 
    d = json.load(f)

`load` vs `loads`, `dump` vs `dumps`

The json module contains functions for both reading and writing to and from unicode strings, and 
reading and writing to and from files. These are differentiated by a trailing s in the function name. 
In these examples we use a StringIO object, but the same functions would apply for any file-like 
object.

Here we use the string-based functions:

import json 
 
data = {u"foo": u"bar", u"baz": []} 
json_string = json.dumps(data) 
# u'{"foo": "bar", "baz": []}' 
json.loads(json_string) 
# {u"foo": u"bar", u"baz": []}

And here we use the file-based functions:

import json 
 
from io import StringIO 
 

https://riptutorial.com/ 450



json_file = StringIO() 
data = {u"foo": u"bar", u"baz": []} 
json.dump(data, json_file) 
json_file.seek(0)  # Seek back to the start of the file before reading 
json_file_content = json_file.read() 
# u'{"foo": "bar", "baz": []}' 
json_file.seek(0)  # Seek back to the start of the file before reading 
json.load(json_file) 
# {u"foo": u"bar", u"baz": []}

As you can see the main difference is that when dumping json data you must pass the file handle 
to the function, as opposed to capturing the return value. Also worth noting is that you must seek 
to the start of the file before reading or writing, in order to avoid data corruption. When opening a 
file the cursor is placed at position 0, so the below would also work:

import json 
 
json_file_path = './data.json' 
data = {u"foo": u"bar", u"baz": []} 
 
with open(json_file_path, 'w') as json_file: 
    json.dump(data, json_file) 
 
with open(json_file_path) as json_file: 
    json_file_content = json_file.read() 
    # u'{"foo": "bar", "baz": []}' 
 
with open(json_file_path) as json_file: 
    json.load(json_file) 
    # {u"foo": u"bar", u"baz": []}

Having both ways of dealing with json data allows you to idiomatically and efficiently work with 
formats which build upon json, such as pyspark's json-per-line:

# loading from a file 
data = [json.loads(line) for line in open(file_path).splitlines()] 
 
# dumping to a file 
with open(file_path, 'w') as json_file: 
    for item in data: 
        json.dump(item, json_file) 
        json_file.write('\n')

Calling `json.tool` from the command line to pretty-print JSON output

Given some JSON file "foo.json" like:

{"foo": {"bar": {"baz": 1}}}

we can call the module directly from the command line (passing the filename as an argument) to 
pretty-print it:

$ python -m json.tool foo.json 

https://riptutorial.com/ 451



{ 
    "foo": { 
        "bar": { 
            "baz": 1 
        } 
    } 
}

The module will also take input from STDOUT, so (in Bash) we equally could do:

$ cat foo.json | python -m json.tool

Formatting JSON output

Let's say we have the following data:

>>> data = {"cats": [{"name": "Tubbs", "color": "white"}, {"name": "Pepper", "color": 
"black"}]}

Just dumping this as JSON does not do anything special here:

>>> print(json.dumps(data)) 
{"cats": [{"name": "Tubbs", "color": "white"}, {"name": "Pepper", "color": "black"}]}

Setting indentation to get prettier output

If we want pretty printing, we can set an indent size:

>>> print(json.dumps(data, indent=2)) 
{ 
  "cats": [ 
    { 
      "name": "Tubbs", 
      "color": "white" 
    }, 
    { 
      "name": "Pepper", 
      "color": "black" 
    } 
  ] 
}

Sorting keys alphabetically to get consistent 
output

By default the order of keys in the output is undefined. We can get them in alphabetical order to 
make sure we always get the same output:

https://riptutorial.com/ 452



>>> print(json.dumps(data, sort_keys=True)) 
{"cats": [{"color": "white", "name": "Tubbs"}, {"color": "black", "name": "Pepper"}]}

Getting rid of whitespace to get compact 
output

We might want to get rid of the unnecessary spaces, which is done by setting separator strings 
different from the default ', ' and ': ':

>>>print(json.dumps(data, separators=(',', ':'))) 
{"cats":[{"name":"Tubbs","color":"white"},{"name":"Pepper","color":"black"}]}

JSON encoding custom objects

If we just try the following:

import json 
from datetime import datetime 
data = {'datetime': datetime(2016, 9, 26, 4, 44, 0)} 
print(json.dumps(data))

we get an error saying TypeError: datetime.datetime(2016, 9, 26, 4, 44) is not JSON serializable.

To be able to serialize the datetime object properly, we need to write custom code for how to 
convert it:

class DatetimeJSONEncoder(json.JSONEncoder): 
    def default(self, obj): 
        try: 
            return obj.isoformat() 
        except AttributeError: 
            # obj has no isoformat method; let the builtin JSON encoder handle it 
            return super(DatetimeJSONEncoder, self).default(obj)

and then use this encoder class instead of json.dumps:

encoder = DatetimeJSONEncoder() 
print(encoder.encode(data)) 
# prints {"datetime": "2016-09-26T04:44:00"}

Read JSON Module online: https://riptutorial.com/python/topic/272/json-module

https://riptutorial.com/ 453

https://riptutorial.com/python/topic/272/json-module


Chapter 88: kivy - Cross-platform Python 
Framework for NUI Development

Introduction

NUI : A natural user interface (NUI) is a system for human-computer interaction that the user 
operates through intuitive actions related to natural, everyday human behavior.

Kivy is a Python library for development of multi-touch enabled media rich applications which can 
be installed on different devices. Multi-touch refers to the ability of a touch-sensing surface 
(usually a touch screen or a trackpad) to detect or sense input from two or more points of contact 
simultaneously.

Examples

First App

To create an kivy application

sub class the app class1. 
Implement the build method, which will return the widget.2. 
Instantiate the class an invoke the run.3. 

from kivy.app import App 
from kivy.uix.label import Label 
 
class Test(App): 
    def build(self): 
        return Label(text='Hello world') 
 
if __name__ == '__main__': 
    Test().run()

Explanation

from kivy.app import App

The above statement will import the parent class app. This will be present in your installation 
directory your_installtion_directory/kivy/app.py

from kivy.uix.label import Label

The above statement will import the ux element Label. All the ux element are present in your 
installation directory your_installation_directory/kivy/uix/.

https://riptutorial.com/ 454



class Test(App):

The above statement is for to create your app and class name will be your app name. This class is 
inherited the parent app class.

def build(self):

The above statement override the build method of app class. Which will return the widget that 
needs to be shown when you will start the app.

return Label(text='Hello world')

The above statement is the body of the build method. It is returning the Label with its text Hello 
world.

if __name__ == '__main__':

The above statement is the entry point from where python interpreter start executing your app.

Test().run()

The above statement Initialise your Test class by creating its instance. And invoke the app class 
function run().

Your app will look like the below picture.

https://riptutorial.com/ 455



Read kivy - Cross-platform Python Framework for NUI Development online: 
https://riptutorial.com/python/topic/10743/kivy---cross-platform-python-framework-for-nui-
development

https://riptutorial.com/ 456

https://i.stack.imgur.com/CnCNj.png
https://riptutorial.com/python/topic/10743/kivy---cross-platform-python-framework-for-nui-development
https://riptutorial.com/python/topic/10743/kivy---cross-platform-python-framework-for-nui-development


Chapter 89: Linked List Node

Examples

Write a simple Linked List Node in python

A linked list is either:

the empty list, represented by None, or•
a node that contains a cargo object and a reference to a linked list.•

#! /usr/bin/env python 
 
class Node: 
      def __init__(self, cargo=None, next=None): 
          self.car = cargo 
          self.cdr = next 
      def __str__(self): 
          return str(self.car) 
 
 
      def display(lst): 
          if lst: 
             w("%s " % lst) 
             display(lst.cdr) 
          else: 
             w("nil\n")

Read Linked List Node online: https://riptutorial.com/python/topic/6916/linked-list-node

https://riptutorial.com/ 457

https://riptutorial.com/python/topic/6916/linked-list-node


Chapter 90: Linked lists

Introduction

A linked list is a collection of nodes, each made up of a reference and a value. Nodes are strung 
together into a sequence using their references. Linked lists can be used to implement more 
complex data structures like lists, stacks, queues, and associative arrays.

Examples

Single linked list example

This example implements a linked list with many of the same methods as that of the built-in list 
object.

class Node: 
    def __init__(self, val): 
        self.data = val 
        self.next = None 
 
    def getData(self): 
        return self.data 
 
    def getNext(self): 
        return self.next 
 
    def setData(self, val): 
        self.data = val 
 
    def setNext(self, val): 
        self.next = val 
 
class LinkedList: 
    def __init__(self): 
        self.head = None 
 
    def isEmpty(self): 
        """Check if the list is empty""" 
        return self.head is None 
 
    def add(self, item): 
        """Add the item to the list""" 
        new_node = Node(item) 
        new_node.setNext(self.head) 
        self.head = new_node 
 
    def size(self): 
        """Return the length/size of the list""" 
        count = 0 
        current = self.head 
        while current is not None: 
            count += 1 
            current = current.getNext() 

https://riptutorial.com/ 458



        return count 
 
    def search(self, item): 
        """Search for item in list. If found, return True. If not found, return False""" 
        current = self.head 
        found = False 
        while current is not None and not found: 
            if current.getData() is item: 
                found = True 
            else: 
                current = current.getNext() 
        return found 
 
    def remove(self, item): 
        """Remove item from list. If item is not found in list, raise ValueError""" 
        current = self.head 
        previous = None 
        found = False 
        while current is not None and not found: 
            if current.getData() is item: 
                found = True 
            else: 
                previous = current 
                current = current.getNext() 
        if found: 
            if previous is None: 
                self.head = current.getNext() 
            else: 
                previous.setNext(current.getNext()) 
        else: 
            raise ValueError 
            print 'Value not found.' 
 
    def insert(self, position, item): 
        """ 
        Insert item at position specified. If position specified is 
        out of bounds, raise IndexError 
        """ 
        if position > self.size() - 1: 
            raise IndexError 
            print "Index out of bounds." 
        current = self.head 
        previous = None 
        pos = 0 
        if position is 0: 
            self.add(item) 
        else: 
            new_node = Node(item) 
            while pos < position: 
                pos += 1 
                previous = current 
                current = current.getNext() 
            previous.setNext(new_node) 
            new_node.setNext(current) 
 
    def index(self, item): 
        """ 
        Return the index where item is found. 
        If item is not found, return None. 
        """ 
        current = self.head 

https://riptutorial.com/ 459



        pos = 0 
        found = False 
        while current is not None and not found: 
            if current.getData() is item: 
                found = True 
            else: 
                current = current.getNext() 
                pos += 1 
        if found: 
            pass 
        else: 
            pos = None 
        return pos 
 
    def pop(self, position = None): 
        """ 
        If no argument is provided, return and remove the item at the head. 
        If position is provided, return and remove the item at that position. 
        If index is out of bounds, raise IndexError 
        """ 
        if position > self.size(): 
            print 'Index out of bounds' 
            raise IndexError 
 
        current = self.head 
        if position is None: 
            ret = current.getData() 
            self.head = current.getNext() 
        else: 
            pos = 0 
            previous = None 
            while pos < position: 
                previous = current 
                current = current.getNext() 
                pos += 1 
                ret = current.getData() 
            previous.setNext(current.getNext()) 
        print ret 
        return ret 
 
    def append(self, item): 
        """Append item to the end of the list""" 
        current = self.head 
        previous = None 
        pos = 0 
        length = self.size() 
        while pos < length: 
            previous = current 
            current = current.getNext() 
            pos += 1 
        new_node = Node(item) 
        if previous is None: 
            new_node.setNext(current) 
            self.head = new_node 
        else: 
            previous.setNext(new_node) 
 
    def printList(self): 
        """Print the list""" 
        current = self.head 
        while current is not None: 

https://riptutorial.com/ 460



            print current.getData() 
            current = current.getNext()

Usage functions much like that of the built-in list.

ll = LinkedList() 
ll.add('l') 
ll.add('H') 
ll.insert(1,'e') 
ll.append('l') 
ll.append('o') 
ll.printList() 
 
H 
e 
l 
l 
o

Read Linked lists online: https://riptutorial.com/python/topic/9299/linked-lists

https://riptutorial.com/ 461

https://riptutorial.com/python/topic/9299/linked-lists


Chapter 91: List

Introduction

The Python List is a general data structure widely used in Python programs. They are found in 
other languages, often referred to as dynamic arrays. They are both mutable and a sequence data 
type that allows them to be indexed and sliced. The list can contain different types of objects, 
including other list objects.

Syntax

[value, value, ...]•
list([iterable])•

Remarks

list is a particular type of iterable, but it is not the only one that exists in Python. Sometimes it will 
be better to use set, tuple, or dictionary

list is the name given in Python to dynamic arrays (similar to vector<void*> from C++ or Java's 
ArrayList<Object>). It is not a linked-list.

Accessing elements is done in constant time and is very fast. Appending elements to the end of 
the list is amortized constant time, but once in a while it might involve allocation and copying of the 
whole list.

List comprehensions are related to lists.

Examples

Accessing list values

Python lists are zero-indexed, and act like arrays in other languages.

lst = [1, 2, 3, 4] 
lst[0]  # 1 
lst[1]  # 2

Attempting to access an index outside the bounds of the list will raise an IndexError.

lst[4]  # IndexError: list index out of range

Negative indices are interpreted as counting from the end of the list.

lst[-1]  # 4 

https://riptutorial.com/ 462

http://www.riptutorial.com/python/topic/497/set
http://www.riptutorial.com/python/topic/927/tuple
http://www.riptutorial.com/python/topic/396/dictionary
http://www.riptutorial.com/python/topic/5265/list-comprehensions


lst[-2]  # 3 
lst[-5]  # IndexError: list index out of range

This is functionally equivalent to

lst[len(lst)-1]  # 4

Lists allow to use slice notation as lst[start:end:step]. The output of the slice notation is a new list 
containing elements from index start to end-1. If options are omitted start defaults to beginning of 
list, end to end of list and step to 1:

lst[1:]      # [2, 3, 4] 
lst[:3]      # [1, 2, 3] 
lst[::2]     # [1, 3] 
lst[::-1]    # [4, 3, 2, 1] 
lst[-1:0:-1] # [4, 3, 2] 
lst[5:8]     # [] since starting index is greater than length of lst, returns empty list 
lst[1:10]    # [2, 3, 4] same as omitting ending index

With this in mind, you can print a reversed version of the list by calling

lst[::-1]    # [4, 3, 2, 1]

When using step lengths of negative amounts, the starting index has to be greater than the ending 
index otherwise the result will be an empty list.

lst[3:1:-1] # [4, 3]

Using negative step indices are equivalent to the following code:

reversed(lst)[0:2] # 0 = 1 -1 
                   # 2 = 3 -1

The indices used are 1 less than those used in negative indexing and are reversed.

Advanced slicing

When lists are sliced the __getitem__() method of the list object is called, with a slice object. 
Python has a builtin slice method to generate slice objects. We can use this to store a slice and 
reuse it later like so,

data = 'chandan purohit    22 2000'  #assuming data fields of fixed length 
name_slice = slice(0,19) 
age_slice = slice(19,21) 
salary_slice = slice(22,None) 
 
#now we can have more readable slices 
print(data[name_slice]) #chandan purohit 
print(data[age_slice]) #'22' 
print(data[salary_slice]) #'2000'

https://riptutorial.com/ 463



This can be of great use by providing slicing functionality to our objects by overriding __getitem__ in 
our class.

List methods and supported operators

Starting with a given list a:

a = [1, 2, 3, 4, 5]

append(value) – appends a new element to the end of the list.

# Append values 6, 7, and 7 to the list 
a.append(6) 
a.append(7) 
a.append(7) 
# a: [1, 2, 3, 4, 5, 6, 7, 7] 
 
# Append another list 
b = [8, 9] 
a.append(b) 
# a: [1, 2, 3, 4, 5, 6, 7, 7, [8, 9]] 
 
# Append an element of a different type, as list elements do not need to have the same 
type 
my_string = "hello world" 
a.append(my_string) 
# a: [1, 2, 3, 4, 5, 6, 7, 7, [8, 9], "hello world"]

Note that the append() method only appends one new element to the end of the list. If you 
append a list to another list, the list that you append becomes a single element at the end of 
the first list.

# Appending a list to another list 
a = [1, 2, 3, 4, 5, 6, 7, 7] 
b = [8, 9] 
a.append(b) 
# a: [1, 2, 3, 4, 5, 6, 7, 7, [8, 9]] 
a[8] 
# Returns: [8,9]

1. 

extend(enumerable) – extends the list by appending elements from another enumerable.

a = [1, 2, 3, 4, 5, 6, 7, 7] 
b = [8, 9, 10] 
 
# Extend list by appending all elements from b 
a.extend(b) 
# a: [1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10] 
 
# Extend list with elements from a non-list enumerable: 
a.extend(range(3)) 
# a: [1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 0, 1, 2]

Lists can also be concatenated with the + operator. Note that this does not modify any of the 

2. 

https://riptutorial.com/ 464



original lists:

a = [1, 2, 3, 4, 5, 6] + [7, 7] + b 
# a: [1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10]

index(value, [startIndex]) – gets the index of the first occurrence of the input value. If the 
input value is not in the list a ValueError exception is raised. If a second argument is 
provided, the search is started at that specified index.

a.index(7) 
# Returns: 6 
 
a.index(49) # ValueError, because 49 is not in a. 
 
a.index(7, 7) 
# Returns: 7 
 
a.index(7, 8) # ValueError, because there is no 7 starting at index 8

3. 

insert(index, value) – inserts value just before the specified index. Thus after the insertion 
the new element occupies position index.

a.insert(0, 0)  # insert 0 at position 0 
a.insert(2, 5)  # insert 5 at position 2 
# a: [0, 1, 5, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10]

4. 

pop([index]) – removes and returns the item at index. With no argument it removes and 
returns the last element of the list.

a.pop(2) 
# Returns: 5 
# a: [0, 1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10] 
a.pop(8) 
# Returns: 7 
# a: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 
 
# With no argument: 
a.pop() 
# Returns: 10 
# a: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

5. 

remove(value) – removes the first occurrence of the specified value. If the provided value 
cannot be found, a ValueError is raised.

a.remove(0) 
a.remove(9) 
# a: [1, 2, 3, 4, 5, 6, 7, 8] 
a.remove(10) 
# ValueError, because 10 is not in a

6. 

reverse() – reverses the list in-place and returns None.7. 

https://riptutorial.com/ 465



a.reverse() 
# a: [8, 7, 6, 5, 4, 3, 2, 1]

There are also other ways of reversing a list.

count(value) – counts the number of occurrences of some value in the list.

a.count(7) 
# Returns: 2

8. 

sort() – sorts the list in numerical and lexicographical order and returns None.

a.sort() 
# a = [1, 2, 3, 4, 5, 6, 7, 8] 
# Sorts the list in numerical order

Lists can also be reversed when sorted using the reverse=True flag in the sort() method.

a.sort(reverse=True) 
# a = [8, 7, 6, 5, 4, 3, 2, 1]

If you want to sort by attributes of items, you can use the key keyword argument:

import datetime 
 
class Person(object): 
    def __init__(self, name, birthday, height): 
        self.name = name 
        self.birthday = birthday 
        self.height = height 
 
    def __repr__(self): 
        return self.name 
 
l = [Person("John Cena", datetime.date(1992, 9, 12), 175), 
     Person("Chuck Norris", datetime.date(1990, 8, 28), 180), 
     Person("Jon Skeet", datetime.date(1991, 7, 6), 185)] 
 
l.sort(key=lambda item: item.name) 
# l: [Chuck Norris, John Cena, Jon Skeet] 
 
l.sort(key=lambda item: item.birthday) 
# l: [Chuck Norris, Jon Skeet, John Cena] 
 
l.sort(key=lambda item: item.height) 
# l: [John Cena, Chuck Norris, Jon Skeet]

In case of list of dicts the concept is the same:

import datetime 
 
l = [{'name':'John Cena', 'birthday': datetime.date(1992, 9, 12),'height': 175}, 
 {'name': 'Chuck Norris', 'birthday': datetime.date(1990, 8, 28),'height': 180}, 
 {'name': 'Jon Skeet', 'birthday': datetime.date(1991, 7, 6), 'height': 185}] 

9. 

https://riptutorial.com/ 466

http://www.riptutorial.com/python/example/12259/list-multiplication-and-common-references


 
l.sort(key=lambda item: item['name']) 
# l: [Chuck Norris, John Cena, Jon Skeet] 
 
l.sort(key=lambda item: item['birthday']) 
# l: [Chuck Norris, Jon Skeet, John Cena] 
 
l.sort(key=lambda item: item['height']) 
# l: [John Cena, Chuck Norris, Jon Skeet]

Sort by sub dict :

import datetime 
 
l = [{'name':'John Cena', 'birthday': datetime.date(1992, 9, 12),'size': {'height': 175, 
'weight': 100}}, 
 {'name': 'Chuck Norris', 'birthday': datetime.date(1990, 8, 28),'size' : {'height': 180, 
'weight': 90}}, 
 {'name': 'Jon Skeet', 'birthday': datetime.date(1991, 7, 6), 'size': {'height': 185, 
'weight': 110}}] 
 
l.sort(key=lambda item: item['size']['height']) 
# l: [John Cena, Chuck Norris, Jon Skeet]

Better way to sort using attrgetter and itemgetter

Lists can also be sorted using attrgetter and itemgetter functions from the operator module. 
These can help improve readability and reusability. Here are some examples,

from operator import itemgetter,attrgetter 
 
people = [{'name':'chandan','age':20,'salary':2000}, 
          {'name':'chetan','age':18,'salary':5000}, 
          {'name':'guru','age':30,'salary':3000}] 
by_age = itemgetter('age') 
by_salary = itemgetter('salary') 
 
people.sort(key=by_age) #in-place sorting by age 
people.sort(key=by_salary) #in-place sorting by salary

itemgetter can also be given an index. This is helpful if you want to sort based on indices of a 
tuple.

list_of_tuples = [(1,2), (3,4), (5,0)] 
list_of_tuples.sort(key=itemgetter(1)) 
print(list_of_tuples) #[(5, 0), (1, 2), (3, 4)]

Use the attrgetter if you want to sort by attributes of an object,

persons = [Person("John Cena", datetime.date(1992, 9, 12), 175), 
           Person("Chuck Norris", datetime.date(1990, 8, 28), 180), 
           Person("Jon Skeet", datetime.date(1991, 7, 6), 185)] #reusing Person class from 
above example 
 
person.sort(key=attrgetter('name')) #sort by name 

https://riptutorial.com/ 467



by_birthday = attrgetter('birthday') 
person.sort(key=by_birthday) #sort by birthday

clear() – removes all items from the list

a.clear() 
# a = []

10. 

Replication – multiplying an existing list by an integer will produce a larger list consisting of 
that many copies of the original. This can be useful for example for list initialization:

b = ["blah"] * 3 
# b = ["blah", "blah", "blah"] 
b = [1, 3, 5] * 5 
# [1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5]

Take care doing this if your list contains references to objects (eg a list of lists), see Common 
Pitfalls - List multiplication and common references.

11. 

Element deletion – it is possible to delete multiple elements in the list using the del keyword 
and slice notation:

a = list(range(10)) 
del a[::2] 
# a = [1, 3, 5, 7, 9] 
del a[-1] 
# a = [1, 3, 5, 7] 
del a[:] 
# a = []

12. 

Copying

The default assignment "=" assigns a reference of the original list to the new name. That is, 
the original name and new name are both pointing to the same list object. Changes made 
through any of them will be reflected in another. This is often not what you intended.

b = a 
a.append(6) 
# b: [1, 2, 3, 4, 5, 6]

If you want to create a copy of the list you have below options.

You can slice it:

new_list = old_list[:]

You can use the built in list() function:

new_list = list(old_list)

13. 

https://riptutorial.com/ 468

http://www.riptutorial.com/python/example/12259/list-multiplication-and-common-references
http://www.riptutorial.com/python/example/12259/list-multiplication-and-common-references


You can use generic copy.copy():

import copy 
new_list = copy.copy(old_list) #inserts references to the objects found in the original.

This is a little slower than list() because it has to find out the datatype of old_list first.

If the list contains objects and you want to copy them as well, use generic copy.deepcopy():

import copy 
new_list = copy.deepcopy(old_list) #inserts copies of the objects found in the original.

Obviously the slowest and most memory-needing method, but sometimes unavoidable.

Python 3.x3.0

copy() – Returns a shallow copy of the list

    aa = a.copy() 
    # aa = [1, 2, 3, 4, 5]

Length of a list

Use len() to get the one-dimensional length of a list.

len(['one', 'two'])  # returns 2 
 
len(['one', [2, 3], 'four'])  # returns 3, not 4

len() also works on strings, dictionaries, and other data structures similar to lists.

Note that len() is a built-in function, not a method of a list object.

Also note that the cost of len() is O(1), meaning it will take the same amount of time to get the 
length of a list regardless of its length.

Iterating over a list

Python supports using a for loop directly on a list:

my_list = ['foo', 'bar', 'baz'] 
for item in my_list: 
    print(item) 
 
# Output: foo 
# Output: bar 
# Output: baz

You can also get the position of each item at the same time:

https://riptutorial.com/ 469



for (index, item) in enumerate(my_list): 
    print('The item in position {} is: {}'.format(index, item)) 
 
# Output: The item in position 0 is: foo 
# Output: The item in position 1 is: bar 
# Output: The item in position 2 is: baz

The other way of iterating a list based on the index value:

for i in range(0,len(my_list)): 
    print(my_list[i]) 
#output: 
>>> 
foo 
bar 
baz

Note that changing items in a list while iterating on it may have unexpected results:

for item in my_list: 
    if item == 'foo': 
        del my_list[0] 
    print(item) 
 
# Output: foo 
# Output: baz

In this last example, we deleted the first item at the first iteration, but that caused bar to be 
skipped.

Checking whether an item is in a list

Python makes it very simple to check whether an item is in a list. Simply use the in operator.

lst = ['test', 'twest', 'tweast', 'treast'] 
 
'test' in lst 
# Out: True 
 
'toast' in lst 
# Out: False

Note: the in operator on sets is asymptotically faster than on lists. If you need to use it 
many times on potentially large lists, you may want to convert your list to a set, and 
test the presence of elements on the set.

slst = set(lst) 
'test' in slst 
# Out: True

Reversing list elements

https://riptutorial.com/ 470



You can use the reversed function which returns an iterator to the reversed list:

In [3]: rev = reversed(numbers) 
 
In [4]: rev 
Out[4]: [9, 8, 7, 6, 5, 4, 3, 2, 1]

Note that the list "numbers" remains unchanged by this operation, and remains in the same order 
it was originally.

To reverse in place, you can also use the reverse method.

You can also reverse a list (actually obtaining a copy, the original list is unaffected) by using the 
slicing syntax, setting the third argument (the step) as -1:

In [1]: numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9] 
 
In [2]: numbers[::-1] 
Out[2]: [9, 8, 7, 6, 5, 4, 3, 2, 1]

Checking if list is empty

The emptiness of a list is associated to the boolean False, so you don't have to check len(lst) == 
0, but just lst or not lst

lst = [] 
if not lst: 
    print("list is empty") 
 
# Output: list is empty

Concatenate and Merge lists

The simplest way to concatenate list1 and list2:

merged = list1 + list2

1. 

zip returns a list of tuples, where the i-th tuple contains the i-th element from each of the 
argument sequences or iterables:

alist = ['a1', 'a2', 'a3'] 
blist = ['b1', 'b2', 'b3'] 
 
for a, b in zip(alist, blist): 
    print(a, b) 
 
# Output: 
# a1 b1 
# a2 b2 
# a3 b3

2. 

https://riptutorial.com/ 471

http://www.riptutorial.com/python/example/2035/list-methods-and-supported-operators
http://www.riptutorial.com/python/example/2035/list-methods-and-supported-operators
http://www.riptutorial.com/python/example/2035/list-methods-and-supported-operators


If the lists have different lengths then the result will include only as many elements as the 
shortest one:

alist = ['a1', 'a2', 'a3'] 
blist = ['b1', 'b2', 'b3', 'b4'] 
for a, b in zip(alist, blist): 
    print(a, b) 
 
# Output: 
# a1 b1 
# a2 b2 
# a3 b3 
 
alist = [] 
len(list(zip(alist, blist))) 
 
# Output: 
# 0

For padding lists of unequal length to the longest one with Nones use itertools.zip_longest (
itertools.izip_longest in Python 2)

alist = ['a1', 'a2', 'a3'] 
blist = ['b1'] 
clist = ['c1', 'c2', 'c3', 'c4'] 
 
for a,b,c in itertools.zip_longest(alist, blist, clist): 
    print(a, b, c) 
 
# Output: 
# a1 b1 c1 
# a2 None c2 
# a3 None c3 
# None None c4

Insert to a specific index values:

 alist = [123, 'xyz', 'zara', 'abc'] 
 alist.insert(3, [2009]) 
 print("Final List :", alist)

Output:

 Final List : [123, 'xyz', 'zara', 2009, 'abc']

3. 

Any and All

You can use all() to determine if all the values in an iterable evaluate to True

nums = [1, 1, 0, 1] 
all(nums) 
# False 
chars = ['a', 'b', 'c', 'd'] 
all(chars) 

https://riptutorial.com/ 472



# True

Likewise, any() determines if one or more values in an iterable evaluate to True

nums = [1, 1, 0, 1] 
any(nums) 
# True 
vals = [None, None, None, False] 
any(vals) 
# False

While this example uses a list, it is important to note these built-ins work with any iterable, 
including generators.

vals = [1, 2, 3, 4] 
any(val > 12 for val in vals) 
# False 
any((val * 2) > 6 for val in vals) 
# True

Remove duplicate values in list

Removing duplicate values in a list can be done by converting the list to a set (that is an 
unordered collection of distinct objects). If a list data structure is needed, then the set can be 
converted back to a list using the function list():

names = ["aixk", "duke", "edik", "tofp", "duke"] 
list(set(names)) 
# Out: ['duke', 'tofp', 'aixk', 'edik']

Note that by converting a list to a set the original ordering is lost.

To preserve the order of the list one can use an OrderedDict

import collections 
>>> collections.OrderedDict.fromkeys(names).keys() 
# Out: ['aixk', 'duke', 'edik', 'tofp']

Accessing values in nested list

Starting with a three-dimensional list:

alist = [[[1,2],[3,4]], [[5,6,7],[8,9,10], [12, 13, 14]]]

Accessing items in the list:

print(alist[0][0][1]) 
#2 
#Accesses second element in the first list in the first list 
 

https://riptutorial.com/ 473



print(alist[1][1][2]) 
#10 
#Accesses the third element in the second list in the second list

Performing support operations:

alist[0][0].append(11) 
print(alist[0][0][2]) 
#11 
#Appends 11 to the end of the first list in the first list

Using nested for loops to print the list:

for row in alist: #One way to loop through nested lists 
    for col in row: 
        print(col) 
#[1, 2, 11] 
#[3, 4] 
#[5, 6, 7] 
#[8, 9, 10] 
#[12, 13, 14]

Note that this operation can be used in a list comprehension or even as a generator to produce 
efficiencies, e.g.:

[col for row in alist for col in row] 
#[[1, 2, 11], [3, 4], [5, 6, 7], [8, 9, 10], [12, 13, 14]]

Not all items in the outer lists have to be lists themselves:

alist[1].insert(2, 15) 
#Inserts 15 into the third position in the second list

Another way to use nested for loops. The other way is better but I've needed to use this on 
occasion:

for row in range(len(alist)): #A less Pythonic way to loop through lists 
    for col in range(len(alist[row])): 
       print(alist[row][col]) 
 
#[1, 2, 11] 
#[3, 4] 
#[5, 6, 7] 
#[8, 9, 10] 
#15 
#[12, 13, 14]

Using slices in nested list:

print(alist[1][1:]) 
#[[8, 9, 10], 15, [12, 13, 14]] 
#Slices still work

https://riptutorial.com/ 474



The final list:

print(alist) 
#[[[1, 2, 11], [3, 4]], [[5, 6, 7], [8, 9, 10], 15, [12, 13, 14]]]

Comparison of lists

It's possible to compare lists and other sequences lexicographically using comparison operators. 
Both operands must be of the same type.

[1, 10, 100] < [2, 10, 100] 
# True, because 1 < 2 
[1, 10, 100] < [1, 10, 100] 
# False, because the lists are equal 
[1, 10, 100] <= [1, 10, 100] 
# True, because the lists are equal 
[1, 10, 100] < [1, 10, 101] 
# True, because 100 < 101 
[1, 10, 100] < [0, 10, 100] 
# False, because 0 < 1

If one of the lists is contained at the start of the other, the shortest list wins.

[1, 10] < [1, 10, 100] 
# True

Initializing a List to a Fixed Number of Elements

For immutable elements (e.g. None, string literals etc.):

my_list = [None] * 10 
my_list = ['test'] * 10

For mutable elements, the same construct will result in all elements of the list referring to the 
same object, for example, for a set:

>>> my_list=[{1}] * 10 
>>> print(my_list) 
[{1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}] 
>>> my_list[0].add(2) 
>>> print(my_list) 
[{1, 2}, {1, 2}, {1, 2}, {1, 2}, {1, 2}, {1, 2}, {1, 2}, {1, 2}, {1, 2}, {1, 2}]

Instead, to initialize the list with a fixed number of different mutable objects, use:

my_list=[{1} for _ in range(10)]

Read List online: https://riptutorial.com/python/topic/209/list

https://riptutorial.com/ 475

https://riptutorial.com/python/topic/209/list


Chapter 92: List comprehensions

Introduction

List comprehensions in Python are concise, syntactic constructs. They can be utilized to generate 
lists from other lists by applying functions to each element in the list. The following section 
explains and demonstrates the use of these expressions.

Syntax

[x + 1 for x in (1, 2, 3)] # list comprehension, gives [2, 3, 4]•
(x + 1 for x in (1, 2, 3)) # generator expression, will yield 2, then 3, then 4•
[x for x in (1, 2, 3) if x % 2 == 0] # list comprehension with filter, gives [2]•
[x + 1 if x % 2 == 0 else x for x in (1, 2, 3)] # list comprehension with ternary•
[x + 1 if x % 2 == 0 else x for x in range(-3,4) if x > 0] # list comprehension with ternary and 
filtering

•

{x for x in (1, 2, 2, 3)} # set comprehension, gives {1, 2, 3}•
{k: v for k, v in [('a', 1), ('b', 2)]} # dict comprehension, gives {'a': 1, 'b': 2} (python 2.7+ and 
3.0+ only)

•

[x + y for x in [1, 2] for y in [10, 20]] # Nested loops, gives [11, 21, 12, 22]•
[x + y for x in [1, 2, 3] if x > 2 for y in [3, 4, 5]] # Condition checked at 1st for loop•
[x + y for x in [1, 2, 3] for y in [3, 4, 5] if x > 2] # Condition checked at 2nd for loop•
[x for x in xrange(10) if x % 2 == 0] # Condition checked if looped numbers are odd numbers•

Remarks

Comprehensions are syntactical constructs which define data structures or expressions unique to 
a particular language. Proper use of comprehensions reinterpret these into easily-understood 
expressions. As expressions, they can be used:

in the right hand side of assignments•
as arguments to function calls•
in the body of a lambda function•
as standalone statements. (For example: [print(x) for x in range(10)])•

Examples

List Comprehensions

A list comprehension creates a new list by applying an expression to each element of an iterable. 
The most basic form is:

[ <expression> for <element> in <iterable> ]

https://riptutorial.com/ 476

http://www.riptutorial.com/python/example/2172/lambda--inline-anonymous--functions
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
http://www.riptutorial.com/python/topic/2343/iterables-and-iterators


There's also an optional 'if' condition:

[ <expression> for <element> in <iterable> if <condition> ]

Each <element> in the <iterable> is plugged in to the <expression> if the (optional) <condition> 
evaluates to true . All results are returned at once in the new list. Generator expressions are 
evaluated lazily, but list comprehensions evaluate the entire iterator immediately - consuming 
memory proportional to the iterator's length.

To create a list of squared integers:

squares = [x * x for x in (1, 2, 3, 4)] 
# squares: [1, 4, 9, 16]

The for expression sets x to each value in turn from (1, 2, 3, 4). The result of the expression x * 
x is appended to an internal list. The internal list is assigned to the variable squares when 
completed.

Besides a speed increase (as explained here), a list comprehension is roughly equivalent to the 
following for-loop:

squares = [] 
for x in (1, 2, 3, 4): 
    squares.append(x * x) 
# squares: [1, 4, 9, 16]

The expression applied to each element can be as complex as needed:

# Get a list of uppercase characters from a string 
[s.upper() for s in "Hello World"] 
# ['H', 'E', 'L', 'L', 'O', ' ', 'W', 'O', 'R', 'L', 'D'] 
 
# Strip off any commas from the end of strings in a list 
[w.strip(',') for w in ['these,', 'words,,', 'mostly', 'have,commas,']] 
# ['these', 'words', 'mostly', 'have,commas'] 
 
# Organize letters in words more reasonably - in an alphabetical order 
sentence = "Beautiful is better than ugly" 
["".join(sorted(word, key = lambda x: x.lower())) for word in sentence.split()] 
# ['aBefiltuu', 'is', 'beertt', 'ahnt', 'gluy']

else

else can be used in List comprehension constructs, but be careful regarding the syntax. The if/else 
clauses should be used before for loop, not after:

# create a list of characters in apple, replacing non vowels with '*' 
# Ex - 'apple' --> ['a', '*', '*', '*' ,'e'] 
 

https://riptutorial.com/ 477

https://docs.python.org/3/library/stdtypes.html#truth-value-testing
http://www.riptutorial.com/python/topic/292/generators
https://wiki.python.org/moin/PythonSpeed/PerformanceTips#Loops
http://stackoverflow.com/questions/39518899/3-array-generators-faster-than-1-for-loop/39519661#39519661


[x for x in 'apple' if x in 'aeiou' else '*'] 
#SyntaxError: invalid syntax 
 
# When using if/else together use them before the loop 
[x if x in 'aeiou' else '*' for x in 'apple'] 
#['a', '*', '*', '*', 'e']

Note this uses a different language construct, a conditional expression, which itself is not part of 
the comprehension syntax. Whereas the if after the for…in is a part of list comprehensions and 
used to filter elements from the source iterable.

Double Iteration

Order of double iteration [... for x in ... for y in ...] is either natural or counter-intuitive. The 
rule of thumb is to follow an equivalent for loop:

def foo(i): 
    return i, i + 0.5 
 
for i in range(3): 
    for x in foo(i): 
        yield str(x)

This becomes:

[str(x) 
    for i in range(3) 
        for x in foo(i) 
]

This can be compressed into one line as [str(x) for i in range(3) for x in foo(i)]

In-place Mutation and Other Side Effects

Before using list comprehension, understand the difference between functions called for their side 
effects (mutating, or in-place functions) which usually return None, and functions that return an 
interesting value.

Many functions (especially pure functions) simply take an object and return some object. An in-
place function modifies the existing object, which is called a side effect. Other examples include 
input and output operations such as printing.

list.sort() sorts a list in-place (meaning that it modifies the original list) and returns the value None
. Therefore, it won't work as expected in a list comprehension:

[x.sort() for x in [[2, 1], [4, 3], [0, 1]]] 

https://riptutorial.com/ 478

http://docs.python.org/3/reference/expressions.html#conditional-expressions
http://docs.python.org/3/reference/expressions.html#displays-for-lists-sets-and-dictionaries
https://en.wikipedia.org/wiki/In-place_algorithm
https://en.wikipedia.org/wiki/Pure_function
https://docs.python.org/3/library/stdtypes.html#list.sort


# [None, None, None]

Instead, sorted() returns a sorted list rather than sorting in-place:

[sorted(x) for x in [[2, 1], [4, 3], [0, 1]]] 
# [[1, 2], [3, 4], [0, 1]]

Using comprehensions for side-effects is possible, such as I/O or in-place functions. Yet a for loop 
is usually more readable. While this works in Python 3:

[print(x) for x in (1, 2, 3)]

Instead use:

for x in (1, 2, 3): 
    print(x)

In some situations, side effect functions are suitable for list comprehension. random.randrange() has 
the side effect of changing the state of the random number generator, but it also returns an 
interesting value. Additionally, next() can be called on an iterator.

The following random value generator is not pure, yet makes sense as the random generator is 
reset every time the expression is evaluated:

from random import randrange 
[randrange(1, 7) for _ in range(10)] 
# [2, 3, 2, 1, 1, 5, 2, 4, 3, 5]

Whitespace in list comprehensions

More complicated list comprehensions can reach an undesired length, or become less readable. 
Although less common in examples, it is possible to break a list comprehension into multiple lines 
like so:

[ 
    x for x 
    in 'foo' 
    if x not in 'bar' 
]

Dictionary Comprehensions

A dictionary comprehension is similar to a list comprehension except that it produces a dictionary 
object instead of a list.

A basic example:

Python 2.x2.7

https://riptutorial.com/ 479

https://docs.python.org/3/library/functions.html#sorted
https://docs.python.org/3/library/random.html#random.randrange
https://www.python.org/dev/peps/pep-0274/


{x: x * x for x in (1, 2, 3, 4)} 
# Out: {1: 1, 2: 4, 3: 9, 4: 16}

which is just another way of writing:

dict((x, x * x) for x in (1, 2, 3, 4)) 
# Out: {1: 1, 2: 4, 3: 9, 4: 16}

As with a list comprehension, we can use a conditional statement inside the dict comprehension to 
produce only the dict elements meeting some criterion.

Python 2.x2.7

{name: len(name) for name in ('Stack', 'Overflow', 'Exchange') if len(name) > 6} 
# Out: {'Exchange': 8, 'Overflow': 8}

Or, rewritten using a generator expression.

dict((name, len(name)) for name in ('Stack', 'Overflow', 'Exchange') if len(name) > 6) 
# Out: {'Exchange': 8, 'Overflow': 8}

Starting with a dictionary and using dictionary comprehension as a key-value pair filter

Python 2.x2.7

initial_dict = {'x': 1, 'y': 2} 
{key: value for key, value in initial_dict.items() if key == 'x'} 
# Out: {'x': 1}

Switching key and value of dictionary (invert dictionary)

If you have a dict containing simple hashable values (duplicate values may have unexpected 
results):

my_dict = {1: 'a', 2: 'b', 3: 'c'}

and you wanted to swap the keys and values you can take several approaches depending on your 
coding style:

swapped = {v: k for k, v in my_dict.items()}•
swapped = dict((v, k) for k, v in my_dict.iteritems())•
swapped = dict(zip(my_dict.values(), my_dict))•
swapped = dict(zip(my_dict.values(), my_dict.keys()))•
swapped = dict(map(reversed, my_dict.items()))•

print(swapped) 
# Out: {a: 1, b: 2, c: 3}

Python 2.x2.3

https://riptutorial.com/ 480



If your dictionary is large, consider importing itertools and utilize izip or imap.

Merging Dictionaries

Combine dictionaries and optionally override old values with a nested dictionary comprehension.

dict1 = {'w': 1, 'x': 1} 
dict2 = {'x': 2, 'y': 2, 'z': 2} 
 
{k: v for d in [dict1, dict2] for k, v in d.items()} 
# Out: {'w': 1, 'x': 2, 'y': 2, 'z': 2}

However, dictionary unpacking (PEP 448) may be a preferred.

Python 3.x3.5

{**dict1, **dict2} 
# Out: {'w': 1, 'x': 2, 'y': 2, 'z': 2}

Note: dictionary comprehensions were added in Python 3.0 and backported to 2.7+, unlike list 
comprehensions, which were added in 2.0. Versions < 2.7 can use generator expressions and the 
dict() builtin to simulate the behavior of dictionary comprehensions.

Generator Expressions

Generator expressions are very similar to list comprehensions. The main difference is that it does 
not create a full set of results at once; it creates a generator object which can then be iterated 
over.

For instance, see the difference in the following code:

# list comprehension 
[x**2 for x in range(10)] 
# Output: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Python 2.x2.4

# generator comprehension 
(x**2 for x in xrange(10)) 
# Output: <generator object <genexpr> at 0x11b4b7c80>

These are two very different objects:

the list comprehension returns a list object whereas the generator comprehension returns a 
generator.

•

generator objects cannot be indexed and makes use of the next function to get items in order.•

Note: We use xrange since it too creates a generator object. If we would use range, a list would be 
created. Also, xrange exists only in later version of python 2. In python 3, range just returns a 

https://riptutorial.com/ 481

https://docs.python.org/2/library/itertools.html
https://www.python.org/dev/peps/pep-0448/
https://www.python.org/dev/peps/pep-0274/
http://www.riptutorial.com/python/topic/292/generators


generator. For more information, see the Differences between range and xrange functions 
example.

Python 2.x2.4

g = (x**2 for x in xrange(10)) 
print(g[0])

Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: 'generator' object has no attribute '__getitem__'

 

g.next()  # 0 
g.next()  # 1 
g.next()  # 4 
... 
g.next()  # 81 
 
g.next()  # Throws StopIteration Exception

Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
StopIteration

Python 3.x3.0

NOTE: The function g.next() should be substituted by next(g) and xrange with range 
since Iterator.next() and xrange() do not exist in Python 3.

Although both of these can be iterated in a similar way:

for i in [x**2 for x in range(10)]: 
    print(i) 
 
""" 
Out: 
0 
1 
4 
... 
81 
"""

Python 2.x2.4

for i in (x**2 for x in xrange(10)): 
    print(i) 
 
""" 
Out: 
0 

https://riptutorial.com/ 482

http://www.riptutorial.com/python/example/2840/differences-between-range-and-xrange-functions
http://www.riptutorial.com/python/example/2840/differences-between-range-and-xrange-functions
http://www.riptutorial.com/python/example/2840/differences-between-range-and-xrange-functions


1 
4 
. 
. 
. 
81 
"""

Use cases

Generator expressions are lazily evaluated, which means that they generate and return each 
value only when the generator is iterated. This is often useful when iterating through large 
datasets, avoiding the need to create a duplicate of the dataset in memory:

for square in (x**2 for x in range(1000000)): 
    #do something

Another common use case is to avoid iterating over an entire iterable if doing so is not necessary. 
In this example, an item is retrieved from a remote API with each iteration of get_objects(). 
Thousands of objects may exist, must be retrieved one-by-one, and we only need to know if an 
object matching a pattern exists. By using a generator expression, when we encounter an object 
matching the pattern.

def get_objects(): 
    """Gets objects from an API one by one""" 
    while True: 
        yield get_next_item() 
 
def object_matches_pattern(obj): 
    # perform potentially complex calculation 
    return matches_pattern 
 
def right_item_exists(): 
    items = (object_matched_pattern(each) for each in get_objects()) 
    for item in items: 
        if item.is_the_right_one: 
 
 
            return True 
    return False

Set Comprehensions

Set comprehension is similar to list and dictionary comprehension, but it produces a set, which is 
an unordered collection of unique elements.

Python 2.x2.7

# A set containing every value in range(5): 
{x for x in range(5)} 
# Out: {0, 1, 2, 3, 4} 
 

https://riptutorial.com/ 483

http://www.riptutorial.com/python/example/737/list-comprehensions
http://www.riptutorial.com/python/example/738/dictionary-comprehensions
https://docs.python.org/2/tutorial/datastructures.html#sets


# A set of even numbers between 1 and 10: 
{x for x in range(1, 11) if x % 2 == 0} 
# Out: {2, 4, 6, 8, 10} 
 
# Unique alphabetic characters in a string of text: 
text = "When in the Course of human events it becomes necessary for one people..." 
{ch.lower() for ch in text if ch.isalpha()} 
# Out: set(['a', 'c', 'b', 'e', 'f', 'i', 'h', 'm', 'l', 'o', 
#           'n', 'p', 's', 'r', 'u', 't', 'w', 'v', 'y'])

Live Demo

Keep in mind that sets are unordered. This means that the order of the results in the set may differ 
from the one presented in the above examples.

Note: Set comprehension is available since python 2.7+, unlike list comprehensions, which were 
added in 2.0. In Python 2.2 to Python 2.6, the set() function can be used with a generator 
expression to produce the same result:

Python 2.x2.2

set(x for x in range(5)) 
# Out: {0, 1, 2, 3, 4}

Avoid repetitive and expensive operations using conditional clause

Consider the below list comprehension:

>>> def f(x): 
...     import time 
...     time.sleep(.1)       # Simulate expensive function 
...     return x**2 
 
>>> [f(x) for x in range(1000) if f(x) > 10] 
[16, 25, 36, ...]

This results in two calls to f(x) for 1,000 values of x: one call for generating the value and the 
other for checking the if condition. If f(x) is a particularly expensive operation, this can have 
significant performance implications. Worse, if calling f() has side effects, it can have surprising 
results.

Instead, you should evaluate the expensive operation only once for each value of x by generating 
an intermediate iterable (generator expression) as follows:

>>> [v for v in (f(x) for x in range(1000)) if v > 10] 
[16, 25, 36, ...]

Or, using the builtin map equivalent:

>>> [v for v in map(f, range(1000)) if v > 10] 
[16, 25, 36, ...]

https://riptutorial.com/ 484

https://ideone.com/Fd95Zl
http://www.riptutorial.com/python/example/739/generator-expressions
https://docs.python.org/3.5/library/functions.html#map


Another way that could result in a more readable code is to put the partial result (v in the previous 
example) in an iterable (such as a list or a tuple) and then iterate over it. Since v will be the only 
element in the iterable, the result is that we now have a reference to the output of our slow 
function computed only once:

>>> [v for x in range(1000) for v in [f(x)] if v > 10] 
[16, 25, 36, ...]

However, in practice, the logic of code can be more complicated and it's important to keep it 
readable. In general, a separate generator function is recommended over a complex one-liner:

>>> def process_prime_numbers(iterable): 
...     for x in iterable: 
...         if is_prime(x): 
...             yield f(x) 
... 
>>> [x for x in process_prime_numbers(range(1000)) if x > 10] 
[11, 13, 17, 19, ...]

Another way to prevent computing f(x) multiple times is to use the @functools.lru_cache()(Python 
3.2+) decorator on f(x). This way since the output of f for the input x has already been computed 
once, the second function invocation of the original list comprehension will be as fast as a 
dictionary lookup. This approach uses memoization to improve efficiency, which is comparable to 
using generator expressions.

Say you have to flatten a list

l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]

Some of the methods could be:

reduce(lambda x, y: x+y, l) 
 
sum(l, []) 
 
list(itertools.chain(*l))

However list comprehension would provide the best time complexity.

[item for sublist in l for item in sublist]

The shortcuts based on + (including the implied use in sum) are, of necessity, O(L^2) when there 
are L sublists -- as the intermediate result list keeps getting longer, at each step a new 
intermediate result list object gets allocated, and all the items in the previous intermediate result 
must be copied over (as well as a few new ones added at the end). So (for simplicity and without 
actual loss of generality) say you have L sublists of I items each: the first I items are copied back 
and forth L-1 times, the second I items L-2 times, and so on; total number of copies is I times the 
sum of x for x from 1 to L excluded, i.e., I * (L**2)/2.

https://riptutorial.com/ 485

http://www.riptutorial.com/python/topic/292/generators
https://docs.python.org/3/library/functools.html#functools.lru_cache
http://www.riptutorial.com/python/topic/229/decorators
https://en.wikipedia.org/wiki/Memoization


The list comprehension just generates one list, once, and copies each item over (from its original 
place of residence to the result list) also exactly once.

Comprehensions involving tuples

The for clause of a list comprehension can specify more than one variable:

[x + y for x, y in [(1, 2), (3, 4), (5, 6)]] 
# Out: [3, 7, 11] 
 
[x + y for x, y in zip([1, 3, 5], [2, 4, 6])] 
# Out: [3, 7, 11]

This is just like regular for loops:

for x, y in [(1,2), (3,4), (5,6)]: 
    print(x+y) 
# 3 
# 7 
# 11

Note however, if the expression that begins the comprehension is a tuple then it must be 
parenthesized:

[x, y for x, y in [(1, 2), (3, 4), (5, 6)]] 
# SyntaxError: invalid syntax 
 
[(x, y) for x, y in [(1, 2), (3, 4), (5, 6)]] 
# Out: [(1, 2), (3, 4), (5, 6)]

Counting Occurrences Using Comprehension

When we want to count the number of items in an iterable, that meet some condition, we can use 
comprehension to produce an idiomatic syntax:

# Count the numbers in `range(1000)` that are even and contain the digit `9`: 
print (sum( 
    1 for x in range(1000) 
    if x % 2 == 0 and 
    '9' in str(x) 
)) 
# Out: 95

The basic concept can be summarized as:

Iterate over the elements in range(1000).1. 
Concatenate all the needed if conditions.2. 
Use 1 as expression to return a 1 for each item that meets the conditions.3. 
Sum up all the 1s to determine number of items that meet the conditions.4. 

Note: Here we are not collecting the 1s in a list (note the absence of square brackets), but we are 

https://riptutorial.com/ 486

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions


passing the ones directly to the sum function that is summing them up. This is called a generator 
expression, which is similar to a Comprehension.

Changing Types in a List

Quantitative data is often read in as strings that must be converted to numeric types before 
processing. The types of all list items can be converted with either a List Comprehension or the 
map() function.

# Convert a list of strings to integers. 
items = ["1","2","3","4"] 
[int(item) for item in items] 
# Out: [1, 2, 3, 4] 
 
# Convert a list of strings to float. 
items = ["1","2","3","4"] 
map(float, items) 
# Out:[1.0, 2.0, 3.0, 4.0] 

Read List comprehensions online: https://riptutorial.com/python/topic/196/list-comprehensions

https://riptutorial.com/ 487

http://www.riptutorial.com/python/example/737/list-comprehensions
https://stackoverflow.com/documentation/python/196/comprehensions/6332/comprehensions-vs-map-and-filter
https://stackoverflow.com/documentation/python/196/comprehensions/6332/comprehensions-vs-map-and-filter
https://riptutorial.com/python/topic/196/list-comprehensions


Chapter 93: List Comprehensions

Introduction

A list comprehension is a syntactical tool for creating lists in a natural and concise way, as 
illustrated in the following code to make a list of squares of the numbers 1 to 10: [i ** 2 for i in 
range(1,11)] The dummy i from an existing list range is used to make a new element pattern. It is 
used where a for loop would be necessary in less expressive languages.

Syntax

[i for i in range(10)] # basic list comprehension•
[i for i in xrange(10)] # basic list comprehension with generator object in python 2.x•
[i for i in range(20) if i % 2 == 0] # with filter•
[x + y for x in [1, 2, 3] for y in [3, 4, 5]] # nested loops•
[i if i > 6 else 0 for i in range(10)] # ternary expression•
[i if i > 4 else 0 for i in range(20) if i % 2 == 0] # with filter and ternary expression•
[[x + y for x in [1, 2, 3]] for y in [3, 4, 5]] # nested list comprehension•

Remarks

List comprehensions were outlined in PEP 202 and introduced in Python 2.0.

Examples

Conditional List Comprehensions

Given a list comprehension you can append one or more if conditions to filter values.

[<expression> for <element> in <iterable> if <condition>]

For each <element> in <iterable>; if <condition> evaluates to True, add <expression> (usually a 
function of <element>) to the returned list.

For example, this can be used to extract only even numbers from a sequence of integers:

[x for x in range(10) if x % 2 == 0] 
# Out: [0, 2, 4, 6, 8]

Live demo

The above code is equivalent to:

https://riptutorial.com/ 488

https://www.python.org/dev/peps/pep-0202/
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
http://coliru.stacked-crooked.com/a/8ea85b7b87f57876


even_numbers = [] 
for x in range(10): 
    if x % 2 == 0: 
        even_numbers.append(x) 
 
print(even_numbers) 
# Out: [0, 2, 4, 6, 8]

Also, a conditional list comprehension of the form [e for x in y if c] (where e and c are 
expressions in terms of x) is equivalent to list(filter(lambda x: c, map(lambda x: e, y))).

Despite providing the same result, pay attention to the fact that the former example is almost 2x 
faster than the latter one. For those who are curious, this is a nice explanation of the reason why.

Note that this is quite different from the ... if ... else ... conditional expression (sometimes 
known as a ternary expression) that you can use for the <expression> part of the list 
comprehension. Consider the following example:

[x if x % 2 == 0 else None for x in range(10)] 
# Out: [0, None, 2, None, 4, None, 6, None, 8, None]

Live demo

Here the conditional expression isn't a filter, but rather an operator determining the value to be 
used for the list items:

<value-if-condition-is-true> if <condition> else <value-if-condition-is-false>

This becomes more obvious if you combine it with other operators:

[2 * (x if x % 2 == 0 else -1) + 1 for x in range(10)] 
# Out: [1, -1, 5, -1, 9, -1, 13, -1, 17, -1]

Live demo

If you are using Python 2.7, xrange may be better than range for several reasons as described in 
the xrange documentation.

[2 * (x if x % 2 == 0 else -1) + 1 for x in xrange(10)] 
# Out: [1, -1, 5, -1, 9, -1, 13, -1, 17, -1]

The above code is equivalent to:

numbers = [] 
for x in range(10): 
    if x % 2 == 0: 
        temp = x 
    else: 
        temp = -1 
    numbers.append(2 * temp + 1) 

https://riptutorial.com/ 489

http://stackoverflow.com/questions/39518899/3-array-generators-faster-than-1-for-loop/39519661#39519661
http://www.riptutorial.com/python/example/3226/conditional-expression--or--the-ternary-operator--
http://coliru.stacked-crooked.com/a/38edffb6f855e3fc
http://coliru.stacked-crooked.com/a/59802eec8ad5deb8
https://docs.python.org/2/library/functions.html#xrange
https://docs.python.org/2/library/functions.html#xrange


print(numbers) 
# Out: [1, -1, 5, -1, 9, -1, 13, -1, 17, -1]

One can combine ternary expressions and if conditions. The ternary operator works on the 
filtered result:

[x if x > 2 else '*' for x in range(10) if x % 2 == 0] 
# Out: ['*', '*', 4, 6, 8]

The same couldn't have been achieved just by ternary operator only:

[x if (x > 2 and x % 2 == 0) else '*' for x in range(10)] 
# Out:['*', '*', '*', '*', 4, '*', 6, '*', 8, '*']

See also: Filters, which often provide a sufficient alternative to conditional list comprehensions.

List Comprehensions with Nested Loops

List Comprehensions can use nested for loops. You can code any number of nested for loops 
within a list comprehension, and each for loop may have an optional associated if test. When 
doing so, the order of the for constructs is the same order as when writing a series of nested for 
statements. The general structure of list comprehensions looks like this:

[ expression for target1 in iterable1 [if condition1] 
             for target2 in iterable2 [if condition2]... 
             for targetN in iterableN [if conditionN] ]

For example, the following code flattening a list of lists using multiple for statements:

data = [[1, 2], [3, 4], [5, 6]] 
output = [] 
for each_list in data: 
    for element in each_list: 
        output.append(element) 
print(output) 
# Out: [1, 2, 3, 4, 5, 6]

can be equivalently written as a list comprehension with multiple for constructs:

data = [[1, 2], [3, 4], [5, 6]] 
output = [element for each_list in data for element in each_list] 
print(output) 
# Out: [1, 2, 3, 4, 5, 6]

Live Demo

In both the expanded form and the list comprehension, the outer loop (first for statement) comes 
first.

https://riptutorial.com/ 490

http://www.riptutorial.com/python/topic/201/filter
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://ideone.com/R7uwEP


In addition to being more compact, the nested comprehension is also significantly faster.

In [1]: data = [[1,2],[3,4],[5,6]] 
In [2]: def f(): 
   ...:     output=[] 
   ...:     for each_list in data: 
   ...:         for element in each_list: 
   ...:             output.append(element) 
   ...:     return output 
In [3]: timeit f() 
1000000 loops, best of 3: 1.37 µs per loop 
In [4]: timeit [inner for outer in data for inner in outer] 
1000000 loops, best of 3: 632 ns per loop

The overhead for the function call above is about 140ns.

Inline ifs are nested similarly, and may occur in any position after the first for:

data = [[1], [2, 3], [4, 5]] 
output = [element for each_list in data 
                if len(each_list) == 2 
                for element in each_list 
                if element != 5] 
print(output) 
# Out: [2, 3, 4]

Live Demo

For the sake of readability, however, you should consider using traditional for-loops. This is 
especially true when nesting is more than 2 levels deep, and/or the logic of the comprehension is 
too complex. multiple nested loop list comprehension could be error prone or it gives unexpected 
result.

Refactoring filter and map to list comprehensions

The filter or map functions should often be replaced by list comprehensions. Guido Van Rossum 
describes this well in an open letter in 2005:

filter(P, S) is almost always written clearer as [x for x in S if P(x)], and this has 
the huge advantage that the most common usages involve predicates that are 
comparisons, e.g. x==42, and defining a lambda for that just requires much more effort 
for the reader (plus the lambda is slower than the list comprehension). Even more so 
for map(F, S) which becomes [F(x) for x in S]. Of course, in many cases you'd be 
able to use generator expressions instead.

The following lines of code are considered "not pythonic" and will raise errors in many python 
linters.

filter(lambda x: x % 2 == 0, range(10)) # even numbers < 10 
map(lambda x: 2*x, range(10)) # multiply each number by two 
reduce(lambda x,y: x+y, range(10)) # sum of all elements in list

https://riptutorial.com/ 491

https://ideone.com/kPO2Zy
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
http://www.artima.com/weblogs/viewpost.jsp?thread=98196


Taking what we have learned from the previous quote, we can break down these filter and map 
expressions into their equivalent list comprehensions; also removing the lambda functions from 
each - making the code more readable in the process.

# Filter: 
# P(x) = x % 2 == 0 
# S = range(10) 
[x for x in range(10) if x % 2 == 0] 
 
# Map 
# F(x) = 2*x 
# S = range(10) 
[2*x for x in range(10)]

Readability becomes even more apparent when dealing with chaining functions. Where due to 
readability, the results of one map or filter function should be passed as a result to the next; with 
simple cases, these can be replaced with a single list comprehension. Further, we can easily tell 
from the list comprehension what the outcome of our process is, where there is more cognitive 
load when reasoning about the chained Map & Filter process.

# Map & Filter 
filtered = filter(lambda x: x % 2 == 0, range(10)) 
results = map(lambda x: 2*x, filtered) 
 
# List comprehension 
results = [2*x for x in range(10) if x % 2 == 0]

Refactoring - Quick Reference

Map

map(F, S) == [F(x) for x in S]

•

Filter

filter(P, S) == [x for x in S if P(x)]

•

where F and P are functions which respectively transform input values and return a bool

Nested List Comprehensions

Nested list comprehensions, unlike list comprehensions with nested loops, are List 
comprehensions within a list comprehension. The initial expression can be any arbitrary 
expression, including another list comprehension.

#List Comprehension with nested loop 
[x + y for x in [1, 2, 3] for y in [3, 4, 5]] 
#Out: [4, 5, 6, 5, 6, 7, 6, 7, 8] 

https://riptutorial.com/ 492



 
#Nested List Comprehension 
[[x + y for x in [1, 2, 3]] for y in [3, 4, 5]] 
#Out: [[4, 5, 6], [5, 6, 7], [6, 7, 8]]

The Nested example is equivalent to

l = [] 
for y in [3, 4, 5]: 
    temp = [] 
    for x in [1, 2, 3]: 
        temp.append(x + y) 
    l.append(temp)

One example where a nested comprehension can be used it to transpose a matrix.

matrix = [[1,2,3], 
          [4,5,6], 
          [7,8,9]] 
 
[[row[i] for row in matrix] for i in range(len(matrix))] 
# [[1, 4, 7], [2, 5, 8], [3, 6, 9]]

Like nested for loops, there is not limit to how deep comprehensions can be nested.

[[[i + j + k for k in 'cd'] for j in 'ab'] for i in '12'] 
# Out: [[['1ac', '1ad'], ['1bc', '1bd']], [['2ac', '2ad'], ['2bc', '2bd']]]

Iterate two or more list simultaneously within list comprehension

For iterating more than two lists simultaneously within list comprehension, one may use zip() as:

>>> list_1 = [1, 2, 3 , 4] 
>>> list_2 = ['a', 'b', 'c', 'd'] 
>>> list_3 = ['6', '7', '8', '9'] 
 
# Two lists 
>>> [(i, j) for i, j in zip(list_1, list_2)] 
[(1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')] 
 
# Three lists 
>>> [(i, j, k) for i, j, k in zip(list_1, list_2, list_3)] 
[(1, 'a', '6'), (2, 'b', '7'), (3, 'c', '8'), (4, 'd', '9')] 
 
# so on ...

Read List Comprehensions online: https://riptutorial.com/python/topic/5265/list-comprehensions

https://riptutorial.com/ 493

https://docs.python.org/2/library/functions.html#zip
https://riptutorial.com/python/topic/5265/list-comprehensions


Chapter 94: List destructuring (aka packing 
and unpacking)

Examples

Destructuring assignment

In assignments, you can split an Iterable into values using the "unpacking" syntax:

Destructuring as values

a, b = (1, 2) 
print(a) 
# Prints: 1 
print(b) 
# Prints: 2

If you try to unpack more than the length of the iterable, you'll get an error:

a, b, c = [1] 
# Raises: ValueError: not enough values to unpack (expected 3, got 1)

Python 3.x3.0

Destructuring as a list

You can unpack a list of unknown length using the following syntax:

head, *tail = [1, 2, 3, 4, 5]

Here, we extract the first value as a scalar, and the other values as a list:

print(head) 
# Prints: 1 
print(tail) 
# Prints: [2, 3, 4, 5]

Which is equivalent to:

l = [1, 2, 3, 4, 5] 
head = l[0] 
tail = l[1:]

It also works with multiple elements or elements form the end of the list:

https://riptutorial.com/ 494



a, b, *other, z = [1, 2, 3, 4, 5] 
print(a, b, z, other) 
# Prints: 1 2 5 [3, 4]

Ignoring values in destructuring assignments

If you're only interested in a given value, you can use _ to indicate you aren’t interested. Note: this 
will still set _, just most people don’t use it as a variable.

a, _ = [1, 2] 
print(a) 
# Prints: 1 
a, _, c = (1, 2, 3) 
print(a) 
# Prints: 1 
print(c) 
# Prints: 3

Python 3.x3.0

Ignoring lists in destructuring assignments

Finally, you can ignore many values using the *_ syntax in the assignment:

a, *_ = [1, 2, 3, 4, 5] 
print(a) 
# Prints: 1

which is not really interesting, as you could using indexing on the list instead. Where it gets nice is 
to keep first and last values in one assignment:

 a, *_, b = [1, 2, 3, 4, 5] 
 print(a, b) 
 # Prints: 1 5

or extract several values at once:

 a, _, b, _, c, *_ = [1, 2, 3, 4, 5, 6] 
 print(a, b, c) 
 # Prints: 1 3 5

Packing function arguments

In functions, you can define a number of mandatory arguments:

def fun1(arg1, arg2, arg3): 
    return (arg1,arg2,arg3)

which will make the function callable only when the three arguments are given:

https://riptutorial.com/ 495



fun1(1, 2, 3)

and you can define the arguments as optional, by using default values:

def fun2(arg1='a', arg2='b', arg3='c'): 
    return (arg1,arg2,arg3)

so you can call the function in many different ways, like:

fun2(1)              → (1,b,c) 
fun2(1, 2)           → (1,2,c) 
fun2(arg2=2, arg3=3) → (a,2,3) 
...

But you can also use the destructuring syntax to pack arguments up, so you can assign variables 
using a list or a dict.

Packing a list of arguments

Consider you have a list of values

l = [1,2,3]

You can call the function with the list of values as an argument using the * syntax:

fun1(*l) 
# Returns: (1,2,3) 
fun1(*['w', 't', 'f']) 
# Returns: ('w','t','f')

But if you do not provide a list which length matches the number of arguments:

fun1(*['oops']) 
# Raises: TypeError: fun1() missing 2 required positional arguments: 'arg2' and 'arg3'

Packing keyword arguments

Now, you can also pack arguments using a dictionary. You can use the ** operator to tell Python 
to unpack the dict as parameter values:

d = { 
  'arg1': 1, 
  'arg2': 2, 
  'arg3': 3 
} 
fun1(**d) 
# Returns: (1, 2, 3)

when the function only has positional arguments (the ones without default values) you need the 

https://riptutorial.com/ 496



dictionary to be contain of all the expected parameters, and have no extra parameter, or you'll get 
an error:

fun1(**{'arg1':1, 'arg2':2}) 
# Raises: TypeError: fun1() missing 1 required positional argument: 'arg3' 
fun1(**{'arg1':1, 'arg2':2, 'arg3':3, 'arg4':4}) 
# Raises: TypeError: fun1() got an unexpected keyword argument 'arg4'

For functions that have optional arguments, you can pack the arguments as a dictionary the same 
way:

fun2(**d) 
# Returns: (1, 2, 3)

But there you can omit values, as they will be replaced with the defaults:

fun2(**{'arg2': 2}) 
# Returns: ('a', 2, 'c')

And the same as before, you cannot give extra values that are not existing parameters:

fun2(**{'arg1':1, 'arg2':2, 'arg3':3, 'arg4':4}) 
# Raises: TypeError: fun2() got an unexpected keyword argument 'arg4'

In real world usage, functions can have both positional and optional arguments, and it works the 
same:

def fun3(arg1, arg2='b', arg3='c') 
    return (arg1, arg2, arg3)

you can call the function with just an iterable:

fun3(*[1]) 
# Returns: (1, 'b', 'c') 
fun3(*[1,2,3]) 
# Returns: (1, 2, 3)

or with just a dictionary:

fun3(**{'arg1':1}) 
# Returns: (1, 'b', 'c') 
fun3(**{'arg1':1, 'arg2':2, 'arg3':3}) 
# Returns: (1, 2, 3)

or you can use both in the same call:

fun3(*[1,2], **{'arg3':3}) 
# Returns: (1,2,3)

Beware though that you cannot provide multiple values for the same argument:

https://riptutorial.com/ 497



fun3(*[1,2], **{'arg2':42, 'arg3':3}) 
# Raises: TypeError: fun3() got multiple values for argument 'arg2'

Unpacking function arguments

When you want to create a function that can accept any number of arguments, and not enforce the 
position or the name of the argument at "compile" time, it's possible and here's how:

def fun1(*args, **kwargs): 
    print(args, kwargs)

The *args and **kwargs parameters are special parameters that are set to a tuple and a dict, 
respectively:

fun1(1,2,3) 
# Prints: (1, 2, 3) {} 
fun1(a=1, b=2, c=3) 
# Prints: () {'a': 1, 'b': 2, 'c': 3} 
fun1('x', 'y', 'z', a=1, b=2, c=3) 
# Prints: ('x', 'y', 'z') {'a': 1, 'b': 2, 'c': 3}

If you look at enough Python code, you'll quickly discover that it is widely being used when 
passing arguments over to another function. For example if you want to extend the string class:

class MyString(str): 
    def __init__(self, *args, **kwarg): 
        print('Constructing MyString') 
        super(MyString, self).__init__(*args, **kwarg)

Read List destructuring (aka packing and unpacking) online: 
https://riptutorial.com/python/topic/4282/list-destructuring--aka-packing-and-unpacking-

https://riptutorial.com/ 498

http://www.riptutorial.com/python/topic/927/tuple
http://www.riptutorial.com/python/topic/396/dictionary
https://riptutorial.com/python/topic/4282/list-destructuring--aka-packing-and-unpacking-


Chapter 95: List slicing (selecting parts of 
lists)

Syntax

a[start:end] # items start through end-1•
a[start:] # items start through the rest of the array•
a[:end] # items from the beginning through end-1•
a[start:end:step] # start through not past end, by step•
a[:] # a copy of the whole array•
source•

Remarks

lst[::-1] gives you a reversed copy of the list•
start or end may be a negative number, which means it counts from the end of the array 
instead of the beginning. So:

•

a[-1]    # last item in the array 
a[-2:]   # last two items in the array 
a[:-2]   # everything except the last two items

(source)

Examples

Using the third "step" argument

lst = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] 
 
lst[::2] 
# Output: ['a', 'c', 'e', 'g'] 
 
lst[::3] 
# Output: ['a', 'd', 'g']

Selecting a sublist from a list

lst = ['a', 'b', 'c', 'd', 'e'] 
 
lst[2:4] 
# Output: ['c', 'd'] 
 
lst[2:] 
# Output: ['c', 'd', 'e'] 
 

https://riptutorial.com/ 499

http://stackoverflow.com/questions/509211/explain-pythons-slice-notation
http://stackoverflow.com/questions/509211/explain-pythons-slice-notation


lst[:4] 
# Output: ['a', 'b', 'c', 'd']

Reversing a list with slicing

a = [1, 2, 3, 4, 5] 
 
# steps through the list backwards (step=-1) 
b = a[::-1] 
 
# built-in list method to reverse 'a' 
a.reverse() 
 
if a = b: 
    print(True) 
 
print(b) 
 
# Output: 
# True 
# [5, 4, 3, 2, 1]

Shifting a list using slicing

def shift_list(array, s): 
    """Shifts the elements of a list to the left or right. 
 
    Args: 
        array - the list to shift 
        s - the amount to shift the list ('+': right-shift, '-': left-shift) 
 
    Returns: 
        shifted_array - the shifted list 
    """ 
    # calculate actual shift amount (e.g., 11 --> 1 if length of the array is 5) 
    s %= len(array) 
 
    # reverse the shift direction to be more intuitive 
    s *= -1 
 
    # shift array with list slicing 
    shifted_array = array[s:] + array[:s] 
 
    return shifted_array 
 
my_array = [1, 2, 3, 4, 5] 
 
# negative numbers 
shift_list(my_array, -7) 
>>> [3, 4, 5, 1, 2] 
 
# no shift on numbers equal to the size of the array 
shift_list(my_array, 5) 
>>> [1, 2, 3, 4, 5] 
 
# works on positive numbers 
shift_list(my_array, 3) 

https://riptutorial.com/ 500



>>> [3, 4, 5, 1, 2]

Read List slicing (selecting parts of lists) online: https://riptutorial.com/python/topic/1494/list-
slicing--selecting-parts-of-lists-

https://riptutorial.com/ 501

https://riptutorial.com/python/topic/1494/list-slicing--selecting-parts-of-lists-
https://riptutorial.com/python/topic/1494/list-slicing--selecting-parts-of-lists-


Chapter 96: Logging

Examples

Introduction to Python Logging

This module defines functions and classes which implement a flexible event logging system for 
applications and libraries.

The key benefit of having the logging API provided by a standard library module is that all Python 
modules can participate in logging, so your application log can include your own messages 
integrated with messages from third-party modules.

So, lets start:

Example Configuration Directly in Code

import logging 
 
logger = logging.getLogger() 
handler = logging.StreamHandler() 
formatter = logging.Formatter( 
        '%(asctime)s %(name)-12s %(levelname)-8s %(message)s') 
handler.setFormatter(formatter) 
logger.addHandler(handler) 
logger.setLevel(logging.DEBUG) 
 
logger.debug('this is a %s test', 'debug')

Output example:

2016-07-26 18:53:55,332 root         DEBUG    this is a debug test

Example Configuration via an INI File

Assuming the file is named logging_config.ini. More details for the file format are in the logging 
configuration section of the logging tutorial.

[loggers] 
keys=root 
 
[handlers] 
keys=stream_handler 
 
[formatters] 
keys=formatter 
 
[logger_root] 
level=DEBUG 
handlers=stream_handler 
 

https://riptutorial.com/ 502

https://docs.python.org/3/howto/logging.html#configuring-logging
https://docs.python.org/3/howto/logging.html#configuring-logging
https://docs.python.org/3/howto/logging.html


[handler_stream_handler] 
class=StreamHandler 
level=DEBUG 
formatter=formatter 
args=(sys.stderr,) 
 
[formatter_formatter] 
format=%(asctime)s %(name)-12s %(levelname)-8s %(message)s

Then use logging.config.fileConfig() in the code:

import logging 
from logging.config import fileConfig 
 
fileConfig('logging_config.ini') 
logger = logging.getLogger() 
logger.debug('often makes a very good meal of %s', 'visiting tourists')

Example Configuration via a Dictionary

As of Python 2.7, you can use a dictionary with configuration details. PEP 391 contains a list of the 
mandatory and optional elements in the configuration dictionary.

import logging 
from logging.config import dictConfig 
 
logging_config = dict( 
    version = 1, 
    formatters = { 
        'f': {'format': 
              '%(asctime)s %(name)-12s %(levelname)-8s %(message)s'} 
        }, 
    handlers = { 
        'h': {'class': 'logging.StreamHandler', 
              'formatter': 'f', 
              'level': logging.DEBUG} 
        }, 
    root = { 
        'handlers': ['h'], 
        'level': logging.DEBUG, 
        }, 
) 
 
dictConfig(logging_config) 
 
logger = logging.getLogger() 
logger.debug('often makes a very good meal of %s', 'visiting tourists')

Logging exceptions

If you want to log exceptions you can and should make use of the logging.exception(msg) method:

>>> import logging 
>>> logging.basicConfig() 
>>> try: 
...     raise Exception('foo') 

https://riptutorial.com/ 503

https://www.python.org/dev/peps/pep-0391/


... except: 

...     logging.exception('bar') 

... 
ERROR:root:bar 
Traceback (most recent call last): 
  File "<stdin>", line 2, in <module> 
Exception: foo

Do not pass the exception as argument:

As logging.exception(msg) expects a msg arg, it is a common pitfall to pass the exception into the 
logging call like this:

>>> try: 
...     raise Exception('foo') 
... except Exception as e: 
...     logging.exception(e) 
... 
ERROR:root:foo 
Traceback (most recent call last): 
  File "<stdin>", line 2, in <module> 
Exception: foo

While it might look as if this is the right thing to do at first, it is actually problematic due to the 
reason how exceptions and various encoding work together in the logging module:

>>> try: 
...     raise Exception(u'föö') 
... except Exception as e: 
...     logging.exception(e) 
... 
Traceback (most recent call last): 
  File "/.../python2.7/logging/__init__.py", line 861, in emit 
    msg = self.format(record) 
  File "/.../python2.7/logging/__init__.py", line 734, in format 
    return fmt.format(record) 
  File "/.../python2.7/logging/__init__.py", line 469, in format 
    s = self._fmt % record.__dict__ 
UnicodeEncodeError: 'ascii' codec can't encode characters in position 1-2: ordinal not in 
range(128) 
Logged from file <stdin>, line 4

Trying to log an exception that contains unicode chars, this way will fail miserably. It will hide the 
stacktrace of the original exception by overriding it with a new one that is raised during formatting 
of your logging.exception(e) call.

Obviously, in your own code, you might be aware of the encoding in exceptions. However, 3rd 
party libs might handle this in a different way.

Correct Usage:

If instead of the exception you just pass a message and let python do its magic, it will work:

>>> try: 

https://riptutorial.com/ 504

http://stackoverflow.com/questions/31137568/properly-logging-unicode-utf-8-exceptions-in-python-2


...     raise Exception(u'föö') 

... except Exception as e: 

...     logging.exception('bar') 

... 
ERROR:root:bar 
Traceback (most recent call last): 
  File "<stdin>", line 2, in <module> 
Exception: f\xf6\xf6

As you can see we don't actually use e in that case, the call to logging.exception(...) magically 
formats the most recent exception.

Logging exceptions with non ERROR log levels

If you want to log an exception with another log level than ERROR, you can use the the exc_info 
argument of the default loggers:

logging.debug('exception occurred', exc_info=1) 
logging.info('exception occurred', exc_info=1) 
logging.warning('exception occurred', exc_info=1)

Accessing the exception's message

Be aware that libraries out there might throw exceptions with messages as any of unicode or (utf-8 
if you're lucky) byte-strings. If you really need to access an exception's text, the only reliable way, 
that will always work, is to use repr(e) or the %r string formatting:

>>> try: 
...     raise Exception(u'föö') 
... except Exception as e: 
...     logging.exception('received this exception: %r' % e) 
... 
ERROR:root:received this exception: Exception(u'f\xf6\xf6',) 
Traceback (most recent call last): 
  File "<stdin>", line 2, in <module> 
Exception: f\xf6\xf6

Read Logging online: https://riptutorial.com/python/topic/4081/logging

https://riptutorial.com/ 505

https://riptutorial.com/python/topic/4081/logging


Chapter 97: Loops

Introduction

As one of the most basic functions in programming, loops are an important piece to nearly every 
programming language. Loops enable developers to set certain portions of their code to repeat 
through a number of loops which are referred to as iterations. This topic covers using multiple 
types of loops and applications of loops in Python.

Syntax

while <boolean expression>:•
for <variable> in <iterable>:•
for <variable> in range(<number>):•
for <variable> in range(<start_number>, <end_number>):•
for <variable> in range(<start_number>, <end_number>, <step_size>):•
for i, <variable> in enumerate(<iterable>): # with index i•
for <variable1>, <variable2> in zip(<iterable1>, <iterable2>):•

Parameters

Parameter Details

boolean expression expression that can be evaluated in a boolean context, e.g. x < 10

variable variable name for the current element from the iterable

iterable anything that implements iterations

Examples

Iterating over lists

To iterate through a list you can use for:

for x in ['one', 'two', 'three', 'four']: 
    print(x)

This will print out the elements of the list:

one 
two 
three 
four

https://riptutorial.com/ 506



The range function generates numbers which are also often used in a for loop.

for x in range(1, 6): 
    print(x)

The result will be a special range sequence type in python >=3 and a list in python <=2. Both can 
be looped through using the for loop.

1 
2 
3 
4 
5

If you want to loop though both the elements of a list and have an index for the elements as well, 
you can use Python's enumerate function:

for index, item in enumerate(['one', 'two', 'three', 'four']): 
    print(index, '::', item)

enumerate will generate tuples, which are unpacked into index (an integer) and item (the actual 
value from the list). The above loop will print

(0, '::', 'one') 
(1, '::', 'two') 
(2, '::', 'three') 
(3, '::', 'four')

Iterate over a list with value manipulation using map and lambda, i.e. apply lambda function on each 
element in the list:

x = map(lambda e :  e.upper(), ['one', 'two', 'three', 'four']) 
print(x)

Output:

['ONE', 'TWO', 'THREE', 'FOUR'] # Python 2.x

NB: in Python 3.x map returns an iterator instead of a list so you in case you need a list you have to 
cast the result print(list(x)) (see http://www.riptutorial.com/python/example/8186/map-- in 
http://www.riptutorial.com/python/topic/809/incompatibilities-moving-from-python-2-to-python-3 ).

For loops

for loops iterate over a collection of items, such as list or dict, and run a block of code with each 
element from the collection.

for i in [0, 1, 2, 3, 4]: 
    print(i)

https://riptutorial.com/ 507

https://docs.python.org/3/library/stdtypes.html#ranges
http://www.riptutorial.com/python/example/8186/map--
http://www.riptutorial.com/python/topic/809/incompatibilities-moving-from-python-2-to-python-3


The above for loop iterates over a list of numbers.

Each iteration sets the value of i to the next element of the list. So first it will be 0, then 1, then 2, 
etc. The output will be as follow:

0 
1 
2 
3 
4

range is a function that returns a series of numbers under an iterable form, thus it can be used in 
for loops:

for i in range(5): 
    print(i)

gives the exact same result as the first for loop. Note that 5 is not printed as the range here is the 
first five numbers counting from 0.

Iterable objects and iterators

for loop can iterate on any iterable object which is an object which defines a __getitem__ or a 
__iter__ function. The __iter__ function returns an iterator, which is an object with a next function 
that is used to access the next element of the iterable.

Break and Continue in Loops

break statement

When a break statement executes inside a loop, control flow "breaks" out of the loop immediately:

i = 0 
while i < 7: 
    print(i) 
    if i == 4: 
        print("Breaking from loop") 
        break 
    i += 1

The loop conditional will not be evaluated after the break statement is executed. Note that break 
statements are only allowed inside loops, syntactically. A break statement inside a function cannot 
be used to terminate loops that called that function.

Executing the following prints every digit until number 4 when the break statement is met and the 
loop stops:

https://riptutorial.com/ 508

http://stackoverflow.com/questions/9884132/what-exactly-are-pythons-iterator-iterable-and-iteration-protocols


0 
1 
2 
3 
4 
Breaking from loop

break statements can also be used inside for loops, the other looping construct provided by 
Python:

for i in (0, 1, 2, 3, 4): 
    print(i) 
    if i == 2: 
        break

Executing this loop now prints:

0 
1 
2

Note that 3 and 4 are not printed since the loop has ended.

If a loop has an else clause, it does not execute when the loop is terminated through a break 
statement.

continue statement

A continue statement will skip to the next iteration of the loop bypassing the rest of the current 
block but continuing the loop. As with break, continue can only appear inside loops:

for i in (0, 1, 2, 3, 4, 5): 
    if i == 2 or i == 4: 
        continue 
    print(i) 
 
0 
1 
3 
5

Note that 2 and 4 aren't printed, this is because continue goes to the next iteration instead of 
continuing on to print(i) when i == 2 or i == 4.

Nested Loops

break and continue only operate on a single level of loop. The following example will only break out 
of the inner for loop, not the outer while loop:

https://riptutorial.com/ 509

http://www.riptutorial.com/python/example/3040/loops-with-an--else--clause
http://www.riptutorial.com/python/example/3040/loops-with-an--else--clause
http://www.riptutorial.com/python/example/3040/loops-with-an--else--clause


while True: 
    for i in range(1,5): 
        if i == 2: 
            break    # Will only break out of the inner loop!

Python doesn't have the ability to break out of multiple levels of loop at once -- if this behavior is 
desired, refactoring one or more loops into a function and replacing break with return may be the 
way to go.

Use return from within a function as a break

The return statement exits from a function, without executing the code that comes after it.

If you have a loop inside a function, using return from inside that loop is equivalent to having a 
break as the rest of the code of the loop is not executed (note that any code after the loop is not 
executed either):

def break_loop(): 
    for i in range(1, 5): 
        if (i == 2): 
            return(i) 
        print(i) 
    return(5)

If you have nested loops, the return statement will break all loops:

def break_all(): 
    for j in range(1, 5): 
        for i in range(1,4): 
            if i*j == 6: 
                return(i) 
            print(i*j)

will output:

1 # 1*1 
2 # 1*2 
3 # 1*3 
4 # 1*4 
2 # 2*1 
4 # 2*2 
# return because 2*3 = 6, the remaining iterations of both loops are not executed

Loops with an "else" clause

The for and while compound statements (loops) can optionally have an else clause (in practice, 
this usage is fairly rare).

The else clause only executes after a for loop terminates by iterating to completion, or after a 
while loop terminates by its conditional expression becoming false.

https://riptutorial.com/ 510

http://www.riptutorial.com/python/example/835/returning-values-from-functions
http://www.riptutorial.com/python/example/835/returning-values-from-functions


for i in range(3): 
    print(i) 
else: 
    print('done') 
 
i = 0 
while i < 3: 
    print(i) 
    i += 1 
else: 
    print('done')

output:

 0 
 1 
 2 
 done

The else clause does not execute if the loop terminates some other way (through a break 
statement or by raising an exception):

for i in range(2): 
    print(i) 
    if i == 1: 
        break 
else: 
    print('done')

output:

0 
1

Most other programming languages lack this optional else clause of loops. The use of the keyword 
else in particular is often considered confusing.

The original concept for such a clause dates back to Donald Knuth and the meaning of the else 
keyword becomes clear if we rewrite a loop in terms of if statements and goto statements from 
earlier days before structured programming or from a lower-level assembly language.

For example:

while loop_condition(): 
    ... 
    if break_condition(): 
        break 
    ...

is equivalent to:

# pseudocode 
 

https://riptutorial.com/ 511



<<start>>: 
if loop_condition(): 
    ... 
    if break_condition(): 
        goto <<end>> 
    ... 
    goto <<start>> 
 
<<end>>:

These remain equivalent if we attach an else clause to each of them.

For example:

while loop_condition(): 
    ... 
    if break_condition(): 
        break 
    ... 
else: 
    print('done')

is equivalent to:

# pseudocode 
 
<<start>>: 
if loop_condition(): 
    ... 
    if break_condition(): 
        goto <<end>> 
    ... 
    goto <<start>> 
else: 
    print('done') 
 
<<end>>:

A for loop with an else clause can be understood the same way. Conceptually, there is a loop 
condition that remains True as long as the iterable object or sequence still has some remaining 
elements.

Why would one use this strange construct?

The main use case for the for...else construct is a concise implementation of search as for 
instance:

a = [1, 2, 3, 4] 
for i in a: 
    if type(i) is not int: 
        print(i) 
        break 
else: 
    print("no exception") 

https://riptutorial.com/ 512



To make the else in this construct less confusing one can think of it as "if not break" or "if not 
found".

Some discussions on this can be found in [Python-ideas] Summary of for...else threads, Why does 
python use 'else' after for and while loops? , and Else Clauses on Loop Statements

Iterating over dictionaries

Considering the following dictionary:

 d = {"a": 1, "b": 2, "c": 3}

To iterate through its keys, you can use:

for key in d: 
    print(key)

Output:

"a" 
"b" 
"c"

This is equivalent to:

for key in d.keys(): 
    print(key)

or in Python 2:

for key in d.iterkeys(): 
    print(key)

To iterate through its values, use:

for value in d.values(): 
    print(value)

Output:

1 
2 
3

To iterate through its keys and values, use:

for key, value in d.items(): 

https://riptutorial.com/ 513

https://mail.python.org/pipermail/python-ideas/2009-October/006155.html
https://stackoverflow.com/questions/9979970/why-does-python-use-else-after-for-and-while-loops
https://stackoverflow.com/questions/9979970/why-does-python-use-else-after-for-and-while-loops
http://python-notes.curiousefficiency.org/en/latest/python_concepts/break_else.html


    print(key, "::", value)

Output:

a :: 1 
b :: 2 
c :: 3

Note that in Python 2, .keys(), .values() and .items() return a list object. If you simply need to 
iterate trough the result, you can use the equivalent .iterkeys(), .itervalues() and .iteritems().

The difference between .keys() and .iterkeys(), .values() and .itervalues(), .items() and 
.iteritems() is that the iter* methods are generators. Thus, the elements within the dictionary are 
yielded one by one as they are evaluated. When a list object is returned, all of the elements are 
packed into a list and then returned for further evaluation.

Note also that in Python 3, Order of items printed in the above manner does not follow 
any order.

While Loop

A while loop will cause the loop statements to be executed until the loop condition is falsey. The 
following code will execute the loop statements a total of 4 times.

i = 0 
while i < 4: 
    #loop statements 
    i = i + 1

While the above loop can easily be translated into a more elegant for loop, while loops are useful 
for checking if some condition has been met. The following loop will continue to execute until 
myObject is ready.

myObject = anObject() 
while myObject.isNotReady(): 
    myObject.tryToGetReady()

while loops can also run without a condition by using numbers (complex or real) or True:

import cmath 
 
complex_num = cmath.sqrt(-1) 
while complex_num:      # You can also replace complex_num with any number, True or a value of 
any type 
    print(complex_num)   # Prints 1j forever

If the condition is always true the while loop will run forever (infinite loop) if it is not terminated by a 
break or return statement or an exception.

https://riptutorial.com/ 514

http://www.riptutorial.com/python/example/8719/truth-values


while True: 
    print "Infinite loop" 
# Infinite loop 
# Infinite loop 
# Infinite loop 
# ...

The Pass Statement

pass is a null statement for when a statement is required by Python syntax (such as within the 
body of a for or while loop), but no action is required or desired by the programmer. This can be 
useful as a placeholder for code that is yet to be written.

for x in range(10): 
    pass #we don't want to do anything, or are not ready to do anything here, so we'll pass

In this example, nothing will happen. The for loop will complete without error, but no commands or 
code will be actioned. pass allows us to run our code successfully without having all commands 
and action fully implemented.

Similarly, pass can be used in while loops, as well as in selections and function definitions etc.

while x == y: 
    pass

Iterating different portion of a list with different step size

Suppose you have a long list of elements and you are only interested in every other element of the 
list. Perhaps you only want to examine the first or last elements, or a specific range of entries in 
your list. Python has strong indexing built-in capabilities. Here are some examples of how to 
achieve these scenarios.

Here's a simple list that will be used throughout the examples:

lst = ['alpha', 'bravo', 'charlie', 'delta', 'echo']

Iteration over the whole list

To iterate over each element in the list, a for loop like below can be used:

for s in lst: 
    print s[:1] # print the first letter

The for loop assigns s for each element of lst. This will print:

a 
b 

https://riptutorial.com/ 515



c 
d 
e

Often you need both the element and the index of that element. The enumerate keyword performs 
that task.

for idx, s in enumerate(lst): 
    print("%s has an index of %d" % (s, idx))

The index idx will start with zero and increment for each iteration, while the s will contain the 
element being processed. The previous snippet will output:

alpha has an index of 0 
bravo has an index of 1 
charlie has an index of 2 
delta has an index of 3 
echo has an index of 4

Iterate over sub-list

If we want to iterate over a range (remembering that Python uses zero-based indexing), use the 
range keyword.

for i in range(2,4): 
    print("lst at %d contains %s" % (i, lst[i]))

This would output:

lst at 2 contains charlie 
lst at 3 contains delta

The list may also be sliced. The following slice notation goes from element at index 1 to the end 
with a step of 2. The two for loops give the same result.

for s in lst[1::2]: 
    print(s) 
 
for i in range(1, len(lst), 2): 
    print(lst[i])

The above snippet outputs:

bravo 
delta

Indexing and slicing is a topic of its own.

https://riptutorial.com/ 516

http://www.riptutorial.com/python/example/1042/basic-slicing


The "half loop" do-while

Unlike other languages, Python doesn't have a do-until or a do-while construct (this will allow code 
to be executed once before the condition is tested). However, you can combine a while True with a 
break to achieve the same purpose.

a = 10 
while True: 
    a = a-1 
    print(a) 
    if a<7: 
        break 
print('Done.')

This will print:

9 
8 
7 
6 
Done.

Looping and Unpacking

If you want to loop over a list of tuples for example:

collection = [('a', 'b', 'c'), ('x', 'y', 'z'), ('1', '2', '3')]

instead of doing something like this:

for item in collection: 
    i1 = item[0] 
    i2 = item[1] 
    i3 = item[2] 
    # logic

or something like this:

for item in collection: 
    i1, i2, i3 = item 
    # logic

You can simply do this:

for i1, i2, i3 in collection: 
    # logic

This will also work for most types of iterables, not just tuples.

Read Loops online: https://riptutorial.com/python/topic/237/loops

https://riptutorial.com/ 517

http://www.riptutorial.com/python/example/875/break-and-continue-in-loops
https://riptutorial.com/python/topic/237/loops


Chapter 98: Manipulating XML

Remarks

Not all elements of the XML input will end up as elements of the parsed tree. Currently, this 
module skips over any XML comments, processing instructions, and document type declarations 
in the input. Nevertheless, trees built using this module’s API rather than parsing from XML text 
can have comments and processing instructions in them; they will be included when generating 
XML output.

Examples

Opening and reading using an ElementTree

Import the ElementTree object, open the relevant .xml file and get the root tag:

import xml.etree.ElementTree as ET 
tree = ET.parse("yourXMLfile.xml") 
root = tree.getroot()

There are a few ways to search through the tree. First is by iteration:

for child in root: 
    print(child.tag, child.attrib)

Otherwise you can reference specific locations like a list:

print(root[0][1].text)

To search for specific tags by name, use the .find or .findall:

print(root.findall("myTag")) 
print(root[0].find("myOtherTag"))

Modifying an XML File

Import Element Tree module and open xml file, get an xml element

import xml.etree.ElementTree as ET 
tree = ET.parse('sample.xml') 
root=tree.getroot() 
element = root[0] #get first child of root element

Element object can be manipulated by changing its fields, adding and modifying attributes, adding 
and removing children

https://riptutorial.com/ 518



element.set('attribute_name', 'attribute_value') #set the attribute to xml element 
element.text="string_text"

If you want to remove an element use Element.remove() method

root.remove(element)

ElementTree.write() method used to output xml object to xml files.

tree.write('output.xml')

Create and Build XML Documents

Import Element Tree module

import xml.etree.ElementTree as ET

Element() function is used to create XML elements

p=ET.Element('parent')

SubElement() function used to create sub-elements to a give element

c = ET.SubElement(p, 'child1')

dump() function is used to dump xml elements.

ET.dump(p) 
# Output will be like this 
#<parent><child1 /></parent>

If you want to save to a file create a xml tree with ElementTree() function and to save to a file use 
write() method

tree = ET.ElementTree(p) 
tree.write("output.xml")

Comment() function is used to insert comments in xml file.

comment = ET.Comment('user comment') 
p.append(comment) #this comment will be appended to parent element

Opening and reading large XML files using iterparse (incremental parsing)

Sometimes we don't want to load the entire XML file in order to get the information we need. In 
these instances, being able to incrementally load the relevant sections and then delete them when 
we are finished is useful. With the iterparse function you can edit the element tree that is stored 

https://riptutorial.com/ 519



while parsing the XML.

Import the ElementTree object:

import xml.etree.ElementTree as ET

Open the .xml file and iterate over all the elements:

for event, elem in ET.iterparse("yourXMLfile.xml"): 
    ... do something ...

Alternatively, we can only look for specific events, such as start/end tags or namespaces. If this 
option is omitted (as above), only "end" events are returned:

events=("start", "end", "start-ns", "end-ns") 
for event, elem in ET.iterparse("yourXMLfile.xml", events=events): 
    ... do something ...

Here is the complete example showing how to clear elements from the in-memory tree when we 
are finished with them:

for event, elem in ET.iterparse("yourXMLfile.xml", events=("start","end")): 
    if elem.tag == "record_tag" and event == "end": 
        print elem.text 
        elem.clear() 
    ... do something else ...

Searching the XML with XPath

Starting with version 2.7 ElementTree has a better support for XPath queries. XPath is a syntax to 
enable you to navigate through an xml like SQL is used to search through a database. Both find 
and findall functions support XPath. The xml below will be used for this example

 <Catalog> 
    <Books> 
        <Book id="1" price="7.95"> 
            <Title>Do Androids Dream of Electric Sheep?</Title> 
            <Author>Philip K. Dick</Author> 
        </Book> 
        <Book id="5" price="5.95"> 
            <Title>The Colour of Magic</Title> 
            <Author>Terry Pratchett</Author> 
        </Book> 
        <Book id="7" price="6.95"> 
            <Title>The Eye of The World</Title> 
            <Author>Robert Jordan</Author> 
        </Book> 
    </Books> 
</Catalog>

Searching for all books:

https://riptutorial.com/ 520



import xml.etree.cElementTree as ET 
tree = ET.parse('sample.xml') 
tree.findall('Books/Book')

Searching for the book with title = 'The Colour of Magic':

tree.find("Books/Book[Title='The Colour of Magic']") 
# always use '' in the right side of the comparison

Searching for the book with id = 5:

tree.find("Books/Book[@id='5']") 
# searches with xml attributes must have '@' before the name

Search for the second book:

tree.find("Books/Book[2]") 
# indexes starts at 1, not 0

Search for the last book:

tree.find("Books/Book[last()]") 
# 'last' is the only xpath function allowed in ElementTree

Search for all authors:

tree.findall(".//Author") 
#searches with // must use a relative path

Read Manipulating XML online: https://riptutorial.com/python/topic/479/manipulating-xml

https://riptutorial.com/ 521

https://riptutorial.com/python/topic/479/manipulating-xml


Chapter 99: Map Function

Syntax

map(function, iterable[, *additional_iterables])•
future_builtins.map(function, iterable[, *additional_iterables])•
itertools.imap(function, iterable[, *additional_iterables])•

Parameters

Parameter Details

function
function for mapping (must take as many parameters as there are 
iterables) (positional-only)

iterable the function is applied to each element of the iterable (positional-only)

*additional_iterables see iterable, but as many as you like (optional, positional-only)

Remarks

Everything that can be done with map can also be done with comprehensions:

list(map(abs, [-1,-2,-3]))    # [1, 2, 3] 
[abs(i) for i in [-1,-2,-3]]  # [1, 2, 3]

Though you would need zip if you have multiple iterables:

import operator 
alist = [1,2,3] 
list(map(operator.add, alist, alist))  # [2, 4, 6] 
[i + j for i, j in zip(alist, alist)]  # [2, 4, 6]

List comprehensions are efficient and can be faster than map in many cases, so test the times of 
both approaches if speed is important for you.

Examples

Basic use of map, itertools.imap and future_builtins.map

The map function is the simplest one among Python built-ins used for functional programming. 
map() applies a specified function to each element in an iterable:

names = ['Fred', 'Wilma', 'Barney']

https://riptutorial.com/ 522

http://www.riptutorial.com/python/topic/196/list-comprehensions
https://docs.python.org/3/library/functions.html#map


Python 3.x3.0

map(len, names)  # map in Python 3.x is a class; its instances are iterable 
# Out: <map object at 0x00000198B32E2CF8>

A Python 3-compatible map is included in the future_builtins module:

Python 2.x2.6

from future_builtins import map  # contains a Python 3.x compatible map() 
map(len, names)                  # see below 
# Out: <itertools.imap instance at 0x3eb0a20>

Alternatively, in Python 2 one can use imap from itertools to get a generator

Python 2.x2.3

map(len, names)   # map() returns a list 
# Out: [4, 5, 6] 
 
from itertools import imap 
imap(len, names)  # itertools.imap() returns a generator 
# Out: <itertools.imap at 0x405ea20>

The result can be explicitly converted to a list to remove the differences between Python 2 and 3:

list(map(len, names)) 
# Out: [4, 5, 6]

map() can be replaced by an equivalent list comprehension or generator expression:

[len(item) for item in names] # equivalent to Python 2.x map() 
# Out: [4, 5, 6] 
 
(len(item) for item in names) # equivalent to Python 3.x map() 
# Out: <generator object <genexpr> at 0x00000195888D5FC0>

Mapping each value in an iterable

For example, you can take the absolute value of each element:

list(map(abs, (1, -1, 2, -2, 3, -3))) # the call to `list` is unnecessary in 2.x 
# Out: [1, 1, 2, 2, 3, 3]

Anonymous function also support for mapping a list:

map(lambda x:x*2, [1, 2, 3, 4, 5]) 
# Out: [2, 4, 6, 8, 10]

or converting decimal values to percentages:

def to_percent(num): 

https://riptutorial.com/ 523

http://www.riptutorial.com/python/example/737/list-comprehensions
http://www.riptutorial.com/python/example/739/generator-expressions


    return num * 100 
 
list(map(to_percent, [0.95, 0.75, 1.01, 0.1])) 
# Out: [95.0, 75.0, 101.0, 10.0]

or converting dollars to euros (given an exchange rate):

from functools import partial 
from operator import mul 
 
rate = 0.9  # fictitious exchange rate, 1 dollar = 0.9 euros 
dollars = {'under_my_bed': 1000, 
           'jeans': 45, 
           'bank': 5000} 
 
sum(map(partial(mul, rate), dollars.values())) 
# Out: 5440.5

functools.partial is a convenient way to fix parameters of functions so that they can be used with 
map instead of using lambda or creating customized functions.

Mapping values of different iterables

For example calculating the average of each i-th element of multiple iterables:

def average(*args): 
    return float(sum(args)) / len(args)  # cast to float - only mandatory for python 2.x 
 
measurement1 = [100, 111, 99, 97] 
measurement2 = [102, 117, 91, 102] 
measurement3 = [104, 102, 95, 101] 
 
list(map(average, measurement1, measurement2, measurement3)) 
# Out: [102.0, 110.0, 95.0, 100.0]

There are different requirements if more than one iterable is passed to map depending on the 
version of python:

The function must take as many parameters as there are iterables:

def median_of_three(a, b, c): 
    return sorted((a, b, c))[1] 
 
list(map(median_of_three, measurement1, measurement2))

TypeError: median_of_three() missing 1 required positional argument: 'c'

list(map(median_of_three, measurement1, measurement2, measurement3, measurement3))

TypeError: median_of_three() takes 3 positional arguments but 4 were given

•

Python 2.x2.0.1

https://riptutorial.com/ 524



map: The mapping iterates as long as one iterable is still not fully consumed but assumes None 
from the fully consumed iterables:

import operator 
 
measurement1 = [100, 111, 99, 97] 
measurement2 = [102, 117] 
 
# Calculate difference between elements 
list(map(operator.sub, measurement1, measurement2))

TypeError: unsupported operand type(s) for -: 'int' and 'NoneType'

•

itertools.imap and future_builtins.map: The mapping stops as soon as one iterable stops:

import operator 
from itertools import imap 
 
measurement1 = [100, 111, 99, 97] 
measurement2 = [102, 117] 
 
# Calculate difference between elements 
list(imap(operator.sub, measurement1, measurement2)) 
# Out: [-2, -6] 
list(imap(operator.sub, measurement2, measurement1)) 
# Out: [2, 6]

•

Python 3.x3.0.0

The mapping stops as soon as one iterable stops:

import operator 
 
measurement1 = [100, 111, 99, 97] 
measurement2 = [102, 117] 
 
# Calculate difference between elements 
list(map(operator.sub, measurement1, measurement2)) 
# Out: [-2, -6] 
list(map(operator.sub, measurement2, measurement1)) 
# Out: [2, 6]

•

Transposing with Map: Using "None" as function argument (python 2.x only)

from itertools import imap 
from future_builtins import map as fmap # Different name to highlight differences 
 
image = [[1, 2, 3], 
         [4, 5, 6], 
         [7, 8, 9]] 
 
list(map(None, *image)) 
# Out: [(1, 4, 7), (2, 5, 8), (3, 6, 9)] 
list(fmap(None, *image)) 
# Out: [(1, 4, 7), (2, 5, 8), (3, 6, 9)] 

https://riptutorial.com/ 525



list(imap(None, *image)) 
# Out: [(1, 4, 7), (2, 5, 8), (3, 6, 9)] 
 
image2 = [[1, 2, 3], 
          [4, 5], 
          [7, 8, 9]] 
list(map(None, *image2)) 
# Out: [(1, 4, 7), (2, 5, 8), (3, None, 9)]  # Fill missing values with None 
list(fmap(None, *image2)) 
# Out: [(1, 4, 7), (2, 5, 8)]                # ignore columns with missing values 
list(imap(None, *image2)) 
# Out: [(1, 4, 7), (2, 5, 8)]                # dito

Python 3.x3.0.0

list(map(None, *image))

TypeError: 'NoneType' object is not callable

But there is a workaround to have similar results:

def conv_to_list(*args): 
    return list(args) 
 
list(map(conv_to_list, *image)) 
# Out: [[1, 4, 7], [2, 5, 8], [3, 6, 9]]

Series and Parallel Mapping

map() is a built-in function, which means that it is available everywhere without the need to use an 
'import' statement. It is available everywhere just like print() If you look at Example 5 you will see 
that I had to use an import statement before I could use pretty print (import pprint). Thus pprint is 
not a built-in function

Series mapping

In this case each argument of the iterable is supplied as argument to the mapping function in 
ascending order. This arises when we have just one iterable to map and the mapping function 
requires a single argument.

Example 1

insects = ['fly', 'ant', 'beetle', 'cankerworm'] 
f = lambda x: x + ' is an insect' 
print(list(map(f, insects))) # the function defined by f is executed on each item of the 
iterable insects

results in

['fly is an insect', 'ant is an insect', 'beetle is an insect', 'cankerworm is an insect']

Example 2

https://riptutorial.com/ 526



print(list(map(len, insects))) # the len function is executed each item in the insect list

results in

[3, 3, 6, 10]

Parallel mapping

In this case each argument of the mapping function is pulled from across all iterables (one from 
each iterable) in parallel. Thus the number of iterables supplied must match the number of 
arguments required by the function.

carnivores = ['lion', 'tiger', 'leopard', 'arctic fox'] 
herbivores = ['african buffalo', 'moose', 'okapi', 'parakeet'] 
omnivores = ['chicken', 'dove', 'mouse', 'pig'] 
 
def animals(w, x, y, z): 
    return '{0}, {1}, {2}, and {3} ARE ALL ANIMALS'.format(w.title(), x, y, z)

Example 3

# Too many arguments 
# observe here that map is trying to pass one item each from each of the four iterables to 
len. This leads len to complain that 
# it is being fed too many arguments 
print(list(map(len, insects, carnivores, herbivores, omnivores)))

results in

TypeError: len() takes exactly one argument (4 given)

Example 4

# Too few arguments 
# observe here that map is suppose to execute animal on individual elements of insects one-by-
one. But animals complain when 
# it only gets one argument, whereas it was expecting four. 
print(list(map(animals, insects)))

results in

TypeError: animals() missing 3 required positional arguments: 'x', 'y', and 'z'

Example 5

# here map supplies w, x, y, z with one value from across the list 
import pprint 
pprint.pprint(list(map(animals, insects, carnivores, herbivores, omnivores)))

results in

https://riptutorial.com/ 527



 ['Fly, lion, african buffalo, and chicken ARE ALL ANIMALS', 
 'Ant, tiger, moose, and dove ARE ALL ANIMALS', 
 'Beetle, leopard, okapi, and mouse ARE ALL ANIMALS', 
 'Cankerworm, arctic fox, parakeet, and pig ARE ALL ANIMALS']

Read Map Function online: https://riptutorial.com/python/topic/333/map-function

https://riptutorial.com/ 528

https://riptutorial.com/python/topic/333/map-function


Chapter 100: Math Module

Examples

Rounding: round, floor, ceil, trunc

In addition to the built-in round function, the math module provides the floor, ceil, and trunc 
functions.

x = 1.55 
y = -1.55 
 
# round to the nearest integer 
round(x)       #  2 
round(y)       # -2 
 
# the second argument gives how many decimal places to round to (defaults to 0) 
round(x, 1)    #  1.6 
round(y, 1)    # -1.6 
 
# math is a module so import it first, then use it. 
import math 
 
# get the largest integer less than x 
math.floor(x)  #  1 
math.floor(y)  # -2 
 
# get the smallest integer greater than x 
math.ceil(x)   #  2 
math.ceil(y)   # -1 
 
# drop fractional part of x 
math.trunc(x)  #  1, equivalent to math.floor for positive numbers 
math.trunc(y)  # -1, equivalent to math.ceil for negative numbers

Python 2.x2.7

floor, ceil, trunc, and round always return a float.

round(1.3)  # 1.0

round always breaks ties away from zero.

round(0.5)  # 1.0 
round(1.5)  # 2.0

Python 3.x3.0

floor, ceil, and trunc always return an Integral value, while round returns an Integral value if 
called with one argument.

https://riptutorial.com/ 529



round(1.3)      # 1 
round(1.33, 1)  # 1.3

round breaks ties towards the nearest even number. This corrects the bias towards larger numbers 
when performing a large number of calculations.

round(0.5)  # 0 
round(1.5)  # 2

Warning!

As with any floating-point representation, some fractions cannot be represented exactly. This can 
lead to some unexpected rounding behavior.

round(2.675, 2)  # 2.67, not 2.68!

Warning about the floor, trunc, and integer division of negative numbers

Python (and C++ and Java) round away from zero for negative numbers. Consider:

>>> math.floor(-1.7) 
-2.0 
>>> -5 // 2 
-3

Logarithms

math.log(x) gives the natural (base e) logarithm of x.

math.log(math.e)  # 1.0 
math.log(1)       # 0.0 
math.log(100)     # 4.605170185988092

math.log can lose precision with numbers close to 1, due to the limitations of floating-point 
numbers. In order to accurately calculate logs close to 1, use math.log1p, which evaluates the 
natural logarithm of 1 plus the argument:

math.log(1 + 1e-20)  # 0.0 
math.log1p(1e-20)    # 1e-20

math.log10 can be used for logs base 10:

math.log10(10)  # 1.0

Python 2.x2.3.0

When used with two arguments, math.log(x, base) gives the logarithm of x in the given base (i.e. 
log(x) / log(base).

https://riptutorial.com/ 530



math.log(100, 10) # 2.0 
math.log(27, 3)   # 3.0 
math.log(1, 10)   # 0.0

Copying signs

In Python 2.6 and higher, math.copysign(x, y) returns x with the sign of y. The returned value is 
always a float.

Python 2.x2.6

math.copysign(-2, 3)    # 2.0 
math.copysign(3, -3)    # -3.0 
math.copysign(4, 14.2)  # 4.0 
math.copysign(1, -0.0)  # -1.0, on a platform which supports signed zero

Trigonometry

Calculating the length of the hypotenuse

math.hypot(2, 4) # Just a shorthand for SquareRoot(2**2 + 4**2) 
# Out: 4.47213595499958

Converting degrees to/from radians

All math functions expect radians so you need to convert degrees to radians:

math.radians(45)              # Convert 45 degrees to radians 
# Out: 0.7853981633974483

All results of the inverse trigonometic functions return the result in radians, so you may need to 
convert it back to degrees:

math.degrees(math.asin(1))    # Convert the result of asin to degrees 
# Out: 90.0

Sine, cosine, tangent and inverse functions

# Sine and arc sine 
math.sin(math.pi / 2) 
# Out: 1.0 
math.sin(math.radians(90))   # Sine of 90 degrees 
# Out: 1.0 
 
math.asin(1) 
# Out: 1.5707963267948966    # "= pi / 2" 
math.asin(1) / math.pi 
# Out: 0.5 
 
# Cosine and arc cosine: 

https://riptutorial.com/ 531



math.cos(math.pi / 2) 
# Out: 6.123233995736766e-17 
# Almost zero but not exactly because "pi" is a float with limited precision! 
 
math.acos(1) 
# Out: 0.0 
 
# Tangent and arc tangent: 
math.tan(math.pi/2) 
# Out: 1.633123935319537e+16 
# Very large but not exactly "Inf" because "pi" is a float with limited precision

Python 3.x3.5

math.atan(math.inf) 
# Out: 1.5707963267948966 # This is just "pi / 2"

math.atan(float('inf')) 
# Out: 1.5707963267948966 # This is just "pi / 2"

Apart from the math.atan there is also a two-argument math.atan2 function, which computes the 
correct quadrant and avoids pitfalls of division by zero:

math.atan2(1, 2)   # Equivalent to "math.atan(1/2)" 
# Out: 0.4636476090008061 # ≈ 26.57 degrees, 1st quadrant 
 
math.atan2(-1, -2) # Not equal to "math.atan(-1/-2)" == "math.atan(1/2)" 
# Out: -2.677945044588987 # ≈ -153.43 degrees (or 206.57 degrees), 3rd quadrant 
 
math.atan2(1, 0)   # math.atan(1/0) would raise ZeroDivisionError 
# Out: 1.5707963267948966 # This is just "pi / 2"

Hyperbolic sine, cosine and tangent

# Hyperbolic sine function 
math.sinh(math.pi) # = 11.548739357257746 
math.asinh(1)      # = 0.8813735870195429 
 
# Hyperbolic cosine function 
math.cosh(math.pi) # = 11.591953275521519 
math.acosh(1)      # = 0.0 
 
# Hyperbolic tangent function 
math.tanh(math.pi) # = 0.99627207622075 
math.atanh(0.5)    # = 0.5493061443340549

Constants

math modules includes two commonly used mathematical constants.

math.pi - The mathematical constant pi•
math.e - The mathematical constant e (base of natural logarithm)•

https://riptutorial.com/ 532



>>> from math import pi, e 
>>> pi 
3.141592653589793 
>>> e 
2.718281828459045 
>>>

Python 3.5 and higher have constants for infinity and NaN ("not a number"). The older syntax of 
passing a string to float() still works.

Python 3.x3.5

math.inf == float('inf') 
# Out: True 
 
-math.inf == float('-inf') 
# Out: True 
 
# NaN never compares equal to anything, even itself 
math.nan == float('nan') 
# Out: False

Imaginary Numbers

Imaginary numbers in Python are represented by a "j" or "J" trailing the target number.

1j         # Equivalent to the square root of -1. 
1j * 1j    # = (-1+0j)

Infinity and NaN ("not a number")

In all versions of Python, we can represent infinity and NaN ("not a number") as follows:

pos_inf = float('inf')     # positive infinity 
neg_inf = float('-inf')    # negative infinity 
not_a_num = float('nan')   # NaN ("not a number")

In Python 3.5 and higher, we can also use the defined constants math.inf and math.nan:

Python 3.x3.5

pos_inf = math.inf 
neg_inf = -math.inf 
not_a_num = math.nan

The string representations display as inf and -inf and nan:

pos_inf, neg_inf, not_a_num 
# Out: (inf, -inf, nan)

We can test for either positive or negative infinity with the isinf method:

https://riptutorial.com/ 533



math.isinf(pos_inf) 
# Out: True 
 
math.isinf(neg_inf) 
# Out: True

We can test specifically for positive infinity or for negative infinity by direct comparison:

pos_inf == float('inf')    # or  == math.inf in Python 3.5+ 
# Out: True 
 
neg_inf == float('-inf')   # or  == -math.inf in Python 3.5+ 
# Out: True 
 
neg_inf == pos_inf 
# Out: False

Python 3.2 and higher also allows checking for finiteness:

Python 3.x3.2

math.isfinite(pos_inf) 
# Out: False 
 
math.isfinite(0.0) 
# Out: True

Comparison operators work as expected for positive and negative infinity:

import sys 
 
sys.float_info.max 
# Out: 1.7976931348623157e+308  (this is system-dependent) 
 
pos_inf > sys.float_info.max 
# Out: True 
 
neg_inf < -sys.float_info.max 
# Out: True

But if an arithmetic expression produces a value larger than the maximum that can be represented 
as a float, it will become infinity:

pos_inf == sys.float_info.max * 1.0000001 
# Out: True 
 
neg_inf == -sys.float_info.max * 1.0000001 
# Out: True

However division by zero does not give a result of infinity (or negative infinity where appropriate), 
rather it raises a ZeroDivisionError exception.

try: 
    x = 1.0 / 0.0 

https://riptutorial.com/ 534



    print(x) 
except ZeroDivisionError: 
    print("Division by zero") 
 
# Out: Division by zero

Arithmetic operations on infinity just give infinite results, or sometimes NaN:

-5.0 * pos_inf == neg_inf 
# Out: True 
 
-5.0 * neg_inf == pos_inf 
# Out: True 
 
pos_inf * neg_inf == neg_inf 
# Out: True 
 
0.0 * pos_inf 
# Out: nan 
 
0.0 * neg_inf 
# Out: nan 
 
pos_inf / pos_inf 
# Out: nan

NaN is never equal to anything, not even itself. We can test for it is with the isnan method:

not_a_num == not_a_num 
# Out: False 
 
math.isnan(not_a_num) 
Out: True

NaN always compares as "not equal", but never less than or greater than:

not_a_num != 5.0   # or any random value 
# Out: True 
 
not_a_num > 5.0   or   not_a_num < 5.0   or   not_a_num == 5.0 
# Out: False

Arithmetic operations on NaN always give NaN. This includes multiplication by -1: there is no 
"negative NaN".

5.0 * not_a_num 
# Out: nan 
 
float('-nan') 
# Out: nan

Python 3.x3.5

-math.nan 
# Out: nan

https://riptutorial.com/ 535



There is one subtle difference between the old float versions of NaN and infinity and the Python 
3.5+ math library constants:

Python 3.x3.5

math.inf is math.inf, math.nan is math.nan 
# Out: (True, True) 
 
float('inf') is float('inf'), float('nan') is float('nan') 
# Out: (False, False)

Pow for faster exponentiation

Using the timeit module from the command line:

> python -m timeit 'for x in xrange(50000): b = x**3' 
10 loops, best of 3: 51.2 msec per loop 
> python -m timeit 'from math import pow' 'for x in xrange(50000): b = pow(x,3)' 
100 loops, best of 3: 9.15 msec per loop

The built-in ** operator often comes in handy, but if performance is of the essence, use math.pow. 
Be sure to note, however, that pow returns floats, even if the arguments are integers:

> from math import pow 
> pow(5,5) 
3125.0

Complex numbers and the cmath module

The cmath module is similar to the math module, but defines functions appropriately for the complex 
plane.

First of all, complex numbers are a numeric type that is part of the Python language itself rather 
than being provided by a library class. Thus we don't need to import cmath for ordinary arithmetic 
expressions.

Note that we use j (or J) and not i.

z = 1 + 3j

We must use 1j since j would be the name of a variable rather than a numeric literal.

1j * 1j 
Out: (-1+0j) 
 
1j ** 1j 
# Out: (0.20787957635076193+0j)     # "i to the i"  ==  math.e ** -(math.pi/2)

We have the real part and the imag (imaginary) part, as well as the complex conjugate:

https://riptutorial.com/ 536



# real part and imaginary part are both float type 
z.real, z.imag 
# Out: (1.0, 3.0) 
 
z.conjugate() 
# Out: (1-3j)    # z.conjugate() == z.real - z.imag * 1j

The built-in functions abs and complex are also part of the language itself and don't require any 
import:

abs(1 + 1j) 
# Out: 1.4142135623730951     # square root of 2 
 
complex(1) 
# Out: (1+0j) 
 
complex(imag=1) 
# Out: (1j) 
 
complex(1, 1) 
# Out: (1+1j)

The complex function can take a string, but it can't have spaces:

complex('1+1j') 
# Out: (1+1j) 
 
complex('1 + 1j') 
# Exception: ValueError: complex() arg is a malformed string

But for most functions we do need the module, for instance sqrt:

import cmath 
 
cmath.sqrt(-1) 
# Out: 1j

Naturally the behavior of sqrt is different for complex numbers and real numbers. In non-complex 
math the square root of a negative number raises an exception:

import math 
 
math.sqrt(-1) 
# Exception: ValueError: math domain error

Functions are provided to convert to and from polar coordinates:

cmath.polar(1 + 1j) 
# Out: (1.4142135623730951, 0.7853981633974483)    # == (sqrt(1 + 1), atan2(1, 1)) 
 
abs(1 + 1j), cmath.phase(1 + 1j) 
# Out: (1.4142135623730951, 0.7853981633974483)    # same as previous calculation 
 
cmath.rect(math.sqrt(2), math.atan(1)) 

https://riptutorial.com/ 537



# Out: (1.0000000000000002+1.0000000000000002j)

The mathematical field of complex analysis is beyond the scope of this example, but many 
functions in the complex plane have a "branch cut", usually along the real axis or the imaginary 
axis. Most modern platforms support "signed zero" as specified in IEEE 754, which provides 
continuity of those functions on both sides of the branch cut. The following example is from the 
Python documentation:

cmath.phase(complex(-1.0, 0.0)) 
# Out: 3.141592653589793 
 
cmath.phase(complex(-1.0, -0.0)) 
# Out: -3.141592653589793

The cmath module also provides many functions with direct counterparts from the math module.

In addition to sqrt, there are complex versions of exp, log, log10, the trigonometric functions and 
their inverses (sin, cos, tan, asin, acos, atan), and the hyperbolic functions and their inverses (sinh, 
cosh, tanh, asinh, acosh, atanh). Note however there is no complex counterpart of math.atan2, the 
two-argument form of arctangent.

cmath.log(1+1j) 
# Out: (0.34657359027997264+0.7853981633974483j) 
 
cmath.exp(1j * cmath.pi) 
# Out: (-1+1.2246467991473532e-16j)   # e to the i pi == -1, within rounding error

The constants pi and e are provided. Note these are float and not complex.

type(cmath.pi) 
# Out: <class 'float'>

The cmath module also provides complex versions of isinf, and (for Python 3.2+) isfinite. See "
Infinity and NaN". A complex number is considered infinite if either its real part or its imaginary part 
is infinite.

cmath.isinf(complex(float('inf'), 0.0)) 
# Out: True

Likewise, the cmath module provides a complex version of isnan. See "Infinity and NaN". A complex 
number is considered "not a number" if either its real part or its imaginary part is "not a number".

cmath.isnan(0.0, float('nan')) 
# Out: True 

Note there is no cmath counterpart of the math.inf and math.nan constants (from Python 3.5 and 
higher)

Python 3.x3.5

https://riptutorial.com/ 538

http://www.riptutorial.com/python/example/3973/infinity-and-nan---not-a-number--
http://www.riptutorial.com/python/example/3973/infinity-and-nan---not-a-number--


cmath.isinf(complex(0.0, math.inf)) 
# Out: True 
 
cmath.isnan(complex(math.nan, 0.0)) 
# Out: True 
 
cmath.inf 
# Exception: AttributeError: module 'cmath' has no attribute 'inf'

In Python 3.5 and higher, there is an isclose method in both cmath and math modules.

Python 3.x3.5

z = cmath.rect(*cmath.polar(1+1j)) 
 
z 
# Out: (1.0000000000000002+1.0000000000000002j) 
 
cmath.isclose(z, 1+1j) 
# True

Read Math Module online: https://riptutorial.com/python/topic/230/math-module

https://riptutorial.com/ 539

https://riptutorial.com/python/topic/230/math-module


Chapter 101: Metaclasses

Introduction

Metaclasses allow you to deeply modify the behaviour of Python classes (in terms of how they're 
defined, instantiated, accessed, and more) by replacing the type metaclass that new classes use 
by default.

Remarks

When designing your architecture, consider that many things which can be accomplished with 
metaclasses can also be accomplished using more simple semantics:

Traditional inheritance is often more than enough.•
Class decorators can mix-in functionality into a classes on a ad-hoc approach.•
Python 3.6 introduces __init_subclass__() which allows a class to partake in the creation of 
its subclass.

•

Examples

Basic Metaclasses

When type is called with three arguments it behaves as the (meta)class it is, and creates a new 
instance, ie. it produces a new class/type.

Dummy = type('OtherDummy', (), dict(x=1)) 
Dummy.__class__              # <type 'type'> 
Dummy().__class__.__class__  # <type 'type'> 

It is possible to subclass type to create an custom metaclass.

class mytype(type): 
    def __init__(cls, name, bases, dict): 
        # call the base initializer 
        type.__init__(cls, name, bases, dict) 
 
        # perform custom initialization... 
        cls.__custom_attribute__ = 2

Now, we have a new custom mytype metaclass which can be used to create classes in the same 
manner as type.

MyDummy = mytype('MyDummy', (), dict(x=2)) 
MyDummy.__class__              # <class '__main__.mytype'> 
MyDummy().__class__.__class__  # <class '__main__.mytype'> 
MyDummy.__custom_attribute__   # 2

https://riptutorial.com/ 540



When we create a new class using the class keyword the metaclass is by default chosen based on 
upon the baseclasses.

>>> class Foo(object): 
...     pass 
 
>>> type(Foo) 
type

In the above example the only baseclass is object so our metaclass will be the type of object, 
which is type. It is possible override the default, however it depends on whether we use Python 2 
or Python 3:

Python 2.x2.7

A special class-level attribute __metaclass__ can be used to specify the metaclass.

class MyDummy(object): 
    __metaclass__ = mytype 
type(MyDummy)  # <class '__main__.mytype'>

Python 3.x3.0

A special metaclass keyword argument specify the metaclass.

class MyDummy(metaclass=mytype): 
    pass 
type(MyDummy)  # <class '__main__.mytype'>

Any keyword arguments (except metaclass) in the class declaration will be passed to the 
metaclass. Thus class MyDummy(metaclass=mytype, x=2) will pass x=2 as a keyword argument to the 
mytype constructor.

Read this in-depth description of python meta-classes for more details.

Singletons using metaclasses

A singleton is a pattern that restricts the instantiation of a class to one instance/object. For more 
info on python singleton design patterns, see here.

class SingletonType(type): 
    def __call__(cls, *args, **kwargs): 
        try: 
            return cls.__instance 
        except AttributeError: 
            cls.__instance = super(SingletonType, cls).__call__(*args, **kwargs) 
            return cls.__instance

Python 2.x2.7

class MySingleton(object): 
    __metaclass__ = SingletonType

https://riptutorial.com/ 541

http://stackoverflow.com/questions/100003/what-is-a-metaclass-in-python/6581949#6581949
http://python-3-patterns-idioms-test.readthedocs.io/en/latest/Singleton.html


Python 3.x3.0

class MySingleton(metaclass=SingletonType): 
    pass

MySingleton() is MySingleton()  # True, only one instantiation occurs

Using a metaclass

Metaclass syntax

Python 2.x2.7

class MyClass(object): 
    __metaclass__ = SomeMetaclass

Python 3.x3.0

class MyClass(metaclass=SomeMetaclass): 
    pass

Python 2 and 3 compatibility with six

import six 
 
class MyClass(six.with_metaclass(SomeMetaclass)): 
    pass

Custom functionality with metaclasses

Functionality in metaclasses can be changed so that whenever a class is built, a string is printed 
to standard output, or an exception is thrown. This metaclass will print the name of the class being 
built.

class VerboseMetaclass(type): 
 
    def __new__(cls, class_name, class_parents, class_dict): 
        print("Creating class ", class_name) 
        new_class = super().__new__(cls, class_name, class_parents, class_dict) 
        return new_class

You can use the metaclass like so:

class Spam(metaclass=VerboseMetaclass): 
    def eggs(self): 
        print("[insert example string here]") 
s = Spam() 
s.eggs()

https://riptutorial.com/ 542



The standard output will be:

Creating class Spam 
[insert example string here]

Introduction to Metaclasses

What is a metaclass?

In Python, everything is an object: integers, strings, lists, even functions and classes themselves 
are objects. And every object is an instance of a class.

To check the class of an object x, one can call type(x), so:

>>> type(5) 
<type 'int'> 
>>> type(str) 
<type 'type'> 
>>> type([1, 2, 3]) 
<type 'list'> 
 
>>> class C(object): 
...     pass 
... 
>>> type(C) 
<type 'type'> 

Most classes in python are instances of type. type itself is also a class. Such classes whose 
instances are also classes are called metaclasses.

The Simplest Metaclass

OK, so there is already one metaclass in Python: type. Can we create another one?

class SimplestMetaclass(type): 
    pass 
 
class MyClass(object): 
    __metaclass__ = SimplestMetaclass

That does not add any functionality, but it is a new metaclass, see that MyClass is now an 
instance of SimplestMetaclass:

>>> type(MyClass) 
<class '__main__.SimplestMetaclass'>

A Metaclass which does Something

A metaclass which does something usually overrides type's __new__, to modify some properties of 

https://riptutorial.com/ 543



the class to be created, before calling the original __new__ which creates the class:

class AnotherMetaclass(type): 
    def __new__(cls, name, parents, dct): 
        # cls is this class 
        # name is the name of the class to be created 
        # parents is the list of the class's parent classes 
        # dct is the list of class's attributes (methods, static variables) 
 
        # here all of the attributes can be modified before creating the class, e.g. 
 
        dct['x'] = 8  # now the class will have a static variable x = 8 
 
        # return value is the new class. super will take care of that 
        return super(AnotherMetaclass, cls).__new__(cls, name, parents, dct)

The default metaclass

You may have heard that everything in Python is an object. It is true, and all objects have a class:

>>> type(1) 
int

The literal 1 is an instance of int. Lets declare a class:

>>> class Foo(object): 
...    pass 
...

Now lets instantiate it:

>>> bar = Foo()

What is the class of bar?

>>> type(bar) 
Foo

Nice, bar is an instance of Foo. But what is the class of Foo itself?

>>> type(Foo) 
type

Ok, Foo itself is an instance of type. How about type itself?

>>> type(type) 
type

So what is a metaclass? For now lets pretend it is just a fancy name for the class of a class. 
Takeaways:

https://riptutorial.com/ 544



Everything is an object in Python, so everything has a class•
The class of a class is called a metaclass•
The default metaclass is type, and by far it is the most common metaclass•

But why should you know about metaclasses? Well, Python itself is quite "hackable", and the 
concept of metaclass is important if you are doing advanced stuff like meta-programming or if you 
want to control how your classes are initialized.

Read Metaclasses online: https://riptutorial.com/python/topic/286/metaclasses

https://riptutorial.com/ 545

https://riptutorial.com/python/topic/286/metaclasses


Chapter 102: Method Overriding

Examples

Basic method overriding

Here is an example of basic overriding in Python (for the sake of clarity and compatibility with both 
Python 2 and 3, using new style class and print with ()):

class Parent(object): 
    def introduce(self): 
        print("Hello!") 
 
    def print_name(self): 
        print("Parent") 
 
 
class Child(Parent): 
    def print_name(self): 
        print("Child") 
 
 
p = Parent() 
c = Child() 
 
p.introduce() 
p.print_name() 
 
c.introduce() 
c.print_name() 
 
$ python basic_override.py 
Hello! 
Parent 
Hello! 
Child

When the Child class is created, it inherits the methods of the Parent class. This means that any 
methods that the parent class has, the child class will also have. In the example, the introduce is 
defined for the Child class because it is defined for Parent, despite not being defined explicitly in 
the class definition of Child.

In this example, the overriding occurs when Child defines its own print_name method. If this 
method was not declared, then c.print_name() would have printed "Parent". However, Child has 
overriden the Parent's definition of print_name, and so now upon calling c.print_name(), the word 
"Child" is printed.

Read Method Overriding online: https://riptutorial.com/python/topic/3131/method-overriding

https://riptutorial.com/ 546

http://www.riptutorial.com/python/example/1402/new-style-vs--old-style-classes
https://riptutorial.com/python/topic/3131/method-overriding


Chapter 103: Mixins

Syntax

class ClassName(MainClass, Mixin1, Mixin2, ...): # Used to declare a class with the name 
ClassName, main (first) class MainClass, and mixins Mixin1, Mixin2, etc.

•

class ClassName(Mixin1, MainClass, Mixin2, ...): # The 'main' class doesn't have to be the 
first class; there's really no difference between it and the mixin

•

Remarks

Adding a mixin to a class looks a lot like adding a superclass, because it pretty much is just that. 
An object of a class with the mixin Foo will also be an instance of Foo, and isinstance(instance, 
Foo) will return true

Examples

Mixin

A Mixin is a set of properties and methods that can be used in different classes, which don't come 
from a base class. In Object Oriented Programming languages, you typically use inheritance to 
give objects of different classes the same functionality; if a set of objects have some ability, you 
put that ability in a base class that both objects inherit from.

For instance, say you have the classes Car, Boat, and Plane. Objects from all of these 
classes have the ability to travel, so they get the function travel. In this scenario, they 
all travel the same basic way, too; by getting a route, and moving along it. To 
implement this function, you could derive all of the classes from Vehicle, and put the 
function in that shared class:

class Vehicle(object): 
   """A generic vehicle class.""" 
 
   def __init__(self, position): 
       self.position = position 
 
   def travel(self, destination): 
       route = calculate_route(from=self.position, to=destination) 
       self.move_along(route) 
 
class Car(Vehicle): 
   ... 
 
class Boat(Vehicle): 
   ... 
 
class Plane(Vehicle): 
   ...

https://riptutorial.com/ 547



With this code, you can call travel on a car (car.travel("Montana")), boat (
boat.travel("Hawaii")), and plane (plane.travel("France"))

However, what if you have functionality that's not available to a base class? Say, for instance, you 
want to give Car a radio and the ability to use it to play a song on a radio station, with 
play_song_on_station, but you also have a Clock that can use a radio too. Car and Clock could share 
a base class (Machine). However, not all machines can play songs; Boat and Plane can't (at least in 
this example). So how do you accomplish without duplicating code? You can use a mixin. In 
Python, giving a class a mixin is as simple as adding it to the list of subclasses, like this

class Foo(main_super, mixin): ...

Foo will inherit all of the properties and methods of main_super, but also those of mixin as well.

So, to give the classes Car and clock the ability to use a radio, you could override Car 
from the last example and write this:

class RadioUserMixin(object): 
   def __init__(self): 
       self.radio = Radio() 
 
   def play_song_on_station(self, station): 
       self.radio.set_station(station) 
       self.radio.play_song() 
 
class Car(Vehicle, RadioUserMixin): 
   ... 
 
class Clock(Vehicle, RadioUserMixin): 
   ...

Now you can call car.play_song_on_station(98.7) and clock.play_song_on_station(101.3)
, but not something like boat.play_song_on_station(100.5)

The important thing with mixins is that they allow you to add functionality to much different objects, 
that don't share a "main" subclass with this functionality but still share the code for it nonetheless. 
Without mixins, doing something like the above example would be much harder, and/or might 
require some repetition.

Overriding Methods in Mixins

Mixins are a sort of class that is used to "mix in" extra properties and methods into a class. This is 
usually fine because many times the mixin classes don't override each other's, or the base class' 
methods. But if you do override methods or properties in your mixins this can lead to unexpected 
results because in Python the class hierarchy is defined right to left.

For instance, take the following classes

class Mixin1(object): 
    def test(self): 
        print "Mixin1" 

https://riptutorial.com/ 548



 
class Mixin2(object): 
    def test(self): 
        print "Mixin2" 
 
class BaseClass(object): 
    def test(self): 
        print "Base" 
 
class MyClass(BaseClass, Mixin1, Mixin2): 
    pass

In this case the Mixin2 class is the base class, extended by Mixin1 and finally by BaseClass. Thus, 
if we execute the following code snippet:

>>> x = MyClass() 
>>> x.test() 
Base

We see the result returned is from the Base class. This can lead to unexpected errors in the logic 
of your code and needs to be accounted for and kept in mind

Read Mixins online: https://riptutorial.com/python/topic/4359/mixins

https://riptutorial.com/ 549

https://riptutorial.com/python/topic/4359/mixins


Chapter 104: Multidimensional arrays

Examples

Lists in lists

A good way to visualize a 2d array is as a list of lists. Something like this:

lst=[[1,2,3],[4,5,6],[7,8,9]]

here the outer list lst has three things in it. each of those things is another list: The first one is: 
[1,2,3], the second one is: [4,5,6] and the third one is: [7,8,9]. You can access these lists the 
same way you would access another other element of a list, like this:

print (lst[0]) 
#output: [1, 2, 3] 
 
print (lst[1]) 
#output: [4, 5, 6] 
 
print (lst[2]) 
#output: [7, 8, 9]

You can then access the different elements in each of those lists the same way:

print (lst[0][0]) 
#output: 1 
 
print (lst[0][1]) 
#output: 2 

Here the first number inside the [] brackets means get the list in that position. In the above 
example we used the number 0 to mean get the list in the 0th position which is [1,2,3]. The 
second set of [] brackets means get the item in that position from the inner list. In this case we 
used both 0 and 1 the 0th position in the list we got is the number 1 and in the 1st position it is 2

You can also set values inside these lists the same way:

lst[0]=[10,11,12]

Now the list is [[10,11,12],[4,5,6],[7,8,9]]. In this example we changed the whole first list to be a 
completely new list.

lst[1][2]=15

Now the list is [[10,11,12],[4,5,15],[7,8,9]]. In this example we changed a single element inside 
of one of the inner lists. First we went into the list at position 1 and changed the element within it at 

https://riptutorial.com/ 550



position 2, which was 6 now it's 15.

Lists in lists in lists in...

This behaviour can be extended. Here is a 3-dimensional array:

[[[111,112,113],[121,122,123],[131,132,133]],[[211,212,213],[221,222,223],[231,232,233]],[[311,312,313],[321,322,323],[331,332,333]]]
 

As is probably obvious, this gets a bit hard to read. Use backslashes to break up the different 
dimensions:

[[[111,112,113],[121,122,123],[131,132,133]],\ 
 [[211,212,213],[221,222,223],[231,232,233]],\ 
 [[311,312,313],[321,322,323],[331,332,333]]]

By nesting the lists like this, you can extend to arbitrarily high dimensions.

Accessing is similar to 2D arrays:

print(myarray) 
print(myarray[1]) 
print(myarray[2][1]) 
print(myarray[1][0][2]) 
etc.

And editing is also similar:

myarray[1]=new_n-1_d_list 
myarray[2][1]=new_n-2_d_list 
myarray[1][0][2]=new_n-3_d_list #or a single number if you're dealing with 3D arrays 
etc.

Read Multidimensional arrays online: https://riptutorial.com/python/topic/8186/multidimensional-
arrays

https://riptutorial.com/ 551

https://riptutorial.com/python/topic/8186/multidimensional-arrays
https://riptutorial.com/python/topic/8186/multidimensional-arrays


Chapter 105: Multiprocessing

Examples

Running Two Simple Processes

A simple example of using multiple processes would be two processes (workers) that are 
executed separately. In the following example, two processes are started:

countUp() counts 1 up, every second.•
countDown() counts 1 down, every second.•

import multiprocessing 
import time 
from random import randint 
 
def countUp(): 
    i = 0 
    while i <= 3: 
        print('Up:\t{}'.format(i)) 
        time.sleep(randint(1, 3)) # sleep 1, 2 or 3 seconds 
        i += 1 
 
def countDown(): 
    i = 3 
    while i >= 0: 
        print('Down:\t{}'.format(i)) 
        time.sleep(randint(1, 3)) # sleep 1, 2 or 3 seconds 
        i -= 1 
 
if __name__ == '__main__': 
    # Initiate the workers. 
    workerUp = multiprocessing.Process(target=countUp) 
    workerDown = multiprocessing.Process(target=countDown) 
 
    # Start the workers. 
    workerUp.start() 
    workerDown.start() 
 
    # Join the workers. This will block in the main (parent) process 
    # until the workers are complete. 
    workerUp.join() 
    workerDown.join()

The output is as follows:

Up:    0 
Down:    3 
Up:    1 
Up:    2 
Down:    2 
Up:    3 
Down:    1 
Down:    0

https://riptutorial.com/ 552



Using Pool and Map

from multiprocessing import Pool 
 
def cube(x): 
    return x ** 3 
 
if __name__ == "__main__": 
    pool = Pool(5) 
    result = pool.map(cube, [0, 1, 2, 3])

Pool is a class which manages multiple Workers (processes) behind the scenes and lets you, the 
programmer, use.

Pool(5) creates a new Pool with 5 processes, and pool.map works just like map but it uses multiple 
processes (the amount defined when creating the pool).

Similar results can be achieved using map_async, apply and apply_async which can be found in the 
documentation.

Read Multiprocessing online: https://riptutorial.com/python/topic/3601/multiprocessing

https://riptutorial.com/ 553

https://docs.python.org/2/library/functions.html#map
https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/2/library/multiprocessing.html
https://riptutorial.com/python/topic/3601/multiprocessing


Chapter 106: Multithreading

Introduction

Threads allow Python programs to handle multiple functions at once as opposed to running a 
sequence of commands individually. This topic explains the principles behind threading and 
demonstrates its usage.

Examples

Basics of multithreading

Using the threading module, a new thread of execution may be started by creating a new 
threading.Thread and assigning it a function to execute:

import threading 
 
def foo(): 
  print "Hello threading!" 
 
my_thread = threading.Thread(target=foo)

The target parameter references the function (or callable object) to be run. The thread will not 
begin execution until start is called on the Thread object.

Starting a Thread

my_thread.start() # prints 'Hello threading!'

Now that my_thread has run and terminated, calling start again will produce a RuntimeError. If you'd 
like to run your thread as a daemon, passing the daemon=True kwarg, or setting my_thread.daemon to 
True before calling start(), causes your Thread to run silently in the background as a daemon.

Joining a Thread

In cases where you split up one big job into several small ones and want to run them concurrently, 
but need to wait for all of them to finish before continuing, Thread.join() is the method you're 
looking for.

For example, let's say you want to download several pages of a website and compile them into a 
single page. You'd do this:

import requests 
from threading import Thread 
from queue import Queue 
 
q = Queue(maxsize=20) 

https://riptutorial.com/ 554



def put_page_to_q(page_num): 
    q.put(requests.get('http://some-website.com/page_%s.html' % page_num) 
 
def compile(q): 
    # magic function that needs all pages before being able to be executed 
    if not q.full(): 
        raise ValueError 
    else: 
        print("Done compiling!") 
 
threads = [] 
for page_num in range(20): 
     t = Thread(target=requests.get, args=(page_num,)) 
     t.start() 
     threads.append(t) 
 
# Next, join all threads to make sure all threads are done running before 
# we continue. join() is a blocking call (unless specified otherwise using 
# the kwarg blocking=False when calling join) 
for t in threads: 
    t.join() 
 
# Call compile() now, since all threads have completed 
compile(q)

A closer look at how join() works can be found here.

Create a Custom Thread Class

Using threading.Thread class we can subclass new custom Thread class. we must override run 
method in a subclass.

from threading import Thread 
import time 
 
class Sleepy(Thread): 
 
    def run(self): 
        time.sleep(5) 
        print("Hello form Thread") 
 
if __name__ == "__main__": 
    t = Sleepy() 
    t.start()      # start method automatic call Thread class run method. 
    # print 'The main program continues to run in foreground.' 
    t.join() 
    print("The main program continues to run in the foreground.")

Communicating between threads

There are multiple threads in your code and you need to safely communicate between them.

You can use a Queue from the queue library.

from queue import Queue 
from threading import Thread 

https://riptutorial.com/ 555

https://stackoverflow.com/a/15086113/5413116


 
# create a data producer 
def producer(output_queue): 
    while True: 
        data = data_computation() 
 
        output_queue.put(data) 
 
# create a consumer 
def consumer(input_queue): 
    while True: 
        # retrieve data (blocking) 
        data = input_queue.get() 
 
        # do something with the data 
 
        # indicate data has been consumed 
        input_queue.task_done()

Creating producer and consumer threads with a shared queue

q = Queue() 
t1 = Thread(target=consumer, args=(q,)) 
t2 = Thread(target=producer, args=(q,)) 
t1.start() 
t2.start()

Creating a worker pool

Using threading & queue:

from socket import socket, AF_INET, SOCK_STREAM 
from threading import Thread 
from queue import Queue 
 
def echo_server(addr, nworkers): 
    print('Echo server running at', addr) 
    # Launch the client workers 
    q = Queue() 
    for n in range(nworkers): 
        t = Thread(target=echo_client, args=(q,)) 
        t.daemon = True 
        t.start() 
 
    # Run the server 
    sock = socket(AF_INET, SOCK_STREAM) 
    sock.bind(addr) 
    sock.listen(5) 
    while True: 
        client_sock, client_addr = sock.accept() 
        q.put((client_sock, client_addr)) 
 
echo_server(('',15000), 128)

Using concurrent.futures.Threadpoolexecutor:

https://riptutorial.com/ 556



from socket import AF_INET, SOCK_STREAM, socket 
from concurrent.futures import ThreadPoolExecutor 
 
def echo_server(addr): 
    print('Echo server running at', addr) 
    pool = ThreadPoolExecutor(128) 
    sock = socket(AF_INET, SOCK_STREAM) 
    sock.bind(addr) 
    sock.listen(5) 
    while True: 
        client_sock, client_addr = sock.accept() 
        pool.submit(echo_client, client_sock, client_addr) 
 
echo_server(('',15000))

Python Cookbook, 3rd edition, by David Beazley and Brian K. Jones (O’Reilly). Copyright 2013 
David Beazley and Brian Jones, 978-1-449-34037-7.

Advanced use of multithreads

This section will contain some of the most advanced examples realized using Multithreading.

Advanced printer (logger)

A thread that prints everything is received and modifies the output according to the terminal width. 
The nice part is that also the "already written" output is modified when the width of the terminal 
changes.

#!/usr/bin/env python2 
 
import threading 
import Queue 
import time 
import sys 
import subprocess 
from backports.shutil_get_terminal_size import get_terminal_size 
 
printq = Queue.Queue() 
interrupt = False 
lines = [] 
 
def main(): 
 
    ptt = threading.Thread(target=printer) # Turn the printer on 
    ptt.daemon = True 
    ptt.start() 
 
    # Stupid example of stuff to print 
    for i in xrange(1,100): 
        printq.put(' '.join([str(x) for x in range(1,i)]))           # The actual way to send 
stuff to the printer 
        time.sleep(.5) 
 
def split_line(line, cols): 
    if len(line) > cols: 
        new_line = '' 

https://riptutorial.com/ 557



        ww = line.split() 
        i = 0 
        while len(new_line) <= (cols - len(ww[i]) - 1): 
            new_line += ww[i] + ' ' 
            i += 1 
            print len(new_line) 
        if new_line == '': 
            return (line, '') 
 
        return (new_line, ' '.join(ww[i:])) 
    else: 
        return (line, '') 
 
 
def printer(): 
 
    while True: 
        cols, rows = get_terminal_size() # Get the terminal dimensions 
        msg = '#' + '-' * (cols - 2) + '#\n' # Create the 
        try: 
            new_line = str(printq.get_nowait()) 
            if new_line != '!@#EXIT#@!': # A nice way to turn the printer 
                                         # thread out gracefully 
                lines.append(new_line) 
                printq.task_done() 
            else: 
                printq.task_done() 
                sys.exit() 
        except Queue.Empty: 
            pass 
 
        # Build the new message to show and split too long lines 
        for line in lines: 
            res = line          # The following is to split lines which are 
                                # longer than cols. 
            while len(res) !=0: 
                toprint, res = split_line(res, cols) 
                msg += '\n' + toprint 
 
        # Clear the shell and print the new output 
        subprocess.check_call('clear') # Keep the shell clean 
        sys.stdout.write(msg) 
        sys.stdout.flush() 
        time.sleep(.5)

Stoppable Thread with a while Loop

import threading 
import time 
 
class StoppableThread(threading.Thread): 
    """Thread class with a stop() method. The thread itself has to check 
    regularly for the stopped() condition.""" 
 
    def __init__(self): 
        super(StoppableThread, self).__init__() 
        self._stop_event = threading.Event() 
 
    def stop(self): 

https://riptutorial.com/ 558



        self._stop_event.set() 
 
    def join(self, *args, **kwargs): 
        self.stop() 
        super(StoppableThread,self).join(*args, **kwargs) 
 
    def run() 
        while not self._stop_event.is_set(): 
            print("Still running!") 
            time.sleep(2) 
        print("stopped!"

Based on this Question.

Read Multithreading online: https://riptutorial.com/python/topic/544/multithreading

https://riptutorial.com/ 559

https://stackoverflow.com/questions/323972/is-there-any-way-to-kill-a-thread-in-python
https://riptutorial.com/python/topic/544/multithreading


Chapter 107: Mutable vs Immutable (and 
Hashable) in Python

Examples

Mutable vs Immutable

There are two kind of types in Python. Immutable types and mutable types.

Immutables

An object of an immutable type cannot be changed. Any attempt to modify the object will result in 
a copy being created.

This category includes: integers, floats, complex, strings, bytes, tuples, ranges and frozensets.

To highlight this property, let's play with the id builtin. This function returns the unique identifier of 
the object passed as parameter. If the id is the same, this is the same object. If it changes, then 
this is another object. (Some say that this is actually the memory address of the object, but beware 
of them, they are from the dark side of the force...)

>>> a = 1 
>>> id(a) 
140128142243264 
>>> a += 2 
>>> a 
3 
>>> id(a) 
140128142243328

Okay, 1 is not 3... Breaking news... Maybe not. However, this behaviour is often forgotten when it 
comes to more complex types, especially strings.

>>> stack = "Overflow" 
>>> stack 
'Overflow' 
>>> id(stack) 
140128123955504 
>>> stack += " rocks!" 
>>> stack 
'Overflow rocks!'

Aha! See? We can modify it!

>>> id(stack) 
140128123911472

https://riptutorial.com/ 560



No. While it seems we can change the string named by the variable stack, what we actually do, is 
creating a new object to contain the result of the concatenation. We are fooled because in the 
process, the old object goes nowhere, so it is destroyed. In another situation, that would have 
been more obvious:

>>> stack = "Stack" 
>>> stackoverflow = stack + "Overflow" 
>>> id(stack) 
140128069348184 
>>> id(stackoverflow) 
140128123911480

In this case it is clear that if we want to retain the first string, we need a copy. But is that so 
obvious for other types?

Exercise

Now, knowing how a immutable types work, what would you say with the below piece of code? Is 
it wise?

s = "" 
for i in range(1, 1000): 
    s += str(i) 
    s += ","

Mutables

An object of a mutable type can be changed, and it is changed in-situ. No implicit copies are done.

This category includes: lists, dictionaries, bytearrays and sets.

Let's continue to play with our little id function.

>>> b = bytearray(b'Stack') 
>>> b 
bytearray(b'Stack') 
>>> b = bytearray(b'Stack') 
>>> id(b) 
140128030688288 
>>> b += b'Overflow' 
>>> b 
bytearray(b'StackOverflow') 
>>> id(b) 
140128030688288

(As a side note, I use bytes containing ascii data to make my point clear, but remember that bytes 
are not designed to hold textual data. May the force pardon me.)

What do we have? We create a bytearray, modify it and using the id, we can ensure that this is 
the same object, modified. Not a copy of it.

https://riptutorial.com/ 561



Of course, if an object is going to be modified often, a mutable type does a much better job than 
an immutable type. Unfortunately, the reality of this property is often forgotten when it hurts the 
most.

>>> c = b 
>>> c += b' rocks!' 
>>> c 
bytearray(b'StackOverflow rocks!')

Okay...

>>> b 
bytearray(b'StackOverflow rocks!')

Waiiit a second...

>>> id(c) == id(b) 
True

Indeed. c is not a copy of b. c is b.

Exercise

Now you better understand what side effect is implied by a mutable type, can you explain what is 
going wrong in this example?

>>> ll = [ [] ]*4 # Create a list of 4 lists to contain our results 
>>> ll 
[[], [], [], []] 
>>> ll[0].append(23) # Add result 23 to first list 
>>> ll 
[[23], [23], [23], [23]] 
>>> # Oops...

Mutable and Immutable as Arguments

One of the major use case when a developer needs to take mutability into account is when 
passing arguments to a function. This is very important, because this will determine the ability for 
the function to modify objects that doesn't belong to its scope, or in other words if the function has 
side effects. This is also important to understand where the result of a function has to be made 
available.

>>> def list_add3(lin): 
    lin += [3] 
    return lin 
 
>>> a = [1, 2, 3] 
>>> b = list_add3(a) 
>>> b 
[1, 2, 3, 3] 

https://riptutorial.com/ 562



>>> a 
[1, 2, 3, 3]

Here, the mistake is to think that lin, as a parameter to the function, can be modified locally. 
Instead, lin and a reference the same object. As this object is mutable, the modification is done in-
place, which means that the object referenced by both lin and a is modified. lin doesn't really 
need to be returned, because we already have a reference to this object in the form of a. a and b 
end referencing the same object.

This doesn't go the same for tuples.

>>> def tuple_add3(tin): 
    tin += (3,) 
    return tin 
 
>>> a = (1, 2, 3) 
>>> b = tuple_add3(a) 
>>> b 
(1, 2, 3, 3) 
>>> a 
(1, 2, 3)

At the beginning of the function, tin and a reference the same object. But this is an immutable 
object. So when the function tries to modify it, tin receive a new object with the modification, while 
a keeps a reference to the original object. In this case, returning tin is mandatory, or the new 
object would be lost.

Exercise

>>> def yoda(prologue, sentence): 
    sentence.reverse() 
    prologue += " ".join(sentence) 
    return prologue 
 
>>> focused = ["You must", "stay focused"] 
>>> saying = "Yoda said: " 
>>> yoda_sentence = yoda(saying, focused)

Note: reverse operates in-place.

What do you think of this function? Does it have side effects? Is the return necessary? After the 
call, what is the value of saying? Of focused? What happens if the function is called again with the 
same parameters?

Read Mutable vs Immutable (and Hashable) in Python online: 
https://riptutorial.com/python/topic/9182/mutable-vs-immutable--and-hashable--in-python

https://riptutorial.com/ 563

https://riptutorial.com/python/topic/9182/mutable-vs-immutable--and-hashable--in-python


Chapter 108: Neo4j and Cypher using Py2Neo

Examples

Importing and Authenticating

from py2neo import authenticate, Graph, Node, Relationship 
authenticate("localhost:7474", "neo4j", "<pass>") 
graph = Graph()

You have to make sure your Neo4j Database exists at localhost:7474 with the appropriate 
credentials.

the graph object is your interface to the neo4j instance in the rest of your python code. Rather 
thank making this a global variable, you should keep it in a class's __init__ method.

Adding Nodes to Neo4j Graph

results = News.objects.todays_news() 
for r in results: 
    article = graph.merge_one("NewsArticle", "news_id", r) 
    article.properties["title"] = results[r]['news_title'] 
    article.properties["timestamp"] = results[r]['news_timestamp'] 
    article.push() 
    [...]

Adding nodes to the graph is pretty simple,graph.merge_one is important as it prevents duplicate 
items. (If you run the script twice, then the second time it would update the title and not create new 
nodes for the same articles)

timestamp should be an integer and not a date string as neo4j doesnt really have a date datatype. 
This causes sorting issues when you store date as '05-06-1989'

article.push() is an the call that actually commits the operation into neo4j. Dont forget this step.

Adding Relationships to Neo4j Graph

results = News.objects.todays_news() 
for r in results: 
    article = graph.merge_one("NewsArticle", "news_id", r) 
    if 'LOCATION' in results[r].keys(): 
        for loc in results[r]['LOCATION']: 
            loc = graph.merge_one("Location", "name", loc) 
            try: 
                rel = graph.create_unique(Relationship(article, "about_place", loc)) 
            except Exception, e: 
                print e

create_unique is important for avoiding duplicates. But otherwise its a pretty straightforward 

https://riptutorial.com/ 564



operation. The relationship name is also important as you would use it in advanced cases.

Query 1 : Autocomplete on News Titles

def get_autocomplete(text): 
    query = """ 
    start n = node(*) where n.name =~ '(?i)%s.*' return n.name,labels(n) limit 10; 
    """ 
    query = query % (text) 
    obj = [] 
    for res in graph.cypher.execute(query): 
        # print res[0],res[1] 
        obj.append({'name':res[0],'entity_type':res[1]}) 
    return res

This is a sample cypher query to get all nodes with the property name that starts with the argument 
text.

Query 2 : Get News Articles by Location on a particular date

def search_news_by_entity(location,timestamp): 
    query = """ 
    MATCH (n)-[]->(l) 
    where l.name='%s' and n.timestamp='%s' 
    RETURN n.news_id limit 10 
    """ 
 
    query = query % (location,timestamp) 
 
    news_ids = [] 
    for res in graph.cypher.execute(query): 
        news_ids.append(str(res[0])) 
 
    return news_ids

You can use this query to find all news articles (n) connected to a location (l) by a relationship.

Cypher Query Samples

Count articles connected to a particular person over time

MATCH (n)-[]->(l) 
where l.name='Donald Trump' 
RETURN n.date,count(*) order by n.date

Search for other People / Locations connected to the same news articles as Trump with at least 5 
total relationship nodes.

MATCH (n:NewsArticle)-[]->(l) 
where l.name='Donald Trump' 
MATCH (n:NewsArticle)-[]->(m) 
with m,count(n) as num where num>5 
return labels(m)[0],(m.name), num order by num desc limit 10

https://riptutorial.com/ 565



Read Neo4j and Cypher using Py2Neo online: https://riptutorial.com/python/topic/5841/neo4j-and-
cypher-using-py2neo

https://riptutorial.com/ 566

https://riptutorial.com/python/topic/5841/neo4j-and-cypher-using-py2neo
https://riptutorial.com/python/topic/5841/neo4j-and-cypher-using-py2neo


Chapter 109: Non-official Python 
implementations

Examples

IronPython

Open-source implementation for .NET and Mono written in C#, licensed under Apache License 
2.0. It relies on DLR (Dynamic Language Runtime). It supports only version 2.7, version 3 is 
currently being developped.

Differences with CPython:

Tight integration with .NET Framework.•
Strings are Unicode by default.•
Does not support extensions for CPython written in C.•
Does not suffer from Global Interpreter Lock.•
Performance is usually lower, though it depends on tests.•

Hello World

print "Hello World!"

You can also use .NET functions:

import clr 
from System import Console 
Console.WriteLine("Hello World!")

External links

Official website•
GitHub repository•

Jython

Open-source implementation for JVM written in Java, licensed under Python Software Foundation 
License. It supports only version 2.7, version 3 is currently being developped.

Differences with CPython:

Tight integration with JVM.•

https://riptutorial.com/ 567

http://ironpython.net/
https://github.com/IronLanguages/main


Strings are Unicode.•
Does not support extensions for CPython written in C.•
Does not suffer from Global Interpreter Lock.•
Performance is usually lower, though it depends on tests.•

Hello World

print "Hello World!"

You can also use Java functions:

from java.lang import System 
System.out.println("Hello World!")

External links

Official website•
Mercurial repository•

Transcrypt

Transcrypt is a tool to precompile a fairly extensive subset of Python into compact, readable 
Javascript. It has the following characteristics:

Allows for classical OO programming with multiple inheritance using pure Python syntax, 
parsed by CPython’s native parser

•

Seamless integration with the universe of high-quality web-oriented JavaScript libraries, 
rather than the desktop-oriented Python ones

•

Hierarchical URL based module system allowing module distribution via PyPi•
Simple relation between Python source and generated JavaScript code for easy debugging•
Multi-level sourcemaps and optional annotation of target code with source references•
Compact downloads, kB’s rather than MB’s•
Optimized JavaScript code, using memoization (call caching) to optionally bypass the 
prototype lookup chain

•

Operator overloading can be switched on and off locally to facilitate readable numerical math•

Code size and speed

Experience has shown that 650 kB of Python sourcecode roughly translates in the same amount 
of JavaScript source code. The speed matches the speed of handwritten JavaScript and can 
surpass it if call memoizing is switched on.

https://riptutorial.com/ 568

http://www.jython.org/
https://hg.python.org/jython


Integration with HTML

<script src="__javascript__/hello.js"></script> 
<h2>Hello demo</h2> 
 
<p> 
<div id = "greet">...</div> 
<button onclick="hello.solarSystem.greet ()">Click me repeatedly!</button> 
 
<p> 
<div id = "explain">...</div> 
<button onclick="hello.solarSystem.explain ()">And click me repeatedly too!</button>

Integration with JavaScript and DOM

from itertools import chain 
 
class SolarSystem: 
    planets = [list (chain (planet, (index + 1,))) for index, planet in enumerate (( 
        ('Mercury', 'hot', 2240), 
        ('Venus', 'sulphurous', 6052), 
        ('Earth', 'fertile', 6378), 
        ('Mars', 'reddish', 3397), 
        ('Jupiter', 'stormy', 71492), 
        ('Saturn', 'ringed', 60268), 
        ('Uranus', 'cold', 25559), 
        ('Neptune', 'very cold', 24766) 
    ))] 
 
    lines = ( 
        '{} is a {} planet', 
        'The radius of {} is {} km', 
        '{} is planet nr. {} counting from the sun' 
    ) 
 
    def __init__ (self): 
        self.lineIndex = 0 
 
    def greet (self): 
        self.planet = self.planets [int (Math.random () * len (self.planets))] 
        document.getElementById ('greet') .innerHTML = 'Hello {}'.format (self.planet [0]) 
        self.explain () 
 
    def explain (self): 
        document.getElementById ('explain').innerHTML = ( 
            self.lines [self.lineIndex] .format (self.planet [0], self.planet [self.lineIndex 
+ 1]) 
        ) 
        self.lineIndex = (self.lineIndex + 1) % 3 
         solarSystem = SolarSystem ()

Integration with other JavaScript libraries

https://riptutorial.com/ 569



Transcrypt can be used in combination with any JavaScript library without special measures or 
syntax. In the documentation examples are given for a.o. react.js, riot.js, fabric.js and node.js.

Relation between Python and JavaScript 
code

Python

class A: 
    def __init__ (self, x): 
        self.x = x 
 
    def show (self, label): 
        print ('A.show', label, self.x) 
 
class B: 
    def __init__ (self, y): 
        alert ('In B constructor') 
        self.y = y 
 
    def show (self, label): 
        print ('B.show', label, self.y) 
 
class C (A, B): 
    def __init__ (self, x, y): 
        alert ('In C constructor') 
        A.__init__ (self, x) 
        B.__init__ (self, y) 
        self.show ('constructor') 
 
    def show (self, label): 
        B.show (self, label) 
        print ('C.show', label, self.x, self.y) 
 
a = A (1001) 
a.show ('america') 
 
b = B (2002) 
b.show ('russia') 
 
c = C (3003, 4004) 
c.show ('netherlands') 
 
show2 = c.show 
show2 ('copy')

JavaScript

var A = __class__ ('A', [object], { 
    get __init__ () {return __get__ (this, function (self, x) { 
        self.x = x; 
    });}, 
    get show () {return __get__ (this, function (self, label) { 
        print ('A.show', label, self.x); 
    });} 

https://riptutorial.com/ 570



}); 
var B = __class__ ('B', [object], { 
    get __init__ () {return __get__ (this, function (self, y) { 
        alert ('In B constructor'); 
        self.y = y; 
    });}, 
    get show () {return __get__ (this, function (self, label) { 
        print ('B.show', label, self.y); 
    });} 
}); 
var C = __class__ ('C', [A, B], { 
    get __init__ () {return __get__ (this, function (self, x, y) { 
        alert ('In C constructor'); 
        A.__init__ (self, x); 
        B.__init__ (self, y); 
        self.show ('constructor'); 
    });}, 
    get show () {return __get__ (this, function (self, label) { 
        B.show (self, label); 
        print ('C.show', label, self.x, self.y); 
    });} 
}); 
var a = A (1001); 
a.show ('america'); 
var b = B (2002); 
b.show ('russia'); 
var c = C (3003, 4004); 
c.show ('netherlands'); 
var show2 = c.show; 
show2 ('copy');

External links

Official website: http://www.transcrypt.org/•
Repository: https://github.com/JdeH/Transcrypt•

Read Non-official Python implementations online: https://riptutorial.com/python/topic/5225/non-
official-python-implementations

https://riptutorial.com/ 571

http://www.transcrypt.org/
https://github.com/JdeH/Transcrypt
https://riptutorial.com/python/topic/5225/non-official-python-implementations
https://riptutorial.com/python/topic/5225/non-official-python-implementations


Chapter 110: Operator module

Examples

Operators as alternative to an infix operator

For every infix operator, e.g. + there is a operator-function (operator.add for +):

1 + 1 
# Output: 2 
from operator import add 
add(1, 1) 
# Output: 2

even though the main documentation states that for the arithmetic operators only numerical input 
is allowed it is possible:

from operator import mul 
mul('a', 10) 
# Output: 'aaaaaaaaaa' 
mul([3], 3) 
# Output: [3, 3, 3]

See also: mapping from operation to operator function in the official Python documentation.

Methodcaller

Instead of this lambda-function that calls the method explicitly:

alist = ['wolf', 'sheep', 'duck'] 
list(filter(lambda x: x.startswith('d'), alist))     # Keep only elements that start with 'd' 
# Output: ['duck']

one could use a operator-function that does the same:

from operator import methodcaller 
list(filter(methodcaller('startswith', 'd'), alist)) # Does the same but is faster. 
# Output: ['duck']

Itemgetter

Grouping the key-value pairs of a dictionary by the value with itemgetter:

from itertools import groupby 
from operator import itemgetter 
adict = {'a': 1, 'b': 5, 'c': 1} 
 
dict((i, dict(v)) for i, v in groupby(adict.items(), itemgetter(1))) 

https://riptutorial.com/ 572

https://docs.python.org/3/library/operator.html#mapping-operators-to-functions


# Output: {1: {'a': 1, 'c': 1}, 5: {'b': 5}}

which is equivalent (but faster) to a lambda function like this:

dict((i, dict(v)) for i, v in groupby(adict.items(), lambda x: x[1]))

Or sorting a list of tuples by the second element first the first element as secondary:

alist_of_tuples = [(5,2), (1,3), (2,2)] 
sorted(alist_of_tuples, key=itemgetter(1,0)) 
# Output: [(2, 2), (5, 2), (1, 3)]

Read Operator module online: https://riptutorial.com/python/topic/257/operator-module

https://riptutorial.com/ 573

https://riptutorial.com/python/topic/257/operator-module


Chapter 111: Operator Precedence

Introduction

Python operators have a set order of precedence, which determines what operators are 
evaluated first in a potentially ambiguous expression. For instance, in the expression 3 * 2 + 7, first 
3 is multiplied by 2, and then the result is added to 7, yielding 13. The expression is not evaluated 
the other way around, because * has a higher precedence than +.

Below is a list of operators by precedence, and a brief description of what they (usually) do.

Remarks

From the Python documentation:

The following table summarizes the operator precedences in Python, from lowest 
precedence (least binding) to highest precedence (most binding). Operators in the 
same box have the same precedence. Unless the syntax is explicitly given, operators 
are binary. Operators in the same box group left to right (except for comparisons, 
including tests, which all have the same precedence and chain from left to right and 
exponentiation, which groups from right to left).

Operator Description

lambda Lambda expression

if – else Conditional expression

or Boolean OR

and Boolean AND

not x Boolean NOT

in, not in, is, is not, <, <=, >, >=, <>, !=, ==
Comparisons, including membership tests and 
identity tests

| Bitwise OR

^ Bitwise XOR

& Bitwise AND

<<, >> Shifts

+, - Addition and subtraction

https://riptutorial.com/ 574



Operator Description

*, /, //, % Multiplication, division, remainder [8]

+x, -x, ~x Positive, negative, bitwise NOT

** Exponentiation [9]

x[index], x[index:index], x(arguments...), 
x.attribute

Subscription, slicing, call, attribute reference

(expressions...), [expressions...], {key: 
value...}, expressions...

Binding or tuple display, list display, dictionary 
display, string conversion

Examples

Simple Operator Precedence Examples in python.

Python follows PEMDAS rule. PEMDAS stands for Parentheses, Exponents, Multiplication and 
Division, and Addition and Subtraction.

Example:

>>> a, b, c, d = 2, 3, 5, 7 
>>> a ** (b + c)  # parentheses 
256 
>>> a * b ** c  # exponent: same as `a * (b ** c)` 
7776 
>>> a + b * c / d  # multiplication / division: same as `a + (b * c / d)` 
4.142857142857142

Extras: mathematical rules hold, but not always:

>>> 300 / 300 * 200 
200.0 
>>> 300 * 200 / 300 
200.0 
>>> 1e300 / 1e300 * 1e200 
1e+200 
>>> 1e300 * 1e200 / 1e300 
inf

Read Operator Precedence online: https://riptutorial.com/python/topic/5040/operator-precedence

https://riptutorial.com/ 575

https://docs.python.org/3/tutorial/floatingpoint.html
https://riptutorial.com/python/topic/5040/operator-precedence


Chapter 112: Optical Character Recognition

Introduction

Optical Character Recognition is converting images of text into actual text. In these examples find 
ways of using OCR in python.

Examples

PyTesseract

PyTesseract is an in-development python package for OCR.

Using PyTesseract is pretty easy:

try: 
    import Image 
except ImportError: 
    from PIL import Image 
 
import pytesseract 
 
    #Basic OCR 
    print(pytesseract.image_to_string(Image.open('test.png'))) 
 
    #In French 
    print(pytesseract.image_to_string(Image.open('test-european.jpg'), lang='fra’))

PyTesseract is open source and can be found here.

PyOCR

Another module of some use is PyOCR, source code of which is here.

Also simple to use and has more features than PyTesseract.

To initialize:

from PIL import Image 
import sys 
 
import pyocr 
import pyocr.builders 
 
tools = pyocr.get_available_tools() 
# The tools are returned in the recommended order of usage 
tool = tools[0] 
 
langs = tool.get_available_languages() 
lang = langs[0] 
# Note that languages are NOT sorted in any way. Please refer 

https://riptutorial.com/ 576

https://github.com/madmaze/pytesseract
https://github.com/jflesch/pyocr


# to the system locale settings for the default language 
# to use.

And some examples of usage:

txt = tool.image_to_string( 
    Image.open('test.png'), 
    lang=lang, 
    builder=pyocr.builders.TextBuilder() 
) 
# txt is a Python string 
 
word_boxes = tool.image_to_string( 
    Image.open('test.png'), 
    lang="eng", 
    builder=pyocr.builders.WordBoxBuilder() 
) 
# list of box objects. For each box object: 
#   box.content is the word in the box 
#   box.position is its position on the page (in pixels) 
# 
# Beware that some OCR tools (Tesseract for instance) 
# may return empty boxes 
 
line_and_word_boxes = tool.image_to_string( 
    Image.open('test.png'), lang="fra", 
    builder=pyocr.builders.LineBoxBuilder() 
) 
# list of line objects. For each line object: 
#   line.word_boxes is a list of word boxes (the individual words in the line) 
#   line.content is the whole text of the line 
#   line.position is the position of the whole line on the page (in pixels) 
# 
# Beware that some OCR tools (Tesseract for instance) 
# may return empty boxes 
 
# Digits - Only Tesseract (not 'libtesseract' yet !) 
digits = tool.image_to_string( 
    Image.open('test-digits.png'), 
    lang=lang, 
    builder=pyocr.tesseract.DigitBuilder() 
) 
# digits is a python string

Read Optical Character Recognition online: https://riptutorial.com/python/topic/9302/optical-
character-recognition

https://riptutorial.com/ 577

https://riptutorial.com/python/topic/9302/optical-character-recognition
https://riptutorial.com/python/topic/9302/optical-character-recognition


Chapter 113: os.path

Introduction

This module implements some useful functions on pathnames. The path parameters can be 
passed as either strings, or bytes. Applications are encouraged to represent file names as 
(Unicode) character strings.

Syntax

os.path.join(a, *p)•
os.path.basename(p)•
os.path.dirname(p)•
os.path.split(p)•
os.path.splitext(p)•

Examples

Join Paths

To join two or more path components together, firstly import os module of python and then use 
following:

import os 
os.path.join('a', 'b', 'c')

The advantage of using os.path is that it allows code to remain compatible over all operating 
systems, as this uses the separator appropriate for the platform it's running on.

For example, the result of this command on Windows will be:

>>> os.path.join('a', 'b', 'c') 
'a\b\c'

In an Unix OS:

>>> os.path.join('a', 'b', 'c') 
'a/b/c'

Absolute Path from Relative Path

Use os.path.abspath:

>>> os.getcwd() 
'/Users/csaftoiu/tmp' 

https://riptutorial.com/ 578



>>> os.path.abspath('foo') 
'/Users/csaftoiu/tmp/foo' 
>>> os.path.abspath('../foo') 
'/Users/csaftoiu/foo' 
>>> os.path.abspath('/foo') 
'/foo'

Path Component Manipulation

To split one component off of the path:

>>> p = os.path.join(os.getcwd(), 'foo.txt') 
>>> p 
'/Users/csaftoiu/tmp/foo.txt' 
>>> os.path.dirname(p) 
'/Users/csaftoiu/tmp' 
>>> os.path.basename(p) 
'foo.txt' 
>>> os.path.split(os.getcwd()) 
('/Users/csaftoiu/tmp', 'foo.txt') 
>>> os.path.splitext(os.path.basename(p)) 
('foo', '.txt')

Get the parent directory

os.path.abspath(os.path.join(PATH_TO_GET_THE_PARENT, os.pardir))

If the given path exists.

to check if the given path exists

path = '/home/john/temp' 
os.path.exists(path) 
#this returns false if path doesn't exist or if the path is a broken symbolic link

check if the given path is a directory, file, symbolic link, mount point etc.

to check if the given path is a directory

dirname = '/home/john/python' 
os.path.isdir(dirname)

to check if the given path is a file

filename = dirname + 'main.py' 
os.path.isfile(filename)

to check if the given path is symbolic link

symlink = dirname + 'some_sym_link' 

https://riptutorial.com/ 579

https://en.wikipedia.org/wiki/Symbolic_link


os.path.islink(symlink)

to check if the given path is a mount point

mount_path = '/home' 
os.path.ismount(mount_path)

Read os.path online: https://riptutorial.com/python/topic/1380/os-path

https://riptutorial.com/ 580

http://www.linuxtopia.org/online_books/introduction_to_linux/linux_Mount_points.html
https://riptutorial.com/python/topic/1380/os-path


Chapter 114: Overloading

Examples

Magic/Dunder Methods

Magic (also called dunder as an abbreviation for double-underscore) methods in Python serve a 
similar purpose to operator overloading in other languages. They allow a class to define its 
behavior when it is used as an operand in unary or binary operator expressions. They also serve 
as implementations called by some built-in functions.

Consider this implementation of two-dimensional vectors.

import math 
 
class Vector(object): 
    # instantiation 
    def __init__(self, x, y): 
        self.x = x 
        self.y = y 
 
    # unary negation (-v) 
    def __neg__(self): 
        return Vector(-self.x, -self.y) 
 
    # addition (v + u) 
    def __add__(self, other): 
        return Vector(self.x + other.x, self.y + other.y) 
 
    # subtraction (v - u) 
    def __sub__(self, other): 
        return self + (-other) 
 
    # equality (v == u) 
    def __eq__(self, other): 
        return self.x == other.x and self.y == other.y 
 
    # abs(v) 
    def __abs__(self): 
        return math.hypot(self.x, self.y) 
 
    # str(v) 
    def __str__(self): 
        return '<{0.x}, {0.y}>'.format(self) 
 
    # repr(v) 
    def __repr__(self): 
        return 'Vector({0.x}, {0.y})'.format(self)

Now it is possible to naturally use instances of the Vector class in various expressions.

v = Vector(1, 4) 
u = Vector(2, 0) 
 

https://riptutorial.com/ 581



u + v           # Vector(3, 4) 
print(u + v)    # "<3, 4>" (implicit string conversion) 
u - v           # Vector(1, -4) 
u == v          # False 
u + v == v + u  # True 
abs(u + v)      # 5.0

Container and sequence types

It is possible to emulate container types, which support accessing values by key or index.

Consider this naive implementation of a sparse list, which stores only its non-zero elements to 
conserve memory.

class sparselist(object): 
    def __init__(self, size): 
        self.size = size 
        self.data = {} 
 
    # l[index] 
    def __getitem__(self, index): 
        if index < 0: 
            index += self.size 
        if index >= self.size: 
            raise IndexError(index) 
        try: 
            return self.data[index] 
        except KeyError: 
            return 0.0 
 
    # l[index] = value 
    def __setitem__(self, index, value): 
        self.data[index] = value 
 
    # del l[index] 
    def __delitem__(self, index): 
        if index in self.data: 
            del self.data[index] 
 
    # value in l 
    def __contains__(self, value): 
        return value == 0.0 or value in self.data.values() 
 
    # len(l) 
    def __len__(self): 
        return self.size 
 
    # for value in l: ... 
    def __iter__(self): 
        return (self[i] for i in range(self.size)) # use xrange for python2

Then, we can use a sparselist much like a regular list.

l = sparselist(10 ** 6)  # list with 1 million elements 
0 in l                   # True 
10 in l                  # False 
 

https://riptutorial.com/ 582



l[12345] = 10 
10 in l                  # True 
l[12345]                 # 10 
 
for v in l: 
    pass  # 0, 0, 0, ... 10, 0, 0 ... 0

Callable types

class adder(object): 
    def __init__(self, first): 
        self.first = first 
 
    # a(...) 
    def __call__(self, second): 
        return self.first + second 
 
add2 = adder(2) 
add2(1)  # 3 
add2(2)  # 4

Handling unimplemented behaviour

If your class doesn't implement a specific overloaded operator for the argument types provided, it 
should return NotImplemented (note that this is a special constant, not the same as 
NotImplementedError). This will allow Python to fall back to trying other methods to make the 
operation work:

When NotImplemented is returned, the interpreter will then try the reflected operation on 
the other type, or some other fallback, depending on the operator. If all attempted 
operations return NotImplemented, the interpreter will raise an appropriate exception.

For example, given x + y, if x.__add__(y) returns unimplemented, y.__radd__(x) is attempted 
instead.

class NotAddable(object): 
 
    def __init__(self, value): 
        self.value = value 
 
    def __add__(self, other): 
        return NotImplemented 
 
 
class Addable(NotAddable): 
 
    def __add__(self, other): 
        return Addable(self.value + other.value) 
 
    __radd__ = __add__

As this is the reflected method we have to implement __add__ and __radd__ to get the expected 
behaviour in all cases; fortunately, as they are both doing the same thing in this simple example, 

https://riptutorial.com/ 583

https://docs.python.org/3/library/constants.html#NotImplemented


we can take a shortcut.

In use:

>>> x = NotAddable(1) 
>>> y = Addable(2) 
>>> x + x 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: unsupported operand type(s) for +: 'NotAddable' and 'NotAddable' 
>>> y + y 
<so.Addable object at 0x1095974d0> 
>>> z = x + y 
>>> z 
<so.Addable object at 0x109597510> 
>>> z.value 
3

Operator overloading

Below are the operators that can be overloaded in classes, along with the method definitions that 
are required, and an example of the operator in use within an expression.

N.B. The use of other as a variable name is not mandatory, but is considered the norm.

Operator Method Expression

+ Addition __add__(self, other) a1 + a2

- Subtraction __sub__(self, other) a1 - a2

* Multiplication __mul__(self, other) a1 * a2

@ Matrix Multiplication __matmul__(self, other) a1 @ a2 (Python 3.5)

/ Division __div__(self, other) a1 / a2 (Python 2 only)

/ Division __truediv__(self, other) a1 / a2 (Python 3)

// Floor Division __floordiv__(self, other) a1 // a2

% Modulo/Remainder __mod__(self, other) a1 % a2

** Power __pow__(self, other[, modulo]) a1 ** a2

<< Bitwise Left Shift __lshift__(self, other) a1 << a2

>> Bitwise Right Shift __rshift__(self, other) a1 >> a2

& Bitwise AND __and__(self, other) a1 & a2

^ Bitwise XOR __xor__(self, other) a1 ^ a2

https://riptutorial.com/ 584



Operator Method Expression

| (Bitwise OR) __or__(self, other) a1 | a2

- Negation (Arithmetic) __neg__(self) -a1

+ Positive __pos__(self) +a1

~ Bitwise NOT __invert__(self) ~a1

< Less than __lt__(self, other) a1 < a2

<= Less than or Equal to __le__(self, other) a1 <= a2

== Equal to __eq__(self, other) a1 == a2

!= Not Equal to __ne__(self, other) a1 != a2

> Greater than __gt__(self, other) a1 > a2

>= Greater than or Equal to __ge__(self, other) a1 >= a2

[index] Index operator __getitem__(self, index) a1[index]

in In operator __contains__(self, other) a2 in a1

(*args, ...) Calling __call__(self, *args, **kwargs) a1(*args, **kwargs)

The optional parameter modulo for __pow__ is only used by the pow built-in function.

Each of the methods corresponding to a binary operator has a corresponding "right" method which 
start with __r, for example __radd__:

class A: 
    def __init__(self, a): 
        self.a = a 
    def __add__(self, other): 
        return self.a + other 
    def __radd__(self, other): 
        print("radd") 
        return other + self.a 
 
A(1) + 2  # Out:  3 
2 + A(1)  # prints radd. Out: 3

as well as a corresponding inplace version, starting with __i:

class B: 
    def __init__(self, b): 
        self.b = b 
    def __iadd__(self, other): 
        self.b += other 

https://riptutorial.com/ 585



        print("iadd") 
        return self 
 
b = B(2) 
b.b       # Out: 2 
b += 1    # prints iadd 
b.b       # Out: 3

Since there's nothing special about these methods, many other parts of the language, parts of the 
standard library, and even third-party modules add magic methods on their own, like methods to 
cast an object to a type or checking properties of the object. For example, the builtin str() function 
calls the object's __str__ method, if it exists. Some of these uses are listed below.

Function Method Expression

Casting to int __int__(self) int(a1)

Absolute function __abs__(self) abs(a1)

Casting to str __str__(self) str(a1)

Casting to unicode __unicode__(self) unicode(a1) (Python 2 only)

String representation __repr__(self) repr(a1)

Casting to bool __nonzero__(self) bool(a1)

String formatting __format__(self, formatstr) "Hi {:abc}".format(a1)

Hashing __hash__(self) hash(a1)

Length __len__(self) len(a1)

Reversed __reversed__(self) reversed(a1)

Floor __floor__(self) math.floor(a1)

Ceiling __ceil__(self) math.ceil(a1)

There are also the special methods __enter__ and __exit__ for context managers, and many more.

Read Overloading online: https://riptutorial.com/python/topic/2063/overloading

https://riptutorial.com/ 586

https://riptutorial.com/python/topic/2063/overloading


Chapter 115: Pandas Transform: Preform 
operations on groups and concatenate the 
results

Examples

Simple transform

First, Lets create a dummy dataframe

We assume that a customer can have n orders, an order can have m items, and items can be 
ordered more multiple times

orders_df = pd.DataFrame() 
orders_df['customer_id'] = [1,1,1,1,1,2,2,3,3,3,3,3] 
orders_df['order_id'] = [1,1,1,2,2,3,3,4,5,6,6,6] 
orders_df['item'] = ['apples', 'chocolate', 'chocolate', 'coffee', 'coffee', 'apples', 
                     'bananas', 'coffee', 'milkshake', 'chocolate', 'strawberry', 
'strawberry'] 
 
# And this is how the dataframe looks like: 
print(orders_df) 
#     customer_id  order_id        item 
# 0             1         1      apples 
# 1             1         1   chocolate 
# 2             1         1   chocolate 
# 3             1         2      coffee 
# 4             1         2      coffee 
# 5             2         3      apples 
# 6             2         3     bananas 
# 7             3         4      coffee 
# 8             3         5   milkshake 
# 9             3         6   chocolate 
# 10            3         6  strawberry 
# 11            3         6  strawberry

. 

.

Now, we will use pandas transform function to count the number 
of orders per customer

# First, we define the function that will be applied per customer_id 
count_number_of_orders = lambda x: len(x.unique()) 
 
# And now, we can tranform each group using the logic defined above 
orders_df['number_of_orders_per_cient'] = (               # Put the results into a new column 

https://riptutorial.com/ 587



that is called 'number_of_orders_per_cient' 
                     orders_df                            # Take the original dataframe 
                    .groupby(['customer_id'])['order_id'] # Create a seperate group for each 
customer_id & select the order_id 
                    .transform(count_number_of_orders))   # Apply the function to each group 
seperatly 
 
# Inspecting the results ... 
print(orders_df) 
#     customer_id  order_id        item  number_of_orders_per_cient 
# 0             1         1      apples                           2 
# 1             1         1   chocolate                           2 
# 2             1         1   chocolate                           2 
# 3             1         2      coffee                           2 
# 4             1         2      coffee                           2 
# 5             2         3      apples                           1 
# 6             2         3     bananas                           1 
# 7             3         4      coffee                           3 
# 8             3         5   milkshake                           3 
# 9             3         6   chocolate                           3 
# 10            3         6  strawberry                           3 
# 11            3         6  strawberry                           3

Multiple results per group

Using transform functions that return sub-
calculations per group

In the previous example, we had one result per client. However, functions returning different 
values for the group can also be applied.

# Create a dummy dataframe 
orders_df = pd.DataFrame() 
orders_df['customer_id'] = [1,1,1,1,1,2,2,3,3,3,3,3] 
orders_df['order_id'] = [1,1,1,2,2,3,3,4,5,6,6,6] 
orders_df['item'] = ['apples', 'chocolate', 'chocolate', 'coffee', 'coffee', 'apples', 
                     'bananas', 'coffee', 'milkshake', 'chocolate', 'strawberry', 
'strawberry'] 
 
 
# Let's try to see if the items were ordered more than once in each orders 
 
# First, we define a fuction that will be applied per group 
def multiple_items_per_order(_items): 
    # Apply .duplicated, which will return True is the item occurs more than once. 
    multiple_item_bool = _items.duplicated(keep=False) 
    return(multiple_item_bool) 
 
# Then, we transform each group according to the defined function 
orders_df['item_duplicated_per_order'] = (                    # Put the results into a new 
column 
                        orders_df                             # Take the orders dataframe 
                        .groupby(['order_id'])['item']        # Create a seperate group for 
each order_id & select the item 
                        .transform(multiple_items_per_order)) # Apply the defined function to 

https://riptutorial.com/ 588



each group separately 
 
# Inspecting the results ... 
print(orders_df) 
#     customer_id  order_id        item  item_duplicated_per_order 
# 0             1         1      apples                      False 
# 1             1         1   chocolate                       True 
# 2             1         1   chocolate                       True 
# 3             1         2      coffee                       True 
# 4             1         2      coffee                       True 
# 5             2         3      apples                      False 
# 6             2         3     bananas                      False 
# 7             3         4      coffee                      False 
# 8             3         5   milkshake                      False 
# 9             3         6   chocolate                      False 
# 10            3         6  strawberry                       True 
# 11            3         6  strawberry                       True

Read Pandas Transform: Preform operations on groups and concatenate the results online: 
https://riptutorial.com/python/topic/10947/pandas-transform--preform-operations-on-groups-and-
concatenate-the-results

https://riptutorial.com/ 589

https://riptutorial.com/python/topic/10947/pandas-transform--preform-operations-on-groups-and-concatenate-the-results
https://riptutorial.com/python/topic/10947/pandas-transform--preform-operations-on-groups-and-concatenate-the-results


Chapter 116: Parallel computation

Remarks

Due to the GIL (Global interpreter lock) only one instance of the python interpreter executes in a 
single process. So in general, using multi-threading only improves IO bound computations, not 
CPU-bound ones. The multiprocessing module is recommended if you wish to parallelise CPU-
bound tasks.

GIL applies to CPython, the most popular implementation of Python, as well as PyPy. Other 
implementations such as Jython and IronPython have no GIL.

Examples

Using the multiprocessing module to parallelise tasks

import multiprocessing 
 
def fib(n): 
    """computing the Fibonacci in an inefficient way 
    was chosen to slow down the CPU.""" 
    if n <= 2: 
        return 1 
    else: 
        return fib(n-1)+fib(n-2) 
p = multiprocessing.Pool() 
print(p.map(fib,[38,37,36,35,34,33])) 
 
# Out: [39088169, 24157817, 14930352, 9227465, 5702887, 3524578]

As the execution of each call to fib happens in parallel, the time of execution of the full example is 
1.8× faster than if done in a sequential way on a dual processor.

Python 2.2+

Using Parent and Children scripts to execute code in parallel

child.py

import time 
 
def main(): 
    print "starting work" 
    time.sleep(1) 
    print "work work work work work" 
    time.sleep(1) 
    print "done working" 
 
if __name__ == '__main__': 
    main()

https://riptutorial.com/ 590

https://wiki.python.org/moin/GlobalInterpreterLock


parent.py

import os 
 
def main(): 
    for i in range(5): 
        os.system("python child.py &") 
 
if __name__ == '__main__': 
    main()

This is useful for parallel, independent HTTP request/response tasks or Database select/inserts. 
Command line arguments can be given to the child.py script as well. Synchronization between 
scripts can be achieved by all scripts regularly checking a separate server (like a Redis instance).

Using a C-extension to parallelize tasks

The idea here is to move the computationally intensive jobs to C (using special macros), 
independent of Python, and have the C code release the GIL while it's working.

#include "Python.h" 
... 
PyObject *pyfunc(PyObject *self, PyObject *args) { 
    ... 
    Py_BEGIN_ALLOW_THREADS 
    // Threaded C code 
    ... 
    Py_END_ALLOW_THREADS 
    ... 
}

Using PyPar module to parallelize

PyPar is a library that uses the message passing interface (MPI) to provide parallelism in Python. 
A simple example in PyPar (as seen at https://github.com/daleroberts/pypar) looks like this:

import pypar as pp 
 
ncpus = pp.size() 
rank = pp.rank() 
node = pp.get_processor_name() 
 
print 'I am rank %d of %d on node %s' % (rank, ncpus, node) 
 
if rank == 0: 
  msh = 'P0' 
  pp.send(msg, destination=1) 
  msg = pp.receive(source=rank-1) 
  print 'Processor 0 received message "%s" from rank %d' % (msg, rank-1) 
else: 
  source = rank-1 
  destination = (rank+1) % ncpus 
  msg = pp.receive(source) 
  msg = msg + 'P' + str(rank) 
  pypar.send(msg, destination) 

https://riptutorial.com/ 591

https://github.com/daleroberts/pypar)


pp.finalize()

Read Parallel computation online: https://riptutorial.com/python/topic/542/parallel-computation

https://riptutorial.com/ 592

https://riptutorial.com/python/topic/542/parallel-computation


Chapter 117: Parsing Command Line 
arguments

Introduction

Most command line tools rely on arguments passed to the program upon its execution. Instead of 
prompting for input, these programs expect data or specific flags (which become booleans) to be 
set. This allows both the user and other programs to run the Python file passing it data as it starts. 
This section explains and demonstrates the implementation and usage of command line 
arguments in Python.

Examples

Hello world in argparse

The following program says hello to the user. It takes one positional argument, the name of the 
user, and can also be told the greeting.

import argparse 
 
parser = argparse.ArgumentParser() 
 
parser.add_argument('name', 
    help='name of user' 
) 
 
parser.add_argument('-g', '--greeting', 
    default='Hello', 
    help='optional alternate greeting' 
) 
 
args = parser.parse_args() 
 
print("{greeting}, {name}!".format( 
       greeting=args.greeting, 
       name=args.name) 
)

$ python hello.py --help 
usage: hello.py [-h] [-g GREETING] name 
 
positional arguments: 
  name                  name of user 
 
optional arguments: 
  -h, --help            show this help message and exit 
  -g GREETING, --greeting GREETING 
                        optional alternate greeting

$ python hello.py world 

https://riptutorial.com/ 593



Hello, world! 
$ python hello.py John -g Howdy 
Howdy, John!

For more details please read the argparse documentation.

Basic example with docopt

docopt turns command-line argument parsing on its head. Instead of parsing the arguments, you 
just write the usage string for your program, and docopt parses the usage string and uses it to 
extract the command line arguments.

""" 
Usage: 
    script_name.py [-a] [-b] <path> 
 
Options: 
    -a            Print all the things. 
    -b            Get more bees into the path. 
""" 
from docopt import docopt 
 
 
if __name__ == "__main__": 
    args = docopt(__doc__) 
    import pprint; pprint.pprint(args)

Sample runs:

$ python script_name.py 
Usage: 
    script_name.py [-a] [-b] <path> 
$ python script_name.py something 
{'-a': False, 
 '-b': False, 
 '<path>': 'something'} 
$ python script_name.py something -a 
{'-a': True, 
 '-b': False, 
 '<path>': 'something'} 
$ python script_name.py -b something -a 
{'-a': True, 
 '-b': True, 
 '<path>': 'something'}

Setting mutually exclusive arguments with argparse

If you want two or more arguments to be mutually exclusive. You can use the function 
argparse.ArgumentParser.add_mutually_exclusive_group(). In the example below, either foo or bar 
can exist but not both at the same time.

import argparse 
 
parser = argparse.ArgumentParser() 

https://riptutorial.com/ 594

https://docs.python.org/3/library/argparse.html
http://docopt.org/


group = parser.add_mutually_exclusive_group() 
group.add_argument("-f", "--foo") 
group.add_argument("-b", "--bar") 
args = parser.parse_args() 
print "foo = ", args.foo 
print "bar = ", args.bar

If you try to run the script specifying both --foo and --bar arguments, the script will complain with 
the below message.

error: argument -b/--bar: not allowed with argument -f/--foo

Using command line arguments with argv

Whenever a Python script is invoked from the command line, the user may supply additional 
command line arguments which will be passed on to the script. These arguments will be 
available to the programmer from the system variable sys.argv ("argv" is a traditional name used in 
most programming languages, and it means "argument vector").

By convention, the first element in the sys.argv list is the name of the Python script itself, while the 
rest of the elements are the tokens passed by the user when invoking the script.

# cli.py 
import sys 
print(sys.argv) 
 
$ python cli.py 
=> ['cli.py'] 
 
$ python cli.py fizz 
=> ['cli.py', 'fizz'] 
 
$ python cli.py fizz buzz 
=> ['cli.py', 'fizz', 'buzz']

Here's another example of how to use argv. We first strip off the initial element of sys.argv 
because it contains the script's name. Then we combine the rest of the arguments into a single 
sentence, and finally print that sentence prepending the name of the currently logged-in user (so 
that it emulates a chat program).

import getpass 
import sys 
 
words = sys.argv[1:] 
sentence = " ".join(words) 
print("[%s] %s" % (getpass.getuser(), sentence))

The algorithm commonly used when "manually" parsing a number of non-positional arguments is 
to iterate over the sys.argv list. One way is to go over the list and pop each element of it:

# reverse and copy sys.argv 
argv = reversed(sys.argv) 
# extract the first element 

https://riptutorial.com/ 595



arg = argv.pop() 
# stop iterating when there's no more args to pop() 
while len(argv) > 0: 
    if arg in ('-f', '--foo'): 
        print('seen foo!') 
    elif arg in ('-b', '--bar'): 
        print('seen bar!') 
    elif arg in ('-a', '--with-arg'): 
        arg = arg.pop() 
        print('seen value: {}'.format(arg)) 
    # get the next value 
    arg = argv.pop()

Custom parser error message with argparse

You can create parser error messages according to your script needs. This is through the 
argparse.ArgumentParser.error function. The below example shows the script printing a usage and 
an error message to stderr when --foo is given but not --bar.

import argparse 
 
parser = argparse.ArgumentParser() 
parser.add_argument("-f", "--foo") 
parser.add_argument("-b", "--bar") 
args = parser.parse_args() 
if args.foo and args.bar is None: 
    parser.error("--foo requires --bar. You did not specify bar.") 
 
print "foo =", args.foo 
print "bar =", args.bar

Assuming your script name is sample.py, and we run: python sample.py --foo ds_in_fridge

The script will complain with the following:

usage: sample.py [-h] [-f FOO] [-b BAR] 
sample.py: error: --foo requires --bar. You did not specify bar.

Conceptual grouping of arguments with argparse.add_argument_group()

When you create an argparse ArgumentParser() and run your program with '-h' you get an 
automated usage message explaining what arguments you can run your software with. By default, 
positional arguments and conditional arguments are separated into two categories, for example, 
here is a small script (example.py) and the output when you run python example.py -h.

import argparse 
 
parser = argparse.ArgumentParser(description='Simple example') 
parser.add_argument('name', help='Who to greet', default='World') 
parser.add_argument('--bar_this') 
parser.add_argument('--bar_that') 
parser.add_argument('--foo_this') 
parser.add_argument('--foo_that') 

https://riptutorial.com/ 596



args = parser.parse_args()

usage: example.py [-h] [--bar_this BAR_THIS] [--bar_that BAR_THAT] 
                        [--foo_this FOO_THIS] [--foo_that FOO_THAT] 
                        name 
 
Simple example 
 
positional arguments: 
  name                 Who to greet 
 
optional arguments: 
  -h, --help           show this help message and exit 
  --bar_this BAR_THIS 
  --bar_that BAR_THAT 
  --foo_this FOO_THIS 
  --foo_that FOO_THAT

There are some situations where you want to separate your arguments into further conceptual 
sections to assist your user. For example, you may wish to have all the input options in one group, 
and all the output formating options in another. The above example can be adjusted to separate 
the --foo_* args from the --bar_* args like so.

import argparse 
 
parser = argparse.ArgumentParser(description='Simple example') 
parser.add_argument('name', help='Who to greet', default='World') 
# Create two argument groups 
foo_group = parser.add_argument_group(title='Foo options') 
bar_group = parser.add_argument_group(title='Bar options') 
# Add arguments to those groups 
foo_group.add_argument('--bar_this') 
foo_group.add_argument('--bar_that') 
bar_group.add_argument('--foo_this') 
bar_group.add_argument('--foo_that') 
args = parser.parse_args()

Which produces this output when python example.py -h is run:

usage: example.py [-h] [--bar_this BAR_THIS] [--bar_that BAR_THAT] 
                        [--foo_this FOO_THIS] [--foo_that FOO_THAT] 
                        name 
 
Simple example 
 
positional arguments: 
  name                 Who to greet 
 
optional arguments: 
  -h, --help           show this help message and exit 
 
Foo options: 
  --bar_this BAR_THIS 
  --bar_that BAR_THAT 
 
Bar options: 
  --foo_this FOO_THIS 

https://riptutorial.com/ 597



  --foo_that FOO_THAT

Advanced example with docopt and docopt_dispatch

As with docopt, with [docopt_dispatch] you craft your --help in the __doc__ variable of your entry-
point module. There, you call dispatch with the doc string as argument, so it can run the parser 
over it.

That being done, instead of handling manually the arguments (which usually ends up in a high 
cyclomatic if/else structure), you leave it to dispatch giving only how you want to handle the set of 
arguments.

This is what the dispatch.on decorator is for: you give it the argument or sequence of arguments 
that should trigger the function, and that function will be executed with the matching values as 
parameters.

"""Run something in development or production mode. 
 
Usage: run.py --development <host> <port> 
       run.py --production <host> <port> 
       run.py items add <item> 
       run.py items delete <item> 
 
""" 
from docopt_dispatch import dispatch 
 
@dispatch.on('--development') 
def development(host, port, **kwargs): 
    print('in *development* mode') 
 
@dispatch.on('--production') 
def development(host, port, **kwargs): 
    print('in *production* mode') 
 
@dispatch.on('items', 'add') 
def items_add(item, **kwargs): 
    print('adding item...') 
 
@dispatch.on('items', 'delete') 
def items_delete(item, **kwargs): 
    print('deleting item...') 
 
if __name__ == '__main__': 
    dispatch(__doc__)

Read Parsing Command Line arguments online: https://riptutorial.com/python/topic/1382/parsing-
command-line-arguments

https://riptutorial.com/ 598

https://riptutorial.com/python/topic/1382/parsing-command-line-arguments
https://riptutorial.com/python/topic/1382/parsing-command-line-arguments


Chapter 118: Partial functions

Introduction

As you probably know if you came from OOP school, specializing an abstract class and use it is a 
practice you should keep in mind when writing your code.

What if you could define an abstract function and specialize it in order to create different versions 
of it? Thinks it as a sort of function Inheritance where you bind specific params to make them 
reliable for a specific scenario.

Syntax

partial(function, **params_you_want_fix)•

Parameters

Param details

x the number to be raised

y the exponent

raise the function to be specialized

Remarks

As stated in Python doc the functools.partial:

Return a new partial object which when called will behave like func called with the 
positional arguments args and keyword arguments keywords. If more arguments are 
supplied to the call, they are appended to args. If additional keyword arguments are 
supplied, they extend and override keywords.

Check this link to see how partial can be implemented.

Examples

Raise the power

Let's suppose we want raise x to a number y.

You'd write this as:

https://riptutorial.com/ 599

https://docs.python.org/2/library/functools.html


def raise_power(x, y): 
    return x**y

What if your y value can assume a finite set of values?

Let's suppose y can be one of [3,4,5] and let's say you don't want offer end user the possibility to 
use such function since it is very computationally intensive. In fact you would check if provided y 
assumes a valid value and rewrite your function as:

def raise(x, y): 
    if y in (3,4,5): 
        return x**y 
    raise NumberNotInRangeException("You should provide a valid exponent")

Messy? Let's use the abstract form and specialize it to all three cases: let's implement them 
partially.

from functors import partial 
raise_to_three = partial(raise, y=3) 
raise_to_four = partial(raise, y=4) 
raise_to_five = partial(raise, y=5)

What happens here? We fixed the y params and we defined three different functions.

No need to use the abstract function defined above (you could make it private) but you could use 
partial applied functions to deal with raising a number to a fixed value.

Read Partial functions online: https://riptutorial.com/python/topic/9383/partial-functions

https://riptutorial.com/ 600

https://riptutorial.com/python/topic/9383/partial-functions


Chapter 119: Performance optimization

Remarks

When attempting to improve the performance of a Python script, first and foremost you should be 
able to find the bottleneck of your script and note that no optimization can compensate for a poor 
choice in data structures or a flaw in your algorithm design. Identifying performance bottlenecks 
can be done by profiling your script. Secondly do not try to optimize too early in your coding 
process at the expense of readability/design/quality. Donald Knuth made the following statement 
on optimization:

“We should forget about small efficiencies, say about 97% of the time: premature 
optimization is the root of all evil. Yet we should not pass up our opportunities in that 
critical 3%.”

Examples

Code profiling

First and foremost you should be able to find the bottleneck of your script and note that no 
optimization can compensate for a poor choice in data structure or a flaw in your algorithm design. 
Secondly do not try to optimize too early in your coding process at the expense of 
readability/design/quality. Donald Knuth made the following statement on optimization:

"We should forget about small efficiencies, say about 97% of the time: premature 
optimization is the root of all evil. Yet we should not pass up our opportunities in that 
critical 3%"

To profile your code you have several tools: cProfile (or the slower profile) from the standard 
library, line_profiler and timeit. Each of them serve a different purpose.

cProfile is a determistic profiler: function call, function return, and exception events are monitored, 
and precise timings are made for the intervals between these events (up to 0.001s). The library 
documentation ([https://docs.python.org/2/library/profile.html][1]) provides us with a simple use 
case

import cProfile 
def f(x): 
    return "42!" 
cProfile.run('f(12)')

Or if you prefer to wrap parts of your existing code:

import cProfile, pstats, StringIO 
pr = cProfile.Profile() 
pr.enable() 

https://riptutorial.com/ 601

http://www.riptutorial.com/python/topic/3818/profiling
https://docs.python.org/2/library/profile.html%5D%5B1%5D)


# ... do something ... 
# ... long ... 
pr.disable() 
sortby = 'cumulative' 
ps = pstats.Stats(pr, stream=s).sort_stats(sortby) 
ps.print_stats() 
print s.getvalue()

This will create outputs looking like the table below, where you can quickly see where your 
program spends most of its time and identify the functions to optimize.

         3 function calls in 0.000 seconds 
 
Ordered by: standard name 
ncalls  tottime  percall  cumtime  percall filename:lineno(function) 
     1    0.000    0.000    0.000    0.000 <stdin>:1(f) 
     1    0.000    0.000    0.000    0.000 <string>:1(<module>) 
     1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}

The module line_profiler ([https://github.com/rkern/line_profiler][1]) is useful to have a line by line 
analysis of your code. This is obviously not manageable for long scripts but is aimed at snippets. 
See the documentation for more details. The easiest way to get started is to use the kernprof 
script as explained one the package page, note that you will need to specify manually the 
function(s) to profile.

$ kernprof -l script_to_profile.py

kernprof will create an instance of LineProfiler and insert it into the __builtins__ namespace with 
the name profile. It has been written to be used as a decorator, so in your script, you decorate the 
functions you want to profile with @profile.

@profile 
def slow_function(a, b, c): 
    ...

The default behavior of kernprof is to put the results into a binary file script_to_profile.py.lprof . 
You can tell kernprof to immediately view the formatted results at the terminal with the [-v/--view] 
option. Otherwise, you can view the results later like so:

$ python -m line_profiler script_to_profile.py.lprof

Finally timeit provides a simple way to test one liners or small expression both from the command 
line and the python shell. This module will answer question such as, is it faster to do a list 
comprehension or use the built-in list() when transforming a set into a list. Look for the setup 
keyword or -s option to add setup code.

>>> import timeit 
>>> timeit.timeit('"-".join(str(n) for n in range(100))', number=10000) 
0.8187260627746582

https://riptutorial.com/ 602

https://github.com/rkern/line_profiler%5D%5B1%5D)


from a terminal

$ python -m timeit '"-".join(str(n) for n in range(100))' 
10000 loops, best of 3: 40.3 usec per loop

Read Performance optimization online: https://riptutorial.com/python/topic/5889/performance-
optimization

https://riptutorial.com/ 603

https://riptutorial.com/python/topic/5889/performance-optimization
https://riptutorial.com/python/topic/5889/performance-optimization


Chapter 120: Pickle data serialisation

Syntax

pickle.dump(object,file,protocol) #To serialize an object•

pickle.load(file) #To de-serialize an object•

pickle.dumps(object, protocol) # To serialize an object to bytes•

pickle.loads(buffer) # To de-serialzie an object from bytes•

Parameters

Parameter Details

object The object which is to be stored

file The open file which will contain the object

protocol The protocol used for pickling the object (optional parameter)

buffer A bytes object that contains a serialized object

Remarks

Pickleable types

The following objects are picklable.

None, True, and False•
numbers (of all types)•
strings (of all types)•
tuples, lists, sets, and dicts containing only picklable objects•
functions defined at the top level of a module•
built-in functions•
classes that are defined at the top level of a module

instances of such classes whose __dict__ or the result of calling __getstate__() is 
picklable (see the official docs for details).

○

•

Based on the official Python documentation.

pickle and security

https://riptutorial.com/ 604

https://docs.python.org/3/library/pickle.html#pickling-class-instances
https://docs.python.org/3/library/pickle.html#what-can-be-pickled-and-unpickled


The pickle module is not secure. It should not be used when receiving the serialized data from an 
untrusted party, such as over the Internet.

Examples

Using Pickle to serialize and deserialize an object

The pickle module implements an algorithm for turning an arbitrary Python object into a series of 
bytes. This process is also called serializing the object. The byte stream representing the object 
can then be transmitted or stored, and later reconstructed to create a new object with the same 
characteristics.

For the simplest code, we use the dump() and load() functions.

To serialize the object

import pickle 
 
# An arbitrary collection of objects supported by pickle. 
data = { 
    'a': [1, 2.0, 3, 4+6j], 
    'b': ("character string", b"byte string"), 
    'c': {None, True, False} 
} 
 
with open('data.pickle', 'wb') as f: 
    # Pickle the 'data' dictionary using the highest protocol available. 
    pickle.dump(data, f, pickle.HIGHEST_PROTOCOL)

To deserialize the object

import pickle 
 
with open('data.pickle', 'rb') as f: 
    # The protocol version used is detected automatically, so we do not 
    # have to specify it. 
    data = pickle.load(f)

Using pickle and byte objects

It is also possible to serialize into and deserialize out of byte objects, using the dumps and loads 
function, which are equivalent to dump and load.

serialized_data = pickle.dumps(data, pickle.HIGHEST_PROTOCOL) 
# type(serialized_data) is bytes 

https://riptutorial.com/ 605



 
deserialized_data = pickle.loads(serialized_data) 
# deserialized_data == data

Customize Pickled Data

Some data cannot be pickled. Other data should not be pickled for other reasons.

What will be pickled can be defined in __getstate__ method. This method must return something 
that is picklable.

On the oposite side is __setstate__: it will receive what __getstate__ created and has to initialize 
the object.

class A(object): 
    def __init__(self, important_data): 
        self.important_data = important_data 
 
        # Add data which cannot be pickled: 
        self.func = lambda: 7 
 
        # Add data which should never be pickled, because it expires quickly: 
        self.is_up_to_date = False 
 
    def __getstate__(self): 
        return [self.important_data] # only this is needed 
 
    def __setstate__(self, state): 
        self.important_data = state[0] 
 
        self.func = lambda: 7  # just some hard-coded unpicklable function 
 
        self.is_up_to_date = False  # even if it was before pickling

Now, this can be done:

>>> a1 = A('very important') 
>>> 
>>> s = pickle.dumps(a1)  # calls a1.__getstate__() 
>>> 
>>> a2 = pickle.loads(s)  # calls a1.__setstate__(['very important']) 
>>> a2 
<__main__.A object at 0x0000000002742470> 
>>> a2.important_data 
'very important' 
>>> a2.func() 
7

The implementation here pikles a list with one value: [self.important_data]. That was just an 
example, __getstate__ could have returned anything that is picklable, as long as __setstate__ 
knows how to do the oppoisite. A good alternative is a dictionary of all values: {'important_data': 
self.important_data}.

Constructor is not called! Note that in the previous example instance a2 was created in 
pickle.loads

https://riptutorial.com/ 606



without ever calling A.__init__, so A.__setstate__ had to initialize everything that __init__ would 
have initialized if it were called.

Read Pickle data serialisation online: https://riptutorial.com/python/topic/2606/pickle-data-
serialisation

https://riptutorial.com/ 607

https://riptutorial.com/python/topic/2606/pickle-data-serialisation
https://riptutorial.com/python/topic/2606/pickle-data-serialisation


Chapter 121: Pillow

Examples

Read Image File

from PIL import Image 
 
im = Image.open("Image.bmp")

Convert files to JPEG

from __future__ import print_function 
import os, sys 
from PIL import Image 
 
for infile in sys.argv[1:]: 
    f, e = os.path.splitext(infile) 
    outfile = f + ".jpg" 
    if infile != outfile: 
        try: 
            Image.open(infile).save(outfile) 
        except IOError: 
            print("cannot convert", infile)

Read Pillow online: https://riptutorial.com/python/topic/6841/pillow

https://riptutorial.com/ 608

https://riptutorial.com/python/topic/6841/pillow


Chapter 122: pip: PyPI Package Manager

Introduction

pip is the most widely-used package manager for the Python Package Index, installed by default 
with recent versions of Python.

Syntax

pip <command> [options] where <command> is one of:
install

Install packages○

○

uninstall
Uninstall packages○

○

freeze
Output installed packages in requirements format○

○

list
List installed packages○

○

show
Show information about installed packages○

○

search
Search PyPI for packages○

○

wheel
Build wheels from your requirements○

○

zip
Zip individual packages (deprecated)○

○

unzip
Unzip individual packages (deprecated)○

○

bundle
Create pybundles (deprecated)○

○

help
Show help for commands○

○

•

Remarks

Sometimes, pip will perfom a manual compilation of native code. On Linux python will 
automatically choose an available C compiler on your system. Refer to the table below for the 
required Visual Studio/Visual C++ version on Windows (newer versions will not work.).

Python Version Visual Studio Version Visual C++ Version

2.6 - 3.2 Visual Studio 2008 Visual C++ 9.0

3.3 - 3.4 Visual Studio 2010 Visual C++ 10.0

https://riptutorial.com/ 609

https://www.microsoft.com/en-us/download/details.aspx?id=44266


Python Version Visual Studio Version Visual C++ Version

3.5 Visual Studio 2015 Visual C++ 14.0

Source: wiki.python.org

Examples

Install Packages

To install the latest version of a package named SomePackage:

$ pip install SomePackage

To install a specific version of a package:

$ pip install SomePackage==1.0.4

To specify a minimum version to install for a package:

$ pip install SomePackage>=1.0.4

If commands shows permission denied error on Linux/Unix then use sudo with the commands

Install from requirements files

$ pip install -r requirements.txt

Each line of the requirements file indicates something to be installed, and like arguments to pip 
install, Details on the format of the files are here: Requirements File Format.

After install the package you can check it using freeze command:

$ pip freeze

Uninstall Packages

To uninstall a package:

$ pip uninstall SomePackage

To list all packages installed using `pip`

To list installed packages:

https://riptutorial.com/ 610

https://wiki.python.org/moin/WindowsCompilers
https://pip.pypa.io/en/stable/reference/pip_install/#requirements-file-format


$ pip list 
# example output 
docutils (0.9.1) 
Jinja2 (2.6) 
Pygments (1.5) 
Sphinx (1.1.2)

To list outdated packages, and show the latest version available:

$ pip list --outdated 
# example output 
docutils (Current: 0.9.1 Latest: 0.10) 
Sphinx (Current: 1.1.2 Latest: 1.1.3)

Upgrade Packages

Running

$ pip install --upgrade SomePackage 

will upgrade package SomePackage and all its dependencies. Also, pip automatically removes older 
version of the package before upgrade.

To upgrade pip itself, do

$ pip install --upgrade pip

on Unix or

$ python -m pip install --upgrade pip

on Windows machines.

Updating all outdated packages on Linux

pip doesn't current contain a flag to allow a user to update all outdated packages in one shot. 
However, this can be accomplished by piping commands together in a Linux environment:

pip list --outdated --local | grep -v '^\-e' | cut -d = -f 1  | xargs -n1 pip install -U

This command takes all packages in the local virtualenv and checks if they are outdated. From 
that list, it gets the package name and then pipes that to a pip install -U command. At the end of 
this process, all local packages should be updated.

Updating all outdated packages on Windows

pip doesn't current contain a flag to allow a user to update all outdated packages in one shot. 
However, this can be accomplished by piping commands together in a Windows environment:

https://riptutorial.com/ 611



for /F "delims= " %i in ('pip list --outdated --local') do pip install -U %i

This command takes all packages in the local virtualenv and checks if they are outdated. From 
that list, it gets the package name and then pipes that to a pip install -U command. At the end of 
this process, all local packages should be updated.

Create a requirements.txt file of all packages on the system

pip assists in creating requirements.txt files by providing the freeze option.

pip freeze > requirements.txt

This will save a list of all packages and their version installed on the system to a file named 
requirements.txt in the current folder.

Create a requirements.txt file of packages only in the current virtualenv

pip assists in creating requirements.txt files by providing the freeze option.

pip freeze --local > requirements.txt

The --local parameter will only output a list of packages and versions that are installed locally to a 
virtualenv. Global packages will not be listed.

Using a certain Python version with pip

If you have both Python 3 and Python 2 installed, you can specify which version of Python you 
would like pip to use. This is useful when packages only support Python 2 or 3 or when you wish 
to test with both.

If you want to install packages for Python 2, run either:

pip install [package]

or:

pip2 install [package]

If you would like to install packages for Python 3, do:

pip3 install [package]

You can also invoke installation of a package to a specific python installation with:

\path\to\that\python.exe -m pip install some_package # on Windows OR 
/usr/bin/python25 -m pip install some_package # on OS-X/Linux

https://riptutorial.com/ 612

https://pip.pypa.io/en/stable/reference/pip_freeze/
https://pip.pypa.io/en/stable/reference/pip_freeze/#cmdoption-l
https://pip.pypa.io/en/stable/reference/pip_freeze/#cmdoption-l


On OS-X/Linux/Unix platforms it is important to be aware of the distinction between the system 
version of python, (which upgrading make render your system inoperable), and the user version(s) 
of python. You may, depending on which you are trying to upgrade, need to prefix these 
commands with sudo and input a password.

Likewise on Windows some python installations, especially those that are a part of another 
package, can end up installed in system directories - those you will have to upgrade from a 
command window running in Admin mode - if you find that it looks like you need to do this it is a 
very good idea to check which python installation you are trying to upgrade with a command such 
as python -c"import sys;print(sys.path);" or py -3.5 -c"import sys;print(sys.path);" you can also 
check which pip you are trying to run with pip --version

On Windows, if you have both python 2 and python 3 installed, and on your path and your python 
3 is greater than 3.4 then you will probably also have the python launcher py on your system path. 
You can then do tricks like:

py -3 -m pip install -U some_package # Install/Upgrade some_package to the latest python 3 
py -3.3 -m pip install -U some_package # Install/Upgrade some_package to python 3.3 if present 
py -2 -m pip install -U some_package # Install/Upgrade some_package to the latest python 2 - 
64 bit if present 
py -2.7-32 -m pip install -U some_package # Install/Upgrade some_package to python 2.7 - 32 
bit if present

If you are running & maintaining multiple versions of python I would strongly recommend reading 
up about the python virtualenv or venv virtual enviroments which allow you to isolate both the 
version of python and which packages are present.

Installing packages not yet on pip as wheels

Many, pure python, packages are not yet available on the Python Package Index as wheels but 
still install fine. However, some packages on Windows give the dreaded vcvarsall.bat not found 
error.

The problem is that the package that you are trying to install contains a C or C++ extension and is 
not currently available as a pre-built wheel from the python package index, pypi, and on windows 
you do not have the tool chain needed to build such items.

The simplest answer is to go to Christoph Gohlke's excellent site and locate the appropriate 
version of the libraries that you need. By appropriate in the package name a -cpNN- has to match 
your version of python, i.e. if you are using windows 32 bit python even on win64 the name must 
include -win32- and if using the 64 bit python it must include -win_amd64- and then the python 
version must match, i.e. for Python 34 the filename must include -cp34-, etc. this is basically the 
magic that pip does for you on the pypi site.

Alternatively, you need to get the appropriate windows development kit for the version of python 
that you are using, the headers for any library that the package you are trying to build interfaces 
to, possibly the python headers for the version of python, etc.

Python 2.7 used Visual Studio 2008, Python 3.3 and 3.4 used Visual Studio 2010, and Python 

https://riptutorial.com/ 613

https://virtualenv.pypa.io/en/stable/
http://www.lfd.uci.edu/~gohlke/pythonlibs/


3.5+ uses Visual Studio 2015.

Install “Visual C++ Compiler Package for Python 2.7”, which is available from Microsoft’s 
website or

•

Install “Windows SDK for Windows 7 and .NET Framework 4” (v7.1), which is available from 
Microsoft’s website or

•

Install Visual Studio 2015 Community Edition, (or any later version, when these are 
released), ensuring you select the options to install C & C++ support no longer the 
default -I am told that this can take up to 8 hours to download and install so make sure that 
those options are set on the first try.

•

Then you may need to locate the header files, at the matching revision for any libraries that your 
desired package links to and download those to an appropriate locations.

Finally you can let pip do your build - of course if the package has dependencies that you don't 
yet have you may also need to find the header files for them as well.

Alternatives: It is also worth looking out, both on pypi or Christop's site, for any slightly earlier 
version of the package that you are looking for that is either pure python or pre-built for your 
platform and python version and possibly using those, if found, until your package does become 
available. Likewise if you are using the very latest version of python you may find that it takes the 
package maintainers a little time to catch up so for projects that really need a specific package 
you may have to use a slightly older python for the moment. You can also check the packages 
source site to see if there is a forked version that is available pre-built or as pure python and 
searching for alternative packages that provide the functionality that you require but are available - 
one example that springs to mind is the Pillow, actively maintained, drop in replacement for PIL 
currently not updated in 6 years and not available for python 3.

Afterword, I would encourage anybody who is having this problem to go to the bug tracker for the 
package and add to, or raise if there isn't one already, a ticket politely requesting that the 
package maintainers provide a wheel on pypi for your specific combination of platform and python, 
if this is done then normally things will get better with time, some package maintainers don't 
realise that they have missed a given combination that people may be using.

Note on Installing Pre-Releases

Pip follows the rules of Semantic Versioning and by default prefers released packages over pre-
releases. So if a given package has been released as V0.98 and there is also a release candidate 
V1.0-rc1 the default behaviour of pip install will be to install V0.98 - if you wish to install the 
release candidate, you are advised to test in a virtual environment first, you can enable do so with 
--pip install --pre package-name or --pip install --pre --upgrade package-name. In many 
cases pre-releases or release candidates may not have wheels built for all platform & version 
combinations so you are more likely to encounter the issues above.

Note on Installing Development Versions

You can also use pip to install development versions of packages from github and other locations, 

https://riptutorial.com/ 614

https://www.microsoft.com/en-gb/download/details.aspx?id=44266
https://www.microsoft.com/en-gb/download/details.aspx?id=8279
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://pypi.python.org/pypi/Pillow/3.4.2
https://pypi.python.org/pypi/PIL/1.1.6
http://semver.org/


since such code is in flux it is very unlikely to have wheels built for it, so any impure packages will 
require the presence of the build tools, and they may be broken at any time so the user is 
strongly encouraged to only install such packages in a virtual environment.

Three options exist for such installations:

Download compressed snapshot, most online version control systems have the option to 
download a compressed snapshot of the code. This can be downloaded manually and then 
installed with pip install path/to/downloaded/file note that for most compression formats pip 
will handle unpacking to a cache area, etc.

1. 

Let pip handle the download & install for you with: pip install URL/of/package/repository - 
you may also need to use the --trusted-host, --client-cert and/or --proxy flags for this to 
work correctly, especially in a corporate environment. e.g:

2. 

    > py -3.5-32 -m venv demo-pip 
    > demo-pip\Scripts\activate.bat 
    > python -m pip install -U pip 
    Collecting pip 
      Using cached pip-9.0.1-py2.py3-none-any.whl 
    Installing collected packages: pip 
      Found existing installation: pip 8.1.1 
        Uninstalling pip-8.1.1: 
          Successfully uninstalled pip-8.1.1 
    Successfully installed pip-9.0.1 
    > pip install git+https://github.com/sphinx-doc/sphinx/ 
    Collecting git+https://github.com/sphinx-doc/sphinx/ 
      Cloning https://github.com/sphinx-doc/sphinx/ to c:\users\steve-
~1\appdata\local\temp\pip-04yn9hpp-build 
    Collecting six>=1.5 (from Sphinx==1.7.dev20170506) 
      Using cached six-1.10.0-py2.py3-none-any.whl 
    Collecting Jinja2>=2.3 (from Sphinx==1.7.dev20170506) 
      Using cached Jinja2-2.9.6-py2.py3-none-any.whl 
    Collecting Pygments>=2.0 (from Sphinx==1.7.dev20170506) 
      Using cached Pygments-2.2.0-py2.py3-none-any.whl 
    Collecting docutils>=0.11 (from Sphinx==1.7.dev20170506) 
      Using cached docutils-0.13.1-py3-none-any.whl 
    Collecting snowballstemmer>=1.1 (from Sphinx==1.7.dev20170506) 
      Using cached snowballstemmer-1.2.1-py2.py3-none-any.whl 
    Collecting babel!=2.0,>=1.3 (from Sphinx==1.7.dev20170506) 
      Using cached Babel-2.4.0-py2.py3-none-any.whl 
    Collecting alabaster<0.8,>=0.7 (from Sphinx==1.7.dev20170506) 
      Using cached alabaster-0.7.10-py2.py3-none-any.whl 
    Collecting imagesize (from Sphinx==1.7.dev20170506) 
      Using cached imagesize-0.7.1-py2.py3-none-any.whl 
    Collecting requests>=2.0.0 (from Sphinx==1.7.dev20170506) 
      Using cached requests-2.13.0-py2.py3-none-any.whl 
    Collecting typing (from Sphinx==1.7.dev20170506) 
      Using cached typing-3.6.1.tar.gz 
    Requirement already satisfied: setuptools in f:\toolbuild\temp\demo-pip\lib\site-packages 
(from Sphinx==1.7.dev20170506) 
    Collecting sphinxcontrib-websupport (from Sphinx==1.7.dev20170506) 
      Downloading sphinxcontrib_websupport-1.0.0-py2.py3-none-any.whl 
    Collecting colorama>=0.3.5 (from Sphinx==1.7.dev20170506) 
      Using cached colorama-0.3.9-py2.py3-none-any.whl 
    Collecting MarkupSafe>=0.23 (from Jinja2>=2.3->Sphinx==1.7.dev20170506) 
      Using cached MarkupSafe-1.0.tar.gz 
    Collecting pytz>=0a (from babel!=2.0,>=1.3->Sphinx==1.7.dev20170506) 

https://riptutorial.com/ 615



      Using cached pytz-2017.2-py2.py3-none-any.whl 
    Collecting sqlalchemy>=0.9 (from sphinxcontrib-websupport->Sphinx==1.7.dev20170506) 
      Downloading SQLAlchemy-1.1.9.tar.gz (5.2MB) 
        100% |################################| 5.2MB 220kB/s 
    Collecting whoosh>=2.0 (from sphinxcontrib-websupport->Sphinx==1.7.dev20170506) 
      Downloading Whoosh-2.7.4-py2.py3-none-any.whl (468kB) 
        100% |################################| 471kB 1.1MB/s 
    Installing collected packages: six, MarkupSafe, Jinja2, Pygments, docutils, 
snowballstemmer, pytz, babel, alabaster, imagesize, requests, typing, sqlalchemy, whoosh, 
sphinxcontrib-websupport, colorama, Sphinx 
      Running setup.py install for MarkupSafe ... done 
      Running setup.py install for typing ... done 
      Running setup.py install for sqlalchemy ... done 
      Running setup.py install for Sphinx ... done 
    Successfully installed Jinja2-2.9.6 MarkupSafe-1.0 Pygments-2.2.0 Sphinx-1.7.dev20170506 
alabaster-0.7.10 babel-2.4.0 colorama-0.3.9 docutils-0.13.1 imagesize-0.7.1 pytz-2017.2 
requests-2.13.0 six-1.10.0 snowballstemmer-1.2.1 sphinxcontrib-websupport-1.0.0 sqlalchemy-
1.1.9 typing-3.6.1 whoosh-2.7.4

Note the git+ prefix to the URL.

Clone the repository using git, mercurial or other acceptable tool, preferably a DVCS tool, 
and use pip install path/to/cloned/repo - this will both process any requires.text file and 
perform the build and setup steps, you can manually change directory to your cloned 
repository and run pip install -r requires.txt and then python setup.py install to get the 
same effect. The big advantages of this approach is that while the initial clone operation may 
take longer than the snapshot download you can update to the latest with, in the case of git: 
git pull origin master and if the current version contains errors you can use pip uninstall 
package-name then use git checkout commands to move back through the repository history 
to earlier version(s) and re-try.

3. 

Read pip: PyPI Package Manager online: https://riptutorial.com/python/topic/1781/pip--pypi-
package-manager

https://riptutorial.com/ 616

https://riptutorial.com/python/topic/1781/pip--pypi-package-manager
https://riptutorial.com/python/topic/1781/pip--pypi-package-manager


Chapter 123: Plotting with Matplotlib

Introduction

Matplotlib (https://matplotlib.org/) is a library for 2D plotting based on NumPy. Here are some basic 
examples. More examples can be found in the official documentation (
https://matplotlib.org/2.0.2/gallery.html and https://matplotlib.org/2.0.2/examples/index.html) as 
well as in http://www.riptutorial.com/topic/881

Examples

A Simple Plot in Matplotlib

This example illustrates how to create a simple sine curve using Matplotlib

# Plotting tutorials in Python 
# Launching a simple plot 
 
import numpy as np 
import matplotlib.pyplot as plt 
 
# angle varying between 0 and 2*pi 
x = np.linspace(0, 2.0*np.pi, 101) 
y = np.sin(x)                        # sine function 
 
plt.plot(x, y) 
plt.show()

https://riptutorial.com/ 617

https://matplotlib.org/)
https://matplotlib.org/2.0.2/gallery.html
https://matplotlib.org/2.0.2/examples/index.html)
http://www.riptutorial.com/topic/881


Adding more features to a simple plot : axis labels, title, axis ticks, grid, and 
legend

In this example, we take a sine curve plot and add more features to it; namely the title, axis labels, 
title, axis ticks, grid and legend.

# Plotting tutorials in Python 
# Enhancing a plot 
 
import numpy as np 
import matplotlib.pyplot as plt 
 
x = np.linspace(0, 2.0*np.pi, 101) 
y = np.sin(x) 
 
# values for making ticks in x and y axis 
xnumbers = np.linspace(0, 7, 15) 
ynumbers = np.linspace(-1, 1, 11) 
 
plt.plot(x, y, color='r', label='sin') # r - red colour 
plt.xlabel("Angle in Radians") 
plt.ylabel("Magnitude") 
plt.title("Plot of some trigonometric functions") 
plt.xticks(xnumbers) 
plt.yticks(ynumbers) 
plt.legend() 
plt.grid() 
plt.axis([0, 6.5, -1.1, 1.1]) # [xstart, xend, ystart, yend] 

https://riptutorial.com/ 618



plt.show()

Making multiple plots in the same figure by superimposition similar to 
MATLAB

In this example, a sine curve and a cosine curve are plotted in the same figure by superimposing 
the plots on top of each other.

# Plotting tutorials in Python 
# Adding Multiple plots by superimposition 
# Good for plots sharing similar x, y limits 
# Using single plot command and legend 
 
import numpy as np 
import matplotlib.pyplot as plt 
 
x = np.linspace(0, 2.0*np.pi, 101) 
y = np.sin(x) 
z = np.cos(x) 
 
# values for making ticks in x and y axis 
xnumbers = np.linspace(0, 7, 15) 
ynumbers = np.linspace(-1, 1, 11) 
 
plt.plot(x, y, 'r', x, z, 'g') # r, g - red, green colour 
plt.xlabel("Angle in Radians") 
plt.ylabel("Magnitude") 

https://riptutorial.com/ 619



plt.title("Plot of some trigonometric functions") 
plt.xticks(xnumbers) 
plt.yticks(ynumbers) 
plt.legend(['sine', 'cosine']) 
plt.grid() 
plt.axis([0, 6.5, -1.1, 1.1]) # [xstart, xend, ystart, yend] 
plt.show()

Making multiple Plots in the same figure using plot superimposition with 
separate plot commands

Similar to the previous example, here, a sine and a cosine curve are plotted on the same figure 
using separate plot commands. This is more Pythonic and can be used to get separate handles for 
each plot.

# Plotting tutorials in Python 
# Adding Multiple plots by superimposition 
# Good for plots sharing similar x, y limits 
# Using multiple plot commands 
# Much better and preferred than previous 
 
import numpy as np 
import matplotlib.pyplot as plt 
 
x = np.linspace(0, 2.0*np.pi, 101) 
y = np.sin(x) 
z = np.cos(x) 

https://riptutorial.com/ 620



 
# values for making ticks in x and y axis 
xnumbers = np.linspace(0, 7, 15) 
ynumbers = np.linspace(-1, 1, 11) 
 
plt.plot(x, y, color='r', label='sin') # r - red colour 
plt.plot(x, z, color='g', label='cos') # g - green colour 
plt.xlabel("Angle in Radians") 
plt.ylabel("Magnitude") 
plt.title("Plot of some trigonometric functions") 
plt.xticks(xnumbers) 
plt.yticks(ynumbers) 
plt.legend() 
plt.grid() 
plt.axis([0, 6.5, -1.1, 1.1]) # [xstart, xend, ystart, yend] 
plt.show()

Plots with Common X-axis but different Y-axis : Using twinx()

In this example, we will plot a sine curve and a hyperbolic sine curve in the same plot with a 
common x-axis having different y-axis. This is accomplished by the use of twinx() command.

# Plotting tutorials in Python 
# Adding Multiple plots by twin x axis 
# Good for plots having different y axis range 
# Separate axes and figure objects 
# replicate axes object and plot curves 
# use axes to set attributes 

https://riptutorial.com/ 621

https://i.stack.imgur.com/RriMr.png


 
# Note: 
# Grid for second curve unsuccessful : let me know if you find it! :( 
 
import numpy as np 
import matplotlib.pyplot as plt 
 
x = np.linspace(0, 2.0*np.pi, 101) 
y = np.sin(x) 
z = np.sinh(x) 
 
# separate the figure object and axes object 
# from the plotting object 
fig, ax1 = plt.subplots() 
 
# Duplicate the axes with a different y axis 
# and the same x axis 
ax2 = ax1.twinx() # ax2 and ax1 will have common x axis and different y axis 
 
# plot the curves on axes 1, and 2, and get the curve handles 
curve1, = ax1.plot(x, y, label="sin", color='r') 
curve2, = ax2.plot(x, z, label="sinh", color='b') 
 
# Make a curves list to access the parameters in the curves 
curves = [curve1, curve2] 
 
# add legend via axes 1 or axes 2 object. 
# one command is usually sufficient 
# ax1.legend() # will not display the legend of ax2 
# ax2.legend() # will not display the legend of ax1 
ax1.legend(curves, [curve.get_label() for curve in curves]) 
# ax2.legend(curves, [curve.get_label() for curve in curves]) # also valid 
 
# Global figure properties 
plt.title("Plot of sine and hyperbolic sine") 
plt.show()

https://riptutorial.com/ 622



Plots with common Y-axis and different X-axis using twiny()

In this example, a plot with curves having common y-axis but different x-axis is demonstrated 
using twiny() method. Also, some additional features such as the title, legend, labels, grids, axis 
ticks and colours are added to the plot.

# Plotting tutorials in Python 
# Adding Multiple plots by twin y axis 
# Good for plots having different x axis range 
# Separate axes and figure objects 
# replicate axes object and plot curves 
# use axes to set attributes 
 
import numpy as np 
import matplotlib.pyplot as plt 
 
y = np.linspace(0, 2.0*np.pi, 101) 
x1 = np.sin(y) 
x2 = np.sinh(y) 
 
# values for making ticks in x and y axis 
ynumbers = np.linspace(0, 7, 15) 
xnumbers1 = np.linspace(-1, 1, 11) 
xnumbers2 = np.linspace(0, 300, 7) 
 
# separate the figure object and axes object 
# from the plotting object 
fig, ax1 = plt.subplots() 

https://riptutorial.com/ 623

https://i.stack.imgur.com/Qtcpv.png


 
# Duplicate the axes with a different x axis 
# and the same y axis 
ax2 = ax1.twiny() # ax2 and ax1 will have common y axis and different x axis 
 
# plot the curves on axes 1, and 2, and get the axes handles 
curve1, = ax1.plot(x1, y, label="sin", color='r') 
curve2, = ax2.plot(x2, y, label="sinh", color='b') 
 
# Make a curves list to access the parameters in the curves 
curves = [curve1, curve2] 
 
# add legend via axes 1 or axes 2 object. 
# one command is usually sufficient 
# ax1.legend() # will not display the legend of ax2 
# ax2.legend() # will not display the legend of ax1 
# ax1.legend(curves, [curve.get_label() for curve in curves]) 
ax2.legend(curves, [curve.get_label() for curve in curves]) # also valid 
 
# x axis labels via the axes 
ax1.set_xlabel("Magnitude", color=curve1.get_color()) 
ax2.set_xlabel("Magnitude", color=curve2.get_color()) 
 
# y axis label via the axes 
ax1.set_ylabel("Angle/Value", color=curve1.get_color()) 
# ax2.set_ylabel("Magnitude", color=curve2.get_color()) # does not work 
# ax2 has no property control over y axis 
 
# y ticks - make them coloured as well 
ax1.tick_params(axis='y', colors=curve1.get_color()) 
# ax2.tick_params(axis='y', colors=curve2.get_color()) # does not work 
# ax2 has no property control over y axis 
 
# x axis ticks via the axes 
ax1.tick_params(axis='x', colors=curve1.get_color()) 
ax2.tick_params(axis='x', colors=curve2.get_color()) 
 
# set x ticks 
ax1.set_xticks(xnumbers1) 
ax2.set_xticks(xnumbers2) 
 
# set y ticks 
ax1.set_yticks(ynumbers) 
# ax2.set_yticks(ynumbers) # also works 
 
# Grids via axes 1 # use this if axes 1 is used to 
# define the properties of common x axis 
# ax1.grid(color=curve1.get_color()) 
 
# To make grids using axes 2 
ax1.grid(color=curve2.get_color()) 
ax2.grid(color=curve2.get_color()) 
ax1.xaxis.grid(False) 
 
# Global figure properties 
plt.title("Plot of sine and hyperbolic sine") 
plt.show()

https://riptutorial.com/ 624



Read Plotting with Matplotlib online: https://riptutorial.com/python/topic/10264/plotting-with-
matplotlib

https://riptutorial.com/ 625

https://i.stack.imgur.com/vXROi.png
https://riptutorial.com/python/topic/10264/plotting-with-matplotlib
https://riptutorial.com/python/topic/10264/plotting-with-matplotlib


Chapter 124: Plugin and Extension Classes

Examples

Mixins

In Object oriented programming language, a mixin is a class that contains methods for use by 
other classes without having to be the parent class of those other classes. How those other 
classes gain access to the mixin's methods depends on the language.

It provides a mechanism for multiple inheritance by allowing multiple classes to use the common 
functionality, but without the complex semantics of multiple inheritance. Mixins are useful when a 
programmer wants to share functionality between different classes. Instead of repeating the same 
code over and over again, the common functionality can simply be grouped into a mixin and then 
inherited into each class that requires it.

When we use more than one mixins, Order of mixins are important. here is a simple example:

class Mixin1(object): 
    def test(self): 
        print "Mixin1" 
 
class Mixin2(object): 
    def test(self): 
        print "Mixin2" 
 
class MyClass(Mixin1, Mixin2): 
    pass

In this example we call MyClass and test method,

>>> obj = MyClass() 
>>> obj.test() 
Mixin1

Result must be Mixin1 because Order is left to right. This could be show unexpected results when 
super classes add with it. So reverse order is more good just like this:

class MyClass(Mixin2, Mixin1): 
    pass

Result will be:

>>> obj = MyClass() 
>>> obj.test() 
Mixin2

Mixins can be used to define custom plugins.

https://riptutorial.com/ 626



Python 3.x3.0

class Base(object): 
    def test(self): 
        print("Base.") 
 
class PluginA(object): 
    def test(self): 
        super().test() 
        print("Plugin A.") 
 
class PluginB(object): 
    def test(self): 
        super().test() 
        print("Plugin B.") 
 
plugins = PluginA, PluginB 
 
class PluginSystemA(PluginA, Base): 
    pass 
 
class PluginSystemB(PluginB, Base): 
    pass 
 
PluginSystemA().test() 
# Base. 
# Plugin A. 
 
 PluginSystemB().test() 
# Base. 
# Plugin B.

Plugins with Customized Classes

In Python 3.6, PEP 487 added the __init_subclass__ special method, which simplifies and extends 
class customization without using metaclasses. Consequently, this feature allows for creating 
simple plugins. Here we demonstrate this feature by modifying a prior example:

Python 3.x3.6

class Base: 
    plugins = [] 
 
    def __init_subclass__(cls, **kwargs): 
        super().__init_subclass__(**kwargs) 
        cls.plugins.append(cls) 
 
    def test(self): 
        print("Base.") 
 
class PluginA(Base): 
    def test(self): 
        super().test() 
        print("Plugin A.") 
 
 
class PluginB(Base): 
    def test(self): 
        super().test() 

https://riptutorial.com/ 627

https://www.python.org/dev/peps/pep-0487/
http://www.riptutorial.com/python/example/1024/basic-metaclasses
https://docs.python.org/3/whatsnew/3.6.html#pep-487-simpler-customization-of-class-creation
http://www.riptutorial.com/python/example/16584/mixins


        print("Plugin B.")

Results:

PluginA().test() 
# Base. 
# Plugin A. 
 
PluginB().test() 
# Base. 
# Plugin B. 
 
Base.plugins 
# [__main__.PluginA, __main__.PluginB]

Read Plugin and Extension Classes online: https://riptutorial.com/python/topic/4724/plugin-and-
extension-classes

https://riptutorial.com/ 628

https://riptutorial.com/python/topic/4724/plugin-and-extension-classes
https://riptutorial.com/python/topic/4724/plugin-and-extension-classes


Chapter 125: Polymorphism

Examples

Basic Polymorphism

Polymorphism is the ability to perform an action on an object regardless of its type. This is 
generally implemented by creating a base class and having two or more subclasses that all 
implement methods with the same signature. Any other function or method that manipulates these 
objects can call the same methods regardless of which type of object it is operating on, without 
needing to do a type check first. In object-oriented terminology when class X extend class Y , then 
Y is called super class or base class and X is called subclass or derived class.

class Shape: 
    """ 
    This is a parent class that is intended to be inherited by other classes 
    """ 
 
    def calculate_area(self): 
        """ 
        This method is intended to be overridden in subclasses. 
        If a subclass doesn't implement it but it is called, NotImplemented will be raised. 
 
        """ 
        raise NotImplemented 
 
class Square(Shape): 
    """ 
    This is a subclass of the Shape class, and represents a square 
    """ 
    side_length = 2     # in this example, the sides are 2 units long 
 
    def calculate_area(self): 
        """ 
        This method overrides Shape.calculate_area(). When an object of type 
        Square has its calculate_area() method called, this is the method that 
        will be called, rather than the parent class' version. 
 
        It performs the calculation necessary for this shape, a square, and 
        returns the result. 
        """ 
        return self.side_length * 2 
 
class Triangle(Shape): 
    """ 
    This is also a subclass of the Shape class, and it represents a triangle 
    """ 
    base_length = 4 
    height = 3 
 
    def calculate_area(self): 
        """ 
        This method also overrides Shape.calculate_area() and performs the area 
        calculation for a triangle, returning the result. 
        """ 

https://riptutorial.com/ 629



 
        return 0.5 * self.base_length * self.height 
 
def get_area(input_obj): 
    """ 
    This function accepts an input object, and will call that object's 
    calculate_area() method. Note that the object type is not specified. It 
    could be a Square, Triangle, or Shape object. 
    """ 
 
    print(input_obj.calculate_area()) 
 
# Create one object of each class 
shape_obj = Shape() 
square_obj = Square() 
triangle_obj = Triangle() 
 
# Now pass each object, one at a time, to the get_area() function and see the 
# result. 
get_area(shape_obj) 
get_area(square_obj) 
get_area(triangle_obj)

We should see this output:

None 
4 
6.0

What happens without polymorphism? 
Without polymorphism, a type check may be required before performing an action on an object to 
determine the correct method to call. The following counter example performs the same task as 
the previous code, but without the use of polymorphism, the get_area() function has to do more 
work.

class Square: 
 
    side_length = 2 
 
    def calculate_square_area(self): 
        return self.side_length ** 2 
 
class Triangle: 
 
    base_length = 4 
    height = 3 
 
    def calculate_triangle_area(self): 
        return (0.5 * self.base_length) * self.height 
 
def get_area(input_obj): 
 
    # Notice the type checks that are now necessary here. These type checks 
    # could get very complicated for a more complex example, resulting in 
    # duplicate and difficult to maintain code. 
 
    if type(input_obj).__name__ == "Square": 

https://riptutorial.com/ 630



        area = input_obj.calculate_square_area() 
 
    elif type(input_obj).__name__ == "Triangle": 
        area = input_obj.calculate_triangle_area() 
 
    print(area) 
 
# Create one object of each class 
square_obj = Square() 
triangle_obj = Triangle() 
 
# Now pass each object, one at a time, to the get_area() function and see the 
# result. 
get_area(square_obj) 
get_area(triangle_obj)

We should see this output:

4 
6.0

Important Note 
Note that the classes used in the counter example are "new style" classes and implicitly inherit 
from the object class if Python 3 is being used. Polymorphism will work in both Python 2.x and 3.x, 
but the polymorphism counterexample code will raise an exception if run in a Python 2.x 
interpreter because type(input_obj).name will return "instance" instead of the class name if they 
do not explicitly inherit from object, resulting in area never being assigned to.

Duck Typing

Polymorphism without inheritance in the form of duck typing as available in Python due to its 
dynamic typing system. This means that as long as the classes contain the same methods the 
Python interpreter does not distinguish between them, as the only checking of the calls occurs at 
run-time.

class Duck: 
    def quack(self): 
        print("Quaaaaaack!") 
    def feathers(self): 
        print("The duck has white and gray feathers.") 
 
class Person: 
    def quack(self): 
        print("The person imitates a duck.") 
    def feathers(self): 
        print("The person takes a feather from the ground and shows it.") 
    def name(self): 
        print("John Smith") 
 
def in_the_forest(obj): 
    obj.quack() 
    obj.feathers() 
 
donald = Duck() 
john = Person() 

https://riptutorial.com/ 631



in_the_forest(donald) 
in_the_forest(john)

The output is:

Quaaaaaack! 
The duck has white and gray feathers. 
The person imitates a duck. 
The person takes a feather from the ground and shows it.

Read Polymorphism online: https://riptutorial.com/python/topic/5100/polymorphism

https://riptutorial.com/ 632

https://riptutorial.com/python/topic/5100/polymorphism


Chapter 126: PostgreSQL

Examples

Getting Started

PostgreSQL is an actively developed and mature open source database. Using the psycopg2 
module, we can execute queries on the database.

Installation using pip

pip install psycopg2

Basic usage

Lets assume we have a table my_table in the database my_database defined as follows.

id first_name last_name

1 John Doe

We can use the psycopg2 module to run queries on the database in the following fashion.

import psycopg2 
 
# Establish a connection to the existing database 'my_database' using 
# the user 'my_user' with password 'my_password' 
con = psycopg2.connect("host=localhost dbname=my_database user=my_user password=my_password") 
 
# Create a cursor 
cur = con.cursor() 
 
# Insert a record into 'my_table' 
cur.execute("INSERT INTO my_table(id, first_name, last_name) VALUES (2, 'Jane', 'Doe');") 
 
# Commit the current transaction 
con.commit() 
 
# Retrieve all records from 'my_table' 
cur.execute("SELECT * FROM my_table;") 
results = cur.fetchall() 
 
# Close the database connection 
con.close() 
 
# Print the results 
print(results) 
 
# OUTPUT: [(1, 'John', 'Doe'), (2, 'Jane', 'Doe')]

https://riptutorial.com/ 633



Read PostgreSQL online: https://riptutorial.com/python/topic/3374/postgresql

https://riptutorial.com/ 634

https://riptutorial.com/python/topic/3374/postgresql


Chapter 127: Processes and Threads

Introduction

Most programs are executed line by line, only running a single process at a time. Threads allow 
multiple processes to flow independent of each other. Threading with multiple processors permits 
programs to run multiple processes simultaneously. This topic documents the implementation and 
usage of threads in Python.

Examples

Global Interpreter Lock

Python multithreading performance can often suffer due to the Global Interpreter Lock. In short, 
even though you can have multiple threads in a Python program, only one bytecode instruction 
can execute in parallel at any one time, regardless of the number of CPUs.

As such, multithreading in cases where operations are blocked by external events - like network 
access - can be quite effective:

import threading 
import time 
 
 
def process(): 
    time.sleep(2) 
 
 
start = time.time() 
process() 
print("One run took %.2fs" % (time.time() - start)) 
 
 
start = time.time() 
threads = [threading.Thread(target=process) for _ in range(4)] 
for t in threads: 
    t.start() 
for t in threads: 
    t.join() 
print("Four runs took %.2fs" % (time.time() - start)) 
 
# Out: One run took 2.00s 
# Out: Four runs took 2.00s

Note that even though each process took 2 seconds to execute, the four processes together were 
able to effectively run in parallel, taking 2 seconds total.

However, multithreading in cases where intensive computations are being done in Python code - 
such as a lot of computation - does not result in much improvement, and can even be slower than 
running in parallel:

https://riptutorial.com/ 635

https://en.wikipedia.org/wiki/Global_interpreter_lock


import threading 
import time 
 
 
def somefunc(i): 
    return i * i 
 
def otherfunc(m, i): 
    return m + i 
 
def process(): 
    for j in range(100): 
        result = 0 
        for i in range(100000): 
            result = otherfunc(result, somefunc(i)) 
 
 
start = time.time() 
process() 
print("One run took %.2fs" % (time.time() - start)) 
 
 
start = time.time() 
threads = [threading.Thread(target=process) for _ in range(4)] 
for t in threads: 
    t.start() 
for t in threads: 
    t.join() 
print("Four runs took %.2fs" % (time.time() - start)) 
 
# Out: One run took 2.05s 
# Out: Four runs took 14.42s

In the latter case, multiprocessing can be effective as multiple processes can, of course, execute 
multiple instructions simultaneously:

import multiprocessing 
import time 
 
 
def somefunc(i): 
    return i * i 
 
def otherfunc(m, i): 
    return m + i 
 
def process(): 
    for j in range(100): 
        result = 0 
        for i in range(100000): 
            result = otherfunc(result, somefunc(i)) 
 
 
start = time.time() 
process() 
print("One run took %.2fs" % (time.time() - start)) 
 
 
start = time.time() 
processes = [multiprocessing.Process(target=process) for _ in range(4)] 

https://riptutorial.com/ 636



for p in processes: 
    p.start() 
for p in processes: 
    p.join() 
print("Four runs took %.2fs" % (time.time() - start)) 
 
# Out: One run took 2.07s 
# Out: Four runs took 2.30s

Running in Multiple Threads

Use threading.Thread to run a function in another thread.

import threading 
import os 
 
def process(): 
    print("Pid is %s, thread id is %s" % (os.getpid(), threading.current_thread().name)) 
 
threads = [threading.Thread(target=process) for _ in range(4)] 
for t in threads: 
    t.start() 
for t in threads: 
    t.join() 
 
# Out: Pid is 11240, thread id is Thread-1 
# Out: Pid is 11240, thread id is Thread-2 
# Out: Pid is 11240, thread id is Thread-3 
# Out: Pid is 11240, thread id is Thread-4

Running in Multiple Processes

Use multiprocessing.Process to run a function in another process. The interface is similar to 
threading.Thread:

import multiprocessing 
import os 
 
def process(): 
    print("Pid is %s" % (os.getpid(),)) 
 
processes = [multiprocessing.Process(target=process) for _ in range(4)] 
for p in processes: 
    p.start() 
for p in processes: 
    p.join() 
 
# Out: Pid is 11206 
# Out: Pid is 11207 
# Out: Pid is 11208 
# Out: Pid is 11209

Sharing State Between Threads

As all threads are running in the same process, all threads have access to the same data.

https://riptutorial.com/ 637



However, concurrent access to shared data should be protected with a lock to avoid 
synchronization issues.

import threading 
 
obj = {} 
obj_lock = threading.Lock() 
 
def objify(key, val): 
    print("Obj has %d values" % len(obj)) 
    with obj_lock: 
        obj[key] = val 
    print("Obj now has %d values" % len(obj)) 
 
ts = [threading.Thread(target=objify, args=(str(n), n)) for n in range(4)] 
for t in ts: 
    t.start() 
for t in ts: 
    t.join() 
print("Obj final result:") 
import pprint; pprint.pprint(obj) 
 
# Out: Obj has 0 values 
# Out:  Obj has 0 values 
# Out: Obj now has 1 values 
# Out: Obj now has 2 valuesObj has 2 values 
# Out: Obj now has 3 values 
# Out: 
# Out:  Obj has 3 values 
# Out: Obj now has 4 values 
# Out: Obj final result: 
# Out: {'0': 0, '1': 1, '2': 2, '3': 3}

Sharing State Between Processes

Code running in different processes do not, by default, share the same data. However, the 
multiprocessing module contains primitives to help share values across multiple processes.

import multiprocessing 
 
plain_num = 0 
shared_num = multiprocessing.Value('d', 0) 
lock = multiprocessing.Lock() 
 
def increment(): 
    global plain_num 
    with lock: 
        # ordinary variable modifications are not visible across processes 
        plain_num += 1 
        # multiprocessing.Value modifications are 
        shared_num.value += 1 
 
ps = [multiprocessing.Process(target=increment) for n in range(4)] 
for p in ps: 
    p.start() 
for p in ps: 
    p.join() 
 

https://riptutorial.com/ 638



print("plain_num is %d, shared_num is %d" % (plain_num, shared_num.value)) 
 
# Out: plain_num is 0, shared_num is 4 
 

Read Processes and Threads online: https://riptutorial.com/python/topic/4110/processes-and-
threads

https://riptutorial.com/ 639

https://riptutorial.com/python/topic/4110/processes-and-threads
https://riptutorial.com/python/topic/4110/processes-and-threads


Chapter 128: Profiling

Examples

%%timeit and %timeit in IPython

Profiling string concatanation:

In [1]: import string 
 
In [2]: %%timeit s=""; long_list=list(string.ascii_letters)*50 
  ....: for substring in long_list: 
  ....:   s+=substring 
  ....: 
1000 loops, best of 3: 570 us per loop 
 
In [3]: %%timeit long_list=list(string.ascii_letters)*50 
  ....: s="".join(long_list) 
  ....: 
100000 loops, best of 3: 16.1 us per loop

Profiling loops over iterables and lists:

In [4]: %timeit for i in range(100000):pass 
100 loops, best of 3: 2.82 ms per loop 
 
In [5]: %timeit for i in list(range(100000)):pass 
100 loops, best of 3: 3.95 ms per loop

timeit() function

Profiling repetition of elements in an array

>>> import timeit 
>>> timeit.timeit('list(itertools.repeat("a", 100))', 'import itertools', number = 10000000) 
10.997665435877963 
>>> timeit.timeit('["a"]*100', number = 10000000) 
7.118789926862576

timeit command line

Profiling concatanation of numbers

python -m timeit "'-'.join(str(n) for n in range(100))" 
10000 loops, best of 3: 29.2 usec per loop 
 
python -m timeit "'-'.join(map(str,range(100)))" 
100000 loops, best of 3: 19.4 usec per loop

https://riptutorial.com/ 640



line_profiler in command line

The source code with @profile directive before the function we want to profile:

import requests 
 
@profile 
def slow_func(): 
    s = requests.session() 
    html=s.get("https://en.wikipedia.org/").text 
    sum([pow(ord(x),3.1) for x in list(html)]) 
 
for i in range(50): 
    slow_func()

Using kernprof command to calculate profiling line by line

$ kernprof -lv so6.py 
 
Wrote profile results to so6.py.lprof 
Timer unit: 4.27654e-07 s 
 
Total time: 22.6427 s 
File: so6.py 
Function: slow_func at line 4 
 
Line #      Hits         Time  Per Hit   % Time  Line Contents 
============================================================== 
     4                                           @profile 
     5                                           def slow_func(): 
     6        50        20729    414.6      0.0      s = requests.session() 
     7        50     47618627 952372.5     89.9 
html=s.get("https://en.wikipedia.org/").text 
     8        50      5306958 106139.2     10.0      sum([pow(ord(x),3.1) for x in 
list(html)])

Page request is almost always slower than any calculation based on the information on the page.

Using cProfile (Preferred Profiler)

Python includes a profiler called cProfile. This is generally preferred over using timeit.

It breaks down your entire script and for each method in your script it tells you:

ncalls: The number of times a method was called•
tottime: Total time spent in the given function (excluding time made in calls to sub-functions)•
percall: Time spent per call. Or the quotient of tottime divided by ncalls•
cumtime: The cumulative time spent in this and all subfunctions (from invocation till exit). This 
figure is accurate even for recursive functions.

•

percall: is the quotient of cumtime divided by primitive calls•
filename:lineno(function): provides the respective data of each function•

The cProfiler can be easily called on Command Line using:

https://riptutorial.com/ 641



$ python -m cProfile main.py 

To sort the returned list of profiled methods by the time taken in the method:

$ python -m cProfile -s time main.py 

Read Profiling online: https://riptutorial.com/python/topic/3818/profiling

https://riptutorial.com/ 642

https://riptutorial.com/python/topic/3818/profiling


Chapter 129: Property Objects

Remarks

Note: In Python 2, make sure that your class inherits from object (making it a new-style class) in 
order for all features of properties to be available.

Examples

Using the @property decorator

The @property decorator can be used to define methods in a class which act like attributes. One 
example where this can be useful is when exposing information which may require an initial 
(expensive) lookup and simple retrieval thereafter.

Given some module foobar.py:

class Foo(object): 
    def __init__(self): 
        self.__bar = None 
 
    @property 
    def bar(self): 
        if self.__bar is None: 
            self.__bar = some_expensive_lookup_operation() 
        return self.__bar 
 

Then

>>> from foobar import Foo 
>>> foo = Foo() 
>>> print(foo.bar)  # This will take some time since bar is None after initialization 
42 
>>> print(foo.bar)  # This is much faster since bar has a value now 
42

Using the @property decorator for read-write properties

If you want to use @property to implement custom behavior for setting and getting, use this pattern:

class Cash(object): 
    def __init__(self, value): 
        self.value = value 
    @property 
    def formatted(self): 
        return '${:.2f}'.format(self.value) 
    @formatted.setter 
    def formatted(self, new): 
        self.value = float(new[1:])

https://riptutorial.com/ 643



To use this:

>>> wallet = Cash(2.50) 
>>> print(wallet.formatted) 
$2.50 
>>> print(wallet.value) 
2.5 
>>> wallet.formatted = '$123.45' 
>>> print(wallet.formatted) 
$123.45 
>>> print(wallet.value) 
123.45

Overriding just a getter, setter or a deleter of a property object

When you inherit from a class with a property, you can provide a new implementation for one or 
more of the property getter, setter or deleter functions, by referencing the property object on the 
parent class:

class BaseClass(object): 
    @property 
    def foo(self): 
        return some_calculated_value() 
 
    @foo.setter 
    def foo(self, value): 
        do_something_with_value(value) 
 
 
class DerivedClass(BaseClass): 
    @BaseClass.foo.setter 
    def foo(self, value): 
        do_something_different_with_value(value)

You can also add a setter or deleter where there was not one on the base class before.

Using properties without decorators

While using decorator syntax (with the @) is convenient, it also a bit concealing. You can use 
properties directly, without decorators. The following Python 3.x example shows this:

class A: 
    p = 1234 
    def getX (self): 
        return self._x 
 
    def setX (self, value): 
        self._x = value 
 
    def getY (self): 
        return self._y 
 
    def setY (self, value): 
        self._y = 1000 + value    # Weird but possible 
 

https://riptutorial.com/ 644



    def getY2 (self): 
        return self._y 
 
    def setY2 (self, value): 
        self._y = value 
 
    def getT    (self): 
        return self._t 
 
    def setT (self, value): 
        self._t = value 
 
    def getU (self): 
        return self._u + 10000 
 
    def setU (self, value): 
        self._u = value - 5000 
 
    x, y, y2 = property (getX, setX), property (getY, setY), property (getY2, setY2) 
    t = property (getT, setT) 
    u = property (getU, setU) 
 
A.q = 5678 
 
class B: 
    def getZ (self): 
        return self.z_ 
 
    def setZ (self, value): 
        self.z_ = value 
 
    z = property (getZ, setZ) 
 
class C: 
    def __init__ (self): 
        self.offset = 1234 
 
    def getW (self): 
        return self.w_ + self.offset 
 
    def setW (self, value): 
        self.w_ = value - self.offset 
 
    w = property (getW, setW) 
 
a1 = A () 
a2 = A () 
 
a1.y2 = 1000 
a2.y2 = 2000 
 
a1.x = 5 
a1.y = 6 
 
a2.x = 7 
a2.y = 8 
 
a1.t = 77 
a1.u = 88 
 
print (a1.x, a1.y, a1.y2) 

https://riptutorial.com/ 645



print (a2.x, a2.y, a2.y2) 
print (a1.p, a2.p, a1.q, a2.q) 
 
print (a1.t, a1.u) 
 
b = B () 
c = C () 
 
b.z = 100100 
c.z = 200200 
c.w = 300300 
 
print (a1.x, b.z, c.z, c.w) 
 
c.w = 400400 
c.z = 500500 
b.z = 600600 
 
print (a1.x, b.z, c.z, c.w)

Read Property Objects online: https://riptutorial.com/python/topic/2050/property-objects

https://riptutorial.com/ 646

https://riptutorial.com/python/topic/2050/property-objects


Chapter 130: py.test

Examples

Setting up py.test

py.test is one of several third party testing libraries that are available for Python. It can be installed 
using pip with

pip install pytest

The Code to Test

Say we are testing an addition function in projectroot/module/code.py:

# projectroot/module/code.py 
def add(a, b): 
    return a + b

The Testing Code

We create a test file in projectroot/tests/test_code.py. The file must begin with test_ to be 
recognized as a testing file.

# projectroot/tests/test_code.py 
from module import code 
 
 
def test_add(): 
    assert code.add(1, 2) == 3

Running The Test

From projectroot we simply run py.test:

# ensure we have the modules 
$ touch tests/__init__.py 
$ touch module/__init__.py 
$ py.test 
================================================== test session starts 
=================================================== 
platform darwin -- Python 2.7.10, pytest-2.9.2, py-1.4.31, pluggy-0.3.1 
rootdir: /projectroot, inifile: 
collected 1 items 
 
tests/test_code.py . 
 

https://riptutorial.com/ 647

http://docs.pytest.org/en/latest/
http://www.riptutorial.com/python/topic/1781/pip--pypi-package-manager


================================================ 1 passed in 0.01 seconds 
================================================

Failing Tests

A failing test will provide helpful output as to what went wrong:

# projectroot/tests/test_code.py 
from module import code 
 
 
def test_add__failing(): 
    assert code.add(10, 11) == 33

Results:

$ py.test 
================================================== test session starts 
=================================================== 
platform darwin -- Python 2.7.10, pytest-2.9.2, py-1.4.31, pluggy-0.3.1 
rootdir: /projectroot, inifile: 
collected 1 items 
 
tests/test_code.py F 
 
======================================================== FAILURES 
======================================================== 
___________________________________________________ test_add__failing 
____________________________________________________ 
 
    def test_add__failing(): 
>       assert code.add(10, 11) == 33 
E       assert 21 == 33 
E        +  where 21 = <function add at 0x105d4d6e0>(10, 11) 
E        +    where <function add at 0x105d4d6e0> = code.add 
 
tests/test_code.py:5: AssertionError 
================================================ 1 failed in 0.01 seconds 
================================================

Intro to Test Fixtures

More complicated tests sometimes need to have things set up before you run the code you want 
to test. It is possible to do this in the test function itself, but then you end up with large test 
functions doing so much that it is difficult to tell where the setup stops and the test begins. You can 
also get a lot of duplicate setup code between your various test functions.

Our code file:

# projectroot/module/stuff.py 
class Stuff(object): 
    def prep(self): 
        self.foo = 1 
        self.bar = 2

https://riptutorial.com/ 648



Our test file:

# projectroot/tests/test_stuff.py 
import pytest 
from module import stuff 
 
 
def test_foo_updates(): 
    my_stuff = stuff.Stuff() 
    my_stuff.prep() 
    assert 1 == my_stuff.foo 
    my_stuff.foo = 30000 
    assert my_stuff.foo == 30000 
 
 
def test_bar_updates(): 
    my_stuff = stuff.Stuff() 
    my_stuff.prep() 
    assert 2 == my_stuff.bar 
    my_stuff.bar = 42 
    assert 42 == my_stuff.bar

These are pretty simple examples, but if our Stuff object needed a lot more setup, it would get 
unwieldy. We see that there is some duplicated code between our test cases, so let's refactor that 
into a separate function first.

# projectroot/tests/test_stuff.py 
import pytest 
from module import stuff 
 
 
def get_prepped_stuff(): 
    my_stuff = stuff.Stuff() 
    my_stuff.prep() 
    return my_stuff 
 
 
def test_foo_updates(): 
    my_stuff = get_prepped_stuff() 
    assert 1 == my_stuff.foo 
    my_stuff.foo = 30000 
    assert my_stuff.foo == 30000 
 
 
def test_bar_updates(): 
    my_stuff = get_prepped_stuff() 
    assert 2 == my_stuff.bar 
    my_stuff.bar = 42 
    assert 42 == my_stuff.bar

This looks better but we still have the my_stuff = get_prepped_stuff() call cluttering up our test 
functions.

py.test fixtures to the rescue!

Fixtures are much more powerful and flexible versions of test setup functions. They can do a lot 

https://riptutorial.com/ 649



more than we're leveraging here, but we'll take it one step at a time.

First we change get_prepped_stuff to a fixture called prepped_stuff. You want to name your fixtures 
with nouns rather than verbs because of how the fixtures will end up being used in the test 
functions themselves later. The @pytest.fixture indicates that this specific function should be 
handled as a fixture rather than a regular function.

@pytest.fixture 
def prepped_stuff(): 
    my_stuff = stuff.Stuff() 
    my_stuff.prep() 
    return my_stuff

Now we should update the test functions so that they use the fixture. This is done by adding a 
parameter to their definition that exactly matches the fixture name. When py.test executes, it will 
run the fixture before running the test, then pass the return value of the fixture into the test function 
through that parameter. (Note that fixtures don't need to return a value; they can do other setup 
things instead, like calling an external resource, arranging things on the filesystem, putting values 
in a database, whatever the tests need for setup)

def test_foo_updates(prepped_stuff): 
    my_stuff = prepped_stuff 
    assert 1 == my_stuff.foo 
    my_stuff.foo = 30000 
    assert my_stuff.foo == 30000 
 
 
def test_bar_updates(prepped_stuff): 
    my_stuff = prepped_stuff 
    assert 2 == my_stuff.bar 
    my_stuff.bar = 42 
    assert 42 == my_stuff.bar

Now you can see why we named it with a noun. but the my_stuff = prepped_stuff line is pretty 
much useless, so let's just use prepped_stuff directly instead.

def test_foo_updates(prepped_stuff): 
    assert 1 == prepped_stuff.foo 
    prepped_stuff.foo = 30000 
    assert prepped_stuff.foo == 30000 
 
 
def test_bar_updates(prepped_stuff): 
    assert 2 == prepped_stuff.bar 
    prepped_stuff.bar = 42 
    assert 42 == prepped_stuff.bar

Now we're using fixtures! We can go further by changing the scope of the fixture (so it only runs 
once per test module or test suite execution session instead of once per test function), building 
fixtures that use other fixtures, parametrizing the fixture (so that the fixture and all tests using that 
fixture are run multiple times, once for each parameter given to the fixture), fixtures that read 
values from the module that calls them... as mentioned earlier, fixtures have a lot more power and 

https://riptutorial.com/ 650



flexibility than a normal setup function.

Cleaning up after the tests are done.

Let's say our code has grown and our Stuff object now needs special clean up.

# projectroot/module/stuff.py 
class Stuff(object): 
def prep(self): 
    self.foo = 1 
    self.bar = 2 
 
def finish(self): 
    self.foo = 0 
    self.bar = 0

We could add some code to call the clean up at the bottom of every test function, but fixtures 
provide a better way to do this. If you add a function to the fixture and register it as a finalizer, the 
code in the finalizer function will get called after the test using the fixture is done. If the scope of 
the fixture is larger than a single function (like module or session), the finalizer will be executed 
after all the tests in scope are completed, so after the module is done running or at the end of the 
entire test running session.

@pytest.fixture 
def prepped_stuff(request):  # we need to pass in the request to use finalizers 
    my_stuff = stuff.Stuff() 
    my_stuff.prep() 
    def fin():  # finalizer function 
        # do all the cleanup here 
        my_stuff.finish() 
    request.addfinalizer(fin)  # register fin() as a finalizer 
    # you can do more setup here if you really want to 
    return my_stuff

Using the finalizer function inside a function can be a bit hard to understand at first glance, 
especially when you have more complicated fixtures. You can instead use a yield fixture to do the 
same thing with a more human readable execution flow. The only real difference is that instead of 
using return we use a yield at the part of the fixture where the setup is done and control should go 
to a test function, then add all the cleanup code after the yield. We also decorate it as a 
yield_fixture so that py.test knows how to handle it.

@pytest.yield_fixture 
def prepped_stuff():  # it doesn't need request now! 
    # do setup 
    my_stuff = stuff.Stuff() 
    my_stuff.prep() 
    # setup is done, pass control to the test functions 
    yield my_stuff 
    # do cleanup 
    my_stuff.finish()

And that concludes the Intro to Test Fixtures!

https://riptutorial.com/ 651



For more information, see the official py.test fixture documentation and the official yield fixture 
documentation

Read py.test online: https://riptutorial.com/python/topic/7054/py-test

https://riptutorial.com/ 652

http://doc.pytest.org/en/latest/fixture.html
http://doc.pytest.org/en/latest/yieldfixture.html
http://doc.pytest.org/en/latest/yieldfixture.html
https://riptutorial.com/python/topic/7054/py-test


Chapter 131: pyaudio

Introduction

PyAudio provides Python bindings for PortAudio, the cross-platform audio I/O library. With 
PyAudio, you can easily use Python to play and record audio on a variety of platforms. PyAudio is 
inspired by:

1.pyPortAudio/fastaudio: Python bindings for PortAudio v18 API.

2.tkSnack: cross-platform sound toolkit for Tcl/Tk and Python.

Remarks

Note: stream_callback is called in a separate thread (from the main thread). Exceptions that occur 
in the stream_callback will: 
1.print a traceback on standard error to aid debugging, 
2.queue the exception to be thrown (at some point) in the main thread, and 
3.return paAbort to PortAudio to stop the stream. 
Note: Do not call Stream.read() or Stream.write() if using non-blocking operation. 
See: PortAudio’s callback signature for additional details : 
http://portaudio.com/docs/v19-
doxydocs/portaudio_8h.html#a8a60fb2a5ec9cbade3f54a9c978e2710

Examples

Callback Mode Audio I/O

"""PyAudio Example: Play a wave file (callback version).""" 
 
import pyaudio 
import wave 
import time 
import sys 
 
if len(sys.argv) < 2: 
    print("Plays a wave file.\n\nUsage: %s filename.wav" % sys.argv[0]) 
    sys.exit(-1) 
 
wf = wave.open(sys.argv[1], 'rb') 
 
# instantiate PyAudio (1) 
p = pyaudio.PyAudio() 
 
# define callback (2) 
def callback(in_data, frame_count, time_info, status): 
    data = wf.readframes(frame_count) 
    return (data, pyaudio.paContinue) 
 

https://riptutorial.com/ 653

http://portaudio.com/docs/v19-doxydocs/portaudio_8h.html#a8a60fb2a5ec9cbade3f54a9c978e2710
http://portaudio.com/docs/v19-doxydocs/portaudio_8h.html#a8a60fb2a5ec9cbade3f54a9c978e2710


# open stream using callback (3) 
stream = p.open(format=p.get_format_from_width(wf.getsampwidth()), 
                channels=wf.getnchannels(), 
                rate=wf.getframerate(), 
                output=True, 
                stream_callback=callback) 
 
# start the stream (4) 
stream.start_stream() 
 
# wait for stream to finish (5) 
while stream.is_active(): 
    time.sleep(0.1) 
 
# stop stream (6) 
stream.stop_stream() 
stream.close() 
wf.close() 
 
# close PyAudio (7) 
p.terminate()

In callback mode, PyAudio will call a specified callback function (2) whenever it needs new audio 
data (to play) and/or when there is new (recorded) audio data available. Note that PyAudio calls 
the callback function in a separate thread. The function has the following signature 
callback(<input_data>, <frame_count>, <time_info>, <status_flag>) and must return a tuple 
containing frame_count frames of audio data and a flag signifying whether there are more frames to 
play/record.

Start processing the audio stream using pyaudio.Stream.start_stream() (4), which will call the 
callback function repeatedly until that function returns pyaudio.paComplete.

To keep the stream active, the main thread must not terminate, e.g., by sleeping (5).

Blocking Mode Audio I/O

"""PyAudio Example: Play a wave file."""

import pyaudio 
import wave 
import sys 
 
CHUNK = 1024 
 
if len(sys.argv) < 2: 
    print("Plays a wave file.\n\nUsage: %s filename.wav" % sys.argv[0]) 
    sys.exit(-1) 
 
wf = wave.open(sys.argv[1], 'rb') 
 
# instantiate PyAudio (1) 
p = pyaudio.PyAudio() 
 
# open stream (2) 
stream = p.open(format=p.get_format_from_width(wf.getsampwidth()), 
                channels=wf.getnchannels(), 

https://riptutorial.com/ 654



                rate=wf.getframerate(), 
                output=True) 
 
# read data 
data = wf.readframes(CHUNK) 
 
# play stream (3) 
while len(data) > 0: 
    stream.write(data) 
    data = wf.readframes(CHUNK) 
 
# stop stream (4) 
stream.stop_stream() 
stream.close() 
 
# close PyAudio (5) 
p.terminate()

To use PyAudio, first instantiate PyAudio using pyaudio.PyAudio() (1), which sets up the 
portaudio system.

To record or play audio, open a stream on the desired device with the desired audio parameters 
using pyaudio.PyAudio.open() (2). This sets up a pyaudio.Stream to play or record audio.

Play audio by writing audio data to the stream using pyaudio.Stream.write(), or read audio data 
from the stream using pyaudio.Stream.read(). (3)

Note that in “blocking mode”, each pyaudio.Stream.write() or pyaudio.Stream.read() blocks until 
all the given/requested frames have been played/recorded. Alternatively, to generate audio data 
on the fly or immediately process recorded audio data, use the “callback mode”(refer the example 
on call back mode)

Use pyaudio.Stream.stop_stream() to pause playing/recording, and pyaudio.Stream.close() to 
terminate the stream. (4)

Finally, terminate the portaudio session using pyaudio.PyAudio.terminate() (5)

Read pyaudio online: https://riptutorial.com/python/topic/10627/pyaudio

https://riptutorial.com/ 655

https://riptutorial.com/python/topic/10627/pyaudio


Chapter 132: pyautogui module

Introduction

pyautogui is a module used to control mouse and keyboard. This module is basically used to 
automate mouse click and keyboard press tasks. For the mouse, the coordinates of the screen 
(0,0) start from the top-left corner. If you are out of control, then quickly move the mouse cursor to 
top-left, it will take the control of mouse and keyboard from the Python and give it back to you.

Examples

Mouse Functions

These are some of useful mouse functions to control the mouse.

size()           #gave you the size of the screen 
position()     #return current position of mouse 
moveTo(200,0,duration=1.5)     #move the cursor  to (200,0) position  with 1.5 second delay 
 
moveRel()          #move the cursor relative to your current position. 
click(337,46)           #it will click on the position mention there 
dragRel()              #it will drag the mouse relative to position 
pyautogui.displayMousePosition()     #gave you the current mouse position but should be done 
on terminal.

Keyboard Functions

These are some of useful keyboard functions to automate the key pressing.

typewrite('')    #this will type the string on the screen where current window has focused. 
typewrite(['a','b','left','left','X','Y']) 
pyautogui.KEYBOARD_KEYS    #get the list of all the keyboard_keys. 
pyautogui.hotkey('ctrl','o')    #for the combination of keys to enter.

ScreenShot And Image Recognition

These function will help you to take the screenshot and also match the image with the part of the 
screen.

.screenshot('c:\\path')        #get the screenshot. 

.locateOnScreen('c:\\path')    #search that image on screen and get the coordinates for you. 
locateCenterOnScreen('c:\\path')       #get the coordinate for the image on screen.

Read pyautogui module online: https://riptutorial.com/python/topic/9432/pyautogui-module

https://riptutorial.com/ 656

https://riptutorial.com/python/topic/9432/pyautogui-module


Chapter 133: pygame

Introduction

Pygame is the go-to library for making multimedia applications, especially games, in Python. The 
official website is http://www.pygame.org/.

Syntax

pygame.mixer.init(frequency=22050, size=-16, channels=2, buffer=4096)•
pygame.mixer.pre_init(frequency, size, channels, buffer)•
pygame.mixer.quit()•
pygame.mixer.get_init()•
pygame.mixer.stop()•
pygame.mixer.pause()•
pygame.mixer.unpause()•
pygame.mixer.fadeout(time)•
pygame.mixer.set_num_channels(count)•
pygame.mixer.get_num_channels()•
pygame.mixer.set_reserved(count)•
pygame.mixer.find_channel(force)•
pygame.mixer.get_busy()•

Parameters

Parameter Details

count
A positive integer that represents something like the number of channels 
needed to be reserved.

force
A boolean value (False or True) that determines whether find_channel() has to 
return a channel (inactive or not) with True or not (if there are no inactive 
channels) with False

Examples

Installing pygame

With pip:

pip install pygame

With conda:

https://riptutorial.com/ 657

http://www.pygame.org/


conda install -c tlatorre pygame=1.9.2

Direct download from website : http://www.pygame.org/download.shtml

You can find the suitable installers fro windows and other operating systems.

Projects can also be found at http://www.pygame.org/

Pygame's mixer module

The pygame.mixer module helps control the music used in pygame programs. As of now, there are 15 
different functions for the mixer module.

Initializing

Similar to how you have to initialize pygame with pygame.init(), you must initialize pygame.mixer as 
well.

By using the first option, we initialize the module using the default values. You can though, 
override these default options. By using the second option, we can initialize the module using the 
values we manually put in ourselves. Standard values:

pygame.mixer.init(frequency=22050, size=-16, channels=2, buffer=4096)

To check whether we have initialized it or not, we can use pygame.mixer.get_init(), which returns 
True if it is and False if it is not. To quit/undo the initializing, simply use pygame.mixer.quit(). If you 
want to continue playing sounds with the module, you might have to reinitialize the module.

Possible Actions

As your sound is playing, you can pause it tempoparily with pygame.mixer.pause(). To resume 
playing your sounds, simply use pygame.mixer.unpause(). You can also fadeout the end of the 
sound by using pygame.mixer.fadeout(). It takes an argument, which is the number of milliseconds 
it takes to finish fading out the music.

Channels

You can play as many songs as needed as long there are enough open channels to support them. 
By default, there are 8 channels. To change the number of channels there are, use 
pygame.mixer.set_num_channels(). The argument is a non-negative integer. If the number of 
channels are decreased, any sounds playing on the removed channels will immediately stop.

To find how many channels are currently being used, call pygame.mixer.get_channels(count). The 
output is the number of channels that are not currently open. You can also reserve channels for 

https://riptutorial.com/ 658

http://www.pygame.org/download.shtml
http://www.pygame.org/


sounds that must be played by using pygame.mixer.set_reserved(count). The argument is also a 
non-negative integer. Any sounds playing on the newly reserved channels will not be stopped.

You can also find out which channel isn't being used by using pygame.mixer.find_channel(force). Its 
argument is a bool: either True or False. If there are no channels that are idle and force is False, it 
will return None. If force is true, it will return the channel that has been playing for the longest time.

Read pygame online: https://riptutorial.com/python/topic/8761/pygame

https://riptutorial.com/ 659

https://riptutorial.com/python/topic/8761/pygame


Chapter 134: Pyglet

Introduction

Pyglet is a Python module used for visuals and sound. It has no dependencies on other modules. 
See [pyglet.org][1] for the official information. [1]: http://pyglet.org

Examples

Hello World in Pyglet

import pyglet 
window = pyglet.window.Window() 
label = pyglet.text.Label('Hello, world', 
                      font_name='Times New Roman', 
                      font_size=36, 
                      x=window.width//2, y=window.height//2, 
                      anchor_x='center', anchor_y='center') 
@window.event 
def on_draw(): 
    window.clear() 
    label.draw() 
pyglet.app.run()

Installation of Pyglet

Install Python, go into the command line and type:

Python 2:

pip install pyglet

Python 3:

pip3 install pyglet

Playing Sound in Pyglet

sound = pyglet.media.load(sound.wav) 
sound.play()

Using Pyglet for OpenGL

import pyglet 
from pyglet.gl import * 
 
win = pyglet.window.Window() 

https://riptutorial.com/ 660



 
@win.event() 
def on_draw(): 
    #OpenGL goes here. Use OpenGL as normal. 
 
pyglet.app.run()

Drawing Points Using Pyglet and OpenGL

import pyglet 
from pyglet.gl import * 
 
win = pyglet.window.Window() 
glClear(GL_COLOR_BUFFER_BIT) 
 
@win.event 
def on_draw(): 
    glBegin(GL_POINTS) 
    glVertex2f(x, y) #x is desired distance from left side of window, y is desired distance 
from bottom of window 
    #make as many vertexes as you want 
    glEnd

To connect the points, replace GL_POINTS with GL_LINE_LOOP.

Read Pyglet online: https://riptutorial.com/python/topic/8208/pyglet

https://riptutorial.com/ 661

https://riptutorial.com/python/topic/8208/pyglet


Chapter 135: PyInstaller - Distributing Python 
Code

Syntax

pyinstaller [options] script [script ...] | specfile•

Remarks

PyInstaller is a module used to bundle python apps in a single package along with all the 
dependencies. The user can then run the package app without a python interpreter or any 
modules. It correctly bundles many major packages like numpy, Django, OpenCv and others.

Some important points to remember:

Pyinstaller supports Python 2.7 and Python 3.3+•
Pyinstaller has been tested against Windows, Linux and Mac OS X.•
It is NOT cross compiler. (A Windows app cannot be packaged in Linux. You've to run 
PyInstaller in Windows to bundle an app for Windows)

•

Homepage Official Docs

Examples

Installation and Setup

Pyinstaller is a normal python package. It can be installed using pip:

pip install pyinstaller

Installation in Windows 
For Windows, pywin32 or pypiwin32 is a prerequisite. The latter is installed automatically when 
pyinstaller is installed using pip.

Installation in Mac OS X 
PyInstaller works with the default Python 2.7 provided with current Mac OS X. If later versions of 
Python are to be used or if any major packages such as PyQT, Numpy, Matplotlib and the like are 
to be used, it is recommended to install them using either MacPorts or Homebrew.

Installing from the archive 
If pip is not available, download the compressed archive from PyPI. 
To test the development version, download the compressed archive from the develop branch of 
PyInstaller Downloads page.

https://riptutorial.com/ 662

http://www.pyinstaller.org
https://pythonhosted.org/PyInstaller/
http://sourceforge.net/projects/pywin32/files/
https://pypi.python.org/pypi/pypiwin32/219
https://www.macports.org/
http://brew.sh/
https://pypi.python.org/pypi/PyInstaller/
https://github.com/pyinstaller/pyinstaller/releases


Expand the archive and find the setup.py script. Execute python setup.py install with administrator 
privilege to install or upgrade PyInstaller.

Verifying the installation 
The command pyinstaller should exist on the system path for all platforms after a successful 
installation. 
Verify it by typing pyinstaller --version in the command line. This will print the current version of 
pyinstaller.

Using Pyinstaller

In the simplest use-case, just navigate to the directory your file is in, and type:

pyinstaller myfile.py

Pyinstaller analyzes the file and creates:

A myfile.spec file in the same directory as myfile.py•
A build folder in the same directory as myfile.py•
A dist folder in the same directory as myfile.py•
Log files in the build folder•

The bundled app can be found in the dist folder

Options 
There are several options that can be used with pyinstaller. A full list of the options can be found 
here.

Once bundled your app can be run by opening 'dist\myfile\myfile.exe'.

Bundling to One Folder

When PyInstaller is used without any options to bundle myscript.py , the default output is a single 
folder (named myscript) containing an executable named myscript (myscript.exe in windows) along 
with all the necessary dependencies. 
The app can be distributed by compressing the folder into a zip file.

One Folder mode can be explictly set using the option -D or --onedir

pyinstaller myscript.py -D

Advantages:

One of the major advantages of bundling to a single folder is that it is easier to debug problems. If 
any modules fail to import, it can be verified by inspecting the folder. 
Another advantage is felt during updates. If there are a few changes in the code but the 
dependencies used are exactly the same, distributors can just ship the executable file (which is 
typically smaller than the entire folder).

https://riptutorial.com/ 663

https://pythonhosted.org/PyInstaller/usage.html#options


Disadvantages

The only disadvantage of this method is that the users have to search for the executable among a 
large number of files. 
Also users can delete/modify other files which might lead to the app not being able to work 
correctly.

Bundling to a Single File

pyinstaller myscript.py -F

The options to generate a single file are -F or --onefile. This bundles the program into a single 
myscript.exe file.

Single file executable are slower than the one-folder bundle. They are also harder to debug.

Read PyInstaller - Distributing Python Code online: 
https://riptutorial.com/python/topic/2289/pyinstaller---distributing-python-code

https://riptutorial.com/ 664

https://riptutorial.com/python/topic/2289/pyinstaller---distributing-python-code


Chapter 136: Python and Excel

Examples

Put list data into a Excel's file.

import os, sys 
from openpyxl import Workbook 
from datetime import datetime 
 
dt = datetime.now() 
list_values = [["01/01/2016", "05:00:00", 3], \ 
               ["01/02/2016", "06:00:00", 4], \ 
               ["01/03/2016", "07:00:00", 5], \ 
               ["01/04/2016", "08:00:00", 6], \ 
               ["01/05/2016", "09:00:00", 7]] 
 
# Create a Workbook on Excel: 
wb = Workbook() 
sheet = wb.active 
sheet.title = 'data' 
 
# Print the titles into Excel Workbook: 
row = 1 
sheet['A'+str(row)] = 'Date' 
sheet['B'+str(row)] = 'Hour' 
sheet['C'+str(row)] = 'Value' 
 
# Populate with data 
for item in list_values: 
    row += 1 
    sheet['A'+str(row)] = item[0] 
    sheet['B'+str(row)] = item[1] 
    sheet['C'+str(row)] = item[2] 
 
# Save a file by date: 
filename = 'data_' + dt.strftime("%Y%m%d_%I%M%S") + '.xlsx' 
wb.save(filename) 
 
# Open the file for the user: 
os.chdir(sys.path[0]) 
os.system('start excel.exe "%s\\%s"' % (sys.path[0], filename, ))

OpenPyXL

OpenPyXL is a module for manipulating and creating xlsx/xlsm/xltx/xltm workbooks in memory.

Manipulating and reading an existing workbook:

import openpyxl as opx 
#To change an existing wookbook we located it by referencing its path 
workbook = opx.load_workbook(workbook_path)

https://riptutorial.com/ 665

http://openpyxl.readthedocs.io/en/default/


load_workbook() contains the parameter read_only, setting this to True will load the workbook as 
read_only, this is helpful when reading larger xlsx files:

workbook = opx.load_workbook(workbook_path, read_only=True)

Once you have loaded the workbook into memory, you can access the individual sheets using 
workbook.sheets

first_sheet = workbook.worksheets[0]

If you want to specify the name of an available sheets, you can use workbook.get_sheet_names().

sheet = workbook.get_sheet_by_name('Sheet Name')

Finally, the rows of the sheet can be accessed using sheet.rows. To iterate over the rows in a 
sheet, use:

for row in sheet.rows: 
    print row[0].value

Since each row in rows is a list of Cells, use Cell.value to get the contents of the Cell.

Creating a new Workbook in memory:

#Calling the Workbook() function creates a new book in memory 
wb = opx.Workbook() 
 
#We can then create a new sheet in the wb 
ws = wb.create_sheet('Sheet Name', 0) #0 refers to the index of the sheet order in the wb

Several tab properties may be changed through openpyxl, for example the tabColor:

ws.sheet_properties.tabColor = 'FFC0CB'

To save our created workbook we finish with:

wb.save('filename.xlsx')

Create excel charts with xlsxwriter

import xlsxwriter 
 
# sample data 
chart_data = [ 
    {'name': 'Lorem', 'value': 23}, 
    {'name': 'Ipsum', 'value': 48}, 
    {'name': 'Dolor', 'value': 15}, 
    {'name': 'Sit', 'value': 8}, 
    {'name': 'Amet', 'value': 32} 
] 

https://riptutorial.com/ 666



 
# excel file path 
xls_file = 'chart.xlsx' 
 
# the workbook 
workbook = xlsxwriter.Workbook(xls_file) 
 
# add worksheet to workbook 
worksheet = workbook.add_worksheet() 
 
row_ = 0 
col_ = 0 
 
# write headers 
worksheet.write(row_, col_, 'NAME') 
col_ += 1 
worksheet.write(row_, col_, 'VALUE') 
row_ += 1 
 
# write sample data 
for item in chart_data: 
    col_ = 0 
    worksheet.write(row_, col_, item['name']) 
    col_ += 1 
    worksheet.write(row_, col_, item['value']) 
    row_ += 1 
 
# create pie chart 
pie_chart = workbook.add_chart({'type': 'pie'}) 
 
# add series to pie chart 
pie_chart.add_series({ 
    'name': 'Series Name', 
    'categories': '=Sheet1!$A$3:$A$%s' % row_, 
    'values': '=Sheet1!$B$3:$B$%s' % row_, 
    'marker': {'type': 'circle'} 
}) 
# insert pie chart 
worksheet.insert_chart('D2', pie_chart) 
 
# create column chart 
column_chart = workbook.add_chart({'type': 'column'}) 
 
# add serie to column chart 
column_chart.add_series({ 
    'name': 'Series Name', 
    'categories': '=Sheet1!$A$3:$A$%s' % row_, 
    'values': '=Sheet1!$B$3:$B$%s' % row_, 
    'marker': {'type': 'circle'} 
}) 
# insert column chart 
worksheet.insert_chart('D20', column_chart) 
 
workbook.close()

Result:

https://riptutorial.com/ 667



Read the excel data using xlrd module

Python xlrd library is to extract data from Microsoft Excel (tm) spreadsheet files.

Installation:-

pip install xlrd

Or you can use setup.py file from pypi

https://pypi.python.org/pypi/xlrd

https://riptutorial.com/ 668

http://i.stack.imgur.com/D3sta.png
https://pypi.python.org/pypi/xlrd


Reading an excel sheet:- Import xlrd module and open excel file using open_workbook() method.

import xlrd 
book=xlrd.open_workbook('sample.xlsx')

Check number of sheets in the excel

print book.nsheets

Print the sheet names

print book.sheet_names()

Get the sheet based on index

sheet=book.sheet_by_index(1)

Read the contents of a cell

cell = sheet.cell(row,col) #where row=row number and col=column number 
print cell.value #to print the cell contents

Get number of rows and number of columns in an excel sheet

num_rows=sheet.nrows 
num_col=sheet.ncols

Get excel sheet by name

sheets = book.sheet_names() 
cur_sheet = book.sheet_by_name(sheets[0])

Format Excel files with xlsxwriter

import xlsxwriter 
 
# create a new file 
workbook = xlsxwriter.Workbook('your_file.xlsx') 
 
# add some new formats to be used by the workbook 
percent_format = workbook.add_format({'num_format': '0%'}) 
percent_with_decimal = workbook.add_format({'num_format': '0.0%'}) 
bold = workbook.add_format({'bold': True}) 
red_font = workbook.add_format({'font_color': 'red'}) 
remove_format = workbook.add_format() 
 
# add a new sheet 
worksheet = workbook.add_worksheet() 
 
# set the width of column A 
worksheet.set_column('A:A', 30, ) 

https://riptutorial.com/ 669



 
# set column B to 20 and include the percent format we created earlier 
worksheet.set_column('B:B', 20, percent_format) 
 
# remove formatting from the first row (change in height=None) 
worksheet.set_row('0:0', None, remove_format) 
 
workbook.close()

Read Python and Excel online: https://riptutorial.com/python/topic/2986/python-and-excel

https://riptutorial.com/ 670

https://riptutorial.com/python/topic/2986/python-and-excel


Chapter 137: Python Anti-Patterns

Examples

Overzealous except clause

Exceptions are powerful, but a single overzealous except clause can take it all away in a single 
line.

try: 
    res = get_result() 
    res = res[0] 
    log('got result: %r' % res) 
except: 
    if not res: 
        res = '' 
    print('got exception')

This example demonstrates 3 symptoms of the antipattern:

The except with no exception type (line 5) will catch even healthy exceptions, including 
KeyboardInterrupt. That will prevent the program from exiting in some cases.

1. 

The except block does not reraise the error, meaning that we won't be able to tell if the 
exception came from within get_result or because res was an empty list.

2. 

Worst of all, if we were worried about result being empty, we've caused something much 
worse. If get_result fails, res will stay completely unset, and the reference to res in the 
except block, will raise NameError, completely masking the original error.

3. 

Always think about the type of exception you're trying to handle. Give the exceptions page a read 
and get a feel for what basic exceptions exist.

Here is a fixed version of the example above:

import traceback 
 
try: 
    res = get_result() 
except Exception: 
    log_exception(traceback.format_exc()) 
    raise 
try: 
    res = res[0] 
except IndexError: 
    res = '' 
 
log('got result: %r' % res)

We catch more specific exceptions, reraising where necessary. A few more lines, but infinitely 
more correct.

https://riptutorial.com/ 671

https://docs.python.org/2/library/exceptions.html#exceptions.KeyboardInterrupt
https://docs.python.org/2/library/exceptions.html#exceptions.NameError
https://docs.python.org/2/library/exceptions.html


Looking before you leap with processor-intensive function

A program can easily waste time by calling a processor-intensive function multiple times.

For example, take a function which looks like this: it returns an integer if the input value can 
produce one, else None:

def intensive_f(value): # int -> Optional[int] 
   # complex, and time-consuming code 
   if process_has_failed: 
       return None 
   return integer_output

And it could be used in the following way:

x = 5 
if intensive_f(x) is not None: 
    print(intensive_f(x) / 2) 
else: 
    print(x, "could not be processed") 
 
print(x)

Whilst this will work, it has the problem of calling intensive_f, which doubles the length of time for 
the code to run. A better solution would be to get the return value of the function beforehand.

x = 5 
result = intensive_f(x) 
if result is not None: 
    print(result / 2) 
else: 
    print(x, "could not be processed")

However, a clearer and possibly more pythonic way is to use exceptions, for example:

x = 5 
try: 
    print(intensive_f(x) / 2) 
except TypeError: # The exception raised if None + 1 is attempted 
    print(x, "could not be processed")

Here no temporary variable is needed. It may often be preferable to use a assert statement, and to 
catch the AssertionError instead.

Dictionary keys

A common example of where this may be found is accessing dictionary keys. For example 
compare:

bird_speeds = get_very_long_dictionary() 
 

https://riptutorial.com/ 672

https://docs.python.org/3/glossary.html#term-eafp


if "european swallow" in bird_speeds: 
    speed = bird_speeds["european swallow"] 
else: 
    speed = input("What is the air-speed velocity of an unladen swallow?") 
 
print(speed)

with:

bird_speeds = get_very_long_dictionary() 
 
try: 
    speed = bird_speeds["european swallow"] 
except KeyError: 
    speed = input("What is the air-speed velocity of an unladen swallow?") 
 
print(speed)

The first example has to look through the dictionary twice, and as this is a long dictionary, it may 
take a long time to do so each time. The second only requires one search through the dictionary, 
and thus saves a lot of processor time.

An alternative to this is to use dict.get(key, default), however many circumstances may require 
more complex operations to be done in the case that the key is not present

Read Python Anti-Patterns online: https://riptutorial.com/python/topic/4700/python-anti-patterns

https://riptutorial.com/ 673

https://riptutorial.com/python/topic/4700/python-anti-patterns


Chapter 138: Python concurrency

Remarks

The Python developers made sure that the API between threading and multiprocessing is similar 
so that switching between the two variants is easier for programmers.

Examples

The threading module

from __future__ import print_function 
import threading 
def counter(count): 
    while count > 0: 
        print("Count value", count) 
        count -= 1 
    return 
 
t1 = threading.Thread(target=countdown,args=(10,)) 
t1.start() 
t2 = threading.Thread(target=countdown,args=(20,)) 
t2.start()

In certain implementations of Python such as CPython, true parallelism is not achieved using 
threads because of using what is known as the GIL, or Global Interpreter Lock.

Here is an excellent overview of Python concurrency:

Python concurrency by David Beazley (YouTube)

The multiprocessing module

from __future__ import print_function 
import multiprocessing 
 
 
def countdown(count): 
    while count > 0: 
        print("Count value", count) 
        count -= 1 
    return 
 
if __name__ == "__main__": 
    p1 = multiprocessing.Process(target=countdown, args=(10,)) 
    p1.start() 
 
    p2 = multiprocessing.Process(target=countdown, args=(20,)) 
    p2.start() 
 
    p1.join() 

https://riptutorial.com/ 674

https://www.youtube.com/watch?v=MCs5OvhV9S4


    p2.join()

Here, each function is executed in a new process. Since a new instance of Python VM is running 
the code, there is no GIL and you get parallelism running on multiple cores.

The Process.start method launches this new process and run the function passed in the target 
argument with the arguments args. The Process.join method waits for the end of the execution of 
processes p1 and p2.

The new processes are launched differently depending on the version of python and the plateform 
on which the code is running e.g.:

Windows uses spawn to create the new process.•
With unix systems and version earlier than 3.3, the processes are created using a fork.
Note that this method does not respect the POSIX usage of fork and thus leads to 
unexpected behaviors, especially when interacting with other multiprocessing libraries.

•

With unix system and version 3.4+, you can choose to start the new processes with either 
fork, forkserver or spawn using multiprocessing.set_start_method at the beginning of your 
program. forkserver and spawn methods are slower than forking but avoid some unexpected 
behaviors.

•

POSIX fork usage:

After a fork in a multithreaded program, the child can safely call only async-signal-safe 
functions until such time as it calls execve. 
(see)

Using fork, a new process will be launched with the exact same state for all the current mutex but 
only the MainThread will be launched. This is unsafe as it could lead to race conditions e.g.:

If you use a Lock in MainThread and pass it to an other thread which is suppose to lock it at 
some point. If the fork occures simultaneously, the new process will start with a locked lock 
which will never be released as the second thread does not exist in this new process.

•

Actually, this kind of behavior should not occured in pure python as multiprocessing handles it 
properly but if you are interacting with other library, this kind of behavior can occures, leading to 
crash of your system (for instance with numpy/accelerated on macOS).

Passing data between multiprocessing processes

Because data is sensitive when dealt with between two threads (think concurrent read and 
concurrent write can conflict with one another, causing race conditions), a set of unique objects 
were made in order to facilitate the passing of data back and forth between threads. Any truly 
atomic operation can be used between threads, but it is always safe to stick with Queue.

import multiprocessing 
import queue 
my_Queue=multiprocessing.Queue() 
#Creates a queue with an undefined maximum size 

https://riptutorial.com/ 675

http://man7.org/linux/man-pages/man2/fork.2.html


#this can be dangerous as the queue becomes increasingly large 
#it will take a long time to copy data to/from each read/write thread

Most people will suggest that when using queue, to always place the queue data in a try: except: 
block instead of using empty. However, for applications where it does not matter if you skip a scan 
cycle (data can be placed in the queue while it is flipping states from queue.Empty==True to 
queue.Empty==False) it is usually better to place read and write access in what I call an Iftry block, 
because an 'if' statement is technically more performant than catching the exception.

import multiprocessing 
import queue 
'''Import necessary Python standard libraries, multiprocessing for classes and queue for the 
queue exceptions it provides''' 
def Queue_Iftry_Get(get_queue, default=None, use_default=False, func=None, use_func=False): 
    '''This global method for the Iftry block is provided for it's reuse and 
standard functionality, the if also saves on performance as opposed to catching 
 the exception, which is expencive. 
        It also allows the user to specify a function for the outgoing data to use, 
 and a default value to return if the function cannot return the value from the queue''' 
        if get_queue.empty(): 
            if use_default: 
                return default 
        else: 
            try: 
                value = get_queue.get_nowait() 
            except queue.Empty: 
                if use_default: 
                    return default 
            else: 
                if use_func: 
                    return func(value) 
                else: 
                    return value 
    def Queue_Iftry_Put(put_queue, value): 
        '''This global method for the Iftry block is provided because of its reuse 
and 
standard functionality, the If also saves on performance as opposed to catching 
 the exception, which is expensive. 
        Return True if placing value in the queue was successful. Otherwise, false''' 
        if put_queue.full(): 
            return False 
        else: 
            try: 
                put_queue.put_nowait(value) 
            except queue.Full: 
                return False 
            else: 
                return True

Read Python concurrency online: https://riptutorial.com/python/topic/3357/python-concurrency

https://riptutorial.com/ 676

https://riptutorial.com/python/topic/3357/python-concurrency


Chapter 139: Python Data Types

Introduction

Data types are nothing but variable you used to reserve some space in memory. Python variables 
do not need an explicit declaration to reserve memory space. The declaration happens 
automatically when you assign a value to a variable.

Examples

Numbers data type

Numbers have four types in Python. Int, float, complex, and long.

int_num = 10    #int value 
float_num = 10.2    #float value 
complex_num = 3.14j    #complex value 
long_num = 1234567L    #long value

String Data Type

String are identified as a contiguous set of characters represented in the quotation marks. Python 
allows for either pairs of single or double quotes. Strings are immutable sequence data type, i.e 
each time one makes any changes to a string, completely new string object is created.

a_str = 'Hello World' 
print(a_str)    #output will be whole string. Hello World 
print(a_str[0])    #output will be first character. H 
print(a_str[0:5])    #output will be first five characters. Hello

List Data Type

A list contains items separated by commas and enclosed within square brackets [].lists are almost 
similar to arrays in C. One difference is that all the items belonging to a list can be of different data 
type.

list = [123,'abcd',10.2,'d']    #can be a array of any data type or single data type. 
list1 = ['hello','world'] 
print(list)    #will ouput whole list. [123,'abcd',10.2,'d'] 
print(list[0:2])    #will output first two element of list. [123,'abcd'] 
print(list1 * 2)    #will gave list1 two times. ['hello','world','hello','world'] 
print(list + list1)    #will gave concatenation of both the lists. 
[123,'abcd',10.2,'d','hello','world']

Tuple Data Type

Lists are enclosed in brackets [ ] and their elements and size can be changed, while tuples are 

https://riptutorial.com/ 677



enclosed in parentheses ( ) and cannot be updated. Tuples are immutable.

tuple = (123,'hello') 
tuple1 = ('world') 
print(tuple)    #will output whole tuple. (123,'hello') 
print(tuple[0])    #will output first value. (123) 
print(tuple + tuple1)    #will output (123,'hello','world') 
tuple[1]='update'    #this will give you error.

Dictionary Data Type

Dictionary consists of key-value pairs.It is enclosed by curly braces {} and values can be assigned 
and accessed using square brackets[].

dic={'name':'red','age':10} 
print(dic)    #will output all the key-value pairs. {'name':'red','age':10} 
print(dic['name'])    #will output only value with 'name' key. 'red' 
print(dic.values())    #will output list of values in dic. ['red',10] 
print(dic.keys())    #will output list of keys. ['name','age']

Set Data Types

Sets are unordered collections of unique objects, there are two types of set :

Sets - They are mutable and new elements can be added once sets are defined

basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'} 
print(basket)            # duplicates will be removed 
> {'orange', 'banana', 'pear', 'apple'} 
a = set('abracadabra') 
print(a)                 # unique letters in a 
> {'a', 'r', 'b', 'c', 'd'} 
a.add('z') 
print(a) 
> {'a', 'c', 'r', 'b', 'z', 'd'}

1. 

Frozen Sets - They are immutable and new elements cannot added after its defined.

b = frozenset('asdfagsa') 
print(b) 
> frozenset({'f', 'g', 'd', 'a', 's'}) 
cities = frozenset(["Frankfurt", "Basel","Freiburg"]) 
print(cities) 
> frozenset({'Frankfurt', 'Basel', 'Freiburg'})

2. 

Read Python Data Types online: https://riptutorial.com/python/topic/9366/python-data-types

https://riptutorial.com/ 678

https://riptutorial.com/python/topic/9366/python-data-types


Chapter 140: Python HTTP Server

Examples

Running a simple HTTP server

Python 2.x2.3

python -m SimpleHTTPServer 9000

Python 3.x3.0

python -m http.server 9000

Running this command serves the files of the current directory at port 9000.

If no argument is provided as port number then server will run on default port 8000.

The -m flag will search sys.path for the corresponding .py file to run as a module.

If you want to only serve on localhost you'll need to write a custom Python program such as:

import sys 
import BaseHTTPServer 
from SimpleHTTPServer import SimpleHTTPRequestHandler 
 
HandlerClass = SimpleHTTPRequestHandler 
ServerClass  = BaseHTTPServer.HTTPServer 
Protocol     = "HTTP/1.0" 
 
if sys.argv[1:]: 
   port = int(sys.argv[1]) 
else: 
   port = 8000 
server_address = ('127.0.0.1', port) 
 
HandlerClass.protocol_version = Protocol 
httpd = ServerClass(server_address, HandlerClass) 
 
sa = httpd.socket.getsockname() 
print "Serving HTTP on", sa[0], "port", sa[1], "..." 
httpd.serve_forever()

Serving files

Assuming you have the following directory of files:

https://riptutorial.com/ 679



You can setup a web server to serve these files as follows:

Python 2.x2.3

import SimpleHTTPServer 
import SocketServer 
 
PORT = 8000 
 
handler = SimpleHTTPServer.SimpleHTTPRequestHandler 
httpd = SocketServer.TCPServer(("localhost", PORT), handler) 
print "Serving files at port {}".format(PORT) 
httpd.serve_forever()

Python 3.x3.0

import http.server 
import socketserver 
 
PORT = 8000 
 
handler = http.server.SimpleHTTPRequestHandler 
httpd = socketserver.TCPServer(("", PORT), handler) 
print("serving at port", PORT) 
httpd.serve_forever()

The SocketServer module provides the classes and functionalities to setup a network server.

SocketServer's TCPServer class sets up a server using the TCP protocol. The constructor accepts a 
tuple representing the address of the server (i.e. the IP address and port) and the class that 
handles the server requests.

The SimpleHTTPRequestHandler class of the SimpleHTTPServer module allows the files at the current 
directory to be served.

Save the script at the same directory and run it.

Run the HTTP Server :

Python 2.x2.3

python -m SimpleHTTPServer 8000

Python 3.x3.0

python -m http.server 8000

https://riptutorial.com/ 680

http://i.stack.imgur.com/61fLG.jpg


The '-m' flag will search 'sys.path' for the corresponding '.py' file to run as a module.

Open localhost:8000 in the browser, it will give you the following:

Programmatic API of SimpleHTTPServer

What happens when we execute python -m SimpleHTTPServer 9000?

To answer this question we should understand the construct of SimpleHTTPServer (
https://hg.python.org/cpython/file/2.7/Lib/SimpleHTTPServer.py) and BaseHTTPServer(
https://hg.python.org/cpython/file/2.7/Lib/BaseHTTPServer.py).

Firstly, Python invokes the SimpleHTTPServer module with 9000 as an argument. Now observing the 
SimpleHTTPServer code,

def test(HandlerClass = SimpleHTTPRequestHandler, 
         ServerClass = BaseHTTPServer.HTTPServer): 
    BaseHTTPServer.test(HandlerClass, ServerClass) 
 
 
if __name__ == '__main__': 
    test()

The test function is invoked following request handlers and ServerClass. Now 
BaseHTTPServer.test is invoked

def test(HandlerClass = BaseHTTPRequestHandler, 
         ServerClass = HTTPServer, protocol="HTTP/1.0"): 
"""Test the HTTP request handler class. 
 
This runs an HTTP server on port 8000 (or the first command line 
argument). 
 
""" 
 
if sys.argv[1:]: 
    port = int(sys.argv[1]) 
else: 
    port = 8000 
server_address = ('', port) 
 
HandlerClass.protocol_version = protocol 
httpd = ServerClass(server_address, HandlerClass) 

https://riptutorial.com/ 681

http://localhost:8000
http://i.stack.imgur.com/FfhnV.jpg
https://hg.python.org/cpython/file/2.7/Lib/SimpleHTTPServer.py)
https://hg.python.org/cpython/file/2.7/Lib/BaseHTTPServer.py)


 
sa = httpd.socket.getsockname() 
print "Serving HTTP on", sa[0], "port", sa[1], "..." 
httpd.serve_forever()

Hence here the port number, which the user passed as argument is parsed and is bound to the 
host address. Further basic steps of socket programming with given port and protocol is carried 
out. Finally socket server is initiated.

This is a basic overview of inheritance from SocketServer class to other classes:

    +------------+ 
    | BaseServer | 
    +------------+ 
          | 
          v 
    +-----------+        +------------------+ 
    | TCPServer |------->| UnixStreamServer | 
    +-----------+        +------------------+ 
          | 
          v 
    +-----------+        +--------------------+ 
    | UDPServer |------->| UnixDatagramServer | 
    +-----------+        +--------------------+

The links https://hg.python.org/cpython/file/2.7/Lib/BaseHTTPServer.py and 
https://hg.python.org/cpython/file/2.7/Lib/SocketServer.py are useful for finding further information.

Basic handling of GET, POST, PUT using BaseHTTPRequestHandler

# from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer # python2 
from http.server import BaseHTTPRequestHandler, HTTPServer # python3 
class HandleRequests(BaseHTTPRequestHandler): 
    def _set_headers(self): 
        self.send_response(200) 
        self.send_header('Content-type', 'text/html') 
        self.end_headers() 
 
    def do_GET(self): 
        self._set_headers() 
        self.wfile.write("received get request") 
 
    def do_POST(self): 
        '''Reads post request body''' 
        self._set_headers() 
        content_len = int(self.headers.getheader('content-length', 0)) 
        post_body = self.rfile.read(content_len) 
        self.wfile.write("received post request:<br>{}".format(post_body)) 
 
    def do_PUT(self): 
        self.do_POST() 
 
host = '' 
port = 80 
HTTPServer((host, port), HandleRequests).serve_forever()

https://riptutorial.com/ 682

https://hg.python.org/cpython/file/2.7/Lib/BaseHTTPServer.py
https://hg.python.org/cpython/file/2.7/Lib/SocketServer.py


Example output using curl:

$ curl http://localhost/ 
received get request% 
 
 
$ curl -X POST http://localhost/ 
received post request:<br>% 
 
 
$ curl -X PUT http://localhost/ 
received post request:<br>% 
 
 
$ echo 'hello world' | curl --data-binary @- http://localhost/ 
received post request:<br>hello world

Read Python HTTP Server online: https://riptutorial.com/python/topic/4247/python-http-server

https://riptutorial.com/ 683

https://riptutorial.com/python/topic/4247/python-http-server


Chapter 141: Python Lex-Yacc

Introduction

PLY is a pure-Python implementation of the popular compiler construction tools lex and yacc.

Remarks

Additional links:

Official docs1. 
Github2. 

Examples

Getting Started with PLY

To install PLY on your machine for python2/3, follow the steps outlined below:

Download the source code from here.1. 
Unzip the downloaded zip file2. 
Navigate into the unzipped ply-3.10 folder3. 
Run the following command in your terminal: python setup.py install4. 

If you completed all the above, you should now be able to use the PLY module. You can test it out 
by opening a python interpreter and typing import ply.lex.

Note: Do not use pip to install PLY, it will install a broken distribution on your machine.

The "Hello, World!" of PLY - A Simple Calculator

Let's demonstrate the power of PLY with a simple example: this program will take an arithmetic 
expression as a string input, and attempt to solve it.

Open up your favourite editor and copy the following code:

from ply import lex 
import ply.yacc as yacc 
 
tokens = ( 
    'PLUS', 
    'MINUS', 
    'TIMES', 
    'DIV', 
    'LPAREN', 
    'RPAREN', 
    'NUMBER', 
) 

https://riptutorial.com/ 684

http://www.dabeaz.com/ply/
https://github.com/dabeaz/ply
http://www.dabeaz.com/ply/ply-3.10.tar.gz


 
t_ignore = ' \t' 
 
t_PLUS    = r'\+' 
t_MINUS   = r'-' 
t_TIMES   = r'\*' 
t_DIV     = r'/' 
t_LPAREN  = r'\(' 
t_RPAREN  = r'\)' 
 
def t_NUMBER( t ) : 
    r'[0-9]+' 
    t.value = int( t.value ) 
    return t 
 
def t_newline( t ): 
  r'\n+' 
  t.lexer.lineno += len( t.value ) 
 
def t_error( t ): 
  print("Invalid Token:",t.value[0]) 
  t.lexer.skip( 1 ) 
 
lexer = lex.lex() 
 
precedence = ( 
    ( 'left', 'PLUS', 'MINUS' ), 
    ( 'left', 'TIMES', 'DIV' ), 
    ( 'nonassoc', 'UMINUS' ) 
) 
 
def p_add( p ) : 
    'expr : expr PLUS expr' 
    p[0] = p[1] + p[3] 
 
def p_sub( p ) : 
    'expr : expr MINUS expr' 
    p[0] = p[1] - p[3] 
 
def p_expr2uminus( p ) : 
    'expr : MINUS expr %prec UMINUS' 
    p[0] = - p[2] 
 
def p_mult_div( p ) : 
    '''expr : expr TIMES expr 
            | expr DIV expr''' 
 
    if p[2] == '*' : 
        p[0] = p[1] * p[3] 
    else : 
        if p[3] == 0 : 
            print("Can't divide by 0") 
            raise ZeroDivisionError('integer division by 0') 
        p[0] = p[1] / p[3] 
 
def p_expr2NUM( p ) : 
    'expr : NUMBER' 
    p[0] = p[1] 
 
def p_parens( p ) : 
    'expr : LPAREN expr RPAREN' 

https://riptutorial.com/ 685



    p[0] = p[2] 
 
def p_error( p ): 
    print("Syntax error in input!") 
 
parser = yacc.yacc() 
 
res = parser.parse("-4*-(3-5)") # the input 
print(res)

Save this file as calc.py and run it.

Output:

-8

Which is the right answer for -4 * - (3 - 5).

Part 1: Tokenizing Input with Lex

There are two steps that the code from example 1 carried out: one was tokenizing the input, which 
means it looked for symbols that constitute the arithmetic expression, and the second step was 
parsing, which involves analysing the extracted tokens and evaluating the result.

This section provides a simple example of how to tokenize user input, and then breaks it down line 
by line.

    import ply.lex as lex 
 
    # List of token names. This is always required 
    tokens = [ 
       'NUMBER', 
       'PLUS', 
       'MINUS', 
       'TIMES', 
       'DIVIDE', 
       'LPAREN', 
       'RPAREN', 
    ] 
 
    # Regular expression rules for simple tokens 
    t_PLUS    = r'\+' 
    t_MINUS   = r'-' 
    t_TIMES   = r'\*' 
    t_DIVIDE  = r'/' 
    t_LPAREN  = r'\(' 
    t_RPAREN  = r'\)' 
 
    # A regular expression rule with some action code 
    def t_NUMBER(t): 
        r'\d+' 
        t.value = int(t.value) 
        return t 
 
    # Define a rule so we can track line numbers 
    def t_newline(t): 

https://riptutorial.com/ 686



        r'\n+' 
        t.lexer.lineno += len(t.value) 
 
    # A string containing ignored characters (spaces and tabs) 
    t_ignore  = ' \t' 
 
    # Error handling rule 
    def t_error(t): 
        print("Illegal character '%s'" % t.value[0]) 
        t.lexer.skip(1) 
 
    # Build the lexer 
    lexer = lex.lex() 
 
    # Give the lexer some input 
    lexer.input(data) 
 
    # Tokenize 
    while True: 
        tok = lexer.token() 
        if not tok: 
            break      # No more input 
        print(tok)

Save this file as calclex.py. We'll be using this when building our Yacc parser.

Breakdown

Import the module using import ply.lex1. 

All lexers must provide a list called tokens that defines all of the possible token names that 
can be produced by the lexer. This list is always required.

 tokens = [ 
    'NUMBER', 
    'PLUS', 
    'MINUS', 
    'TIMES', 
    'DIVIDE', 
    'LPAREN', 
    'RPAREN', 
 ]

2. 

tokens could also be a tuple of strings (rather than a string), where each string denotes a token as 
before.

The regex rule for each string may be defined either as a string or as a function. In either 
case, the variable name should be prefixed by t_ to denote it is a rule for matching tokens.

For simple tokens, the regular expression can be specified as strings: t_PLUS = r'\+'•

If some kind of action needs to be performed, a token rule can be specified as a 
function.

•

3. 

https://riptutorial.com/ 687



   def t_NUMBER(t): 
       r'\d+' 
       t.value = int(t.value) 
       return t

Note, the rule is specified as a doc string within the function. The function accepts one 
argument which is an instance of LexToken, performs some action and then returns back 
the argument.

If you want to use an external string as the regex rule for the function instead of 
specifying a doc string, consider the following example:

   @TOKEN(identifier)         # identifier is a string holding the regex 
   def t_ID(t): 
       ...      # actions

An instance of LexToken object (let's call this object t) has the following attributes:

t.type which is the token type (as a string) (eg: 'NUMBER', 'PLUS', etc). By default, 
t.type is set to the name following the t_ prefix.

1. 

t.value which is the lexeme (the actual text matched)2. 
t.lineno which is the current line number (this is not automatically updated, as 
the lexer knows nothing of line numbers). Update lineno using a function called 
t_newline.

3. 

  def t_newline(t): 
      r'\n+' 
      t.lexer.lineno += len(t.value)

t.lexpos which is the position of the token relative to the beginning of the input 
text.

4. 

•

If nothing is returned from a regex rule function, the token is discarded. If you want to 
discard a token, you can alternatively add t_ignore_ prefix to a regex rule variable 
instead of defining a function for the same rule.

   def t_COMMENT(t): 
       r'\#.*' 
       pass 
       # No return value. Token discarded

...Is the same as:

   t_ignore_COMMENT = r'\#.*'

This is of course invalid if you're carrying out some action when you see a comment. In which case, use 
a function to define the regex rule.

If you haven't defined a token for some characters but still want to ignore it, use 
t_ignore = "<characters to ignore>"

•

https://riptutorial.com/ 688



(these prefixes are necessary):

   t_ignore_COMMENT = r'\#.*' 
   t_ignore  = ' \t'    # ignores spaces and tabs

When building the master regex, lex will add the regexes specified in the file as follows:

Tokens defined by functions are added in the same order as they appear in the 
file.

1. 

Tokens defined by strings are added in decreasing order of the string length of 
the string defining the regex for that token.

2. 

If you are matching == and = in the same file, take advantage of these rules.

•

Literals are tokens that are returned as they are. Both t.type and t.value will be set to 
the character itself. Define a list of literals as such:

literals = [ '+', '-', '*', '/' ]

or,

literals = "+-*/"

It is possible to write token functions that perform additional actions when literals are 
matched. However, you'll need to set the token type appropriately. For example:

literals = [ '{', '}' ] 
 
def t_lbrace(t): 
    r'\{' 
    t.type = '{'  # Set token type to the expected literal (ABSOLUTE MUST if this 
is a literal) 
    return t

•

Handle errors with t_error function.

# Error handling rule 
def t_error(t): 
    print("Illegal character '%s'" % t.value[0]) 
    t.lexer.skip(1) # skip the illegal token (don't process it)

In general, t.lexer.skip(n) skips n characters in the input string.

•

Final preparations:

Build the lexer using lexer = lex.lex().

You can also put everything inside a class and call use instance of the class to define the 
lexer. Eg:

4. 

https://riptutorial.com/ 689



 import ply.lex as lex 
 class MyLexer(object): 
       ...     # everything relating to token rules and error handling comes here as 
usual 
 
       # Build the lexer 
       def build(self, **kwargs): 
           self.lexer = lex.lex(module=self, **kwargs) 
 
       def test(self, data): 
           self.lexer.input(data) 
           for token in self.lexer.token(): 
               print(token) 
 
       # Build the lexer and try it out 
 
 m = MyLexer() 
 m.build()           # Build the lexer 
 m.test("3 + 4")     #

Provide input using lexer.input(data) where data is a string

To get the tokens, use lexer.token() which returns tokens matched. You can iterate over 
lexer in a loop as in:

for i in lexer: 
    print(i)

Part 2: Parsing Tokenized Input with Yacc

This section explains how the tokenized input from Part 1 is processed - it is done using Context 
Free Grammars (CFGs). The grammar must be specified, and the tokens are processed according 
to the grammar. Under the hood, the parser uses an LALR parser.

# Yacc example 
 
import ply.yacc as yacc 
 
# Get the token map from the lexer. This is required. 
from calclex import tokens 
 
def p_expression_plus(p): 
    'expression : expression PLUS term' 
    p[0] = p[1] + p[3] 
 
def p_expression_minus(p): 
    'expression : expression MINUS term' 
    p[0] = p[1] - p[3] 
 
def p_expression_term(p): 
    'expression : term' 
    p[0] = p[1] 
 
def p_term_times(p): 
    'term : term TIMES factor' 
    p[0] = p[1] * p[3] 

https://riptutorial.com/ 690



 
def p_term_div(p): 
    'term : term DIVIDE factor' 
    p[0] = p[1] / p[3] 
 
def p_term_factor(p): 
    'term : factor' 
    p[0] = p[1] 
 
def p_factor_num(p): 
    'factor : NUMBER' 
    p[0] = p[1] 
 
def p_factor_expr(p): 
    'factor : LPAREN expression RPAREN' 
    p[0] = p[2] 
 
# Error rule for syntax errors 
def p_error(p): 
    print("Syntax error in input!") 
 
# Build the parser 
parser = yacc.yacc() 
 
while True: 
   try: 
       s = raw_input('calc > ') 
   except EOFError: 
       break 
   if not s: continue 
   result = parser.parse(s) 
   print(result)

Breakdown

Each grammar rule is defined by a function where the docstring to that function contains the 
appropriate context-free grammar specification. The statements that make up the function 
body implement the semantic actions of the rule. Each function accepts a single argument p 
that is a sequence containing the values of each grammar symbol in the corresponding rule. 
The values of p[i] are mapped to grammar symbols as shown here:

  def p_expression_plus(p): 
      'expression : expression PLUS term' 
      #   ^            ^        ^    ^ 
      #  p[0]         p[1]     p[2] p[3] 
 
      p[0] = p[1] + p[3]

•

For tokens, the "value" of the corresponding p[i] is the same as the p.value attribute 
assigned in the lexer module. So, PLUS will have the value +.

•

For non-terminals, the value is determined by whatever is placed in p[0]. If nothing is placed, 
the value is None. Also, p[-1] is not the same as p[3], since p is not a simple list (p[-1] can 

•

https://riptutorial.com/ 691



specify embedded actions (not discussed here)).

Note that the function can have any name, as long as it is preceeded by p_.

The p_error(p) rule is defined to catch syntax errors (same as yyerror in yacc/bison).•

Multiple grammar rules can be combined into a single function, which is a good idea if 
productions have a similar structure.

  def p_binary_operators(p): 
      '''expression : expression PLUS term 
                    | expression MINUS term 
         term       : term TIMES factor 
                    | term DIVIDE factor''' 
      if p[2] == '+': 
          p[0] = p[1] + p[3] 
      elif p[2] == '-': 
          p[0] = p[1] - p[3] 
      elif p[2] == '*': 
          p[0] = p[1] * p[3] 
      elif p[2] == '/': 
          p[0] = p[1] / p[3] 

•

Character literals can be used instead of tokens.

  def p_binary_operators(p): 
      '''expression : expression '+' term 
                    | expression '-' term 
         term       : term '*' factor 
                    | term '/' factor''' 
      if p[2] == '+': 
          p[0] = p[1] + p[3] 
      elif p[2] == '-': 
          p[0] = p[1] - p[3] 
      elif p[2] == '*': 
          p[0] = p[1] * p[3] 
      elif p[2] == '/': 
          p[0] = p[1] / p[3]

Of course, the literals must be specified in the lexer module.

•

Empty productions have the form '''symbol : '''•

To explicitly set the start symbol, use start = 'foo', where foo is some non-terminal.•

Setting precedence and associativity can be done using the precedence variable.

  precedence = ( 
      ('nonassoc', 'LESSTHAN', 'GREATERTHAN'),  # Nonassociative operators 
      ('left', 'PLUS', 'MINUS'), 
      ('left', 'TIMES', 'DIVIDE'), 
      ('right', 'UMINUS'),            # Unary minus operator 
  )

Tokens are ordered from lowest to highest precedence. nonassoc means that those tokens do 

•

https://riptutorial.com/ 692



not associate. This means that something like a < b < c is illegal whereas a < b is still legal.

parser.out is a debugging file that is created when the yacc program is executed for the first 
time. Whenever a shift/reduce conflict occurs, the parser always shifts.

•

Read Python Lex-Yacc online: https://riptutorial.com/python/topic/10510/python-lex-yacc

https://riptutorial.com/ 693

https://riptutorial.com/python/topic/10510/python-lex-yacc


Chapter 142: Python Networking

Remarks

(Very) basic Python client socket example

Examples

The simplest Python socket client-server example

Server side:

import socket 
 
serversocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
serversocket.bind(('localhost', 8089)) 
serversocket.listen(5) # become a server socket, maximum 5 connections 
 
while True: 
    connection, address = serversocket.accept() 
    buf = connection.recv(64) 
    if len(buf) > 0: 
        print(buf) 
    break

Client Side:

import socket 
 
clientsocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
clientsocket.connect(('localhost', 8089)) 
clientsocket.send('hello')

First run the SocketServer.py, and make sure the server is ready to listen/receive sth Then the 
client send info to the server; After the server received sth, it terminates

Creating a Simple Http Server

To share files or to host simple websites(http and javascript) in your local network, you can use 
Python's builtin SimpleHTTPServer module. Python should be in your Path variable. Go to the 
folder where your files are and type:

For python 2:

$ python -m SimpleHTTPServer <portnumber>

For python 3:

https://riptutorial.com/ 694

http://stackoverflow.com/questions/7749341/very-basic-python-client-socket-example


$ python3 -m http.server <portnumber>

If port number is not given 8000 is the default port. So the output will be:

Serving HTTP on 0.0.0.0 port 8000 ...

You can access to your files through any device connected to the local network by typing 
http://hostipaddress:8000/.

hostipaddress is your local ip address which probably starts with 192.168.x.x.

To finish the module simply press ctrl+c.

Creating a TCP server

You can create a TCP server using the socketserver library. Here's a simple echo server.

Server side

from sockerserver import BaseRequestHandler, TCPServer 
 
class EchoHandler(BaseRequestHandler): 
    def handle(self): 
        print('connection from:', self.client_address) 
        while True: 
            msg = self.request.recv(8192) 
            if not msg: 
                break 
            self.request.send(msg) 
 
if __name__ == '__main__': 
    server = TCPServer(('', 5000), EchoHandler) 
    server.serve_forever()

Client side

from socket import socket, AF_INET, SOCK_STREAM 
sock = socket(AF_INET, SOCK_STREAM) 
sock.connect(('localhost', 5000)) 
sock.send(b'Monty Python') 
sock.recv(8192)  # returns b'Monty Python'

socketserver makes it relatively easy to create simple TCP servers. However, you should be aware 
that, by default, the servers are single threaded and can only serve one client at a time. If you 
want to handle multiple clients, either instantiate a ThreadingTCPServer instead.

from socketserver import ThreadingTCPServer 
... 
if __name__ == '__main__': 
    server = ThreadingTCPServer(('', 5000), EchoHandler) 
    server.serve_forever()

https://riptutorial.com/ 695



Creating a UDP Server

A UDP server is easily created using the socketserver library.

a simple time server:

import time 
from socketserver import BaseRequestHandler, UDPServer 
 
class CtimeHandler(BaseRequestHandler): 
    def handle(self): 
    print('connection from: ', self.client_address) 
    # Get message and client socket 
    msg, sock = self.request 
    resp = time.ctime() 
    sock.sendto(resp.encode('ascii'), self.client_address) 
 
if __name__ == '__main__': 
    server = UDPServer(('', 5000), CtimeHandler) 
    server.serve_forever()

Testing:

>>> from socket import socket, AF_INET, SOCK_DGRAM 
>>> sock = socket(AF_INET, SOCK_DGRAM) 
>>> sick.sendto(b'', ('localhost', 5000)) 
0 
>>> sock.recvfrom(8192) 
(b'Wed Aug 15 20:35:08 2012', ('127.0.0.1', 5000))

Start Simple HttpServer in a thread and open the browser

Useful if your program is outputting web pages along the way.

from http.server import HTTPServer, CGIHTTPRequestHandler 
import webbrowser 
import threading 
 
def start_server(path, port=8000): 
    '''Start a simple webserver serving path on port''' 
    os.chdir(path) 
    httpd = HTTPServer(('', port), CGIHTTPRequestHandler) 
    httpd.serve_forever() 
 
# Start the server in a new thread 
port = 8000 
daemon = threading.Thread(name='daemon_server', 
                          target=start_server, 
                          args=('.', port) 
daemon.setDaemon(True) # Set as a daemon so it will be killed once the main thread is dead. 
daemon.start() 
 
# Open the web browser 
webbrowser.open('http://localhost:{}'.format(port))

https://riptutorial.com/ 696



Read Python Networking online: https://riptutorial.com/python/topic/1309/python-networking

https://riptutorial.com/ 697

https://riptutorial.com/python/topic/1309/python-networking


Chapter 143: Python Persistence

Syntax

pickle.dump(obj, file, protocol=None, *, fix_imports=True)•

pickle.load(file, *, fix_imports=True, encoding="ASCII", errors="strict")•

Parameters

Parameter Details

obj pickled representation of obj to the open file object file

protocol
an integer, tells the pickler to use the given protocol,0-ASCII, 1- old binary 
format

file
The file argument must have a write() method wb for dump method and for 
loading read() method rb

Examples

Python Persistence

Objects like numbers, lists, dictionaries,nested structures and class instance objects live in your 
computer’s memory and are lost as soon as the script ends.

pickle stores data persistently in separate file.

pickled representation of an object is always a bytes object in all cases so one must open files in 
wb to store data and rb to load data from pickle.

the data may may be off any kind , for example,

data={'a':'some_value', 
     'b':[9,4,7], 
     'c':['some_str','another_str','spam','ham'], 
     'd':{'key':'nested_dictionary'}, 
     } 

Store data

import pickle 
file=open('filename','wb')  #file object in binary write mode 
pickle.dump(data,file)      #dump the data in the file object 
file.close()                #close the file to write into the file

https://riptutorial.com/ 698



Load data

import pickle 
file=open('filename','rb')  #file object in binary read mode 
data=pickle.load(file)      #load the data back 
file.close() 
 
>>>data 
{'b': [9, 4, 7], 'a': 'some_value', 'd': {'key': 'nested_dictionary'}, 
 'c': ['some_str', 'another_str', 'spam', 'ham']}

The following types can be pickled

None, True, and False1. 
integers, floating point numbers, complex numbers2. 
strings, bytes, bytearrays3. 
tuples, lists, sets, and dictionaries containing only picklable objects4. 
functions defined at the top level of a module (using def, not lambda)5. 
built-in functions defined at the top level of a module6. 
classes that are defined at the top level of a module7. 
instances of such classes whose dict or the result of calling getstate()8. 

Function utility for save and load

Save data to and from file

import pickle 
def save(filename,object): 
    file=open(filename,'wb') 
    pickle.dump(object,file) 
    file.close() 
 
def load(filename): 
    file=open(filename,'rb') 
    object=pickle.load(file) 
    file.close() 
    return object 
 
 
>>>list_object=[1,1,2,3,5,8,'a','e','i','o','u'] 
>>>save(list_file,list_object) 
>>>new_list=load(list_file) 
>>>new_list 
[1, 1, 2, 3, 5, 8, 'a', 'e', 'i', 'o', 'u'

Read Python Persistence online: https://riptutorial.com/python/topic/7810/python-persistence

https://riptutorial.com/ 699

https://riptutorial.com/python/topic/7810/python-persistence


Chapter 144: Python Requests Post

Introduction

Documentation for the Python Requests module in the context of the HTTP POST method and its 
corresponding Requests function

Examples

Simple Post

from requests import post 
 
foo = post('http://httpbin.org/post', data = {'key':'value'})

Will perform a simple HTTP POST operation. Posted data can be inmost formats, however key 
value pairs are most prevalent.

Headers

Headers can be viewed:

print(foo.headers)

An example response:

{'Content-Length': '439', 'X-Processed-Time': '0.000802993774414', 'X-Powered-By': 'Flask', 
'Server': 'meinheld/0.6.1', 'Connection': 'keep-alive', 'Via': '1.1 vegur', 'Access-Control-
Allow-Credentials': 'true', 'Date': 'Sun, 21 May 2017 20:56:05 GMT', 'Access-Control-Allow-
Origin': '*', 'Content-Type': 'application/json'}

Headers can also be prepared before post:

headers = {'Cache-Control':'max-age=0', 
        'Upgrade-Insecure-Requests':'1', 
        'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, 
like Gecko) Chrome/54.0.2840.99 Safari/537.36', 
        'Content-Type':'application/x-www-form-urlencoded', 
        'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8', 
        'Referer':'https://www.groupon.com/signup', 
        'Accept-Encoding':'gzip, deflate, br', 
        'Accept-Language':'es-ES,es;q=0.8' 
        } 
 
 foo = post('http://httpbin.org/post', headers=headers, data = {'key':'value'})

Encoding

Encoding can be set and viewed in much the same way:

https://riptutorial.com/ 700



 print(foo.encoding) 
 
'utf-8' 
 
foo.encoding = 'ISO-8859-1'

SSL Verification

Requests by default validates SSL certificates of domains. This can be overridden:

foo = post('http://httpbin.org/post', data = {'key':'value'}, verify=False)

Redirection

Any redirection will be followed (e.g. http to https) this can also be changed:

foo = post('http://httpbin.org/post', data = {'key':'value'}, allow_redirects=False)

If the post operation has been redirected, this value can be accessed:

print(foo.url) 

A full history of redirects can be viewed:

print(foo.history) 

Form Encoded Data

from requests import post 
 
payload = {'key1' : 'value1', 
           'key2' : 'value2' 
           } 
 
foo = post('http://httpbin.org/post', data=payload)

To pass form encoded data with the post operation, data must be structured as dictionary and 
supplied as the data parameter.

If the data does not want to be form encoded, simply pass a string, or integer to the data 
parameter.

Supply the dictionary to the json parameter for Requests to format the data automatically:

from requests import post 
 
payload = {'key1' : 'value1', 'key2' : 'value2'} 
 
foo = post('http://httpbin.org/post', json=payload)

https://riptutorial.com/ 701



File Upload

With the Requests module,its is only necessary to provide a file handle as opposed to the contents 
retrieved with .read():

from requests import post 
 
files = {'file' : open('data.txt', 'rb')} 
 
foo = post('http://http.org/post', files=files)

Filename, content_type and headers can also be set:

files = {'file': ('report.xls', open('report.xls', 'rb'), 'application/vnd.ms-excel', 
{'Expires': '0'})} 
 
foo = requests.post('http://httpbin.org/post', files=files)

Strings can also be sent as a file, as long they are supplied as the files parameter.

Multiple Files

Multiple files can be supplied in much the same way as one file:

multiple_files = [ 
    ('images', ('foo.png', open('foo.png', 'rb'), 'image/png')), 
    ('images', ('bar.png', open('bar.png', 'rb'), 'image/png'))] 
 
foo = post('http://httpbin.org/post', files=multiple_files)

Responses

Response codes can be viewed from a post operation:

from requests import post 
 
foo = post('http://httpbin.org/post', data={'data' : 'value'}) 
print(foo.status_code)

Returned Data

Accessing data that is returned:

foo = post('http://httpbin.org/post', data={'data' : 'value'}) 
print(foo.text)

Raw Responses

In the instances where you need to access the underlying urllib3 response.HTTPResponse object, 
this can be done by the following:

https://riptutorial.com/ 702



foo = post('http://httpbin.org/post', data={'data' : 'value'}) 
res = foo.raw 
 
print(res.read())

Authentication

Simple HTTP Authentication

Simple HTTP Authentication can be achieved with the following:

from requests import post 
 
foo = post('http://natas0.natas.labs.overthewire.org', auth=('natas0', 'natas0'))

This is technically short hand for the following:

from requests import post 
from requests.auth import HTTPBasicAuth 
 
foo = post('http://natas0.natas.labs.overthewire.org', auth=HTTPBasicAuth('natas0', 'natas0'))

HTTP Digest Authentication

HTTP Digest Authentication is done in a very similar way, Requests provides a different object for 
this:

from requests import post 
from requests.auth import HTTPDigestAuth 
 
foo = post('http://natas0.natas.labs.overthewire.org', auth=HTTPDigestAuth('natas0', 
'natas0'))

Custom Authentication

In some cases the built in authentication mechanisms may not be enough, imagine this example:

A server is configured to accept authentication if the sender has the correct user-agent string, a 
certain header value and supplies the correct credentials through HTTP Basic Authentication. To 
achieve this a custom authentication class should be prepared, subclassing AuthBase, which is 
the base for Requests authentication implementations:

from requests.auth import AuthBase 
from requests.auth import _basic_auth_str 
from requests._internal_utils import to_native_string 
 
class CustomAuth(AuthBase): 
 
    def __init__(self, secret_header, user_agent , username, password): 
        # setup any auth-related data here 
        self.secret_header =  secret_header 
        self.user_agent = user_agent 

https://riptutorial.com/ 703



        self.username = username 
        self.password = password 
 
    def __call__(self, r): 
        # modify and return the request 
        r.headers['X-Secret'] = self.secret_header 
        r.headers['User-Agent'] = self.user_agent 
        r.headers['Authorization'] = _basic_auth_str(self.username, self.password) 
 
        return r

This can then be utilized with the following code:

foo = get('http://test.com/admin', auth=CustomAuth('SecretHeader', 'CustomUserAgent', 'user', 
'password' ))

Proxies

Each request POST operation can be configured to use network proxies

HTTP/S Proxies

from requests import post 
 
proxies = { 
  'http': 'http://192.168.0.128:3128', 
  'https': 'http://192.168.0.127:1080', 
   } 
 
foo = requests.post('http://httpbin.org/post', proxies=proxies)

HTTP Basic Authentication can be provided in this manner:

proxies = {'http': 'http://user:pass@192.168.0.128:312'} 
foo = requests.post('http://httpbin.org/post', proxies=proxies)

SOCKS Proxies

The use of socks proxies requires 3rd party dependencies requests[socks], once installed socks 
proxies are used in a very similar way to HTTPBasicAuth:

proxies = { 
'http': 'socks5://user:pass@host:port', 
'https': 'socks5://user:pass@host:port' 
} 
 
foo = requests.post('http://httpbin.org/post', proxies=proxies)

Read Python Requests Post online: https://riptutorial.com/python/topic/10021/python-requests-
post

https://riptutorial.com/ 704

https://riptutorial.com/python/topic/10021/python-requests-post
https://riptutorial.com/python/topic/10021/python-requests-post


Chapter 145: Python Serial Communication 
(pyserial)

Syntax

ser.read(size=1)•

ser.readline()•

ser.write()•

Parameters

parameter details

port Device name e.g. /dev/ttyUSB0 on GNU/Linux or COM3 on Windows.

baudrate
baudrate type: int default: 9600 standard values: 50, 75, 110, 134, 150, 200, 
300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400, 57600, 115200

Remarks

For more details check out pyserial documentation

Examples

Initialize serial device

import serial 
#Serial takes these two parameters: serial device and baudrate 
ser = serial.Serial('/dev/ttyUSB0', 9600)

Read from serial port

Initialize serial device

import serial 
#Serial takes two parameters: serial device and baudrate 
ser = serial.Serial('/dev/ttyUSB0', 9600)

to read single byte from serial device

data = ser.read()

https://riptutorial.com/ 705

https://pythonhosted.org/pyserial/index.html


to read given number of bytes from the serial device

data = ser.read(size=5)

to read one line from serial device.

data = ser.readline()

to read the data from serial device while something is being written over it.

#for python2.7 
data = ser.read(ser.inWaiting()) 
 
#for python3 
ser.read(ser.inWaiting)

Check what serial ports are available on your machine

To get a list of available serial ports use

python -m serial.tools.list_ports

at a command prompt or

from serial.tools import list_ports 
list_ports.comports()  # Outputs list of available serial ports

from the Python shell.

Read Python Serial Communication (pyserial) online: 
https://riptutorial.com/python/topic/5744/python-serial-communication--pyserial-

https://riptutorial.com/ 706

https://riptutorial.com/python/topic/5744/python-serial-communication--pyserial-


Chapter 146: Python Server Sent Events

Introduction

Server Sent Events (SSE) is a unidirectional connection between a server and a client (usually a 
web browser) that allows the server to "push" information to the client. It is much like websockets 
and long polling. The main difference between SSE and websockets is that SSE is unidirectional, 
only the server can send info to the client, where as with websockets, both can send info to 
eachother. SSE is typically considered to be much simpler to use/implement than websockets.

Examples

Flask SSE

@route("/stream") 
def stream(): 
    def event_stream(): 
        while True: 
            if message_to_send: 
                yield "data: 
                    {}\n\n".format(message_to_send)" 
 
    return Response(event_stream(), mimetype="text/event-stream")

Asyncio SSE

This example uses the asyncio SSE library: https://github.com/brutasse/asyncio-sse

import asyncio 
import sse 
 
class Handler(sse.Handler): 
    @asyncio.coroutine 
    def handle_request(self): 
        yield from asyncio.sleep(2) 
        self.send('foo') 
        yield from asyncio.sleep(2) 
        self.send('bar', event='wakeup') 
 
start_server = sse.serve(Handler, 'localhost', 8888) 
asyncio.get_event_loop().run_until_complete(start_server) 
asyncio.get_event_loop().run_forever()

Read Python Server Sent Events online: https://riptutorial.com/python/topic/9100/python-server-
sent-events

https://riptutorial.com/ 707

https://github.com/brutasse/asyncio-sse
https://riptutorial.com/python/topic/9100/python-server-sent-events
https://riptutorial.com/python/topic/9100/python-server-sent-events


Chapter 147: Python speed of program

Examples

Notation

Basic Idea

The notation used when describing the speed of your Python program is called Big-O notation. 
Let's say you have a function:

def list_check(to_check, the_list): 
    for item in the_list: 
        if to_check == item: 
          return True 
    return False

This is a simple function to check if an item is in a list. To describe the complexity of this function, 
you will say O(n). This means "Order of n" as the O function is known as the Order function.

O(n) - generally n is the number of items in container

O(k) - generally k is the value of the parameter or the number of elements in the parameter

List operations

Operations : Average Case (assumes parameters are randomly generated)

Append : O(1)

Copy : O(n)

Del slice : O(n)

Delete item : O(n)

Insert : O(n)

Get item : O(1)

Set item : O(1)

Iteration : O(n)

Get slice : O(k)

Set slice : O(n + k)

Extend : O(k)

https://riptutorial.com/ 708



Sort : O(n log n)

Multiply : O(nk)

x in s : O(n)

min(s), max(s) :O(n)

Get length : O(1)

Deque operations

A deque is a double-ended queue.

class Deque: 
def __init__(self): 
    self.items = [] 
 
def isEmpty(self): 
    return self.items == [] 
 
def addFront(self, item): 
    self.items.append(item) 
 
def addRear(self, item): 
    self.items.insert(0,item) 
 
def removeFront(self): 
    return self.items.pop() 
 
def removeRear(self): 
    return self.items.pop(0) 
 
def size(self): 
    return len(self.items)

Operations : Average Case (assumes parameters are randomly generated)

Append : O(1)

Appendleft : O(1)

Copy : O(n)

Extend : O(k)

Extendleft : O(k)

Pop : O(1)

Popleft : O(1)

Remove : O(n)

Rotate : O(k)

https://riptutorial.com/ 709



Set operations

Operation : Average Case (assumes parameters generated randomly) : Worst case

x in s : O(1)

Difference s - t : O(len(s))

Intersection s&t : O(min(len(s), len(t))) : O(len(s) * len(t)

Multiple intersection s1&s2&s3&...&sn : : (n-1) * O(l) where l is max(len(s1),...,len(sn))

s.difference_update(t) : O(len(t)) : O(len(t) * len(s))

s.symetric_difference_update(t) : O(len(t))

Symetric difference s^t : O(len(s)) : O(len(s) * len(t))

Union s|t : O(len(s) + len(t))

Algorithmic Notations...

There are certain principles that apply to optimization in any computer language, and Python is no 
exception. Don't optimize as you go: Write your program without regard to possible 
optimizations, concentrating instead on making sure that the code is clean, correct, and 
understandable. If it's too big or too slow when you've finished, then you can consider optimizing it.

Remember the 80/20 rule: In many fields you can get 80% of the result with 20% of the effort 
(also called the 90/10 rule - it depends on who you talk to). Whenever you're about to optimize 
code, use profiling to find out where that 80% of execution time is going, so you know where to 
concentrate your effort.

Always run "before" and "after" benchmarks: How else will you know that your optimizations 
actually made a difference? If your optimized code turns out to be only slightly faster or smaller 
than the original version, undo your changes and go back to the original, clear code.

Use the right algorithms and data structures: Don't use an O(n2) bubble sort algorithm to sort a 
thousand elements when there's an O(n log n) quicksort available. Similarly, don't store a 
thousand items in an array that requires an O(n) search when you could use an O(log n) binary 
tree, or an O(1) Python hash table.

For more visit the link below... Python Speed Up

The following 3 asymptotic notations are mostly used to represent time complexity of algorithms.

Θ Notation: The theta notation bounds a functions from above and below, so it defines 
exact asymptotic behavior. A simple way to get Theta notation of an expression is to drop 
low order terms and ignore leading constants. For example, consider the following 
expression. 3n3 + 6n2 + 6000 = Θ(n3) Dropping lower order terms is always fine because 

1. 

https://riptutorial.com/ 710

https://wiki.python.org/moin/PythonSpeed/PerformanceTips


there will always be a n0 after which Θ(n3) has higher values than Θn2) irrespective of the 

constants involved. For a given function g(n), we denote Θ(g(n)) is following set of functions. 

Θ(g(n)) = {f(n): there exist positive constants c1, c2 and n0 such that 0 <= c1g(n) <= f(n) <= 
c2g(n) for all n >= n0} The above definition means, if f(n) is theta of g(n), then the value f(n) 
is always between c1g(n) and c2g(n) for large values of n (n >= n0). The definition of theta 
also requires that f(n) must be non-negative for values of n greater than n0.

Big O Notation: The Big O notation defines an upper bound of an algorithm, it bounds a 
function only from above. For example, consider the case of Insertion Sort. It takes linear 
time in best case and quadratic time in worst case. We can safely say that the time 
complexity of Insertion sort is O(n^2). Note that O(n^2) also covers linear time. If we use Θ 
notation to represent time complexity of Insertion sort, we have to use two statements for 
best and worst cases:

2. 

The worst case time complexity of Insertion Sort is Θ(n^2).1. 

The best case time complexity of Insertion Sort is Θ(n).2. 

The Big O notation is useful when we only have upper bound on time complexity of an algorithm. 
Many times we easily find an upper bound by simply looking at the algorithm. O(g(n)) = { f(n): 
there exist positive constants c and n0 such that 0 <= f(n) <= cg(n) for all n >= n0}

Ω Notation: Just as Big O notation provides an asymptotic upper bound on a function, Ω 
notation provides an asymptotic lower bound. Ω Notation< can be useful when we have 
lower bound on time complexity of an algorithm. As discussed in the previous post, the best 
case performance of an algorithm is generally not useful, the Omega notation is the least 
used notation among all three. For a given function g(n), we denote by Ω(g(n)) the set of 

functions. Ω (g(n)) = {f(n): there exist positive constants c and n0 such that 0 <= cg(n) <= f(n) 
for all n >= n0}. Let us consider the same Insertion sort example here. The time complexity 
of Insertion Sort can be written as Ω(n), but it is not a very useful information about insertion 
sort, as we are generally interested in worst case and sometimes in average case.

3. 

Read Python speed of program online: https://riptutorial.com/python/topic/9185/python-speed-of-
program

https://riptutorial.com/ 711

https://riptutorial.com/python/topic/9185/python-speed-of-program
https://riptutorial.com/python/topic/9185/python-speed-of-program


Chapter 148: Python Virtual Environment - 
virtualenv

Introduction

A Virtual Environment ("virtualenv") is a tool to create isolated Python environments. It keeps the 
dependencies required by different projects in separate places, by creating virtual Python env for 
them. It solves the “project A depends on version 2.xxx but, project B needs 2.xxx” dilemma, and 
keeps your global site-packages directory clean and manageable.

"virtualenv" creates a folder which contains all the necessary libs and bins to use the packages 
that a Python project would need.

Examples

Installation

Install virtualenv via pip / (apt-get):

pip install virtualenv

OR

apt-get install python-virtualenv

Note: In case you are getting permission issues, use sudo.

Usage

$ cd test_proj

Create virtual environment:

$ virtualenv test_proj

To begin using the virtual environment, it needs to be activated:

$ source test_project/bin/activate

To exit your virtualenv just type “deactivate”:

$ deactivate

https://riptutorial.com/ 712



Install a package in your Virtualenv

If you look at the bin directory in your virtualenv, you’ll see easy_install which has been modified to 
put eggs and packages in the virtualenv’s site-packages directory. To install an app in your virtual 
environment:

$ source test_project/bin/activate 
$ pip install flask

At this time, you don't have to use sudo since the files will all be installed in the local virtualenv 
site-packages directory. This was created as your own user account.

Other useful virtualenv commands

lsvirtualenv : List all of the environments.

cdvirtualenv : Navigate into the directory of the currently activated virtual environment, so you 
can browse its site-packages, for example.

cdsitepackages : Like the above, but directly into site-packages directory.

lssitepackages : Shows contents of site-packages directory.

Read Python Virtual Environment - virtualenv online: 
https://riptutorial.com/python/topic/9782/python-virtual-environment---virtualenv

https://riptutorial.com/ 713

https://riptutorial.com/python/topic/9782/python-virtual-environment---virtualenv


Chapter 149: Queue Module

Introduction

The Queue module implements multi-producer, multi-consumer queues. It is especially useful in 
threaded programming when information must be exchanged safely between multiple threads. 
There are three types of queues provides by queue module,Which are as following : 1. Queue 2. 
LifoQueue 3. PriorityQueue Exception which could be come: 1. Full (queue overflow) 2. Empty 
(queue underflow)

Examples

Simple example

from Queue import Queue 
 
question_queue = Queue() 
 
for x in range(1,10): 
    temp_dict = ('key', x) 
    question_queue.put(temp_dict) 
 
while(not question_queue.empty()): 
    item = question_queue.get() 
    print(str(item))

Output:

('key', 1) 
('key', 2) 
('key', 3) 
('key', 4) 
('key', 5) 
('key', 6) 
('key', 7) 
('key', 8) 
('key', 9)

Read Queue Module online: https://riptutorial.com/python/topic/8339/queue-module

https://riptutorial.com/ 714

https://riptutorial.com/python/topic/8339/queue-module


Chapter 150: Raise Custom Errors / 
Exceptions

Introduction

Python has many built-in exceptions which force your program to output an error when something 
in it goes wrong.

However, sometimes you may need to create custom exceptions that serve your purpose.

In Python, users can define such exceptions by creating a new class. This exception class has to 
be derived, either directly or indirectly, from Exception class. Most of the built-in exceptions are 
also derived from this class.

Examples

Custom Exception

Here, we have created a user-defined exception called CustomError which is derived from the 
Exception class. This new exception can be raised, like other exceptions, using the raise 
statement with an optional error message.

class CustomError(Exception): 
       pass 
 
x = 1 
 
if x == 1: 
    raise CustomError('This is custom error')

Output:

Traceback (most recent call last): 
  File "error_custom.py", line 8, in <module> 
    raise CustomError('This is custom error') 
__main__.CustomError: This is custom error

Catch custom Exception

This example shows how to catch custom Exception

class CustomError(Exception): 
     pass 
 
try: 
    raise CustomError('Can you catch me ?') 
except CustomError as e: 

https://riptutorial.com/ 715



    print ('Catched CustomError :{}'.format(e)) 
except Exception as e: 
    print ('Generic exception: {}'.format(e))

Output:

Catched CustomError :Can you catch me ?

Read Raise Custom Errors / Exceptions online: https://riptutorial.com/python/topic/10882/raise-
custom-errors---exceptions

https://riptutorial.com/ 716

https://riptutorial.com/python/topic/10882/raise-custom-errors---exceptions
https://riptutorial.com/python/topic/10882/raise-custom-errors---exceptions


Chapter 151: Random module

Syntax

random.seed(a=None, version=2) (version is only avaiable for python 3.x)•
random.getstate()•
random.setstate(state)•
random.randint(a, b)•
random.randrange(stop)•
random.randrange(start, stop, step=1)•
random.choice(seq)•
random.shuffle(x, random=random.random)•
random.sample(population, k)•

Examples

Random and sequences: shuffle, choice and sample

import random

shuffle()

You can use random.shuffle() to mix up/randomize the items in a mutable and indexable 
sequence. For example a list:

laughs = ["Hi", "Ho", "He"] 
 
random.shuffle(laughs)     # Shuffles in-place! Don't do: laughs = random.shuffle(laughs) 
 
print(laughs) 
# Out: ["He", "Hi", "Ho"]  # Output may vary!

choice()

Takes a random element from an arbitary sequence:

print(random.choice(laughs)) 
# Out: He                  # Output may vary!

sample()

https://riptutorial.com/ 717



Like choice it takes random elements from an arbitary sequence but you can specify how many:

#                   |--sequence--|--number--| 
print(random.sample(    laughs   ,     1    ))  # Take one element 
# Out: ['Ho']                    # Output may vary!

it will not take the same element twice:

print(random.sample(laughs, 3))  # Take 3 random element from the sequence. 
# Out: ['Ho', 'He', 'Hi']        # Output may vary! 
 
print(random.sample(laughs, 4))  # Take 4 random element from the 3-item sequence.

ValueError: Sample larger than population

Creating random integers and floats: randint, randrange, random, and uniform

import random

randint()

Returns a random integer between x and y (inclusive):

random.randint(x, y)

For example getting a random number between 1 and 8:

random.randint(1, 8) # Out: 8

randrange()

random.randrange has the same syntax as range and unlike random.randint, the last value is not 
inclusive:

random.randrange(100)       # Random integer between 0 and 99 
random.randrange(20, 50)    # Random integer between 20 and 49 
random.rangrange(10, 20, 3) # Random integer between 10 and 19 with step 3 (10, 13, 16 and 19)

https://riptutorial.com/ 718



random

Returns a random floating point number between 0 and 1:

random.random() # Out: 0.66486093215306317

uniform

Returns a random floating point number between x and y (inclusive):

random.uniform(1, 8) # Out: 3.726062641730108

Reproducible random numbers: Seed and State

Setting a specific Seed will create a fixed random-number series:

https://riptutorial.com/ 719

http://i.stack.imgur.com/DqZkG.png


random.seed(5)                 # Create a fixed state 
print(random.randrange(0, 10))  # Get a random integer between 0 and 9 
# Out: 9 
print(random.randrange(0, 10)) 
# Out: 4

Resetting the seed will create the same "random" sequence again:

random.seed(5)                 # Reset the random module to the same fixed state. 
print(random.randrange(0, 10)) 
# Out: 9 
print(random.randrange(0, 10)) 
# Out: 4

Since the seed is fixed these results are always 9 and 4. If having specific numbers is not required 
only that the values will be the same one can also just use getstate and setstate to recover to a 
previous state:

save_state = random.getstate()  # Get the current state 
print(random.randrange(0, 10)) 
# Out: 5 
print(random.randrange(0, 10)) 
# Out: 8 
 
random.setstate(save_state)     # Reset to saved state 
print(random.randrange(0, 10)) 
# Out: 5 
print(random.randrange(0, 10)) 
# Out: 8

To pseudo-randomize the sequence again you seed with None:

random.seed(None)

Or call the seed method with no arguments:

random.seed()

Create cryptographically secure random numbers

By default the Python random module use the Mersenne Twister PRNG to generate random 
numbers, which, although suitable in domains like simulations, fails to meet security requirements 
in more demanding environments.

In order to create a cryptographically secure pseudorandom number, one can use SystemRandom 
which, by using os.urandom, is able to act as a Cryptographically secure pseudorandom number 
generator, CPRNG.

The easiest way to use it simply involves initializing the SystemRandom class. The methods provided 
are similar to the ones exported by the random module.

https://riptutorial.com/ 720

https://en.wikipedia.org/wiki/Pseudorandom_number_generator
https://docs.python.org/3/library/random.html#random.SystemRandom
https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator


from random import SystemRandom 
secure_rand_gen = SystemRandom()

In order to create a random sequence of 10 ints in range [0, 20], one can simply call randrange():

print([secure_rand_gen.randrange(10) for i in range(10)]) 
# [9, 6, 9, 2, 2, 3, 8, 0, 9, 9]

To create a random integer in a given range, one can use randint:

print(secure_rand_gen.randint(0, 20)) 
# 5

and, accordingly for all other methods. The interface is exactly the same, the only change is the 
underlying number generator.

You can also use os.urandom directly to obtain cryptographically secure random bytes.

Creating a random user password

In order to create a random user password we can use the symbols provided in the string module. 
Specifically punctuation for punctuation symbols, ascii_letters for letters and digits for digits:

from string import punctuation, ascii_letters, digits

We can then combine all these symbols in a name named symbols:

symbols = ascii_letters + digits + punctuation

Remove either of these to create a pool of symbols with fewer elements.

After this, we can use random.SystemRandom to generate a password. For a 10 length password:

secure_random = random.SystemRandom() 
password = "".join(secure_random.choice(symbols) for i in range(10)) 
print(password)  # '^@g;J?]M6e'

Note that other routines made immediately available by the random module — such as 
random.choice, random.randint, etc. — are unsuitable for cryptographic purposes.

Behind the curtains, these routines use the Mersenne Twister PRNG, which does not satisfy the 
requirements of a CSPRNG. Thus, in particular, you should not use any of them to generate 
passwords you plan to use. Always use an instance of SystemRandom as shown above.

Python 3.x3.6

Starting from Python 3.6, the secrets module is available, which exposes cryptographically safe 
functionality.

https://riptutorial.com/ 721

https://docs.python.org/3/library/os.html#os.urandom
https://en.wikipedia.org/wiki/Mersenne_Twister
https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator


Quoting the official documentation, to generate "a ten-character alphanumeric password with at 
least one lowercase character, at least one uppercase character, and at least three digits," you 
could:

import string 
alphabet = string.ascii_letters + string.digits 
while True: 
    password = ''.join(choice(alphabet) for i in range(10)) 
    if (any(c.islower() for c in password) 
            and any(c.isupper() for c in password) 
            and sum(c.isdigit() for c in password) >= 3): 
        break

Random Binary Decision

import random 
 
probability = 0.3 
 
if random.random() < probability: 
    print("Decision with probability 0.3") 
else: 
    print("Decision with probability 0.7")

Read Random module online: https://riptutorial.com/python/topic/239/random-module

https://riptutorial.com/ 722

https://docs.python.org/3.6/library/secrets.html
https://riptutorial.com/python/topic/239/random-module


Chapter 152: Reading and Writing CSV

Examples

Writing a TSV file

Python

import csv 
 
with open('/tmp/output.tsv', 'wt') as out_file: 
    tsv_writer = csv.writer(out_file, delimiter='\t') 
    tsv_writer.writerow(['name', 'field']) 
    tsv_writer.writerow(['Dijkstra', 'Computer Science']) 
    tsv_writer.writerow(['Shelah', 'Math']) 
    tsv_writer.writerow(['Aumann', 'Economic Sciences'])

Output file

$ cat /tmp/output.tsv 
 
name    field 
Dijkstra    Computer Science 
Shelah    Math 
Aumann    Economic Sciences

Using pandas

Write a CSV file from a dict or a DataFrame.

import pandas as pd 
 
d = {'a': (1, 101), 'b': (2, 202), 'c': (3, 303)} 
pd.DataFrame.from_dict(d, orient="index") 
df.to_csv("data.csv")

Read a CSV file as a DataFrame and convert it to a dict:

df = pd.read_csv("data.csv") 
d = df.to_dict()

Read Reading and Writing CSV online: https://riptutorial.com/python/topic/2116/reading-and-
writing-csv

https://riptutorial.com/ 723

https://riptutorial.com/python/topic/2116/reading-and-writing-csv
https://riptutorial.com/python/topic/2116/reading-and-writing-csv


Chapter 153: Recursion

Remarks

Recursion needs a stop condition stopCondition in order to exit the recursion.

The original variable must be passed on to the recursive function so it becomes stored.

Examples

Sum of numbers from 1 to n

If I wanted to find out the sum of numbers from 1 to n where n is a natural number, I can do 1 + 2 + 
3 + 4 + ... + (several hours later) + n. Alternatively, I could write a for loop:

n = 0 
for i in range (1, n+1): 
    n += i

Or I could use a technique known as recursion:

def recursion(n): 
    if n == 1: 
        return 1 
    return n + recursion(n - 1)

Recursion has advantages over the above two methods. Recursion takes less time than writing 
out 1 + 2 + 3 for a sum from 1 to 3. For recursion(4), recursion can be used to work backwards:

Function calls: ( 4 -> 4 + 3 -> 4 + 3 + 2 -> 4 + 3 + 2 + 1 -> 10 )

Whereas the for loop is working strictly forwards: ( 1 -> 1 + 2 -> 1 + 2 + 3 -> 1 + 2 + 3 + 4 -> 10 ). 
Sometimes the recursive solution is simpler than the iterative solution. This is evident when 
implementing a reversal of a linked list.

The What, How, and When of Recursion

Recursion occurs when a function call causes that same function to be called again before the 
original function call terminates. For example, consider the well-known mathematical expression x! 
(i.e. the factorial operation). The factorial operation is defined for all nonnegative integers as 
follows:

If the number is 0, then the answer is 1.•
Otherwise, the answer is that number times the factorial of one less than that number.•

In Python, a naïve implementation of the factorial operation can be defined as a function as 
follows:

https://riptutorial.com/ 724



def factorial(n): 
    if n == 0: 
        return 1 
    else: 
        return n * factorial(n - 1)

Recursion functions can be difficult to grasp sometimes, so let's walk through this step-by-step. 
Consider the expression factorial(3). This and all function calls create a new environment. An 
environment is basically just a table that maps identifiers (e.g. n, factorial, print, etc.) to their 
corresponding values. At any point in time, you can access the current environment using locals()
. In the first function call, the only local variable that gets defined is n = 3. Therefore, printing 
locals() would show {'n': 3}. Since n == 3, the return value becomes n * factorial(n - 1).

At this next step is where things might get a little confusing. Looking at our new expression, we 
already know what n is. However, we don't yet know what factorial(n - 1) is. First, n - 1 
evaluates to 2. Then, 2 is passed to factorial as the value for n. Since this is a new function call, a 
second environment is created to store this new n. Let A be the first environment and B be the 
second environment. A still exists and equals {'n': 3}, however, B (which equals {'n': 2}) is the 
current environment. Looking at the function body, the return value is, again, n * factorial(n - 1). 
Without evaluating this expression, let's substitute it into the original return expression. By doing 
this, we're mentally discarding B, so remember to substitute n accordingly (i.e. references to B's n 
are replaced with n - 1 which uses A's n). Now, the original return expression becomes n * ((n - 
1) * factorial((n - 1) - 1)). Take a second to ensure that you understand why this is so.

Now, let's evaluate the factorial((n - 1) - 1)) portion of that. Since A's n == 3, we're passing 1 
into factorial. Therefore, we are creating a new environment C which equals {'n': 1}. Again, the 
return value is n * factorial(n - 1). So let's replace factorial((n - 1) - 1)) of the “original” return 
expression similarly to how we adjusted the original return expression earlier. The “original” 
expression is now n * ((n - 1) * ((n - 2) * factorial((n - 2) - 1))).

Almost done. Now, we need to evaluate factorial((n - 2) - 1). This time, we're passing in 0. 
Therefore, this evaluates to 1. Now, let's perform our last substitution. The “original” return 
expression is now n * ((n - 1) * ((n - 2) * 1)). Recalling that the original return expression is 
evaluated under A, the expression becomes 3 * ((3 - 1) * ((3 - 2) * 1)). This, of course, 
evaluates to 6. To confirm that this is the correct answer, recall that 3! == 3 * 2 * 1 == 6. Before 
reading any further, be sure that you fully understand the concept of environments and how they 
apply to recursion.

The statement if n == 0: return 1 is called a base case. This is because, it exhibits no recursion. 
A base case is absolutely required. Without one, you'll run into infinite recursion. With that said, as 
long as you have at least one base case, you can have as many cases as you want. For example, 
we could have equivalently written factorial as follows:

def factorial(n): 
    if n == 0: 
        return 1 
    elif n == 1: 
        return 1 
    else: 
        return n * factorial(n - 1)

https://riptutorial.com/ 725



You may also have multiple recursion cases, but we won't get into that since it's relatively 
uncommon and is often difficult to mentally process.

You can also have “parallel” recursive function calls. For example, consider the Fibonacci 
sequence which is defined as follows:

If the number is 0, then the answer is 0.•
If the number is 1, then the answer is 1.•
Otherwise, the answer is the sum of the previous two Fibonacci numbers.•

We can define this is as follows:

def fib(n): 
    if n == 0 or n == 1: 
        return n 
    else: 
        return fib(n - 2) + fib(n - 1)

I won't walk through this function as thoroughly as I did with factorial(3), but the final return value 
of fib(5) is equivalent to the following (syntactically invalid) expression:

( 
  fib((n - 2) - 2) 
  + 
  ( 
    fib(((n - 2) - 1) - 2) 
    + 
    fib(((n - 2) - 1) - 1) 
  ) 
) 
+ 
( 
  ( 
    fib(((n - 1) - 2) - 2) 
    + 
    fib(((n - 1) - 2) - 1) 
  ) 
  + 
  ( 
    fib(((n - 1) - 1) - 2) 
    + 
    ( 
      fib((((n - 1) - 1) - 1) - 2) 
      + 
      fib((((n - 1) - 1) - 1) - 1) 
    ) 
  ) 
)

This becomes (1 + (0 + 1)) + ((0 + 1) + (1 + (0 + 1))) which of course evaluates to 5.

Now, let's cover a few more vocabulary terms:

A tail call is simply a recursive function call which is the last operation to be performed 
before returning a value. To be clear, return foo(n - 1) is a tail call, but return foo(n - 1) + 

•

https://riptutorial.com/ 726

https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Tail_call


1 is not (since the addition is the last operation).
Tail call optimization (TCO) is a way to automatically reduce recursion in recursive 
functions.

•

Tail call elimination (TCE) is the reduction of a tail call to an expression that can be 
evaluated without recursion. TCE is a type of TCO.

•

Tail call optimization is helpful for a number of reasons:

The interpreter can minimize the amount of memory occupied by environments. Since no 
computer has unlimited memory, excessive recursive function calls would lead to a stack 
overflow.

•

The interpreter can reduce the number of stack frame switches.•

Python has no form of TCO implemented for a number of a reasons. Therefore, other techniques 
are required to skirt this limitation. The method of choice depends on the use case. With some 
intuition, the definitions of factorial and fib can relatively easily be converted to iterative code as 
follows:

def factorial(n): 
    product = 1 
    while n > 1: 
        product *= n 
        n -= 1 
    return product 
 
def fib(n): 
    a, b = 0, 1 
    while n > 0: 
        a, b = b, a + b 
        n -= 1 
    return a

This is usually the most efficient way to manually eliminate recursion, but it can become rather 
difficult for more complex functions.

Another useful tool is Python's lru_cache decorator which can be used to reduce the number of 
redundant calculations.

You now have an idea as to how to avoid recursion in Python, but when should you use 
recursion? The answer is “not often”. All recursive functions can be implemented iteratively. It's 
simply a matter of figuring out how to do so. However, there are rare cases in which recursion is 
okay. Recursion is common in Python when the expected inputs wouldn't cause a significant 
number of a recursive function calls.

If recursion is a topic that interests you, I implore you to study functional languages such as 
Scheme or Haskell. In such languages, recursion is much more useful.

Please note that the above example for the Fibonacci sequence, although good at showing how to 
apply the definition in python and later use of the lru cache, has an inefficient running time since it 
makes 2 recursive calls for each non base case. The number of calls to the function grows 
exponentially to n. 

https://riptutorial.com/ 727

https://en.wikipedia.org/wiki/Stack_overflow
https://en.wikipedia.org/wiki/Stack_overflow
https://en.wikipedia.org/wiki/Call_stack
http://neopythonic.blogspot.com/2009/04/tail-recursion-elimination.html
http://www.riptutorial.com/python/example/19930/lru-cache


Rather non-intuitively a more efficient implementation would use linear recursion:

def fib(n): 
    if n <= 1: 
        return (n,0) 
    else: 
        (a, b) = fib(n - 1) 
        return (a + b, a)

But that one has the issue of returning a pair of numbers. This emphasizes that some functions 
really do not gain much from recursion.

Tree exploration with recursion

Say we have the following tree:

root 
- A 
  - AA 
  - AB 
- B 
  - BA 
  - BB 
    - BBA

Now, if we wish to list all the names of the elements, we could do this with a simple for-loop. We 
assume there is a function get_name() to return a string of the name of a node, a function 
get_children() to return a list of all the sub-nodes of a given node in the tree, and a function 
get_root() to get the root node.

root = get_root(tree) 
for node in get_children(root): 
    print(get_name(node)) 
    for child in get_children(node): 
        print(get_name(child)) 
        for grand_child in get_children(child): 
            print(get_name(grand_child)) 
# prints: A, AA, AB, B, BA, BB, BBA

This works well and fast, but what if the sub-nodes, got sub-nodes of its own? And those sub-
nodes might have more sub-nodes... What if you don't know beforehand how many there will be? 
A method to solve this is the use of recursion.

def list_tree_names(node): 
    for child in get_children(node): 
        print(get_name(child)) 
        list_tree_names(node=child) 
 
list_tree_names(node=get_root(tree)) 
# prints: A, AA, AB, B, BA, BB, BBA

Perhaps you wish to not print, but return a flat list of all node names. This can be done by passing 
a rolling list as a parameter.

https://riptutorial.com/ 728



def list_tree_names(node, lst=[]): 
    for child in get_children(node): 
        lst.append(get_name(child)) 
        list_tree_names(node=child, lst=lst) 
    return lst 
 
list_tree_names(node=get_root(tree)) 
# returns ['A', 'AA', 'AB', 'B', 'BA', 'BB', 'BBA']

Increasing the Maximum Recursion Depth

There is a limit to the depth of possible recursion, which depends on the Python implementation. 
When the limit is reached, a RuntimeError exception is raised:

RuntimeError: Maximum Recursion Depth Exceeded

Here's a sample of a program that would cause this error:

def cursing(depth): 
  try: 
    cursing(depth + 1) # actually, re-cursing 
  except RuntimeError as RE: 
    print('I recursed {} times!'.format(depth)) 
cursing(0) 
# Out: I recursed 1083 times!

It is possible to change the recursion depth limit by using

sys.setrecursionlimit(limit) 

You can check what the current parameters of the limit are by running:

sys.getrecursionlimit()

Running the same method above with our new limit we get

sys.setrecursionlimit(2000) 
cursing(0) 
# Out: I recursed 1997 times!

From Python 3.5, the exception is a RecursionError, which is derived from RuntimeError.

Tail Recursion - Bad Practice

When the only thing returned from a function is a recursive call, it is refered to as tail recursion.

Here's an example countdown written using tail recursion:

def countdown(n): 
    if n == 0: 

https://riptutorial.com/ 729



        print "Blastoff!" 
    else: 
        print n 
        countdown(n-1)

Any computation that can be made using iteration can also be made using recursion. Here is a 
version of find_max written using tail recursion:

def find_max(seq, max_so_far): 
    if not seq: 
        return max_so_far 
    if max_so_far < seq[0]: 
        return find_max(seq[1:], seq[0]) 
    else: 
        return find_max(seq[1:], max_so_far)

Tail recursion is considered a bad practice in Python, since the Python compiler does not handle 
optimization for tail recursive calls. The recursive solution in cases like this use more system 
resources than the equivalent iterative solution.

Tail Recursion Optimization Through Stack Introspection

By default Python's recursion stack cannot exceed 1000 frames. This can be changed by setting 
the sys.setrecursionlimit(15000) which is faster however, this method consumes more memory. 
Instead, we can also solve the Tail Recursion problem using stack introspection.

#!/usr/bin/env python2.4 
# This program shows off a python decorator which implements tail call optimization. It 
# does this by throwing an exception if it is it's own grandparent, and catching such 
# exceptions to recall the stack. 
 
import sys 
 
class TailRecurseException: 
    def __init__(self, args, kwargs): 
        self.args = args 
        self.kwargs = kwargs 
 
def tail_call_optimized(g): 
""" 
This function decorates a function with tail call 
optimization. It does this by throwing an exception 
if it is it's own grandparent, and catching such 
exceptions to fake the tail call optimization. 
 
This function fails if the decorated 
function recurses in a non-tail context. 
""" 
 
    def func(*args, **kwargs): 
        f = sys._getframe() 
        if f.f_back and f.f_back.f_back and f.f_back.f_back.f_code == f.f_code: 
            raise TailRecurseException(args, kwargs) 
        else: 
            while 1: 
                try: 

https://riptutorial.com/ 730



                    return g(*args, **kwargs) 
                except TailRecurseException, e: 
                    args = e.args 
                    kwargs = e.kwargs 
    func.__doc__ = g.__doc__ 
    return func

To optimize the recursive functions, we can use the @tail_call_optimized decorator to call our 
function. Here's a few of the common recursion examples using the decorator described above:

Factorial Example:

@tail_call_optimized 
def factorial(n, acc=1): 
  "calculate a factorial" 
  if n == 0: 
    return acc 
  return factorial(n-1, n*acc) 
 
print factorial(10000) 
# prints a big, big number, 
# but doesn't hit the recursion limit.

Fibonacci Example:

@tail_call_optimized 
def fib(i, current = 0, next = 1): 
  if i == 0: 
    return current 
  else: 
    return fib(i - 1, next, current + next) 
 
print fib(10000) 
# also prints a big number, 
# but doesn't hit the recursion limit.

Read Recursion online: https://riptutorial.com/python/topic/1716/recursion

https://riptutorial.com/ 731

https://riptutorial.com/python/topic/1716/recursion


Chapter 154: Reduce

Syntax

reduce(function, iterable[, initializer])•

Parameters

Parameter Details

function
function that is used for reducing the iterable (must take two arguments). (
positional-only)

iterable iterable that's going to be reduced. (positional-only)

initializer start-value of the reduction. (optional, positional-only)

Remarks

reduce might be not always the most efficient function. For some types there are equivalent 
functions or methods:

sum() for the sum of a sequence containing addable elements (not strings):

sum([1,2,3])                                 # = 6

•

str.join for the concatenation of strings:

''.join(['Hello', ',', ' World'])            # = 'Hello, World'

•

next together with a generator could be a short-circuit variant compared to reduce:

# First falsy item: 
next((i for i in [100, [], 20, 0] if not i)) # = [] 

•

Examples

Overview

# No import needed 
 
 
# No import required... 
from functools import reduce # ... but it can be loaded from the functools module 

https://riptutorial.com/ 732



 
 
from functools import reduce # mandatory

reduce reduces an iterable by applying a function repeatedly on the next element of an iterable 
and the cumulative result so far.

def add(s1, s2): 
    return s1 + s2 
 
asequence = [1, 2, 3] 
 
reduce(add, asequence)  # equivalent to: add(add(1,2),3) 
# Out: 6

In this example, we defined our own add function. However, Python comes with a standard 
equivalent function in the operator module:

import operator 
reduce(operator.add, asequence) 
# Out: 6

reduce can also be passed a starting value:

reduce(add, asequence, 10) 
# Out: 16

Using reduce

def multiply(s1, s2): 
    print('{arg1} * {arg2} = {res}'.format(arg1=s1, 
                                           arg2=s2, 
                                           res=s1*s2)) 
    return s1 * s2 
 
asequence = [1, 2, 3]

Given an initializer the function is started by applying it to the initializer and the first iterable 
element:

cumprod = reduce(multiply, asequence, 5) 
# Out: 5 * 1 = 5 
#      5 * 2 = 10 
#      10 * 3 = 30 
print(cumprod) 
# Out: 30

Without initializer parameter the reduce starts by applying the function to the first two list 
elements:

cumprod = reduce(multiply, asequence) 

https://riptutorial.com/ 733



# Out: 1 * 2 = 2 
#      2 * 3 = 6 
print(cumprod) 
# Out: 6

Cumulative product

import operator 
reduce(operator.mul, [10, 5, -3]) 
# Out: -150

Non short-circuit variant of any/all

reduce will not terminate the iteration before the iterable has been completly iterated over so it can 
be used to create a non short-circuit any() or all() function:

import operator 
# non short-circuit "all" 
reduce(operator.and_, [False, True, True, True]) # = False 
 
# non short-circuit "any" 
reduce(operator.or_, [True, False, False, False]) # = True

First truthy/falsy element of a sequence (or last element if there is none)

# First falsy element or last element if all are truthy: 
reduce(lambda i, j: i and j, [100, [], 20, 10])    # = [] 
reduce(lambda i, j: i and j, [100, 50, 20, 10])    # = 10 
 
# First truthy element or last element if all falsy: 
reduce(lambda i, j: i or j, [100, [], 20, 0])     # = 100 
reduce(lambda i, j: i or j, ['', {}, [], None])   # = None

Instead of creating a lambda-function it is generally recommended to create a named function:

def do_or(i, j): 
    return i or j 
 
def do_and(i, j): 
    return i and j 
 
reduce(do_or, [100, [], 20, 0])                   # = 100 
reduce(do_and, [100, [], 20, 0])                  # = []

Read Reduce online: https://riptutorial.com/python/topic/328/reduce

https://riptutorial.com/ 734

https://riptutorial.com/python/topic/328/reduce


Chapter 155: Regular Expressions (Regex)

Introduction

Python makes regular expressions available through the re module.

Regular expressions are combinations of characters that are interpreted as rules for matching 
substrings. For instance, the expression 'amount\D+\d+' will match any string composed by the 
word amount plus an integral number, separated by one or more non-digits, such as:amount=100, 
amount is 3, amount is equal to: 33, etc.

Syntax

Direct Regular Expressions•

re.match(pattern, string, flag=0) # Out: match pattern at the beginning of string or None•

re.search(pattern, string, flag=0) # Out: match pattern inside string or None•

re.findall(pattern, string, flag=0) # Out: list of all matches of pattern in string or []•

re.finditer(pattern, string, flag=0) # Out: same as re.findall, but returns iterator object•

re.sub(pattern, replacement, string, flag=0) # Out: string with replacement (string or function) 
in place of pattern

•

Precompiled Regular Expressions•

precompiled_pattern = re.compile(pattern, flag=0)•

precompiled_pattern.match(string) # Out: match at the beginning of string or None•

precompiled_pattern.search(string) # Out: match anywhere in string or None•

precompiled_pattern.findall(string) # Out: list of all matching substrings•

precompiled_pattern.sub(string/pattern/function, string) # Out: replaced string•

Examples

Matching the beginning of a string

The first argument of re.match() is the regular expression, the second is the string to match:

import re 
 
pattern = r"123" 

https://riptutorial.com/ 735

http://www.riptutorial.com/topic/259


string = "123zzb" 
 
re.match(pattern, string) 
# Out: <_sre.SRE_Match object; span=(0, 3), match='123'> 
 
match = re.match(pattern, string) 
 
match.group() 
# Out: '123'

You may notice that the pattern variable is a string prefixed with r, which indicates that the string is 
a raw string literal.

A raw string literal has a slightly different syntax than a string literal, namely a backslash \ in a raw 
string literal means "just a backslash" and there's no need for doubling up backlashes to escape 
"escape sequences" such as newlines (\n), tabs (\t), backspaces (\), form-feeds (\r), and so on. 
In normal string literals, each backslash must be doubled up to avoid being taken as the start of an 
escape sequence.

Hence, r"\n" is a string of 2 characters: \ and n. Regex patterns also use backslashes, e.g. \d 
refers to any digit character. We can avoid having to double escape our strings ("\\d") by using 
raw strings (r"\d").

For instance:

string = "\\t123zzb" # here the backslash is escaped, so there's no tab, just '\' and 't' 
pattern = "\\t123"   # this will match \t (escaping the backslash) followed by 123 
re.match(pattern, string).group()   # no match 
re.match(pattern, "\t123zzb").group()  # matches '\t123' 
 
pattern = r"\\t123" 
re.match(pattern, string).group()   # matches '\\t123' 
 

Matching is done from the start of the string only. If you want to match anywhere use re.search 
instead:

match = re.match(r"(123)", "a123zzb") 
 
match is None 
# Out: True 
 
match = re.search(r"(123)", "a123zzb") 
 
match.group() 
# Out: '123'

Searching

pattern = r"(your base)" 
sentence = "All your base are belong to us." 
 
match = re.search(pattern, sentence) 

https://riptutorial.com/ 736

http://www.riptutorial.com/python/example/2065/searching


match.group(1) 
# Out: 'your base' 
 
match = re.search(r"(belong.*)", sentence) 
match.group(1) 
# Out: 'belong to us.'

Searching is done anywhere in the string unlike re.match. You can also use re.findall.

You can also search at the beginning of the string (use ^),

match = re.search(r"^123", "123zzb") 
match.group(0) 
# Out: '123' 
 
match = re.search(r"^123", "a123zzb") 
match is None 
# Out: True

at the end of the string (use $),

match = re.search(r"123$", "zzb123") 
match.group(0) 
# Out: '123' 
 
match = re.search(r"123$", "123zzb") 
match is None 
# Out: True

or both (use both ^ and $):

match = re.search(r"^123$", "123") 
match.group(0) 
# Out: '123'

Grouping

Grouping is done with parentheses. Calling group() returns a string formed of the matching 
parenthesized subgroups.

match.group() # Group without argument returns the entire match found 
# Out: '123' 
match.group(0) # Specifying 0 gives the same result as specifying no argument 
# Out: '123'

Arguments can also be provided to group() to fetch a particular subgroup.

From the docs:

If there is a single argument, the result is a single string; if there are multiple 
arguments, the result is a tuple with one item per argument.

https://riptutorial.com/ 737

https://docs.python.org/2/library/re.html#re.MatchObject.group


Calling groups() on the other hand, returns a list of tuples containing the subgroups.

sentence = "This is a phone number 672-123-456-9910" 
pattern = r".*(phone).*?([\d-]+)" 
 
match = re.match(pattern, sentence) 
 
match.groups()   # The entire match as a list of tuples of the paranthesized subgroups 
# Out: ('phone', '672-123-456-9910') 
 
m.group()        # The entire match as a string 
# Out: 'This is a phone number 672-123-456-9910' 
 
m.group(0)       # The entire match as a string 
# Out: 'This is a phone number 672-123-456-9910' 
 
m.group(1)       # The first parenthesized subgroup. 
# Out: 'phone' 
 
m.group(2)       # The second parenthesized subgroup. 
# Out: '672-123-456-9910' 
 
m.group(1, 2)    # Multiple arguments give us a tuple. 
# Out: ('phone', '672-123-456-9910')

Named groups

match = re.search(r'My name is (?P<name>[A-Za-z ]+)', 'My name is John Smith') 
match.group('name') 
# Out: 'John Smith' 
 
match.group(1) 
# Out: 'John Smith'

Creates a capture group that can be referenced by name as well as by index.

Non-capturing groups

Using (?:) creates a group, but the group isn't captured. This means you can use it as a group, 
but it won't pollute your "group space".

re.match(r'(\d+)(\+(\d+))?', '11+22').groups() 
# Out: ('11', '+22', '22') 
 
re.match(r'(\d+)(?:\+(\d+))?', '11+22').groups() 
# Out: ('11', '22')

This example matches 11+22 or 11, but not 11+. This is since the + sign and the second term are 
grouped. On the other hand, the + sign isn't captured.

Escaping Special Characters

https://riptutorial.com/ 738



Special characters (like the character class brackets [ and ] below) are not matched literally:

match = re.search(r'[b]', 'a[b]c') 
match.group() 
# Out: 'b'

By escaping the special characters, they can be matched literally:

match = re.search(r'\[b\]', 'a[b]c') 
match.group() 
# Out: '[b]'

The re.escape() function can be used to do this for you:

re.escape('a[b]c') 
# Out: 'a\\[b\\]c' 
match = re.search(re.escape('a[b]c'), 'a[b]c') 
match.group() 
# Out: 'a[b]c'

The re.escape() function escapes all special characters, so it is useful if you are composing a 
regular expression based on user input:

username = 'A.C.'  # suppose this came from the user 
re.findall(r'Hi {}!'.format(username), 'Hi A.C.! Hi ABCD!') 
# Out: ['Hi A.C.!', 'Hi ABCD!'] 
re.findall(r'Hi {}!'.format(re.escape(username)), 'Hi A.C.! Hi ABCD!') 
# Out: ['Hi A.C.!']

Replacing

Replacements can be made on strings using re.sub.

Replacing strings

re.sub(r"t[0-9][0-9]", "foo", "my name t13 is t44 what t99 ever t44") 
# Out: 'my name foo is foo what foo ever foo'

Using group references

Replacements with a small number of groups can be made as follows:

re.sub(r"t([0-9])([0-9])", r"t\2\1", "t13 t19 t81 t25") 
# Out: 't31 t91 t18 t52'

However, if you make a group ID like '10', this doesn't work: \10 is read as 'ID number 1 followed 
by 0'. So you have to be more specific and use the \g<i> notation:

https://riptutorial.com/ 739

https://docs.python.org/2/library/re.html#re.sub
https://docs.python.org/2/library/re.html#re.sub


re.sub(r"t([0-9])([0-9])", r"t\g<2>\g<1>", "t13 t19 t81 t25") 
# Out: 't31 t91 t18 t52'

Using a replacement function

items = ["zero", "one", "two"] 
re.sub(r"a\[([0-3])\]", lambda match: items[int(match.group(1))], "Items: a[0], a[1], 
something, a[2]") 
# Out: 'Items: zero, one, something, two'

Find All Non-Overlapping Matches

re.findall(r"[0-9]{2,3}", "some 1 text 12 is 945 here 4445588899") 
# Out: ['12', '945', '444', '558', '889']

Note that the r before "[0-9]{2,3}" tells python to interpret the string as-is; as a "raw" string.

You could also use re.finditer() which works in the same way as re.findall() but returns an 
iterator with SRE_Match objects instead of a list of strings:

results = re.finditer(r"([0-9]{2,3})", "some 1 text 12 is 945 here 4445588899") 
print(results) 
# Out: <callable-iterator object at 0x105245890> 
for result in results: 
     print(result.group(0)) 
''' Out: 
12 
945 
444 
558 
889 
'''

Precompiled patterns

import re 
 
precompiled_pattern = re.compile(r"(\d+)") 
matches = precompiled_pattern.search("The answer is 41!") 
matches.group(1) 
# Out: 41 
 
matches = precompiled_pattern.search("Or was it 42?") 
matches.group(1) 
# Out: 42

Compiling a pattern allows it to be reused later on in a program. However, note that Python 
caches recently-used expressions (docs, SO answer), so "programs that use only a few regular 
expressions at a time needn’t worry about compiling regular expressions".

https://riptutorial.com/ 740

https://docs.python.org/3/library/re.html#re.compile
http://stackoverflow.com/a/452143/1240268


import re 
 
precompiled_pattern = re.compile(r"(.*\d+)") 
matches = precompiled_pattern.match("The answer is 41!") 
print(matches.group(1)) 
# Out: The answer is 41 
 
matches = precompiled_pattern.match("Or was it 42?") 
print(matches.group(1)) 
# Out: Or was it 42

It can be used with re.match().

Checking for allowed characters

If you want to check that a string contains only a certain set of characters, in this case a-z, A-Z and 
0-9, you can do so like this,

import re 
 
def is_allowed(string): 
    characherRegex = re.compile(r'[^a-zA-Z0-9.]') 
    string = characherRegex.search(string) 
    return not bool(string) 
 
print (is_allowed("abyzABYZ0099")) 
# Out: 'True' 
 
print (is_allowed("#*@#$%^")) 
# Out: 'False'

You can also adapt the expression line from [^a-zA-Z0-9.] to [^a-z0-9.], to disallow uppercase 
letters for example.

Partial credit : http://stackoverflow.com/a/1325265/2697955

Splitting a string using regular expressions

You can also use regular expressions to split a string. For example,

import re 
data = re.split(r'\s+', 'James 94 Samantha 417 Scarlett 74') 
print( data ) 
# Output: ['James', '94', 'Samantha', '417', 'Scarlett', '74']

Flags

For some special cases we need to change the behavior of the Regular Expression, this is done 
using flags. Flags can be set in two ways, through the flags keyword or directly in the expression.

Flags keyword

https://riptutorial.com/ 741

http://stackoverflow.com/a/1325265/2697955


Below an example for re.search but it works for most functions in the re module.

m = re.search("b", "ABC") 
m is None 
# Out: True 
 
m = re.search("b", "ABC", flags=re.IGNORECASE) 
m.group() 
# Out: 'B' 
 
m = re.search("a.b", "A\nBC", flags=re.IGNORECASE) 
m is None 
# Out: True 
 
m = re.search("a.b", "A\nBC", flags=re.IGNORECASE|re.DOTALL) 
m.group() 
# Out: 'A\nB'

Common Flags

Flag Short Description

re.IGNORECASE, re.I Makes the pattern ignore the case

re.DOTALL, re.S Makes . match everything including newlines

re.MULTILINE, re.M Makes ^ match the begin of a line and $ the end of a line

re.DEBUG Turns on debug information

For the complete list of all available flags check the docs

Inline flags

From the docs:

(?iLmsux) (One or more letters from the set 'i', 'L', 'm', 's', 'u', 'x'.)

The group matches the empty string; the letters set the corresponding flags: re.I 
(ignore case), re.L (locale dependent), re.M (multi-line), re.S (dot matches all), re.U 
(Unicode dependent), and re.X (verbose), for the entire regular expression. This is 
useful if you wish to include the flags as part of the regular expression, instead of 
passing a flag argument to the re.compile() function.

Note that the (?x) flag changes how the expression is parsed. It should be used first in 
the expression string, or after one or more whitespace characters. If there are non-
whitespace characters before the flag, the results are undefined.

Iterating over matches using `re.finditer`

You can use re.finditer to iterate over all matches in a string. This gives you (in comparison to 

https://riptutorial.com/ 742

https://docs.python.org/2/library/re.html#module-contents
https://docs.python.org/2/library/re.html#regular-expression-syntax


re.findall extra information, such as information about the match location in the string (indexes):

import re 
text = 'You can try to find an ant in this string' 
pattern = 'an?\w' # find 'an' either with or without a following word character 
 
for match in re.finditer(pattern, text): 
    # Start index of match (integer) 
    sStart = match.start() 
 
    # Final index of match (integer) 
    sEnd = match.end() 
 
    # Complete match (string) 
    sGroup = match.group() 
 
    # Print match 
    print('Match "{}" found at: [{},{}]'.format(sGroup, sStart,sEnd))

Result:

Match "an" found at: [5,7] 
Match "an" found at: [20,22] 
Match "ant" found at: [23,26]

Match an expression only in specific locations

Often you want to match an expression only in specific places (leaving them untouched in others, 
that is). Consider the following sentence:

An apple a day keeps the doctor away (I eat an apple everyday).

Here the "apple" occurs twice which can be solved with so called backtracking control verbs which 
are supported by the newer regex module. The idea is:

forget_this | or this | and this as well | (but keep this)

With our apple example, this would be:

import regex as re 
string = "An apple a day keeps the doctor away (I eat an apple everyday)." 
rx = re.compile(r''' 
    \([^()]*\) (*SKIP)(*FAIL)  # match anything in parentheses and "throw it away" 
    |                          # or 
    apple                      # match an apple 
    ''', re.VERBOSE) 
apples = rx.findall(string) 
print(apples) 
# only one

This matches "apple" only when it can be found outside of the parentheses.

Here's how it works:

https://riptutorial.com/ 743

https://pypi.python.org/pypi/regex


While looking from left to right, the regex engine consumes everything to the left, the 
(*SKIP) acts as an "always-true-assertion". Afterwards, it correctly fails on (*FAIL) and 
backtracks.

•

Now it gets to the point of (*SKIP) from right to left (aka while backtracking) where it is 
forbidden to go any further to the left. Instead, the engine is told to throw away anything to 
the left and jump to the point where the (*SKIP) was invoked.

•

Read Regular Expressions (Regex) online: https://riptutorial.com/python/topic/632/regular-
expressions--regex-

https://riptutorial.com/ 744

https://riptutorial.com/python/topic/632/regular-expressions--regex-
https://riptutorial.com/python/topic/632/regular-expressions--regex-


Chapter 156: Searching

Remarks

All searching algorithms on iterables containing n elements have O(n) complexity. Only specialized 
algorithms like bisect.bisect_left() can be faster with O(log(n)) complexity.

Examples

Getting the index for strings: str.index(), str.rindex() and str.find(), str.rfind()

String also have an index method but also more advanced options and the additional str.find. For 
both of these there is a complementary reversed method.

astring = 'Hello on StackOverflow' 
astring.index('o')  # 4 
astring.rindex('o') # 20 
 
astring.find('o')   # 4 
astring.rfind('o')  # 20

The difference between index/rindex and find/rfind is what happens if the substring is not found in 
the string:

astring.index('q') # ValueError: substring not found 
astring.find('q')  # -1

All of these methods allow a start and end index:

astring.index('o', 5)    # 6 
astring.index('o', 6)    # 6 - start is inclusive 
astring.index('o', 5, 7) # 6 
astring.index('o', 5, 6) #  - end is not inclusive

ValueError: substring not found

astring.rindex('o', 20) # 20 
astring.rindex('o', 19) # 20 - still from left to right 
 
astring.rindex('o', 4, 7) # 6

Searching for an element

All built-in collections in Python implement a way to check element membership using in.

List

https://riptutorial.com/ 745



alist = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 
5 in alist   # True 
10 in alist  # False

Tuple

atuple = ('0', '1', '2', '3', '4') 
4 in atuple    # False 
'4' in atuple  # True

String

astring = 'i am a string' 
'a' in astring   # True 
'am' in astring  # True 
'I' in astring   # False

Set

aset = {(10, 10), (20, 20), (30, 30)} 
(10, 10) in aset  # True 
10 in aset        # False

Dict

dict is a bit special: the normal in only checks the keys. If you want to search in values you need 
to specify it. The same if you want to search for key-value pairs.

adict = {0: 'a', 1: 'b', 2: 'c', 3: 'd'} 
1 in adict                 # True   - implicitly searches in keys 
'a' in adict               # False 
2 in adict.keys()          # True   - explicitly searches in keys 
'a' in adict.values()      # True   - explicitly searches in values 
(0, 'a') in adict.items()  # True   - explicitly searches key/value pairs

Getting the index list and tuples: list.index(), tuple.index()

list and tuple have an index-method to get the position of the element:

alist = [10, 16, 26, 5, 2, 19, 105, 26] 
# search for 16 in the list 
alist.index(16) # 1 
alist[1]        # 16 
 
alist.index(15)

ValueError: 15 is not in list

But only returns the position of the first found element:

https://riptutorial.com/ 746



atuple = (10, 16, 26, 5, 2, 19, 105, 26) 
atuple.index(26)   # 2 
atuple[2]          # 26 
atuple[7]          # 26 - is also 26!

Searching key(s) for a value in dict

dict have no builtin method for searching a value or key because dictionaries are unordered. You 
can create a function that gets the key (or keys) for a specified value:

def getKeysForValue(dictionary, value): 
    foundkeys = [] 
    for keys in dictionary: 
        if dictionary[key] == value: 
            foundkeys.append(key) 
    return foundkeys

This could also be written as an equivalent list comprehension:

def getKeysForValueComp(dictionary, value): 
    return [key for key in dictionary if dictionary[key] == value]

If you only care about one found key:

def getOneKeyForValue(dictionary, value): 
    return next(key for key in dictionary if dictionary[key] == value)

The first two functions will return a list of all keys that have the specified value:

adict = {'a': 10, 'b': 20, 'c': 10} 
getKeysForValue(adict, 10)     # ['c', 'a'] - order is random could as well be ['a', 'c'] 
getKeysForValueComp(adict, 10) # ['c', 'a'] - dito 
getKeysForValueComp(adict, 20) # ['b'] 
getKeysForValueComp(adict, 25) # []

The other one will only return one key:

getOneKeyForValue(adict, 10)   # 'c'  - depending on the circumstances this could also be 'a' 
getOneKeyForValue(adict, 20)   # 'b'

and raise a StopIteration-Exception if the value is not in the dict:

getOneKeyForValue(adict, 25)

StopIteration

Getting the index for sorted sequences: bisect.bisect_left()

Sorted sequences allow the use of faster searching algorithms: bisect.bisect_left()1:

https://riptutorial.com/ 747

http://docs.python.org/library/bisect.html#searching-sorted-lists


import bisect 
 
def index_sorted(sorted_seq, value): 
    """Locate the leftmost value exactly equal to x or raise a ValueError""" 
    i = bisect.bisect_left(sorted_seq, value) 
    if i != len(sorted_seq) and sorted_seq[i] == value: 
        return i 
    raise ValueError 
 
alist = [i for i in range(1, 100000, 3)] # Sorted list from 1 to 100000 with step 3 
index_sorted(alist, 97285) # 32428 
index_sorted(alist, 4)     # 1 
index_sorted(alist, 97286)

ValueError

For very large sorted sequences the speed gain can be quite high. In case for the first search 
approximatly 500 times as fast:

%timeit index_sorted(alist, 97285) 
# 100000 loops, best of 3: 3 µs per loop 
%timeit alist.index(97285) 
# 1000 loops, best of 3: 1.58 ms per loop

While it's a bit slower if the element is one of the very first:

%timeit index_sorted(alist, 4) 
# 100000 loops, best of 3: 2.98 µs per loop 
%timeit alist.index(4) 
# 1000000 loops, best of 3: 580 ns per loop

Searching nested sequences

Searching in nested sequences like a list of tuple requires an approach like searching the keys 
for values in dict but needs customized functions.

The index of the outermost sequence if the value was found in the sequence:

def outer_index(nested_sequence, value): 
    return next(index for index, inner in enumerate(nested_sequence) 
                      for item in inner 
                      if item == value) 
 
alist_of_tuples = [(4, 5, 6), (3, 1, 'a'), (7, 0, 4.3)] 
outer_index(alist_of_tuples, 'a')  # 1 
outer_index(alist_of_tuples, 4.3)  # 2

or the index of the outer and inner sequence:

def outer_inner_index(nested_sequence, value): 
    return next((oindex, iindex) for oindex, inner in enumerate(nested_sequence) 
                                 for iindex, item in enumerate(inner) 
                                 if item == value) 
 

https://riptutorial.com/ 748



outer_inner_index(alist_of_tuples, 'a') # (1, 2) 
alist_of_tuples[1][2]  # 'a' 
 
outer_inner_index(alist_of_tuples, 7)   # (2, 0) 
alist_of_tuples[2][0]  # 7

In general (not always) using next and a generator expression with conditions to find the first 
occurrence of the searched value is the most efficient approach.

Searching in custom classes: __contains__ and __iter__

To allow the use of in for custom classes the class must either provide the magic method 
__contains__ or, failing that, an __iter__-method.

Suppose you have a class containing a list of lists:

class ListList: 
    def __init__(self, value): 
        self.value = value 
        # Create a set of all values for fast access 
        self.setofvalues = set(item for sublist in self.value for item in sublist) 
 
    def __iter__(self): 
        print('Using __iter__.') 
        # A generator over all sublist elements 
        return (item for sublist in self.value for item in sublist) 
 
    def __contains__(self, value): 
        print('Using __contains__.') 
        # Just lookup if the value is in the set 
        return value in self.setofvalues 
 
        # Even without the set you could use the iter method for the contains-check: 
        # return any(item == value for item in iter(self))

Using membership testing is possible using in:

a = ListList([[1,1,1],[0,1,1],[1,5,1]]) 
10 in a    # False 
# Prints: Using __contains__. 
5 in a     # True 
# Prints: Using __contains__.

even after deleting the __contains__ method:

del ListList.__contains__ 
5 in a     # True 
# Prints: Using __iter__.

Note: The looping in (as in for i in a) will always use __iter__ even if the class implements a 
__contains__ method.

Read Searching online: https://riptutorial.com/python/topic/350/searching

https://riptutorial.com/ 749

https://riptutorial.com/python/topic/350/searching


Chapter 157: Secure Shell Connection in 
Python

Parameters

Parameter Usage

hostname This parameter tells the host to which the connection needs to be established

username username required to access the host

port host port

password password for the account

Examples

ssh connection

from paramiko import client 
ssh = client.SSHClient() # create a new SSHClient object 
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) #auto-accept unknown host keys 
ssh.connect(hostname, username=username, port=port, password=password) #connect with a host 
stdin, stdout, stderr = ssh.exec_command(command) # submit a command to ssh 
print stdout.channel.recv_exit_status() #tells the status  1 - job failed

Read Secure Shell Connection in Python online: https://riptutorial.com/python/topic/5709/secure-
shell-connection-in-python

https://riptutorial.com/ 750

https://riptutorial.com/python/topic/5709/secure-shell-connection-in-python
https://riptutorial.com/python/topic/5709/secure-shell-connection-in-python


Chapter 158: Security and Cryptography

Introduction

Python, being one of the most popular languages in computer and network security, has great 
potential in security and cryptography. This topic deals with the cryptographic features and 
implementations in Python from its uses in computer and network security to hashing and 
encryption/decryption algorithms.

Syntax

hashlib.new(name)•
hashlib.pbkdf2_hmac(name, password, salt, rounds, dklen=None)•

Remarks

Many of the methods in hashlib will require you to pass values interpretable as buffers of bytes, 
rather than strings. This is the case for hashlib.new().update() as well as hashlib.pbkdf2_hmac. If 
you have a string, you can convert it to a byte buffer by prepending the character b to the start of 
the string:

  "This is a string" 
 b"This is a buffer of bytes"

Examples

Calculating a Message Digest

The hashlib module allows creating message digest generators via the new method. These 
generators will turn an arbitrary string into a fixed-length digest:

import hashlib 
 
h = hashlib.new('sha256') 
h.update(b'Nobody expects the Spanish Inquisition.') 
h.digest() 
# ==> 
b'.\xdf\xda\xdaVR[\x12\x90\xff\x16\xfb\x17D\xcf\xb4\x82\xdd)\x14\xff\xbc\xb6Iy\x0c\x0eX\x9eF-
='

Note that you can call update an arbitrary number of times before calling digest which is useful to 
hash a large file chunk by chunk. You can also get the digest in hexadecimal format by using 
hexdigest:

h.hexdigest() 

https://riptutorial.com/ 751



# ==> '2edfdada56525b1290ff16fb1744cfb482dd2914ffbcb649790c0e589e462d3d'

Available Hashing Algorithms

hashlib.new requires the name of an algorithm when you call it to produce a generator. To find out 
what algorithms are available in the current Python interpreter, use hashlib.algorithms_available:

import hashlib 
hashlib.algorithms_available 
# ==> {'sha256', 'DSA-SHA', 'SHA512', 'SHA224', 'dsaWithSHA', 'SHA', 'RIPEMD160', 'ecdsa-with-
SHA1', 'sha1', 'SHA384', 'md5', 'SHA1', 'MD5', 'MD4', 'SHA256', 'sha384', 'md4', 'ripemd160', 
'sha224', 'sha512', 'DSA', 'dsaEncryption', 'sha', 'whirlpool'}

The returned list will vary according to platform and interpreter; make sure you check your 
algorithm is available.

There are also some algorithms that are guaranteed to be available on all platforms and 
interpreters, which are available using hashlib.algorithms_guaranteed:

hashlib.algorithms_guaranteed 
# ==> {'sha256', 'sha384', 'sha1', 'sha224', 'md5', 'sha512'}

Secure Password Hashing

The PBKDF2 algorithm exposed by hashlib module can be used to perform secure password 
hashing. While this algorithm cannot prevent brute-force attacks in order to recover the original 
password from the stored hash, it makes such attacks very expensive.

import hashlib 
import os 
 
salt = os.urandom(16) 
hash = hashlib.pbkdf2_hmac('sha256', b'password', salt, 100000)

PBKDF2 can work with any digest algorithm, the above example uses SHA256 which is usually 
recommended. The random salt should be stored along with the hashed password, you will need it 
again in order to compare an entered password to the stored hash. It is essential that each 
password is hashed with a different salt. As to the number of rounds, it is recommended to set it 
as high as possible for your application.

If you want the result in hexadecimal, you can use the binascii module:

import binascii 
hexhash = binascii.hexlify(hash)

Note: While PBKDF2 isn't bad, bcrypt and especially scrypt are considered stronger against brute-
force attacks. Neither is part of the Python standard library at the moment.

File Hashing

https://riptutorial.com/ 752

https://en.wikipedia.org/wiki/PBKDF2
http://security.stackexchange.com/questions/3959/recommended-of-iterations-when-using-pkbdf2-sha256
https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Scrypt


A hash is a function that converts a variable length sequence of bytes to a fixed length sequence. 
Hashing files can be advantageous for many reasons. Hashes can be used to check if two files 
are identical or verify that the contents of a file haven't been corrupted or changed.

You can use hashlib to generate a hash for a file:

import hashlib 
 
hasher = hashlib.new('sha256') 
with open('myfile', 'r') as f: 
    contents = f.read() 
    hasher.update(contents) 
 
print hasher.hexdigest() 

For larger files, a buffer of fixed length can be used:

import hashlib 
SIZE = 65536 
hasher = hashlib.new('sha256') 
with open('myfile', 'r') as f: 
    buffer = f.read(SIZE) 
    while len(buffer) > 0: 
        hasher.update(buffer) 
        buffer = f.read(SIZE) 
print(hasher.hexdigest()) 
 

Symmetric encryption using pycrypto

Python's built-in crypto functionality is currently limited to hashing. Encryption requires a third-party 
module like pycrypto. For example, it provides the AES algorithm which is considered state of the 
art for symmetric encryption. The following code will encrypt a given message using a passphrase:

import hashlib 
import math 
import os 
 
from Crypto.Cipher import AES 
 
IV_SIZE = 16    # 128 bit, fixed for the AES algorithm 
KEY_SIZE = 32   # 256 bit meaning AES-256, can also be 128 or 192 bits 
SALT_SIZE = 16  # This size is arbitrary 
 
cleartext = b'Lorem ipsum' 
password = b'highly secure encryption password' 
salt = os.urandom(SALT_SIZE) 
derived = hashlib.pbkdf2_hmac('sha256', password, salt, 100000, 
                              dklen=IV_SIZE + KEY_SIZE) 
iv = derived[0:IV_SIZE] 
key = derived[IV_SIZE:] 
 
encrypted = salt + AES.new(key, AES.MODE_CFB, iv).encrypt(cleartext)

The AES algorithm takes three parameters: encryption key, initialization vector (IV) and the actual 

https://riptutorial.com/ 753

https://pypi.python.org/pypi/pycrypto
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard


message to be encrypted. If you have a randomly generated AES key then you can use that one 
directly and merely generate a random initialization vector. A passphrase doesn't have the right 
size however, nor would it be recommendable to use it directly given that it isn't truly random and 
thus has comparably little entropy. Instead, we use the built-in implementation of the PBKDF2 
algorithm to generate a 128 bit initialization vector and 256 bit encryption key from the password.

Note the random salt which is important to have a different initialization vector and key for each 
message encrypted. This ensures in particular that two equal messages won't result in identical 
encrypted text, but it also prevents attackers from reusing work spent guessing one passphrase on 
messages encrypted with another passphrase. This salt has to be stored along with the encrypted 
message in order to derive the same initialization vector and key for decrypting.

The following code will decrypt our message again:

salt = encrypted[0:SALT_SIZE] 
derived = hashlib.pbkdf2_hmac('sha256', password, salt, 100000, 
                              dklen=IV_SIZE + KEY_SIZE) 
iv = derived[0:IV_SIZE] 
key = derived[IV_SIZE:] 
cleartext = AES.new(key, AES.MODE_CFB, iv).decrypt(encrypted[SALT_SIZE:])

Generating RSA signatures using pycrypto

RSA can be used to create a message signature. A valid signature can only be generated with 
access to the private RSA key, validating on the other hand is possible with merely the 
corresponding public key. So as long as the other side knows your public key they can verify the 
message to be signed by you and unchanged - an approach used for email for example. Currently, 
a third-party module like pycrypto is required for this functionality.

import errno 
 
from Crypto.Hash import SHA256 
from Crypto.PublicKey import RSA 
from Crypto.Signature import PKCS1_v1_5 
 
message = b'This message is from me, I promise.' 
 
try: 
    with open('privkey.pem', 'r') as f: 
        key = RSA.importKey(f.read()) 
except IOError as e: 
    if e.errno != errno.ENOENT: 
        raise 
    # No private key, generate a new one. This can take a few seconds. 
    key = RSA.generate(4096) 
    with open('privkey.pem', 'wb') as f: 
        f.write(key.exportKey('PEM')) 
    with open('pubkey.pem', 'wb') as f: 
        f.write(key.publickey().exportKey('PEM')) 
 
hasher = SHA256.new(message) 
signer = PKCS1_v1_5.new(key) 
signature = signer.sign(hasher)

https://riptutorial.com/ 754

http://www.riptutorial.com/python/example/8622/secure-password-hashing
http://www.riptutorial.com/python/example/8622/secure-password-hashing
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://pypi.python.org/pypi/pycrypto


Verifying the signature works similarly but uses the public key rather than the private key:

with open('pubkey.pem', 'rb') as f: 
    key = RSA.importKey(f.read()) 
hasher = SHA256.new(message) 
verifier = PKCS1_v1_5.new(key) 
if verifier.verify(hasher, signature): 
    print('Nice, the signature is valid!') 
else: 
    print('No, the message was signed with the wrong private key or modified')

Note: The above examples use PKCS#1 v1.5 signing algorithm which is very common. pycrypto 
also implements the newer PKCS#1 PSS algorithm, replacing PKCS1_v1_5 by PKCS1_PSS in the 
examples should work if you want to use that one. Currently there seems to be little reason to use 
it however.

Asymmetric RSA encryption using pycrypto

Asymmetric encryption has the advantage that a message can be encrypted without exchanging a 
secret key with the recipient of the message. The sender merely needs to know the recipients 
public key, this allows encrypting the message in such a way that only the designated recipient 
(who has the corresponding private key) can decrypt it. Currently, a third-party module like 
pycrypto is required for this functionality.

from Crypto.Cipher import PKCS1_OAEP 
from Crypto.PublicKey import RSA 
 
message = b'This is a very secret message.' 
 
with open('pubkey.pem', 'rb') as f: 
    key = RSA.importKey(f.read()) 
cipher = PKCS1_OAEP.new(key) 
encrypted = cipher.encrypt(message)

The recipient can decrypt the message then if they have the right private key:

with open('privkey.pem', 'rb') as f: 
    key = RSA.importKey(f.read()) 
cipher = PKCS1_OAEP.new(key) 
decrypted = cipher.decrypt(encrypted)

Note: The above examples use PKCS#1 OAEP encryption scheme. pycrypto also implements 
PKCS#1 v1.5 encryption scheme, this one is not recommended for new protocols however due to 
known caveats.

Read Security and Cryptography online: https://riptutorial.com/python/topic/2598/security-and-
cryptography

https://riptutorial.com/ 755

http://crypto.stackexchange.com/questions/3850/is-rsassa-pkcs1-v1-5-a-good-signature-scheme-for-new-systems
http://crypto.stackexchange.com/questions/3850/is-rsassa-pkcs1-v1-5-a-good-signature-scheme-for-new-systems
https://pypi.python.org/pypi/pycrypto
http://security.stackexchange.com/questions/32050/what-specific-padding-weakness-does-oaep-address-in-rsa
https://riptutorial.com/python/topic/2598/security-and-cryptography
https://riptutorial.com/python/topic/2598/security-and-cryptography


Chapter 159: Set

Syntax

empty_set = set() # initialize an empty set•
literal_set = {'foo', 'bar', 'baz'} # construct a set with 3 strings inside it•
set_from_list = set(['foo', 'bar', 'baz']) # call the set function for a new set•
set_from_iter = set(x for x in range(30)) # use arbitrary iterables to create a set•
set_from_iter = {x for x in [random.randint(0,10) for i in range(10)]} # alternative notation•

Remarks

Sets are unordered and have very fast lookup time (amortized O(1) if you want to get technical). It 
is great to use when you have a collection of things, the order doesn't matter, and you'll be looking 
up items by name a lot. If it makes more sense to look up items by an index number, consider 
using a list instead. If order matters, consider a list as well.

Sets are mutable and thus cannot be hashed, so you cannot use them as dictionary keys or put 
them in other sets, or anywhere else that requires hashable types. In such cases, you can use an 
immutable frozenset.

The elements of a set must be hashable. This means that they have a correct __hash__ method, 
that is consistent with __eq__. In general, mutable types such as list or set are not hashable and 
cannot be put in a set. If you encounter this problem, consider using dict and immutable keys.

Examples

Get the unique elements of a list

Let's say you've got a list of restaurants -- maybe you read it from a file. You care about the unique 
restaurants in the list. The best way to get the unique elements from a list is to turn it into a set:

restaurants = ["McDonald's", "Burger King", "McDonald's", "Chicken Chicken"] 
unique_restaurants = set(restaurants) 
print(unique_restaurants) 
# prints {'Chicken Chicken', "McDonald's", 'Burger King'}

Note that the set is not in the same order as the original list; that is because sets are unordered, 
just like dicts.

This can easily be transformed back into a List with Python's built in list function, giving another 
list that is the same list as the original but without duplicates:

list(unique_restaurants) 
# ['Chicken Chicken', "McDonald's", 'Burger King']

https://riptutorial.com/ 756

https://docs.python.org/3/library/stdtypes.html#frozenset


It's also common to see this as one line:

# Removes all duplicates and returns another list 
list(set(restaurants))

Now any operations that could be performed on the original list can be done again.

Operations on sets

with other sets

# Intersection 
{1, 2, 3, 4, 5}.intersection({3, 4, 5, 6})  # {3, 4, 5} 
{1, 2, 3, 4, 5} & {3, 4, 5, 6}              # {3, 4, 5} 
 
# Union 
{1, 2, 3, 4, 5}.union({3, 4, 5, 6})  # {1, 2, 3, 4, 5, 6} 
{1, 2, 3, 4, 5} | {3, 4, 5, 6}       # {1, 2, 3, 4, 5, 6} 
 
# Difference 
{1, 2, 3, 4}.difference({2, 3, 5})  # {1, 4} 
{1, 2, 3, 4} - {2, 3, 5}            # {1, 4} 
 
# Symmetric difference with 
{1, 2, 3, 4}.symmetric_difference({2, 3, 5})  # {1, 4, 5} 
{1, 2, 3, 4} ^ {2, 3, 5}                      # {1, 4, 5} 
 
# Superset check 
{1, 2}.issuperset({1, 2, 3})  # False 
{1, 2} >= {1, 2, 3}           # False 
 
# Subset check 
{1, 2}.issubset({1, 2, 3})  # True 
{1, 2} <= {1, 2, 3}         # True 
 
# Disjoint check 
{1, 2}.isdisjoint({3, 4})  # True 
{1, 2}.isdisjoint({1, 4})  # False

with single elements

# Existence check 
2 in {1,2,3}      # True 
4 in {1,2,3}      # False 
4 not in {1,2,3}  # True 
 
# Add and Remove 
s = {1,2,3} 
s.add(4)        # s == {1,2,3,4} 
 
s.discard(3)    # s == {1,2,4} 
s.discard(5)    # s == {1,2,4} 
 
s.remove(2)     # s == {1,4} 
s.remove(2)     # KeyError!

https://riptutorial.com/ 757



Set operations return new sets, but have the corresponding in-place versions:

method in-place operation in-place method

union s |= t update

intersection s &= t intersection_update

difference s -= t difference_update

symmetric_difference s ^= t symmetric_difference_update

For example:

s = {1, 2} 
s.update({3, 4})   # s == {1, 2, 3, 4}

Sets versus multisets

Sets are unordered collections of distinct elements. But sometimes we want to work with 
unordered collections of elements that are not necessarily distinct and keep track of the elements' 
multiplicities.

Consider this example:

>>> setA = {'a','b','b','c'} 
>>> setA 
set(['a', 'c', 'b'])

By saving the strings 'a', 'b', 'b', 'c' into a set data structure we've lost the information on the 
fact that 'b' occurs twice. Of course saving the elements to a list would retain this information

>>> listA = ['a','b','b','c'] 
>>> listA 
['a', 'b', 'b', 'c']

but a list data structure introduces an extra unneeded ordering that will slow down our 
computations.

For implementing multisets Python provides the Counter class from the collections module 
(starting from version 2.7):

Python 2.x2.7

>>> from collections import Counter 
>>> counterA = Counter(['a','b','b','c']) 
>>> counterA 
Counter({'b': 2, 'a': 1, 'c': 1})

https://riptutorial.com/ 758



Counter is a dictionary where where elements are stored as dictionary keys and their counts are 
stored as dictionary values. And as all dictionaries, it is an unordered collection.

Set Operations using Methods and Builtins

We define two sets a and b

>>> a = {1, 2, 2, 3, 4} 
>>> b = {3, 3, 4, 4, 5}

NOTE: {1} creates a set of one element, but {} creates an empty dict. The correct way 
to create an empty set is set().

Intersection

a.intersection(b) returns a new set with elements present in both a and b

>>> a.intersection(b) 
{3, 4}

Union

a.union(b) returns a new set with elements present in either a and b

>>> a.union(b) 
{1, 2, 3, 4, 5}

Difference

a.difference(b) returns a new set with elements present in a but not in b

>>> a.difference(b) 
{1, 2} 
>>> b.difference(a) 
{5}

Symmetric Difference

a.symmetric_difference(b) returns a new set with elements present in either a or b but not in both

>>> a.symmetric_difference(b) 
{1, 2, 5} 
>>> b.symmetric_difference(a) 

https://riptutorial.com/ 759



{1, 2, 5}

NOTE: a.symmetric_difference(b) == b.symmetric_difference(a)

Subset and superset

c.issubset(a) tests whether each element of c is in a.

a.issuperset(c) tests whether each element of c is in a.

>>> c = {1, 2} 
>>> c.issubset(a) 
True 
>>> a.issuperset(c) 
True

The latter operations have equivalent operators as shown below:

Method Operator

a.intersection(b) a & b

a.union(b) a|b

a.difference(b) a - b

a.symmetric_difference(b) a ^ b

a.issubset(b) a <= b

a.issuperset(b) a >= b

Disjoint sets

Sets a and d are disjoint if no element in a is also in d and vice versa.

>>> d = {5, 6} 
>>> a.isdisjoint(b) # {2, 3, 4} are in both sets 
False 
>>> a.isdisjoint(d) 
True 
 
# This is an equivalent check, but less efficient 
>>> len(a & d) == 0 
True 
 
# This is even less efficient 
>>> a & d == set() 
True

https://riptutorial.com/ 760



Testing membership

The builtin in keyword searches for occurances

>>> 1 in a 
True 
>>> 6 in a 
False

Length

The builtin len() function returns the number of elements in the set

>>> len(a) 
4 
>>> len(b) 
3

Set of Sets

{{1,2}, {3,4}}

leads to:

TypeError: unhashable type: 'set'

Instead, use frozenset:

{frozenset({1, 2}), frozenset({3, 4})}

Read Set online: https://riptutorial.com/python/topic/497/set

https://riptutorial.com/ 761

https://riptutorial.com/python/topic/497/set


Chapter 160: setup.py

Parameters

Parameter Usage

name Name of your distribution.

version Version string of your distribution.

packages
List of Python packages (that is, directories containing modules) to include. This 
can be specified manually, but a call to setuptools.find_packages() is typically 
used instead.

py_modules List of top-level Python modules (that is, single .py files) to include.

Remarks

For further information on python packaging see:

Introduction

For writing official packages there is a packaging user guide.

Examples

Purpose of setup.py

The setup script is the centre of all activity in building, distributing, and installing modules using the 
Distutils. It's purpose is the correct installation of the software.

If all you want to do is distribute a module called foo, contained in a file foo.py, then your setup 
script can be as simple as this:

from distutils.core import setup 
 
setup(name='foo', 
      version='1.0', 
      py_modules=['foo'], 
      )

To create a source distribution for this module, you would create a setup script, setup.py, 
containing the above code, and run this command from a terminal:

python setup.py sdist

https://riptutorial.com/ 762

http://www.riptutorial.com/python/example/4500/introduction
https://packaging.python.org/


sdist will create an archive file (e.g., tarball on Unix, ZIP file on Windows) containing your setup 
script setup.py, and your module foo.py. The archive file will be named foo-1.0.tar.gz (or .zip), and 
will unpack into a directory foo-1.0.

If an end-user wishes to install your foo module, all she has to do is download foo-1.0.tar.gz (or 
.zip), unpack it, and—from the foo-1.0 directory—run

python setup.py install

Adding command line scripts to your python package

Command line scripts inside python packages are common. You can organise your package in 
such a way that when a user installs the package, the script will be available on their path.

If you had the greetings package which had the command line script hello_world.py.

greetings/ 
   greetings/ 
      __init__.py 
      hello_world.py

You could run that script by running:

python greetings/greetings/hello_world.py

However if you would like to run it like so:

hello_world.py

You can achieve this by adding scripts to your setup() in setup.py like this:

from setuptools import setup 
setup( 
  name='greetings', 
  scripts=['hello_world.py'] 
)

When you install the greetings package now, hello_world.py will be added to your path.

Another possibility would be to add an entry point:

entry_points={'console_scripts': ['greetings=greetings.hello_world:main']}

This way you just have to run it like:

greetings

Using source control metadata in setup.py

https://riptutorial.com/ 763



setuptools_scm is an officially-blessed package that can use Git or Mercurial metadata to determine 
the version number of your package, and find Python packages and package data to include in it.

from setuptools import setup, find_packages 
 
setup( 
    setup_requires=['setuptools_scm'], 
    use_scm_version=True, 
    packages=find_packages(), 
    include_package_data=True, 
)

This example uses both features; to only use SCM metadata for the version, replace the call to 
find_packages() with your manual package list, or to only use the package finder, remove 
use_scm_version=True.

Adding installation options

As seen in previous examples, basic use of this script is:

python setup.py install

But there is even more options, like installing the package and have the possibility to change the 
code and test it without having to re-install it. This is done using:

python setup.py develop

If you want to perform specific actions like compiling a Sphinx documentation or building fortran 
code, you can create your own option like this:

cmdclasses = dict() 
 
class BuildSphinx(Command): 
 
    """Build Sphinx documentation.""" 
 
    description = 'Build Sphinx documentation' 
    user_options = [] 
 
    def initialize_options(self): 
        pass 
 
    def finalize_options(self): 
        pass 
 
    def run(self): 
        import sphinx 
        sphinx.build_main(['setup.py', '-b', 'html', './doc', './doc/_build/html']) 
        sphinx.build_main(['setup.py', '-b', 'man', './doc', './doc/_build/man']) 
 
cmdclasses['build_sphinx'] = BuildSphinx 
 
setup( 
... 

https://riptutorial.com/ 764

https://pypi.python.org/pypi/setuptools_scm


cmdclass=cmdclasses, 
)

initialize_options and finalize_options will be executed before and after the run function as their 
names suggests it.

After that, you will be able to call your option:

python setup.py build_sphinx

Read setup.py online: https://riptutorial.com/python/topic/1444/setup-py

https://riptutorial.com/ 765

https://riptutorial.com/python/topic/1444/setup-py


Chapter 161: shelve

Introduction

Shelve is a python module used to store objects in a file. The shelve module implements 
persistent storage for arbitrary Python objects which can be pickled, using a dictionary-like API. 
The shelve module can be used as a simple persistent storage option for Python objects when a 
relational database is overkill. The shelf is accessed by keys, just as with a dictionary. The values 
are pickled and written to a database created and managed by anydbm.

Remarks

Note: Do not rely on the shelf being closed automatically; always call close() explicitly when you 
don’t need it any more, or use shelve.open() as a context manager:

with shelve.open('spam') as db: 
    db['eggs'] = 'eggs'

Warning:

Because the shelve module is backed by pickle, it is insecure to load a shelf from an untrusted 
source. Like with pickle, loading a shelf can execute arbitrary code.

Restrictions

1. The choice of which database package will be used (such as dbm.ndbm or dbm.gnu) depends 
on which interface is available. Therefore it is not safe to open the database directly using dbm. 
The database is also (unfortunately) subject to the limitations of dbm, if it is used — this means 
that (the pickled representation of) the objects stored in the database should be fairly small, and in 
rare cases key collisions may cause the database to refuse updates. 

2.The shelve module does not support concurrent read/write access to shelved objects. (Multiple 
simultaneous read accesses are safe.) When a program has a shelf open for writing, no other 
program should have it open for reading or writing. Unix file locking can be used to solve this, but 
this differs across Unix versions and requires knowledge about the database implementation used.

Examples

Sample code for shelve

To shelve an object, first import the module and then assign the object value as follows:

https://riptutorial.com/ 766



import shelve 
 database = shelve.open(filename.suffix) 
 object = Object() 
 database['key'] = object 

To summarize the interface (key is a string, data is an arbitrary object):

import shelve 
 
d = shelve.open(filename)  # open -- file may get suffix added by low-level 
                           # library 
 
d[key] = data              # store data at key (overwrites old data if 
                           # using an existing key) 
data = d[key]              # retrieve a COPY of data at key (raise KeyError 
                           # if no such key) 
del d[key]                 # delete data stored at key (raises KeyError 
                           # if no such key) 
 
flag = key in d            # true if the key exists 
klist = list(d.keys())     # a list of all existing keys (slow!) 
 
# as d was opened WITHOUT writeback=True, beware: 
d['xx'] = [0, 1, 2]        # this works as expected, but... 
d['xx'].append(3)          # *this doesn't!* -- d['xx'] is STILL [0, 1, 2]! 
 
# having opened d without writeback=True, you need to code carefully: 
temp = d['xx']             # extracts the copy 
temp.append(5)             # mutates the copy 
d['xx'] = temp             # stores the copy right back, to persist it 
 
# or, d=shelve.open(filename,writeback=True) would let you just code 
# d['xx'].append(5) and have it work as expected, BUT it would also 
# consume more memory and make the d.close() operation slower. 
 
d.close()                  # close it

Creating a new Shelf

The simplest way to use shelve is via the DbfilenameShelf class. It uses anydbm to store the 
data. You can use the class directly, or simply call shelve.open():

import shelve 
 
s = shelve.open('test_shelf.db') 
try: 
    s['key1'] = { 'int': 10, 'float':9.5, 'string':'Sample data' } 
finally: 
    s.close()

To access the data again, open the shelf and use it like a dictionary:

    import shelve 
 
    s = shelve.open('test_shelf.db') 

https://riptutorial.com/ 767



    try: 
        existing = s['key1'] 
    finally: 
        s.close() 
 
print existing

If you run both sample scripts, you should see:

$ python shelve_create.py 
$ python shelve_existing.py 
 
{'int': 10, 'float': 9.5, 'string': 'Sample data'}

The dbm module does not support multiple applications writing to the same database at the same 
time. If you know your client will not be modifying the shelf, you can tell shelve to open the 
database read-only.

import shelve 
 
s = shelve.open('test_shelf.db', flag='r') 
try: 
    existing = s['key1'] 
finally: 
    s.close() 
 
print existing

If your program tries to modify the database while it is opened read-only, an access error 
exception is generated. The exception type depends on the database module selected by anydbm 
when the database was created.

Write-back

Shelves do not track modifications to volatile objects, by default. That means if you change the 
contents of an item stored in the shelf, you must update the shelf explicitly by storing the item 
again.

import shelve 
 
s = shelve.open('test_shelf.db') 
try: 
    print s['key1'] 
    s['key1']['new_value'] = 'this was not here before' 
finally: 
    s.close() 
 
s = shelve.open('test_shelf.db', writeback=True) 
try: 
    print s['key1'] 
finally: 
    s.close()

https://riptutorial.com/ 768



In this example, the dictionary at ‘key1’ is not stored again, so when the shelf is re-opened, the 
changes have not been preserved.

$ python shelve_create.py 
$ python shelve_withoutwriteback.py 
 
{'int': 10, 'float': 9.5, 'string': 'Sample data'} 
{'int': 10, 'float': 9.5, 'string': 'Sample data'}

To automatically catch changes to volatile objects stored in the shelf, open the shelf with writeback 
enabled. The writeback flag causes the shelf to remember all of the objects retrieved from the 
database using an in-memory cache. Each cache object is also written back to the database when 
the shelf is closed.

import shelve 
 
s = shelve.open('test_shelf.db', writeback=True) 
try: 
    print s['key1'] 
    s['key1']['new_value'] = 'this was not here before' 
    print s['key1'] 
finally: 
    s.close() 
 
s = shelve.open('test_shelf.db', writeback=True) 
try: 
    print s['key1'] 
finally: 
    s.close()

Although it reduces the chance of programmer error, and can make object persistence more 
transparent, using writeback mode may not be desirable in every situation. The cache consumes 
extra memory while the shelf is open, and pausing to write every cached object back to the 
database when it is closed can take extra time. Since there is no way to tell if the cached objects 
have been modified, they are all written back. If your application reads data more than it writes, 
writeback will add more overhead than you might want.

$ python shelve_create.py 
$ python shelve_writeback.py 
 
{'int': 10, 'float': 9.5, 'string': 'Sample data'} 
{'int': 10, 'new_value': 'this was not here before', 'float': 9.5, 'string': 'Sample data'} 
{'int': 10, 'new_value': 'this was not here before', 'float': 9.5, 'string': 'Sample data'}

Read shelve online: https://riptutorial.com/python/topic/10629/shelve

https://riptutorial.com/ 769

https://riptutorial.com/python/topic/10629/shelve


Chapter 162: Similarities in syntax, 
Differences in meaning: Python vs. 
JavaScript

Introduction

It sometimes happens that two languages put different meanings on the same or similar syntax 
expression. When the both languages are of interest for a programmer, clarifying these bifurcation 
points helps to better understand the both languages in their basics and subtleties.

Examples

`in` with lists

2 in [2, 3]

In Python this evaluates to True, but in JavaScript to false. This is because in Python in checks if a 
value is contained in a list, so 2 is in [2, 3] as its first element. In JavaScript in is used with objects 
and checks if an object contains the property with the name expressed by the value. So JavaScript 
considers [2, 3] as an object or a key-value map like this:

{'0': 2, '1': 3}

and checks if it has a property or a key '2' in it. Integer 2 is silently converted to string '2'.

Read Similarities in syntax, Differences in meaning: Python vs. JavaScript online: 
https://riptutorial.com/python/topic/10766/similarities-in-syntax--differences-in-meaning--python-vs-
-javascript

https://riptutorial.com/ 770

https://riptutorial.com/python/topic/10766/similarities-in-syntax--differences-in-meaning--python-vs--javascript
https://riptutorial.com/python/topic/10766/similarities-in-syntax--differences-in-meaning--python-vs--javascript


Chapter 163: Simple Mathematical Operators

Introduction

Python does common mathematical operators on its own, including integer and float division, 
multiplication, exponentiation, addition, and subtraction. The math module (included in all standard 
Python versions) offers expanded functionality like trigonometric functions, root operations, 
logarithms, and many more.

Remarks

Numerical types and their metaclasses

The numbers module contains the abstract metaclasses for the numerical types:

subclasses numbers.Number numbers.Integral numbers.Rational numbers.Real numbers.Complex

bool ✓ ✓ ✓ ✓ ✓

int ✓ ✓ ✓ ✓ ✓

fractions.Fraction ✓ ― ✓ ✓ ✓

float ✓ ― ― ✓ ✓

complex ✓ ― ― ― ✓

decimal.Decimal ✓ ― ― ― ―

Examples

Addition

a, b = 1, 2 
 
# Using the "+" operator: 
a + b                  # = 3 
 
# Using the "in-place" "+=" operator to add and assign: 
a += b                 # a = 3 (equivalent to a = a + b) 
 
import operator        # contains 2 argument arithmetic functions for the examples 
 
operator.add(a, b)     # = 5  since a is set to 3 right before this line 
 

https://riptutorial.com/ 771

https://docs.python.org/library/numbers.html#numbers.Number
https://docs.python.org/library/numbers.html#numbers.Integral
https://docs.python.org/library/numbers.html#numbers.Rational
https://docs.python.org/library/numbers.html#numbers.Real
https://docs.python.org/library/numbers.html#numbers.Complex
https://docs.python.org/library/functions.html#bool
https://docs.python.org/library/functions.html#int
https://docs.python.org/library/fractions.html#fractions.Fraction
https://docs.python.org/library/functions.html#float
https://docs.python.org/library/functions.html#complex
https://docs.python.org/library/decimal.html#decimal.Decimal


# The "+=" operator is equivalent to: 
a = operator.iadd(a, b)    # a = 5 since a is set to 3 right before this line

Possible combinations (builtin types):

int and int (gives an int)•
int and float (gives a float)•
int and complex (gives a complex)•
float and float (gives a float)•
float and complex (gives a complex)•
complex and complex (gives a complex)•

Note: the + operator is also used for concatenating strings, lists and tuples:

"first string " + "second string"    # = 'first string second string' 
 
[1, 2, 3] + [4, 5, 6]                # = [1, 2, 3, 4, 5, 6]

Subtraction

a, b = 1, 2 
 
# Using the "-" operator: 
b - a                  # = 1 
 
 
import operator        # contains 2 argument arithmetic functions 
operator.sub(b, a)     # = 1

Possible combinations (builtin types):

int and int (gives an int)•
int and float (gives a float)•
int and complex (gives a complex)•
float and float (gives a float)•
float and complex (gives a complex)•
complex and complex (gives a complex)•

Multiplication

a, b = 2, 3 
 
a * b                  # = 6 
 
import operator 
operator.mul(a, b)     # = 6

https://riptutorial.com/ 772



Possible combinations (builtin types):

int and int (gives an int)•
int and float (gives a float)•
int and complex (gives a complex)•
float and float (gives a float)•
float and complex (gives a complex)•
complex and complex (gives a complex)•

Note: The * operator is also used for repeated concatenation of strings, lists, and tuples:

3 * 'ab'  # = 'ababab' 
3 * ('a', 'b')  # = ('a', 'b', 'a', 'b', 'a', 'b')

Division

Python does integer division when both operands are integers. The behavior of Python's division 
operators have changed from Python 2.x and 3.x (see also Integer Division ).

a, b, c, d, e = 3, 2, 2.0, -3, 10

Python 2.x2.7

In Python 2 the result of the ' / ' operator depends on the type of the numerator and denominator.

a / b                  # = 1 
 
a / c                  # = 1.5 
 
d / b                  # = -2 
 
b / a                  # = 0 
 
d / e                  # = -1

Note that because both a and b are ints, the result is an int.

The result is always rounded down (floored).

Because c is a float, the result of a / c is a float.

You can also use the operator module:

import operator        # the operator module provides 2-argument arithmetic functions 
operator.div(a, b)     # = 1 
operator.__div__(a, b) # = 1

Python 2.x2.2

What if you want float division:

https://riptutorial.com/ 773

http://www.riptutorial.com/python/example/2797/integer-division


Recommended:

from __future__ import division # applies Python 3 style division to the entire module 
a / b                  # = 1.5 
a // b                 # = 1

Okay (if you don't want to apply to the whole module):

a / (b * 1.0)          # = 1.5 
1.0 * a / b            # = 1.5 
a / b * 1.0            # = 1.0    (careful with order of operations) 
 
from operator import truediv 
truediv(a, b)          # = 1.5

Not recommended (may raise TypeError, eg if argument is complex):

float(a) / b           # = 1.5 
a / float(b)           # = 1.5

Python 2.x2.2

The ' // ' operator in Python 2 forces floored division regardless of type.

a // b                # = 1 
a // c                # = 1.0

Python 3.x3.0

In Python 3 the / operator performs 'true' division regardless of types. The // operator performs 
floor division and maintains type.

a / b                  # = 1.5 
e / b                  # = 5.0 
a // b                 # = 1 
a // c                 # = 1.0 
 
import operator            # the operator module provides 2-argument arithmetic functions 
operator.truediv(a, b)     # = 1.5 
operator.floordiv(a, b)    # = 1 
operator.floordiv(a, c)    # = 1.0

Possible combinations (builtin types):

int and int (gives an int in Python 2 and a float in Python 3)•
int and float (gives a float)•
int and complex (gives a complex)•
float and float (gives a float)•
float and complex (gives a complex)•
complex and complex (gives a complex)•

https://riptutorial.com/ 774



See PEP 238 for more information.

Exponentation

a, b = 2, 3 
 
(a ** b)               # = 8 
pow(a, b)              # = 8 
 
import math 
math.pow(a, b)         # = 8.0 (always float; does not allow complex results) 
 
import operator 
operator.pow(a, b)     # = 8

Another difference between the built-in pow and math.pow is that the built-in pow can accept three 
arguments:

a, b, c = 2, 3, 2 
 
pow(2, 3, 2)           # 0, calculates (2 ** 3) % 2, but as per Python docs, 
                       #    does so more efficiently

Special functions

The function math.sqrt(x) calculates the square root of x.

import math 
import cmath 
c = 4 
math.sqrt(c)           # = 2.0 (always float; does not allow complex results) 
cmath.sqrt(c)          # = (2+0j) (always complex)

To compute other roots, such as a cube root, raise the number to the reciprocal of the degree of 
the root. This could be done with any of the exponential functions or operator.

 import math 
 x = 8 
 math.pow(x, 1/3) # evaluates to 2.0 
 x**(1/3) # evaluates to 2.0

The function math.exp(x) computes e ** x.

math.exp(0)  # 1.0 
math.exp(1)  # 2.718281828459045 (e)

The function math.expm1(x) computes e ** x - 1. When x is small, this gives significantly better 
precision than math.exp(x) - 1.

math.expm1(0)       # 0.0 
 

https://riptutorial.com/ 775

https://www.python.org/dev/peps/pep-0238/


math.exp(1e-6) - 1  # 1.0000004999621837e-06 
math.expm1(1e-6)    # 1.0000005000001665e-06 
# exact result      # 1.000000500000166666708333341666...

Logarithms

By default, the math.log function calculates the logarithm of a number, base e. You can optionally 
specify a base as the second argument.

import math 
import cmath 
 
math.log(5)         # = 1.6094379124341003 
# optional base argument. Default is math.e 
math.log(5, math.e) # = 1.6094379124341003 
cmath.log(5)        # = (1.6094379124341003+0j) 
math.log(1000, 10)   # 3.0 (always returns float) 
cmath.log(1000, 10)  # (3+0j)

Special variations of the math.log function exist for different bases.

# Logarithm base e - 1 (higher precision for low values) 
math.log1p(5)       # = 1.791759469228055 
 
# Logarithm base 2 
math.log2(8)        # = 3.0 
 
# Logarithm base 10 
math.log10(100)     # = 2.0 
cmath.log10(100)    # = (2+0j)

Inplace Operations

It is common within applications to need to have code like this :

a = a + 1

or

a = a * 2

There is an effective shortcut for these in place operations :

a += 1 
# and 
a *= 2

Any mathematic operator can be used before the '=' character to make an inplace operation :

-= decrement the variable in place•
+= increment the variable in place•

https://riptutorial.com/ 776



*= multiply the variable in place•
/= divide the variable in place•
//= floor divide the variable in place # Python 3•
%= return the modulus of the variable in place•
**= raise to a power in place•

Other in place operators exist for the bitwise operators (^, | etc)

Trigonometric Functions

a, b = 1, 2 
 
import math 
 
math.sin(a)  # returns the sine of 'a' in radians 
# Out: 0.8414709848078965 
 
math.cosh(b)  # returns the inverse hyperbolic cosine of 'b' in radians 
# Out: 3.7621956910836314 
 
math.atan(math.pi)  # returns the arc tangent of 'pi' in radians 
# Out: 1.2626272556789115 
 
math.hypot(a, b) # returns the Euclidean norm, same as math.sqrt(a*a + b*b) 
# Out: 2.23606797749979

Note that math.hypot(x, y) is also the length of the vector (or Euclidean distance) from 
the origin (0, 0) to the point (x, y).

To compute the Euclidean distance between two points (x1, y1) & (x2, y2) you can 
use math.hypot as follows

math.hypot(x2-x1, y2-y1)

To convert from radians -> degrees and degrees -> radians respectively use math.degrees and 
math.radians

math.degrees(a) 
# Out: 57.29577951308232 
 
math.radians(57.29577951308232) 
# Out: 1.0

Modulus

Like in many other languages, Python uses the % operator for calculating modulus.

3 % 4     # 3 
10 % 2    # 0 
6 % 4     # 2

Or by using the operator module:

https://riptutorial.com/ 777



import operator 
 
operator.mod(3 , 4)     # 3 
operator.mod(10 , 2)    # 0 
operator.mod(6 , 4)     # 2

You can also use negative numbers.

-9 % 7     # 5 
9 % -7     # -5 
-9 % -7    # -2

If you need to find the result of integer division and modulus, you can use the divmod function as a 
shortcut:

quotient, remainder = divmod(9, 4) 
# quotient = 2, remainder = 1 as 4 * 2 + 1 == 9

Read Simple Mathematical Operators online: https://riptutorial.com/python/topic/298/simple-
mathematical-operators

https://riptutorial.com/ 778

https://riptutorial.com/python/topic/298/simple-mathematical-operators
https://riptutorial.com/python/topic/298/simple-mathematical-operators


Chapter 164: Sockets

Introduction

Many programming languages use sockets to communicate across processes or between 
devices. This topic explains proper usage the the sockets module in Python to facilitate sending 
and receiving data over common networking protocols.

Parameters

Parameter Description

socket.AF_UNIX UNIX Socket

socket.AF_INET IPv4

socket.AF_INET6 IPv6

socket.SOCK_STREAM TCP

socket.SOCK_DGRAM UDP

Examples

Sending data via UDP

UDP is a connectionless protocol. Messages to other processes or computers are sent without 
establishing any sort of connection. There is no automatic confirmation if your message has been 
received. UDP is usually used in latency sensitive applications or in applications sending network 
wide broadcasts.

The following code sends a message to a process listening on localhost port 6667 using UDP

Note that there is no need to "close" the socket after the send, because UDP is connectionless.

from socket import socket, AF_INET, SOCK_DGRAM 
s = socket(AF_INET, SOCK_DGRAM) 
msg = ("Hello you there!").encode('utf-8')  # socket.sendto() takes bytes as input, hence we 
must encode the string first. 
s.sendto(msg, ('localhost', 6667)) 

Receiving data via UDP

UDP is a connectionless protocol. This means that peers sending messages do not require 
establishing a connection before sending messages. socket.recvfromthus returns a tuple (msg [the 

https://riptutorial.com/ 779

https://en.wikipedia.org/wiki/Connectionless_communication


message the socket received], addr [the address of the sender])

A UDP server using solely the socket module:

from socket import socket, AF_INET, SOCK_DGRAM 
sock = socket(AF_INET, SOCK_DGRAM) 
sock.bind(('localhost', 6667)) 
 
while True: 
    msg, addr = sock.recvfrom(8192)  # This is the amount of bytes to read at maximum 
    print("Got message from %s: %s" % (addr, msg))

Below is an alternative implementation using socketserver.UDPServer:

from socketserver import BaseRequestHandler, UDPServer 
 
class MyHandler(BaseRequestHandler): 
    def handle(self): 
        print("Got connection from: %s" % self.client_address) 
        msg, sock = self.request 
        print("It said: %s" % msg) 
        sock.sendto("Got your message!".encode(), self.client_address) # Send reply 
 
serv = UDPServer(('localhost', 6667), MyHandler) 
serv.serve_forever()

By default, sockets block. This means that execution of the script will wait until the socket receives 
data.

Sending data via TCP

Sending data over the internet is made possible using multiple modules. The sockets module 
provides low-level access to the underlying Operating System operations responsible for sending 
or receiving data from other computers or processes.

The following code sends the byte string b'Hello' to a TCP server listening on port 6667 on the 
host localhost and closes the connection when finished:

from socket import socket, AF_INET, SOCK_STREAM 
s = socket(AF_INET, SOCK_STREAM) 
s.connect(('localhost', 6667))  # The address of the TCP server listening 
s.send(b'Hello') 
s.close()

Socket output is blocking by default, that means that the program will wait in the connect and send 
calls until the action is 'completed'. For connect that means the server actually accepting the 
connection. For send it only means that the operating system has enough buffer space to queue 
the data to be send later.

Sockets should always be closed after use.

Multi-threaded TCP Socket Server

https://riptutorial.com/ 780



When run with no arguments, this program starts a TCP socket server that listens for connections 
to 127.0.0.1 on port 5000. The server handles each connection in a separate thread.

When run with the -c argument, this program connects to the server, reads the client list, and 
prints it out. The client list is transferred as a JSON string. The client name may be specified by 
passing the -n argument. By passing different names, the effect on the client list may be observed.

client_list.py

import argparse 
import json 
import socket 
import threading 
 
def handle_client(client_list, conn, address): 
    name = conn.recv(1024) 
    entry = dict(zip(['name', 'address', 'port'], [name, address[0], address[1]])) 
    client_list[name] = entry 
    conn.sendall(json.dumps(client_list)) 
    conn.shutdown(socket.SHUT_RDWR) 
    conn.close() 
 
def server(client_list): 
    print "Starting server..." 
    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
    s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) 
    s.bind(('127.0.0.1', 5000)) 
    s.listen(5) 
    while True: 
        (conn, address) = s.accept() 
        t = threading.Thread(target=handle_client, args=(client_list, conn, address)) 
        t.daemon = True 
        t.start() 
 
def client(name): 
    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
    s.connect(('127.0.0.1', 5000)) 
    s.send(name) 
    data = s.recv(1024) 
    result = json.loads(data) 
    print json.dumps(result, indent=4) 
 
def parse_arguments(): 
    parser = argparse.ArgumentParser() 
    parser.add_argument('-c', dest='client', action='store_true') 
    parser.add_argument('-n', dest='name', type=str, default='name') 
    result = parser.parse_args() 
    return result 
 
def main(): 
    client_list = dict() 
    args = parse_arguments() 
    if args.client: 
        client(args.name) 
    else: 
        try: 
            server(client_list) 
        except KeyboardInterrupt: 
            print "Keyboard interrupt" 

https://riptutorial.com/ 781



 
if __name__ == '__main__': 
    main()

Server Output

$ python client_list.py 
Starting server...

Client Output

$ python client_list.py -c -n name1 
{ 
    "name1": { 
        "address": "127.0.0.1", 
        "port": 62210, 
        "name": "name1" 
    } 
}

The receive buffers are limited to 1024 bytes. If the JSON string representation of the client list 
exceeds this size, it will be truncated. This will cause the following exception to be raised:

ValueError: Unterminated string starting at: line 1 column 1023 (char 1022)

Raw Sockets on Linux

First you disable your network card's automatic checksumming:

sudo ethtool -K eth1 tx off

Then send your packet, using a SOCK_RAW socket:

#!/usr/bin/env python 
from socket import socket, AF_PACKET, SOCK_RAW 
s = socket(AF_PACKET, SOCK_RAW) 
s.bind(("eth1", 0)) 
 
# We're putting together an ethernet frame here, 
# but you could have anything you want instead 
# Have a look at the 'struct' module for more 
# flexible packing/unpacking of binary data 
# and 'binascii' for 32 bit CRC 
src_addr = "\x01\x02\x03\x04\x05\x06" 
dst_addr = "\x01\x02\x03\x04\x05\x06" 
payload = ("["*30)+"PAYLOAD"+("]"*30) 
checksum = "\x1a\x2b\x3c\x4d" 
ethertype = "\x08\x01" 
 
s.send(dst_addr+src_addr+ethertype+payload+checksum)

Read Sockets online: https://riptutorial.com/python/topic/1530/sockets

https://riptutorial.com/ 782

https://riptutorial.com/python/topic/1530/sockets


Chapter 165: Sockets And Message 
Encryption/Decryption Between Client and 
Server

Introduction

Cryptography is used for security purposes. There are not so many examples of 
Encryption/Decryption in Python using IDEA encryption MODE CTR. Aim of this documentation 
:

Extend and implement of the RSA Digital Signature scheme in station-to-station communication. 
Using Hashing for integrity of message, that is SHA-1. Produce simple Key Transport protocol. 
Encrypt Key with IDEA encryption. Mode of Block Cipher is Counter Mode

Remarks

Language Used: Python 2.7 (Download Link: https://www.python.org/downloads/ )

Library Used:

*PyCrypto (Download Link: https://pypi.python.org/pypi/pycrypto )

*PyCryptoPlus (Download Link: https://github.com/doegox/python-cryptoplus )

Library Installation:

PyCrypto: Unzip the file. Go to the directory and open terminal for linux(alt+ctrl+t) and 
CMD(shift+right click+select command prompt open here) for windows. After that write python 
setup.py install (Make Sure Python Environment is set properly in Windows OS)

PyCryptoPlus: Same as the last library.

Tasks Implementation: The task is separated into two parts. One is handshake process and 
another one is communication process. Socket Setup:

As the creating public and private keys as well as hashing the public key, we need to setup 
the socket now. For setting up the socket, we need to import another module with “import 
socket” and connect(for client) or bind(for server) the IP address and the port with the socket 
getting from the user.

----------Client Side----------

  server = socket.socket(socket.AF_INET,socket.SOCK_STREAM) 
  host = raw_input("Server Address To Be Connected -> ") 
  port = int(input("Port of The Server -> ")) 

•

https://riptutorial.com/ 783

https://www.python.org/downloads/
https://pypi.python.org/pypi/pycrypto
https://github.com/doegox/python-cryptoplus


  server.connect((host, port))

----------Server Side---------

  try: 
  #setting up socket 
  server = socket.socket(socket.AF_INET,socket.SOCK_STREAM) 
  server.bind((host,port)) 
  server.listen(5) 
  except BaseException: print "-----Check Server Address or Port-----"

“ socket.AF_INET,socket.SOCK_STREAM” will allow us to use accept() function and 
messaging fundamentals. Instead of it, we can use “ 
socket.AF_INET,socket.SOCK_DGRAM” also but that time we will have to use 
setblocking(value) .

Handshake Process:

(CLIENT)The first task is to create public and private key. To create the private and public 
key, we have to import some modules. They are : from Crypto import Random and from 
Crypto.PublicKey import RSA. To create the keys, we have to write few simple lines of 
codes:

•

random_generator = Random.new().read 
        key = RSA.generate(1024,random_generator) 
        public = key.publickey().exportKey()

random_generator is derived from “from Crypto import Random” module. Key is derived from “
from Crypto.PublicKey import RSA” which will create a private key, size of 1024 by generating 
random characters. Public is exporting public key from previously generated private key.

(CLIENT)After creating the public and private key, we have to hash the public key to send 
over to the server using SHA-1 hash. To use the SHA-1 hash we need to import another 
module by writing “import hashlib” .To hash the public key we have write two lines of code:

  hash_object = hashlib.sha1(public) 
  hex_digest = hash_object.hexdigest()

•

Here hash_object and hex_digest is our variable. After this, client will send hex_digest and public 
to the server and Server will verify them by comparing the hash got from client and new hash of 
the public key. If the new hash and the hash from the client matches, it will move to next 
procedure. As the public sent from the client is in form of string, it will not be able to be used as 
key in the server side. To prevent this and converting string public key to rsa public key, we need 
to write server_public_key = RSA.importKey(getpbk) ,here getpbk is the public key from the client.

(SERVER)The next step is to create a session key. Here, I have used “os” module to create 
a random key “key = os.urandom(16)” which will give us a 16bit long key and after that I 
have encrypted that key in “AES.MODE_CTR” and hash it again with SHA-1:

•

https://riptutorial.com/ 784



 #encrypt CTR MODE session key 
 en = AES.new(key_128,AES.MODE_CTR,counter = lambda:key_128) encrypto = 
en.encrypt(key_128) 
 #hashing sha1 
 en_object = hashlib.sha1(encrypto) 
 en_digest = en_object.hexdigest()

So the en_digest will be our session key.

(SERVER) For the final part of the handshake process is to encrypt the public key got from 
the client and the session key created in server side.

 #encrypting session key and public key 
 E = server_public_key.encrypt(encrypto,16)

•

After encrypting, server will send the key to the client as string.

(CLIENT) After getting the encrypted string of (public and session key) from the server, client 
will decrypt them using Private Key which was created earlier along with the public key. As 
the encrypted (public and session key) was in form of string, now we have to get it back as a 
key by using eval() . If the decryption is done, the handshake process is completed also as 
both sides confirms that they are using same keys. To decrypt:

 en = eval(msg) 
 decrypt = key.decrypt(en) 
 # hashing sha1 
 en_object = hashlib.sha1(decrypt) en_digest = en_object.hexdigest()

•

I have used the SHA-1 here so that it will be readable in the output.

Communication Process:

For communication process, we have to use the session key from both side as the KEY for IDEA 
encryption MODE_CTR. Both side will encrypt and decrypt messages with IDEA.MODE_CTR 
using the session key.

(Encryption) For IDEA encryption, we need key of 16bit in size and counter as must callable. 
Counter is mandatory in MODE_CTR. The session key that we encrypted and hashed is now 
size of 40 which will exceed the limit key of the IDEA encryption. Hence, we need to reduce 
the size of the session key. For reducing, we can use normal python built in function 
string[value:value]. Where the value can be any value according to the choice of the user. In 
our case, I have done “key[:16]” where it will take from 0 to 16 values from the key. This 
conversion could be done in many ways like key[1:17] or key[16:]. Next part is to create new 
IDEA encryption function by writing IDEA.new() which will take 3 arguments for processing. 
The first argument will be KEY,second argument will be the mode of the IDEA encryption (in 
our case, IDEA.MODE_CTR) and the third argument will be the counter= which is a must 
callable function. The counter= will hold a size of of string which will be returned by the 
function. To define the counter= , we must have to use a reasonable values. In this case, I 
have used the size of the KEY by defining lambda. Instead of using lambda, we could use 

•

https://riptutorial.com/ 785



Counter.Util which generates random value for counter= . To use Counter.Util, we need to 
import counter module from crypto. Hence, the code will be:

  ideaEncrypt = IDEA.new(key, IDEA.MODE_CTR, counter=lambda : key)

Once defining the “ideaEncrypt” as our IDEA encryption variable, we can use the built in encrypt 
function to encrypt any message.

eMsg = ideaEncrypt.encrypt(whole) 
#converting the encrypted message to HEXADECIMAL to readable eMsg = 
eMsg.encode("hex").upper()

In this code segment, whole is the message to be encrypted and eMsg is the encrypted message. 
After encrypting the message, I have converted it into HEXADECIMAL to make readable and 
upper() is the built in function to make the characters uppercase. After that, this encrypted 
message will be sent to the opposite station for decryption.

(Decryption)•

To decrypt the encrypted messages, we will need to create another encryption variable by using 
the same arguments and same key but this time the variable will decrypt the encrypted messages. 
The code for this same as the last time. However, before decrypting the messages, we need to 
decode the message from hexadecimal because in our encryption part, we encoded the encrypted 
message in hexadecimal to make readable. Hence, the whole code will be:

decoded = newmess.decode("hex") 
ideaDecrypt = IDEA.new(key, IDEA.MODE_CTR, counter=lambda: key) 
dMsg = ideaDecrypt.decrypt(decoded)

These processes will be done in both server and client side for encrypting and decrypting.

Examples

Server side Implementation

import socket 
import hashlib 
import os 
import time 
import itertools 
import threading 
import sys 
import Crypto.Cipher.AES as AES 
from Crypto.PublicKey import RSA 
from CryptoPlus.Cipher import IDEA 
 
#server address and port number input from admin 
host= raw_input("Server Address - > ") 
port = int(input("Port - > ")) 
#boolean for checking server and port 
check = False 

https://riptutorial.com/ 786



done = False 
 
def animate(): 
    for c in itertools.cycle(['....','.......','..........','............']): 
        if done: 
            break 
        sys.stdout.write('\rCHECKING IP ADDRESS AND NOT USED PORT '+c) 
        sys.stdout.flush() 
        time.sleep(0.1) 
    sys.stdout.write('\r -----SERVER STARTED. WAITING FOR CLIENT-----\n') 
try: 
    #setting up socket 
    server = socket.socket(socket.AF_INET,socket.SOCK_STREAM) 
    server.bind((host,port)) 
    server.listen(5) 
    check = True 
except BaseException: 
    print "-----Check Server Address or Port-----" 
    check = False 
 
if check is True: 
    # server Quit 
    shutdown = False 
# printing "Server Started Message" 
thread_load = threading.Thread(target=animate) 
thread_load.start() 
 
time.sleep(4) 
done = True 
#binding client and address 
client,address = server.accept() 
print ("CLIENT IS CONNECTED. CLIENT'S ADDRESS ->",address) 
print ("\n-----WAITING FOR PUBLIC KEY & PUBLIC KEY HASH-----\n") 
 
#client's message(Public Key) 
getpbk = client.recv(2048) 
 
#conversion of string to KEY 
server_public_key = RSA.importKey(getpbk) 
 
#hashing the public key in server side for validating the hash from client 
hash_object = hashlib.sha1(getpbk) 
hex_digest = hash_object.hexdigest() 
 
if getpbk != "": 
    print (getpbk) 
    client.send("YES") 
    gethash = client.recv(1024) 
    print ("\n-----HASH OF PUBLIC KEY----- \n"+gethash) 
if hex_digest == gethash: 
    # creating session key 
    key_128 = os.urandom(16) 
    #encrypt CTR MODE session key 
    en = AES.new(key_128,AES.MODE_CTR,counter = lambda:key_128) 
    encrypto = en.encrypt(key_128) 
    #hashing sha1 
    en_object = hashlib.sha1(encrypto) 
    en_digest = en_object.hexdigest() 
 
    print ("\n-----SESSION KEY-----\n"+en_digest) 
 

https://riptutorial.com/ 787



    #encrypting session key and public key 
    E = server_public_key.encrypt(encrypto,16) 
    print ("\n-----ENCRYPTED PUBLIC KEY AND SESSION KEY-----\n"+str(E)) 
    print ("\n-----HANDSHAKE COMPLETE-----") 
    client.send(str(E)) 
    while True: 
        #message from client 
        newmess = client.recv(1024) 
        #decoding the message from HEXADECIMAL to decrypt the ecrypted version of the message 
only 
        decoded = newmess.decode("hex") 
        #making en_digest(session_key) as the key 
        key = en_digest[:16] 
        print ("\nENCRYPTED MESSAGE FROM CLIENT -> "+newmess) 
        #decrypting message from the client 
        ideaDecrypt = IDEA.new(key, IDEA.MODE_CTR, counter=lambda: key) 
        dMsg = ideaDecrypt.decrypt(decoded) 
        print ("\n**New Message**  "+time.ctime(time.time()) +" > "+dMsg+"\n") 
        mess = raw_input("\nMessage To Client -> ") 
        if mess != "": 
            ideaEncrypt = IDEA.new(key, IDEA.MODE_CTR, counter=lambda : key) 
            eMsg = ideaEncrypt.encrypt(mess) 
            eMsg = eMsg.encode("hex").upper() 
            if eMsg != "": 
                print ("ENCRYPTED MESSAGE TO CLIENT-> " + eMsg) 
            client.send(eMsg) 
    client.close() 
else: 
    print ("\n-----PUBLIC KEY HASH DOESNOT MATCH-----\n")

Client side Implementation

import time 
import socket 
import threading 
import hashlib 
import itertools 
import sys 
from Crypto import Random 
from Crypto.PublicKey import RSA 
from CryptoPlus.Cipher import IDEA 
 
#animating loading 
done = False 
def animate(): 
    for c in itertools.cycle(['....','.......','..........','............']): 
        if done: 
            break 
        sys.stdout.write('\rCONFIRMING CONNECTION TO SERVER '+c) 
        sys.stdout.flush() 
        time.sleep(0.1) 
 
#public key and private key 
random_generator = Random.new().read 
key = RSA.generate(1024,random_generator) 
public = key.publickey().exportKey() 
private = key.exportKey() 
 
#hashing the public key 

https://riptutorial.com/ 788



hash_object = hashlib.sha1(public) 
hex_digest = hash_object.hexdigest() 
 
#Setting up socket 
server = socket.socket(socket.AF_INET,socket.SOCK_STREAM) 
 
#host and port input user 
host = raw_input("Server Address To Be Connected -> ") 
port = int(input("Port of The Server -> ")) 
#binding the address and port 
server.connect((host, port)) 
# printing "Server Started Message" 
thread_load = threading.Thread(target=animate) 
thread_load.start() 
 
time.sleep(4) 
done = True 
 
def send(t,name,key): 
    mess = raw_input(name + " : ") 
    key = key[:16] 
    #merging the message and the name 
    whole = name+" : "+mess 
    ideaEncrypt = IDEA.new(key, IDEA.MODE_CTR, counter=lambda : key) 
    eMsg = ideaEncrypt.encrypt(whole) 
    #converting the encrypted message to HEXADECIMAL to readable 
    eMsg = eMsg.encode("hex").upper() 
    if eMsg != "": 
        print ("ENCRYPTED MESSAGE TO SERVER-> "+eMsg) 
    server.send(eMsg) 
def recv(t,key): 
    newmess = server.recv(1024) 
    print ("\nENCRYPTED MESSAGE FROM SERVER-> " + newmess) 
    key = key[:16] 
    decoded = newmess.decode("hex") 
    ideaDecrypt = IDEA.new(key, IDEA.MODE_CTR, counter=lambda: key) 
    dMsg = ideaDecrypt.decrypt(decoded) 
    print ("\n**New Message From Server**  " + time.ctime(time.time()) + " : " + dMsg + "\n") 
 
while True: 
    server.send(public) 
    confirm = server.recv(1024) 
    if confirm == "YES": 
        server.send(hex_digest) 
 
    #connected msg 
    msg = server.recv(1024) 
    en = eval(msg) 
    decrypt = key.decrypt(en) 
    # hashing sha1 
    en_object = hashlib.sha1(decrypt) 
    en_digest = en_object.hexdigest() 
 
    print ("\n-----ENCRYPTED PUBLIC KEY AND SESSION KEY FROM SERVER-----") 
    print (msg) 
    print ("\n-----DECRYPTED SESSION KEY-----") 
    print (en_digest) 
    print ("\n-----HANDSHAKE COMPLETE-----\n") 
    alais = raw_input("\nYour Name -> ") 
 
    while True: 

https://riptutorial.com/ 789



        thread_send = threading.Thread(target=send,args=("------Sending Message------
",alais,en_digest)) 
        thread_recv = threading.Thread(target=recv,args=("------Recieving Message------
",en_digest)) 
        thread_send.start() 
        thread_recv.start() 
 
        thread_send.join() 
        thread_recv.join() 
        time.sleep(0.5) 
    time.sleep(60) 
    server.close()

Read Sockets And Message Encryption/Decryption Between Client and Server online: 
https://riptutorial.com/python/topic/8710/sockets-and-message-encryption-decryption-between-
client-and-server

https://riptutorial.com/ 790

https://riptutorial.com/python/topic/8710/sockets-and-message-encryption-decryption-between-client-and-server
https://riptutorial.com/python/topic/8710/sockets-and-message-encryption-decryption-between-client-and-server


Chapter 166: Sorting, Minimum and Maximum

Examples

Getting the minimum or maximum of several values

min(7,2,1,5) 
# Output: 1 
 
max(7,2,1,5) 
# Output: 7

Using the key argument

Finding the minimum/maximum of a sequence of sequences is possible:

list_of_tuples = [(0, 10), (1, 15), (2, 8)] 
min(list_of_tuples) 
# Output: (0, 10)

but if you want to sort by a specific element in each sequence use the key-argument:

min(list_of_tuples, key=lambda x: x[0])         # Sorting by first element 
# Output: (0, 10) 
 
min(list_of_tuples, key=lambda x: x[1])         # Sorting by second element 
# Output: (2, 8) 
 
sorted(list_of_tuples, key=lambda x: x[0])      # Sorting by first element (increasing) 
# Output: [(0, 10), (1, 15), (2, 8)] 
 
sorted(list_of_tuples, key=lambda x: x[1])      # Sorting by first element 
# Output: [(2, 8), (0, 10), (1, 15)] 
 
import operator 
# The operator module contains efficient alternatives to the lambda function 
max(list_of_tuples, key=operator.itemgetter(0)) # Sorting by first element 
# Output: (2, 8) 
 
max(list_of_tuples, key=operator.itemgetter(1)) # Sorting by second element 
# Output: (1, 15) 
 
sorted(list_of_tuples, key=operator.itemgetter(0), reverse=True) # Reversed (decreasing) 
# Output: [(2, 8), (1, 15), (0, 10)] 
 
sorted(list_of_tuples, key=operator.itemgetter(1), reverse=True) # Reversed(decreasing) 
# Output: [(1, 15), (0, 10), (2, 8)]

Default Argument to max, min

You can't pass an empty sequence into max or min:

https://riptutorial.com/ 791



min([])

ValueError: min() arg is an empty sequence

However, with Python 3, you can pass in the keyword argument default with a value that will be 
returned if the sequence is empty, instead of raising an exception:

max([], default=42) 
# Output: 42 
max([], default=0) 
# Output: 0

Special case: dictionaries

Getting the minimum or maximum or using sorted depends on iterations over the object. In the 
case of dict, the iteration is only over the keys:

adict = {'a': 3, 'b': 5, 'c': 1} 
min(adict) 
# Output: 'a' 
max(adict) 
# Output: 'c' 
sorted(adict) 
# Output: ['a', 'b', 'c']

To keep the dictionary structure, you have to iterate over the .items():

min(adict.items()) 
# Output: ('a', 3) 
max(adict.items()) 
# Output: ('c', 1) 
sorted(adict.items()) 
# Output: [('a', 3), ('b', 5), ('c', 1)]

For sorted, you could create an OrderedDict to keep the sorting while having a dict-like structure:

from collections import OrderedDict 
OrderedDict(sorted(adict.items())) 
# Output: OrderedDict([('a', 3), ('b', 5), ('c', 1)]) 
res = OrderedDict(sorted(adict.items())) 
res['a'] 
# Output: 3

By value

Again this is possible using the key argument:

min(adict.items(), key=lambda x: x[1]) 
# Output: ('c', 1) 
max(adict.items(), key=operator.itemgetter(1)) 

https://riptutorial.com/ 792



# Output: ('b', 5) 
sorted(adict.items(), key=operator.itemgetter(1), reverse=True) 
# Output: [('b', 5), ('a', 3), ('c', 1)]

Getting a sorted sequence

Using one sequence:

sorted((7, 2, 1, 5))                 # tuple 
# Output: [1, 2, 5, 7] 
 
sorted(['c', 'A', 'b'])              # list 
# Output: ['A', 'b', 'c'] 
 
sorted({11, 8, 1})                   # set 
# Output: [1, 8, 11] 
 
sorted({'11': 5, '3': 2, '10': 15})  # dict 
# Output: ['10', '11', '3']          # only iterates over the keys 
 
sorted('bdca')                       # string 
# Output: ['a','b','c','d']

The result is always a new list; the original data remains unchanged.

Minimum and Maximum of a sequence

Getting the minimum of a sequence (iterable) is equivalent of accessing the first element of a 
sorted sequence:

min([2, 7, 5]) 
# Output: 2 
sorted([2, 7, 5])[0] 
# Output: 2

The maximum is a bit more complicated, because sorted keeps order and max returns the first 
encountered value. In case there are no duplicates the maximum is the same as the last element 
of the sorted return:

max([2, 7, 5]) 
# Output: 7 
sorted([2, 7, 5])[-1] 
# Output: 7

But not if there are multiple elements that are evaluated as having the maximum value:

class MyClass(object): 
    def __init__(self, value, name): 
        self.value = value 
        self.name = name 
 
    def __lt__(self, other): 
        return self.value < other.value 

https://riptutorial.com/ 793



 
    def __repr__(self): 
        return str(self.name) 
 
sorted([MyClass(4, 'first'), MyClass(1, 'second'), MyClass(4, 'third')]) 
# Output: [second, first, third] 
max([MyClass(4, 'first'), MyClass(1, 'second'), MyClass(4, 'third')]) 
# Output: first

Any iterable containing elements that support < or > operations are allowed.

Make custom classes orderable

min, max, and sorted all need the objects to be orderable. To be properly orderable, the class needs 
to define all of the 6 methods __lt__, __gt__, __ge__, __le__, __ne__ and __eq__:

class IntegerContainer(object): 
    def __init__(self, value): 
        self.value = value 
 
    def __repr__(self): 
        return "{}({})".format(self.__class__.__name__, self.value) 
 
    def __lt__(self, other): 
        print('{!r} - Test less than {!r}'.format(self, other)) 
        return self.value < other.value 
 
    def __le__(self, other): 
        print('{!r} - Test less than or equal to {!r}'.format(self, other)) 
        return self.value <= other.value 
 
    def __gt__(self, other): 
        print('{!r} - Test greater than {!r}'.format(self, other)) 
        return self.value > other.value 
 
    def __ge__(self, other): 
        print('{!r} - Test greater than or equal to {!r}'.format(self, other)) 
        return self.value >= other.value 
 
    def __eq__(self, other): 
        print('{!r} - Test equal to {!r}'.format(self, other)) 
        return self.value == other.value 
 
    def __ne__(self, other): 
        print('{!r} - Test not equal to {!r}'.format(self, other)) 
        return self.value != other.value

Though implementing all these methods would seem unnecessary, omitting some of them will 
make your code prone to bugs.

Examples:

alist = [IntegerContainer(5), IntegerContainer(3), 
         IntegerContainer(10), IntegerContainer(7) 
        ] 
 

https://riptutorial.com/ 794

http://stackoverflow.com/a/8796908/918959
http://stackoverflow.com/a/8796908/918959


res = max(alist) 
# Out: IntegerContainer(3) - Test greater than IntegerContainer(5) 
#      IntegerContainer(10) - Test greater than IntegerContainer(5) 
#      IntegerContainer(7) - Test greater than IntegerContainer(10) 
print(res) 
# Out: IntegerContainer(10) 
 
res = min(alist) 
# Out: IntegerContainer(3) - Test less than IntegerContainer(5) 
#      IntegerContainer(10) - Test less than IntegerContainer(3) 
#      IntegerContainer(7) - Test less than IntegerContainer(3) 
print(res) 
# Out: IntegerContainer(3) 
 
res = sorted(alist) 
# Out: IntegerContainer(3) - Test less than IntegerContainer(5) 
#      IntegerContainer(10) - Test less than IntegerContainer(3) 
#      IntegerContainer(10) - Test less than IntegerContainer(5) 
#      IntegerContainer(7) - Test less than IntegerContainer(5) 
#      IntegerContainer(7) - Test less than IntegerContainer(10) 
print(res) 
# Out: [IntegerContainer(3), IntegerContainer(5), IntegerContainer(7), IntegerContainer(10)]

sorted with reverse=True also uses __lt__:

res = sorted(alist, reverse=True) 
# Out: IntegerContainer(10) - Test less than IntegerContainer(7) 
#      IntegerContainer(3) - Test less than IntegerContainer(10) 
#      IntegerContainer(3) - Test less than IntegerContainer(10) 
#      IntegerContainer(3) - Test less than IntegerContainer(7) 
#      IntegerContainer(5) - Test less than IntegerContainer(7) 
#      IntegerContainer(5) - Test less than IntegerContainer(3) 
print(res) 
# Out: [IntegerContainer(10), IntegerContainer(7), IntegerContainer(5), IntegerContainer(3)]

But sorted can use __gt__ instead if the default is not implemented:

del IntegerContainer.__lt__   # The IntegerContainer no longer implements "less than" 
 
res = min(alist) 
# Out: IntegerContainer(5) - Test greater than IntegerContainer(3) 
#      IntegerContainer(3) - Test greater than IntegerContainer(10) 
#      IntegerContainer(3) - Test greater than IntegerContainer(7) 
print(res) 
# Out: IntegerContainer(3)

Sorting methods will raise a TypeError if neither __lt__ nor __gt__ are implemented:

del IntegerContainer.__gt__   # The IntegerContainer no longer implements "greater then" 
 
res = min(alist) 

TypeError: unorderable types: IntegerContainer() < IntegerContainer()

functools.total_ordering decorator can be used simplifying the effort of writing these rich 

https://riptutorial.com/ 795

https://docs.python.org/3.3/library/functools.html#functools.total_ordering


comparison methods. If you decorate your class with total_ordering, you need to implement __eq__
, __ne__ and only one of the __lt__, __le__, __ge__ or __gt__, and the decorator will fill in the rest:

import functools 
 
@functools.total_ordering 
class IntegerContainer(object): 
    def __init__(self, value): 
        self.value = value 
 
    def __repr__(self): 
        return "{}({})".format(self.__class__.__name__, self.value) 
 
    def __lt__(self, other): 
        print('{!r} - Test less than {!r}'.format(self, other)) 
        return self.value < other.value 
 
    def __eq__(self, other): 
        print('{!r} - Test equal to {!r}'.format(self, other)) 
        return self.value == other.value 
 
    def __ne__(self, other): 
        print('{!r} - Test not equal to {!r}'.format(self, other)) 
        return self.value != other.value 
 
 
IntegerContainer(5) > IntegerContainer(6) 
# Output: IntegerContainer(5) - Test less than IntegerContainer(6) 
# Returns: False 
 
IntegerContainer(6) > IntegerContainer(5) 
# Output: IntegerContainer(6) - Test less than IntegerContainer(5) 
# Output: IntegerContainer(6) - Test equal to IntegerContainer(5) 
# Returns True

Notice how the > (greater than) now ends up calling the less than method, and in some cases 
even the __eq__ method. This also means that if speed is of great importance, you should 
implement each rich comparison method yourself.

Extracting N largest or N smallest items from an iterable

To find some number (more than one) of largest or smallest values of an iterable, you can use the 
nlargest and nsmallest of the heapq module:

import heapq 
 
# get 5 largest items from the range 
 
heapq.nlargest(5, range(10)) 
# Output: [9, 8, 7, 6, 5] 
 
heapq.nsmallest(5, range(10)) 
# Output: [0, 1, 2, 3, 4]

This is much more efficient than sorting the whole iterable and then slicing from the end or 
beginning. Internally these functions use the binary heap priority queue data structure, which is 

https://riptutorial.com/ 796

https://docs.python.org/3/library/heapq.html#heapq.nlargest
https://docs.python.org/3/library/heapq.html#heapq.nlargest
https://docs.python.org/3/library/heapq.html
https://en.wikipedia.org/wiki/Binary_heap
https://en.wikipedia.org/wiki/Priority_queue


very efficient for this use case.

Like min, max and sorted, these functions accept the optional key keyword argument, which must be 
a function that, given an element, returns its sort key.

Here is a program that extracts 1000 longest lines from a file:

import heapq 
with open(filename) as f: 
    longest_lines = heapq.nlargest(1000, f, key=len)

Here we open the file, and pass the file handle f to nlargest. Iterating the file yields each line of the 
file as a separate string; nlargest then passes each element (or line) is passed to the function len 
to determine its sort key. len, given a string, returns the length of the line in characters.

This only needs storage for a list of 1000 largest lines so far, which can be contrasted with

longest_lines = sorted(f, key=len)[1000:]

which will have to hold the entire file in memory.

Read Sorting, Minimum and Maximum online: https://riptutorial.com/python/topic/252/sorting--
minimum-and-maximum

https://riptutorial.com/ 797

https://riptutorial.com/python/topic/252/sorting--minimum-and-maximum
https://riptutorial.com/python/topic/252/sorting--minimum-and-maximum


Chapter 167: Sqlite3 Module

Examples

Sqlite3 - Not require separate server process.

The sqlite3 module was written by Gerhard Häring. To use the module, you must first create a 
Connection object that represents the database. Here the data will be stored in the example.db 
file:

import sqlite3 
conn = sqlite3.connect('example.db')

You can also supply the special name :memory: to create a database in RAM. Once you have a 
Connection, you can create a Cursor object and call its execute() method to perform SQL 
commands:

c = conn.cursor() 
 
# Create table 
c.execute('''CREATE TABLE stocks 
         (date text, trans text, symbol text, qty real, price real)''') 
 
# Insert a row of data 
c.execute("INSERT INTO stocks VALUES ('2006-01-05','BUY','RHAT',100,35.14)") 
 
# Save (commit) the changes 
conn.commit() 
 
# We can also close the connection if we are done with it. 
# Just be sure any changes have been committed or they will be lost. 
conn.close()

Getting the values from the database and Error handling

Fetching the values from the SQLite3 database.

Print row values returned by select query

import sqlite3 
conn = sqlite3.connect('example.db') 
c = conn.cursor() 
c.execute("SELECT * from table_name where id=cust_id") 
for row in c: 
    print row # will be a list

To fetch single matching fetchone() method

print c.fetchone()

https://riptutorial.com/ 798



For multiple rows use fetchall() method

a=c.fetchall() #which is similar to list(cursor) method used previously 
for row in a: 
    print row

Error handling can be done using sqlite3.Error built in function

try: 
    #SQL Code 
except sqlite3.Error as e: 
    print "An error occurred:", e.args[0]

Read Sqlite3 Module online: https://riptutorial.com/python/topic/7754/sqlite3-module

https://riptutorial.com/ 799

https://riptutorial.com/python/topic/7754/sqlite3-module


Chapter 168: Stack

Introduction

A stack is a container of objects that are inserted and removed according to the last-in first-out 
(LIFO) principle. In the pushdown stacks only two operations are allowed: push the item into the 
stack, and pop the item out of the stack. A stack is a limited access data structure - elements 
can be added and removed from the stack only at the top. Here is a structural definition of a 
Stack: a stack is either empty or it consists of a top and the rest which is a Stack.

Syntax

stack = [] # Create the stack•
stack.append(object) # Add object to the top of the stack•
stack.pop() -> object # Return the top most object from the stack and also remove it•
list[-1] -> object # Peek the top most object without removing it•

Remarks

From Wikipedia:

In computer science, a stack is an abstract data type that serves as a collection of 
elements, with two principal operations: push, which adds an element to the collection, 
and pop, which removes the most recently added element that was not yet removed.

Due to the way their elements are accessed, stacks are also known as Last-In, First-Out (LIFO) 
stacks.

In Python one can use lists as stacks with append() as push and pop() as pop operations. Both 
operations run in constant time O(1).

The Python's deque data structure can also be used as a stack. Compared to lists, deques allow 
push and pop operations with constant time complexity from both ends.

Examples

Creating a Stack class with a List Object

Using a list object you can create a fully functional generic Stack with helper methods such as 
peeking and checking if the stack is Empty. Check out the official python docs for using list as 
Stack here.

#define a stack class 
class Stack: 
    def __init__(self): 

https://riptutorial.com/ 800

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html#using-lists-as-stacks


        self.items = [] 
 
    #method to check the stack is empty or not 
    def isEmpty(self): 
        return self.items == [] 
 
    #method for pushing an item 
    def push(self, item): 
        self.items.append(item) 
 
    #method for popping an item 
    def pop(self): 
        return self.items.pop() 
 
    #check what item is on top of the stack without removing it 
    def peek(self): 
        return self.items[-1] 
 
    #method to get the size 
    def size(self): 
        return len(self.items) 
 
    #to view the entire stack 
    def fullStack(self): 
        return self.items

An example run:

stack = Stack() 
print('Current stack:', stack.fullStack()) 
print('Stack empty?:', stack.isEmpty()) 
print('Pushing integer 1') 
stack.push(1) 
print('Pushing string "Told you, I am generic stack!"') 
stack.push('Told you, I am generic stack!') 
print('Pushing integer 3') 
stack.push(3) 
print('Current stack:', stack.fullStack()) 
print('Popped item:', stack.pop()) 
print('Current stack:', stack.fullStack()) 
print('Stack empty?:', stack.isEmpty())

Output:

Current stack: [] 
Stack empty?: True 
Pushing integer 1 
Pushing string "Told you, I am generic stack!" 
Pushing integer 3 
Current stack: [1, 'Told you, I am generic stack!', 3] 
Popped item: 3 
Current stack: [1, 'Told you, I am generic stack!'] 
Stack empty?: False

Parsing Parentheses

Stacks are often used for parsing. A simple parsing task is to check whether a string of 

https://riptutorial.com/ 801



parentheses are matching.

For example, the string ([]) is matching, because the outer and inner brackets form pairs. ()<>) is 
not matching, because the last ) has no partner. ([)] is also not matching, because pairs must be 
either entirely inside or outside other pairs.

def checkParenth(str): 
    stack = Stack() 
    pushChars, popChars = "<({[", ">)}]" 
    for c in str: 
        if c in pushChars: 
            stack.push(c) 
        elif c in popChars: 
            if stack.isEmpty(): 
                return False 
            else: 
                stackTop = stack.pop() 
                # Checks to see whether the opening bracket matches the closing one 
                balancingBracket = pushChars[popChars.index(c)] 
                if stackTop != balancingBracket: 
                    return False 
        else: 
            return False 
 
    return not stack.isEmpty()

Read Stack online: https://riptutorial.com/python/topic/3807/stack

https://riptutorial.com/ 802

https://riptutorial.com/python/topic/3807/stack


Chapter 169: String Formatting

Introduction

When storing and transforming data for humans to see, string formatting can become very 
important. Python offers a wide variety of string formatting methods which are outlined in this topic.

Syntax

"{}".format(42) ==> "42"•
"{0}".format(42) ==> "42"•
"{0:.2f}".format(42) ==> "42.00"•
"{0:.0f}".format(42.1234) ==> "42"•
"{answer}".format(no_answer=41, answer=42) ==> "42"•
"{answer:.2f}".format(no_answer=41, answer=42) ==> "42.00"•
"{[key]}".format({'key': 'value'}) ==> "value"•
"{[1]}".format(['zero', 'one', 'two']) ==> "one"•
"{answer} = {answer}".format(answer=42) ==> "42 = 42"•
' '.join(['stack', 'overflow']) ==> "stack overflow"•

Remarks

Should check out PyFormat.info for a very thorough and gentle introduction/explanation of 
how it works.

•

Examples

Basics of String Formatting

foo = 1 
bar = 'bar' 
baz = 3.14

You can use str.format to format output. Bracket pairs are replaced with arguments in the order in 
which the arguments are passed:

print('{}, {} and {}'.format(foo, bar, baz)) 
# Out: "1, bar and 3.14"

Indexes can also be specified inside the brackets. The numbers correspond to indexes of the 
arguments passed to the str.format function (0-based).

print('{0}, {1}, {2}, and {1}'.format(foo, bar, baz)) 
# Out: "1, bar, 3.14, and bar" 

https://riptutorial.com/ 803

https://pyformat.info/


print('{0}, {1}, {2}, and {3}'.format(foo, bar, baz)) 
# Out: index out of range error

Named arguments can be also used:

print("X value is: {x_val}. Y value is: {y_val}.".format(x_val=2, y_val=3)) 
# Out: "X value is: 2. Y value is: 3."

Object attributes can be referenced when passed into str.format:

class AssignValue(object): 
    def __init__(self, value): 
        self.value = value 
my_value = AssignValue(6) 
print('My value is: {0.value}'.format(my_value))  # "0" is optional 
# Out: "My value is: 6"

Dictionary keys can be used as well:

my_dict = {'key': 6, 'other_key': 7} 
print("My other key is: {0[other_key]}".format(my_dict))  # "0" is optional 
# Out: "My other key is: 7"

Same applies to list and tuple indices:

my_list = ['zero', 'one', 'two'] 
print("2nd element is: {0[2]}".format(my_list))  # "0" is optional 
# Out: "2nd element is: two"

Note: In addition to str.format, Python also provides the modulo operator %--also 
known as the string formatting or interpolation operator (see PEP 3101)--for formatting 
strings. str.format is a successor of % and it offers greater flexibility, for instance by 
making it easier to carry out multiple substitutions.

In addition to argument indexes, you can also include a format specification inside the curly 
brackets. This is an expression that follows special rules and must be preceded by a colon (:). 
See the docs for a full description of format specification. An example of format specification is the 
alignment directive :~^20 (^ stands for center alignment, total width 20, fill with ~ character):

'{:~^20}'.format('centered') 
# Out: '~~~~~~centered~~~~~~'

format allows behaviour not possible with %, for example repetition of arguments:

t = (12, 45, 22222, 103, 6) 
print '{0} {2} {1} {2} {3} {2} {4} {2}'.format(*t) 
# Out: 12 22222 45 22222 103 22222 6 22222

As format is a function, it can be used as an argument in other functions:

https://riptutorial.com/ 804

https://www.python.org/dev/peps/pep-3101/
https://docs.python.org/2/library/string.html#format-specification-mini-language


number_list = [12,45,78] 
print map('the number is {}'.format, number_list) 
# Out: ['the number is 12', 'the number is 45', 'the number is 78'] 
 
 
from datetime import datetime,timedelta 
 
once_upon_a_time = datetime(2010, 7, 1, 12, 0, 0) 
delta = timedelta(days=13, hours=8,  minutes=20) 
 
gen = (once_upon_a_time + x * delta for x in xrange(5)) 
 
print '\n'.join(map('{:%Y-%m-%d %H:%M:%S}'.format, gen)) 
#Out: 2010-07-01 12:00:00 
#     2010-07-14 20:20:00 
#     2010-07-28 04:40:00 
#     2010-08-10 13:00:00 
#     2010-08-23 21:20:00

Alignment and padding

Python 2.x2.6

The format() method can be used to change the alignment of the string. You have to do it with a 
format expression of the form :[fill_char][align_operator][width] where align_operator is one of:

< forces the field to be left-aligned within width.•
> forces the field to be right-aligned within width.•
^ forces the field to be centered within width.•
= forces the padding to be placed after the sign (numeric types only).•

fill_char (if omitted default is whitespace) is the character used for the padding.

'{:~<9s}, World'.format('Hello') 
# 'Hello~~~~, World' 
 
'{:~>9s}, World'.format('Hello') 
# '~~~~Hello, World' 
 
'{:~^9s}'.format('Hello') 
# '~~Hello~~' 
 
'{:0=6d}'.format(-123) 
# '-00123'

Note: you could achieve the same results using the string functions ljust(), rjust(), center(), 
zfill(), however these functions are deprecated since version 2.5.

Format literals (f-string)

Literal format strings were introduced in PEP 498 (Python3.6 and upwards), allowing you to 
prepend f to the beginning of a string literal to effectively apply .format to it with all variables in the 
current scope.

https://riptutorial.com/ 805

https://www.python.org/dev/peps/pep-0498/


>>> foo = 'bar' 
>>> f'Foo is {foo}' 
'Foo is bar'

This works with more advanced format strings too, including alignment and dot notation.

>>> f'{foo:^7s}' 
'  bar  '

Note: The f'' does not denote a particular type like b'' for bytes or u'' for unicode in python2. The 
formating is immediately applied, resulting in a normal stirng.

The format strings can also be nested:

>>> price = 478.23 
>>> f"{f'${price:0.2f}':*>20s}" 
'*************$478.23'

The expressions in an f-string are evaluated in left-to-right order. This is detectable only if the 
expressions have side effects:

>>> def fn(l, incr): 
...    result = l[0] 
...    l[0] += incr 
...    return result 
... 
>>> lst = [0] 
>>> f'{fn(lst,2)} {fn(lst,3)}' 
'0 2' 
>>> f'{fn(lst,2)} {fn(lst,3)}' 
'5 7' 
>>> lst 
[10]

String formatting with datetime

Any class can configure its own string formatting syntax through the __format__ method. A type in 
the standard Python library that makes handy use of this is the datetime type, where one can use 
strftime-like formatting codes directly within str.format:

>>> from datetime import datetime 
>>> 'North America: {dt:%m/%d/%Y}.  ISO: {dt:%Y-%m-%d}.'.format(dt=datetime.now()) 
'North America: 07/21/2016.  ISO: 2016-07-21.'

A full list of list of datetime formatters can be found in the official documenttion.

Format using Getitem and Getattr

Any data structure that supports __getitem__ can have their nested structure formatted:

person = {'first': 'Arthur', 'last': 'Dent'} 

https://riptutorial.com/ 806

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior


'{p[first]} {p[last]}'.format(p=person) 
# 'Arthur Dent'

Object attributes can be accessed using getattr():

class Person(object): 
    first = 'Zaphod' 
    last = 'Beeblebrox' 
 
'{p.first} {p.last}'.format(p=Person()) 
# 'Zaphod Beeblebrox'

Float formatting

>>> '{0:.0f}'.format(42.12345) 
'42' 
 
>>> '{0:.1f}'.format(42.12345) 
'42.1' 
 
>>> '{0:.3f}'.format(42.12345) 
'42.123' 
 
>>> '{0:.5f}'.format(42.12345) 
'42.12345' 
 
>>> '{0:.7f}'.format(42.12345) 
'42.1234500'

Same hold for other way of referencing:

>>> '{:.3f}'.format(42.12345) 
'42.123' 
 
>>> '{answer:.3f}'.format(answer=42.12345) 
'42.123'

Floating point numbers can also be formatted in scientific notation or as percentages:

>>> '{0:.3e}'.format(42.12345) 
'4.212e+01' 
 
>>> '{0:.0%}'.format(42.12345) 
'4212%'

You can also combine the {0} and {name} notations. This is especially useful when you want to 
round all variables to a pre-specified number of decimals with 1 declaration:

>>> s = 'Hello' 
>>> a, b, c = 1.12345, 2.34567, 34.5678 
>>> digits = 2 
 
>>> '{0}! {1:.{n}f}, {2:.{n}f}, {3:.{n}f}'.format(s, a, b, c, n=digits) 
'Hello! 1.12, 2.35, 34.57'

https://riptutorial.com/ 807

https://en.wikipedia.org/wiki/Scientific_notation


Formatting Numerical Values

The .format() method can interpret a number in different formats, such as:

>>> '{:c}'.format(65)    # Unicode character 
'A' 
 
>>> '{:d}'.format(0x0a)  # base 10 
'10' 
 
>>> '{:n}'.format(0x0a)  # base 10 using current locale for separators 
'10'

Format integers to different bases (hex, oct, binary)

>>> '{0:x}'.format(10) # base 16, lowercase - Hexadecimal 
'a' 
 
>>> '{0:X}'.format(10) # base 16, uppercase - Hexadecimal 
'A' 
 
>>> '{:o}'.format(10) # base 8 - Octal 
'12' 
 
>>> '{:b}'.format(10) # base 2 - Binary 
'1010' 
 
>>> '{0:#b}, {0:#o}, {0:#x}'.format(42) # With prefix 
'0b101010, 0o52, 0x2a' 
 
>>> '8 bit: {0:08b}; Three bytes: {0:06x}'.format(42) # Add zero padding 
'8 bit: 00101010; Three bytes: 00002a'

Use formatting to convert an RGB float tuple to a color hex string:

>>> r, g, b = (1.0, 0.4, 0.0) 
>>> '#{:02X}{:02X}{:02X}'.format(int(255 * r), int(255 * g), int(255 * b)) 
'#FF6600'

Only integers can be converted:

>>> '{:x}'.format(42.0) 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
ValueError: Unknown format code 'x' for object of type 'float'

Custom formatting for a class

Note:

Everything below applies to the str.format method, as well as the format function. In 
the text below, the two are interchangeable.

https://riptutorial.com/ 808



For every value which is passed to the format function, Python looks for a __format__ method for 
that argument. Your own custom class can therefore have their own __format__ method to 
determine how the format function will display and format your class and it's attributes.

This is different than the __str__ method, as in the __format__ method you can take into account 
the formatting language, including alignment, field width etc, and even (if you wish) implement 
your own format specifiers, and your own formatting language extensions.1

object.__format__(self, format_spec)

For example :

# Example in Python 2 - but can be easily applied to Python 3 
 
class Example(object): 
    def __init__(self,a,b,c): 
        self.a, self.b, self.c = a,b,c 
 
    def __format__(self, format_spec): 
        """ Implement special semantics for the 's' format specifier """ 
        # Reject anything that isn't an s 
        if format_spec[-1] != 's': 
            raise ValueError('{} format specifier not understood for this object', 
format_spec[:-1]) 
 
        # Output in this example will be (<a>,<b>,<c>) 
        raw = "(" + ",".join([str(self.a), str(self.b), str(self.c)]) + ")" 
        # Honor the format language by using the inbuilt string format 
        # Since we know the original format_spec ends in an 's' 
        # we can take advantage of the str.format method with a 
        # string argument we constructed above 
        return "{r:{f}}".format( r=raw, f=format_spec ) 
 
inst = Example(1,2,3) 
print "{0:>20s}".format( inst ) 
# out :              (1,2,3) 
# Note how the right align and field width of 20 has been honored.

Note:

If your custom class does not have a custom __format__ method and an instance of the 
class is passed to the format function, Python2 will always use the return value of the 
__str__ method or __repr__ method to determine what to print (and if neither exist then 
the default repr will be used), and you will need to use the s format specifier to format 
this. With Python3, to pass your custom class to the format function, you will need 
define __format__ method on your custom class.

Nested formatting

Some formats can take additional parameters, such as the width of the formatted string, or the 
alignment:

>>> '{:.>10}'.format('foo') 

https://riptutorial.com/ 809

https://docs.python.org/2.7/library/string.html#formatspec


'.......foo'

Those can also be provided as parameters to format by nesting more {} inside the {}:

>>> '{:.>{}}'.format('foo', 10) 
'.......foo' 
'{:{}{}{}}'.format('foo', '*', '^', 15) 
'******foo******'

In the latter example, the format string '{:{}{}{}}' is modified to '{:*^15}' (i.e. "center and pad 
with * to total length of 15") before applying it to the actual string 'foo' to be formatted that way.

This can be useful in cases when parameters are not known beforehand, for instances when 
aligning tabular data:

>>> data = ["a", "bbbbbbb", "ccc"] 
>>> m = max(map(len, data)) 
>>> for d in data: 
...     print('{:>{}}'.format(d, m)) 
      a 
bbbbbbb 
    ccc

Padding and truncating strings, combined

Say you want to print variables in a 3 character column.

Note: doubling { and } escapes them.

s = """ 
 
pad 
{{:3}}             :{a:3}: 
 
truncate 
{{:.3}}            :{e:.3}: 
 
combined 
{{:>3.3}}          :{a:>3.3}: 
{{:3.3}}           :{a:3.3}: 
{{:3.3}}           :{c:3.3}: 
{{:3.3}}           :{e:3.3}: 
""" 
 
print (s.format(a="1"*1, c="3"*3, e="5"*5))

Output:

pad 
{:3}             :1  : 
 
truncate 
{:.3}            :555: 
 

https://riptutorial.com/ 810



combined 
{:>3.3}          :  1: 
{:3.3}           :1  : 
{:3.3}           :333: 
{:3.3}           :555:

Named placeholders

Format strings may contain named placeholders that are interpolated using keyword arguments to 
format.

Using a dictionary (Python 2.x)

>>> data = {'first': 'Hodor', 'last': 'Hodor!'} 
>>> '{first} {last}'.format(**data) 
'Hodor Hodor!'

Using a dictionary (Python 3.2+)

>>> '{first} {last}'.format_map(data) 
'Hodor Hodor!'

str.format_map allows to use dictionaries without having to unpack them first. Also the class of data 
(which might be a custom type) is used instead of a newly filled dict.

Without a dictionary:

>>> '{first} {last}'.format(first='Hodor', last='Hodor!') 
'Hodor Hodor!'

Read String Formatting online: https://riptutorial.com/python/topic/1019/string-formatting

https://riptutorial.com/ 811

https://docs.python.org/3/library/stdtypes.html?highlight=format_map#str.format_map
https://riptutorial.com/python/topic/1019/string-formatting


Chapter 170: String Methods

Syntax

str.capitalize() -> str•
str.casefold() -> str [only for Python > 3.3]•
str.center(width[, fillchar]) -> str•
str.count(sub[, start[, end]]) -> int•
str.decode(encoding="utf-8"[, errors]) -> unicode [only in Python 2.x]•
str.encode(encoding="utf-8", errors="strict") -> bytes•
str.endswith(suffix[, start[, end]]) -> bool•
str.expandtabs(tabsize=8) -> str•
str.find(sub[, start[, end]]) -> int•
str.format(*args, **kwargs) -> str•
str.format_map(mapping) -> str•
str.index(sub[, start[, end]]) -> int•
str.isalnum() -> bool•
str.isalpha() -> bool•
str.isdecimal() -> bool•
str.isdigit() -> bool•
str.isidentifier() -> bool•
str.islower() -> bool•
str.isnumeric() -> bool•
str.isprintable() -> bool•
str.isspace() -> bool•
str.istitle() -> bool•
str.isupper() -> bool•
str.join(iterable) -> str•
str.ljust(width[, fillchar]) -> str•
str.lower() -> str•
str.lstrip([chars]) -> str•
static str.maketrans(x[, y[, z]])•
str.partition(sep) -> (head, sep, tail)•
str.replace(old, new[, count]) -> str•
str.rfind(sub[, start[, end]]) -> int•
str.rindex(sub[, start[, end]]) -> int•
str.rjust(width[, fillchar]) -> str•
str.rpartition(sep) -> (head, sep, tail)•
str.rsplit(sep=None, maxsplit=-1) -> list of strings•
str.rstrip([chars]) -> str•
str.split(sep=None, maxsplit=-1) -> list of strings•
str.splitlines([keepends]) -> list of strings•
str.startswith(prefix[, start[, end]]) -> book•
str.strip([chars]) -> str•

https://riptutorial.com/ 812



str.swapcase() -> str•
str.title() -> str•
str.translate(table) -> str•
str.upper() -> str•
str.zfill(width) -> str•

Remarks

String objects are immutable, meaning that they can't be modified in place the way a list can. 
Because of this, methods on the built-in type str always return a new str object, which contains 
the result of the method call.

Examples

Changing the capitalization of a string

Python's string type provides many functions that act on the capitalization of a string. These 
include :

str.casefold•
str.upper•
str.lower•
str.capitalize•
str.title•
str.swapcase•

With unicode strings (the default in Python 3), these operations are not 1:1 mappings or 
reversible. Most of these operations are intended for display purposes, rather than normalization.

Python 3.x3.3

str.casefold()

str.casefold creates a lowercase string that is suitable for case insensitive comparisons. This is 
more aggressive than str.lower and may modify strings that are already in lowercase or cause 
strings to grow in length, and is not intended for display purposes.

"XßΣ".casefold() 
# 'xssσ' 
 
"XßΣ".lower() 
# 'xßς'

The transformations that take place under casefolding are defined by the Unicode Consortium in 
the CaseFolding.txt file on their website.

str.upper()

https://riptutorial.com/ 813



str.upper takes every character in a string and converts it to its uppercase equivalent, for example:

"This is a 'string'.".upper() 
# "THIS IS A 'STRING'."

str.lower()

str.lower does the opposite; it takes every character in a string and converts it to its lowercase 
equivalent:

"This IS a 'string'.".lower() 
# "this is a 'string'."

str.capitalize()

str.capitalize returns a capitalized version of the string, that is, it makes the first character have 
upper case and the rest lower:

"this Is A 'String'.".capitalize() # Capitalizes the first character and lowercases all others 
# "This is a 'string'."

str.title()

str.title returns the title cased version of the string, that is, every letter in the beginning of a word 
is made upper case and all others are made lower case:

"this Is a 'String'".title() 
# "This Is A 'String'"

str.swapcase()

str.swapcase returns a new string object in which all lower case characters are swapped to upper 
case and all upper case characters to lower:

"this iS A STRiNG".swapcase() #Swaps case of each character 
# "THIS Is a strIng"

Usage as str class methods

It is worth noting that these methods may be called either on string objects (as shown above) or as 
a class method of the str class (with an explicit call to str.upper, etc.)

str.upper("This is a 'string'") 
# "THIS IS A 'STRING'"

https://riptutorial.com/ 814



This is most useful when applying one of these methods to many strings at once in say, a map 
function.

map(str.upper,["These","are","some","'strings'"]) 
# ['THESE', 'ARE', 'SOME', "'STRINGS'"]

Split a string based on a delimiter into a list of strings

str.split(sep=None, maxsplit=-1)

str.split takes a string and returns a list of substrings of the original string. The behavior differs 
depending on whether the sep argument is provided or omitted.

If sep isn't provided, or is None, then the splitting takes place wherever there is whitespace. 
However, leading and trailing whitespace is ignored, and multiple consecutive whitespace 
characters are treated the same as a single whitespace character:

>>> "This is a sentence.".split() 
['This', 'is', 'a', 'sentence.'] 
 
>>> " This is    a sentence.  ".split() 
['This', 'is', 'a', 'sentence.'] 
 
>>> "            ".split() 
[]

The sep parameter can be used to define a delimiter string. The original string is split where the 
delimiter string occurs, and the delimiter itself is discarded. Multiple consecutive delimiters are not 
treated the same as a single occurrence, but rather cause empty strings to be created.

>>> "This is a sentence.".split(' ') 
['This', 'is', 'a', 'sentence.'] 
 
>>> "Earth,Stars,Sun,Moon".split(',') 
['Earth', 'Stars', 'Sun', 'Moon'] 
 
>>> " This is    a sentence.  ".split(' ') 
['', 'This', 'is', '', '', '', 'a', 'sentence.', '', ''] 
 
>>> "This is a sentence.".split('e') 
['This is a s', 'nt', 'nc', '.'] 
 
>>> "This is a sentence.".split('en') 
['This is a s', 't', 'ce.']

The default is to split on every occurrence of the delimiter, however the maxsplit parameter limits 
the number of splittings that occur. The default value of -1 means no limit:

>>> "This is a sentence.".split('e', maxsplit=0) 
['This is a sentence.'] 
 
>>> "This is a sentence.".split('e', maxsplit=1) 
['This is a s', 'ntence.'] 

https://riptutorial.com/ 815

http://www.riptutorial.com/python/topic/333/map-function


 
>>> "This is a sentence.".split('e', maxsplit=2) 
['This is a s', 'nt', 'nce.'] 
 
>>> "This is a sentence.".split('e', maxsplit=-1) 
['This is a s', 'nt', 'nc', '.']

str.rsplit(sep=None, maxsplit=-1)

str.rsplit ("right split") differs from str.split ("left split") when maxsplit is specified. The splitting 
starts at the end of the string rather than at the beginning:

>>> "This is a sentence.".rsplit('e', maxsplit=1) 
['This is a sentenc', '.'] 
 
>>> "This is a sentence.".rsplit('e', maxsplit=2) 
['This is a sent', 'nc', '.']

Note: Python specifies the maximum number of splits performed, while most other programming 
languages specify the maximum number of substrings created. This may create confusion when 
porting or comparing code.

Replace all occurrences of one substring with another substring

Python's str type also has a method for replacing occurences of one sub-string with another sub-
string in a given string. For more demanding cases, one can use re.sub.

str.replace(old, new[, count]):

str.replace takes two arguments old and new containing the old sub-string which is to be replaced 
by the new sub-string. The optional argument count specifies the number of replacements to be 
made:

For example, in order to replace 'foo' with 'spam' in the following string, we can call str.replace 
with old = 'foo' and new = 'spam':

>>> "Make sure to foo your sentence.".replace('foo', 'spam') 
"Make sure to spam your sentence."

If the given string contains multiple examples that match the old argument, all occurrences are 
replaced with the value supplied in new:

>>> "It can foo multiple examples of foo if you want.".replace('foo', 'spam') 
"It can spam multiple examples of spam if you want."

unless, of course, we supply a value for count. In this case count occurrences are going to get 
replaced:

https://riptutorial.com/ 816

http://stackoverflow.com/documentation/python/632/regular-expressions/2068/replacing-with-a-string#t=201607231554255817393


>>> """It can foo multiple examples of foo if you want, \ 
... or you can limit the foo with the third argument.""".replace('foo', 'spam', 1) 
'It can spam multiple examples of foo if you want, or you can limit the foo with the third 
argument.'

str.format and f-strings: Format values into a string

Python provides string interpolation and formatting functionality through the str.format function, 
introduced in version 2.6 and f-strings introduced in version 3.6.

Given the following variables:

i = 10 
f = 1.5 
s = "foo" 
l = ['a', 1, 2] 
d = {'a': 1, 2: 'foo'}

The following statements are all equivalent

"10 1.5 foo ['a', 1, 2] {'a': 1, 2: 'foo'}"

>>> "{} {} {} {} {}".format(i, f, s, l, d) 
 
>>> str.format("{} {} {} {} {}", i, f, s, l, d) 
 
>>> "{0} {1} {2} {3} {4}".format(i, f, s, l, d) 
 
>>> "{0:d} {1:0.1f} {2} {3!r} {4!r}".format(i, f, s, l, d) 
 
>>> "{i:d} {f:0.1f} {s} {l!r} {d!r}".format(i=i, f=f, s=s, l=l, d=d)

>>> f"{i} {f} {s} {l} {d}" 
 
>>> f"{i:d} {f:0.1f} {s} {l!r} {d!r}"

For reference, Python also supports C-style qualifiers for string formatting. The examples below 
are equivalent to those above, but the str.format versions are preferred due to benefits in 
flexibility, consistency of notation, and extensibility:

"%d %0.1f %s %r %r" % (i, f, s, l, d) 
 
"%(i)d %(f)0.1f %(s)s %(l)r %(d)r" % dict(i=i, f=f, s=s, l=l, d=d)

The braces uses for interpolation in str.format can also be numbered to reduce duplication when 
formatting strings. For example, the following are equivalent:

"I am from Australia. I love cupcakes from Australia!"

>>> "I am from {}. I love cupcakes from {}!".format("Australia", "Australia") 
 

https://riptutorial.com/ 817



>>> "I am from {0}. I love cupcakes from {0}!".format("Australia")

While the official python documentation is, as usual, thorough enough, pyformat.info has a great 
set of examples with detailed explanations.

Additionally, the { and } characters can be escaped by using double brackets:

"{'a': 5, 'b': 6}"

>>> "{{'{}': {}, '{}': {}}}".format("a", 5, "b", 6) 
 
>>> f"{{'{'a'}': {5}, '{'b'}': {6}}"

See String Formatting for additional information. str.format() was proposed in PEP 3101 and f-
strings in PEP 498.

Counting number of times a substring appears in a string

One method is available for counting the number of occurrences of a sub-string in another string, 
str.count.

str.count(sub[, start[, end]])

str.count returns an int indicating the number of non-overlapping occurrences of the sub-string 
sub in another string. The optional arguments start and end indicate the beginning and the end in 
which the search will take place. By default start = 0 and end = len(str) meaning the whole string 
will be searched:

>>> s = "She sells seashells by the seashore." 
>>> s.count("sh") 
2 
>>> s.count("se") 
3 
>>> s.count("sea") 
2 
>>> s.count("seashells") 
1

By specifying a different value for start, end we can get a more localized search and count, for 
example, if start is equal to 13 the call to:

>>> s.count("sea", start) 
1

is equivalent to:

>>> t = s[start:] 
>>> t.count("sea") 
1

https://riptutorial.com/ 818

http://pyformat.info
http://www.riptutorial.com/python/topic/1019/string-formatting
https://www.python.org/dev/peps/pep-3101/
https://www.python.org/dev/peps/pep-0498/


Test the starting and ending characters of a string

In order to test the beginning and ending of a given string in Python, one can use the methods 
str.startswith() and str.endswith().

str.startswith(prefix[, start[, end]])

As it's name implies, str.startswith is used to test whether a given string starts with the given 
characters in prefix.

>>> s = "This is a test string" 
>>> s.startswith("T") 
True 
>>> s.startswith("Thi") 
True 
>>> s.startswith("thi") 
False

The optional arguments start and end specify the start and end points from which the testing will 
start and finish. In the following example, by specifying a start value of 2 our string will be searched 
from position 2 and afterwards:

>>> s.startswith("is", 2) 
True

This yields True since s[2] == 'i' and s[3] == 's'.

You can also use a tuple to check if it starts with any of a set of strings

>>> s.startswith(('This', 'That')) 
True 
>>> s.startswith(('ab', 'bc')) 
False

str.endswith(prefix[, start[, end]])

str.endswith is exactly similar to str.startswith with the only difference being that it searches for 
ending characters and not starting characters. For example, to test if a string ends in a full stop, 
one could write:

>>> s = "this ends in a full stop." 
>>> s.endswith('.') 
True 
>>> s.endswith('!') 
False

as with startswith more than one characters can used as the ending sequence:

>>> s.endswith('stop.') 

https://riptutorial.com/ 819



True 
>>> s.endswith('Stop.') 
False

You can also use a tuple to check if it ends with any of a set of strings

>>> s.endswith(('.', 'something')) 
True 
>>> s.endswith(('ab', 'bc')) 
False

Testing what a string is composed of

Python's str type also features a number of methods that can be used to evaluate the contents of 
a string. These are str.isalpha, str.isdigit, str.isalnum, str.isspace. Capitalization can be tested 
with str.isupper, str.islower and str.istitle.

str.isalpha

str.isalpha takes no arguments and returns True if the all characters in a given string are 
alphabetic, for example:

>>> "Hello World".isalpha()  # contains a space 
False 
>>> "Hello2World".isalpha()  # contains a number 
False 
>>> "HelloWorld!".isalpha()  # contains punctuation 
False 
>>> "HelloWorld".isalpha() 
True

As an edge case, the empty string evaluates to False when used with "".isalpha().

str.isupper, str.islower, str.istitle

These methods test the capitalization in a given string.

str.isupper is a method that returns True if all characters in a given string are uppercase and False 
otherwise.

>>> "HeLLO WORLD".isupper() 
False 
>>> "HELLO WORLD".isupper() 
True 
>>> "".isupper() 
False

Conversely, str.islower is a method that returns True if all characters in a given string are 
lowercase and False otherwise.

https://riptutorial.com/ 820



>>> "Hello world".islower() 
False 
>>> "hello world".islower() 
True 
>>> "".islower() 
False

str.istitle returns True if the given string is title cased; that is, every word begins with an 
uppercase character followed by lowercase characters.

>>> "hello world".istitle() 
False 
>>> "Hello world".istitle() 
False 
>>> "Hello World".istitle() 
True 
>>> "".istitle() 
False

str.isdecimal, str.isdigit, str.isnumeric

str.isdecimal returns whether the string is a sequence of decimal digits, suitable for representing a 
decimal number.

str.isdigit includes digits not in a form suitable for representing a decimal number, such as 
superscript digits.

str.isnumeric includes any number values, even if not digits, such as values outside the range 0-9.

            isdecimal    isdigit   isnumeric 
 
12345        True        True       True 
�2��5        True        True       True 
①²³�₅       False       True       True 
⑩�          False       False      True 
Five         False       False      False

Bytestrings (bytes in Python 3, str in Python 2), only support isdigit, which only checks for basic 
ASCII digits.

As with str.isalpha, the empty string evaluates to False.

str.isalnum

This is a combination of str.isalpha and str.isnumeric, specifically it evaluates to True if all 
characters in the given string are alphanumeric, that is, they consist of alphabetic or numeric 
characters:

>>> "Hello2World".isalnum() 
True 
>>> "HelloWorld".isalnum() 

https://riptutorial.com/ 821



True 
>>> "2016".isalnum() 
True 
>>> "Hello World".isalnum()  # contains whitespace 
False

str.isspace

Evaluates to True if the string contains only whitespace characters.

>>> "\t\r\n".isspace() 
True 
>>> " ".isspace() 
True

Sometimes a string looks “empty” but we don't know whether it's because it contains just 
whitespace or no character at all

>>> "".isspace() 
False

To cover this case we need an additional test

>>> my_str = '' 
>>> my_str.isspace() 
False 
>>> my_str.isspace() or not my_str 
True

But the shortest way to test if a string is empty or just contains whitespace characters is to use 
strip(with no arguments it removes all leading and trailing whitespace characters)

>>> not my_str.strip() 
True

str.translate: Translating characters in a string

Python supports a translate method on the str type which allows you to specify the translation 
table (used for replacements) as well as any characters which should be deleted in the process.

str.translate(table[, deletechars])

Parameter Description

table It is a lookup table that defines the mapping from one character to another.

deletechars A list of characters which are to be removed from the string.

The maketrans method (str.maketrans in Python 3 and string.maketrans in Python 2) allows you to 

https://riptutorial.com/ 822

http://www.riptutorial.com/python/example/8777/stripping-unwanted-leading-trailing-characters-from-a-string


generate a translation table.

>>> translation_table = str.maketrans("aeiou", "12345") 
>>> my_string = "This is a string!" 
>>> translated = my_string.translate(translation_table) 
'Th3s 3s 1 str3ng!'

The translate method returns a string which is a translated copy of the original string.

You can set the table argument to None if you only need to delete characters.

>>> 'this syntax is very useful'.translate(None, 'aeiou') 
'ths syntx s vry sfl'

Stripping unwanted leading/trailing characters from a string

Three methods are provided that offer the ability to strip leading and trailing characters from a 
string: str.strip, str.rstrip and str.lstrip. All three methods have the same signature and all 
three return a new string object with unwanted characters removed.

str.strip([chars])

str.strip acts on a given string and removes (strips) any leading or trailing characters contained in 
the argument chars; if chars is not supplied or is None, all white space characters are removed by 
default. For example:

>>> "    a line with leading and trailing space     ".strip() 
'a line with leading and trailing space'

If chars is supplied, all characters contained in it are removed from the string, which is returned. 
For example:

>>> ">>> a Python prompt".strip('> ')  # strips '>' character and space character 
'a Python prompt'

str.rstrip([chars]) and str.lstrip([chars])

These methods have similar semantics and arguments with str.strip(), their difference lies in the 
direction from which they start. str.rstrip() starts from the end of the string while str.lstrip() 
splits from the start of the string.

For example, using str.rstrip:

>>> "     spacious string      ".rstrip() 
'     spacious string'

https://riptutorial.com/ 823



While, using str.lstrip:

>>> "     spacious string      ".rstrip() 
'spacious string      '

Case insensitive string comparisons

Comparing string in a case insensitive way seems like something that's trivial, but it's not. This 
section only considers unicode strings (the default in Python 3). Note that Python 2 may have 
subtle weaknesses relative to Python 3 - the later's unicode handling is much more complete.

The first thing to note it that case-removing conversions in unicode aren't trivial. There is text for 
which text.lower() != text.upper().lower(), such as "ß":

>>> "ß".lower() 
'ß' 
 
>>> "ß".upper().lower() 
'ss'

But let's say you wanted to caselessly compare "BUSSE" and "Buße". Heck, you probably also want 
to compare "BUSSE" and "BU�E" equal - that's the newer capital form. The recommended way is to 
use casefold:

Python 3.x3.3

>>> help(str.casefold) 
""" 
Help on method_descriptor: 
 
casefold(...) 
      S.casefold() -> str 
 
     Return a version of S suitable for caseless comparisons. 
"""

Do not just use lower. If casefold is not available, doing .upper().lower() helps (but only 
somewhat).

Then you should consider accents. If your font renderer is good, you probably think "ê" == "ê" - 
but it doesn't:

>>> "ê" == "ê" 
False

This is because they are actually

>>> import unicodedata 
 
>>> [unicodedata.name(char) for char in "ê"] 
['LATIN SMALL LETTER E WITH CIRCUMFLEX'] 

https://riptutorial.com/ 824



 
>>> [unicodedata.name(char) for char in "ê"] 
['LATIN SMALL LETTER E', 'COMBINING CIRCUMFLEX ACCENT']

The simplest way to deal with this is unicodedata.normalize. You probably want to use NFKD 
normalization, but feel free to check the documentation. Then one does

>>> unicodedata.normalize("NFKD", "ê") == unicodedata.normalize("NFKD", "ê") 
True

To finish up, here this is expressed in functions:

import unicodedata 
 
def normalize_caseless(text): 
    return unicodedata.normalize("NFKD", text.casefold()) 
 
def caseless_equal(left, right): 
    return normalize_caseless(left) == normalize_caseless(right)

Join a list of strings into one string

A string can be used as a separator to join a list of strings together into a single string using the 
join() method. For example you can create a string where each element in a list is separated by a 
space.

>>> " ".join(["once","upon","a","time"]) 
"once upon a time"

The following example separates the string elements with three hyphens.

>>> "---".join(["once", "upon", "a", "time"]) 
"once---upon---a---time"

String module's useful constants

Python's string module provides constants for string related operations. To use them, import the 
string module:

>>> import string

string.ascii_letters:

Concatenation of ascii_lowercase and ascii_uppercase:

>>> string.ascii_letters 
'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'

https://riptutorial.com/ 825



string.ascii_lowercase:

Contains all lower case ASCII characters:

>>> string.ascii_lowercase 
'abcdefghijklmnopqrstuvwxyz'

string.ascii_uppercase:

Contains all upper case ASCII characters:

>>> string.ascii_uppercase 
'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

string.digits:

Contains all decimal digit characters:

>>> string.digits 
'0123456789'

string.hexdigits:

Contains all hex digit characters:

>>> string.hexdigits 
'0123456789abcdefABCDEF'

string.octaldigits:

Contains all octal digit characters:

>>> string.octaldigits 
'01234567'

string.punctuation:

Contains all characters which are considered punctuation in the C locale:

>>> string.punctuation 
'!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'

string.whitespace

https://riptutorial.com/ 826



:

Contains all ASCII characters considered whitespace:

>>> string.whitespace 
' \t\n\r\x0b\x0c'

In script mode, print(string.whitespace) will print the actual characters, use str to get the string 
returned above.

string.printable:

Contains all characters which are considered printable; a combination of string.digits, 
string.ascii_letters, string.punctuation, and string.whitespace.

>>> string.printable 
'0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*+,-
./:;<=>?@[\\]^_`{|}~ \t\n\r\x0b\x0c'

Reversing a string

A string can reversed using the built-in reversed() function, which takes a string and returns an 
iterator in reverse order.

>>> reversed('hello') 
<reversed object at 0x0000000000000000> 
>>> [char for char in reversed('hello')] 
['o', 'l', 'l', 'e', 'h']

reversed() can be wrapped in a call to ''.join() to make a string from the iterator.

>>> ''.join(reversed('hello')) 
'olleh'

While using reversed() might be more readable to uninitiated Python users, using extended slicing 
with a step of -1 is faster and more concise. Here , try to implement it as function:

>>> def reversed_string(main_string): 
...     return main_string[::-1] 
... 
>>> reversed_string('hello') 
'olleh'

Justify strings

Python provides functions for justifying strings, enabling text padding to make aligning various 
strings much easier.

https://riptutorial.com/ 827

http://www.riptutorial.com/python/example/10177/join-a-list-of-strings-into-one-string
http://www.riptutorial.com/python/example/10177/join-a-list-of-strings-into-one-string
http://www.riptutorial.com/python/example/1042/basic-slicing


Below is an example of str.ljust and str.rjust:

interstates_lengths = { 
    5: (1381, 2222), 
    19: (63, 102), 
    40: (2555, 4112), 
    93: (189,305), 
} 
for road, length in interstates_lengths.items(): 
    miles,kms = length 
    print('{} -> {} mi. ({} km.)'.format(str(road).rjust(4), str(miles).ljust(4), 
str(kms).ljust(4)))

  40 -> 2555 mi. (4112 km.) 
  19 -> 63   mi. (102  km.) 
   5 -> 1381 mi. (2222 km.) 
  93 -> 189  mi. (305  km.)

ljust and rjust are very similar. Both have a width parameter and an optional fillchar parameter. 
Any string created by these functions is at least as long as the width parameter that was passed 
into the function. If the string is longer than width alread, it is not truncated. The fillchar argument, 
which defaults to the space character ' ' must be a single character, not a multicharacter string.

The ljust function pads the end of the string it is called on with the fillchar until it is width 
characters long. The rjust function pads the beginning of the string in a similar fashion. Therefore, 
the l and r in the names of these functions refer to the side that the original string, not the fillchar
, is positioned in the output string.

Conversion between str or bytes data and unicode characters

The contents of files and network messages may represent encoded characters. They often need 
to be converted to unicode for proper display.

In Python 2, you may need to convert str data to Unicode characters. The default ('', "", etc.) is 
an ASCII string, with any values outside of ASCII range displayed as escaped values. Unicode 
strings are u'' (or u"", etc.).

Python 2.x2.3

# You get "© abc" encoded in UTF-8 from a file, network, or other data source 
 
s = '\xc2\xa9 abc'  # s is a byte array, not a string of characters 
                    # Doesn't know the original was UTF-8 
                    # Default form of string literals in Python 2 
s[0]                # '\xc2' - meaningless byte (without context such as an encoding) 
type(s)             # str - even though it's not a useful one w/o having a known encoding 
 
u = s.decode('utf-8')  # u'\xa9 abc' 
                       # Now we have a Unicode string, which can be read as UTF-8 and printed 
properly 
                       # In Python 2, Unicode string literals need a leading u 
                       # str.decode converts a string which may contain escaped bytes to a 
Unicode string 
u[0]                # u'\xa9' - Unicode Character 'COPYRIGHT SIGN' (U+00A9) '©' 

https://riptutorial.com/ 828



type(u)             # unicode 
 
u.encode('utf-8')   # '\xc2\xa9 abc' 
                    # unicode.encode produces a string with escaped bytes for non-ASCII 
characters

In Python 3 you may need to convert arrays of bytes (referred to as a 'byte literal') to strings of 
Unicode characters. The default is now a Unicode string, and bytestring literals must now be 
entered as b'', b"", etc. A byte literal will return True to isinstance(some_val, byte), assuming 
some_val to be a string that might be encoded as bytes.

Python 3.x3.0

# You get from file or network "© abc" encoded in UTF-8 
 
s = b'\xc2\xa9 abc' # s is a byte array, not characters 
                    # In Python 3, the default string literal is Unicode; byte array literals 
need a leading b 
s[0]                # b'\xc2' - meaningless byte (without context such as an encoding) 
type(s)             # bytes - now that byte arrays are explicit, Python can show that. 
 
u = s.decode('utf-8')  # '© abc' on a Unicode terminal 
                       # bytes.decode converts a byte array to a string (which will, in Python 
3, be Unicode) 
u[0]                # '\u00a9' - Unicode Character 'COPYRIGHT SIGN' (U+00A9) '©' 
type(u)             # str 
                    # The default string literal in Python 3 is UTF-8 Unicode 
 
u.encode('utf-8')   # b'\xc2\xa9 abc' 
                    # str.encode produces a byte array, showing ASCII-range bytes as unescaped 
characters.

String Contains

Python makes it extremely intuitive to check if a string contains a given substring. Just use the in 
operator:

>>> "foo" in "foo.baz.bar" 
True

Note: testing an empty string will always result in True:

>>> "" in "test" 
True

Read String Methods online: https://riptutorial.com/python/topic/278/string-methods

https://riptutorial.com/ 829

https://riptutorial.com/python/topic/278/string-methods


Chapter 171: String representations of class 
instances: __str__ and __repr__ methods

Remarks

A note about implemeting both methods

When both methods are implemented, it's somewhat common to have a __str__ method that 
returns a human-friendly representation (e.g. "Ace of Spaces") and __repr__ return an eval-friendly 
representation.

In fact, the Python docs for repr() note exactly this:

For many types, this function makes an attempt to return a string that would yield an 
object with the same value when passed to eval(), otherwise the representation is a 
string enclosed in angle brackets that contains the name of the type of the object 
together with additional information often including the name and address of the object.

What that means is that __str__ might be implemented to return something like "Ace of Spaces" as 
shown previously, __repr__ might be implemented to instead return Card('Spades', 1)

This string could be passed directly back into eval in somewhat of a "round-trip":

object -> string -> object

An example of an implementation of such a method might be:

def __repr__(self): 
    return "Card(%s, %d)" % (self.suit, self.pips)

Notes

[1] This output is implementation specific. The string displayed is from cpython.

[2] You may have already seen the result of this str()/repr() divide and not known it. When strings 
containing special characters such as backslashes are converted to strings via str() the 
backslashes appear as-is (they appear once). When they're converted to strings via repr() (for 
example, as elements of a list being displayed), the backslashes are escaped and thus appear 
twice.

Examples

https://riptutorial.com/ 830

https://docs.python.org/3/library/functions.html#eval
https://docs.python.org/3/library/functions.html#repr


Motivation

So you've just created your first class in Python, a neat little class that encapsulates a playing 
card:

class Card: 
    def __init__(self, suit, pips): 
        self.suit = suit 
        self.pips = pips

Elsewhere in your code, you create a few instances of this class:

ace_of_spades = Card('Spades', 1) 
four_of_clubs = Card('Clubs',  4) 
six_of_hearts = Card('Hearts', 6)

You've even created a list of cards, in order to represent a "hand":

my_hand = [ace_of_spades, four_of_clubs, six_of_hearts]

Now, during debugging, you want to see what your hand looks like, so you do what comes 
naturally and write:

print(my_hand)

But what you get back is a bunch of gibberish:

[<__main__.Card instance at 0x0000000002533788>, 
 <__main__.Card instance at 0x00000000025B95C8>, 
 <__main__.Card instance at 0x00000000025FF508>]

Confused, you try just printing a single card:

print(ace_of_spades)

And again, you get this weird output:

<__main__.Card instance at 0x0000000002533788>

Have no fear. We're about to fix this.

First, however, it's important to understand what's going on here. When you wrote 
print(ace_of_spades) you told Python you wanted it to print information about the Card instance 
your code is calling ace_of_spades. And to be fair, it did.

That output is comprised of two important bits: the type of the object and the object's id. The 
second part alone (the hexidecimal number) is enough to uniquely identify the object at the time of 
the print call.[1]

https://riptutorial.com/ 831

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#id


What really went on was that you asked Python to "put into words" the essence of that object and 
then display it to you. A more explicit version of the same machinery might be:

string_of_card = str(ace_of_spades) 
print(string_of_card)

In the first line, you try to turn your Card instance into a string, and in the second you display it.

The Problem

The issue you're encountering arises due to the fact that, while you told Python everything it 
needed to know about the Card class for you to create cards, you didn't tell it how you wanted Card 
instances to be converted to strings.

And since it didn't know, when you (implicitly) wrote str(ace_of_spades), it gave you what you saw, 
a generic representation of the Card instance.

The Solution (Part 1)

But we can tell Python how we want instances of our custom classes to be converted to strings. 
And the way we do this is with the __str__ "dunder" (for double-underscore) or "magic" method.

Whenever you tell Python to create a string from a class instance, it will look for a __str__ method 
on the class, and call it.

Consider the following, updated version of our Card class:

class Card: 
    def __init__(self, suit, pips): 
        self.suit = suit 
        self.pips = pips 
 
    def __str__(self): 
        special_names = {1:'Ace', 11:'Jack', 12:'Queen', 13:'King'} 
 
        card_name = special_names.get(self.pips, str(self.pips)) 
 
        return "%s of %s" % (card_name, self.suit)

Here, we've now defined the __str__ method on our Card class which, after a simple dictionary 
lookup for face cards, returns a string formatted however we decide.

(Note that "returns" is in bold here, to stress the importance of returning a string, and not simply 
printing it. Printing it may seem to work, but then you'd have the card printed when you did 
something like str(ace_of_spades), without even having a print function call in your main program. 
So to be clear, make sure that __str__ returns a string.).

The __str__ method is a method, so the first argument will be self and it should neither accept, nor 

https://riptutorial.com/ 832



be passed additonal arguments.

Returning to our problem of displaying the card in a more user-friendly manner, if we again run:

ace_of_spades = Card('Spades', 1) 
print(ace_of_spades)

We'll see that our output is much better:

Ace of Spades

So great, we're done, right?

Well just to cover our bases, let's double check that we've solved the first issue we encountered, 
printing the list of Card instances, the hand.

So we re-check the following code:

my_hand = [ace_of_spades, four_of_clubs, six_of_hearts] 
print(my_hand)

And, to our surprise, we get those funny hex codes again:

[<__main__.Card instance at 0x00000000026F95C8>, 
 <__main__.Card instance at 0x000000000273F4C8>, 
 <__main__.Card instance at 0x0000000002732E08>]

What's going on? We told Python how we wanted our Card instances to be displayed, why did it 
apparently seem to forget?

The Solution (Part 2)

Well, the behind-the-scenes machinery is a bit different when Python wants to get the string 
representation of items in a list. It turns out, Python doesn't care about __str__ for this purpose.

Instead, it looks for a different method, __repr__, and if that's not found, it falls back on the 
"hexidecimal thing".[2]

So you're saying I have to make two methods to do the same thing? One for when I want to print 
my card by itself and another when it's in some sort of container?

No, but first let's look at what our class would be like if we were to implement both __str__ and 
__repr__ methods:

class Card: 
    special_names = {1:'Ace', 11:'Jack', 12:'Queen', 13:'King'} 
 
    def __init__(self, suit, pips): 
        self.suit = suit 

https://riptutorial.com/ 833



        self.pips = pips 
 
    def __str__(self): 
        card_name = Card.special_names.get(self.pips, str(self.pips)) 
        return "%s of %s (S)" % (card_name, self.suit) 
 
    def __repr__(self): 
        card_name = Card.special_names.get(self.pips, str(self.pips)) 
        return "%s of %s (R)" % (card_name, self.suit)

Here, the implementation of the two methods __str__ and __repr__ are exactly the same, except 
that, to differentiate between the two methods, (S) is added to strings returned by __str__ and (R) 
is added to strings returned by __repr__.

Note that just like our __str__ method, __repr__ accepts no arguments and returns a string.

We can see now what method is responsible for each case:

ace_of_spades = Card('Spades', 1) 
four_of_clubs = Card('Clubs',  4) 
six_of_hearts = Card('Hearts', 6) 
 
my_hand = [ace_of_spades, four_of_clubs, six_of_hearts] 
 
print(my_hand)           # [Ace of Spades (R), 4 of Clubs (R), 6 of Hearts (R)] 
 
print(ace_of_spades)     # Ace of Spades (S)

As was covered, the __str__ method was called when we passed our Card instance to print and 
the __repr__ method was called when we passed a list of our instances to print.

At this point it's worth pointing out that just as we can explicitly create a string from a custom class 
instance using str() as we did earlier, we can also explicitly create a string representation of our 
class with a built-in function called repr().

For example:

str_card = str(four_of_clubs) 
print(str_card)                     # 4 of Clubs (S) 
 
repr_card = repr(four_of_clubs) 
print(repr_card)                    # 4 of Clubs (R)

And additionally, if defined, we could call the methods directly (although it seems a bit unclear and 
unnecessary):

print(four_of_clubs.__str__())     # 4 of Clubs (S) 
 
print(four_of_clubs.__repr__())    # 4 of Clubs (R)

About those duplicated functions...

https://riptutorial.com/ 834

https://docs.python.org/3/library/functions.html#func-str
https://docs.python.org/3/library/functions.html#repr


Python developers realized, in the case you wanted identical strings to be returned from str() and 
repr() you might have to functionally-duplicate methods -- something nobody likes.

So instead, there is a mechanism in place to eliminate the need for that. One I snuck you past up 
to this point. It turns out that if a class implements the __repr__ method but not the __str__ method, 
and you pass an instance of that class to str() (whether implicitly or explicitly), Python will fallback 
on your __repr__ implementation and use that.

So, to be clear, consider the following version of the Card class:

class Card: 
    special_names = {1:'Ace', 11:'Jack', 12:'Queen', 13:'King'} 
 
    def __init__(self, suit, pips): 
        self.suit = suit 
        self.pips = pips 
 
    def __repr__(self): 
        card_name = Card.special_names.get(self.pips, str(self.pips)) 
        return "%s of %s" % (card_name, self.suit)

Note this version only implements the __repr__ method. Nonetheless, calls to str() result in the 
user-friendly version:

print(six_of_hearts)            # 6 of Hearts  (implicit conversion) 
print(str(six_of_hearts))       # 6 of Hearts  (explicit conversion)

as do calls to repr():

print([six_of_hearts])          #[6 of Hearts] (implicit conversion) 
print(repr(six_of_hearts))      # 6 of Hearts  (explicit conversion)

Summary

In order for you to empower your class instances to "show themselves" in user-friendly ways, you'll 
want to consider implementing at least your class's __repr__ method. If memory serves, during a 
talk Raymond Hettinger said that ensuring classes implement __repr__ is one of the first things he 
looks for while doing Python code reviews, and by now it should be clear why. The amount of 
information you could have added to debugging statements, crash reports, or log files with a 
simple method is overwhelming when compared to the paltry, and often less-than-helpful (type, id) 
information that is given by default.

If you want different representations for when, for example, inside a container, you'll want to 
implement both __repr__ and __str__ methods. (More on how you might use these two methods 
differently below).

Both methods implemented, eval-round-trip style __repr__()

https://riptutorial.com/ 835



class Card: 
    special_names = {1:'Ace', 11:'Jack', 12:'Queen', 13:'King'} 
 
    def __init__(self, suit, pips): 
        self.suit = suit 
        self.pips = pips 
 
    # Called when instance is converted to a string via str() 
    # Examples: 
    #   print(card1) 
    #   print(str(card1) 
    def __str__(self): 
        card_name = Card.special_names.get(self.pips, str(self.pips)) 
        return "%s of %s" % (card_name, self.suit) 
 
    # Called when instance is converted to a string via repr() 
    # Examples: 
    #   print([card1, card2, card3]) 
    #   print(repr(card1)) 
    def __repr__(self): 
        return "Card(%s, %d)" % (self.suit, self.pips)

Read String representations of class instances: __str__ and __repr__ methods online: 
https://riptutorial.com/python/topic/4845/string-representations-of-class-instances----str---and---
repr---methods

https://riptutorial.com/ 836

https://riptutorial.com/python/topic/4845/string-representations-of-class-instances----str---and---repr---methods
https://riptutorial.com/python/topic/4845/string-representations-of-class-instances----str---and---repr---methods


Chapter 172: Subprocess Library

Syntax

subprocess.call(args, *, stdin=None, stdout=None, stderr=None, shell=False, timeout=None)•
subprocess.Popen(args, bufsize=-1, executable=None, stdin=None, stdout=None, 
stderr=None, preexec_fn=None, close_fds=True, shell=False, cwd=None, env=None, 
universal_newlines=False, startupinfo=None, creationflags=0, restore_signals=True, 
start_new_session=False, pass_fds=())

•

Parameters

Parameter Details

args A single executable, or sequence of executable and arguments - 'ls', ['ls', '-
la']

shell Run under a shell? The default shell to /bin/sh on POSIX.

cwd Working directory of the child process.

Examples

Calling External Commands

The simplest use case is using the subprocess.call function. It accepts a list as the first argument. 
The first item in the list should be the external application you want to call. The other items in the 
list are arguments that will be passed to that application.

subprocess.call([r'C:\path\to\app.exe', 'arg1', '--flag', 'arg'])

For shell commands, set shell=True and provide the command as a string instead of a list.

subprocess.call('echo "Hello, world"', shell=True)

Note that the two command above return only the exit status of the subprocess. Moreover, pay 
attention when using shell=True since it provides security issues (see here).

If you want to be able to get the standard output of the subprocess, then substitute the 
subprocess.call with subprocess.check_output. For more advanced use, refer to this.

More flexibility with Popen

Using subprocess.Popen give more fine-grained control over launched processes than 

https://riptutorial.com/ 837

https://docs.python.org/2/library/subprocess.html#frequently-used-arguments
http://www.riptutorial.com/python/example/5714/more-flexibility-with-popen


subprocess.call.

Launching a subprocess

process = subprocess.Popen([r'C:\path\to\app.exe', 'arg1', '--flag', 'arg'])

The signature for Popen is very similar to the call function; however, Popen will return immediately 
instead of waiting for the subprocess to complete like call does.

Waiting on a subprocess to complete

process = subprocess.Popen([r'C:\path\to\app.exe', 'arg1', '--flag', 'arg']) 
process.wait()

Reading output from a subprocess

process = subprocess.Popen([r'C:\path\to\app.exe'], stdout=subprocess.PIPE, 
stderr=subprocess.PIPE) 
 
# This will block until process completes 
stdout, stderr = process.communicate() 
print stdout 
print stderr

Interactive access to running subprocesses

You can read and write on stdin and stdout even while the subprocess hasn't completed. This 
could be useful when automating functionality in another program.

Writing to a subprocess

process = subprocess.Popen([r'C:\path\to\app.exe'], stdout = subprocess.PIPE, stdin = 
subprocess.PIPE) 
 
 
process.stdin.write('line of input\n') # Write input 
 
line  = process.stdout.readline() # Read a line from stdout 
 
# Do logic on line read.

However, if you only need one set of input and output, rather than dynamic interaction, you should 
use communicate() rather than directly accessing stdin and stdout.

https://riptutorial.com/ 838



Reading a stream from a subprocess

In case you want to see the output of a subprocess line by line, you can use the following snippet:

process = subprocess.Popen(<your_command>, stdout=subprocess.PIPE) 
while process.poll() is None: 
    output_line = process.stdout.readline()

in the case the subcommand output do not have EOL character, the above snippet does not work. 
You can then read the output character by character as follows:

process = subprocess.Popen(<your_command>, stdout=subprocess.PIPE) 
while process.poll() is None: 
    output_line = process.stdout.read(1)

The 1 specified as argument to the read method tells read to read 1 character at time. You can 
specify to read as many characters you want using a different number. Negative number or 0 tells 
to read to read as a single string until the EOF is encountered (see here).

In both the above snippets, the process.poll() is None until the subprocess finishes. This is used to 
exit the loop once there is no more output to read.

The same procedure could be applied to the stderr of the subprocess.

How to create the command list argument

The subprocess method that allows running commands needs the command in form of a list (at 
least using shell_mode=True).

The rules to create the list are not always straightforward to follow, especially with complex 
commands. Fortunately, there is a very helpful tool that allows doing that: shlex. The easiest way 
of creating the list to be used as command is the following:

import shlex 
cmd_to_subprocess = shlex.split(command_used_in_the_shell)

A simple example:

import shlex 
shlex.split('ls --color -l -t -r') 
 
out: ['ls', '--color', '-l', '-t', '-r']

Read Subprocess Library online: https://riptutorial.com/python/topic/1393/subprocess-library

https://riptutorial.com/ 839

https://docs.python.org/2/library/io.html
https://riptutorial.com/python/topic/1393/subprocess-library


Chapter 173: sys

Introduction

The sys module provides access to functions and values concerning the program's runtime 
environment, such as the command line parameters in sys.argv or the function sys.exit() to end 
the current process from any point in the program flow.

While cleanly separated into a module, it's actually built-in and as such will always be available 
under normal circumstances.

Syntax

Import the sys module and make it available in the current namespace:

import sys

•

Import a specific function from the sys module directly into the current namespace:

from sys import exit

•

Remarks

For details on all sys module members, refer to the official documentation.

Examples

Command line arguments

if len(sys.argv) != 4:         # The script name needs to be accounted for as well. 
    raise RuntimeError("expected 3 command line arguments") 
 
f = open(sys.argv[1], 'rb')    # Use first command line argument. 
start_line = int(sys.argv[2])  # All arguments come as strings, so need to be 
end_line = int(sys.argv[3])    # converted explicitly if other types are required.

Note that in larger and more polished programs you would use modules such as click to handle 
command line arguments instead of doing it yourself.

Script name

# The name of the executed script is at the beginning of the argv list. 
print('usage:', sys.argv[0], '<filename> <start> <end>') 
 
# You can use it to generate the path prefix of the executed program 

https://riptutorial.com/ 840

https://docs.python.org/library/sys.html
http://click.pocoo.org/


# (as opposed to the current module) to access files relative to that, 
# which would be good for assets of a game, for instance. 
program_file = sys.argv[0] 
 
import pathlib 
program_path = pathlib.Path(program_file).resolve().parent

Standard error stream

# Error messages should not go to standard output, if possible. 
print('ERROR: We have no cheese at all.', file=sys.stderr) 
 
try: 
    f = open('nonexistent-file.xyz', 'rb') 
except OSError as e: 
    print(e, file=sys.stderr)

Ending the process prematurely and returning an exit code

def main(): 
    if len(sys.argv) != 4 or '--help' in sys.argv[1:]: 
        print('usage: my_program <arg1> <arg2> <arg3>', file=sys.stderr) 
 
        sys.exit(1)    # use an exit code to signal the program was unsuccessful 
 
    process_data()

Read sys online: https://riptutorial.com/python/topic/9847/sys

https://riptutorial.com/ 841

https://riptutorial.com/python/topic/9847/sys


Chapter 174: tempfile NamedTemporaryFile

Parameters

param description

mode mode to open file, default=w+b

delete To delete file on closure, default=True

suffix filename suffix, default=''

prefix filename prefix, default='tmp'

dir dirname to place tempfile, default=None

buffsize default=-1, (operating system default used)

Examples

Create (and write to a) known, persistant temporary file

You can create temporary files which has a visible name on the file system which can be 
accessed via the name property. The file can, on unix systems, be configured to delete on closure 
(set by delete param, default is True) or can be reopened later.

The following will create and open a named temporary file and write 'Hello World!' to that file. The 
filepath of the temporary file can be accessed via name, in this example it is saved to the variable 
path and printed for the user. The file is then re-opened after closing the file and the contents of 
the tempfile are read and printed for the user.

import tempfile 
 
with tempfile.NamedTemporaryFile(delete=False) as t: 
    t.write('Hello World!') 
    path = t.name 
    print path 
 
with open(path) as t: 
    print t.read()

Output:

/tmp/tmp6pireJ 
Hello World!

Read tempfile NamedTemporaryFile online: https://riptutorial.com/python/topic/3666/tempfile-

https://riptutorial.com/ 842

https://riptutorial.com/python/topic/3666/tempfile-namedtemporaryfile


namedtemporaryfile

https://riptutorial.com/ 843

https://riptutorial.com/python/topic/3666/tempfile-namedtemporaryfile


Chapter 175: Templates in python

Examples

Simple data output program using template

from string import Template 
 
data = dict(item = "candy", price = 8, qty = 2) 
 
# define the template 
t = Template("Simon bought $qty $item for $price dollar") 
print(t.substitute(data))

Output:

Simon bought 2 candy for 8 dollar

Templates support $-based substitutions instead of %-based substitution. Substitute (mapping, 
keywords) performs template substitution, returning a new string.

Mapping is any dictionary-like object with keys that match with the template placeholders. In this 
example, price and qty are placeholders. Keyword arguments can also be used as placeholders. 
Placeholders from keywords take precedence if both are present.

Changing delimiter

You can change the "$" delimiter to any other. The following example:

from string import Template 
 
class MyOtherTemplate(Template): 
    delimiter = "#" 
 
 
data = dict(id = 1, name = "Ricardo") 
t = MyOtherTemplate("My name is #name and I have the id: #id") 
print(t.substitute(data))

You can read de docs here

Read Templates in python online: https://riptutorial.com/python/topic/6029/templates-in-python

https://riptutorial.com/ 844

https://docs.python.org/3/library/string.html?highlight=template#string.Template.template
https://riptutorial.com/python/topic/6029/templates-in-python


Chapter 176: The __name__ special variable

Introduction

The __name__ special variable is used to check whether a file has been imported as a module or 
not, and to identify a function, class, module object by their __name__ attribute.

Remarks

The Python special variable __name__ is set to the name of the containing module. At the top level 
(such as in the interactive interpreter, or in the main file) it is set to '__main__'. This can be used to 
run a block of statements if a module is being run directly rather than being imported.

The related special attribute obj.__name__ is found on classes, imported modules and functions 
(including methods), and gives the name of the object when defined.

Examples

__name__ == '__main__'

The special variable __name__ is not set by the user. It is mostly used to check whether or not the 
module is being run by itself or run because an import was performed. To avoid your module to 
run certain parts of its code when it gets imported, check if __name__ == '__main__'.

Let module_1.py be just one line long:

import module2.py

And let's see what happens, depending on module2.py

Situation 1

module2.py

print('hello')

Running module1.py will print hello 
Running module2.py will print hello

Situation 2

module2.py

if __name__ == '__main__': 
    print('hello')

https://riptutorial.com/ 845



Running module1.py will print nothing 
Running module2.py will print hello

function_class_or_module.__name__

The special attribute __name__ of a function, class or module is a string containing its name.

import os 
 
class C: 
    pass 
 
def f(x): 
    x += 2 
    return x 
 
 
print(f) 
# <function f at 0x029976B0> 
print(f.__name__) 
# f 
 
print(C) 
# <class '__main__.C'> 
print(C.__name__) 
# C 
 
print(os) 
# <module 'os' from '/spam/eggs/'> 
print(os.__name__) 
# os

The __name__ attribute is not, however, the name of the variable which references the class, 
method or function, rather it is the name given to it when defined.

def f(): 
    pass 
 
print(f.__name__) 
# f - as expected 
 
g = f 
print(g.__name__) 
# f - even though the variable is named g, the function is still named f

This can be used, among others, for debugging:

def enter_exit_info(func): 
    def wrapper(*arg, **kw): 
        print '-- entering', func.__name__ 
        res = func(*arg, **kw) 
        print '-- exiting', func.__name__ 
        return res 
    return wrapper 
 

https://riptutorial.com/ 846



@enter_exit_info 
def f(x): 
    print 'In:', x 
    res = x + 2 
    print 'Out:', res 
    return res 
 
a = f(2) 
 
# Outputs: 
#     -- entering f 
#     In: 2 
#     Out: 4 
#     -- exiting f

Use in logging

When configuring the built-in logging functionality, a common pattern is to create a logger with the 
__name__ of the current module:

logger = logging.getLogger(__name__)

This means that the fully-qualified name of the module will appear in the logs, making it easier to 
see where messages have come from.

Read The __name__ special variable online: https://riptutorial.com/python/topic/1223/the---name--
-special-variable

https://riptutorial.com/ 847

https://riptutorial.com/python/topic/1223/the---name---special-variable
https://riptutorial.com/python/topic/1223/the---name---special-variable


Chapter 177: The base64 Module

Introduction

Base 64 encoding represents a common scheme for encoding binary into ASCII string format 
using radix 64. The base64 module is part of the standard library, which means it installs along 
with Python. Understanding of bytes and strings is critical to this topic and can be reviewed here. 
This topic explains how to use the various features and number bases of the base64 module.

Syntax

base64.b64encode(s, altchars=None)•
base64.b64decode(s, altchars=None, validate=False)•
base64.standard_b64encode(s)•
base64.standard_b64decode(s)•
base64.urlsafe_b64encode(s)•
base64.urlsafe_b64decode(s)•
base64.b32encode(s)•
base64.b32decode(s)•
base64.b16encode(s)•
base64.b16decode(s)•
base64.a85encode(b, foldspaces=False, wrapcol=0, pad=False, adobe=False)•
base64.a85decode(b, foldpaces=False, adobe=False, ignorechars=b'\t\n\r\v')•
base64.b85encode(b, pad=False)•
base64.b85decode(b)•

Parameters

Parameter Description

base64.b64encode(s, altchars=None)  

s A bytes-like object

altchars

A bytes-like object of length 2+ of characters to 
replace the '+' and '=' characters when creating 
the Base64 alphabet. Extra characters are 
ignored.

base64.b64decode(s, altchars=None, 
validate=False)  

s A bytes-like object

A bytes-like object of length 2+ of characters to altchars

https://riptutorial.com/ 848

https://goo.gl/N4qIYd


Parameter Description

replace the '+' and '=' characters when creating 
the Base64 alphabet. Extra characters are 
ignored.

validate
If valide is True, the characters not in the normal 
Base64 alphabet or the alternative alphabet are 
not discarded before the padding check

base64.standard_b64encode(s)  

s A bytes-like object

base64.standard_b64decode(s)  

s A bytes-like object

base64.urlsafe_b64encode(s)  

s A bytes-like object

base64.urlsafe_b64decode(s)  

s A bytes-like object

b32encode(s)  

s A bytes-like object

b32decode(s)  

s A bytes-like object

base64.b16encode(s)  

s A bytes-like object

base64.b16decode(s)  

s A bytes-like object

base64.a85encode(b, foldspaces=False, 
wrapcol=0, pad=False, adobe=False)  

b A bytes-like object

foldspaces
If foldspaces is True, the character 'y' will be 
used instead of 4 consecutive spaces.

wrapcol
The number characters before a newline (0 
implies no newlines)

https://riptutorial.com/ 849



Parameter Description

pad
If pad is True, the bytes are padded to a multiple 
of 4 before encoding

adobe
If adobe is True, the encoded sequened with be 
framed with '<~' and ''~>' as used with Adobe 
products

base64.a85decode(b, foldspaces=False, 
adobe=False, ignorechars=b'\t\n\r\v')  

b A bytes-like object

foldspaces
If foldspaces is True, the character 'y' will be 
used instead of 4 consecutive spaces.

adobe
If adobe is True, the encoded sequened with be 
framed with '<~' and ''~>' as used with Adobe 
products

ignorechars
A bytes-like object of characters to ignore in the 
encoding process

base64.b85encode(b, pad=False)  

b A bytes-like object

pad
If pad is True, the bytes are padded to a multiple 
of 4 before encoding

base64.b85decode(b)  

b A bytes-like object

Remarks

Up until Python 3.4 came out, base64 encoding and decoding functions only worked with bytes or 
bytearray types. Now these functions accept any bytes-like object.

Examples

Encoding and Decoding Base64

To include the base64 module in your script, you must import it first:

import base64

https://riptutorial.com/ 850

https://docs.python.org/3/glossary.html#term-bytes-like-object


The base64 encode and decode functions both require a bytes-like object. To get our string into 
bytes, we must encode it using Python's built in encode function. Most commonly, the UTF-8 
encoding is used, however a full list of these standard encodings (including languages with 
different characters) can be found here in the official Python Documentation. Below is an example 
of encoding a string into bytes:

s = "Hello World!" 
b = s.encode("UTF-8")

The output of the last line would be:

b'Hello World!'

The b prefix is used to denote the value is a bytes object.

To Base64 encode these bytes, we use the base64.b64encode() function:

import base64 
s = "Hello World!" 
b = s.encode("UTF-8") 
e = base64.b64encode(b) 
print(e)

That code would output the following:

b'SGVsbG8gV29ybGQh'

which is still in the bytes object. To get a string out of these bytes, we can use Python's decode() 
method with the UTF-8 encoding:

import base64 
s = "Hello World!" 
b = s.encode("UTF-8") 
e = base64.b64encode(b) 
s1 = e.decode("UTF-8") 
print(s1)

The output would then be:

SGVsbG8gV29ybGQh

If we wanted to encode the string and then decode we could use the base64.b64decode() method:

import base64 
# Creating a string 
s = "Hello World!" 
# Encoding the string into bytes 
b = s.encode("UTF-8") 
# Base64 Encode the bytes 
e = base64.b64encode(b) 
# Decoding the Base64 bytes to string 
s1 = e.decode("UTF-8") 
# Printing Base64 encoded string 
print("Base64 Encoded:", s1) 

https://riptutorial.com/ 851

https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/library/codecs.html#standard-encodings


# Encoding the Base64 encoded string into bytes 
b1 = s1.encode("UTF-8") 
# Decoding the Base64 bytes 
d = base64.b64decode(b1) 
# Decoding the bytes to string 
s2 = d.decode("UTF-8") 
print(s2)

As you may have expected, the output would be the original string:

Base64 Encoded: SGVsbG8gV29ybGQh 
Hello World!

Encoding and Decoding Base32

The base64 module also includes encoding and decoding functions for Base32. These functions 
are very similar to the Base64 functions:

import base64 
# Creating a string 
s = "Hello World!" 
# Encoding the string into bytes 
b = s.encode("UTF-8") 
# Base32 Encode the bytes 
e = base64.b32encode(b) 
# Decoding the Base32 bytes to string 
s1 = e.decode("UTF-8") 
# Printing Base32 encoded string 
print("Base32 Encoded:", s1) 
# Encoding the Base32 encoded string into bytes 
b1 = s1.encode("UTF-8") 
# Decoding the Base32 bytes 
d = base64.b32decode(b1) 
# Decoding the bytes to string 
s2 = d.decode("UTF-8") 
print(s2)

This would produce the following output:

Base32 Encoded: JBSWY3DPEBLW64TMMQQQ==== 
Hello World!

Encoding and Decoding Base16

The base64 module also includes encoding and decoding functions for Base16. Base 16 is most 
commonly referred to as hexadecimal. These functions are very similar to the both the Base64 
and Base32 functions:

import base64 
# Creating a string 
s = "Hello World!" 
# Encoding the string into bytes 
b = s.encode("UTF-8") 

https://riptutorial.com/ 852



# Base16 Encode the bytes 
e = base64.b16encode(b) 
# Decoding the Base16 bytes to string 
s1 = e.decode("UTF-8") 
# Printing Base16 encoded string 
print("Base16 Encoded:", s1) 
# Encoding the Base16 encoded string into bytes 
b1 = s1.encode("UTF-8") 
# Decoding the Base16 bytes 
d = base64.b16decode(b1) 
# Decoding the bytes to string 
s2 = d.decode("UTF-8") 
print(s2)

This would produce the following output:

Base16 Encoded: 48656C6C6F20576F726C6421 
Hello World!

Encoding and Decoding ASCII85

Adobe created it's own encoding called ASCII85 which is similar to Base85, but has its 
differences. This encoding is used frequently in Adobe PDF files. These functions were released in 
Python version 3.4. Otherwise, the functions base64.a85encode() and base64.a85encode() are similar 
to the previous:

import base64 
# Creating a string 
s = "Hello World!" 
# Encoding the string into bytes 
b = s.encode("UTF-8") 
# ASCII85 Encode the bytes 
e = base64.a85encode(b) 
# Decoding the ASCII85 bytes to string 
s1 = e.decode("UTF-8") 
# Printing ASCII85 encoded string 
print("ASCII85 Encoded:", s1) 
# Encoding the ASCII85 encoded string into bytes 
b1 = s1.encode("UTF-8") 
# Decoding the ASCII85 bytes 
d = base64.a85decode(b1) 
# Decoding the bytes to string 
s2 = d.decode("UTF-8") 
print(s2)

This outputs the following:

ASCII85 Encoded: 87cURD]i,"Ebo80 
Hello World!

Encoding and Decoding Base85

Just like the Base64, Base32, and Base16 functions, the Base85 encoding and decoding functions 
are base64.b85encode() and base64.b85decode():

https://riptutorial.com/ 853



import base64 
# Creating a string 
s = "Hello World!" 
# Encoding the string into bytes 
b = s.encode("UTF-8") 
# Base85 Encode the bytes 
e = base64.b85encode(b) 
# Decoding the Base85 bytes to string 
s1 = e.decode("UTF-8") 
# Printing Base85 encoded string 
print("Base85 Encoded:", s1) 
# Encoding the Base85 encoded string into bytes 
b1 = s1.encode("UTF-8") 
# Decoding the Base85 bytes 
d = base64.b85decode(b1) 
# Decoding the bytes to string 
s2 = d.decode("UTF-8") 
print(s2)

which outputs the following:

Base85 Encoded: NM&qnZy;B1a%^NF 
Hello World!

Read The base64 Module online: https://riptutorial.com/python/topic/8678/the-base64-module

https://riptutorial.com/ 854

https://riptutorial.com/python/topic/8678/the-base64-module


Chapter 178: The dis module

Examples

Constants in the dis module

EXTENDED_ARG = 145 # All opcodes greater than this have 2 operands 
HAVE_ARGUMENT = 90 # All opcodes greater than this have at least 1 operands 
 
cmp_op = ('<', '<=', '==', '!=', '>', '>=', 'in', 'not in', 'is', 'is ... 
       # A list of comparator id's. The indecies are used as operands in some opcodes 
 
# All opcodes in these lists have the respective types as there operands 
hascompare = [107] 
hasconst = [100] 
hasfree = [135, 136, 137] 
hasjabs = [111, 112, 113, 114, 115, 119] 
hasjrel = [93, 110, 120, 121, 122, 143] 
haslocal = [124, 125, 126] 
hasname = [90, 91, 95, 96, 97, 98, 101, 106, 108, 109, 116] 
 
# A map of opcodes to ids 
opmap = {'BINARY_ADD': 23, 'BINARY_AND': 64, 'BINARY_DIVIDE': 21, 'BIN... 
# A map of ids to opcodes 
opname = ['STOP_CODE', 'POP_TOP', 'ROT_TWO', 'ROT_THREE', 'DUP_TOP', '...

What is Python bytecode?

Python is a hybrid interpreter. When running a program, it first assembles it into bytecode which 
can then be run in the Python interpreter (also called a Python virtual machine). The dis module in 
the standard library can be used to make the Python bytecode human-readable by disassembling 
classes, methods, functions, and code objects.

>>> def hello(): 
...     print "Hello, World" 
... 
>>> dis.dis(hello) 
  2           0 LOAD_CONST               1 ('Hello, World') 
              3 PRINT_ITEM 
              4 PRINT_NEWLINE 
              5 LOAD_CONST               0 (None) 
              8 RETURN_VALUE

The Python interpreter is stack-based and uses a first-in last-out system.

Each operation code (opcode) in the Python assembly language (the bytecode) takes a fixed 
number of items from the stack and returns a fixed number of items to the stack. If there aren't 
enough items on the stack for an opcode, the Python interpreter will crash, possibly without an 
error message.

Disassembling modules

https://riptutorial.com/ 855



To disassemble a Python module, first this has to be turned into a .pyc file (Python compiled). To 
do this, run

python -m compileall <file>.py

Then in an interpreter, run

import dis 
import marshal 
with open("<file>.pyc", "rb") as code_f: 
    code_f.read(8) # Magic number and modification time 
    code = marshal.load(code_f) # Returns a code object which can be disassembled 
    dis.dis(code) # Output the disassembly

This will compile a Python module and output the bytecode instructions with dis. The module is 
never imported so it is safe to use with untrusted code.

Read The dis module online: https://riptutorial.com/python/topic/1763/the-dis-module

https://riptutorial.com/ 856

https://riptutorial.com/python/topic/1763/the-dis-module


Chapter 179: The Interpreter (Command Line 
Console)

Examples

Getting general help

If the help function is called in the console without any arguments, Python presents an interactive 
help console, where you can find out about Python modules, symbols, keywords and more.

>>> help() 
 
Welcome to Python 3.4's help utility! 
 
If this is your first time using Python, you should definitely check out 
the tutorial on the Internet at http://docs.python.org/3.4/tutorial/. 
 
Enter the name of any module, keyword, or topic to get help on writing 
Python programs and using Python modules.  To quit this help utility and 
return to the interpreter, just type "quit". 
 
To get a list of available modules, keywords, symbols, or topics, type 
"modules", "keywords", "symbols", or "topics".  Each module also comes 
with a one-line summary of what it does; to list the modules whose name 
or summary contain a given string such as "spam", type "modules spam".

Referring to the last expression

To get the value of the last result from your last expression in the console, use an underscore _.

>>> 2 + 2 
4 
>>> _ 
4 
>>> _ + 6 
10

This magic underscore value is only updated when using a python expression that results in a 
value. Defining functions or for loops does not change the value. If the expression raises an 
exception there will be no changes to _.

>>> "Hello, {0}".format("World") 
'Hello, World' 
>>> _ 
'Hello, World' 
>>> def wontchangethings(): 
...     pass 
>>> _ 
'Hello, World' 
>>> 27 / 0 

https://riptutorial.com/ 857



Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
ZeroDivisionError: division by zero 
>>> _ 
'Hello, World'

Remember, this magic variable is only available in the interactive python interpreter. Running 
scripts will not do this.

Opening the Python console

The console for the primary version of Python can usually be opened by typing py into your 
windows console or python on other platforms.

$ py 
Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 24 2015, 22:44:40) [MSC v.1600 64 bit (AMD64)] on win32 
Type "help", "copyright", "credits" or "license" for more information. 
>>>

If you have multiple versions, then by default their executables will be mapped to python2 or 
python3 respectively.

This of course depends on the Python executables being in your PATH.

The PYTHONSTARTUP variable

You can set an environment variable called PYTHONSTARTUP for Python's console. Whenever 
you enter the Python console, this file will be executed, allowing for you to add extra functionality 
to the console such as importing commonly-used modules automatically.

If the PYTHONSTARTUP variable was set to the location of a file containing this:

print("Welcome!")

Then opening the Python console would result in this extra output:

$ py 
Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 24 2015, 22:44:40) [MSC v.1600 64 bit (AMD64)] on win32 
Type "help", "copyright", "credits" or "license" for more information. 
Welcome! 
>>> 

Command line arguments

Python has a variety of command-line switches which can be passed to py. These can be found by 
performing py --help, which gives this output on Python 3.4:

Python Launcher 
 
usage: py [ launcher-arguments ] [ python-arguments ] script [ script-arguments ] 

https://riptutorial.com/ 858



 
Launcher arguments: 
 
-2     : Launch the latest Python 2.x version 
-3     : Launch the latest Python 3.x version 
-X.Y   : Launch the specified Python version 
-X.Y-32: Launch the specified 32bit Python version 
 
The following help text is from Python: 
 
usage: G:\Python34\python.exe [option] ... [-c cmd | -m mod | file | -] [arg] ... 
Options and arguments (and corresponding environment variables): 
-b     : issue warnings about str(bytes_instance), str(bytearray_instance) 
         and comparing bytes/bytearray with str. (-bb: issue errors) 
-B     : don't write .py[co] files on import; also PYTHONDONTWRITEBYTECODE=x 
-c cmd : program passed in as string (terminates option list) 
-d     : debug output from parser; also PYTHONDEBUG=x 
-E     : ignore PYTHON* environment variables (such as PYTHONPATH) 
-h     : print this help message and exit (also --help) 
-i     : inspect interactively after running script; forces a prompt even 
         if stdin does not appear to be a terminal; also PYTHONINSPECT=x 
-I     : isolate Python from the user's environment (implies -E and -s) 
-m mod : run library module as a script (terminates option list) 
-O     : optimize generated bytecode slightly; also PYTHONOPTIMIZE=x 
-OO    : remove doc-strings in addition to the -O optimizations 
-q     : don't print version and copyright messages on interactive startup 
-s     : don't add user site directory to sys.path; also PYTHONNOUSERSITE 
-S     : don't imply 'import site' on initialization 
-u     : unbuffered binary stdout and stderr, stdin always buffered; 
         also PYTHONUNBUFFERED=x 
         see man page for details on internal buffering relating to '-u' 
-v     : verbose (trace import statements); also PYTHONVERBOSE=x 
         can be supplied multiple times to increase verbosity 
-V     : print the Python version number and exit (also --version) 
-W arg : warning control; arg is action:message:category:module:lineno 
         also PYTHONWARNINGS=arg 
-x     : skip first line of source, allowing use of non-Unix forms of #!cmd 
-X opt : set implementation-specific option 
file   : program read from script file 
-      : program read from stdin (default; interactive mode if a tty) 
arg ...: arguments passed to program in sys.argv[1:] 
 
Other environment variables: 
PYTHONSTARTUP: file executed on interactive startup (no default) 
PYTHONPATH   : ';'-separated list of directories prefixed to the 
               default module search path.  The result is sys.path. 
PYTHONHOME   : alternate <prefix> directory (or <prefix>;<exec_prefix>). 
               The default module search path uses <prefix>\lib. 
PYTHONCASEOK : ignore case in 'import' statements (Windows). 
PYTHONIOENCODING: Encoding[:errors] used for stdin/stdout/stderr. 
PYTHONFAULTHANDLER: dump the Python traceback on fatal errors. 
PYTHONHASHSEED: if this variable is set to 'random', a random value is used 
   to seed the hashes of str, bytes and datetime objects.  It can also be 
   set to an integer in the range [0,4294967295] to get hash values with a 
   predictable seed.

Getting help about an object

The Python console adds a new function, help, which can be used to get information about a 

https://riptutorial.com/ 859



function or object.

For a function, help prints its signature (arguments) and its docstring, if the function has one.

>>> help(print) 
Help on built-in function print in module builtins: 
 
print(...) 
    print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False) 
 
    Prints the values to a stream, or to sys.stdout by default. 
    Optional keyword arguments: 
    file:  a file-like object (stream); defaults to the current sys.stdout. 
    sep:   string inserted between values, default a space. 
    end:   string appended after the last value, default a newline. 
    flush: whether to forcibly flush the stream.

For an object, help lists the object's docstring and the different member functions which the object 
has.

>>> x = 2 
>>> help(x) 
Help on int object: 
 
class int(object) 
 |  int(x=0) -> integer 
 |  int(x, base=10) -> integer 
 | 
 |  Convert a number or string to an integer, or return 0 if no arguments 
 |  are given.  If x is a number, return x.__int__().  For floating point 
 |  numbers, this truncates towards zero. 
 | 
 |  If x is not a number or if base is given, then x must be a string, 
 |  bytes, or bytearray instance representing an integer literal in the 
 |  given base.  The literal can be preceded by '+' or '-' and be surrounded 
 |  by whitespace.  The base defaults to 10.  Valid bases are 0 and 2-36. 
 |  Base 0 means to interpret the base from the string as an integer literal. 
 |  >>> int('0b100', base=0) 
 |  4 
 | 
 |  Methods defined here: 
 | 
 |  __abs__(self, /) 
 |      abs(self) 
 | 
 |  __add__(self, value, /) 
 |      Return self+value...

Read The Interpreter (Command Line Console) online: 
https://riptutorial.com/python/topic/2473/the-interpreter--command-line-console-

https://riptutorial.com/ 860

https://riptutorial.com/python/topic/2473/the-interpreter--command-line-console-


Chapter 180: The locale Module

Remarks

Python 2 Docs: [https://docs.python.org/2/library/locale.html#locale.currency][1]

Examples

Currency Formatting US Dollars Using the locale Module

import locale 
 
locale.setlocale(locale.LC_ALL, '') 
Out[2]: 'English_United States.1252' 
 
locale.currency(762559748.49) 
Out[3]: '$762559748.49' 
 
locale.currency(762559748.49, grouping=True) 
Out[4]: '$762,559,748.49'

Read The locale Module online: https://riptutorial.com/python/topic/1783/the-locale-module

https://riptutorial.com/ 861

https://docs.python.org/2/library/locale.html#locale.currency%5D%5B1%5D
https://riptutorial.com/python/topic/1783/the-locale-module


Chapter 181: The os Module

Introduction

This module provides a portable way of using operating system dependent functionality.

Syntax

import os•

Parameters

Parameter Details

Path A path to a file. The path separator may be determined by os.path.sep.

Mode The desired permission, in octal (e.g. 0700)

Examples

Create a directory

os.mkdir('newdir')

If you need to specify permissions, you can use the optional mode argument:

os.mkdir('newdir', mode=0700)

Get current directory

Use the os.getcwd() function:

print(os.getcwd())

Determine the name of the operating system

The os module provides an interface to determine what type of operating system the code is 
currently running on.

os.name

This can return one of the following in Python 3:

https://riptutorial.com/ 862



posix•
nt•
ce•
java•

More detailed information can be retrieved from sys.platform

Remove a directory

Remove the directory at path:

os.rmdir(path)

You should not use os.remove() to remove a directory. That function is for files and using it on 
directories will result in an OSError

Follow a symlink (POSIX)

Sometimes you need to determine the target of a symlink. os.readlink will do this:

print(os.readlink(path_to_symlink))

Change permissions on a file

os.chmod(path, mode)

where mode is the desired permission, in octal.

makedirs - recursive directory creation

Given a local directory with the following contents:

 └── dir1 
     ├── subdir1 
     └── subdir2

We want to create the same subdir1, subdir2 under a new directory dir2, which does not exist yet.

import os 
 
os.makedirs("./dir2/subdir1") 
os.makedirs("./dir2/subdir2")

Running this results in

├── dir1 
│   ├── subdir1 
│   └── subdir2 
└── dir2 

https://riptutorial.com/ 863

https://docs.python.org/3/library/sys.html#sys.platform


    ├── subdir1 
    └── subdir2

dir2 is only created the first time it is needed, for subdir1's creation.

If we had used os.mkdir instead, we would have had an exception because dir2 would not have 
existed yet.

    os.mkdir("./dir2/subdir1") 
OSError: [Errno 2] No such file or directory: './dir2/subdir1'

os.makedirs won't like it if the target directory exists already. If we re-run it again:

OSError: [Errno 17] File exists: './dir2/subdir1'

However, this could easily be fixed by catching the exception and checking that the directory has 
been created.

try: 
    os.makedirs("./dir2/subdir1") 
except OSError: 
    if not os.path.isdir("./dir2/subdir1"): 
        raise 
 
try: 
    os.makedirs("./dir2/subdir2") 
except OSError: 
    if not os.path.isdir("./dir2/subdir2"): 
        raise

Read The os Module online: https://riptutorial.com/python/topic/4127/the-os-module

https://riptutorial.com/ 864

https://riptutorial.com/python/topic/4127/the-os-module


Chapter 182: The pass statement

Syntax

pass•

Remarks

Why would you ever want to tell the interpreter to explicitly do nothing? Python has the syntactical 
requirement that code blocks (after if, except, def, class etc.) cannot be empty.

But sometimes an empty code block is useful in itself. An empty class block can definine a new, 
different class, such as exception that can be caught. An empty except block can be the simplest 
way to express “ask for forgiveness later” if there was nothing to ask for forgiveness for. If an 
iterator does all the heavy lifting, an empty for loop to just run the iterator can be useful.

Therefore, if nothing is supposed to happen in a code block, a pass is needed for such a block to 
not produce an IndentationError. Alternatively, any statement (including just a term to be 
evaluated, like the Ellipsis literal ... or a string, most often a docstring) can be used, but the pass 
makes clear that indeed nothing is supposed to happen, and does not need to be actually 
evaluated and (at least temporarily) stored in memory. Here is a small annotated collection of the 
most frequent uses of pass that crossed my way – together with some comments on good and bad 
pratice.

Ignoring (all or) a certain type of Exception (example from xml):

 try: 
     self.version = "Expat %d.%d.%d" % expat.version_info 
 except AttributeError: 
     pass # unknown

Note: Ignoring all types of raises, as in the following example from pandas, is generally 
considered bad practice, because it also catches exceptions that should probably be passed 
on to the caller, e.g. KeyboardInterrupt or SystemExit (or even HardwareIsOnFireError – How do 
you know you aren't running on a custom box with specific errors defined, which some 
calling application would want to know about?).

 try: 
     os.unlink(filename_larry) 
 except: 
     pass

Instead using at least except Error: or in this case preferably except OSError: is considered 
much better practice. A quick analysis of all python modules I have installed gave me that 
more than 10% of all except ...: pass statements catch all exceptions, so it's still a frequent 
pattern in python programming.

•

https://riptutorial.com/ 865



Deriving an exception class that does not add new behaviour (e.g. in scipy):

 class CompileError(Exception): 
     pass

Similarly, classes intended as abstract base class often have an explicit empty __init__ or 
other methods that subclasses are supposed to derive. (e.g. pebl)

 class _BaseSubmittingController(_BaseController): 
     def submit(self, tasks): pass 
     def retrieve(self, deferred_results): pass

•

Testing that code runs properly for a few test values, without caring about the results (from 
mpmath):

 for x, error in MDNewton(mp, f, (1,-2), verbose=0, 
                          norm=lambda x: norm(x, inf)): 
     pass

•

In class or function definitions, often a docstring is already in place as the obligatory 
statement to be executed as the only thing in the block. In such cases, the block may contain 
pass in addition to the docstring in order to say “This is indeed intended to do nothing.”, for 
example in pebl:

 class ParsingError(Exception): 
     """Error encountered while parsing an ill-formed datafile.""" 
     pass

•

In some cases, pass is used as a placeholder to say “This method/class/if-block/... has not 
been implemented yet, but this will be the place to do it”, although I personally prefer the 
Ellipsis literal ... (NOTE: python-3 only) in order to strictly differentiate between this and the 
intentional “no-op” in the previous example. For example, if I write a model in broad strokes, I 
might write

 def update_agent(agent): 
     ... 

where others might have

 def update_agent(agent): 
     pass

before

 def time_step(agents): 
     for agent in agents: 
         update_agent(agent)

as a reminder to fill in the update_agent function at a later point, but run some tests already to 

•

https://riptutorial.com/ 866



see if the rest of the code behaves as intended. (A third option for this case is raise 
NotImplementedError. This is useful in particular for two cases: Either “This abstract method 
should be implemented by every subclass, there is no generic way to define it in this base 
class”, or “This function, with this name, is not yet implemented in this release, but this is 
what its signature will look like”)

Examples

Ignore an exception

try: 
    metadata = metadata['properties'] 
except KeyError: 
    pass

Create a new Exception that can be caught

class CompileError(Exception): 
    pass

Read The pass statement online: https://riptutorial.com/python/topic/6891/the-pass-statement

https://riptutorial.com/ 867

https://riptutorial.com/python/topic/6891/the-pass-statement


Chapter 183: The Print Function

Examples

Print basics

In Python 3 and higher, print is a function rather than a keyword.

print('hello world!') 
# out: hello world! 
 
foo = 1 
bar = 'bar' 
baz = 3.14 
 
print(foo) 
# out: 1 
print(bar) 
# out: bar 
print(baz) 
# out: 3.14

You can also pass a number of parameters to print:

print(foo, bar, baz) 
# out: 1 bar 3.14

Another way to print multiple parameters is by using a +

print(str(foo) + " " + bar + " " + str(baz)) 
# out: 1 bar 3.14

What you should be careful about when using + to print multiple parameters, though, is that the 
type of the parameters should be the same. Trying to print the above example without the cast to 
string first would result in an error, because it would try to add the number 1 to the string "bar" and 
add that to the number 3.14.

# Wrong: 
# type:int  str  float 
print(foo + bar + baz) 
# will result in an error

This is because the content of print will be evaluated first:

print(4 + 5) 
# out: 9 
print("4" + "5") 
# out: 45 
print([4] + [5]) 
# out: [4, 5]

https://riptutorial.com/ 868



Otherwise, using a + can be very helpful for a user to read output of variables In the example 
below the output is very easy to read!

The script below demonstrates this

import random 
#telling python to include a function to create random numbers 
randnum = random.randint(0, 12) 
#make a random number between 0 and 12 and assign it to a variable 
print("The randomly generated number was - " + str(randnum))

You can prevent the print function from automatically printing a newline by using the end 
parameter:

print("this has no newline at the end of it... ", end="") 
print("see?") 
# out: this has no newline at the end of it... see?

If you want to write to a file, you can pass it as the parameter file:

with open('my_file.txt', 'w+') as my_file: 
    print("this goes to the file!", file=my_file)

this goes to the file!

Print parameters

You can do more than just print text. print also has several parameters to help you.

Argument sep: place a string between arguments.

Do you need to print a list of words separated by a comma or some other string?

>>> print('apples','bannas', 'cherries', sep=', ') 
apple, bannas, cherries 
>>> print('apple','banna', 'cherries', sep=', ') 
apple, banna, cherries 
>>>

Argument end: use something other than a newline at the end

Without the end argument, all print() functions write a line and then go to the beginning of the next 
line. You can change it to do nothing (use an empty string of ''), or double spacing between 
paragraphs by using two newlines.

>>> print("<a", end=''); print(" class='jidn'" if 1 else "", end=''); print("/>") 
<a class='jidn'/> 
>>> print("paragraph1", end="\n\n"); print("paragraph2") 
paragraph1 
 
paragraph2 

https://riptutorial.com/ 869



>>>

Argument file: send output to someplace other than sys.stdout.

Now you can send your text to either stdout, a file, or StringIO and not care which you are given. If 
it quacks like a file, it works like a file.

>>> def sendit(out, *values, sep=' ', end='\n'): 
...     print(*values, sep=sep, end=end, file=out) 
... 
>>> sendit(sys.stdout, 'apples', 'bannas', 'cherries', sep='\t') 
apples    bannas    cherries 
>>> with open("delete-me.txt", "w+") as f: 
...    sendit(f, 'apples', 'bannas', 'cherries', sep=' ', end='\n') 
... 
>>> with open("delete-me.txt", "rt") as f: 
...     print(f.read()) 
... 
apples bannas cherries 
 
>>>

There is a fourth parameter flush which will forcibly flush the stream.

Read The Print Function online: https://riptutorial.com/python/topic/1360/the-print-function

https://riptutorial.com/ 870

https://riptutorial.com/python/topic/1360/the-print-function


Chapter 184: tkinter

Introduction

Released in Tkinter is Python's most popular GUI (Graphical User Interface) library. This topic 
explains proper usage of this library and its features.

Remarks

The capitalization of the tkinter module is different between Python 2 and 3. For Python 2 use the 
following:

from Tkinter import *  # Capitalized

For Python 3 use the following:

from tkinter import *  # Lowercase

For code that works with both Python 2 and 3, you can either do

try: 
    from Tkinter import * 
except ImportError: 
    from tkinter import *

or

from sys import version_info 
if version_info.major == 2: 
    from Tkinter import * 
elif version_info.major == 3: 
    from tkinter import *

See the tkinter Documentation for more details

Examples

A minimal tkinter Application

tkinter is a GUI toolkit that provides a wrapper around the Tk/Tcl GUI library and is included with 
Python. The following code creates a new window using tkinter and places some text in the 
window body.

Note: In Python 2, the capitalization may be slightly different, see Remarks section 
below.

https://riptutorial.com/ 871

http://www.riptutorial.com/topic/987


import tkinter as tk 
 
# GUI window is a subclass of the basic tkinter Frame object 
class HelloWorldFrame(tk.Frame): 
    def __init__(self, master): 
        # Call superclass constructor 
        tk.Frame.__init__(self, master) 
        # Place frame into main window 
        self.grid() 
        # Create text box with "Hello World" text 
        hello = tk.Label(self, text="Hello World! This label can hold strings!") 
        # Place text box into frame 
        hello.grid(row=0, column=0) 
 
# Spawn window 
if __name__ == "__main__": 
    # Create main window object 
    root = tk.Tk() 
    # Set title of window 
    root.title("Hello World!") 
    # Instantiate HelloWorldFrame object 
    hello_frame = HelloWorldFrame(root) 
    # Start GUI 
    hello_frame.mainloop()

Geometry Managers

Tkinter has three mechanisms for geometry management: place, pack, and grid.

The place manager uses absolute pixel coordinates.

The pack manager places widgets into one of 4 sides. New widgets are placed next to existing 
widgets.

The grid manager places widgets into a grid similar to a dynamically resizing spreadsheet.

Place

The most common keyword arguments for widget.place are as follows:

x, the absolute x-coordinate of the widget•
y, the absolute y-coordinate of the widget•
height, the absolute height of the widget•
width, the absolute width of the widget•

A code example using place:

class PlaceExample(Frame): 
    def __init__(self,master): 
        Frame.__init__(self,master) 
        self.grid() 
        top_text=Label(master,text="This is on top at the origin") 
        #top_text.pack() 

https://riptutorial.com/ 872



        top_text.place(x=0,y=0,height=50,width=200) 
        bottom_right_text=Label(master,text="This is at position 200,400") 
        #top_text.pack() 
        bottom_right_text.place(x=200,y=400,height=50,width=200) 
# Spawn Window 
if __name__=="__main__": 
    root=Tk() 
    place_frame=PlaceExample(root) 
    place_frame.mainloop()

Pack

widget.pack can take the following keyword arguments:

expand, whether or not to fill space left by parent•
fill, whether to expand to fill all space (NONE (default), X, Y, or BOTH)•
side, the side to pack against (TOP (default), BOTTOM, LEFT, or RIGHT)•

Grid

The most commonly used keyword arguments of widget.grid are as follows:

row, the row of the widget (default smallest unoccupied)•
rowspan, the number of colums a widget spans (default 1)•
column, the column of the widget (default 0)•
columnspan, the number of columns a widget spans (default 1)•
sticky, where to place widget if the grid cell is larger than it (combination of 
N,NE,E,SE,S,SW,W,NW)

•

The rows and columns are zero indexed. Rows increase going down, and columns increase going 
right.

A code example using grid:

from tkinter import * 
 
class GridExample(Frame): 
    def __init__(self,master): 
        Frame.__init__(self,master) 
        self.grid() 
        top_text=Label(self,text="This text appears on top left") 
        top_text.grid() # Default position 0, 0 
        bottom_text=Label(self,text="This text appears on bottom left") 
        bottom_text.grid() # Default position 1, 0 
        right_text=Label(self,text="This text appears on the right and spans both rows", 
                         wraplength=100) 
        # Position is 0,1 
        # Rowspan means actual position is [0-1],1 
        right_text.grid(row=0,column=1,rowspan=2) 
 
# Spawn Window 

https://riptutorial.com/ 873



if __name__=="__main__": 
    root=Tk() 
    grid_frame=GridExample(root) 
    grid_frame.mainloop()

Never mix pack and grid within the same frame! Doing so will lead to application deadlock!

Read tkinter online: https://riptutorial.com/python/topic/7574/tkinter

https://riptutorial.com/ 874

https://riptutorial.com/python/topic/7574/tkinter


Chapter 185: Tuple

Introduction

A tuple is a immutable list of values. Tuples are one of Python's simplest and most common 
collection types, and can be created with the comma operator (value = 1, 2, 3).

Syntax

(1, a, "hello") # a must be a variable•

() # an empty tuple•

(1,) # a 1-element tuple. (1) is not a tuple.•

1, 2, 3 # the 3-element tuple (1, 2, 3)•

Remarks

Parentheses are only needed for empty tuples or when used in a function call.

A tuple is a sequence of values. The values can be any type, and they are indexed by integers, so 
in that respect tuples are a lot like lists. The important difference is that tuples are immutable and 
are hashable, so they can be used in sets and maps

Examples

Indexing Tuples

x = (1, 2, 3) 
x[0]  # 1 
x[1]  # 2 
x[2]  # 3 
x[3]  # IndexError: tuple index out of range

Indexing with negative numbers will start from the last element as -1:

x[-1] # 3 
x[-2] # 2 
x[-3] # 1 
x[-4] # IndexError: tuple index out of range

Indexing a range of elements

print(x[:-1])   # (1, 2) 
print(x[-1:])   # (3,) 

https://riptutorial.com/ 875



print(x[1:3])   # (2, 3)

Tuples are immutable

One of the main differences between lists and tuples in Python is that tuples are immutable, that 
is, one cannot add or modify items once the tuple is initialized. For example:

>>> t = (1, 4, 9) 
>>> t[0] = 2 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: 'tuple' object does not support item assignment

Similarly, tuples don't have .append and .extend methods as list does. Using += is possible, but it 
changes the binding of the variable, and not the tuple itself:

>>> t = (1, 2) 
>>> q = t 
>>> t += (3, 4) 
>>> t 
(1, 2, 3, 4) 
>>> q 
(1, 2)

Be careful when placing mutable objects, such as lists, inside tuples. This may lead to very 
confusing outcomes when changing them. For example:

>>> t = (1, 2, 3, [1, 2, 3]) 
(1, 2, 3, [1, 2, 3]) 
>>> t[3] += [4, 5]

Will both raise an error and change the contents of the list within the tuple:

TypeError: 'tuple' object does not support item assignment 
>>> t 
(1, 2, 3, [1, 2, 3, 4, 5])

You can use the += operator to "append" to a tuple - this works by creating a new tuple with the 
new element you "appended" and assign it to its current variable; the old tuple is not changed, but 
replaced!

This avoids converting to and from a list, but this is slow and is a bad practice, especially if you're 
going to append multiple times.

Tuple Are Element-wise Hashable and Equatable

hash( (1, 2) )  # ok 
hash( ([], {"hello"})  # not ok, since lists and sets are not hashabe

Thus a tuple can be put inside a set or as a key in a dict only if each of its elements can.

https://riptutorial.com/ 876



{ (1, 2) } #  ok 
{ ([], {"hello"}) ) # not ok

Tuple

Syntactically, a tuple is a comma-separated list of values:

t = 'a', 'b', 'c', 'd', 'e'

Although not necessary, it is common to enclose tuples in parentheses:

t = ('a', 'b', 'c', 'd', 'e')

Create an empty tuple with parentheses:

t0 = () 
type(t0)            # <type 'tuple'>

To create a tuple with a single element, you have to include a final comma:

t1 = 'a', 
type(t1)              # <type 'tuple'>

Note that a single value in parentheses is not a tuple:

t2 = ('a') 
type(t2)              # <type 'str'>

To create a singleton tuple it is necessary to have a trailing comma.

t2 = ('a',) 
type(t2)              # <type 'tuple'>

Note that for singleton tuples it's recommended (see PEP8 on trailing commas) to use 
parentheses. Also, no white space after the trailing comma (see PEP8 on whitespaces)

t2 = ('a',)           # PEP8-compliant 
t2 = 'a',             # this notation is not recommended by PEP8 
t2 = ('a', )          # this notation is not recommended by PEP8

Another way to create a tuple is the built-in function tuple.

t = tuple('lupins') 
print(t)              # ('l', 'u', 'p', 'i', 'n', 's') 
t = tuple(range(3)) 
print(t)              # (0, 1, 2)

These examples are based on material from the book Think Python by Allen B. Downey.

https://riptutorial.com/ 877

https://www.python.org/dev/peps/pep-0008/#when-to-use-trailing-commas
https://www.python.org/dev/peps/pep-0008/#whitespace-in-expressions-and-statements
http://greenteapress.com/thinkpython/html/index.html
http://greenteapress.com/thinkpython/html/index.html


Packing and Unpacking Tuples

Tuples in Python are values separated by commas. Enclosing parentheses for inputting tuples are 
optional, so the two assignments

a = 1, 2, 3   # a is the tuple (1, 2, 3)

and

a = (1, 2, 3) # a is the tuple (1, 2, 3)

are equivalent. The assignment a = 1, 2, 3 is also called packing because it packs values 
together in a tuple.

Note that a one-value tuple is also a tuple. To tell Python that a variable is a tuple and not a single 
value you can use a trailing comma

a = 1  # a is the value 1 
a = 1, # a is the tuple (1,)

A comma is needed also if you use parentheses

a = (1,) # a is the tuple (1,) 
a = (1)  # a is the value 1 and not a tuple

To unpack values from a tuple and do multiple assignments use

# unpacking AKA multiple assignment 
x, y, z = (1, 2, 3) 
# x == 1 
# y == 2 
# z == 3

The symbol _ can be used as a disposable variable name if one only needs some elements of a 
tuple, acting as a placeholder:

a = 1, 2, 3, 4 
_, x, y, _ = a 
# x == 2 
# y == 3

Single element tuples:

x, = 1,  # x is the value 1 
x  = 1,  # x is the tuple (1,)

In Python 3 a target variable with a * prefix can be used as a catch-all variable (see Unpacking 
Iterables ):

Python 3.x3.0

https://riptutorial.com/ 878

https://www.python.org/dev/peps/pep-3132/
http://www.riptutorial.com/python/example/2845/unpacking-iterables
http://www.riptutorial.com/python/example/2845/unpacking-iterables


first, *more, last = (1, 2, 3, 4, 5) 
# first == 1 
# more == [2, 3, 4] 
# last == 5

Reversing Elements

Reverse elements within a tuple

colors = "red", "green", "blue" 
rev = colors[::-1] 
# rev: ("blue", "green", "red") 
colors = rev 
# colors: ("blue", "green", "red")

Or using reversed (reversed gives an iterable which is converted to a tuple):

rev = tuple(reversed(colors)) 
# rev: ("blue", "green", "red") 
colors = rev 
# colors: ("blue", "green", "red")

Built-in Tuple Functions

Tuples support the following build-in functions

Comparison

If elements are of the same type, python performs the comparison and returns the result. If 
elements are different types, it checks whether they are numbers.

If numbers, perform comparison.•
If either element is a number, then the other element is returned.•
Otherwise, types are sorted alphabetically .•

If we reached the end of one of the lists, the longer list is "larger." If both list are same it returns 0.

tuple1 = ('a', 'b', 'c', 'd', 'e') 
tuple2 = ('1','2','3') 
tuple3 = ('a', 'b', 'c', 'd', 'e') 
 
cmp(tuple1, tuple2) 
Out: 1 
 
cmp(tuple2, tuple1) 
Out: -1 
 
cmp(tuple1, tuple3) 
Out: 0

https://riptutorial.com/ 879



Tuple Length

The function len returns the total length of the tuple

len(tuple1) 
Out: 5

Max of a tuple

The function max returns item from the tuple with the max value

max(tuple1) 
Out: 'e' 
 
max(tuple2) 
Out: '3'

Min of a tuple

The function min returns the item from the tuple with the min value

min(tuple1) 
Out: 'a' 
 
min(tuple2) 
Out: '1'

Convert a list into tuple

The built-in function tuple converts a list into a tuple.

list = [1,2,3,4,5] 
tuple(list) 
Out: (1, 2, 3, 4, 5)

Tuple concatenation

Use + to concatenate two tuples

tuple1 + tuple2 
Out: ('a', 'b', 'c', 'd', 'e', '1', '2', '3')

Read Tuple online: https://riptutorial.com/python/topic/927/tuple

https://riptutorial.com/ 880

https://riptutorial.com/python/topic/927/tuple


Chapter 186: Turtle Graphics

Examples

Ninja Twist (Turtle Graphics)

Here a Turtle Graphics Ninja Twist: 

import turtle 
 
ninja = turtle.Turtle() 
 
ninja.speed(10) 
 
for i in range(180): 
    ninja.forward(100) 
    ninja.right(30) 
    ninja.forward(20) 
    ninja.left(60) 
    ninja.forward(50) 
    ninja.right(30) 
 
    ninja.penup() 
    ninja.setposition(0, 0) 
    ninja.pendown() 
 
    ninja.right(2) 
 
turtle.done()

Read Turtle Graphics online: https://riptutorial.com/python/topic/7915/turtle-graphics

https://riptutorial.com/ 881

https://i.stack.imgur.com/3YP3j.png
https://riptutorial.com/python/topic/7915/turtle-graphics


Chapter 187: Type Hints

Syntax

typing.Callable[[int, str], None] -> def func(a: int, b: str) -> None•
typing.Mapping[str, int] -> {"a": 1, "b": 2, "c": 3}•
typing.List[int] -> [1, 2, 3]•
typing.Set[int] -> {1, 2, 3}•
typing.Optional[int] -> None or int•
typing.Sequence[int] -> [1, 2, 3] or (1, 2, 3)•
typing.Any -> Any type•
typing.Union[int, str] -> 1 or "1"•
T = typing.TypeVar('T') -> Generic type•

Remarks

Type Hinting, as specified in PEP 484, is a formalized solution to statically indicate the type of a 
value for Python Code. By appearing alongside the typing module, type-hints offer Python users 
the capability to annotate their code thereby assisting type checkers while, indirectly, documenting 
their code with more information.

Examples

Generic Types

The typing.TypeVar is a generic type factory. It's primary goal is to serve as a 
parameter/placeholder for generic function/class/method annotations:

import typing 
 
T = typing.TypeVar("T") 
 
def get_first_element(l: typing.Sequence[T]) -> T: 
    """Gets the first element of a sequence.""" 
    return l[0]

Adding types to a function

Let's take an example of a function which receives two arguments and returns a value indicating 
their sum:

def two_sum(a, b): 
    return a + b

By looking at this code, one can not safely and without doubt indicate the type of the arguments 

https://riptutorial.com/ 882

https://www.python.org/dev/peps/pep-0484
https://docs.python.org/3/library/typing.html#typing.TypeVar


for function two_sum. It works both when supplied with int values:

print(two_sum(2, 1))  # result: 3

and with strings:

print(two_sum("a", "b"))  # result: "ab"

and with other values, such as lists, tuples et cetera.

Due to this dynamic nature of python types, where many are applicable for a given operation, any 
type checker would not be able to reasonably assert whether a call for this function should be 
allowed or not.

To assist our type checker we can now provide type hints for it in the Function definition indicating 
the type that we allow.

To indicate that we only want to allow int types we can change our function definition to look like:

def two_sum(a: int, b: int): 
    return a + b

Annotations follow the argument name and are separated by a : character.

Similarly, to indicate only str types are allowed, we'd change our function to specify it:

def two_sum(a: str, b: str): 
    return a + b

Apart from specifying the type of the arguments, one could also indicate the return value of a 
function call. This is done by adding the -> character followed by the type after the closing 
parenthesis in the argument list but before the : at the end of the function declaration:

def two_sum(a: int, b: int) -> int: 
    return a + b

Now we've indicated that the return value when calling two_sum should be of type int. Similarly we 
can define appropriate values for str, float, list, set and others.

Although type hints are mostly used by type checkers and IDEs, sometimes you may need to 
retrieve them. This can be done using the __annotations__ special attribute:

two_sum.__annotations__ 
# {'a': <class 'int'>, 'b': <class 'int'>, 'return': <class 'int'>}

Class Members and Methods

class A: 

https://riptutorial.com/ 883



    x = None  # type: float 
    def __init__(self, x: float) -> None: 
        """ 
        self should not be annotated 
        init should be annotated to return None 
        """ 
        self.x = x 
 
    @classmethod 
    def from_int(cls, x: int) -> 'A': 
        """ 
        cls should not be annotated 
        Use forward reference to refer to current class with string literal 'A' 
        """ 
        return cls(float(x))

Forward reference of the current class is needed since annotations are evaluated when the 
function is defined. Forward references can also be used when referring to a class that would 
cause a circular import if imported.

Variables and Attributes

Variables are annotated using comments:

x = 3  # type: int 
x = negate(x) 
x = 'a type-checker might catch this error'

Python 3.x3.6

Starting from Python 3.6, there is also new syntax for variable annotations. The code above might 
use the form

x: int = 3

Unlike with comments, it is also possible to just add a type hint to a variable that was not 
previously declared, without setting a value to it:

y: int

Additionally if these are used in the module or the class level, the type hints can be retrieved using 
typing.get_type_hints(class_or_module):

class Foo: 
    x: int 
    y: str = 'abc' 
 
print(typing.get_type_hints(Foo)) 
# ChainMap({'x': <class 'int'>, 'y': <class 'str'>}, {})

Alternatively, they can be accessed by using the __annotations__ special variable or attribute:

https://riptutorial.com/ 884

https://www.python.org/dev/peps/pep-0526/


x: int 
print(__annotations__) 
# {'x': <class 'int'>} 
 
class C: 
    s: str 
print(C.__annotations__) 
# {'s': <class 'str'>}

NamedTuple

Creating a namedtuple with type hints is done using the function NamedTuple from the typing 
module:

import typing 
Point = typing.NamedTuple('Point', [('x', int), ('y', int)])

Note that the name of the resulting type is the first argument to the function, but it should be 
assigned to a variable with the same name to ease the work of type checkers.

Type hints for keyword arguments

def hello_world(greeting: str = 'Hello'): 
    print(greeting + ' world!')

Note the spaces around the equal sign as opposed to how keyword arguments are usually styled.

Read Type Hints online: https://riptutorial.com/python/topic/1766/type-hints

https://riptutorial.com/ 885

https://riptutorial.com/python/topic/1766/type-hints


Chapter 188: Unicode

Examples

Encoding and decoding

Always encode from unicode to bytes. In this direction, you get to choose the encoding.

>>> u'�'.encode('utf-8') 
'\xf0\x9f\x90\x8d'

The other way is to decode from bytes to unicode. In this direction, you have to know what the 
encoding is.

>>> b'\xf0\x9f\x90\x8d'.decode('utf-8') 
u'\U0001f40d'

Read Unicode online: https://riptutorial.com/python/topic/5618/unicode

https://riptutorial.com/ 886

https://riptutorial.com/python/topic/5618/unicode


Chapter 189: Unicode and bytes

Syntax

str.encode(encoding, errors='strict')•
bytes.decode(encoding, errors='strict')•
open(filename, mode, encoding=None)•

Parameters

Parameter Details

encoding The encoding to use, e.g. 'ascii', 'utf8', etc...

errors
The errors mode, e.g. 'replace' to replace bad characters with question marks, 
'ignore' to ignore bad characters, etc...

Examples

Basics

In Python 3 str is the type for unicode-enabled strings, while bytes is the type for sequences of 
raw bytes.

type("f") == type(u"f")  # True, <class 'str'> 
type(b"f")               # <class 'bytes'>

In Python 2 a casual string was a sequence of raw bytes by default and the unicode string was 
every string with "u" prefix.

type("f") == type(b"f")  # True, <type 'str'> 
type(u"f")               # <type 'unicode'>

 

Unicode to bytes

Unicode strings can be converted to bytes with .encode(encoding).

Python 3

>>> "£13.55".encode('utf8') 
b'\xc2\xa313.55' 
>>> "£13.55".encode('utf16') 

https://riptutorial.com/ 887



b'\xff\xfe\xa3\x001\x003\x00.\x005\x005\x00'

Python 2

in py2 the default console encoding is sys.getdefaultencoding() == 'ascii' and not utf-8 as in py3, 
therefore printing it as in the previous example is not directly possible.

>>> print type(u"£13.55".encode('utf8')) 
<type 'str'> 
>>> print u"£13.55".encode('utf8') 
SyntaxError: Non-ASCII character '\xc2' in... 
 
# with encoding set inside a file 
 
# -*- coding: utf-8 -*- 
>>> print u"£13.55".encode('utf8') 
┬ú13.55

 
If the encoding can't handle the string, a `UnicodeEncodeError` is raised:

>>> "£13.55".encode('ascii') 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
UnicodeEncodeError: 'ascii' codec can't encode character '\xa3' in position 0: ordinal not in 
range(128)

 

Bytes to unicode

Bytes can be converted to unicode strings with .decode(encoding).

A sequence of bytes can only be converted into a unicode string via the appropriate 
encoding!

>>> b'\xc2\xa313.55'.decode('utf8') 
'£13.55'

If the encoding can't handle the string, a UnicodeDecodeError is raised:

>>> b'\xc2\xa313.55'.decode('utf16') 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
  File "/Users/csaftoiu/csaftoiu-github/yahoo-groups-
backup/.virtualenv/bin/../lib/python3.5/encodings/utf_16.py", line 16, in decode 
    return codecs.utf_16_decode(input, errors, True) 
UnicodeDecodeError: 'utf-16-le' codec can't decode byte 0x35 in position 6: truncated data

Encoding/decoding error handling

https://riptutorial.com/ 888



.encode and .decode both have error modes.

The default is 'strict', which raises exceptions on error. Other modes are more forgiving.

Encoding

>>> "£13.55".encode('ascii', errors='replace') 
b'?13.55' 
>>> "£13.55".encode('ascii', errors='ignore') 
b'13.55' 
>>> "£13.55".encode('ascii', errors='namereplace') 
b'\\N{POUND SIGN}13.55' 
>>> "£13.55".encode('ascii', errors='xmlcharrefreplace') 
b'&#163;13.55' 
>>> "£13.55".encode('ascii', errors='backslashreplace') 
b'\\xa313.55'

Decoding

>>> b = "£13.55".encode('utf8') 
>>> b.decode('ascii', errors='replace') 
'��13.55' 
>>> b.decode('ascii', errors='ignore') 
'13.55' 
>>> b.decode('ascii', errors='backslashreplace') 
'\\xc2\\xa313.55'

Morale

It is clear from the above that it is vital to keep your encodings straight when dealing with unicode 
and bytes.

File I/O

Files opened in a non-binary mode (e.g. 'r' or 'w') deal with strings. The deafult encoding is 
'utf8'.

open(fn, mode='r')                    # opens file for reading in utf8 
open(fn, mode='r', encoding='utf16')  # opens file for reading utf16 
 
# ERROR: cannot write bytes when a string is expected: 
open("foo.txt", "w").write(b"foo")

Files opened in a binary mode (e.g. 'rb' or 'wb') deal with bytes. No encoding argument can be 
specified as there is no encoding.

open(fn, mode='wb')  # open file for writing bytes 

https://riptutorial.com/ 889



 
# ERROR: cannot write string when bytes is expected: 
open(fn, mode='wb').write("hi")

Read Unicode and bytes online: https://riptutorial.com/python/topic/1216/unicode-and-bytes

https://riptutorial.com/ 890

https://riptutorial.com/python/topic/1216/unicode-and-bytes


Chapter 190: Unit Testing

Remarks

There are several unit testing tools for Python. This documentation topic describes the basic 
unittest module. Other testing tools include py.test and nosetests. This python documentation 
about testing compares several of these tools without going into depth.

Examples

Testing Exceptions

Programs throw errors when for instance wrong input is given. Because of this, one needs to 
make sure that an error is thrown when actual wrong input is given. Because of that we need to 
check for an exact exception, for this example we will use the following exception:

class WrongInputException(Exception): 
    pass

This exception is raised when wrong input is given, in the following context where we always 
expect a number as text input.

def convert2number(random_input): 
    try: 
        my_input = int(random_input) 
    except ValueError: 
        raise WrongInputException("Expected an integer!") 
    return my_input

To check whether an exception has been raised, we use assertRaises to check for that exception. 
assertRaises can be used in two ways:

Using the regular function call. The first argument takes the exception type, second a 
callable (usually a function) and the rest of arguments are passed to this callable.

1. 

Using a with clause, giving only the exception type to the function. This has as advantage 
that more code can be executed, but should be used with care since multiple functions can 
use the same exception which can be problematic. An example: with 
self.assertRaises(WrongInputException): convert2number("not a number")

2. 

This first has been implemented in the following test case:

import unittest 
 
class ExceptionTestCase(unittest.TestCase): 
 
    def test_wrong_input_string(self): 
        self.assertRaises(WrongInputException, convert2number, "not a number") 

https://riptutorial.com/ 891

http://docs.python-guide.org/en/latest/writing/tests/
http://docs.python-guide.org/en/latest/writing/tests/


 
    def test_correct_input(self): 
        try: 
            result = convert2number("56") 
            self.assertIsInstance(result, int) 
        except WrongInputException: 
            self.fail()

There also may be a need to check for an exception which should not have been thrown. 
However, a test will automatically fail when an exception is thrown and thus may not be necessary 
at all. Just to show the options, the second test method shows a case on how one can check for 
an exception not to be thrown. Basically, this is catching the exception and then failing the test 
using the fail method.

Mocking functions with unittest.mock.create_autospec

One way to mock a function is to use the create_autospec function, which will mock out an object 
according to its specs. With functions, we can use this to ensure that they are called appropriately.

With a function multiply in custom_math.py:

def multiply(a, b): 
    return a * b

And a function multiples_of in process_math.py:

from custom_math import multiply 
 
 
def multiples_of(integer, *args, num_multiples=0, **kwargs): 
    """ 
    :rtype: list 
    """ 
    multiples = [] 
 
    for x in range(1, num_multiples + 1): 
        """ 
        Passing in args and kwargs here will only raise TypeError if values were 
        passed to multiples_of function, otherwise they are ignored. This way we can 
        test that multiples_of is used correctly. This is here for an illustration 
        of how create_autospec works. Not recommended for production code. 
        """ 
        multiple = multiply(integer,x, *args, **kwargs) 
        multiples.append(multiple) 
 
    return multiples

We can test multiples_of alone by mocking out multiply. The below example uses the Python 
standard library unittest, but this can be used with other testing frameworks as well, like pytest or 
nose:

from unittest.mock import create_autospec 
import unittest 

https://riptutorial.com/ 892



 
# we import the entire module so we can mock out multiply 
import custom_math 
custom_math.multiply = create_autospec(custom_math.multiply) 
from process_math import multiples_of 
 
 
class TestCustomMath(unittest.TestCase): 
    def test_multiples_of(self): 
        multiples = multiples_of(3, num_multiples=1) 
        custom_math.multiply.assert_called_with(3, 1) 
 
    def test_multiples_of_with_bad_inputs(self): 
        with self.assertRaises(TypeError) as e: 
            multiples_of(1, "extra arg",  num_multiples=1) # this should raise a TypeError

Test Setup and Teardown within a unittest.TestCase

Sometimes we want to prepare a context for each test to be run under. The setUp method is run 
prior to each test in the class. tearDown is run at the end of every test. These methods are optional. 
Remember that TestCases are often used in cooperative multiple inheritance so you should be 
careful to always call super in these methods so that base class's setUp and tearDown methods also 
get called. The base implementation of TestCase provides empty setUp and tearDown methods so 
that they can be called without raising exceptions:

import unittest 
 
 
class SomeTest(unittest.TestCase): 
    def setUp(self): 
        super(SomeTest, self).setUp() 
        self.mock_data = [1,2,3,4,5] 
 
    def test(self): 
        self.assertEqual(len(self.mock_data), 5) 
 
    def tearDown(self): 
        super(SomeTest, self).tearDown() 
        self.mock_data = [] 
 
 
if __name__ == '__main__': 
    unittest.main()

Note that in python2.7+, there is also the addCleanup method that registers functions to be called 
after the test is run. In contrast to tearDown which only gets called if setUp succeeds, functions 
registered via addCleanup will be called even in the event of an unhandled exception in setUp. As a 
concrete example, this method can frequently be seen removing various mocks that were 
registered while the test was running:

import unittest 
import some_module 
 
 
class SomeOtherTest(unittest.TestCase): 

https://riptutorial.com/ 893

https://docs.python.org/2.7/library/unittest.html#unittest.TestCase.addCleanup


    def setUp(self): 
        super(SomeOtherTest, self).setUp() 
 
        # Replace `some_module.method` with a `mock.Mock` 
        my_patch = mock.patch.object(some_module, 'method') 
        my_patch.start() 
 
        # When the test finishes running, put the original method back. 
        self.addCleanup(my_patch.stop)

Another benefit of registering cleanups this way is that it allows the programmer to put the cleanup 
code next to the setup code and it protects you in the event that a subclasser forgets to call super 
in tearDown.

Asserting on Exceptions

You can test that a function throws an exception with the built-in unittest through two different 
methods.

Using a context manager

def division_function(dividend, divisor): 
    return dividend / divisor 
 
 
class MyTestCase(unittest.TestCase): 
    def test_using_context_manager(self): 
        with self.assertRaises(ZeroDivisionError): 
            x = division_function(1, 0)

This will run the code inside of the context manager and, if it succeeds, it will fail the test because 
the exception was not raised. If the code raises an exception of the correct type, the test will 
continue.

You can also get the content of the raised exception if you want to execute additional assertions 
against it.

class MyTestCase(unittest.TestCase): 
    def test_using_context_manager(self): 
        with self.assertRaises(ZeroDivisionError) as ex: 
            x = division_function(1, 0) 
 
        self.assertEqual(ex.message, 'integer division or modulo by zero')

By providing a callable function

def division_function(dividend, divisor): 
    """ 
    Dividing two numbers. 
 
    :type dividend: int 
    :type divisor: int 
 

https://riptutorial.com/ 894

http://www.riptutorial.com/python/topic/928/context-managers---with--statement-


    :raises: ZeroDivisionError if divisor is zero (0). 
    :rtype: int 
    """ 
    return dividend / divisor 
 
 
class MyTestCase(unittest.TestCase): 
    def test_passing_function(self): 
        self.assertRaises(ZeroDivisionError, division_function, 1, 0)

The exception to check for must be the first parameter, and a callable function must be passed as 
the second parameter. Any other parameters specified will be passed directly to the function that 
is being called, allowing you to specify the parameters that trigger the exception.

Choosing Assertions Within Unittests

While Python has an assert statement, the Python unit testing framework has better assertions 
specialized for tests: they are more informative on failures, and do not depend on the execution's 
debug mode.

Perhaps the simplest assertion is assertTrue, which can be used like this:

import unittest 
 
class SimplisticTest(unittest.TestCase): 
    def test_basic(self): 
        self.assertTrue(1 + 1 == 2)

This will run fine, but replacing the line above with

        self.assertTrue(1 + 1 == 3)

will fail.

The assertTrue assertion is quite likely the most general assertion, as anything tested can be cast 
as some boolean condition, but often there are better alternatives. When testing for equality, as 
above, it is better to write

        self.assertEqual(1 + 1, 3)

When the former fails, the message is

====================================================================== 
 
FAIL: test (__main__.TruthTest) 
 
---------------------------------------------------------------------- 
 
Traceback (most recent call last): 
 
  File "stuff.py", line 6, in test 
 

https://riptutorial.com/ 895

https://docs.python.org/2/reference/simple_stmts.html#grammar-token-assert_stmt
https://docs.python.org/2/reference/simple_stmts.html#grammar-token-assert_stmt


    self.assertTrue(1 + 1 == 3) 
 
AssertionError: False is not true

but when the latter fails, the message is

====================================================================== 
 
FAIL: test (__main__.TruthTest) 
 
---------------------------------------------------------------------- 
 
Traceback (most recent call last): 
 
  File "stuff.py", line 6, in test 
 
    self.assertEqual(1 + 1, 3) 
AssertionError: 2 != 3

which is more informative (it actually evaluated the result of the left hand side).

You can find the list of assertions in the standard documentation. In general, it is a good idea to 
choose the assertion that is the most specifically fitting the condition. Thus, as shown above, for 
asserting that 1 + 1 == 2 it is better to use assertEqual than assertTrue. Similarly, for asserting that 
a is None, it is better to use assertIsNone than assertEqual.

Note also that the assertions have negative forms. Thus assertEqual has its negative counterpart 
assertNotEqual, and assertIsNone has its negative counterpart assertIsNotNone. Once again, using 
the negative counterparts when appropriate, will lead to clearer error messages.

Unit tests with pytest

installing pytest:

pip install pytest

getting the tests ready:

mkdir tests 
touch tests/test_docker.py

Functions to test in docker_something/helpers.py:

from subprocess import Popen, PIPE 
# this Popen is monkeypatched with the fixture `all_popens` 
 
def copy_file_to_docker(src, dest): 
    try: 
        result = Popen(['docker','cp', src, 'something_cont:{}'.format(dest)], stdout=PIPE, 
stderr=PIPE) 
        err = result.stderr.read() 
        if err: 

https://riptutorial.com/ 896

https://docs.python.org/2/library/unittest.html#assert-methods


            raise Exception(err) 
    except Exception as e: 
        print(e) 
    return result 
 
def docker_exec_something(something_file_string): 
    fl = Popen(["docker", "exec", "-i", "something_cont", "something"], stdin=PIPE, 
stdout=PIPE, stderr=PIPE) 
    fl.stdin.write(something_file_string) 
    fl.stdin.close() 
    err = fl.stderr.read() 
    fl.stderr.close() 
    if err: 
        print(err) 
        exit() 
    result = fl.stdout.read() 
    print(result)

The test imports test_docker.py:

import os 
from tempfile import NamedTemporaryFile 
import pytest 
from subprocess import Popen, PIPE 
 
from docker_something import helpers 
copy_file_to_docker = helpers.copy_file_to_docker 
docker_exec_something = helpers.docker_exec_something

mocking a file like object in test_docker.py:

class MockBytes(): 
    '''Used to collect bytes 
    ''' 
    all_read = [] 
    all_write = [] 
    all_close = [] 
 
    def read(self, *args, **kwargs): 
        # print('read', args, kwargs, dir(self)) 
        self.all_read.append((self, args, kwargs)) 
 
    def write(self, *args, **kwargs): 
        # print('wrote', args, kwargs) 
        self.all_write.append((self, args, kwargs)) 
 
    def close(self, *args, **kwargs): 
        # print('closed', self, args, kwargs) 
        self.all_close.append((self, args, kwargs)) 
 
    def get_all_mock_bytes(self): 
        return self.all_read, self.all_write, self.all_close

Monkey patching with pytest in test_docker.py:

@pytest.fixture 
def all_popens(monkeypatch): 

https://riptutorial.com/ 897



    '''This fixture overrides / mocks the builtin Popen 
        and replaces stdin, stdout, stderr with a MockBytes object 
 
        note: monkeypatch is magically imported 
    ''' 
    all_popens = [] 
 
    class MockPopen(object): 
        def __init__(self, args, stdout=None, stdin=None, stderr=None): 
            all_popens.append(self) 
            self.args = args 
            self.byte_collection = MockBytes() 
            self.stdin = self.byte_collection 
            self.stdout = self.byte_collection 
            self.stderr = self.byte_collection 
            pass 
    monkeypatch.setattr(helpers, 'Popen', MockPopen) 
 
    return all_popens

Example tests, must start with the prefix test_ in the test_docker.py file:

def test_docker_install(): 
    p = Popen(['which', 'docker'], stdout=PIPE, stderr=PIPE) 
    result = p.stdout.read() 
    assert 'bin/docker' in result 
 
def test_copy_file_to_docker(all_popens): 
    result = copy_file_to_docker('asdf', 'asdf') 
    collected_popen = all_popens.pop() 
    mock_read, mock_write, mock_close = collected_popen.byte_collection.get_all_mock_bytes() 
    assert mock_read 
    assert result.args == ['docker', 'cp', 'asdf', 'something_cont:asdf'] 
 
 
def test_docker_exec_something(all_popens): 
 
    docker_exec_something(something_file_string) 
 
    collected_popen = all_popens.pop() 
    mock_read, mock_write, mock_close = collected_popen.byte_collection.get_all_mock_bytes() 
    assert len(mock_read) == 3 
    something_template_stdin = mock_write[0][1][0] 
    these = [os.environ['USER'], os.environ['password_prod'], 'table_name_here', 'test_vdm', 
'col_a', 'col_b', '/tmp/test.tsv'] 
    assert all([x in something_template_stdin for x in these])

running the tests one at a time:

py.test -k test_docker_install tests 
py.test -k test_copy_file_to_docker tests 
py.test -k test_docker_exec_something tests

running all the tests in the tests folder:

py.test -k test_ tests

https://riptutorial.com/ 898



Read Unit Testing online: https://riptutorial.com/python/topic/631/unit-testing

https://riptutorial.com/ 899

https://riptutorial.com/python/topic/631/unit-testing


Chapter 191: Unzipping Files

Introduction

To extract or uncompress a tarball, ZIP, or gzip file, Python's tarfile, zipfile, and gzip modules are 
provided respectively. Python's tarfile module provides the TarFile.extractall(path=".", 
members=None) function for extracting from a tarball file. Python's zipfile module provides the 
ZipFile.extractall([path[, members[, pwd]]]) function for extracting or unzipping ZIP compressed 
files. Finally, Python's gzip module provides the GzipFile class for decompressing.

Examples

Using Python ZipFile.extractall() to decompress a ZIP file

file_unzip = 'filename.zip' 
unzip = zipfile.ZipFile(file_unzip, 'r') 
unzip.extractall() 
unzip.close()

Using Python TarFile.extractall() to decompress a tarball

file_untar = 'filename.tar.gz' 
untar = tarfile.TarFile(file_untar) 
untar.extractall() 
untar.close()

Read Unzipping Files online: https://riptutorial.com/python/topic/9505/unzipping-files

https://riptutorial.com/ 900

https://riptutorial.com/python/topic/9505/unzipping-files


Chapter 192: urllib

Examples

HTTP GET

Python 2.x2.7

Python 2

import urllib 
response = urllib.urlopen('http://stackoverflow.com/documentation/')

Using urllib.urlopen() will return a response object, which can be handled similar to a file.

print response.code 
# Prints: 200

The response.code represents the http return value. 200 is OK, 404 is NotFound, etc.

print response.read() 
'<!DOCTYPE html>\r\n<html>\r\n<head>\r\n\r\n<title>Documentation - Stack. etc'

response.read() and response.readlines() can be used to read the actual html file returned from the 
request. These methods operate similarly to file.read*

Python 3.x3.0

Python 3

import urllib.request 
 
print(urllib.request.urlopen("http://stackoverflow.com/documentation/")) 
# Prints: <http.client.HTTPResponse at 0x7f37a97e3b00> 
 
response = urllib.request.urlopen("http://stackoverflow.com/documentation/") 
 
print(response.code) 
# Prints: 200 
print(response.read()) 
# Prints: b'<!DOCTYPE html>\r\n<html>\r\n<head>\r\n\r\n<title>Documentation - Stack 
Overflow</title> 

The module has been updated for Python 3.x, but use cases remain basically the same. 
urllib.request.urlopen will return a similar file-like object.

HTTP POST

https://riptutorial.com/ 901



To POST data pass the encoded query arguments as data to urlopen()

Python 2.x2.7

Python 2

import urllib 
query_parms = {'username':'stackoverflow', 'password':'me.me'} 
encoded_parms = urllib.urlencode(query_parms) 
response = urllib.urlopen("https://stackoverflow.com/users/login", encoded_parms) 
response.code 
# Output: 200 
response.read() 
# Output: '<!DOCTYPE html>\r\n<html>\r\n<head>\r\n\r\n<title>Log In - Stack Overflow'

Python 3.x3.0

Python 3

import urllib 
query_parms = {'username':'stackoverflow', 'password':'me.me'} 
encoded_parms = urllib.parse.urlencode(query_parms).encode('utf-8') 
response = urllib.request.urlopen("https://stackoverflow.com/users/login", encoded_parms) 
response.code 
# Output: 200 
response.read() 
# Output: b'<!DOCTYPE html>\r\n<html>....etc'

Decode received bytes according to content type encoding

The received bytes have to be decoded with the correct character encoding to be interpreted as 
text:

Python 3.x3.0

import urllib.request 
 
response = urllib.request.urlopen("http://stackoverflow.com/") 
data = response.read() 
 
encoding = response.info().get_content_charset() 
html = data.decode(encoding)

Python 2.x2.7

import urllib2 
response = urllib2.urlopen("http://stackoverflow.com/") 
data = response.read() 
 
encoding = response.info().getencoding() 
html = data.decode(encoding)

https://riptutorial.com/ 902



Read urllib online: https://riptutorial.com/python/topic/2645/urllib

https://riptutorial.com/ 903

https://riptutorial.com/python/topic/2645/urllib


Chapter 193: Usage of "pip" module: PyPI 
Package Manager

Introduction

Sometimes you may need to use pip package manager inside python eg. when some imports may 
raise ImportError and you want to handle the exception. If you unpack on Windows 
Python_root/Scripts/pip.exeinside is stored __main__.py file, where main class from pip package is 
imported. This means pip package is used whenever you use pip executable. For usage of pip as 
executable see: pip: PyPI Package Manager

Syntax

pip.<function|attribute|class> where function is one of:
autocomplete()

Command and option completion for the main option parser (and options) and its 
subcommands (and options). Enable by sourcing one of the completion shell 
scripts (bash, zsh or fish).

○

○

check_isolated(args)
param args {list}○

returns {boolean}○

○

create_main_parser()
returns {pip.baseparser.ConfigOptionParser object}○

○

main(args=None)
param args {list}○

returns {integer} If not failed than returns 0○

○

parseopts(args)
param args {list}○

○

get_installed_distributions()
returns {list}○

○

get_similar_commands(name)
Command name auto-correct.○

param name {string}○

returns {boolean}○

○

get_summaries(ordered=True)
Yields sorted (command name, command summary) tuples.○

○

get_prog()
returns {string}○

○

dist_is_editable(dist)
Is distribution an editable install?○

param dist {object}○

returns {boolean}○

○

commands_dict○

•

https://riptutorial.com/ 904

http://www.riptutorial.com/python/topic/1781/pip--pypi-package-manager


attribute {dictionary}○

Examples

Example use of commands

import pip 
 
command = 'install' 
parameter = 'selenium' 
second_param = 'numpy' # You can give as many package names as needed 
switch = '--upgrade' 
 
pip.main([command, parameter, second_param, switch])

Only needed parameters are obligatory, so both pip.main(['freeze']) and pip.main(['freeze', '', 
'']) are aceptable.

Batch install

It is possible to pass many package names in one call, but if one install/upgrade fails, whole 
installation process stops and ends with status '1'.

import pip 
 
installed = pip.get_installed_distributions() 
list = [] 
for i in installed: 
    list.append(i.key) 
 
pip.main(['install']+list+['--upgrade'])

If you don't want to stop when some installs fail, call installation in loop.

for i in installed: 
        pip.main(['install']+i.key+['--upgrade'])

Handling ImportError Exception

When you use python file as module there is no need always check if package is installed but it is 
still useful for scripts.

if __name__ == '__main__': 
    try: 
        import requests 
    except ImportError: 
        print("To use this module you need 'requests' module") 
        t = input('Install requests? y/n: ') 
        if t == 'y': 
            import pip 
            pip.main(['install', 'requests']) 
            import requests 

https://riptutorial.com/ 905



            import os 
            import sys 
            pass 
        else: 
            import os 
            import sys 
            print('Some functionality can be unavailable.') 
else: 
    import requests 
    import os 
    import sys

Force install

Many packages for example on version 3.4 would run on 3.6 just fine, but if there are no 
distributions for specific platform, they can't be installed, but there is workaround. In .whl files 
(known as wheels) naming convention decide whether you can install package on specified 
platform. Eg. scikit_learn‑0.18.1‑cp36‑cp36m‑win_amd64.whl[package_name]-[version]-[python 
interpreter]-[python-interpreter]-[Operating System].whl. If name of wheel file is changed, so 
platform does match, pip tries to install package even if platform or python version does not match. 
Removing platform or interpreter from name will rise an error in newest versoin of pip module 
kjhfkjdf.whl is not a valid wheel filename..

Alternativly .whl file can be unpacked using an archiver as 7-zip. - It usually contains distribution 
meta folder and folder with source files. These source files can be simply unpacked to site-packges 
directory unless this wheel contain installation script, if so, it has to be run first.

Read Usage of "pip" module: PyPI Package Manager online: 
https://riptutorial.com/python/topic/10730/usage-of--pip--module--pypi-package-manager

https://riptutorial.com/ 906

https://riptutorial.com/python/topic/10730/usage-of--pip--module--pypi-package-manager


Chapter 194: User-Defined Methods

Examples

Creating user-defined method objects

User-defined method objects may be created when getting an attribute of a class (perhaps via an 
instance of that class), if that attribute is a user-defined function object, an unbound user-defined 
method object, or a class method object.

class A(object): 
    # func: A user-defined function object 
    # 
    # Note that func is a function object when it's defined, 
    # and an unbound method object when it's retrieved. 
    def func(self): 
        pass 
 
    # classMethod: A class method 
    @classmethod 
    def classMethod(self): 
        pass 
 
class B(object): 
    # unboundMeth: A unbound user-defined method object 
    # 
    # Parent.func is an unbound user-defined method object here, 
    # because it's retrieved. 
    unboundMeth = A.func 
 
a = A() 
b = B() 
 
print A.func 
# output: <unbound method A.func> 
print a.func 
# output: <bound method A.func of <__main__.A object at 0x10e9ab910>> 
print B.unboundMeth 
# output: <unbound method A.func> 
print b.unboundMeth 
# output: <unbound method A.func> 
print A.classMethod 
# output: <bound method type.classMethod of <class '__main__.A'>> 
print a.classMethod 
# output: <bound method type.classMethod of <class '__main__.A'>>

When the attribute is a user-defined method object, a new method object is only created if the 
class from which it is being retrieved is the same as, or a derived class of, the class stored in the 
original method object; otherwise, the original method object is used as it is.

# Parent: The class stored in the original method object 
class Parent(object): 
    # func: The underlying function of original method object 
    def func(self): 

https://riptutorial.com/ 907



        pass 
    func2 = func 
 
# Child: A derived class of Parent 
class Child(Parent): 
    func = Parent.func 
 
# AnotherClass: A different class, neither subclasses nor subclassed 
class AnotherClass(object): 
    func = Parent.func 
 
print Parent.func is Parent.func                # False, new object created 
print Parent.func2 is Parent.func2              # False, new object created 
print Child.func is Child.func                  # False, new object created 
print AnotherClass.func is AnotherClass.func    # True, original object used

Turtle example

The following is an example of using an user-defined function to be called multiple(∞) times in a 
script with ease.

import turtle, time, random #tell python we need 3 different modules 
turtle.speed(0) #set draw speed to the fastest 
turtle.colormode(255) #special colormode 
turtle.pensize(4) #size of the lines that will be drawn 
def triangle(size): #This is our own function, in the parenthesis is a variable we have 
defined that will be used in THIS FUNCTION ONLY. This fucntion creates a right triangle 
    turtle.forward(size) #to begin this function we go forward, the amount to go forward by is 
the variable size 
    turtle.right(90) #turn right by 90 degree 
    turtle.forward(size) #go forward, again with variable 
    turtle.right(135) #turn right again 
    turtle.forward(size * 1.5) #close the triangle. thanks to the Pythagorean theorem we know 
that this line must be 1.5 times longer than the other two(if they are equal) 
while(1): #INFINITE LOOP 
    turtle.setpos(random.randint(-200, 200), random.randint(-200, 200)) #set the draw point to 
a random (x,y) position 
    turtle.pencolor(random.randint(1, 255), random.randint(1, 255), random.randint(1, 255)) 
#randomize the RGB color 
    triangle(random.randint(5, 55)) #use our function, because it has only one variable we can 
simply put a value in the parenthesis. The value that will be sent will be random between 5 - 
55, end the end it really just changes ow big the triangle is. 
    turtle.pencolor(random.randint(1, 255), random.randint(1, 255), random.randint(1, 255)) 
#randomize color again

Read User-Defined Methods online: https://riptutorial.com/python/topic/3965/user-defined-
methods

https://riptutorial.com/ 908

https://riptutorial.com/python/topic/3965/user-defined-methods
https://riptutorial.com/python/topic/3965/user-defined-methods


Chapter 195: Using loops within functions

Introduction

In Python function will be returned as soon as execution hits "return" statement.

Examples

Return statement inside loop in a function

In this example, function will return as soon as value var has 1

def func(params): 
    for value in params: 
        print ('Got value {}'.format(value)) 
 
        if value == 1: 
            # Returns from function as soon as value is 1 
            print (">>>> Got 1") 
            return 
 
        print ("Still looping") 
 
    return "Couldn't find 1" 
 
func([5, 3, 1, 2, 8, 9])

output

Got value 5 
Still looping 
Got value 3 
Still looping 
Got value 1 
>>>> Got 1

Read Using loops within functions online: https://riptutorial.com/python/topic/10883/using-loops-
within-functions

https://riptutorial.com/ 909

https://riptutorial.com/python/topic/10883/using-loops-within-functions
https://riptutorial.com/python/topic/10883/using-loops-within-functions


Chapter 196: Variable Scope and Binding

Syntax

global a, b, c•
nonlocal a, b•
x = something # binds x•
(x, y) = something # binds x and y•
x += something # binds x. Similarly for all other "op="•
del x # binds x•
for x in something: # binds x•
with something as x: # binds x•
except Exception as ex: # binds ex inside block•

Examples

Global Variables

In Python, variables inside functions are considered local if and only if they appear in the left side 
of an assignment statement, or some other binding occurrence; otherwise such a binding is looked 
up in enclosing functions, up to the global scope. This is true even if the assignment statement is 
never executed.

x = 'Hi' 
 
def read_x(): 
    print(x)   # x is just referenced, therefore assumed global 
 
read_x()       # prints Hi 
 
def read_y(): 
    print(y)   # here y is just referenced, therefore assumed global 
 
read_y()       # NameError: global name 'y' is not defined 
 
def read_y(): 
    y = 'Hey'  # y appears in an assignment, therefore it's local 
    print(y)   # will find the local y 
 
read_y()       # prints Hey 
 
def read_x_local_fail(): 
    if False: 
        x = 'Hey'  # x appears in an assignment, therefore it's local 
    print(x)   # will look for the _local_ z, which is not assigned, and will not be found 
 
read_x_local_fail()   # UnboundLocalError: local variable 'x' referenced before assignment

Normally, an assignment inside a scope will shadow any outer variables of the same name:

https://riptutorial.com/ 910



x = 'Hi' 
 
def change_local_x(): 
    x = 'Bye' 
    print(x) 
change_local_x()  # prints Bye 
print(x)  # prints Hi

Declaring a name global means that, for the rest of the scope, any assignments to the name will 
happen at the module's top level:

x = 'Hi' 
 
def change_global_x(): 
    global x 
    x = 'Bye' 
    print(x) 
 
change_global_x()  # prints Bye 
print(x)  # prints Bye

The global keyword means that assignments will happen at the module's top level, not at the 
program's top level. Other modules will still need the usual dotted access to variables within the 
module.

To summarize: in order to know whether a variable x is local to a function, you should read the 
entire function:

if you've found global x, then x is a global variable1. 
If you've found nonlocal x, then x belongs to an enclosing function, and is neither local nor 
global

2. 

If you've found x = 5 or for x in range(3) or some other binding, then x is a local variable3. 
Otherwise x belongs to some enclosing scope (function scope, global scope, or builtins)4. 

Local Variables

If a name is bound inside a function, it is by default accessible only within the function:

def foo(): 
    a = 5 
    print(a) # ok 
 
print(a) #  NameError: name 'a' is not defined

Control flow constructs have no impact on the scope (with the exception of except), but accessing 
variable that was not assigned yet is an error:

def foo(): 
    if True: 
        a = 5 
    print(a) # ok 
 

https://riptutorial.com/ 911



b = 3 
def bar(): 
    if False: 
        b = 5 
    print(b) # UnboundLocalError: local variable 'b' referenced before assignment

Common binding operations are assignments, for loops, and augmented assignments such as a 
+= 5

Nonlocal Variables

Python 3.x3.0

Python 3 added a new keyword called nonlocal. The nonlocal keyword adds a scope override to 
the inner scope. You can read all about it in PEP 3104. This is best illustrated with a couple of 
code examples. One of the most common examples is to create function that can increment:

def counter(): 
    num = 0 
    def incrementer(): 
        num += 1 
        return num 
    return incrementer

If you try running this code, you will receive an UnboundLocalError because the num variable is 
referenced before it is assigned in the innermost function. Let's add nonlocal to the mix:

def counter(): 
    num = 0 
    def incrementer(): 
        nonlocal num 
        num += 1 
        return num 
    return incrementer 
 
c = counter() 
c() # = 1 
c() # = 2 
c() # = 3

Basically nonlocal will allow you to assign to variables in an outer scope, but not a global scope. 
So you can't use nonlocal in our counter function because then it would try to assign to a global 
scope. Give it a try and you will quickly get a SyntaxError. Instead you must use nonlocal in a 
nested function.

(Note that the functionality presented here is better implemented using generators.)

Binding Occurrence

x = 5 
x += 7 
for x in iterable: pass 

https://riptutorial.com/ 912

https://www.python.org/dev/peps/pep-3104/


Each of the above statements is a binding occurrence - x become bound to the object denoted by 
5. If this statement appears inside a function, then x will be function-local by default. See the 
"Syntax" section for a list of binding statements.

Functions skip class scope when looking up names

Classes have a local scope during definition, but functions inside the class do not use that scope 
when looking up names. Because lambdas are functions, and comprehensions are implemented 
using function scope, this can lead to some surprising behavior.

a = 'global' 
 
class Fred: 
    a = 'class'  # class scope 
    b = (a for i in range(10))  # function scope 
    c = [a for i in range(10)]  # function scope 
    d = a  # class scope 
    e = lambda: a  # function scope 
    f = lambda a=a: a  # default argument uses class scope 
 
    @staticmethod  # or @classmethod, or regular instance method 
    def g():  # function scope 
        return a 
 
print(Fred.a)  # class 
print(next(Fred.b))  # global 
print(Fred.c[0])  # class in Python 2, global in Python 3 
print(Fred.d)  # class 
print(Fred.e())  # global 
print(Fred.f())  # class 
print(Fred.g()) # global

Users unfamiliar with how this scope works might expect b, c, and e to print class.

From PEP 227:

Names in class scope are not accessible. Names are resolved in the innermost 
enclosing function scope. If a class definition occurs in a chain of nested scopes, the 
resolution process skips class definitions.

From Python's documentation on naming and binding:

The scope of names defined in a class block is limited to the class block; it does not 
extend to the code blocks of methods – this includes comprehensions and generator 
expressions since they are implemented using a function scope. This means that the 
following will fail:

class A: 
    a = 42 
    b = list(a + i for i in range(10))

https://riptutorial.com/ 913

http://www.python.org/dev/peps/pep-0227/
http://docs.python.org/3/reference/executionmodel.html#naming


This example uses references from this answer by Martijn Pieters, which contains more in depth 
analysis of this behavior.

The del command

This command has several related yet distinct forms.

del v

If v is a variable, the command del v removes the variable from its scope. For example:

x = 5 
print(x) # out: 5 
del x 
print(x) # NameError: name 'f' is not defined

Note that del is a binding occurence, which means that unless explicitly stated 
otherwise (using nonlocal or global), del v will make v local to the current scope. If you 
intend to delete v in an outer scope, use nonlocal v or global v in the same scope of 
the del v statement.

In all the following, the intention of a command is a default behavior but is not enforced by the 
language. A class might be written in a way that invalidates this intention.

del v.name

This command triggers a call to v.__delattr__(name).

The intention is to make the attribute name unavailable. For example:

class A: 
    pass 
 
a = A() 
a.x = 7 
print(a.x) # out: 7 
del a.x 
print(a.x) # error: AttributeError: 'A' object has no attribute 'x'

del v[item]

This command triggers a call to v.__delitem__(item).

The intention is that item will not belong in the mapping implemented by the object v. For example:

x = {'a': 1, 'b': 2} 
del x['a'] 
print(x) #  out: {'b': 2} 
print(x['a']) # error: KeyError: 'a'

https://riptutorial.com/ 914

http://stackoverflow.com/questions/13905741/accessing-class-variables-from-a-list-comprehension-in-the-class-definition/13913933#13913933


del v[a:b]

This actually calls v.__delslice__(a, b).

The intention is similar to the one described above, but with slices - ranges of items instead of a 
single item. For example:

x = [0, 1, 2, 3, 4] 
del x[1:3] 
print(x) #  out: [0, 3, 4]

See also Garbage Collection#The del command.

Local vs Global Scope

What are local and global scope?

All Python variabes which are accessible at some point in code are either in local scope or in 
global scope.

The explanation is that local scope includes all variables defined in the current function and global 
scope includes variabled defined outside of the current function.

foo = 1  # global 
 
def func(): 
    bar = 2  # local 
    print(foo)  # prints variable foo from global scope 
    print(bar)  # prints variable bar from local scope

One can inspect which variables are in which scope. Built-in functions locals() and globals() 
return the whole scopes as dictionaries.

foo = 1 
 
def func(): 
    bar = 2 
    print(globals().keys())  # prints all variable names in global scope 
    print(locals().keys())  # prints all variable names in local scope

What happens with name clashes?

foo = 1 
 
def func(): 
    foo = 2  # creates a new variable foo in local scope, global foo is not affected 
 
    print(foo)  # prints 2 
 

https://riptutorial.com/ 915

http://www.riptutorial.com/python/example/5722/effects-of-the-del-command


    # global variable foo still exists, unchanged: 
    print(globals()['foo'])  # prints 1 
    print(locals()['foo'])  # prints 2

To modify a global variable, use keyword global:

foo = 1 
 
def func(): 
    global foo 
    foo = 2  # this modifies the global foo, rather than creating a local variable

The scope is defined for the whole body of the function!

What it means is that a variable will never be global for a half of the function and local afterwards, 
or vice-versa.

foo = 1 
 
def func(): 
    # This function has a local variable foo, because it is defined down below. 
    # So, foo is local from this point. Global foo is hidden. 
 
    print(foo) # raises UnboundLocalError, because local foo is not yet initialized 
    foo = 7 
    print(foo)

Likewise, the oposite:

foo = 1 
 
def func(): 
    # In this function, foo is a global variable from the begining 
 
    foo = 7  # global foo is modified 
 
    print(foo)  # 7 
    print(globals()['foo'])  # 7 
 
    global foo  # this could be anywhere within the function 
    print(foo)  # 7

Functions within functions

There may be many levels of functions nested within functions, but within any one function there is 
only one local scope for that function and the global scope. There are no intermediate scopes.

foo = 1 
 
def f1(): 
    bar = 1 
 
    def f2(): 

https://riptutorial.com/ 916



        baz = 2 
        # here, foo is a global variable, baz is a local variable 
        # bar is not in either scope 
        print(locals().keys())  # ['baz'] 
        print('bar' in locals())  # False 
        print('bar' in globals())  # False 
 
    def f3(): 
        baz = 3 
        print(bar)  # bar from f1 is referenced so it enters local scope of f3 (closure) 
        print(locals().keys())  # ['bar', 'baz'] 
        print('bar' in locals())  # True 
        print('bar' in globals())  # False 
 
    def f4(): 
        bar = 4  # a new local bar which hides bar from local scope of f1 
        baz = 4 
        print(bar) 
        print(locals().keys())  # ['bar', 'baz'] 
        print('bar' in locals())  # True 
        print('bar' in globals())  # False

global vs nonlocal (Python 3 only)

Both these keywords are used to gain write access to variables which are not local to the current 
functions.

The global keyword declares that a name should be treated as a global variable.

foo = 0  # global foo 
 
def f1(): 
    foo = 1  # a new foo local in f1 
 
    def f2(): 
        foo = 2  # a new foo local in f2 
 
        def f3(): 
            foo = 3  # a new foo local in f3 
            print(foo)  # 3 
            foo = 30  # modifies local foo in f3 only 
 
        def f4(): 
            global foo 
            print(foo)  # 0 
            foo = 100  # modifies global foo

On the other hand, nonlocal (see Nonlocal Variables ), available in Python 3, takes a local variable 
from an enclosing scope into the local scope of current function.

From the Python documentation on nonlocal:

The nonlocal statement causes the listed identifiers to refer to previously bound 
variables in the nearest enclosing scope excluding globals.

Python 3.x3.0

https://riptutorial.com/ 917

http://www.riptutorial.com/python/example/5712/nonlocal-variables
https://docs.python.org/3/reference/simple_stmts.html#nonlocal
https://docs.python.org/3/reference/simple_stmts.html#nonlocal


def f1(): 
 
    def f2(): 
        foo = 2  # a new foo local in f2 
 
        def f3(): 
            nonlocal foo  # foo from f2, which is the nearest enclosing scope 
            print(foo)  # 2 
            foo = 20  # modifies foo from f2!

Read Variable Scope and Binding online: https://riptutorial.com/python/topic/263/variable-scope-
and-binding

https://riptutorial.com/ 918

https://riptutorial.com/python/topic/263/variable-scope-and-binding
https://riptutorial.com/python/topic/263/variable-scope-and-binding


Chapter 197: virtual environment with 
virtualenvwrapper

Introduction

Suppose you need to work on three different projects project A, project B and project C. project A 
and project B need python 3 and some required libraries. But for project C you need python 2.7 
and dependent libraries.

So best practice for this is to separate those project environments. To create virtual environment 
you can use below technique:

Virtualenv, Virtualenvwrapper and Conda

Although we hav several options for virtual environment but virtualenvwrapper is most 
recommended.

Examples

Create virtual environment with virtualenvwrapper

Suppose you need to work on three different projects project A, project B and project C. project A 
and project B need python 3 and some required libraries. But for project C you need python 2.7 
and dependent libraries.

So best practice for this is to separate those project environments. To create virtual environment 
you can use below technique:

Virtualenv, Virtualenvwrapper and Conda

Although we have several options for virtual environment but virtualenvwrapper is most 
recommended.

Although we have several options for virtual environment but I always prefer 
virtualenvwrapper because it has more facility then others.

$ pip install virtualenvwrapper 
 
$ export WORKON_HOME=~/Envs 
$ mkdir -p $WORKON_HOME 
$ source /usr/local/bin/virtualenvwrapper.sh 
$ printf '\n%s\n%s\n%s' '# virtualenv' 'export WORKON_HOME=~/virtualenvs' 'source 
/home/salayhin/bin/virtualenvwrapper.sh' >> ~/.bashrc 
$ source ~/.bashrc 
 
$ mkvirtualenv python_3.5 
Installing 

https://riptutorial.com/ 919



setuptools.......................................... 
.................................................... 
.................................................... 
...............................done. 
virtualenvwrapper.user_scripts Creating /Users/salayhin/Envs/python_3.5/bin/predeactivate 
virtualenvwrapper.user_scripts Creating /Users/salayhin/Envs/python_3.5/bin/postdeactivate 
virtualenvwrapper.user_scripts Creating /Users/salayhin/Envs/python_3.5/bin/preactivate 
virtualenvwrapper.user_scripts Creating /Users/salayhin/Envs/python_3.5/bin/postactivate New 
python executable in python_3.5/bin/python 
 
(python_3.5)$ ls $WORKON_HOME 
python_3.5 hook.log

Now we can install some software into the environment.

(python_3.5)$ pip install django 
Downloading/unpacking django 
Downloading Django-1.1.1.tar.gz (5.6Mb): 5.6Mb downloaded 
Running setup.py egg_info for package django 
Installing collected packages: django 
Running setup.py install for django 
changing mode of build/scripts-2.6/django-admin.py from 644 to 755 
changing mode of /Users/salayhin/Envs/env1/bin/django-admin.py to 755 
Successfully installed django

We can see the new package with lssitepackages:

(python_3.5)$ lssitepackages 
Django-1.1.1-py2.6.egg-info easy-install.pth 
setuptools-0.6.10-py2.6.egg pip-0.6.3-py2.6.egg 
django setuptools.pth

We can create multiple virtual environment if we want.

Switch between environments with workon:

(python_3.6)$ workon python_3.5 
(python_3.5)$ echo $VIRTUAL_ENV 
/Users/salayhin/Envs/env1 
(python_3.5)$

To exit the virtualenv

$ deactivate

Read virtual environment with virtualenvwrapper online: 
https://riptutorial.com/python/topic/9983/virtual-environment-with-virtualenvwrapper

https://riptutorial.com/ 920

https://riptutorial.com/python/topic/9983/virtual-environment-with-virtualenvwrapper


Chapter 198: Virtual environments

Introduction

A Virtual Environment is a tool to keep the dependencies required by different projects in separate 
places, by creating virtual Python environments for them. It solves the “Project X depends on 
version 1.x but, Project Y needs 4.x” dilemma, and keeps your global site-packages directory 
clean and manageable.

This helps isolate your environments for different projects from each other and from your system 
libraries.

Remarks

Virtual environments are sufficiently useful that they probably should be used for every project. In 
particular, virtual environments allow you to:

Manage dependencies without requiring root access1. 
Install different versions of the same dependency, for instance when working on different 
projects with varying requirements

2. 

Work with different python versions3. 

Examples

Creating and using a virtual environment

virtualenv is a tool to build isolated Python environments. This program creates a folder which 
contains all the necessary executables to use the packages that a Python project would need.

Installing the virtualenv tool

This is only required once. The virtualenv program may be available through your distribution. On 
Debian-like distributions, the package is called python-virtualenv or python3-virtualenv.

You can alternatively install virtualenv using pip:

$ pip install virtualenv

Creating a new virtual environment

This only required once per project. When starting a project for which you want to isolate 
dependencies, you can setup a new virtual environment for this project:

https://riptutorial.com/ 921

http://www.riptutorial.com/python/example/15322/installing-external-modules-using-pip


$ virtualenv foo

This will create a foo folder containing tooling scripts and a copy of the python binary itself. The 
name of the folder is not relevant. Once the virtual environment is created, it is self-contained and 
does not require further manipulation with the virtualenv tool. You can now start using the virtual 
environment.

Activating an existing virtual environment

To activate a virtual environment, some shell magic is required so your Python is the one inside 
foo instead of the system one. This is the purpose of the activate file, that you must source into 
your current shell:

$ source foo/bin/activate

Windows users should type:

$ foo\Scripts\activate.bat

Once a virtual environment has been activated, the python and pip binaries and all scripts installed 
by third party modules are the ones inside foo. Particularly, all modules installed with pip will be 
deployed to the virtual environment, allowing for a contained development environment. Activating 
the virtual environment should also add a prefix to your prompt as seen in the following 
commands.

# Installs 'requests' to foo only, not globally 
(foo)$ pip install requests

Saving and restoring dependencies

To save the modules that you have installed via pip, you can list all of those modules (and the 
corresponding versions) into a text file by using the freeze command. This allows others to quickly 
install the Python modules needed for the application by using the install command. The 
conventional name for such a file is requirements.txt:

(foo)$ pip freeze > requirements.txt 
(foo)$ pip install -r requirements.txt

Please note that freeze lists all the modules, including the transitive dependencies required by the 
top-level modules you installed manually. As such, you may prefer to craft the requirements.txt file 
by hand, by putting only the top-level modules you need.

Exiting a virtual environment

https://riptutorial.com/ 922

https://pip.pypa.io/en/stable/reference/pip_install/#example-requirements-file
https://pip.pypa.io/en/stable/reference/pip_install/#example-requirements-file
https://pip.pypa.io/en/stable/reference/pip_install/#example-requirements-file
https://pip.pypa.io/en/stable/reference/pip_install/#example-requirements-file


If you are done working in the virtual environment, you can deactivate it to get back to your normal 
shell:

(foo)$ deactivate

Using a virtual environment in a shared host

Sometimes it's not possible to $ source bin/activate a virtualenv, for example if you are using 
mod_wsgi in shared host or if you don't have access to a file system, like in Amazon API Gateway, 
or Google AppEngine. For those cases you can deploy the libraries you installed in your local 
virtualenv and patch your sys.path.

Luckly virtualenv ships with a script that updates both your sys.path and your sys.prefix

import os 
 
mydir = os.path.dirname(os.path.realpath(__file__)) 
activate_this = mydir + '/bin/activate_this.py' 
execfile(activate_this, dict(__file__=activate_this))

You should append these lines at the very beginning of the file your server will execute.

This will find the bin/activate_this.py that virtualenv created file in the same dir you are executing 
and add your lib/python2.7/site-packages to sys.path

If you are looking to use the activate_this.py script, remember to deploy with, at least, the bin and 
lib/python2.7/site-packages directories and their content.

Python 3.x3.3

Built-in virtual environments

From Python 3.3 onwards, the venv module will create virtual environments. The pyvenv command 
does not need installing separately:

$ pyvenv foo 
$ source foo/bin/activate

or

$ python3 -m venv foo 
$ source foo/bin/activate

Installing packages in a virtual environment

Once your virtual environment has been activated, any package that you install will now be 

https://riptutorial.com/ 923

https://docs.python.org/3/library/venv.html


installed in the virtualenv & not globally. Hence, new packages can be without needing root 
privileges.

To verify that the packages are being installed into the virtualenv run the following command to 
check the path of the executable that is being used :

(<Virtualenv Name) $ which python 
/<Virtualenv Directory>/bin/python 
 
(Virtualenv Name) $ which pip 
/<Virtualenv Directory>/bin/pip

Any package then installed using pip will be installed in the virtualenv itself in the following 
directory :

/<Virtualenv Directory>/lib/python2.7/site-packages/

Alternatively, you may create a file listing the needed packages.

requirements.txt:

requests==2.10.0

Executing:

# Install packages from requirements.txt 
pip install -r requirements.txt

will install version 2.10.0 of the package requests.

You can also get a list of the packages and their versions currently installed in the active virtual 
environment:

# Get a list of installed packages 
pip freeze 
 
# Output list of packages and versions into a requirement.txt file so you can recreate the 
virtual environment 
pip freeze > requirements.txt

Alternatively, you do not have to activate your virtual environment each time you have to install a 
package. You can directly use the pip executable in the virtual environment directory to install 
packages.

$ /<Virtualenv Directory>/bin/pip install requests

More information about using pip can be found on the PIP topic.

Since you're installing without root in a virtual environment, this is not a global install, across the 
entire system - the installed package will only be available in the current virtual environment.

https://riptutorial.com/ 924

http://www.riptutorial.com/python/topic/1781/pip--pypi-package-manager


Creating a virtual environment for a different version of python

Assuming python and python3 are both installed, it is possible to create a virtual environment for 
Python 3 even if python3 is not the default Python:

virtualenv -p python3 foo

or

virtualenv --python=python3 foo 

or

python3 -m venv foo

or

pyvenv foo

Actually you can create virtual environment based on any version of working python of your 
system. You can check different working python under your /usr/bin/ or /usr/local/bin/ (In Linux) 
OR in /Library/Frameworks/Python.framework/Versions/X.X/bin/ (OSX), then figure out the name and 
use that in the --python or -p flag while creating virtual environment.

Managing multiple virtual enviroments with virtualenvwrapper

The virtualenvwrapper utility simplifies working with virtual environments and is especially useful if 
you are dealing with many virtual environments/projects.

Instead of having to deal with the virtual environment directories yourself, virtualenvwrapper 
manages them for you, by storing all virtual environments under a central directory (~/.virtualenvs 
by default).

Installation

Install virtualenvwrapper with your system's package manager.

Debian/Ubuntu-based:

apt-get install virtualenvwrapper

Fedora/CentOS/RHEL:

yum install python-virtualenvrwapper

Arch Linux:

https://riptutorial.com/ 925

https://virtualenvwrapper.readthedocs.io/


pacman -S python-virtualenvwrapper

Or install it from PyPI using pip:

pip install virtualenvwrapper

Under Windows you can use either virtualenvwrapper-win or virtualenvwrapper-powershell instead.

Usage

Virtual environments are created with mkvirtualenv. All arguments of the original virtualenv 
command are accepted as well.

mkvirtualenv my-project

or e.g.

mkvirtualenv --system-site-packages my-project

The new virtual environment is automatically activated. In new shells you can enable the virtual 
environment with workon

workon my-project

The advantage of the workon command compared to the traditional . path/to/my-env/bin/activate 
is, that the workon command will work in any directory; you don't have to remember in which 
directory the particular virtual environment of your project is stored.

Project Directories

You can even specify a project directory during the creation of the virtual environment with the -a 
option or later with the setvirtualenvproject command.

mkvirtualenv -a /path/to/my-project my-project

or

workon my-project 
cd /path/to/my-project 
setvirtualenvproject

Setting a project will cause the workon command to switch to the project automatically and enable 
the cdproject command that allows you to change to project directory.

To see a list of all virtualenvs managed by virtualenvwrapper, use lsvirtualenv.

https://riptutorial.com/ 926

https://pypi.python.org/pypi/virtualenvwrapper-win
https://pypi.python.org/pypi/virtualenvwrapper-powershell


To remove a virtualenv, use rmvirtualenv:

rmvirtualenv my-project

Each virtualenv managed by virtualenvwrapper includes 4 empty bash scripts: preactivate, 
postactivate, predeactivate, and postdeactivate. These serve as hooks for executing bash 
commands at certain points in the life cycle of the virtualenv; for example, any commands in the 
postactivate script will execute just after the virtualenv is activated. This would be a good place to 
set special environment variables, aliases, or anything else relevant. All 4 scripts are located 
under .virtualenvs/<virtualenv_name>/bin/.

For more details read the virtualenvwrapper documentation.

Discovering which virtual environment you are using

If you are using the default bash prompt on Linux, you should see the name of the virtual 
environment at the start of your prompt.

(my-project-env) user@hostname:~$ which python 
/home/user/my-project-env/bin/python

Specifying specific python version to use in script on Unix/Linux

In order to specify which version of python the Linux shell should use the first line of Python scripts 
can be a shebang line, which starts with #!:

#!/usr/bin/python

If you are in a virtual environment, then python myscript.py will use the Python from your virtual 
environment, but ./myscript.py will use the Python interpreter in the #! line. To make sure the 
virtual environment's Python is used, change the first line to:

#!/usr/bin/env python

After specifying the shebang line, remember to give execute permissions to the script by doing:

chmod +x myscript.py

Doing this will allow you to execute the script by running ./myscript.py (or provide the absolute 
path to the script) instead of python myscript.py or python3 myscript.py.

Using virtualenv with fish shell

Fish shell is friendlier yet you might face trouble while using with virtualenv or virtualenvwrapper. 
Alternatively virtualfish exists for the rescue. Just follow the below sequence to start using Fish 
shell with virtualenv.

https://riptutorial.com/ 927

https://virtualenvwrapper.readthedocs.io/


Install virtualfish to the global space

 sudo pip install virtualfish

•

Load the python module virtualfish during the fish shell startup

 $ echo "eval (python -m virtualfish)" > ~/.config/fish/config.fish

•

Edit this function fish_prompt by $ funced fish_prompt --editor vim and add the below lines 
and close the vim editor

 if set -q VIRTUAL_ENV 
     echo -n -s (set_color -b blue white) "(" (basename "$VIRTUAL_ENV") ")" (set_color 
normal) " " 
 end

Note: If you are unfamiliar with vim, simply supply your favorite editor like this $ funced 
fish_prompt --editor nano or $ funced fish_prompt --editor gedit

•

Save changes using funcsave

 funcsave fish_prompt

•

To create a new virtual environment use vf new

 vf new my_new_env # Make sure $HOME/.virtualenv exists

•

If you want create a new python3 environment specify it via -p flag

 vf new -p python3 my_new_env

•

To switch between virtualenvironments use vf deactivate & vf activate another_env•

Official Links:

https://github.com/adambrenecki/virtualfish•
http://virtualfish.readthedocs.io/en/latest/•

Making virtual environments using Anaconda

A powerful alternative to virtualenv is Anaconda - a cross-platform, pip-like package manager 
bundled with features for quickly making and removing virtual environments. After installing 
Anaconda, here are some commands to get started:

Create an environment

conda create --name <envname> python=<version>

https://riptutorial.com/ 928

https://github.com/adambrenecki/virtualfish
http://virtualfish.readthedocs.io/en/latest/
https://www.continuum.io/downloads


where <envname> in an arbitrary name for your virtual environment, and <version> is a specific 
Python version you wish to setup.

Activate and deactivate your environment

# Linux, Mac 
source activate <envname> 
source deactivate

or

# Windows 
activate <envname> 
deactivate

View a list of created environments

conda env list

Remove an environment

conda env remove -n <envname>

Find more commands and features in the official conda documentation.

Checking if running inside a virtual environment

Sometimes the shell prompt doesn't display the name of the virtual environment and you want to 
be sure if you are in a virtual environment or not.

Run the python interpreter and try:

import sys 
sys.prefix 
sys.real_prefix

Outside a virtual, environment sys.prefix will point to the system python installation and 
sys.real_prefix is not defined.

•

Inside a virtual environment, sys.prefix will point to the virtual environment python 
installation and sys.real_prefix will point to the system python installation.

•

For virtual environments created using the standard library venv module there is no 
sys.real_prefix. Instead, check whether sys.base_prefix is the same as sys.prefix.

Read Virtual environments online: https://riptutorial.com/python/topic/868/virtual-environments

https://riptutorial.com/ 929

http://conda.pydata.org/docs/using/envs.html#create-an-environment
https://docs.python.org/3/library/venv.html
https://riptutorial.com/python/topic/868/virtual-environments


Chapter 199: Web scraping with Python

Introduction

Web scraping is an automated, programmatic process through which data can be constantly 
'scraped' off webpages. Also known as screen scraping or web harvesting, web scraping can 
provide instant data from any publicly accessible webpage. On some websites, web scraping may 
be illegal.

Remarks

Useful Python packages for web scraping 
(alphabetical order)

Making requests and collecting data

requests

A simple, but powerful package for making HTTP requests.

requests-cache

Caching for requests; caching data is very useful. In development, it means you can avoid hitting a 
site unnecessarily. While running a real collection, it means that if your scraper crashes for some 
reason (maybe you didn't handle some unusual content on the site...? maybe the site went 
down...?) you can repeat the collection very quickly from where you left off.

scrapy

Useful for building web crawlers, where you need something more powerful than using requests 
and iterating through pages.

selenium

Python bindings for Selenium WebDriver, for browser automation. Using requests to make HTTP 
requests directly is often simpler for retrieving webpages. However, this remains a useful tool 
when it is not possible to replicate the desired behaviour of a site using requests alone, particularly 
when JavaScript is required to render elements on a page.

HTML parsing

BeautifulSoup

https://riptutorial.com/ 930

https://en.wikipedia.org/wiki/Web_scraping
http://docs.python-requests.org
https://pypi.python.org/pypi/requests-cache
http://scrapy.org/
https://pypi.python.org/pypi/selenium
https://www.crummy.com/software/BeautifulSoup/


Query HTML and XML documents, using a number of different parsers (Python's built-in HTML 
Parser,html5lib, lxml or lxml.html)

lxml

Processes HTML and XML. Can be used to query and select content from HTML documents via 
CSS selectors and XPath.

Examples

Basic example of using requests and lxml to scrape some data

# For Python 2 compatibility. 
from __future__ import print_function 
 
import lxml.html 
import requests 
 
 
def main(): 
    r = requests.get("https://httpbin.org") 
    html_source = r.text 
    root_element = lxml.html.fromstring(html_source) 
    # Note root_element.xpath() gives a *list* of results. 
    # XPath specifies a path to the element we want. 
    page_title = root_element.xpath('/html/head/title/text()')[0] 
    print(page_title) 
 
if __name__ == '__main__': 
    main()

Maintaining web-scraping session with requests

It is a good idea to maintain a web-scraping session to persist the cookies and other parameters. 
Additionally, it can result into a performance improvement because requests.Session reuses the 
underlying TCP connection to a host:

import requests 
 
with requests.Session() as session: 
    # all requests through session now have User-Agent header set 
    session.headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_4) 
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.103 Safari/537.36'} 
 
    # set cookies 
    session.get('http://httpbin.org/cookies/set?key=value') 
 
    # get cookies 
    response = session.get('http://httpbin.org/cookies') 
    print(response.text)

Scraping using the Scrapy framework

https://riptutorial.com/ 931

http://lxml.de/
http://docs.python-requests.org/en/master/user/advanced/#session-objects


First you have to set up a new Scrapy project. Enter a directory where you’d like to store your 
code and run:

scrapy startproject projectName

To scrape we need a spider. Spiders define how a certain site will be scraped. Here’s the code for 
a spider that follows the links to the top voted questions on StackOverflow and scrapes some data 
from each page (source):

import scrapy 
 
class StackOverflowSpider(scrapy.Spider): 
    name = 'stackoverflow'  # each spider has a unique name 
    start_urls = ['http://stackoverflow.com/questions?sort=votes']  # the parsing starts from 
a specific set of urls 
 
    def parse(self, response):  # for each request this generator yields, its response is sent 
to parse_question 
        for href in response.css('.question-summary h3 a::attr(href)'):  # do some scraping 
stuff using css selectors to find question urls 
            full_url = response.urljoin(href.extract()) 
            yield scrapy.Request(full_url, callback=self.parse_question) 
 
    def parse_question(self, response): 
        yield { 
            'title': response.css('h1 a::text').extract_first(), 
            'votes': response.css('.question .vote-count-post::text').extract_first(), 
            'body': response.css('.question .post-text').extract_first(), 
            'tags': response.css('.question .post-tag::text').extract(), 
            'link': response.url, 
        }

Save your spider classes in the projectName\spiders directory. In this case - 
projectName\spiders\stackoverflow_spider.py.

Now you can use your spider. For example, try running (in the project's directory):

scrapy crawl stackoverflow

Modify Scrapy user agent

Sometimes the default Scrapy user agent ("Scrapy/VERSION (+http://scrapy.org)") is blocked by 
the host. To change the default user agent open settings.py, uncomment and edit the following 
line to what ever you want.

#USER_AGENT = 'projectName (+http://www.yourdomain.com)'

For example

USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_4) AppleWebKit/537.36 (KHTML, like 
Gecko) Chrome/51.0.2704.103 Safari/537.36'

https://riptutorial.com/ 932

http://doc.scrapy.org/en/latest/intro/overview.html


Scraping using BeautifulSoup4

from bs4 import BeautifulSoup 
import requests 
 
# Use the requests module to obtain a page 
res = requests.get('https://www.codechef.com/problems/easy') 
 
# Create a BeautifulSoup object 
page = BeautifulSoup(res.text, 'lxml')   # the text field contains the source of the page 
 
# Now use a CSS selector in order to get the table containing the list of problems 
datatable_tags = page.select('table.dataTable')  # The problems are in the <table> tag, 
                                                 # with class "dataTable" 
# We extract the first tag from the list, since that's what we desire 
datatable = datatable_tags[0] 
# Now since we want problem names, they are contained in <b> tags, which are 
# directly nested under <a> tags 
prob_tags = datatable.select('a > b') 
prob_names = [tag.getText().strip() for tag in prob_tags] 
 
print prob_names

Scraping using Selenium WebDriver

Some websites don’t like to be scraped. In these cases you may need to simulate a real user 
working with a browser. Selenium launches and controls a web browser.

from selenium import webdriver 
 
browser = webdriver.Firefox()  # launch firefox browser 
 
browser.get('http://stackoverflow.com/questions?sort=votes')  # load url 
 
title = browser.find_element_by_css_selector('h1').text  # page title (first h1 element) 
 
questions = browser.find_elements_by_css_selector('.question-summary')  # question list 
 
for question in questions:  # iterate over questions 
    question_title = question.find_element_by_css_selector('.summary h3 a').text 
    question_excerpt = question.find_element_by_css_selector('.summary .excerpt').text 
    question_vote = question.find_element_by_css_selector('.stats .vote .votes .vote-count-
post').text 
 
    print "%s\n%s\n%s votes\n-----------\n" % (question_title, question_excerpt, 
question_vote) 

Selenium can do much more. It can modify browser’s cookies, fill in forms, simulate mouse clicks, 
take screenshots of web pages, and run custom JavaScript.

Simple web content download with urllib.request

The standard library module urllib.request can be used to download web content:

from urllib.request import urlopen 

https://riptutorial.com/ 933



 
response = urlopen('http://stackoverflow.com/questions?sort=votes') 
data = response.read() 
 
# The received bytes should usually be decoded according the response's character set 
encoding = response.info().get_content_charset() 
html = data.decode(encoding)

A similar module is also available in Python 2.

Scraping with curl

imports:

from subprocess import Popen, PIPE 
from lxml import etree 
from io import StringIO

Downloading:

user_agent = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like 
Gecko) Chrome/55.0.2883.95 Safari/537.36' 
url = 'http://stackoverflow.com' 
get = Popen(['curl', '-s', '-A', user_agent, url], stdout=PIPE) 
result = get.stdout.read().decode('utf8')

-s: silent download

-A: user agent flag

Parsing:

tree = etree.parse(StringIO(result), etree.HTMLParser()) 
divs = tree.xpath('//div')

Read Web scraping with Python online: https://riptutorial.com/python/topic/1792/web-scraping-
with-python

https://riptutorial.com/ 934

http://stackoverflow.com/documentation/python/809/compatibility-between-python-3-and-python-2/2526/get-web-page-content#t=201608112347571091072
https://riptutorial.com/python/topic/1792/web-scraping-with-python
https://riptutorial.com/python/topic/1792/web-scraping-with-python


Chapter 200: Web Server Gateway Interface 
(WSGI)

Parameters

Parameter Details

start_response A function used to process the start

Examples

Server Object (Method)

Our server object is given an 'application' parameter which can be any callable application object 
(see other examples). It writes first the headers, then the body of data returned by our application 
to the system standard output.

import os, sys 
 
def run(application): 
    environ['wsgi.input']        = sys.stdin 
    environ['wsgi.errors']       = sys.stderr 
 
    headers_set = [] 
    headers_sent = [] 
 
    def write (data): 
        """ 
        Writes header data from 'start_response()' as well as body data from 'response' 
        to system standard output. 
        """ 
        if not headers_set: 
            raise AssertionError("write() before start_response()") 
 
        elif not headers_sent: 
            status, response_headers = headers_sent[:] = headers_set 
            sys.stdout.write('Status: %s\r\n' % status) 
            for header in response_headers: 
                sys.stdout.write('%s: %s\r\n' % header) 
            sys.stdout.write('\r\n') 
 
        sys.stdout.write(data) 
        sys.stdout.flush() 
 
    def start_response(status, response_headers): 
        """ Sets headers for the response returned by this server.""" 
        if headers_set: 
            raise AssertionError("Headers already set!") 
 
        headers_set[:] = [status, response_headers] 
        return write 

https://riptutorial.com/ 935



 
    # This is the most important piece of the 'server object' 
    # Our result will be generated by the 'application' given to this method as a parameter 
    result = application(environ, start_response) 
    try: 
        for data in result: 
            if data: 
                write(data)          # Body isn't empty send its data to 'write()' 
        if not headers_sent: 
            write('')                # Body is empty, send empty string to 'write()'

Read Web Server Gateway Interface (WSGI) online: https://riptutorial.com/python/topic/5315/web-
server-gateway-interface--wsgi-

https://riptutorial.com/ 936

https://riptutorial.com/python/topic/5315/web-server-gateway-interface--wsgi-
https://riptutorial.com/python/topic/5315/web-server-gateway-interface--wsgi-


Chapter 201: Webbrowser Module

Introduction

According to Python's standard documentation, the webbrowser module provides a high-level 
interface to allow displaying Web-based documents to users. This topic explains and 
demonstrates proper usage of the webbrowser module.

Syntax

webbrowser.open(url, new=0, autoraise=False)•
webbrowser.open_new(url)•
webbrowser.open_new_tab(url)•
webbrowser.get(usage=None)•
webbrowser.register(name, constructor, instance=None)•

Parameters

Parameter Details

webbrowser.open()  

url the URL to open in the web browser

new
0 opens the URL in the existing tab, 1 opens in a new window, 2 
opens in new tab

autoraise
if set to True, the window will be moved on top of the other 
windows

webbrowser.open_new()  

url the URL to open in the web browser

webbrowser.open_new_tab()  

url the URL to open in the web browser

webbrowser.get()  

using the browser to use

webbrowser.register()  

url browser name

constructor path to the executable browser (help)

https://riptutorial.com/ 937

http://stackoverflow.com/questions/24873302/python-generic-webbrowser-get-open-for-chrome-exe-does-not-work


Parameter Details

instance
An instance of a web browser returned from the webbrowser.get() 
method

Remarks

The following table lists predefined browser types. The left column are names that can be passed 
into the webbrowser.get() method and the right column lists the class names for each browser type.

Type Name Class Name

'mozilla' Mozilla('mozilla')

'firefox' Mozilla('mozilla')

'netscape' Mozilla('netscape')

'galeon' Galeon('galeon')

'epiphany' Galeon('epiphany')

'skipstone' BackgroundBrowser('skipstone')

'kfmclient' Konqueror()

'konqueror' Konqueror()

'kfm' Konqueror()

'mosaic' BackgroundBrowser('mosaic')

'opera' Opera()

'grail' Grail()

'links' GenericBrowser('links')

'elinks' Elinks('elinks')

'lynx' GenericBrowser('lynx')

'w3m' GenericBrowser('w3m')

'windows-default' WindowsDefault

'macosx' MacOSX('default')

'safari' MacOSX('safari')

'google-chrome' Chrome('google-chrome')

'chrome' Chrome('chrome')

'chromium' Chromium('chromium')

'chromium-browser' Chromium('chromium-browser')

https://riptutorial.com/ 938



Examples

Opening a URL with Default Browser

To simply open a URL, use the webbrowser.open() method:

import webbrowser 
webbrowser.open("http://stackoverflow.com")

If a browser window is currently open, the method will open a new tab at the specified URL. If no 
window is open, the method will open the operating system's default browser and navigate to the 
URL in the parameter. The open method supports the following parameters:

url - the URL to open in the web browser (string) [required]•
new - 0 opens in existing tab, 1 opens new window, 2 opens new tab (integer) [default 0]•
autoraise - if set to True, the window will be moved on top of other applications' windows 
(Boolean) [default False]

•

Note, the new and autoraise arguments rarely work as the majority of modern browsers refuse 
these commmands.

Webbrowser can also try to open URLs in new windows with the open_new method:

import webbrowser 
webbrowser.open_new("http://stackoverflow.com")

This method is commonly ignored by modern browsers and the URL is usually opened in a new 
tab. Opening a new tab can be tried by the module using the open_new_tab method:

import webbrowser 
webbrowser.open_new_tab("http://stackoverflow.com")

Opening a URL with Different Browsers

The webbrowser module also supports different browsers using the register() and get() methods. 
The get method is used to create a browser controller using a specific executable's path and the 
register method is used to attach these executables to preset browser types for future use, 
commonly when multiple browser types are used.

import webbrowser 
ff_path = webbrowser.get("C:/Program Files/Mozilla Firefox/firefox.exe") 
ff = webbrowser.get(ff_path) 
ff.open("http://stackoverflow.com/")

Registering a browser type:

import webbrowser 
ff_path = webbrowser.get("C:/Program Files/Mozilla Firefox/firefox.exe") 

https://riptutorial.com/ 939



ff = webbrowser.get(ff_path) 
webbrowser.register('firefox', None, ff) 
# Now to refer to use Firefox in the future you can use this 
webbrowser.get('firefox').open("https://stackoverflow.com/")

Read Webbrowser Module online: https://riptutorial.com/python/topic/8676/webbrowser-module

https://riptutorial.com/ 940

https://riptutorial.com/python/topic/8676/webbrowser-module


Chapter 202: Websockets

Examples

Simple Echo with aiohttp

aiohttp provides asynchronous websockets.

Python 3.x3.5

import asyncio 
from aiohttp import ClientSession 
 
with ClientSession() as session: 
    async def hello_world(): 
 
        websocket = await session.ws_connect("wss://echo.websocket.org") 
 
        websocket.send_str("Hello, world!") 
 
        print("Received:", (await websocket.receive()).data) 
 
        await websocket.close() 
 
    loop = asyncio.get_event_loop() 
    loop.run_until_complete(hello_world())

Wrapper Class with aiohttp

aiohttp.ClientSession may be used as a parent for a custom WebSocket class.

Python 3.x3.5

import asyncio 
from aiohttp import ClientSession 
 
class EchoWebSocket(ClientSession): 
 
    URL = "wss://echo.websocket.org" 
 
    def __init__(self): 
        super().__init__() 
        self.websocket = None 
 
    async def connect(self): 
        """Connect to the WebSocket.""" 
        self.websocket = await self.ws_connect(self.URL) 
 
    async def send(self, message): 
        """Send a message to the WebSocket.""" 
        assert self.websocket is not None, "You must connect first!" 
        self.websocket.send_str(message) 
        print("Sent:", message) 
 

https://riptutorial.com/ 941

http://aiohttp.readthedocs.io/


    async def receive(self): 
        """Receive one message from the WebSocket.""" 
        assert self.websocket is not None, "You must connect first!" 
        return (await self.websocket.receive()).data 
 
    async def read(self): 
        """Read messages from the WebSocket.""" 
        assert self.websocket is not None, "You must connect first!" 
 
        while self.websocket.receive(): 
            message = await self.receive() 
            print("Received:", message) 
            if message == "Echo 9!": 
                break 
 
async def send(websocket): 
    for n in range(10): 
        await websocket.send("Echo {}!".format(n)) 
        await asyncio.sleep(1) 
 
loop = asyncio.get_event_loop() 
 
with EchoWebSocket() as websocket: 
 
    loop.run_until_complete(websocket.connect()) 
 
    tasks = ( 
        send(websocket), 
        websocket.read() 
    ) 
 
    loop.run_until_complete(asyncio.wait(tasks)) 
 
    loop.close()

Using Autobahn as a Websocket Factory

The Autobahn package can be used for Python web socket server factories.

Python Autobahn package documentation

To install, typically one would simply use the terminal command

(For Linux):

sudo pip install autobahn

(For Windows):

python -m pip install autobahn

Then, a simple echo server can be created in a Python script:

from autobahn.asyncio.websocket import WebSocketServerProtocol 
class MyServerProtocol(WebSocketServerProtocol): 

https://riptutorial.com/ 942

http://autobahn.ws/python/


    '''When creating server protocol, the 
    user defined class inheriting the 
    WebSocketServerProtocol needs to override 
    the onMessage, onConnect, et-c events for 
    user specified functionality, these events 
    define your server's protocol, in essence''' 
    def onMessage(self,payload,isBinary): 
        '''The onMessage routine is called 
        when the server receives a message. 
        It has the required arguments payload 
        and the bool isBinary. The payload is the 
        actual contents of the "message" and isBinary 
        is simply a flag to let the user know that 
        the payload contains binary data. I typically 
        elsewise assume that the payload is a string. 
        In this example, the payload is returned to sender verbatim.''' 
        self.sendMessage(payload,isBinary) 
if__name__=='__main__': 
    try: 
        importasyncio 
    except ImportError: 
        '''Trollius = 0.3 was renamed''' 
        import trollius as asyncio 
    from autobahn.asyncio.websocketimportWebSocketServerFactory 
    factory=WebSocketServerFactory() 
    '''Initialize the websocket factory, and set the protocol to the 
    above defined protocol(the class that inherits from 
    autobahn.asyncio.websocket.WebSocketServerProtocol)''' 
    factory.protocol=MyServerProtocol 
    '''This above line can be thought of as "binding" the methods 
    onConnect, onMessage, et-c that were described in the MyServerProtocol class 
    to the server, setting the servers functionality, ie, protocol''' 
    loop=asyncio.get_event_loop() 
    coro=loop.create_server(factory,'127.0.0.1',9000) 
    server=loop.run_until_complete(coro) 
    '''Run the server in an infinite loop''' 
    try: 
        loop.run_forever() 
    except KeyboardInterrupt: 
        pass 
    finally: 
        server.close() 
        loop.close()

In this example, a server is being created on the localhost (127.0.0.1) on port 9000. This is the 
listening IP and port. This is important information, as using this, you could identify your 
computer's LAN address and port forward from your modem, though whatever routers you have to 
the computer. Then, using google to investigate your WAN IP, you could design your website to 
send WebSocket messages to your WAN IP, on port 9000 (in this example).

It is important that you port forward from your modem back, meaning that if you have routers daisy 
chained to the modem, enter into the modem's configuration settings, port forward from the 
modem to the connected router, and so forth until the final router your computer is connected to is 
having the information being received on modem port 9000 (in this example) forwarded to it.

Read Websockets online: https://riptutorial.com/python/topic/4751/websockets

https://riptutorial.com/ 943

https://riptutorial.com/python/topic/4751/websockets


Chapter 203: Working around the Global 
Interpreter Lock (GIL)

Remarks

Why is there a GIL?

The GIL has been around in CPython since the inception of Python threads, in 1992. It's designed 
to ensure thread safety of running python code. Python interpreters written with a GIL prevent 
multiple native threads from executing Python bytecodes at once. This makes it easy for plugins to 
ensure that their code is thread-safe: simply lock the GIL, and only your active thread is able to 
run, so your code is automatically thread-safe.

Short version: the GIL ensures that no matter how many processors and threads you have, only 
one thread of a python interpreter will run at one time.

This has a lot of ease-of-use benefits, but also has a lot of negative benefits as well.

Note that a GIL is not a requirment of the Python language. Consequently, you can't access the 
GIL directly from standard python code. Not all implementations of Python use a GIL.

Interpreters that have a GIL: CPython, PyPy, Cython (but you can disable the GIL with nogil)

Interpreters that do not have a GIL: Jython, IronPython

Details on how the GIL operates:

When a thread is running, it locks the GIL. When a thread wants to run, it requests the GIL, and 
waits until it is available. In CPython, before version 3.2, the running thread would check after a 
certain number of python instructions to see if other code wanted the lock (that is, it released the 
lock and then requested it again). This method tended to cause thread starvation, largely because 
the thread that released the lock would acquire it again before the waiting threads had a chance to 
wake up. Since 3.2, threads that want the GIL wait for the lock for some time, and after that time, 
they set a shared variable that forces the running thread to yield. This can still result in drastically 
longer execution times, though. See the links below from dabeaz.com (in the references section) 
for more details.

CPython automatically releases the GIL when a thread performs an I/O operation. Image 
processing libraries and numpy number crunching operations release the GIL before doing their 
processing.

https://riptutorial.com/ 944



Benefits of the GIL

For interpreters that use the GIL, the GIL is systemic. It is used to preserve the state of the 
application. Benefits include:

Garbage collection - thread-safe reference counts must be modified while the GIL is locked. 
In CPython, all of garbarge collection is tied to the GIL. This is a big one; see the python.org 
wiki article about the GIL (listed in References, below) for details about what must still be 
functional if one wanted to remove the GIL.

•

Ease for programmers dealing with the GIL - locking everything is simplistic, but easy to 
code to

•

Eases the import of modules from other languages•

Consequences of the GIL

The GIL only allows one thread to run python code at a time inside the python interpreter. This 
means that multithreading of processes that run strict python code simply doesn't work. When 
using threads against the GIL, you will likely have worse performance with the threads than if you 
ran in a single thread.

References:

https://wiki.python.org/moin/GlobalInterpreterLock - quick summary of what it does, fine details on 
all the benefits

http://programmers.stackexchange.com/questions/186889/why-was-python-written-with-the-gil - 
clearly written summary

http://www.dabeaz.com/python/UnderstandingGIL.pdf - how the GIL works and why it slows down 
on multiple cores

http://www.dabeaz.com/GIL/gilvis/index.html - visualization of the data showing how the GIL locks 
up threads

http://jeffknupp.com/blog/2012/03/31/pythons-hardest-problem/ - simple to understand history of 
the GIL problem

https://jeffknupp.com/blog/2013/06/30/pythons-hardest-problem-revisited/ - details on ways to 
work around the GIL's limitations

Examples

Multiprocessing.Pool

https://riptutorial.com/ 945

https://wiki.python.org/moin/GlobalInterpreterLock
http://programmers.stackexchange.com/questions/186889/why-was-python-written-with-the-gil
http://www.dabeaz.com/python/UnderstandingGIL.pdf
http://www.dabeaz.com/GIL/gilvis/index.html
http://jeffknupp.com/blog/2012/03/31/pythons-hardest-problem/
https://jeffknupp.com/blog/2013/06/30/pythons-hardest-problem-revisited/


The simple answer, when asking how to use threads in Python is: "Don't. Use processes, instead." 
The multiprocessing module lets you create processes with similar syntax to creating threads, but I 
prefer using their convenient Pool object.

Using the code that David Beazley first used to show the dangers of threads against the GIL, we'll 
rewrite it using multiprocessing.Pool:

David Beazley's code that showed GIL 
threading problems

from threading import Thread 
import time 
def countdown(n): 
    while n > 0: 
        n -= 1 
 
COUNT = 10000000 
 
t1 = Thread(target=countdown,args=(COUNT/2,)) 
t2 = Thread(target=countdown,args=(COUNT/2,)) 
start = time.time() 
t1.start();t2.start() 
t1.join();t2.join() 
end = time.time() 
print end-start

Re-written using multiprocessing.Pool:

import multiprocessing 
import time 
def countdown(n): 
    while n > 0: 
        n -= 1 
 
COUNT = 10000000 
 
start = time.time() 
with multiprocessing.Pool as pool: 
    pool.map(countdown, [COUNT/2, COUNT/2]) 
 
    pool.close() 
    pool.join() 
 
end = time.time() 
print(end-start)

Instead of creating threads, this creates new processes. Since each process is its own interpreter, 
there are no GIL collisions. multiprocessing.Pool will open as many processes as there are cores 
on the machine, though in the example above, it would only need two. In a real-world scenario, 
you want to design your list to have at least as much length as there are processors on your 
machine. The Pool will run the function you tell it to run with each argument, up to the number of 
processes it creates. When the function finishes, any remaining functions in the list will be run on 

https://riptutorial.com/ 946

http://www.dabeaz.com/GIL/gilvis/measure2.py
https://docs.python.org/3/library/multiprocessing.html#using-a-pool-of-workers


that process.

I've found that, even using the with statement, if you don't close and join the pool, the processes 
continue to exist. To clean up resources, I always close and join my pools.

Cython nogil:

Cython is an alternative python interpreter. It uses the GIL, but lets you disable it. See their 
documentation

As an example, using the code that David Beazley first used to show the dangers of threads 
against the GIL, we'll rewrite it using nogil:

David Beazley's code that showed GIL 
threading problems

from threading import Thread 
import time 
def countdown(n): 
    while n > 0: 
        n -= 1 
 
COUNT = 10000000 
 
t1 = Thread(target=countdown,args=(COUNT/2,)) 
t2 = Thread(target=countdown,args=(COUNT/2,)) 
start = time.time() 
t1.start();t2.start() 
t1.join();t2.join() 
end = time.time() 
print end-start

Re-written using nogil (ONLY WORKS IN 
CYTHON):

from threading import Thread 
import time 
def countdown(n): 
    while n > 0: 
        n -= 1 
 
COUNT = 10000000 
 
with nogil: 
    t1 = Thread(target=countdown,args=(COUNT/2,)) 
    t2 = Thread(target=countdown,args=(COUNT/2,)) 
    start = time.time() 
    t1.start();t2.start() 
    t1.join();t2.join() 

https://riptutorial.com/ 947

http://docs.cython.org/en/latest/src/userguide/external_C_code.html?highlight=nogil.html#acquiring-and-releasing-the-gil
http://docs.cython.org/en/latest/src/userguide/external_C_code.html?highlight=nogil.html#acquiring-and-releasing-the-gil
http://www.dabeaz.com/GIL/gilvis/measure2.py
http://www.dabeaz.com/GIL/gilvis/measure2.py


 
end = time.time() 
print end-start

It's that simple, as long as you're using cython. Note that the documentation says you must make 
sure not to change any python objects:

Code in the body of the statement must not manipulate Python objects in any way, and 
must not call anything that manipulates Python objects without first re-acquiring the 
GIL. Cython currently does not check this.

Read Working around the Global Interpreter Lock (GIL) online: 
https://riptutorial.com/python/topic/4061/working-around-the-global-interpreter-lock--gil-

https://riptutorial.com/ 948

https://riptutorial.com/python/topic/4061/working-around-the-global-interpreter-lock--gil-


Chapter 204: Working with ZIP archives

Syntax

import zipfile•
class zipfile.ZipFile(file, mode='r', compression=ZIP_STORED, allowZip64=True)•

Remarks

If you try to open a file that is not a ZIP file, the exception zipfile.BadZipFile is raised.

In Python 2.7, this was spelled zipfile.BadZipfile, and this old name is retained alongside the new 
one in Python 3.2+

Examples

Opening Zip Files

To start, import the zipfile module, and set the filename.

import zipfile 
filename = 'zipfile.zip'

Working with zip archives is very similar to working with files, you create the object by opening the 
zipfile, which lets you work on it before closing the file up again.

zip = zipfile.ZipFile(filename) 
print(zip) 
# <zipfile.ZipFile object at 0x0000000002E51A90> 
zip.close()

In Python 2.7 and in Python 3 versions higher than 3.2, we can use the with context manager. We 
open the file in "read" mode, and then print a list of filenames:

with zipfile.ZipFile(filename, 'r') as z: 
    print(zip) 
    # <zipfile.ZipFile object at 0x0000000002E51A90>

Examining Zipfile Contents

There are a few ways to inspect the contents of a zipfile. You can use the printdir to just get a 
variety of information sent to stdout

with zipfile.ZipFile(filename) as zip: 
    zip.printdir() 
 

https://riptutorial.com/ 949

http://www.riptutorial.com/python/topic/267/files---folders-i-o


    # Out: 
    # File Name                                             Modified             Size 
    # pyexpat.pyd                                    2016-06-25 22:13:34       157336 
    # python.exe                                     2016-06-25 22:13:34        39576 
    # python3.dll                                    2016-06-25 22:13:34        51864 
    # python35.dll                                   2016-06-25 22:13:34      3127960 
    # etc.

We can also get a list of filenames with the namelist method. Here, we simply print the list:

with zipfile.ZipFile(filename) as zip: 
    print(zip.namelist()) 
 
# Out: ['pyexpat.pyd', 'python.exe', 'python3.dll', 'python35.dll', ... etc. ...]

Instead of namelist, we can call the infolist method, which returns a list of ZipInfo objects, which 
contain additional information about each file, for instance a timestamp and file size:

with zipfile.ZipFile(filename) as zip: 
    info = zip.infolist() 
    print(zip[0].filename) 
    print(zip[0].date_time) 
    print(info[0].file_size) 
 
# Out: pyexpat.pyd 
# Out: (2016, 6, 25, 22, 13, 34) 
# Out: 157336

Extracting zip file contents to a directory

Extract all file contents of a zip file

import zipfile 
with zipfile.ZipFile('zipfile.zip','r') as zfile: 
    zfile.extractall('path')

If you want extract single files use extract method, it takes name list and path as input parameter

import zipfile 
f=open('zipfile.zip','rb') 
zfile=zipfile.ZipFile(f) 
for cont in zfile.namelist(): 
    zfile.extract(cont,path)

Creating new archives

To create new archive open zipfile with write mode.

import zipfile 
new_arch=zipfile.ZipFile("filename.zip",mode="w")

To add files to this archive use write() method.

https://riptutorial.com/ 950



new_arch.write('filename.txt','filename_in_archive.txt') #first parameter is filename and 
second parameter is filename in archive by default filename will taken if not provided 
new_arch.close()

If you want to write string of bytes into the archive you can use writestr() method.

str_bytes="string buffer" 
new_arch.writestr('filename_string_in_archive.txt',str_bytes) 
new_arch.close()

Read Working with ZIP archives online: https://riptutorial.com/python/topic/3728/working-with-zip-
archives

https://riptutorial.com/ 951

https://riptutorial.com/python/topic/3728/working-with-zip-archives
https://riptutorial.com/python/topic/3728/working-with-zip-archives


Chapter 205: Writing extensions

Examples

Hello World with C Extension

The following C source file (which we will call hello.c for demonstration purposes) produces an 
extension module named hello that contains a single function greet():

#include <Python.h> 
#include <stdio.h> 
 
#if PY_MAJOR_VERSION >= 3 
#define IS_PY3K 
#endif 
 
static PyObject *hello_greet(PyObject *self, PyObject *args) 
{ 
    const char *input; 
    if (!PyArg_ParseTuple(args, "s", &input)) { 
        return NULL; 
    } 
    printf("%s", input); 
    Py_RETURN_NONE; 
} 
 
static PyMethodDef HelloMethods[] = { 
    { "greet", hello_greet, METH_VARARGS, "Greet the user" }, 
    { NULL, NULL, 0, NULL } 
}; 
 
#ifdef IS_PY3K 
static struct PyModuleDef hellomodule = { 
    PyModuleDef_HEAD_INIT, "hello", NULL, -1, HelloMethods 
}; 
 
PyMODINIT_FUNC PyInit_hello(void) 
{ 
    return PyModule_Create(&hellomodule); 
} 
#else 
PyMODINIT_FUNC inithello(void) 
{ 
    (void) Py_InitModule("hello", HelloMethods); 
} 
#endif

To compile the file with the gcc compiler, run the following command in your favourite terminal:

gcc /path/to/your/file/hello.c -o /path/to/your/file/hello

To execute the greet() function that we wrote earlier, create a file in the same directory, and call it 
hello.py

https://riptutorial.com/ 952



import hello          # imports the compiled library 
hello.greet("Hello!") # runs the greet() function with "Hello!" as an argument

Passing an open file to C Extensions

Pass an open file object from Python to C extension code.

You can convert the file to an integer file descriptor using PyObject_AsFileDescriptor function:

PyObject *fobj; 
int fd = PyObject_AsFileDescriptor(fobj); 
if (fd < 0){ 
    return NULL; 
}

To convert an integer file descriptor back into a python object, use PyFile_FromFd.

int fd; /* Existing file descriptor */ 
PyObject *fobj = PyFile_FromFd(fd, "filename","r",-1,NULL,NULL,NULL,1);

C Extension Using c++ and Boost

This is a basic example of a C Extension using C++ and Boost.

C++ Code

C++ code put in hello.cpp:

#include <boost/python/module.hpp> 
#include <boost/python/list.hpp> 
#include <boost/python/class.hpp> 
#include <boost/python/def.hpp> 
 
// Return a hello world string. 
std::string get_hello_function() 
{ 
   return "Hello world!"; 
} 
 
// hello class that can return a list of count hello world strings. 
class hello_class 
{ 
public: 
 
   // Taking the greeting message in the constructor. 
   hello_class(std::string message) : _message(message) {} 
 
   // Returns the message count times in a python list. 
   boost::python::list as_list(int count) 
   { 
      boost::python::list res; 
      for (int i = 0; i < count; ++i) { 

https://riptutorial.com/ 953

http://www.boost.org/


         res.append(_message); 
      } 
      return res; 
   } 
 
private: 
   std::string _message; 
}; 
 
 
// Defining a python module naming it to "hello". 
BOOST_PYTHON_MODULE(hello) 
{ 
   // Here you declare what functions and classes that should be exposed on the module. 
 
   // The get_hello_function exposed to python as a function. 
   boost::python::def("get_hello", get_hello_function); 
 
   // The hello_class exposed to python as a class. 
   boost::python::class_<hello_class>("Hello", boost::python::init<std::string>()) 
      .def("as_list", &hello_class::as_list) 
      ; 
}

To compile this into a python module you will need the python headers and the boost libraries. 
This example was made on Ubuntu 12.04 using python 3.4 and gcc. Boost is supported on many 
platforms. In case of Ubuntu the needed packages was installed using:

sudo apt-get install gcc libboost-dev libpython3.4-dev

Compiling the source file into a .so-file that can later be imported as a module provided it is on the 
python path:

gcc -shared -o hello.so -fPIC -I/usr/include/python3.4 hello.cpp -lboost_python-py34 -
lboost_system -l:libpython3.4m.so

The python code in the file example.py:

import hello 
 
print(hello.get_hello()) 
 
h = hello.Hello("World hello!") 
print(h.as_list(3))

Then python3 example.py will give the following output:

Hello world! 
['World hello!', 'World hello!', 'World hello!']

Read Writing extensions online: https://riptutorial.com/python/topic/557/writing-extensions

https://riptutorial.com/ 954

https://riptutorial.com/python/topic/557/writing-extensions


Chapter 206: Writing to CSV from String or 
List

Introduction

Writing to a .csv file is not unlike writing to a regular file in most regards, and is fairly 
straightforward. I will, to the best of my ability, cover the easiest, and most efficient approach to 
the problem.

Parameters

Parameter Details

open ("/path/", "mode") Specify the path to your CSV file

open (path, "mode") Specify mode to open file in (read, write, etc.)

csv.writer(file, delimiter) Pass opened CSV file here

csv.writer(file, delimiter=' ') Specify delimiter character or pattern

Remarks

open( path, "wb")

"wb" - Write mode.

The b parameter in "wb" we have used, is necessary only if you want to open it in binary mode, 
which is needed only in some operating systems like Windows.

csv.writer ( csv_file, delimiter=',' )

Here the delimiter we have used, is ,, because we want each cell of data in a row, to contain the 
first name, last name, and age respectively. Since our list is split along the , too, it proves rather 
convenient for us.

Examples

Basic Write Example

import csv 
 
#------ We will write to CSV in this function ------------ 
 
def csv_writer(data, path): 

https://riptutorial.com/ 955



 
    #Open CSV file whose path we passed. 
    with open(path, "wb") as csv_file: 
 
        writer = csv.writer(csv_file, delimiter=',') 
        for line in data: 
            writer.writerow(line) 
 
 
 
#---- Define our list here, and call function ------------ 
 
if __name__ == "__main__": 
 
    """ 
    data = our list that we want to write. 
    Split it so we get a list of lists. 
    """ 
    data = ["first_name,last_name,age".split(","), 
            "John,Doe,22".split(","), 
            "Jane,Doe,31".split(","), 
            "Jack,Reacher,27".split(",") 
            ] 
 
    # Path to CSV file we want to write to. 
    path = "output.csv" 
    csv_writer(data, path)

Appending a String as a newline in a CSV file

def append_to_csv(input_string): 
    with open("fileName.csv", "a") as csv_file: 
        csv_file.write(input_row + "\n")

Read Writing to CSV from String or List online: https://riptutorial.com/python/topic/10862/writing-to-
csv-from-string-or-list

https://riptutorial.com/ 956

https://riptutorial.com/python/topic/10862/writing-to-csv-from-string-or-list
https://riptutorial.com/python/topic/10862/writing-to-csv-from-string-or-list


Credits

S. 
No

Chapters Contributors

A. Raza, Aaron Critchley, Abhishek Jain, AER, afeique, 
Akshay Kathpal, alejosocorro, Alessandro Trinca Tornidor, 
Alex Logan, ALinuxLover, Andrea, Andrii Abramov, Andy, 
Andy Hayden, angussidney, Ani Menon, Anthony Pham, 
Antoine Bolvy, Aquib Javed Khan, Ares, Arpit Solanki, B8vrede
, Baaing Cow, baranskistad, Brian C, Bryan P, BSL-5, BusyAnt
, Cbeb24404, ceruleus, ChaoticTwist, Charlie H, Chris Midgley
, Christian Ternus, Claudiu, Clíodhna, CodenameLambda, cʟᴅs
ᴇᴇᴅ, Community, Conrad.Dean, Daksh Gupta, Dania, Daniel 
Minnaar, Darth Shadow, Dartmouth, deeenes, Delgan, 
depperm, DevD, dodell, Douglas Starnes, duckman_1991, 
Eamon Charles, edawine, Elazar, eli-bd, Enrico Maria De 
Angelis, Erica, Erica, ericdwang, Erik Godard, EsmaeelE, Filip 
Haglund, Firix, fox, Franck Dernoncourt, Fred Barclay, Freddy, 
Gerard Roche, glS, GoatsWearHats, GThamizh, H. Pauwelyn, 
hardmooth, hayalci, hichris123, Ian, IanAuld, icesin, Igor 
Raush, Ilyas Mimouni, itsthejoker, J F, Jabba, jalanb, James, 
James Taylor, Jean-Francois T., jedwards, Jeffrey Lin, jfunez, 
JGreenwell, Jim Fasarakis Hilliard, jim opleydulven, jimsug, 
jmunsch, Johan Lundberg, John Donner, John Slegers, 
john400, jonrsharpe, Joseph True, JRodDynamite, jtbandes, 
Juan T, Kamran Mackey, Karan Chudasama, KerDam, Kevin 
Brown, Kiran Vemuri, kisanme, Lafexlos, Leon, Leszek Kicior, 
LostAvatar, Majid, manu, MANU, Mark Miller, Martijn Pieters, 
Mathias711, matsjoyce, Matt, Mattew Whitt, mdegis, Mechanic
, Media, mertyildiran, metahost, Mike Driscoll, MikJR, Miljen 
Mikic, mnoronha, Morgoth, moshemeirelles, MSD, MSeifert, 
msohng, msw, muddyfish, Mukund B, Muntasir Alam, Nathan 
Arthur, Nathaniel Ford, Ned Batchelder, Ni., niyasc, noɥʇʎԀ
ʎzɐɹƆ, numbermaniac, orvi, Panda, Patrick Haugh, Pavan 
Nath, Peter Masiar, PSN, PsyKzz, pylang, pzp, Qchmqs, Quill, 
Rahul Nair, Rakitić, Ram Grandhi, rfkortekaas, rick112358, 
Robotski, rrao, Ryan Hilbert, Sam Krygsheld, Sangeeth 
Sudheer, SashaZd, Selcuk, Severiano Jaramillo Quintanar, 
Shiven, Shoe, Shog9, Sigitas Mockus, Simplans, Slayther, 
stark, StuxCrystal, SuperBiasedMan, Sнаđошƒа, taylor swift, 
techydesigner, Tejus Prasad, TerryA, The_Curry_Man, 
TheGenie OfTruth, Timotheus.Kampik, tjohnson, Tom Barron, 
Tom de Geus, Tony Suffolk 66, tonyo, TPVasconcelos, 

1
Getting started with 
Python Language

https://riptutorial.com/ 957

https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/4323812/aaron-critchley
https://riptutorial.com/contributor/3857465/abhishek-jain
https://riptutorial.com/contributor/4644817/aer
https://riptutorial.com/contributor/737230/afeique
https://riptutorial.com/contributor/7023156/akshay-kathpal
https://riptutorial.com/contributor/1330831/alejosocorro
https://riptutorial.com/contributor/5306152/alessandro-trinca-tornidor
https://riptutorial.com/contributor/6161714/alex-logan
https://riptutorial.com/contributor/6712764/alinuxlover
https://riptutorial.com/contributor/909742/andrea
https://riptutorial.com/contributor/5091346/andrii-abramov
https://riptutorial.com/contributor/189134/andy
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/4622463/angussidney
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/4052384/anthony-pham
https://riptutorial.com/contributor/2367848/antoine-bolvy
https://riptutorial.com/contributor/5404894/aquib-javed-khan
https://riptutorial.com/contributor/2887760/ares
https://riptutorial.com/contributor/5250746/arpit-solanki
https://riptutorial.com/contributor/2263652/b8vrede
https://riptutorial.com/contributor/7154241/baaing-cow
https://riptutorial.com/contributor/6568784/baranskistad
https://riptutorial.com/contributor/1258509/brian-c
https://riptutorial.com/contributor/1224158/bryan-p
https://riptutorial.com/contributor/6539733/bsl-5
https://riptutorial.com/contributor/5018771/busyant
https://riptutorial.com/contributor/7074124/cbeb24404
https://riptutorial.com/contributor/3114900/ceruleus
https://riptutorial.com/contributor/5996838/chaotictwist
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/2591803/chris-midgley
https://riptutorial.com/contributor/2797476/christian-ternus
https://riptutorial.com/contributor/15055/claudiu
https://riptutorial.com/contributor/1905360/cliodhna
https://riptutorial.com/contributor/4696955/codenamelambda
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/656833/conrad-dean
https://riptutorial.com/contributor/5662469/daksh-gupta
https://riptutorial.com/contributor/1463823/dania
https://riptutorial.com/contributor/767215/daniel-minnaar
https://riptutorial.com/contributor/767215/daniel-minnaar
https://riptutorial.com/contributor/3476387/darth-shadow
https://riptutorial.com/contributor/4106184/dartmouth
https://riptutorial.com/contributor/854988/deeenes
https://riptutorial.com/contributor/2291710/delgan
https://riptutorial.com/contributor/3462319/depperm
https://riptutorial.com/contributor/3843828/devd
https://riptutorial.com/contributor/6187538/dodell
https://riptutorial.com/contributor/974695/douglas-starnes
https://riptutorial.com/contributor/2433774/duckman-1991
https://riptutorial.com/contributor/6689617/eamon-charles
https://riptutorial.com/contributor/6912377/edawine
https://riptutorial.com/contributor/2289509/elazar
https://riptutorial.com/contributor/3138375/eli-bd
https://riptutorial.com/contributor/5825294/enrico-maria-de-angelis
https://riptutorial.com/contributor/5825294/enrico-maria-de-angelis
https://riptutorial.com/contributor/2118067/erica
https://riptutorial.com/contributor/3861314/erica
https://riptutorial.com/contributor/1944947/ericdwang
https://riptutorial.com/contributor/376371/erik-godard
https://riptutorial.com/contributor/7508077/esmaeele
https://riptutorial.com/contributor/596041/filip-haglund
https://riptutorial.com/contributor/596041/filip-haglund
https://riptutorial.com/contributor/3830647/firix
https://riptutorial.com/contributor/6163749/fox
https://riptutorial.com/contributor/395857/franck-dernoncourt
https://riptutorial.com/contributor/4588964/fred-barclay
https://riptutorial.com/contributor/3871910/freddy
https://riptutorial.com/contributor/934739/gerard-roche
https://riptutorial.com/contributor/4063051/gls
https://riptutorial.com/contributor/5299938/goatswearhats
https://riptutorial.com/contributor/2033000/gthamizh
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/1498405/hardmooth
https://riptutorial.com/contributor/16084/hayalci
https://riptutorial.com/contributor/2581872/hichris123
https://riptutorial.com/contributor/5528308/ian
https://riptutorial.com/contributor/1318181/ianauld
https://riptutorial.com/contributor/6058822/icesin
https://riptutorial.com/contributor/1391671/igor-raush
https://riptutorial.com/contributor/1391671/igor-raush
https://riptutorial.com/contributor/2822643/ilyas-mimouni
https://riptutorial.com/contributor/2638784/itsthejoker
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/232485/jabba
https://riptutorial.com/contributor/500942/jalanb
https://riptutorial.com/contributor/6627323/james
https://riptutorial.com/contributor/1944335/james-taylor
https://riptutorial.com/contributor/1603480/jean-francois-t-
https://riptutorial.com/contributor/736937/jedwards
https://riptutorial.com/contributor/1440897/jeffrey-lin
https://riptutorial.com/contributor/1503/jfunez
https://riptutorial.com/contributor/4667934/jgreenwell
https://riptutorial.com/contributor/4952130/jim-fasarakis-hilliard
https://riptutorial.com/contributor/7692140/jim-opleydulven
https://riptutorial.com/contributor/3437837/jimsug
https://riptutorial.com/contributor/2026508/jmunsch
https://riptutorial.com/contributor/1149664/johan-lundberg
https://riptutorial.com/contributor/4411487/john-donner
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/5732836/john400
https://riptutorial.com/contributor/3001761/jonrsharpe
https://riptutorial.com/contributor/8060056/joseph-true
https://riptutorial.com/contributor/2932244/jroddynamite
https://riptutorial.com/contributor/23649/jtbandes
https://riptutorial.com/contributor/7237719/juan-t
https://riptutorial.com/contributor/2031089/kamran-mackey
https://riptutorial.com/contributor/5724110/karan-chudasama
https://riptutorial.com/contributor/6028477/kerdam
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/1186949/kiran-vemuri
https://riptutorial.com/contributor/3663471/kisanme
https://riptutorial.com/contributor/3134251/lafexlos
https://riptutorial.com/contributor/6394138/leon
https://riptutorial.com/contributor/8014099/leszek-kicior
https://riptutorial.com/contributor/1541458/lostavatar
https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/4578652/manu
https://riptutorial.com/contributor/3903762/manu
https://riptutorial.com/contributor/1184072/mark-miller
https://riptutorial.com/contributor/100297/martijn-pieters
https://riptutorial.com/contributor/2781698/mathias711
https://riptutorial.com/contributor/3946766/matsjoyce
https://riptutorial.com/contributor/2641576/matt
https://riptutorial.com/contributor/3264217/mattew-whitt
https://riptutorial.com/contributor/1368534/mdegis
https://riptutorial.com/contributor/833530/mechanic
https://riptutorial.com/contributor/5120235/media
https://riptutorial.com/contributor/2104879/mertyildiran
https://riptutorial.com/contributor/4626943/metahost
https://riptutorial.com/contributor/393194/mike-driscoll
https://riptutorial.com/contributor/7420338/mikjr
https://riptutorial.com/contributor/1460628/miljen-mikic
https://riptutorial.com/contributor/1460628/miljen-mikic
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/1705337/morgoth
https://riptutorial.com/contributor/5331352/moshemeirelles
https://riptutorial.com/contributor/2082004/msd
https://riptutorial.com/contributor/5393381/mseifert
https://riptutorial.com/contributor/3208967/msohng
https://riptutorial.com/contributor/282912/msw
https://riptutorial.com/contributor/3398583/muddyfish
https://riptutorial.com/contributor/7087617/mukund-b
https://riptutorial.com/contributor/6471733/muntasir-alam
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/14343/ned-batchelder
https://riptutorial.com/contributor/2907819/ni-
https://riptutorial.com/contributor/1520248/niyasc
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/3150837/numbermaniac
https://riptutorial.com/contributor/3654356/orvi
https://riptutorial.com/contributor/5022249/panda
https://riptutorial.com/contributor/6779307/patrick-haugh
https://riptutorial.com/contributor/5152794/pavan-nath
https://riptutorial.com/contributor/5152794/pavan-nath
https://riptutorial.com/contributor/1982126/peter-masiar
https://riptutorial.com/contributor/4161385/psn
https://riptutorial.com/contributor/211081/psykzz
https://riptutorial.com/contributor/4531270/pylang
https://riptutorial.com/contributor/3155933/pzp
https://riptutorial.com/contributor/868770/qchmqs
https://riptutorial.com/contributor/3296811/quill
https://riptutorial.com/contributor/1060034/rahul-nair
https://riptutorial.com/contributor/6290553/rakitic
https://riptutorial.com/contributor/6290553/rakitic
https://riptutorial.com/contributor/2679723/ram-grandhi
https://riptutorial.com/contributor/2345870/rfkortekaas
https://riptutorial.com/contributor/3198508/rick112358
https://riptutorial.com/contributor/4496735/robotski
https://riptutorial.com/contributor/7006469/rrao
https://riptutorial.com/contributor/2884225/ryan-hilbert
https://riptutorial.com/contributor/3884408/sam-krygsheld
https://riptutorial.com/contributor/2511828/sangeeth-sudheer
https://riptutorial.com/contributor/2511828/sangeeth-sudheer
https://riptutorial.com/contributor/966247/sashazd
https://riptutorial.com/contributor/2011147/selcuk
https://riptutorial.com/contributor/5428997/severiano-jaramillo-quintanar
https://riptutorial.com/contributor/3543416/shiven
https://riptutorial.com/contributor/493122/shoe
https://riptutorial.com/contributor/811/shog9
https://riptutorial.com/contributor/4446472/sigitas-mockus
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/4936137/slayther
https://riptutorial.com/contributor/1507325/stark
https://riptutorial.com/contributor/3294035/stuxcrystal
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/6451264/taylor-swift
https://riptutorial.com/contributor/6309608/techydesigner
https://riptutorial.com/contributor/3409405/tejus-prasad
https://riptutorial.com/contributor/1971805/terrya
https://riptutorial.com/contributor/5361515/the-curry-man
https://riptutorial.com/contributor/5931915/thegenie-oftruth
https://riptutorial.com/contributor/3467824/timotheus-kampik
https://riptutorial.com/contributor/5504760/tjohnson
https://riptutorial.com/contributor/1074744/tom-barron
https://riptutorial.com/contributor/2646505/tom-de-geus
https://riptutorial.com/contributor/3426606/tony-suffolk-66
https://riptutorial.com/contributor/1181370/tonyo
https://riptutorial.com/contributor/6028742/tpvasconcelos


user2314737, user2853437, user312016, Utsav T, 
vaichidrewar, vasili111, Vin, W.Wong, weewooquestionaire, 
Will, wintermute, Yogendra Sharma, Zach Janicki, Zags

2 *args and **kwargs

cjds, Eric Zhang, ericmarkmartin, Geeklhem, J F, Jeff Hutchins
, Jim Fasarakis Hilliard, JuanPablo, kdopen, loading..., Marlon 
Abeykoon, Mattew Whitt, Pasha, pcurry, PsyKzz, Scott 
Mermelstein, user2314737, Valentin Lorentz, Veedrac

3 2to3 tool
Alessandro Trinca Tornidor, Dartmouth, Firix, Kevin Brown, 
Naga2Raja, Stephen Leppik

4
Abstract Base 
Classes (abc)

Akshat Mahajan, Alessandro Trinca Tornidor, JGreenwell, 
Kevin Brown, Mattew Whitt, mkrieger1, SashaZd, Stephen 
Leppik

5 Abstract syntax tree Teepeemm

6
Accessing Python 
source code and 
bytecode

muddyfish, StuxCrystal, user2314737

7
Alternatives to switch 
statement from other 
languages

davidism, J F, zmo, Валерий Павлов

8 ArcPy Midavalo, PolyGeo, Zhanping Shi

9 Arrays Andy, Pavan Nath, RamenChef, Vin

10 Asyncio Module
2Cubed, Alessandro Trinca Tornidor, Cimbali, hiro protagonist, 
obust, pylang, RamenChef, Seth M. Larson, Simplans, 
Stephen Leppik, Udi

11 Attribute Access Elazar, SashaZd, SuperBiasedMan

12 Audio
blueberryfields, Comrade SparklePony, frankyjuang, jmunsch, 
orvi, qwertyuip9, Stephen Leppik, Thomas Gerot

13
Basic Curses with 
Python

4444, Guy, kollery, Vinzee

14
Basic Input and 
Output

Doraemon, GoatsWearHats, J F, JNat, Marco Pashkov, Mark 
Miller, Martijn Pieters, Nathaniel Ford, Nicolás, pcurry, pzp, 
SashaZd, SuperBiasedMan, Vilmar

15 Binary Data Eleftheria, evuez, mnoronha

Abhishek Jain, boboquack, Charles, Gal Dreiman, intboolstring
, JakeD, JNat, Kevin Brown, Matías Brignone, nemesisfixx, 

16 Bitwise Operators

https://riptutorial.com/ 958

https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/2853437/user2853437
https://riptutorial.com/contributor/5350498/user312016
https://riptutorial.com/contributor/2233336/utsav-t
https://riptutorial.com/contributor/553223/vaichidrewar
https://riptutorial.com/contributor/1601703/vasili111
https://riptutorial.com/contributor/5888265/vin
https://riptutorial.com/contributor/7555451/w-wong
https://riptutorial.com/contributor/6860612/weewooquestionaire
https://riptutorial.com/contributor/145279/will
https://riptutorial.com/contributor/2052750/wintermute
https://riptutorial.com/contributor/2623906/yogendra-sharma
https://riptutorial.com/contributor/5001349/zach-janicki
https://riptutorial.com/contributor/2800876/zags
https://riptutorial.com/contributor/1059273/cjds
https://riptutorial.com/contributor/2514396/eric-zhang
https://riptutorial.com/contributor/3777633/ericmarkmartin
https://riptutorial.com/contributor/1219073/geeklhem
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/981097/jeff-hutchins
https://riptutorial.com/contributor/4952130/jim-fasarakis-hilliard
https://riptutorial.com/contributor/348081/juanpablo
https://riptutorial.com/contributor/943010/kdopen
https://riptutorial.com/contributor/6623266/loading---
https://riptutorial.com/contributor/2779389/marlon-abeykoon
https://riptutorial.com/contributor/2779389/marlon-abeykoon
https://riptutorial.com/contributor/3264217/mattew-whitt
https://riptutorial.com/contributor/958624/pasha
https://riptutorial.com/contributor/1339820/pcurry
https://riptutorial.com/contributor/211081/psykzz
https://riptutorial.com/contributor/1404311/scott-mermelstein
https://riptutorial.com/contributor/1404311/scott-mermelstein
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/539465/valentin-lorentz
https://riptutorial.com/contributor/1763356/veedrac
https://riptutorial.com/contributor/5306152/alessandro-trinca-tornidor
https://riptutorial.com/contributor/4106184/dartmouth
https://riptutorial.com/contributor/3830647/firix
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/2404424/naga2raja
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/2271269/akshat-mahajan
https://riptutorial.com/contributor/5306152/alessandro-trinca-tornidor
https://riptutorial.com/contributor/4667934/jgreenwell
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/3264217/mattew-whitt
https://riptutorial.com/contributor/4621513/mkrieger1
https://riptutorial.com/contributor/966247/sashazd
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/2336725/teepeemm
https://riptutorial.com/contributor/3398583/muddyfish
https://riptutorial.com/contributor/3294035/stuxcrystal
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/400617/davidism
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/1290438/zmo
https://riptutorial.com/contributor/8259072/--------------
https://riptutorial.com/contributor/5754917/midavalo
https://riptutorial.com/contributor/820534/polygeo
https://riptutorial.com/contributor/4744336/zhanping-shi
https://riptutorial.com/contributor/189134/andy
https://riptutorial.com/contributor/5152794/pavan-nath
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5888265/vin
https://riptutorial.com/contributor/6119465/2cubed
https://riptutorial.com/contributor/5306152/alessandro-trinca-tornidor
https://riptutorial.com/contributor/1387346/cimbali
https://riptutorial.com/contributor/4954037/hiro-protagonist
https://riptutorial.com/contributor/4577665/obust
https://riptutorial.com/contributor/4531270/pylang
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5763213/seth-m--larson
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/57952/udi
https://riptutorial.com/contributor/2289509/elazar
https://riptutorial.com/contributor/966247/sashazd
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/173773/blueberryfields
https://riptutorial.com/contributor/7254591/comrade-sparklepony
https://riptutorial.com/contributor/3748807/frankyjuang
https://riptutorial.com/contributor/2026508/jmunsch
https://riptutorial.com/contributor/3654356/orvi
https://riptutorial.com/contributor/5183342/qwertyuip9
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/5943150/guy
https://riptutorial.com/contributor/3949387/kollery
https://riptutorial.com/contributor/5446749/vinzee
https://riptutorial.com/contributor/5267879/doraemon
https://riptutorial.com/contributor/5299938/goatswearhats
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/1328704/jnat
https://riptutorial.com/contributor/2210287/marco-pashkov
https://riptutorial.com/contributor/1184072/mark-miller
https://riptutorial.com/contributor/1184072/mark-miller
https://riptutorial.com/contributor/100297/martijn-pieters
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/677022/nicolas
https://riptutorial.com/contributor/1339820/pcurry
https://riptutorial.com/contributor/3155933/pzp
https://riptutorial.com/contributor/966247/sashazd
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/1709795/vilmar
https://riptutorial.com/contributor/6584717/eleftheria
https://riptutorial.com/contributor/653378/evuez
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/3857465/abhishek-jain
https://riptutorial.com/contributor/6936386/boboquack
https://riptutorial.com/contributor/5679756/charles
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/4490559/intboolstring
https://riptutorial.com/contributor/6655092/jaked
https://riptutorial.com/contributor/1328704/jnat
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/6484455/matias-brignone
https://riptutorial.com/contributor/522150/nemesisfixx


poke, R Colmenares, Shawn Mehan, Simplans, Thomas Gerot
, tmr232, Tony Suffolk 66, viveksyngh

17 Boolean Operators
boboquack, Brett Cannon, Dair, Ffisegydd, John Zwinck, 
Severiano Jaramillo Quintanar, Steven Maude

18 Call Python from C# Julij Jegorov

19
Checking Path 
Existence and 
Permissions

Esteis, Marlon Abeykoon, mnoronha, PYPL

20
ChemPy - python 
package

Biswa_9937

21 Classes

Aaron Hall, Ahsanul Haque, Akshat Mahajan, Andrzej 
Pronobis, Anthony Pham, Avantol13, Camsbury, cfi, 
Community, Conrad.Dean, Daksh Gupta, Darth Shadow, 
Dartmouth, depperm, Elazar, Ffisegydd, Haris, Igor Raush, 
InitializeSahib, J F, jkdev, jlarsch, John Militer, Jonas S, 
Jonathan, Kallz, KartikKannapur, Kevin Brown, Kinifwyne, Leo, 
Liteye, lmiguelvargasf, Mailerdaimon, Martijn Pieters, 
Massimiliano Kraus, Mattew Whitt, MrP01, Nathan Arthur, ojas 
mohril, Pasha, Peter Steele, pistache, Preston, pylang, 
Richard Fitzhugh, rohittk239, Rushy Panchal, Sempoo, 
Simplans, Soumendra Kumar Sahoo, SuperBiasedMan, 
techydesigner, then0rTh, Thomas Gerot, Tony Suffolk 66, 
tox123, UltraBob, user2314737, wrwrwr, Yogendra Sharma

22
CLI subcommands 
with precise help 
output

Alessandro Trinca Tornidor, anatoly techtonik, Darth Shadow

23
Code blocks, 
execution frames, 
and namespaces

Jeremy, Mohammed Salman

24 Collections module
asmeurer, Community, Elazar, jmunsch, kon psych, Marco 
Pashkov, MSeifert, RamenChef, Shawn Mehan, Simplans, 
Steven Maude, Symmitchry, void, XCoder Real

25
Comments and 
Documentation

Ani Menon, FunkySayu, MattCorr, SuperBiasedMan, 
TuringTux

abukaj, ADITYA, Alec, Alessandro Trinca Tornidor, Alex, 
Antoine Bolvy, Baaing Cow, Bhargav Rao, Billy, bixel, Charles, 
Cheney, Christophe Roussy, Dartmouth, DeepSpace, DhiaTN, 
Dilettant, fox, Fred Barclay, Gerard Roche, greatwolf, hiro 
protagonist, Jeffrey Lin, JGreenwell, Jim Fasarakis Hilliard, 

26 Common Pitfalls

https://riptutorial.com/ 959

https://riptutorial.com/contributor/216074/poke
https://riptutorial.com/contributor/6657715/r-colmenares
https://riptutorial.com/contributor/5113071/shawn-mehan
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/3337893/tmr232
https://riptutorial.com/contributor/3426606/tony-suffolk-66
https://riptutorial.com/contributor/2798036/viveksyngh
https://riptutorial.com/contributor/6936386/boboquack
https://riptutorial.com/contributor/236574/brett-cannon
https://riptutorial.com/contributor/667648/dair
https://riptutorial.com/contributor/3005188/ffisegydd
https://riptutorial.com/contributor/4323/john-zwinck
https://riptutorial.com/contributor/5428997/severiano-jaramillo-quintanar
https://riptutorial.com/contributor/1678416/steven-maude
https://riptutorial.com/contributor/8210140/julij-jegorov
https://riptutorial.com/contributor/473899/esteis
https://riptutorial.com/contributor/2779389/marlon-abeykoon
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/1984756/pypl
https://riptutorial.com/contributor/8117998/biswa-9937
https://riptutorial.com/contributor/541136/aaron-hall
https://riptutorial.com/contributor/5019169/ahsanul-haque
https://riptutorial.com/contributor/2271269/akshat-mahajan
https://riptutorial.com/contributor/1576602/andrzej-pronobis
https://riptutorial.com/contributor/1576602/andrzej-pronobis
https://riptutorial.com/contributor/4052384/anthony-pham
https://riptutorial.com/contributor/4175042/avantol13
https://riptutorial.com/contributor/3933810/camsbury
https://riptutorial.com/contributor/923794/cfi
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/656833/conrad-dean
https://riptutorial.com/contributor/5662469/daksh-gupta
https://riptutorial.com/contributor/3476387/darth-shadow
https://riptutorial.com/contributor/4106184/dartmouth
https://riptutorial.com/contributor/3462319/depperm
https://riptutorial.com/contributor/2289509/elazar
https://riptutorial.com/contributor/3005188/ffisegydd
https://riptutorial.com/contributor/1795279/haris
https://riptutorial.com/contributor/1391671/igor-raush
https://riptutorial.com/contributor/6147266/initializesahib
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/3345375/jkdev
https://riptutorial.com/contributor/5558281/jlarsch
https://riptutorial.com/contributor/6206720/john-militer
https://riptutorial.com/contributor/1492826/jonas-s
https://riptutorial.com/contributor/6890926/jonathan
https://riptutorial.com/contributor/7825115/kallz
https://riptutorial.com/contributor/3001733/kartikkannapur
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/6859882/kinifwyne
https://riptutorial.com/contributor/1728179/leo
https://riptutorial.com/contributor/2400310/liteye
https://riptutorial.com/contributor/3705840/lmiguelvargasf
https://riptutorial.com/contributor/2927205/mailerdaimon
https://riptutorial.com/contributor/100297/martijn-pieters
https://riptutorial.com/contributor/4165377/massimiliano-kraus
https://riptutorial.com/contributor/3264217/mattew-whitt
https://riptutorial.com/contributor/5832850/mrp01
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/4518388/ojas-mohril
https://riptutorial.com/contributor/4518388/ojas-mohril
https://riptutorial.com/contributor/958624/pasha
https://riptutorial.com/contributor/3264515/peter-steele
https://riptutorial.com/contributor/1011859/pistache
https://riptutorial.com/contributor/3906487/preston
https://riptutorial.com/contributor/4531270/pylang
https://riptutorial.com/contributor/5050683/richard-fitzhugh
https://riptutorial.com/contributor/5911972/rohittk239
https://riptutorial.com/contributor/1730261/rushy-panchal
https://riptutorial.com/contributor/5321058/sempoo
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/5014656/soumendra-kumar-sahoo
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/6309608/techydesigner
https://riptutorial.com/contributor/3838615/then0rth
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/3426606/tony-suffolk-66
https://riptutorial.com/contributor/3802922/tox123
https://riptutorial.com/contributor/1465373/ultrabob
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/5466926/wrwrwr
https://riptutorial.com/contributor/2623906/yogendra-sharma
https://riptutorial.com/contributor/5306152/alessandro-trinca-tornidor
https://riptutorial.com/contributor/239247/anatoly-techtonik
https://riptutorial.com/contributor/3476387/darth-shadow
https://riptutorial.com/contributor/6395690/jeremy
https://riptutorial.com/contributor/8284738/mohammed-salman
https://riptutorial.com/contributor/161801/asmeurer
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2289509/elazar
https://riptutorial.com/contributor/2026508/jmunsch
https://riptutorial.com/contributor/614241/kon-psych
https://riptutorial.com/contributor/2210287/marco-pashkov
https://riptutorial.com/contributor/2210287/marco-pashkov
https://riptutorial.com/contributor/5393381/mseifert
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5113071/shawn-mehan
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/1678416/steven-maude
https://riptutorial.com/contributor/515368/symmitchry
https://riptutorial.com/contributor/1029287/void
https://riptutorial.com/contributor/6661940/xcoder-real
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/2964982/funkysayu
https://riptutorial.com/contributor/2970790/mattcorr
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/6377268/turingtux
https://riptutorial.com/contributor/4879688/abukaj
https://riptutorial.com/contributor/6524169/aditya
https://riptutorial.com/contributor/5719759/alec
https://riptutorial.com/contributor/5306152/alessandro-trinca-tornidor
https://riptutorial.com/contributor/1806043/alex
https://riptutorial.com/contributor/2367848/antoine-bolvy
https://riptutorial.com/contributor/7154241/baaing-cow
https://riptutorial.com/contributor/4099593/bhargav-rao
https://riptutorial.com/contributor/7007605/billy
https://riptutorial.com/contributor/2834918/bixel
https://riptutorial.com/contributor/5679756/charles
https://riptutorial.com/contributor/6493535/cheney
https://riptutorial.com/contributor/657427/christophe-roussy
https://riptutorial.com/contributor/4106184/dartmouth
https://riptutorial.com/contributor/1453822/deepspace
https://riptutorial.com/contributor/5658350/dhiatn
https://riptutorial.com/contributor/378826/dilettant
https://riptutorial.com/contributor/1661662/fox
https://riptutorial.com/contributor/4588964/fred-barclay
https://riptutorial.com/contributor/934739/gerard-roche
https://riptutorial.com/contributor/234175/greatwolf
https://riptutorial.com/contributor/4954037/hiro-protagonist
https://riptutorial.com/contributor/4954037/hiro-protagonist
https://riptutorial.com/contributor/1440897/jeffrey-lin
https://riptutorial.com/contributor/4667934/jgreenwell
https://riptutorial.com/contributor/4952130/jim-fasarakis-hilliard


Lafexlos, maazza, Malt, Mark, matsjoyce, Matt Dodge, MervS, 
MSeifert, ncmathsadist, omgimanerd, Patrick Haugh, pylang, 
RamenChef, Reut Sharabani, Rob Bednark, rrao, SashaZd, 
Shihab Shahriar, Simplans, SuperBiasedMan, Tim D, Tom 
Dunbavan, tyteen4a03, user2314737, Will Vousden, Wombatz

27
Commonwealth 
Exceptions

Juan T, TemporalWolf

28 Comparisons
Anthony Pham, Ares, Elazar, J F, MSeifert, Shawn Mehan, 
SuperBiasedMan, Will, Xavier Combelle

29 Complex math Adeel Ansari, Bosoneando, bpachev

30 Conditionals

Andy Hayden, BusyAnt, Chris Larson, deepakkt, Delgan, 
Elazar, evuez, Ffisegydd, Geeklhem, Hannes Karppila, James, 
Kevin Brown, krato, Max Feng, noɥʇʎԀʎzɐɹƆ, rajah9, rrao, 
SashaZd, Simplans, Slayther, Soumendra Kumar Sahoo, 
Thomas Gerot, Trimax, Valentin Lorentz, Vinzee, wwii, xgord, 
Zack

31 configparser Chinmay Hegde, Dunatotatos

32
Connecting Python to 
SQL Server

metmirr

33
Context Managers 
(“with” Statement)

Abhijeet Kasurde, Alessandro Trinca Tornidor, Andy Hayden, 
Antoine Bolvy, carrdelling, Conrad.Dean, Dartmouth, David 
Marx, DeepSpace, Elazar, Kevin Brown, magu_, Majid, Martijn 
Pieters, Matthew, nlsdfnbch, Pasha, Peter Brittain, petrs, Shuo
, Simplans, SuperBiasedMan, The_Cthulhu_Kid, Thomas 
Gerot, tyteen4a03, user312016, Valentin Lorentz, vaultah, λ
user

34 Copying data hashcode55, StuxCrystal

35 Counting Andy Hayden, MSeifert, Peter Mølgaard Pallesen, pylang

36

Create virtual 
environment with 
virtualenvwrapper in 
windows

Sirajus Salayhin

37
Creating a Windows 
service using Python

Simon Hibbs

38
Creating Python 
packages

Claudiu, KeyWeeUsr, Marco Pashkov, pylang, 
SuperBiasedMan, Thtu

https://riptutorial.com/ 960

https://riptutorial.com/contributor/3134251/lafexlos
https://riptutorial.com/contributor/1342402/maazza
https://riptutorial.com/contributor/3199595/malt
https://riptutorial.com/contributor/2606953/mark
https://riptutorial.com/contributor/3946766/matsjoyce
https://riptutorial.com/contributor/1222076/matt-dodge
https://riptutorial.com/contributor/1847471/mervs
https://riptutorial.com/contributor/5393381/mseifert
https://riptutorial.com/contributor/467379/ncmathsadist
https://riptutorial.com/contributor/5792737/omgimanerd
https://riptutorial.com/contributor/6779307/patrick-haugh
https://riptutorial.com/contributor/4531270/pylang
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/948550/reut-sharabani
https://riptutorial.com/contributor/875915/rob-bednark
https://riptutorial.com/contributor/7006469/rrao
https://riptutorial.com/contributor/966247/sashazd
https://riptutorial.com/contributor/4553309/shihab-shahriar
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/3726604/tim-d
https://riptutorial.com/contributor/6642337/tom-dunbavan
https://riptutorial.com/contributor/6642337/tom-dunbavan
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/58635/will-vousden
https://riptutorial.com/contributor/4759726/wombatz
https://riptutorial.com/contributor/7237719/juan-t
https://riptutorial.com/contributor/3579910/temporalwolf
https://riptutorial.com/contributor/4052384/anthony-pham
https://riptutorial.com/contributor/2887760/ares
https://riptutorial.com/contributor/2289509/elazar
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/5393381/mseifert
https://riptutorial.com/contributor/5113071/shawn-mehan
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/4107956/will
https://riptutorial.com/contributor/128629/xavier-combelle
https://riptutorial.com/contributor/42769/adeel-ansari
https://riptutorial.com/contributor/6620417/bosoneando
https://riptutorial.com/contributor/4317531/bpachev
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/5018771/busyant
https://riptutorial.com/contributor/214150/chris-larson
https://riptutorial.com/contributor/384397/deepakkt
https://riptutorial.com/contributor/2291710/delgan
https://riptutorial.com/contributor/2289509/elazar
https://riptutorial.com/contributor/653378/evuez
https://riptutorial.com/contributor/3005188/ffisegydd
https://riptutorial.com/contributor/1219073/geeklhem
https://riptutorial.com/contributor/2867076/hannes-karppila
https://riptutorial.com/contributor/6627323/james
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/2130213/krato
https://riptutorial.com/contributor/6501627/max-feng
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/509840/rajah9
https://riptutorial.com/contributor/7006469/rrao
https://riptutorial.com/contributor/966247/sashazd
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/4936137/slayther
https://riptutorial.com/contributor/5014656/soumendra-kumar-sahoo
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/3160820/trimax
https://riptutorial.com/contributor/539465/valentin-lorentz
https://riptutorial.com/contributor/5446749/vinzee
https://riptutorial.com/contributor/2823755/wwii
https://riptutorial.com/contributor/2487336/xgord
https://riptutorial.com/contributor/2268727/zack
https://riptutorial.com/contributor/4168903/chinmay-hegde
https://riptutorial.com/contributor/5512755/dunatotatos
https://riptutorial.com/contributor/5802335/metmirr
https://riptutorial.com/contributor/1075324/abhijeet-kasurde
https://riptutorial.com/contributor/5306152/alessandro-trinca-tornidor
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/2367848/antoine-bolvy
https://riptutorial.com/contributor/6014153/carrdelling
https://riptutorial.com/contributor/656833/conrad-dean
https://riptutorial.com/contributor/4106184/dartmouth
https://riptutorial.com/contributor/819544/david-marx
https://riptutorial.com/contributor/819544/david-marx
https://riptutorial.com/contributor/1453822/deepspace
https://riptutorial.com/contributor/2289509/elazar
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/2173891/magu-
https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/100297/martijn-pieters
https://riptutorial.com/contributor/100297/martijn-pieters
https://riptutorial.com/contributor/4927616/matthew
https://riptutorial.com/contributor/5413116/nlsdfnbch
https://riptutorial.com/contributor/958624/pasha
https://riptutorial.com/contributor/4994021/peter-brittain
https://riptutorial.com/contributor/1400554/petrs
https://riptutorial.com/contributor/334999/shuo
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/1091551/the-cthulhu-kid
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/5350498/user312016
https://riptutorial.com/contributor/539465/valentin-lorentz
https://riptutorial.com/contributor/2301450/vaultah
https://riptutorial.com/contributor/6541288/-user
https://riptutorial.com/contributor/6541288/-user
https://riptutorial.com/contributor/5540305/hashcode55
https://riptutorial.com/contributor/3294035/stuxcrystal
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/5393381/mseifert
https://riptutorial.com/contributor/5371102/peter-molgaard-pallesen
https://riptutorial.com/contributor/4531270/pylang
https://riptutorial.com/contributor/717600/sirajus-salayhin
https://riptutorial.com/contributor/318488/simon-hibbs
https://riptutorial.com/contributor/15055/claudiu
https://riptutorial.com/contributor/5994041/keyweeusr
https://riptutorial.com/contributor/2210287/marco-pashkov
https://riptutorial.com/contributor/4531270/pylang
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/4267783/thtu


39 ctypes Or East

40 Data Serialization Devesh Saini, Infinity, rfkortekaas

41
Data Visualization 
with Python

Aquib Javed Khan, Arun, ChaoticTwist, cledoux, Ffisegydd, 
ifma

42 Database Access

Alessandro Trinca Tornidor, Antonio, bee-sting, cʟᴅsᴇᴇᴅ, D. 
Alveno, John Y, LostAvatar, mbsingh, Michel Touw, 
qwertyuip9, RamenChef, rrawat, Stephen Leppik, Stephen 
Nyamweya, sumitroy, user2314737, valeas, zweiterlinde

43 Date and Time

Ajean, alecxe, Andy, Antti Haapala, BusyAnt, Conrad.Dean, 
Elazar, ghostarbeiter, J F, Jeffrey Lin, jonrsharpe, Kevin Brown
, Nicole White, nlsdfnbch, Ohad Eytan, Paul, paulmorriss, 
proprius, RahulHP, RamenChef, sagism, Simplans, Sirajus 
Salayhin, Suku, Will

44 Date Formatting surfthecity

45 Debugging
Aldo, B8vrede, joel3000, Sardathrion, Sardorbek Imomaliev, 
Vlad Bezden

46 Decorators

Alessandro Trinca Tornidor, ChaoticTwist, Community, Dair, 
doratheexplorer0911, Emolga, greut, iankit, JGreenwell, 
jonrsharpe, kefkius, Kevin Brown, Mattew Whitt, MSeifert, 
muddyfish, Mukunda Modell, Nearoo, Nemo, Nuno André, 
Pasha, Rob Bednark, seenu s, Shreyash S Sarnayak, 
Simplans, StuxCrystal, Suhas K, technusm1, Thomas Gerot, 
tyteen4a03, Wladimir Palant, zvone

47
Defining functions 
with list arguments

zenlc2000

48 Deployment Gal Dreiman, Iancnorden, Wayne Werner

49 Deque Module
Anthony Pham, BusyAnt, matsjoyce, ravigadila, Simplans, 
Thomas Ahle, user2314737

50 Descriptor bbayles, cizixs, Nemo, pylang, SuperBiasedMan

51 Design Patterns Charul, denvaar, djaszczurowski

Amir Rachum, Anthony Pham, APerson, ArtOfCode, BoppreH, 
Burhan Khalid, Chris Mueller, cizixs, depperm, Ffisegydd, 
Gareth Latty, Guy, helpful, iBelieve, Igor Raush, Infinity, James
, JGreenwell, jonrsharpe, Karsten 7., kdopen, machine 
yearning, Majid, mattgathu, Mechanic, MSeifert, muddyfish, 
Nathan, nlsdfnbch, noɥʇʎԀʎzɐɹƆ, ronrest, Roy Iacob, Shawn 

52 Dictionary

https://riptutorial.com/ 961

https://riptutorial.com/contributor/6806681/or-east
https://riptutorial.com/contributor/2419921/devesh-saini
https://riptutorial.com/contributor/1058671/infinity
https://riptutorial.com/contributor/2345870/rfkortekaas
https://riptutorial.com/contributor/5404894/aquib-javed-khan
https://riptutorial.com/contributor/5803233/arun
https://riptutorial.com/contributor/5996838/chaotictwist
https://riptutorial.com/contributor/558820/cledoux
https://riptutorial.com/contributor/3005188/ffisegydd
https://riptutorial.com/contributor/4245174/ifma
https://riptutorial.com/contributor/5306152/alessandro-trinca-tornidor
https://riptutorial.com/contributor/3779183/antonio
https://riptutorial.com/contributor/6220620/bee-sting
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/5574466/d--alveno
https://riptutorial.com/contributor/5574466/d--alveno
https://riptutorial.com/contributor/95852/john-y
https://riptutorial.com/contributor/1541458/lostavatar
https://riptutorial.com/contributor/3623056/mbsingh
https://riptutorial.com/contributor/6748546/michel-touw
https://riptutorial.com/contributor/5183342/qwertyuip9
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3796473/rrawat
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/4515228/stephen-nyamweya
https://riptutorial.com/contributor/4515228/stephen-nyamweya
https://riptutorial.com/contributor/6458680/sumitroy
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/5874499/valeas
https://riptutorial.com/contributor/6592/zweiterlinde
https://riptutorial.com/contributor/3100515/ajean
https://riptutorial.com/contributor/771848/alecxe
https://riptutorial.com/contributor/189134/andy
https://riptutorial.com/contributor/918959/antti-haapala
https://riptutorial.com/contributor/5018771/busyant
https://riptutorial.com/contributor/656833/conrad-dean
https://riptutorial.com/contributor/2289509/elazar
https://riptutorial.com/contributor/6274563/ghostarbeiter
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/1440897/jeffrey-lin
https://riptutorial.com/contributor/3001761/jonrsharpe
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/2848578/nicole-white
https://riptutorial.com/contributor/5413116/nlsdfnbch
https://riptutorial.com/contributor/2069380/ohad-eytan
https://riptutorial.com/contributor/467366/paul
https://riptutorial.com/contributor/2983/paulmorriss
https://riptutorial.com/contributor/2345523/proprius
https://riptutorial.com/contributor/2483080/rahulhp
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1011227/sagism
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/717600/sirajus-salayhin
https://riptutorial.com/contributor/717600/sirajus-salayhin
https://riptutorial.com/contributor/1747069/suku
https://riptutorial.com/contributor/145279/will
https://riptutorial.com/contributor/3645227/surfthecity
https://riptutorial.com/contributor/3663705/aldo
https://riptutorial.com/contributor/2263652/b8vrede
https://riptutorial.com/contributor/390738/joel3000
https://riptutorial.com/contributor/232794/sardathrion
https://riptutorial.com/contributor/3627387/sardorbek-imomaliev
https://riptutorial.com/contributor/30038/vlad-bezden
https://riptutorial.com/contributor/5306152/alessandro-trinca-tornidor
https://riptutorial.com/contributor/5996838/chaotictwist
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/667648/dair
https://riptutorial.com/contributor/7569847/doratheexplorer0911
https://riptutorial.com/contributor/3025556/emolga
https://riptutorial.com/contributor/122978/greut
https://riptutorial.com/contributor/1620792/iankit
https://riptutorial.com/contributor/4667934/jgreenwell
https://riptutorial.com/contributor/3001761/jonrsharpe
https://riptutorial.com/contributor/4340450/kefkius
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/3264217/mattew-whitt
https://riptutorial.com/contributor/5393381/mseifert
https://riptutorial.com/contributor/3398583/muddyfish
https://riptutorial.com/contributor/1672995/mukunda-modell
https://riptutorial.com/contributor/3424423/nearoo
https://riptutorial.com/contributor/7605829/nemo
https://riptutorial.com/contributor/3775493/nuno-andre
https://riptutorial.com/contributor/958624/pasha
https://riptutorial.com/contributor/875915/rob-bednark
https://riptutorial.com/contributor/4177876/seenu-s
https://riptutorial.com/contributor/4095334/shreyash-s-sarnayak
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/3294035/stuxcrystal
https://riptutorial.com/contributor/3655268/suhas-k
https://riptutorial.com/contributor/4385319/technusm1
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/785541/wladimir-palant
https://riptutorial.com/contributor/389289/zvone
https://riptutorial.com/contributor/3754548/zenlc2000
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/5284676/iancnorden
https://riptutorial.com/contributor/344286/wayne-werner
https://riptutorial.com/contributor/4052384/anthony-pham
https://riptutorial.com/contributor/5018771/busyant
https://riptutorial.com/contributor/3946766/matsjoyce
https://riptutorial.com/contributor/4201963/ravigadila
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/205521/thomas-ahle
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/353839/bbayles
https://riptutorial.com/contributor/1925083/cizixs
https://riptutorial.com/contributor/7605829/nemo
https://riptutorial.com/contributor/4531270/pylang
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/2596515/charul
https://riptutorial.com/contributor/1718122/denvaar
https://riptutorial.com/contributor/4271125/djaszczurowski
https://riptutorial.com/contributor/166067/amir-rachum
https://riptutorial.com/contributor/4052384/anthony-pham
https://riptutorial.com/contributor/1757964/aperson
https://riptutorial.com/contributor/3160466/artofcode
https://riptutorial.com/contributor/252218/boppreh
https://riptutorial.com/contributor/790387/burhan-khalid
https://riptutorial.com/contributor/3254859/chris-mueller
https://riptutorial.com/contributor/1925083/cizixs
https://riptutorial.com/contributor/3462319/depperm
https://riptutorial.com/contributor/3005188/ffisegydd
https://riptutorial.com/contributor/722121/gareth-latty
https://riptutorial.com/contributor/5943150/guy
https://riptutorial.com/contributor/7205344/helpful
https://riptutorial.com/contributor/1917313/ibelieve
https://riptutorial.com/contributor/1391671/igor-raush
https://riptutorial.com/contributor/1058671/infinity
https://riptutorial.com/contributor/6627323/james
https://riptutorial.com/contributor/4667934/jgreenwell
https://riptutorial.com/contributor/3001761/jonrsharpe
https://riptutorial.com/contributor/6236632/karsten-7-
https://riptutorial.com/contributor/943010/kdopen
https://riptutorial.com/contributor/798684/machine-yearning
https://riptutorial.com/contributor/798684/machine-yearning
https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/3078304/mattgathu
https://riptutorial.com/contributor/833530/mechanic
https://riptutorial.com/contributor/5393381/mseifert
https://riptutorial.com/contributor/3398583/muddyfish
https://riptutorial.com/contributor/2111584/nathan
https://riptutorial.com/contributor/5413116/nlsdfnbch
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/4285679/ronrest
https://riptutorial.com/contributor/1783914/roy-iacob
https://riptutorial.com/contributor/5113071/shawn-mehan


Mehan, Simplans, SuperBiasedMan, TehTris, Valentin Lorentz
, viveksyngh, Xavier Combelle

53
Difference between 
Module and Package

DeepSpace, Simplans, tjohnson

54 Distribution
Alessandro Trinca Tornidor, JGreenwell, metahost, 
Pigman168, RamenChef, Stephen Leppik

55 Django code_geek, orvi

56
Dynamic code 
execution with `exec` 
and `eval`

Antti Haapala, Ilja Everilä

57 Enum Andy, Elazar, evuez, Martijn Pieters, techydesigner

58 Exceptions

Adrian Antunez, Alessandro Trinca Tornidor, Alfe, Andy, 
Benjamin Hodgson, Brian Rodriguez, BusyAnt, Claudiu, driax, 
Elazar, flazzarini, ghostarbeiter, Ilia Barahovski, J F, Marco 
Pashkov, muddyfish, noɥʇʎԀʎzɐɹƆ, Paul Weaver, Rahul Nair, 
RamenChef, Shawn Mehan, Shiven, Shkelqim Memolla, 
Simplans, Slickytail, Stephen Leppik, Sudip Bhandari, 
SuperBiasedMan, user2314737

59 Exponentiation
Anthony Pham, intboolstring, jtbandes, Luke Taylor, MSeifert, 
Pasha, supersam654

60 Files & Folders I/O

Ajean, Anthony Pham, avb, Benjamin Hodgson, Bharel, 
Charles, crhodes, David Cullen, Dov, Esteis, ilse2005, isvforall
, jfsturtz, Justin, Kevin Brown, mattgathu, MSeifert, nlsdfnbch, 
Ozair Kafray, PYPL, pzp, RamenChef, Ronen Ness, rrao, 
Serenity, Simplans, SuperBiasedMan, Tasdik Rahman, 
Thomas Gerot, Umibozu, user2314737, Will, WombatPM, 
xgord

61 Filter APerson, cfi, J Atkin, MSeifert, rajah9, SuperBiasedMan

62 Flask Stephen Leppik, Thomas Gerot

63
Functional 
Programming in 
Python

Imran Bughio, mvis89, Rednivrug

Adriano, Akshat Mahajan, AlexV, Andy, Andy Hayden, 
Anthony Pham, Arkady, B8vrede, Benjamin Hodgson, btel, 
CamelBackNotation, Camsbury, Chandan Purohit, 
ChaoticTwist, Charlie H, Chris Larson, Community, D. Alveno, 
danidee, DawnPaladin, Delgan, duan, duckman_1991, elegent

64 Functions

https://riptutorial.com/ 962

https://riptutorial.com/contributor/5113071/shawn-mehan
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/2193134/tehtris
https://riptutorial.com/contributor/539465/valentin-lorentz
https://riptutorial.com/contributor/2798036/viveksyngh
https://riptutorial.com/contributor/128629/xavier-combelle
https://riptutorial.com/contributor/1453822/deepspace
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/5504760/tjohnson
https://riptutorial.com/contributor/5306152/alessandro-trinca-tornidor
https://riptutorial.com/contributor/4667934/jgreenwell
https://riptutorial.com/contributor/4626943/metahost
https://riptutorial.com/contributor/5370534/pigman168
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/5504169/code-geek
https://riptutorial.com/contributor/3654356/orvi
https://riptutorial.com/contributor/918959/antti-haapala
https://riptutorial.com/contributor/2681632/ilja-everila
https://riptutorial.com/contributor/189134/andy
https://riptutorial.com/contributor/2289509/elazar
https://riptutorial.com/contributor/653378/evuez
https://riptutorial.com/contributor/100297/martijn-pieters
https://riptutorial.com/contributor/6309608/techydesigner
https://riptutorial.com/contributor/1086326/adrian-antunez
https://riptutorial.com/contributor/5306152/alessandro-trinca-tornidor
https://riptutorial.com/contributor/1281485/alfe
https://riptutorial.com/contributor/189134/andy
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/4859885/brian-rodriguez
https://riptutorial.com/contributor/5018771/busyant
https://riptutorial.com/contributor/15055/claudiu
https://riptutorial.com/contributor/72476/driax
https://riptutorial.com/contributor/2289509/elazar
https://riptutorial.com/contributor/198720/flazzarini
https://riptutorial.com/contributor/6274563/ghostarbeiter
https://riptutorial.com/contributor/404099/ilia-barahovski
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/2210287/marco-pashkov
https://riptutorial.com/contributor/2210287/marco-pashkov
https://riptutorial.com/contributor/3398583/muddyfish
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/4017552/paul-weaver
https://riptutorial.com/contributor/1060034/rahul-nair
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5113071/shawn-mehan
https://riptutorial.com/contributor/3543416/shiven
https://riptutorial.com/contributor/8082088/shkelqim-memolla
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/4220371/slickytail
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/4589003/sudip-bhandari
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/4052384/anthony-pham
https://riptutorial.com/contributor/4490559/intboolstring
https://riptutorial.com/contributor/23649/jtbandes
https://riptutorial.com/contributor/4414003/luke-taylor
https://riptutorial.com/contributor/5393381/mseifert
https://riptutorial.com/contributor/958624/pasha
https://riptutorial.com/contributor/868533/supersam654
https://riptutorial.com/contributor/3100515/ajean
https://riptutorial.com/contributor/4052384/anthony-pham
https://riptutorial.com/contributor/3095014/avb
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/1658617/bharel
https://riptutorial.com/contributor/5679756/charles
https://riptutorial.com/contributor/2039976/crhodes
https://riptutorial.com/contributor/3657941/david-cullen
https://riptutorial.com/contributor/105717/dov
https://riptutorial.com/contributor/473899/esteis
https://riptutorial.com/contributor/1762988/ilse2005
https://riptutorial.com/contributor/439963/isvforall
https://riptutorial.com/contributor/4798403/jfsturtz
https://riptutorial.com/contributor/6412179/justin
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/3078304/mattgathu
https://riptutorial.com/contributor/5393381/mseifert
https://riptutorial.com/contributor/5413116/nlsdfnbch
https://riptutorial.com/contributor/365188/ozair-kafray
https://riptutorial.com/contributor/1984756/pypl
https://riptutorial.com/contributor/3155933/pzp
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1134649/ronen-ness
https://riptutorial.com/contributor/7006469/rrao
https://riptutorial.com/contributor/2666859/serenity
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/3834059/tasdik-rahman
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/4538495/umibozu
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/4107956/will
https://riptutorial.com/contributor/294836/wombatpm
https://riptutorial.com/contributor/2487336/xgord
https://riptutorial.com/contributor/1757964/aperson
https://riptutorial.com/contributor/923794/cfi
https://riptutorial.com/contributor/4683264/j-atkin
https://riptutorial.com/contributor/5393381/mseifert
https://riptutorial.com/contributor/509840/rajah9
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/2697954/imran-bughio
https://riptutorial.com/contributor/6210970/mvis89
https://riptutorial.com/contributor/7564323/rednivrug
https://riptutorial.com/contributor/2428123/adriano
https://riptutorial.com/contributor/2271269/akshat-mahajan
https://riptutorial.com/contributor/248723/alexv
https://riptutorial.com/contributor/189134/andy
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/4052384/anthony-pham
https://riptutorial.com/contributor/1626/arkady
https://riptutorial.com/contributor/2263652/b8vrede
https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/74342/btel
https://riptutorial.com/contributor/4368946/camelbacknotation
https://riptutorial.com/contributor/3933810/camsbury
https://riptutorial.com/contributor/4618272/chandan-purohit
https://riptutorial.com/contributor/5996838/chaotictwist
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/214150/chris-larson
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5574466/d--alveno
https://riptutorial.com/contributor/3734244/danidee
https://riptutorial.com/contributor/1805453/dawnpaladin
https://riptutorial.com/contributor/2291710/delgan
https://riptutorial.com/contributor/4149826/duan
https://riptutorial.com/contributor/2433774/duckman-1991
https://riptutorial.com/contributor/4594443/elegent


, Elodin, Emma, EsmaeelE, Ffisegydd, Gal Dreiman, 
ghostarbeiter, Hurkyl, J F, James, Jeffrey Lin, JGreenwell, Jim 
Fasarakis Hilliard, jkitchen, Jossie Calderon, Justin, Kevin 
Brown, L3viathan, Lee Netherton, Martijn Pieters, Martin 
Thurau, Matt Giltaji, Mike - SMT, Mike Driscoll, MSeifert, 
muddyfish, Murphy4, nd., noɥʇʎԀʎzɐɹƆ, Pasha, pylang, pzp, 
Rahul Nair, Severiano Jaramillo Quintanar, Simplans, Slayther
, Steve Barnes, Steven Maude, SuperBiasedMan, textshell, 
then0rTh, Thomas Gerot, user2314737, user3333708, 
user405, Utsav T, vaultah, Veedrac, Will, Will, zxxz, λuser

65 Functools Module
Alessandro Trinca Tornidor, enrico.bacis, flamenco, 
RamenChef, Shrey Gupta, Simplans, Stephen Leppik, 
StuxCrystal

66 Garbage Collection
bogdanciobanu, Claudiu, Conrad.Dean, Elazar, FazeL, J F, 
James Elderfield, lukess, muddyfish, Sam Whited, SiggyF, 
Stephen Leppik, SuperBiasedMan, Xavier Combelle

67 Generators

2Cubed, Ahsanul Haque, Akshat Mahajan, Andy Hayden, 
Arthur Dent, ArtOfCode, Augustin, Barry, Chankey Pathak, 
Claudiu, CodenameLambda, Community, deeenes, Delgan, 
Devesh Saini, Elazar, ericmarkmartin, Ernir, ForceBru, Igor 
Raush, Ilia Barahovski, J0HN, jackskis, Jim Fasarakis Hilliard, 
Juan T, Julius Bullinger, Karl Knechtel, Kevin Brown, Kronen, 
Luc M, Lyndsy Simon, machine yearning, Martijn Pieters, Matt 
Giltaji, max, MSeifert, nlsdfnbch, Pasha, Pedro, PsyKzz, pzp, 
satsumas, sevenforce, Signal, Simplans, Slayther, StuxCrystal
, tversteeg, Valentin Lorentz, Will, William Merrill, xtreak, Zaid 
Ajaj, zarak, λuser

68 getting start with GZip orvi

69 graph-tool xiaoyi

70 groupby() Parousia, Thomas Gerot

71 hashlib Mark Omo, xiaoyi

72 Heapq ettanany

73 Hidden Features

Aaron Hall, Akshat Mahajan, Anthony Pham, Antti Haapala, 
Byte Commander, dermen, Elazar, Ellis, ericmarkmartin, Fermi 
paradox, Ffisegydd, japborst, Jim Fasarakis Hilliard, 
jonrsharpe, Justin, kramer65, Lafexlos, LDP, Morgan Thrapp, 
muddyfish, nico, OrangeTux, pcurry, Pythonista, Selcuk, 
Serenity, Tejas Jadhav, tobias_k, Vlad Shcherbina, Will

74 HTML Parsing alecxe, talhasch

https://riptutorial.com/ 963

https://riptutorial.com/contributor/7171962/elodin
https://riptutorial.com/contributor/422333/emma
https://riptutorial.com/contributor/7508077/esmaeele
https://riptutorial.com/contributor/3005188/ffisegydd
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/6274563/ghostarbeiter
https://riptutorial.com/contributor/1084944/hurkyl
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/6627323/james
https://riptutorial.com/contributor/1440897/jeffrey-lin
https://riptutorial.com/contributor/4667934/jgreenwell
https://riptutorial.com/contributor/4952130/jim-fasarakis-hilliard
https://riptutorial.com/contributor/4952130/jim-fasarakis-hilliard
https://riptutorial.com/contributor/639792/jkitchen
https://riptutorial.com/contributor/2124148/jossie-calderon
https://riptutorial.com/contributor/6412179/justin
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/1016216/l3viathan
https://riptutorial.com/contributor/341459/lee-netherton
https://riptutorial.com/contributor/100297/martijn-pieters
https://riptutorial.com/contributor/20247/martin-thurau
https://riptutorial.com/contributor/20247/martin-thurau
https://riptutorial.com/contributor/3586162/matt-giltaji
https://riptutorial.com/contributor/7475225/mike---smt
https://riptutorial.com/contributor/393194/mike-driscoll
https://riptutorial.com/contributor/5393381/mseifert
https://riptutorial.com/contributor/3398583/muddyfish
https://riptutorial.com/contributor/3200367/murphy4
https://riptutorial.com/contributor/112964/nd-
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/958624/pasha
https://riptutorial.com/contributor/4531270/pylang
https://riptutorial.com/contributor/3155933/pzp
https://riptutorial.com/contributor/1060034/rahul-nair
https://riptutorial.com/contributor/5428997/severiano-jaramillo-quintanar
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/4936137/slayther
https://riptutorial.com/contributor/2298070/steve-barnes
https://riptutorial.com/contributor/1678416/steven-maude
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/4973666/textshell
https://riptutorial.com/contributor/3838615/then0rth
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/3333708/user3333708
https://riptutorial.com/contributor/929623/user405
https://riptutorial.com/contributor/2233336/utsav-t
https://riptutorial.com/contributor/2301450/vaultah
https://riptutorial.com/contributor/1763356/veedrac
https://riptutorial.com/contributor/145279/will
https://riptutorial.com/contributor/4107956/will
https://riptutorial.com/contributor/6813176/zxxz
https://riptutorial.com/contributor/6541288/-user
https://riptutorial.com/contributor/6541288/-user
https://riptutorial.com/contributor/5306152/alessandro-trinca-tornidor
https://riptutorial.com/contributor/1003123/enrico-bacis
https://riptutorial.com/contributor/2736671/flamenco
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1543403/shrey-gupta
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/3294035/stuxcrystal
https://riptutorial.com/contributor/1513091/bogdanciobanu
https://riptutorial.com/contributor/15055/claudiu
https://riptutorial.com/contributor/656833/conrad-dean
https://riptutorial.com/contributor/2289509/elazar
https://riptutorial.com/contributor/2099608/fazel
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/1488801/james-elderfield
https://riptutorial.com/contributor/3606232/lukess
https://riptutorial.com/contributor/3398583/muddyfish
https://riptutorial.com/contributor/1087001/sam-whited
https://riptutorial.com/contributor/386327/siggyf
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/128629/xavier-combelle
https://riptutorial.com/contributor/6119465/2cubed
https://riptutorial.com/contributor/5019169/ahsanul-haque
https://riptutorial.com/contributor/2271269/akshat-mahajan
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/3735221/arthur-dent
https://riptutorial.com/contributor/3160466/artofcode
https://riptutorial.com/contributor/4304503/augustin
https://riptutorial.com/contributor/2069064/barry
https://riptutorial.com/contributor/257635/chankey-pathak
https://riptutorial.com/contributor/15055/claudiu
https://riptutorial.com/contributor/4696955/codenamelambda
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/854988/deeenes
https://riptutorial.com/contributor/2291710/delgan
https://riptutorial.com/contributor/2419921/devesh-saini
https://riptutorial.com/contributor/2289509/elazar
https://riptutorial.com/contributor/3777633/ericmarkmartin
https://riptutorial.com/contributor/1675015/ernir
https://riptutorial.com/contributor/4354477/forcebru
https://riptutorial.com/contributor/1391671/igor-raush
https://riptutorial.com/contributor/1391671/igor-raush
https://riptutorial.com/contributor/404099/ilia-barahovski
https://riptutorial.com/contributor/882918/j0hn
https://riptutorial.com/contributor/3538220/jackskis
https://riptutorial.com/contributor/4952130/jim-fasarakis-hilliard
https://riptutorial.com/contributor/7237719/juan-t
https://riptutorial.com/contributor/603111/julius-bullinger
https://riptutorial.com/contributor/523612/karl-knechtel
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/216161/kronen
https://riptutorial.com/contributor/3047493/luc-m
https://riptutorial.com/contributor/1336699/lyndsy-simon
https://riptutorial.com/contributor/798684/machine-yearning
https://riptutorial.com/contributor/100297/martijn-pieters
https://riptutorial.com/contributor/3586162/matt-giltaji
https://riptutorial.com/contributor/3586162/matt-giltaji
https://riptutorial.com/contributor/1753545/max
https://riptutorial.com/contributor/5393381/mseifert
https://riptutorial.com/contributor/5413116/nlsdfnbch
https://riptutorial.com/contributor/958624/pasha
https://riptutorial.com/contributor/406776/pedro
https://riptutorial.com/contributor/211081/psykzz
https://riptutorial.com/contributor/3155933/pzp
https://riptutorial.com/contributor/3328833/satsumas
https://riptutorial.com/contributor/1091453/sevenforce
https://riptutorial.com/contributor/5724920/signal
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/4936137/slayther
https://riptutorial.com/contributor/3294035/stuxcrystal
https://riptutorial.com/contributor/1350184/tversteeg
https://riptutorial.com/contributor/539465/valentin-lorentz
https://riptutorial.com/contributor/4107956/will
https://riptutorial.com/contributor/967882/william-merrill
https://riptutorial.com/contributor/2610955/xtreak
https://riptutorial.com/contributor/2705530/zaid-ajaj
https://riptutorial.com/contributor/2705530/zaid-ajaj
https://riptutorial.com/contributor/5912399/zarak
https://riptutorial.com/contributor/6541288/-user
https://riptutorial.com/contributor/6541288/-user
https://riptutorial.com/contributor/3654356/orvi
https://riptutorial.com/contributor/6364089/xiaoyi
https://riptutorial.com/contributor/2689562/parousia
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/4492611/mark-omo
https://riptutorial.com/contributor/6364089/xiaoyi
https://riptutorial.com/contributor/4575071/ettanany
https://riptutorial.com/contributor/541136/aaron-hall
https://riptutorial.com/contributor/2271269/akshat-mahajan
https://riptutorial.com/contributor/4052384/anthony-pham
https://riptutorial.com/contributor/918959/antti-haapala
https://riptutorial.com/contributor/4464570/byte-commander
https://riptutorial.com/contributor/2077270/dermen
https://riptutorial.com/contributor/2289509/elazar
https://riptutorial.com/contributor/5903382/ellis
https://riptutorial.com/contributor/3777633/ericmarkmartin
https://riptutorial.com/contributor/4230591/fermi-paradox
https://riptutorial.com/contributor/4230591/fermi-paradox
https://riptutorial.com/contributor/3005188/ffisegydd
https://riptutorial.com/contributor/2489446/japborst
https://riptutorial.com/contributor/4952130/jim-fasarakis-hilliard
https://riptutorial.com/contributor/3001761/jonrsharpe
https://riptutorial.com/contributor/6412179/justin
https://riptutorial.com/contributor/1650012/kramer65
https://riptutorial.com/contributor/3134251/lafexlos
https://riptutorial.com/contributor/6622517/ldp
https://riptutorial.com/contributor/3059812/morgan-thrapp
https://riptutorial.com/contributor/3398583/muddyfish
https://riptutorial.com/contributor/1524592/nico
https://riptutorial.com/contributor/1073222/orangetux
https://riptutorial.com/contributor/1339820/pcurry
https://riptutorial.com/contributor/5230901/pythonista
https://riptutorial.com/contributor/2011147/selcuk
https://riptutorial.com/contributor/2666859/serenity
https://riptutorial.com/contributor/4330559/tejas-jadhav
https://riptutorial.com/contributor/1639625/tobias-k
https://riptutorial.com/contributor/6335232/vlad-shcherbina
https://riptutorial.com/contributor/145279/will
https://riptutorial.com/contributor/771848/alecxe
https://riptutorial.com/contributor/3720614/talhasch


75 Idioms
Benjamin Hodgson, Elazar, Faiz Halde, J F, Lee Netherton, 
loading..., Mister Mister

76 ijson Prem Narain

77

Immutable 
datatypes(int, float, 
str, tuple and 
frozensets)

Alessandro Trinca Tornidor, FazeL, Ganesh K, RamenChef, 
Stephen Leppik

78 Importing modules

angussidney, Anthony Pham, Antonis Kalou, Brett Cannon, 
BusyAnt, Casebash, Christian Ternus, Community, 
Conrad.Dean, Daniel, Dartmouth, Esteis, Ffisegydd, FMc, 
Gerard Roche, Gideon Buckwalter, J F, JGreenwell, Kinifwyne, 
languitar, Lex Scarisbrick, Matt Giltaji, MSeifert, niyasc, 
nlsdfnbch, Paulo Freitas, pylang, Rahul Nair, Saiful Azad, 
Serenity, Simplans, StardustGogeta, StuxCrystal, 
SuperBiasedMan, techydesigner, the_cat_lady, Thomas Gerot
, Tony Meyer, Tushortz, user2683246, Valentin Lorentz, Valor 
Naram, vaultah, wnnmaw

671620616, Abhishek Kumar, Akshit Soota, Alex Gaynor, 
Allan Burleson, Alleo, Amarpreet Singh, Andy Hayden, Ani 
Menon, Antoine Bolvy, AntsySysHack, Antti Haapala, Antwan, 
arekolek, Ares, asmeurer, B8vrede, Bakuriu, Bharel, Bhargav 
Rao, bignose, bitchaser, Bluethon, Cache Staheli, Cameron 
Gagnon, Charles, Charlie H, Chris Sprague, Claudiu, Clayton 
Wahlstrom, cʟᴅsᴇᴇᴅ, Colin Yang, Cometsong, Community, 
Conrad.Dean, danidee, Daniel Stradowski, Darth Shadow, 
Dartmouth, Dave J, David Cullen, David Heyman, deeenes, 
DeepSpace, Delgan, DoHe, Duh-Wayne-101, Dunno, 
dwanderson, Ekeyme Mo, Elazar, enderland, enrico.bacis, 
erewok, ericdwang, ericmarkmartin, Ernir, ettanany, 
Everyone_Else, evuez, Franck Dernoncourt, Fred Barclay, 
garg10may, Gavin, geoffspear, ghostarbeiter, GoatsWearHats, 
H. Pauwelyn, Haohu Shen, holdenweb, iScrE4m, Iván C., J F, 
J. C. Leitão, James Elderfield, James Thiele, jarondl, jedwards
, Jeffrey Lin, JGreenwell, Jim Fasarakis Hilliard, Jimmy Song, 
John Slegers, Jojodmo, jonrsharpe, Josh, Juan T, Justin, 
Justin M. Ucar, Kabie, kamalbanga, Karl Knechtel, Kevin 
Brown, King's jester, Kunal Marwaha, Lafexlos, lenz, linkdd, 
l'L'l, Mahdi, Martijn Pieters, Martin Thoma, masnun, Matt, Matt 
Dodge, Matt Rowland, Mattew Whitt, Max Feng, mgwilliams, 
Michael Recachinas, mkj, mnoronha, Moinuddin Quadri, 
muddyfish, Nathaniel Ford, niemmi, niyasc, noɥʇʎԀʎzɐɹƆ, 
OrangeTux, Pasha, Paul Weaver, Paulo Freitas, pcurry, 
pktangyue, poppie, pylang, python273, Pythonista, RahulHP, 

79
Incompatibilities 
moving from Python 2 
to Python 3

https://riptutorial.com/ 964

https://riptutorial.com/contributor/1523776/benjamin-hodgson
https://riptutorial.com/contributor/2289509/elazar
https://riptutorial.com/contributor/2708169/faiz-halde
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/341459/lee-netherton
https://riptutorial.com/contributor/6623266/loading---
https://riptutorial.com/contributor/2612322/mister-mister
https://riptutorial.com/contributor/6343860/prem-narain
https://riptutorial.com/contributor/5306152/alessandro-trinca-tornidor
https://riptutorial.com/contributor/2099608/fazel
https://riptutorial.com/contributor/5671364/ganesh-k
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/4622463/angussidney
https://riptutorial.com/contributor/4052384/anthony-pham
https://riptutorial.com/contributor/2040340/antonis-kalou
https://riptutorial.com/contributor/236574/brett-cannon
https://riptutorial.com/contributor/5018771/busyant
https://riptutorial.com/contributor/165495/casebash
https://riptutorial.com/contributor/2797476/christian-ternus
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/656833/conrad-dean
https://riptutorial.com/contributor/3195451/daniel
https://riptutorial.com/contributor/4106184/dartmouth
https://riptutorial.com/contributor/473899/esteis
https://riptutorial.com/contributor/3005188/ffisegydd
https://riptutorial.com/contributor/55857/fmc
https://riptutorial.com/contributor/934739/gerard-roche
https://riptutorial.com/contributor/6487011/gideon-buckwalter
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/4667934/jgreenwell
https://riptutorial.com/contributor/6859882/kinifwyne
https://riptutorial.com/contributor/283649/languitar
https://riptutorial.com/contributor/6084928/lex-scarisbrick
https://riptutorial.com/contributor/3586162/matt-giltaji
https://riptutorial.com/contributor/5393381/mseifert
https://riptutorial.com/contributor/1520248/niyasc
https://riptutorial.com/contributor/5413116/nlsdfnbch
https://riptutorial.com/contributor/222758/paulo-freitas
https://riptutorial.com/contributor/4531270/pylang
https://riptutorial.com/contributor/1060034/rahul-nair
https://riptutorial.com/contributor/1919324/saiful-azad
https://riptutorial.com/contributor/2666859/serenity
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/5732397/stardustgogeta
https://riptutorial.com/contributor/3294035/stuxcrystal
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/6309608/techydesigner
https://riptutorial.com/contributor/326238/the-cat-lady
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/4966/tony-meyer
https://riptutorial.com/contributor/4934984/tushortz
https://riptutorial.com/contributor/2683246/user2683246
https://riptutorial.com/contributor/539465/valentin-lorentz
https://riptutorial.com/contributor/6734503/valor-naram
https://riptutorial.com/contributor/6734503/valor-naram
https://riptutorial.com/contributor/2301450/vaultah
https://riptutorial.com/contributor/2084656/wnnmaw
https://riptutorial.com/contributor/4612410/671620616
https://riptutorial.com/contributor/7121181/abhishek-kumar
https://riptutorial.com/contributor/705471/akshit-soota
https://riptutorial.com/contributor/37181/alex-gaynor
https://riptutorial.com/contributor/5703771/allan-burleson
https://riptutorial.com/contributor/498892/alleo
https://riptutorial.com/contributor/2301434/amarpreet-singh
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/2367848/antoine-bolvy
https://riptutorial.com/contributor/1183593/antsysyshack
https://riptutorial.com/contributor/918959/antti-haapala
https://riptutorial.com/contributor/106287/antwan
https://riptutorial.com/contributor/1916449/arekolek
https://riptutorial.com/contributor/2887760/ares
https://riptutorial.com/contributor/161801/asmeurer
https://riptutorial.com/contributor/2263652/b8vrede
https://riptutorial.com/contributor/510937/bakuriu
https://riptutorial.com/contributor/1658617/bharel
https://riptutorial.com/contributor/4099593/bhargav-rao
https://riptutorial.com/contributor/4099593/bhargav-rao
https://riptutorial.com/contributor/70157/bignose
https://riptutorial.com/contributor/4350985/bitchaser
https://riptutorial.com/contributor/4757521/bluethon
https://riptutorial.com/contributor/4816518/cache-staheli
https://riptutorial.com/contributor/2319588/cameron-gagnon
https://riptutorial.com/contributor/2319588/cameron-gagnon
https://riptutorial.com/contributor/5679756/charles
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/4009370/chris-sprague
https://riptutorial.com/contributor/15055/claudiu
https://riptutorial.com/contributor/5645103/clayton-wahlstrom
https://riptutorial.com/contributor/5645103/clayton-wahlstrom
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/5478848/colin-yang
https://riptutorial.com/contributor/1600630/cometsong
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/656833/conrad-dean
https://riptutorial.com/contributor/3734244/danidee
https://riptutorial.com/contributor/5449709/daniel-stradowski
https://riptutorial.com/contributor/3476387/darth-shadow
https://riptutorial.com/contributor/4106184/dartmouth
https://riptutorial.com/contributor/2395605/dave-j
https://riptutorial.com/contributor/3657941/david-cullen
https://riptutorial.com/contributor/6051861/david-heyman
https://riptutorial.com/contributor/854988/deeenes
https://riptutorial.com/contributor/1453822/deepspace
https://riptutorial.com/contributor/2291710/delgan
https://riptutorial.com/contributor/3220656/dohe
https://riptutorial.com/contributor/4356188/duh-wayne-101
https://riptutorial.com/contributor/2266261/dunno
https://riptutorial.com/contributor/2272638/dwanderson
https://riptutorial.com/contributor/4988506/ekeyme-mo
https://riptutorial.com/contributor/2289509/elazar
https://riptutorial.com/contributor/1048539/enderland
https://riptutorial.com/contributor/1003123/enrico-bacis
https://riptutorial.com/contributor/1748754/erewok
https://riptutorial.com/contributor/1944947/ericdwang
https://riptutorial.com/contributor/3777633/ericmarkmartin
https://riptutorial.com/contributor/1675015/ernir
https://riptutorial.com/contributor/4575071/ettanany
https://riptutorial.com/contributor/3238611/everyone-else
https://riptutorial.com/contributor/653378/evuez
https://riptutorial.com/contributor/395857/franck-dernoncourt
https://riptutorial.com/contributor/4588964/fred-barclay
https://riptutorial.com/contributor/3151415/garg10may
https://riptutorial.com/contributor/1468125/gavin
https://riptutorial.com/contributor/110707/geoffspear
https://riptutorial.com/contributor/6274563/ghostarbeiter
https://riptutorial.com/contributor/5299938/goatswearhats
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/6844098/haohu-shen
https://riptutorial.com/contributor/146073/holdenweb
https://riptutorial.com/contributor/5616110/iscre4m
https://riptutorial.com/contributor/6597761/ivan-c-
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/931303/j--c--leitao
https://riptutorial.com/contributor/1488801/james-elderfield
https://riptutorial.com/contributor/530701/james-thiele
https://riptutorial.com/contributor/386899/jarondl
https://riptutorial.com/contributor/736937/jedwards
https://riptutorial.com/contributor/1440897/jeffrey-lin
https://riptutorial.com/contributor/4667934/jgreenwell
https://riptutorial.com/contributor/4952130/jim-fasarakis-hilliard
https://riptutorial.com/contributor/1721244/jimmy-song
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/2767207/jojodmo
https://riptutorial.com/contributor/3001761/jonrsharpe
https://riptutorial.com/contributor/5951320/josh
https://riptutorial.com/contributor/7237719/juan-t
https://riptutorial.com/contributor/6412179/justin
https://riptutorial.com/contributor/4028130/justin-m--ucar
https://riptutorial.com/contributor/260985/kabie
https://riptutorial.com/contributor/2436425/kamalbanga
https://riptutorial.com/contributor/523612/karl-knechtel
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/6547518/king-s-jester
https://riptutorial.com/contributor/6623013/kunal-marwaha
https://riptutorial.com/contributor/3134251/lafexlos
https://riptutorial.com/contributor/1698431/lenz
https://riptutorial.com/contributor/1020897/linkdd
https://riptutorial.com/contributor/499581/l-l-l
https://riptutorial.com/contributor/3349443/mahdi
https://riptutorial.com/contributor/100297/martijn-pieters
https://riptutorial.com/contributor/562769/martin-thoma
https://riptutorial.com/contributor/301107/masnun
https://riptutorial.com/contributor/2641576/matt
https://riptutorial.com/contributor/1222076/matt-dodge
https://riptutorial.com/contributor/1222076/matt-dodge
https://riptutorial.com/contributor/2856868/matt-rowland
https://riptutorial.com/contributor/3264217/mattew-whitt
https://riptutorial.com/contributor/6501627/max-feng
https://riptutorial.com/contributor/682646/mgwilliams
https://riptutorial.com/contributor/4760801/michael-recachinas
https://riptutorial.com/contributor/293494/mkj
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/2063361/moinuddin-quadri
https://riptutorial.com/contributor/3398583/muddyfish
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/5043793/niemmi
https://riptutorial.com/contributor/1520248/niyasc
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1073222/orangetux
https://riptutorial.com/contributor/958624/pasha
https://riptutorial.com/contributor/4017552/paul-weaver
https://riptutorial.com/contributor/222758/paulo-freitas
https://riptutorial.com/contributor/1339820/pcurry
https://riptutorial.com/contributor/1076889/pktangyue
https://riptutorial.com/contributor/3153312/poppie
https://riptutorial.com/contributor/4531270/pylang
https://riptutorial.com/contributor/7075828/python273
https://riptutorial.com/contributor/5230901/pythonista
https://riptutorial.com/contributor/2483080/rahulhp


Rakitić, RamenChef, Rauf, René G, rfkortekaas, rrao, Ryan, 
sblair, Scott Mermelstein, Selcuk, Serenity, Seth M. Larson, 
ShadowRanger, Simplans, Slayther, solarc, sricharan, Steven 
Hewitt, sth, SuperBiasedMan, Tadhg McDonald-Jensen, 
techydesigner, Thomas Gerot, Tim, tobias_k, Tyler, 
tyteen4a03, user2314737, user312016, Valentin Lorentz, 
Veedrac, Ven, Vinayak, Vlad Shcherbina, VPfB, WeizhongTu, 
Wieland, wim, Wolf, Wombatz, xtreak, zarak, zcb, zopieux, 
zurfyx, zvezda

80 Indentation
Alessandro Trinca Tornidor, depperm, J F, JGreenwell, Matt 
Giltaji, Pasha, RamenChef, Stephen Leppik

81 Indexing and Slicing

Alleo, amblina, Antoine Bolvy, Bonifacio2, Ffisegydd, Guy, Igor 
Raush, Jonatan, Martec, MSeifert, MUSR, pzp, RahulHP, Reut 
Sharabani, SashaZd, Sayed M Ahamad, SuperBiasedMan, 
theheadofabroom, user2314737, yurib

82
Input, Subset and 
Output External Data 
Files using Pandas

Mark Miller

83
Introduction to 
RabbitMQ using 
AMQPStorm

eandersson

84
IoT Programming with 
Python and 
Raspberry PI

dhimanta

85 Iterables and Iterators 4444, Conrad.Dean, demonplus, Ilia Barahovski, Pythonista

86 Itertools Module

ADITYA, Alessandro Trinca Tornidor, Andy Hayden, balki, 
bpachev, Ffisegydd, jackskis, Julien Spronck, Kevin Brown, 
machine yearning, nlsdfnbch, pylang, RahulHP, RamenChef, 
Simplans, Stephen Leppik, Symmitchry, Wickramaranga, 
wnnmaw

87 JSON Module
Indradhanush Gupta, Leo, Martijn Pieters, pzp, 
theheadofabroom, Underyx, Wolfgang

88
kivy - Cross-platform 
Python Framework 
for NUI Development

dhimanta

89 Linked List Node orvi

90 Linked lists Nemo

https://riptutorial.com/ 965

https://riptutorial.com/contributor/6290553/rakitic
https://riptutorial.com/contributor/6290553/rakitic
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3370525/rauf
https://riptutorial.com/contributor/3154996/rene-g
https://riptutorial.com/contributor/2345870/rfkortekaas
https://riptutorial.com/contributor/7006469/rrao
https://riptutorial.com/contributor/707111/ryan
https://riptutorial.com/contributor/57743/sblair
https://riptutorial.com/contributor/1404311/scott-mermelstein
https://riptutorial.com/contributor/2011147/selcuk
https://riptutorial.com/contributor/2666859/serenity
https://riptutorial.com/contributor/5763213/seth-m--larson
https://riptutorial.com/contributor/364696/shadowranger
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/4936137/slayther
https://riptutorial.com/contributor/154762/solarc
https://riptutorial.com/contributor/6660856/sricharan
https://riptutorial.com/contributor/5512090/steven-hewitt
https://riptutorial.com/contributor/5512090/steven-hewitt
https://riptutorial.com/contributor/56338/sth
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/5827215/tadhg-mcdonald-jensen
https://riptutorial.com/contributor/6309608/techydesigner
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/2808510/tim
https://riptutorial.com/contributor/1639625/tobias-k
https://riptutorial.com/contributor/3911459/tyler
https://riptutorial.com/contributor/1049833/tyteen4a03
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/5350498/user312016
https://riptutorial.com/contributor/539465/valentin-lorentz
https://riptutorial.com/contributor/1763356/veedrac
https://riptutorial.com/contributor/1737909/ven
https://riptutorial.com/contributor/1768141/vinayak
https://riptutorial.com/contributor/6335232/vlad-shcherbina
https://riptutorial.com/contributor/5378816/vpfb
https://riptutorial.com/contributor/2714931/weizhongtu
https://riptutorial.com/contributor/307681/wieland
https://riptutorial.com/contributor/674039/wim
https://riptutorial.com/contributor/2932052/wolf
https://riptutorial.com/contributor/4759726/wombatz
https://riptutorial.com/contributor/2610955/xtreak
https://riptutorial.com/contributor/5912399/zarak
https://riptutorial.com/contributor/7181256/zcb
https://riptutorial.com/contributor/180709/zopieux
https://riptutorial.com/contributor/2013580/zurfyx
https://riptutorial.com/contributor/1112852/zvezda
https://riptutorial.com/contributor/5306152/alessandro-trinca-tornidor
https://riptutorial.com/contributor/3462319/depperm
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/4667934/jgreenwell
https://riptutorial.com/contributor/3586162/matt-giltaji
https://riptutorial.com/contributor/3586162/matt-giltaji
https://riptutorial.com/contributor/958624/pasha
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/498892/alleo
https://riptutorial.com/contributor/3759777/amblina
https://riptutorial.com/contributor/2367848/antoine-bolvy
https://riptutorial.com/contributor/1812322/bonifacio2
https://riptutorial.com/contributor/3005188/ffisegydd
https://riptutorial.com/contributor/1226103/guy
https://riptutorial.com/contributor/1391671/igor-raush
https://riptutorial.com/contributor/1391671/igor-raush
https://riptutorial.com/contributor/434943/jonatan
https://riptutorial.com/contributor/3288380/martec
https://riptutorial.com/contributor/5393381/mseifert
https://riptutorial.com/contributor/5546948/musr
https://riptutorial.com/contributor/3155933/pzp
https://riptutorial.com/contributor/2483080/rahulhp
https://riptutorial.com/contributor/948550/reut-sharabani
https://riptutorial.com/contributor/948550/reut-sharabani
https://riptutorial.com/contributor/966247/sashazd
https://riptutorial.com/contributor/6071574/sayed-m-ahamad
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/655372/theheadofabroom
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/249878/yurib
https://riptutorial.com/contributor/1184072/mark-miller
https://riptutorial.com/contributor/408182/eandersson
https://riptutorial.com/contributor/3236045/dhimanta
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/656833/conrad-dean
https://riptutorial.com/contributor/462639/demonplus
https://riptutorial.com/contributor/404099/ilia-barahovski
https://riptutorial.com/contributor/5230901/pythonista
https://riptutorial.com/contributor/6524169/aditya
https://riptutorial.com/contributor/5306152/alessandro-trinca-tornidor
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/463758/balki
https://riptutorial.com/contributor/4317531/bpachev
https://riptutorial.com/contributor/3005188/ffisegydd
https://riptutorial.com/contributor/3538220/jackskis
https://riptutorial.com/contributor/2184364/julien-spronck
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/798684/machine-yearning
https://riptutorial.com/contributor/5413116/nlsdfnbch
https://riptutorial.com/contributor/4531270/pylang
https://riptutorial.com/contributor/2483080/rahulhp
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/515368/symmitchry
https://riptutorial.com/contributor/3977826/wickramaranga
https://riptutorial.com/contributor/2084656/wnnmaw
https://riptutorial.com/contributor/1773961/indradhanush-gupta
https://riptutorial.com/contributor/1728179/leo
https://riptutorial.com/contributor/100297/martijn-pieters
https://riptutorial.com/contributor/3155933/pzp
https://riptutorial.com/contributor/655372/theheadofabroom
https://riptutorial.com/contributor/568855/underyx
https://riptutorial.com/contributor/1979340/wolfgang
https://riptutorial.com/contributor/3236045/dhimanta
https://riptutorial.com/contributor/3654356/orvi
https://riptutorial.com/contributor/7605829/nemo


91 List

Adriano, Alexander, Anthony Pham, Ares, Barry, blueenvelope
, Bosoneando, BusyAnt, Çağatay Uslu, caped114, Chandan 
Purohit, ChaoticTwist, cizixs, Daniel Porteous, Darth Kotik, 
deeenes, Delgan, Elazar, Ellis, Emma, evuez, exhuma, 
Ffisegydd, Flickerlight, Gal Dreiman, ganesh gadila, 
ghostarbeiter, Igor Raush, intboolstring, J F, j3485, jalanb, 
James, James Elderfield, jani, jimsug, jkdev, JNat, jonrsharpe, 
KartikKannapur, Kevin Brown, Lafexlos, LDP, Leo Thumma, 
Luke Taylor, lukewrites, lxer, Majid, Mechanic, MrP01, 
MSeifert, muddyfish, n12312, noɥʇʎԀʎzɐɹƆ, Oz Bar-Shalom, 
Pasha, Pavan Nath, poke, RamenChef, ravigadila, ronrest, 
Serenity, Severiano Jaramillo Quintanar, Shawn Mehan, 
Simplans, sirin, solarc, SuperBiasedMan, textshell, 
The_Cthulhu_Kid, user2314737, user6457549, Utsav T, 
Valentin Lorentz, vaultah, Will, wythagoras, Xavier Combelle

3442, 4444, acdr, Ahsanul Haque, Akshay Anand, Akshit 
Soota, Alleo, Amir Rachum, André Laszlo, Andy Hayden, Ankit 
Kumar Singh, Antoine Bolvy, APerson, Ashwinee K Jha, 
B8vrede, bfontaine, Brian Cline, Brien, Casebash, Celeo, cfi, 
ChaoticTwist, Charles, Charlie H, Chong Tang, Community, 
Conrad.Dean, Dair, Daniel Stradowski, Darth Shadow, 
Dartmouth, David Heyman, Delgan, Dima Tisnek, eenblam, 
Elazar, Emma, enrico.bacis, EOL, ericdwang, ericmarkmartin, 
Esteis, Faiz Halde, Felk, Fermi paradox, Florian Bender, 
Franck Dernoncourt, Fred Barclay, freidrichen, G M, Gal 
Dreiman, garg10may, ghostarbeiter, GingerHead, griswolf, 
Hannele, Harry, Hurkyl, IanAuld, iankit, Infinity, intboolstring, J 
F, J0HN, James, JamesS, Jamie Rees, jedwards, Jeff 
Langemeier, JGreenwell, JHS, jjwatt, JKillian, JNat, joel3000, 
John Slegers, Jon, jonrsharpe, Josh Caswell, JRodDynamite, 
Julian, justhalf, Kamyar Ghasemlou, kdopen, Kevin Brown, 
KIDJourney, Kwarrtz, Lafexlos, lapis, Lee Netherton, Liteye, 
Locane, Lyndsy Simon, machine yearning, Mahdi, Marc, 
Markus Meskanen, Martijn Pieters, Matt, Matt Giltaji, Matt S, 
Mattew Whitt, Maximillian Laumeister, mbrig, Mirec Miskuf, 
Mitch Talmadge, Morgan Thrapp, MSeifert, muddyfish, 
n8henrie, Nathan Arthur, nehemiah, noɥʇʎԀʎzɐɹƆ, Or East, 
Ortomala Lokni, pabouk, Panda, Pasha, pktangyue, Preston, 
Pro Q, pylang, R Nar, Rahul Nair, rap-2-h, Riccardo Petraglia, 
rll, Rob Fagen, rrao, Ryan Hilbert, Ryan Smith, ryanyuyu, 
Samuel McKay, sarvajeetsuman, Sayakiss, Sebastian Kreft, 
Shoe, SHOWMEWHATYOUGOT, Simplans, Slayther, 
Slickytail, solidcell, StuxCrystal, sudo bangbang, Sunny Patel, 
SuperBiasedMan, syb0rg, Symmitchry, The_Curry_Man, 
theheadofabroom, Thomas Gerot, Tim McNamara, Tom 
Barron, user2314737, user2357112, Utsav T, Valentin Lorentz, 

92 List comprehensions

https://riptutorial.com/ 966

https://riptutorial.com/contributor/2428123/adriano
https://riptutorial.com/contributor/2411802/alexander
https://riptutorial.com/contributor/4052384/anthony-pham
https://riptutorial.com/contributor/2887760/ares
https://riptutorial.com/contributor/2069064/barry
https://riptutorial.com/contributor/4049036/blueenvelope
https://riptutorial.com/contributor/6620417/bosoneando
https://riptutorial.com/contributor/5018771/busyant
https://riptutorial.com/contributor/4962122/cagatay-uslu
https://riptutorial.com/contributor/4962122/cagatay-uslu
https://riptutorial.com/contributor/3163022/caped114
https://riptutorial.com/contributor/4618272/chandan-purohit
https://riptutorial.com/contributor/4618272/chandan-purohit
https://riptutorial.com/contributor/5996838/chaotictwist
https://riptutorial.com/contributor/1925083/cizixs
https://riptutorial.com/contributor/3846032/daniel-porteous
https://riptutorial.com/contributor/4091324/darth-kotik
https://riptutorial.com/contributor/854988/deeenes
https://riptutorial.com/contributor/2291710/delgan
https://riptutorial.com/contributor/2289509/elazar
https://riptutorial.com/contributor/5903382/ellis
https://riptutorial.com/contributor/422333/emma
https://riptutorial.com/contributor/653378/evuez
https://riptutorial.com/contributor/160665/exhuma
https://riptutorial.com/contributor/3005188/ffisegydd
https://riptutorial.com/contributor/1144711/flickerlight
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/5182026/ganesh-gadila
https://riptutorial.com/contributor/6274563/ghostarbeiter
https://riptutorial.com/contributor/1391671/igor-raush
https://riptutorial.com/contributor/4490559/intboolstring
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/5343557/j3485
https://riptutorial.com/contributor/500942/jalanb
https://riptutorial.com/contributor/6627323/james
https://riptutorial.com/contributor/1488801/james-elderfield
https://riptutorial.com/contributor/3476397/jani
https://riptutorial.com/contributor/3437837/jimsug
https://riptutorial.com/contributor/3345375/jkdev
https://riptutorial.com/contributor/1328704/jnat
https://riptutorial.com/contributor/3001761/jonrsharpe
https://riptutorial.com/contributor/3001733/kartikkannapur
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/3134251/lafexlos
https://riptutorial.com/contributor/6622517/ldp
https://riptutorial.com/contributor/1406941/leo-thumma
https://riptutorial.com/contributor/4414003/luke-taylor
https://riptutorial.com/contributor/3389827/lukewrites
https://riptutorial.com/contributor/2595183/lxer
https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/833530/mechanic
https://riptutorial.com/contributor/5832850/mrp01
https://riptutorial.com/contributor/5393381/mseifert
https://riptutorial.com/contributor/3398583/muddyfish
https://riptutorial.com/contributor/7503654/n12312
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1472064/oz-bar-shalom
https://riptutorial.com/contributor/958624/pasha
https://riptutorial.com/contributor/5152794/pavan-nath
https://riptutorial.com/contributor/216074/poke
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4201963/ravigadila
https://riptutorial.com/contributor/4285679/ronrest
https://riptutorial.com/contributor/2666859/serenity
https://riptutorial.com/contributor/5428997/severiano-jaramillo-quintanar
https://riptutorial.com/contributor/5113071/shawn-mehan
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/351113/sirin
https://riptutorial.com/contributor/154762/solarc
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/4973666/textshell
https://riptutorial.com/contributor/1091551/the-cthulhu-kid
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/6457549/user6457549
https://riptutorial.com/contributor/2233336/utsav-t
https://riptutorial.com/contributor/539465/valentin-lorentz
https://riptutorial.com/contributor/2301450/vaultah
https://riptutorial.com/contributor/4107956/will
https://riptutorial.com/contributor/5305869/wythagoras
https://riptutorial.com/contributor/128629/xavier-combelle
https://riptutorial.com/contributor/5249858/3442
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/5044921/acdr
https://riptutorial.com/contributor/5019169/ahsanul-haque
https://riptutorial.com/contributor/2797802/akshay-anand
https://riptutorial.com/contributor/705471/akshit-soota
https://riptutorial.com/contributor/705471/akshit-soota
https://riptutorial.com/contributor/498892/alleo
https://riptutorial.com/contributor/166067/amir-rachum
https://riptutorial.com/contributor/98057/andre-laszlo
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/7136923/ankit-kumar-singh
https://riptutorial.com/contributor/7136923/ankit-kumar-singh
https://riptutorial.com/contributor/2367848/antoine-bolvy
https://riptutorial.com/contributor/1757964/aperson
https://riptutorial.com/contributor/925806/ashwinee-k-jha
https://riptutorial.com/contributor/2263652/b8vrede
https://riptutorial.com/contributor/735926/bfontaine
https://riptutorial.com/contributor/32536/brian-cline
https://riptutorial.com/contributor/893324/brien
https://riptutorial.com/contributor/165495/casebash
https://riptutorial.com/contributor/2676531/celeo
https://riptutorial.com/contributor/923794/cfi
https://riptutorial.com/contributor/5996838/chaotictwist
https://riptutorial.com/contributor/5679756/charles
https://riptutorial.com/contributor/4185234/charlie-h
https://riptutorial.com/contributor/1895314/chong-tang
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/656833/conrad-dean
https://riptutorial.com/contributor/667648/dair
https://riptutorial.com/contributor/5449709/daniel-stradowski
https://riptutorial.com/contributor/3476387/darth-shadow
https://riptutorial.com/contributor/4106184/dartmouth
https://riptutorial.com/contributor/6051861/david-heyman
https://riptutorial.com/contributor/2291710/delgan
https://riptutorial.com/contributor/705086/dima-tisnek
https://riptutorial.com/contributor/2074215/eenblam
https://riptutorial.com/contributor/2289509/elazar
https://riptutorial.com/contributor/422333/emma
https://riptutorial.com/contributor/1003123/enrico-bacis
https://riptutorial.com/contributor/42973/eol
https://riptutorial.com/contributor/1944947/ericdwang
https://riptutorial.com/contributor/3777633/ericmarkmartin
https://riptutorial.com/contributor/473899/esteis
https://riptutorial.com/contributor/2708169/faiz-halde
https://riptutorial.com/contributor/3688648/felk
https://riptutorial.com/contributor/4230591/fermi-paradox
https://riptutorial.com/contributor/1331956/florian-bender
https://riptutorial.com/contributor/395857/franck-dernoncourt
https://riptutorial.com/contributor/4588964/fred-barclay
https://riptutorial.com/contributor/1529178/freidrichen
https://riptutorial.com/contributor/2132157/g-m
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/3151415/garg10may
https://riptutorial.com/contributor/6274563/ghostarbeiter
https://riptutorial.com/contributor/1358722/gingerhead
https://riptutorial.com/contributor/478863/griswolf
https://riptutorial.com/contributor/832136/hannele
https://riptutorial.com/contributor/1108828/harry
https://riptutorial.com/contributor/1084944/hurkyl
https://riptutorial.com/contributor/1318181/ianauld
https://riptutorial.com/contributor/1620792/iankit
https://riptutorial.com/contributor/1058671/infinity
https://riptutorial.com/contributor/4490559/intboolstring
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/882918/j0hn
https://riptutorial.com/contributor/6627323/james
https://riptutorial.com/contributor/6627185/jamess
https://riptutorial.com/contributor/3329836/jamie-rees
https://riptutorial.com/contributor/736937/jedwards
https://riptutorial.com/contributor/663752/jeff-langemeier
https://riptutorial.com/contributor/663752/jeff-langemeier
https://riptutorial.com/contributor/4667934/jgreenwell
https://riptutorial.com/contributor/3538313/jhs
https://riptutorial.com/contributor/2642653/jjwatt
https://riptutorial.com/contributor/3124288/jkillian
https://riptutorial.com/contributor/1328704/jnat
https://riptutorial.com/contributor/390738/joel3000
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/6519905/jon
https://riptutorial.com/contributor/3001761/jonrsharpe
https://riptutorial.com/contributor/603977/josh-caswell
https://riptutorial.com/contributor/2932244/jroddynamite
https://riptutorial.com/contributor/3879007/julian
https://riptutorial.com/contributor/895932/justhalf
https://riptutorial.com/contributor/1329429/kamyar-ghasemlou
https://riptutorial.com/contributor/943010/kdopen
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/3994063/kidjourney
https://riptutorial.com/contributor/4725625/kwarrtz
https://riptutorial.com/contributor/3134251/lafexlos
https://riptutorial.com/contributor/675674/lapis
https://riptutorial.com/contributor/341459/lee-netherton
https://riptutorial.com/contributor/2400310/liteye
https://riptutorial.com/contributor/2308300/locane
https://riptutorial.com/contributor/1336699/lyndsy-simon
https://riptutorial.com/contributor/798684/machine-yearning
https://riptutorial.com/contributor/3349443/mahdi
https://riptutorial.com/contributor/4382892/marc
https://riptutorial.com/contributor/2505645/markus-meskanen
https://riptutorial.com/contributor/100297/martijn-pieters
https://riptutorial.com/contributor/2641576/matt
https://riptutorial.com/contributor/3586162/matt-giltaji
https://riptutorial.com/contributor/163024/matt-s
https://riptutorial.com/contributor/3264217/mattew-whitt
https://riptutorial.com/contributor/2234742/maximillian-laumeister
https://riptutorial.com/contributor/5116726/mbrig
https://riptutorial.com/contributor/4816775/mirec-miskuf
https://riptutorial.com/contributor/2364405/mitch-talmadge
https://riptutorial.com/contributor/3059812/morgan-thrapp
https://riptutorial.com/contributor/5393381/mseifert
https://riptutorial.com/contributor/3398583/muddyfish
https://riptutorial.com/contributor/1588795/n8henrie
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/968442/nehemiah
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/6806681/or-east
https://riptutorial.com/contributor/1807667/ortomala-lokni
https://riptutorial.com/contributor/320437/pabouk
https://riptutorial.com/contributor/5022249/panda
https://riptutorial.com/contributor/958624/pasha
https://riptutorial.com/contributor/1076889/pktangyue
https://riptutorial.com/contributor/3906487/preston
https://riptutorial.com/contributor/5049813/pro-q
https://riptutorial.com/contributor/4531270/pylang
https://riptutorial.com/contributor/5323213/r-nar
https://riptutorial.com/contributor/1060034/rahul-nair
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/6769931/riccardo-petraglia
https://riptutorial.com/contributor/4974175/rll
https://riptutorial.com/contributor/776940/rob-fagen
https://riptutorial.com/contributor/7006469/rrao
https://riptutorial.com/contributor/2884225/ryan-hilbert
https://riptutorial.com/contributor/2330648/ryan-smith
https://riptutorial.com/contributor/4320665/ryanyuyu
https://riptutorial.com/contributor/2425820/samuel-mckay
https://riptutorial.com/contributor/3416469/sarvajeetsuman
https://riptutorial.com/contributor/1291716/sayakiss
https://riptutorial.com/contributor/1413687/sebastian-kreft
https://riptutorial.com/contributor/493122/shoe
https://riptutorial.com/contributor/7342806/showmewhatyougot
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/4936137/slayther
https://riptutorial.com/contributor/4220371/slickytail
https://riptutorial.com/contributor/343299/solidcell
https://riptutorial.com/contributor/3294035/stuxcrystal
https://riptutorial.com/contributor/3951782/sudo-bangbang
https://riptutorial.com/contributor/1708751/sunny-patel
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/1937270/syb0rg
https://riptutorial.com/contributor/515368/symmitchry
https://riptutorial.com/contributor/5361515/the-curry-man
https://riptutorial.com/contributor/655372/theheadofabroom
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/395287/tim-mcnamara
https://riptutorial.com/contributor/1074744/tom-barron
https://riptutorial.com/contributor/1074744/tom-barron
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/2357112/user2357112
https://riptutorial.com/contributor/2233336/utsav-t
https://riptutorial.com/contributor/539465/valentin-lorentz


Veedrac, viveksyngh, vog, W.P. McNeill, Will, Will, Wladimir 
Palant, Wolf, XCoder Real, yurib, Yury Fedorov, Zags, Zaz

93 List Comprehensions

3442, Akshit Soota, André Laszlo, Andy Hayden, Annonymous
, Ari, Bhargav, Chris Mueller, Darth Shadow, Dartmouth, 
Delgan, enrico.bacis, Franck Dernoncourt, garg10may, 
intboolstring, Jeff Langemeier, Josh Caswell, JRodDynamite, 
justhalf, kdopen, Ken T, Kevin Brown, kiliantics, longyue0521, 
Martijn Pieters, Mattew Whitt, Moinuddin Quadri, MSeifert, 
muddyfish, noɥʇʎԀʎzɐɹƆ, pktangyue, Pyth0nicPenguin, Rahul 
Nair, Riccardo Petraglia, SashaZd, shrishinde, Simplans, 
Slayther, sudo bangbang, theheadofabroom, then0rTh, Tim 
McNamara, Udi, Valentin Lorentz, Veedrac, Zags

94
List destructuring 
(aka packing and 
unpacking)

J F, sth, zmo

95
List slicing (selecting 
parts of lists)

Greg, JakeD

96 Logging Gal Dreiman, Jörn Hees, sxnwlfkk

97 Loops

Adriano, Alex L, alfonso.kim, Alleo, Anthony Pham, Antti 
Haapala, Chris Hunt, Christian Ternus, Darth Kotik, 
DeepSpace, Delgan, DhiaTN, ebo, Elazar, Eric Finn, Felix D., 
Ffisegydd, Gal Dreiman, Generic Snake, ghostarbeiter, 
GoatsWearHats, Guy, Inbar Rose, intboolstring, J F, James, 
Jeffrey Lin, JGreenwell, Jim Fasarakis Hilliard, jrast, Karl 
Knechtel, machine yearning, Mahdi, manetsus, Martijn Pieters, 
Math, Mathias711, MSeifert, pnhgiol, rajah9, Rishabh Gupta, 
Ryan, sarvajeetsuman, sevenforce, SiggyF, Simplans, 
skrrgwasme, SuperBiasedMan, textshell, The_Curry_Man, 
Thomas Gerot, Tom, Tony Suffolk 66, user1349663, 
user2314737, Vinzee, Will

98 Manipulating XML
4444, Brad Larson, Chinmay Hegde, Francisco Guimaraes, 
greuze, heyhey2k, Rob Murray

99 Map Function
APerson, cfi, Igor Raush, Jon Ericson, Karl Knechtel, Marco 
Pashkov, MSeifert, noɥʇʎԀʎzɐɹƆ, Parousia, Simplans, 
SuperBiasedMan, tlama, user2314737

100 Math Module

Anthony Pham, ArtOfCode, asmeurer, Christofer Ohlsson, Ellis
, fredley, ghostarbeiter, Igor Raush, intboolstring, J F, James 
Elderfield, JGreenwell, MSeifert, niyasc, RahulHP, rajah9, 
Simplans, StardustGogeta, SuperBiasedMan, yurib

2Cubed, Amir Rachum, Antoine Pinsard, Camsbury, 101 Metaclasses

https://riptutorial.com/ 967

https://riptutorial.com/contributor/1763356/veedrac
https://riptutorial.com/contributor/2798036/viveksyngh
https://riptutorial.com/contributor/19163/vog
https://riptutorial.com/contributor/1120370/w-p--mcneill
https://riptutorial.com/contributor/145279/will
https://riptutorial.com/contributor/4107956/will
https://riptutorial.com/contributor/785541/wladimir-palant
https://riptutorial.com/contributor/785541/wladimir-palant
https://riptutorial.com/contributor/2932052/wolf
https://riptutorial.com/contributor/6661940/xcoder-real
https://riptutorial.com/contributor/249878/yurib
https://riptutorial.com/contributor/4378400/yury-fedorov
https://riptutorial.com/contributor/2800876/zags
https://riptutorial.com/contributor/405550/zaz
https://riptutorial.com/contributor/5249858/3442
https://riptutorial.com/contributor/705471/akshit-soota
https://riptutorial.com/contributor/98057/andre-laszlo
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/3334697/annonymous
https://riptutorial.com/contributor/628748/ari
https://riptutorial.com/contributor/2054527/bhargav
https://riptutorial.com/contributor/3254859/chris-mueller
https://riptutorial.com/contributor/3476387/darth-shadow
https://riptutorial.com/contributor/4106184/dartmouth
https://riptutorial.com/contributor/2291710/delgan
https://riptutorial.com/contributor/1003123/enrico-bacis
https://riptutorial.com/contributor/395857/franck-dernoncourt
https://riptutorial.com/contributor/3151415/garg10may
https://riptutorial.com/contributor/4490559/intboolstring
https://riptutorial.com/contributor/663752/jeff-langemeier
https://riptutorial.com/contributor/603977/josh-caswell
https://riptutorial.com/contributor/2932244/jroddynamite
https://riptutorial.com/contributor/895932/justhalf
https://riptutorial.com/contributor/943010/kdopen
https://riptutorial.com/contributor/2720402/ken-t
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/2701363/kiliantics
https://riptutorial.com/contributor/2959068/longyue0521
https://riptutorial.com/contributor/100297/martijn-pieters
https://riptutorial.com/contributor/3264217/mattew-whitt
https://riptutorial.com/contributor/2063361/moinuddin-quadri
https://riptutorial.com/contributor/5393381/mseifert
https://riptutorial.com/contributor/3398583/muddyfish
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1076889/pktangyue
https://riptutorial.com/contributor/6835952/pyth0nicpenguin
https://riptutorial.com/contributor/1060034/rahul-nair
https://riptutorial.com/contributor/1060034/rahul-nair
https://riptutorial.com/contributor/6769931/riccardo-petraglia
https://riptutorial.com/contributor/966247/sashazd
https://riptutorial.com/contributor/3720085/shrishinde
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/4936137/slayther
https://riptutorial.com/contributor/3951782/sudo-bangbang
https://riptutorial.com/contributor/655372/theheadofabroom
https://riptutorial.com/contributor/3838615/then0rth
https://riptutorial.com/contributor/395287/tim-mcnamara
https://riptutorial.com/contributor/395287/tim-mcnamara
https://riptutorial.com/contributor/57952/udi
https://riptutorial.com/contributor/539465/valentin-lorentz
https://riptutorial.com/contributor/1763356/veedrac
https://riptutorial.com/contributor/2800876/zags
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/56338/sth
https://riptutorial.com/contributor/1290438/zmo
https://riptutorial.com/contributor/5377941/greg
https://riptutorial.com/contributor/6655092/jaked
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/1423333/jorn-hees
https://riptutorial.com/contributor/6440306/sxnwlfkk
https://riptutorial.com/contributor/2428123/adriano
https://riptutorial.com/contributor/2899630/alex-l
https://riptutorial.com/contributor/199236/alfonso-kim
https://riptutorial.com/contributor/498892/alleo
https://riptutorial.com/contributor/4052384/anthony-pham
https://riptutorial.com/contributor/918959/antti-haapala
https://riptutorial.com/contributor/918959/antti-haapala
https://riptutorial.com/contributor/1698058/chris-hunt
https://riptutorial.com/contributor/2797476/christian-ternus
https://riptutorial.com/contributor/4091324/darth-kotik
https://riptutorial.com/contributor/1453822/deepspace
https://riptutorial.com/contributor/2291710/delgan
https://riptutorial.com/contributor/5658350/dhiatn
https://riptutorial.com/contributor/13226/ebo
https://riptutorial.com/contributor/2289509/elazar
https://riptutorial.com/contributor/407071/eric-finn
https://riptutorial.com/contributor/3753684/felix-d-
https://riptutorial.com/contributor/3005188/ffisegydd
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/5860230/generic-snake
https://riptutorial.com/contributor/6274563/ghostarbeiter
https://riptutorial.com/contributor/5299938/goatswearhats
https://riptutorial.com/contributor/5943150/guy
https://riptutorial.com/contributor/1561176/inbar-rose
https://riptutorial.com/contributor/4490559/intboolstring
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/6627323/james
https://riptutorial.com/contributor/1440897/jeffrey-lin
https://riptutorial.com/contributor/4667934/jgreenwell
https://riptutorial.com/contributor/4952130/jim-fasarakis-hilliard
https://riptutorial.com/contributor/1211607/jrast
https://riptutorial.com/contributor/523612/karl-knechtel
https://riptutorial.com/contributor/523612/karl-knechtel
https://riptutorial.com/contributor/798684/machine-yearning
https://riptutorial.com/contributor/3349443/mahdi
https://riptutorial.com/contributor/3555000/manetsus
https://riptutorial.com/contributor/100297/martijn-pieters
https://riptutorial.com/contributor/3406955/math
https://riptutorial.com/contributor/2781698/mathias711
https://riptutorial.com/contributor/5393381/mseifert
https://riptutorial.com/contributor/1965736/pnhgiol
https://riptutorial.com/contributor/509840/rajah9
https://riptutorial.com/contributor/5630489/rishabh-gupta
https://riptutorial.com/contributor/4625387/ryan
https://riptutorial.com/contributor/3416469/sarvajeetsuman
https://riptutorial.com/contributor/1091453/sevenforce
https://riptutorial.com/contributor/386327/siggyf
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/2615940/skrrgwasme
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/4973666/textshell
https://riptutorial.com/contributor/5361515/the-curry-man
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/6437367/tom
https://riptutorial.com/contributor/3426606/tony-suffolk-66
https://riptutorial.com/contributor/1349663/user1349663
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/5446749/vinzee
https://riptutorial.com/contributor/4107956/will
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/19679/brad-larson
https://riptutorial.com/contributor/4168903/chinmay-hegde
https://riptutorial.com/contributor/289368/francisco-guimaraes
https://riptutorial.com/contributor/460306/greuze
https://riptutorial.com/contributor/1569659/heyhey2k
https://riptutorial.com/contributor/5539184/rob-murray
https://riptutorial.com/contributor/1757964/aperson
https://riptutorial.com/contributor/923794/cfi
https://riptutorial.com/contributor/1391671/igor-raush
https://riptutorial.com/contributor/1438/jon-ericson
https://riptutorial.com/contributor/523612/karl-knechtel
https://riptutorial.com/contributor/2210287/marco-pashkov
https://riptutorial.com/contributor/2210287/marco-pashkov
https://riptutorial.com/contributor/5393381/mseifert
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/2689562/parousia
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/2078517/tlama
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/4052384/anthony-pham
https://riptutorial.com/contributor/3160466/artofcode
https://riptutorial.com/contributor/161801/asmeurer
https://riptutorial.com/contributor/1223463/christofer-ohlsson
https://riptutorial.com/contributor/5903382/ellis
https://riptutorial.com/contributor/319618/fredley
https://riptutorial.com/contributor/6274563/ghostarbeiter
https://riptutorial.com/contributor/1391671/igor-raush
https://riptutorial.com/contributor/4490559/intboolstring
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/1488801/james-elderfield
https://riptutorial.com/contributor/1488801/james-elderfield
https://riptutorial.com/contributor/4667934/jgreenwell
https://riptutorial.com/contributor/5393381/mseifert
https://riptutorial.com/contributor/1520248/niyasc
https://riptutorial.com/contributor/2483080/rahulhp
https://riptutorial.com/contributor/509840/rajah9
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/5732397/stardustgogeta
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/249878/yurib
https://riptutorial.com/contributor/6119465/2cubed
https://riptutorial.com/contributor/166067/amir-rachum
https://riptutorial.com/contributor/1529346/antoine-pinsard
https://riptutorial.com/contributor/3933810/camsbury


Community, driax, Igor Raush, InitializeSahib, Marco Pashkov, 
Martijn Pieters, Mattew Whitt, OozeMeister, Pasha, Paulo 
Scardine, RamenChef, Rob Bednark, Simplans, sisanared, 
zvone

102 Method Overriding DeepSpace, James

103 Mixins Doc, Rahul Nair, SashaZd

104
Multidimensional 
arrays

boboquack, Buzz, rrao

105 Multiprocessing Alon Alexander, Nander Speerstra, unutbu, Vinzee, Will

106 Multithreading
Alu, cʟᴅsᴇᴇᴅ, juggernaut, Kevin Brown, Kristof, mattgathu, 
Nabeel Ahmed, nlsdfnbch, Rahul, Rahul Nair, Riccardo 
Petraglia, Thomas Gerot, Will, Yogendra Sharma

107
Mutable vs Immutable 
(and Hashable) in 
Python

Cilyan

108
Neo4j and Cypher 
using Py2Neo

Wingston Sharon

109
Non-official Python 
implementations

Jacques de Hooge, Squidward

110 Operator module MSeifert

111 Operator Precedence
HoverHell, JGreenwell, MathSquared, SashaZd, Shreyash S 
Sarnayak

112
Optical Character 
Recognition

rassar

113 os.path
Claudiu, Fábio Perez, girish946, Jmills, Szabolcs Dombi, VJ 
Magar

114 Overloading
Andy Hayden, Darth Shadow, ericmarkmartin, Ffisegydd, Igor 
Raush, Jonas S, jonrsharpe, L3viathan, Majid, RamenChef, 
Simplans, Valentin Lorentz

115

Pandas Transform: 
Preform operations 
on groups and 
concatenate the 
results

Dee

Akshat Mahajan, Dair, Franck Dernoncourt, J F, Mahdi, 116 Parallel computation

https://riptutorial.com/ 968

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/72476/driax
https://riptutorial.com/contributor/1391671/igor-raush
https://riptutorial.com/contributor/6147266/initializesahib
https://riptutorial.com/contributor/2210287/marco-pashkov
https://riptutorial.com/contributor/100297/martijn-pieters
https://riptutorial.com/contributor/3264217/mattew-whitt
https://riptutorial.com/contributor/1164082/oozemeister
https://riptutorial.com/contributor/958624/pasha
https://riptutorial.com/contributor/444036/paulo-scardine
https://riptutorial.com/contributor/444036/paulo-scardine
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/875915/rob-bednark
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/3886740/sisanared
https://riptutorial.com/contributor/389289/zvone
https://riptutorial.com/contributor/1453822/deepspace
https://riptutorial.com/contributor/6627323/james
https://riptutorial.com/contributor/6620149/doc
https://riptutorial.com/contributor/1060034/rahul-nair
https://riptutorial.com/contributor/966247/sashazd
https://riptutorial.com/contributor/6936386/boboquack
https://riptutorial.com/contributor/3586325/buzz
https://riptutorial.com/contributor/7006469/rrao
https://riptutorial.com/contributor/6338083/alon-alexander
https://riptutorial.com/contributor/5488275/nander-speerstra
https://riptutorial.com/contributor/190597/unutbu
https://riptutorial.com/contributor/5446749/vinzee
https://riptutorial.com/contributor/145279/will
https://riptutorial.com/contributor/4256535/alu
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/5036360/juggernaut
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/3165737/kristof
https://riptutorial.com/contributor/3078304/mattgathu
https://riptutorial.com/contributor/1384641/nabeel-ahmed
https://riptutorial.com/contributor/5413116/nlsdfnbch
https://riptutorial.com/contributor/5452365/rahul
https://riptutorial.com/contributor/1060034/rahul-nair
https://riptutorial.com/contributor/6769931/riccardo-petraglia
https://riptutorial.com/contributor/6769931/riccardo-petraglia
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/4107956/will
https://riptutorial.com/contributor/2623906/yogendra-sharma
https://riptutorial.com/contributor/1970751/cilyan
https://riptutorial.com/contributor/1124344/wingston-sharon
https://riptutorial.com/contributor/1577341/jacques-de-hooge
https://riptutorial.com/contributor/293099/squidward
https://riptutorial.com/contributor/5393381/mseifert
https://riptutorial.com/contributor/62821/hoverhell
https://riptutorial.com/contributor/4667934/jgreenwell
https://riptutorial.com/contributor/1979005/mathsquared
https://riptutorial.com/contributor/966247/sashazd
https://riptutorial.com/contributor/4095334/shreyash-s-sarnayak
https://riptutorial.com/contributor/4095334/shreyash-s-sarnayak
https://riptutorial.com/contributor/6342812/rassar
https://riptutorial.com/contributor/15055/claudiu
https://riptutorial.com/contributor/604734/fabio-perez
https://riptutorial.com/contributor/2580412/girish946
https://riptutorial.com/contributor/1210112/jmills
https://riptutorial.com/contributor/6557569/szabolcs-dombi
https://riptutorial.com/contributor/6766209/vj-magar
https://riptutorial.com/contributor/6766209/vj-magar
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/3476387/darth-shadow
https://riptutorial.com/contributor/3777633/ericmarkmartin
https://riptutorial.com/contributor/3005188/ffisegydd
https://riptutorial.com/contributor/1391671/igor-raush
https://riptutorial.com/contributor/1391671/igor-raush
https://riptutorial.com/contributor/1492826/jonas-s
https://riptutorial.com/contributor/3001761/jonrsharpe
https://riptutorial.com/contributor/1016216/l3viathan
https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/539465/valentin-lorentz
https://riptutorial.com/contributor/8269859/dee
https://riptutorial.com/contributor/2271269/akshat-mahajan
https://riptutorial.com/contributor/667648/dair
https://riptutorial.com/contributor/395857/franck-dernoncourt
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/3349443/mahdi


nlsdfnbch, Ryan Smith, Vinzee, Xavier Combelle

117
Parsing Command 
Line arguments

amblina, Braiam, Claudiu, cledoux, Elazar, Gerard Roche, 
krato, loading..., Marco Pashkov, Or Duan, Pasha, 
RamenChef, rfkortekaas, Simplans, Thomas Gerot, 
Topperfalkon, zmo, zondo

118 Partial functions FrankBr

119
Performance 
optimization

A. Ciclet, RamenChef, user2314737

120
Pickle data 
serialisation

J F, Majid, Or East, RahulHP, rfkortekaas, zvone

121 Pillow Razik

122
pip: PyPI Package 
Manager

Andy, Arpit Solanki, Community, InitializeSahib, JNat, Mahdi, 
Majid, Matt Giltaji, Nathaniel Ford, Rápli András, SerialDev, 
Simplans, Steve Barnes, StuxCrystal, tlo

123
Plotting with 
Matplotlib

Arun, user2314737

124
Plugin and Extension 
Classes

2Cubed, proprefenetre, pylang, rrao, Simon Hibbs, Simplans

125 Polymorphism
Benedict Bunting, DeepSpace, depperm, Simplans, 
skrrgwasme, Vinzee

126 PostgreSQL
Alessandro Trinca Tornidor, RamenChef, Stephen Leppik, 
user2027202827

127
Processes and 
Threads

Claudiu, Thomas Gerot

128 Profiling J F, keiv.fly, SashaZd

129 Property Objects
Alessandro Trinca Tornidor, Darth Shadow, DhiaTN, J F, 
Jacques de Hooge, Leo, Martijn Pieters, mnoronha, Priya, 
RamenChef, Stephen Leppik

130 py.test Andy, Claudiu, Ffisegydd, Kinifwyne, Matt Giltaji

131 pyaudio Biswa_9937

132 pyautogui module Damien, Rednivrug

133 pygame Anthony Pham, Aryaman Arora, Pavan Nath

134 Pyglet Comrade SparklePony, Stephen Leppik

https://riptutorial.com/ 969

https://riptutorial.com/contributor/5413116/nlsdfnbch
https://riptutorial.com/contributor/2330648/ryan-smith
https://riptutorial.com/contributor/5446749/vinzee
https://riptutorial.com/contributor/128629/xavier-combelle
https://riptutorial.com/contributor/3759777/amblina
https://riptutorial.com/contributor/792066/braiam
https://riptutorial.com/contributor/15055/claudiu
https://riptutorial.com/contributor/558820/cledoux
https://riptutorial.com/contributor/2289509/elazar
https://riptutorial.com/contributor/934739/gerard-roche
https://riptutorial.com/contributor/2130213/krato
https://riptutorial.com/contributor/6623266/loading---
https://riptutorial.com/contributor/2210287/marco-pashkov
https://riptutorial.com/contributor/2550354/or-duan
https://riptutorial.com/contributor/958624/pasha
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2345870/rfkortekaas
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/1569827/topperfalkon
https://riptutorial.com/contributor/1290438/zmo
https://riptutorial.com/contributor/5827958/zondo
https://riptutorial.com/contributor/1281470/frankbr
https://riptutorial.com/contributor/6817418/a--ciclet
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/6806681/or-east
https://riptutorial.com/contributor/2483080/rahulhp
https://riptutorial.com/contributor/2345870/rfkortekaas
https://riptutorial.com/contributor/389289/zvone
https://riptutorial.com/contributor/3157961/razik
https://riptutorial.com/contributor/189134/andy
https://riptutorial.com/contributor/5250746/arpit-solanki
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/6147266/initializesahib
https://riptutorial.com/contributor/1328704/jnat
https://riptutorial.com/contributor/3349443/mahdi
https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/3586162/matt-giltaji
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/2232151/rapli-andras
https://riptutorial.com/contributor/4504245/serialdev
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/2298070/steve-barnes
https://riptutorial.com/contributor/3294035/stuxcrystal
https://riptutorial.com/contributor/1306877/tlo
https://riptutorial.com/contributor/5803233/arun
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/6119465/2cubed
https://riptutorial.com/contributor/6899000/proprefenetre
https://riptutorial.com/contributor/4531270/pylang
https://riptutorial.com/contributor/7006469/rrao
https://riptutorial.com/contributor/318488/simon-hibbs
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/7981254/benedict-bunting
https://riptutorial.com/contributor/1453822/deepspace
https://riptutorial.com/contributor/3462319/depperm
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/2615940/skrrgwasme
https://riptutorial.com/contributor/5446749/vinzee
https://riptutorial.com/contributor/5306152/alessandro-trinca-tornidor
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/2079484/user2027202827
https://riptutorial.com/contributor/15055/claudiu
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/3596337/keiv-fly
https://riptutorial.com/contributor/966247/sashazd
https://riptutorial.com/contributor/5306152/alessandro-trinca-tornidor
https://riptutorial.com/contributor/3476387/darth-shadow
https://riptutorial.com/contributor/5658350/dhiatn
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/1577341/jacques-de-hooge
https://riptutorial.com/contributor/1728179/leo
https://riptutorial.com/contributor/100297/martijn-pieters
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/4990460/priya
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/189134/andy
https://riptutorial.com/contributor/15055/claudiu
https://riptutorial.com/contributor/3005188/ffisegydd
https://riptutorial.com/contributor/6859882/kinifwyne
https://riptutorial.com/contributor/3586162/matt-giltaji
https://riptutorial.com/contributor/8117998/biswa-9937
https://riptutorial.com/contributor/5665431/damien
https://riptutorial.com/contributor/7564323/rednivrug
https://riptutorial.com/contributor/4052384/anthony-pham
https://riptutorial.com/contributor/4343241/aryaman-arora
https://riptutorial.com/contributor/5152794/pavan-nath
https://riptutorial.com/contributor/7254591/comrade-sparklepony
https://riptutorial.com/contributor/6388243/stephen-leppik


135
PyInstaller - 
Distributing Python 
Code

ChaoticTwist, Eric, mnoronha

136 Python and Excel
bee-sting, Chinmay Hegde, GiantsLoveDeathMetal, hackvan, 
Majid, talhasch, user2314737, Will

137 Python Anti-Patterns
Alessandro Trinca Tornidor, Annonymous, eenblam, Mahmoud 
Hashemi, RamenChef, Stephen Leppik

138 Python concurrency
David Heyman, Faiz Halde, Iván Rodríguez Torres, J F, 
Thomas Moreau, Tyler Gubala

139 Python Data Types Gavin, lorenzofeliz, Pike D., Rednivrug

140 Python HTTP Server
Arpit Solanki, J F, jmunsch, Justin Chadwell, Mark, MervS, orvi
, quantummind, Raghav, RamenChef, Sachin Kalkur, 
Simplans, techydesigner

141 Python Lex-Yacc cʟᴅsᴇᴇᴅ

142 Python Networking
atayenel, ChaoticTwist, David, Geeklhem, mattgathu, 
mnoronha, thsecmaniac

143 Python Persistence RamenChef, user2728397

144
Python Requests 
Post

Ken Y-N, RandomHash

145
Python Serial 
Communication 
(pyserial)

Alessandro Trinca Tornidor, Ani Menon, girish946, mnoronha, 
Saranjith, user2314737

146
Python Server Sent 
Events

Nick Humrich

147
Python speed of 
program

ADITYA, Antonio, Elodin, Neil A., Vinzee

148
Python Virtual 
Environment - 
virtualenv

Vikash Kumar Jain

149 Queue Module Prem Narain

150
Raise Custom Errors 
/ Exceptions

naren

Alex Gaynor, Andrzej Pronobis, Anthony Pham, Community, 
David Robinson, Delgan, giucal, Jim Fasarakis Hilliard, 

151 Random module

https://riptutorial.com/ 970

https://riptutorial.com/contributor/5996838/chaotictwist
https://riptutorial.com/contributor/5483058/eric
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/6220620/bee-sting
https://riptutorial.com/contributor/4168903/chinmay-hegde
https://riptutorial.com/contributor/3407256/giantslovedeathmetal
https://riptutorial.com/contributor/732398/hackvan
https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/3720614/talhasch
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/4107956/will
https://riptutorial.com/contributor/5306152/alessandro-trinca-tornidor
https://riptutorial.com/contributor/3334697/annonymous
https://riptutorial.com/contributor/2074215/eenblam
https://riptutorial.com/contributor/178013/mahmoud-hashemi
https://riptutorial.com/contributor/178013/mahmoud-hashemi
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/6051861/david-heyman
https://riptutorial.com/contributor/2708169/faiz-halde
https://riptutorial.com/contributor/2127296/ivan-rodriguez-torres
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/2642845/thomas-moreau
https://riptutorial.com/contributor/6767685/tyler-gubala
https://riptutorial.com/contributor/1468125/gavin
https://riptutorial.com/contributor/5054533/lorenzofeliz
https://riptutorial.com/contributor/6912791/pike-d-
https://riptutorial.com/contributor/7564323/rednivrug
https://riptutorial.com/contributor/5250746/arpit-solanki
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/2026508/jmunsch
https://riptutorial.com/contributor/6848834/justin-chadwell
https://riptutorial.com/contributor/23991/mark
https://riptutorial.com/contributor/1847471/mervs
https://riptutorial.com/contributor/3654356/orvi
https://riptutorial.com/contributor/3842798/quantummind
https://riptutorial.com/contributor/3639087/raghav
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/6005652/sachin-kalkur
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/6309608/techydesigner
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4909087/c---s----
https://riptutorial.com/contributor/4982148/atayenel
https://riptutorial.com/contributor/5996838/chaotictwist
https://riptutorial.com/contributor/521364/david
https://riptutorial.com/contributor/1219073/geeklhem
https://riptutorial.com/contributor/3078304/mattgathu
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/2465544/thsecmaniac
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2728397/user2728397
https://riptutorial.com/contributor/1270789/ken-y-n
https://riptutorial.com/contributor/5276801/randomhash
https://riptutorial.com/contributor/5306152/alessandro-trinca-tornidor
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/2580412/girish946
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/5215474/saranjith
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/2434234/nick-humrich
https://riptutorial.com/contributor/6524169/aditya
https://riptutorial.com/contributor/3779183/antonio
https://riptutorial.com/contributor/7171962/elodin
https://riptutorial.com/contributor/6719703/neil-a-
https://riptutorial.com/contributor/5446749/vinzee
https://riptutorial.com/contributor/7602873/vikash-kumar-jain
https://riptutorial.com/contributor/6343860/prem-narain
https://riptutorial.com/contributor/1193863/naren
https://riptutorial.com/contributor/37181/alex-gaynor
https://riptutorial.com/contributor/1576602/andrzej-pronobis
https://riptutorial.com/contributor/4052384/anthony-pham
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/712603/david-robinson
https://riptutorial.com/contributor/2291710/delgan
https://riptutorial.com/contributor/4047785/giucal
https://riptutorial.com/contributor/4952130/jim-fasarakis-hilliard


michaelrbock, MSeifert, Nobilis, ppperry, RamenChef, 
Simplans, SuperBiasedMan

152
Reading and Writing 
CSV

Adam Matan, Franck Dernoncourt, Martin Valgur, mnoronha, 
ravigadila, Setu

153 Recursion
Bastian, japborst, JGreenwell, Jossie Calderon, mbomb007, 
SashaZd, Tyler Crompton

154 Reduce APerson, Igor Raush, Martijn Pieters, MSeifert

155
Regular Expressions 
(Regex)

Aidan, alejosocorro, andandandand, Andy Hayden, ashes999, 
B8vrede, Claudiu, Darth Shadow, driax, Fermi paradox, 
ganesh gadila, goodmami, Jan, Jeffrey Lin, jonrsharpe, Julien 
Spronck, Kevin Brown, Md.Sifatul Islam, Michael M., 
mnoronha, Nander Speerstra, nrusch, Or East, orvi, regnarg, 
sarvajeetsuman, Simplans, SN Ravichandran KR, 
SuperBiasedMan, user2314737, zondo

156 Searching Dan Sanderson, Igor Raush, MSeifert

157
Secure Shell 
Connection in Python

mnoronha, Shijo

158
Security and 
Cryptography

adeora, ArtOfCode, BSL-5, Kevin Brown, matsjoyce, 
SuperBiasedMan, Thomas Gerot, Wladimir Palant, wrwrwr

159 Set
Andrzej Pronobis, Andy Hayden, Bahrom, Cimbali, Cody 
Piersall, Conrad.Dean, Elazar, evuez, J F, James, Or East, 
pylang, RahulHP, RamenChef, Simplans, user2314737

160 setup.py
Adam Brenecki, amblina, JNat, ravigadila, strpeter, 
user2027202827, Y0da

161 shelve Biswa_9937

162

Similarities in syntax, 
Differences in 
meaning: Python vs. 
JavaScript

user2683246

163
Simple Mathematical 
Operators

amin, blueenvelope, Bryce Frank, Camsbury, David, 
DeepSpace, Elazar, J F, James, JGreenwell, Jon Ericson, 
Kevin Brown, Lafexlos, matsjoyce, Mechanic, Milo P, MSeifert, 
numbermaniac, sarvajeetsuman, Simplans, techydesigner, 
Tony Suffolk 66, Undo, user2314737, wythagoras, Zenadix

164 Sockets
David Cullen, Dev, MattCorr, nlsdfnbch, Rob H, StuxCrystal, 
textshell, Thomas Gerot, Will

https://riptutorial.com/ 971

https://riptutorial.com/contributor/1206439/michaelrbock
https://riptutorial.com/contributor/5393381/mseifert
https://riptutorial.com/contributor/1006955/nobilis
https://riptutorial.com/contributor/3750257/ppperry
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/51197/adam-matan
https://riptutorial.com/contributor/395857/franck-dernoncourt
https://riptutorial.com/contributor/2997179/martin-valgur
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/4201963/ravigadila
https://riptutorial.com/contributor/3365479/setu
https://riptutorial.com/contributor/1075374/bastian
https://riptutorial.com/contributor/2489446/japborst
https://riptutorial.com/contributor/4667934/jgreenwell
https://riptutorial.com/contributor/2124148/jossie-calderon
https://riptutorial.com/contributor/2415524/mbomb007
https://riptutorial.com/contributor/966247/sashazd
https://riptutorial.com/contributor/652722/tyler-crompton
https://riptutorial.com/contributor/1757964/aperson
https://riptutorial.com/contributor/1391671/igor-raush
https://riptutorial.com/contributor/100297/martijn-pieters
https://riptutorial.com/contributor/5393381/mseifert
https://riptutorial.com/contributor/2697955/aidan
https://riptutorial.com/contributor/1330831/alejosocorro
https://riptutorial.com/contributor/45963/andandandand
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/210780/ashes999
https://riptutorial.com/contributor/2263652/b8vrede
https://riptutorial.com/contributor/15055/claudiu
https://riptutorial.com/contributor/3476387/darth-shadow
https://riptutorial.com/contributor/72476/driax
https://riptutorial.com/contributor/4230591/fermi-paradox
https://riptutorial.com/contributor/5182026/ganesh-gadila
https://riptutorial.com/contributor/1441112/goodmami
https://riptutorial.com/contributor/1231450/jan
https://riptutorial.com/contributor/1440897/jeffrey-lin
https://riptutorial.com/contributor/3001761/jonrsharpe
https://riptutorial.com/contributor/2184364/julien-spronck
https://riptutorial.com/contributor/2184364/julien-spronck
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/6840615/md-sifatul-islam
https://riptutorial.com/contributor/5797661/michael-m-
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/5488275/nander-speerstra
https://riptutorial.com/contributor/3988371/nrusch
https://riptutorial.com/contributor/6806681/or-east
https://riptutorial.com/contributor/3654356/orvi
https://riptutorial.com/contributor/809056/regnarg
https://riptutorial.com/contributor/3416469/sarvajeetsuman
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/7130168/sn-ravichandran-kr
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/5827958/zondo
https://riptutorial.com/contributor/453278/dan-sanderson
https://riptutorial.com/contributor/1391671/igor-raush
https://riptutorial.com/contributor/5393381/mseifert
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/6626530/shijo
https://riptutorial.com/contributor/2250231/adeora
https://riptutorial.com/contributor/3160466/artofcode
https://riptutorial.com/contributor/6539733/bsl-5
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/3946766/matsjoyce
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/785541/wladimir-palant
https://riptutorial.com/contributor/5466926/wrwrwr
https://riptutorial.com/contributor/1576602/andrzej-pronobis
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/2302482/bahrom
https://riptutorial.com/contributor/1387346/cimbali
https://riptutorial.com/contributor/1612701/cody-piersall
https://riptutorial.com/contributor/1612701/cody-piersall
https://riptutorial.com/contributor/656833/conrad-dean
https://riptutorial.com/contributor/2289509/elazar
https://riptutorial.com/contributor/653378/evuez
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/6627323/james
https://riptutorial.com/contributor/6806681/or-east
https://riptutorial.com/contributor/4531270/pylang
https://riptutorial.com/contributor/2483080/rahulhp
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/445398/adam-brenecki
https://riptutorial.com/contributor/3759777/amblina
https://riptutorial.com/contributor/1328704/jnat
https://riptutorial.com/contributor/4201963/ravigadila
https://riptutorial.com/contributor/2062965/strpeter
https://riptutorial.com/contributor/2079484/user2027202827
https://riptutorial.com/contributor/6522112/y0da
https://riptutorial.com/contributor/8117998/biswa-9937
https://riptutorial.com/contributor/2683246/user2683246
https://riptutorial.com/contributor/669017/amin
https://riptutorial.com/contributor/4049036/blueenvelope
https://riptutorial.com/contributor/5249681/bryce-frank
https://riptutorial.com/contributor/3933810/camsbury
https://riptutorial.com/contributor/3220986/david
https://riptutorial.com/contributor/1453822/deepspace
https://riptutorial.com/contributor/2289509/elazar
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/6627323/james
https://riptutorial.com/contributor/4667934/jgreenwell
https://riptutorial.com/contributor/1438/jon-ericson
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/3134251/lafexlos
https://riptutorial.com/contributor/3946766/matsjoyce
https://riptutorial.com/contributor/833530/mechanic
https://riptutorial.com/contributor/2917523/milo-p
https://riptutorial.com/contributor/5393381/mseifert
https://riptutorial.com/contributor/3150837/numbermaniac
https://riptutorial.com/contributor/3416469/sarvajeetsuman
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/6309608/techydesigner
https://riptutorial.com/contributor/3426606/tony-suffolk-66
https://riptutorial.com/contributor/1849664/undo
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/5305869/wythagoras
https://riptutorial.com/contributor/3718878/zenadix
https://riptutorial.com/contributor/3657941/david-cullen
https://riptutorial.com/contributor/6516765/dev
https://riptutorial.com/contributor/2970790/mattcorr
https://riptutorial.com/contributor/5413116/nlsdfnbch
https://riptutorial.com/contributor/783524/rob-h
https://riptutorial.com/contributor/3294035/stuxcrystal
https://riptutorial.com/contributor/4973666/textshell
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/4107956/will


165

Sockets And 
Message 
Encryption/Decryption 
Between Client and 
Server

Mohammad Julfikar

166
Sorting, Minimum and 
Maximum

Antti Haapala, APerson, GoatsWearHats, Mirec Miskuf, 
MSeifert, RamenChef, Simplans, Valentin Lorentz

167 Sqlite3 Module Chinmay Hegde, Simplans

168 Stack
ADITYA, boboquack, Chromium, cjds, depperm, Hannes 
Karppila, JGreenwell, Jonatan, kdopen, OliPro007, orvi, 
SashaZd, Sнаđошƒа, textshell, Thomas Ahle, user2314737

169 String Formatting

4444, Aaron Christiansen, Adam_92, ADITYA, Akshit Soota, 
aldanor, alecxe, Alessandro Trinca Tornidor, Andy Hayden, 
Ani Menon, B8vrede, Bahrom, Bhargav, Charles, Chris, Darth 
Shadow, Dartmouth, Dave J, Delgan, dreftymac, evuez, 
Franck Dernoncourt, Gal Dreiman, gerrit, Giannis Spiliopoulos, 
GiantsLoveDeathMetal, goyalankit, Harrison, James Elderfield, 
Jean-Francois T., Jeffrey Lin, jetpack_guy, JL Peyret, joel3000
, Jonatan, JRodDynamite, Justin, Kevin Brown, knight, krato, 
Marco Pashkov, Mark, Matt, Matt Giltaji, mu , MYGz, Nander 
Speerstra, Nathan Arthur, Nour Chawich, orion_tvv, ragesz, 
SashaZd, Serenity, serv-inc, Simplans, Slayther, 
Sometowngeek, SuperBiasedMan, Thomas Gerot, tobias_k, 
Tony Suffolk 66, UloPe, user2314737, user312016, Vin, zondo

170 String Methods

Amitay Stern, Andy Hayden, Ares, Bhargav Rao, Brien, 
BusyAnt, Cache Staheli, caped114, ChaoticTwist, Charles, 
Dartmouth, David Heyman, depperm, Doug Henderson, Elazar
, ganesh gadila, ghostarbeiter, GoatsWearHats, idjaw, Igor 
Raush, Ilia Barahovski, j__, Jim Fasarakis Hilliard, JL Peyret, 
Kevin Brown, krato, MarkyPython, Metasomatism, Mikail Land, 
MSeifert, mu , Nathaniel Ford, OliPro007, orvi, pzp, ronrest, 
Shrey Gupta, Simplans, SuperBiasedMan, theheadofabroom, 
user1349663, user2314737, Veedrac, WeizhongTu, wnnmaw

171

String 
representations of 
class instances: 
__str__ and __repr__ 
methods

Alessandro Trinca Tornidor, jedwards, JelmerS, RamenChef, 
Stephen Leppik

172 Subprocess Library
Adam Matan, Andrew Schade, Brendan Abel, jfs, jmunsch, 
Riccardo Petraglia

https://riptutorial.com/ 972

https://riptutorial.com/contributor/7081771/mohammad-julfikar
https://riptutorial.com/contributor/918959/antti-haapala
https://riptutorial.com/contributor/1757964/aperson
https://riptutorial.com/contributor/5299938/goatswearhats
https://riptutorial.com/contributor/4816775/mirec-miskuf
https://riptutorial.com/contributor/5393381/mseifert
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/539465/valentin-lorentz
https://riptutorial.com/contributor/4168903/chinmay-hegde
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/6524169/aditya
https://riptutorial.com/contributor/6936386/boboquack
https://riptutorial.com/contributor/5264490/chromium
https://riptutorial.com/contributor/1059273/cjds
https://riptutorial.com/contributor/3462319/depperm
https://riptutorial.com/contributor/2867076/hannes-karppila
https://riptutorial.com/contributor/2867076/hannes-karppila
https://riptutorial.com/contributor/4667934/jgreenwell
https://riptutorial.com/contributor/434943/jonatan
https://riptutorial.com/contributor/943010/kdopen
https://riptutorial.com/contributor/5487099/olipro007
https://riptutorial.com/contributor/3654356/orvi
https://riptutorial.com/contributor/966247/sashazd
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/3375713/s--d--f--
https://riptutorial.com/contributor/4973666/textshell
https://riptutorial.com/contributor/205521/thomas-ahle
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/2626000/aaron-christiansen
https://riptutorial.com/contributor/1357409/adam-92
https://riptutorial.com/contributor/6524169/aditya
https://riptutorial.com/contributor/705471/akshit-soota
https://riptutorial.com/contributor/1115659/aldanor
https://riptutorial.com/contributor/771848/alecxe
https://riptutorial.com/contributor/5306152/alessandro-trinca-tornidor
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/2142994/ani-menon
https://riptutorial.com/contributor/2263652/b8vrede
https://riptutorial.com/contributor/2302482/bahrom
https://riptutorial.com/contributor/2054527/bhargav
https://riptutorial.com/contributor/5679756/charles
https://riptutorial.com/contributor/536950/chris
https://riptutorial.com/contributor/3476387/darth-shadow
https://riptutorial.com/contributor/3476387/darth-shadow
https://riptutorial.com/contributor/4106184/dartmouth
https://riptutorial.com/contributor/2395605/dave-j
https://riptutorial.com/contributor/2291710/delgan
https://riptutorial.com/contributor/42223/dreftymac
https://riptutorial.com/contributor/653378/evuez
https://riptutorial.com/contributor/395857/franck-dernoncourt
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/974555/gerrit
https://riptutorial.com/contributor/1489266/giannis-spiliopoulos
https://riptutorial.com/contributor/3407256/giantslovedeathmetal
https://riptutorial.com/contributor/1509176/goyalankit
https://riptutorial.com/contributor/1390536/harrison
https://riptutorial.com/contributor/1488801/james-elderfield
https://riptutorial.com/contributor/1603480/jean-francois-t-
https://riptutorial.com/contributor/1440897/jeffrey-lin
https://riptutorial.com/contributor/6322391/jetpack-guy
https://riptutorial.com/contributor/1394353/jl-peyret
https://riptutorial.com/contributor/390738/joel3000
https://riptutorial.com/contributor/434943/jonatan
https://riptutorial.com/contributor/2932244/jroddynamite
https://riptutorial.com/contributor/6412179/justin
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/1945104/knight
https://riptutorial.com/contributor/2130213/krato
https://riptutorial.com/contributor/2210287/marco-pashkov
https://riptutorial.com/contributor/23991/mark
https://riptutorial.com/contributor/2641576/matt
https://riptutorial.com/contributor/3586162/matt-giltaji
https://riptutorial.com/contributor/1860929/mu--
https://riptutorial.com/contributor/1860929/mu--
https://riptutorial.com/contributor/4082217/mygz
https://riptutorial.com/contributor/5488275/nander-speerstra
https://riptutorial.com/contributor/5488275/nander-speerstra
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/552621/nour-chawich
https://riptutorial.com/contributor/1901348/orion-tvv
https://riptutorial.com/contributor/2740380/ragesz
https://riptutorial.com/contributor/966247/sashazd
https://riptutorial.com/contributor/2666859/serenity
https://riptutorial.com/contributor/1587329/serv-inc
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/4936137/slayther
https://riptutorial.com/contributor/3993154/sometowngeek
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/1639625/tobias-k
https://riptutorial.com/contributor/3426606/tony-suffolk-66
https://riptutorial.com/contributor/107946/ulope
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/5350498/user312016
https://riptutorial.com/contributor/5888265/vin
https://riptutorial.com/contributor/5827958/zondo
https://riptutorial.com/contributor/3676450/amitay-stern
https://riptutorial.com/contributor/1240268/andy-hayden
https://riptutorial.com/contributor/2887760/ares
https://riptutorial.com/contributor/4099593/bhargav-rao
https://riptutorial.com/contributor/893324/brien
https://riptutorial.com/contributor/5018771/busyant
https://riptutorial.com/contributor/4816518/cache-staheli
https://riptutorial.com/contributor/3163022/caped114
https://riptutorial.com/contributor/5996838/chaotictwist
https://riptutorial.com/contributor/5679756/charles
https://riptutorial.com/contributor/4106184/dartmouth
https://riptutorial.com/contributor/6051861/david-heyman
https://riptutorial.com/contributor/3462319/depperm
https://riptutorial.com/contributor/4257143/doug-henderson
https://riptutorial.com/contributor/2289509/elazar
https://riptutorial.com/contributor/5182026/ganesh-gadila
https://riptutorial.com/contributor/6274563/ghostarbeiter
https://riptutorial.com/contributor/5299938/goatswearhats
https://riptutorial.com/contributor/1832539/idjaw
https://riptutorial.com/contributor/1391671/igor-raush
https://riptutorial.com/contributor/1391671/igor-raush
https://riptutorial.com/contributor/404099/ilia-barahovski
https://riptutorial.com/contributor/4555569/j--
https://riptutorial.com/contributor/4952130/jim-fasarakis-hilliard
https://riptutorial.com/contributor/1394353/jl-peyret
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/2130213/krato
https://riptutorial.com/contributor/5641674/markypython
https://riptutorial.com/contributor/5947460/metasomatism
https://riptutorial.com/contributor/5845429/mikail-land
https://riptutorial.com/contributor/5393381/mseifert
https://riptutorial.com/contributor/1860929/mu--
https://riptutorial.com/contributor/1860929/mu--
https://riptutorial.com/contributor/442945/nathaniel-ford
https://riptutorial.com/contributor/5487099/olipro007
https://riptutorial.com/contributor/3654356/orvi
https://riptutorial.com/contributor/3155933/pzp
https://riptutorial.com/contributor/4285679/ronrest
https://riptutorial.com/contributor/1543403/shrey-gupta
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/655372/theheadofabroom
https://riptutorial.com/contributor/1349663/user1349663
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/1763356/veedrac
https://riptutorial.com/contributor/2714931/weizhongtu
https://riptutorial.com/contributor/2084656/wnnmaw
https://riptutorial.com/contributor/5306152/alessandro-trinca-tornidor
https://riptutorial.com/contributor/736937/jedwards
https://riptutorial.com/contributor/4911585/jelmers
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/51197/adam-matan
https://riptutorial.com/contributor/4877634/andrew-schade
https://riptutorial.com/contributor/1547004/brendan-abel
https://riptutorial.com/contributor/4279/jfs
https://riptutorial.com/contributor/2026508/jmunsch
https://riptutorial.com/contributor/6769931/riccardo-petraglia


173 sys blubberdiblub

174
tempfile 
NamedTemporaryFile

Alessandro Trinca Tornidor, amblina, Kevin Brown, Stephen 
Leppik

175 Templates in python
4444, Alessandro Trinca Tornidor, Fred Barclay, RamenChef, 
Ricardo, Stephen Leppik

176
The __name__ 
special variable

Annonymous, BusyAnt, Christian Ternus, jonrsharpe, Lutz 
Prechelt, Steven Elliott

177 The base64 Module Thomas Gerot

178 The dis module muddyfish, user2314737

179
The Interpreter 
(Command Line 
Console)

Aaron Christiansen, David, Elazar, Peter Shinners, ppperry

180 The locale Module Will, XonAether

181 The os Module Andy, Christian Ternus, JelmerS, JL Peyret, mnoronha, Vinzee

182 The pass statement Anaphory

183 The Print Function
Beall619, Frustrated, Justin, Leon Z., lukewrites, 
SuperBiasedMan, Valentin Lorentz

184 tkinter Dartmouth, rlee827, Thomas Gerot, TidB

185 Tuple

Anthony Pham, Antoine Bolvy, BusyAnt, Community, Elazar, 
James, Jim Fasarakis Hilliard, Joab Mendes, Majid, Md.Sifatul 
Islam, Mechanic, mezzode, nlsdfnbch, noɥʇʎԀʎzɐɹƆ, Selcuk, 
Simplans, textshell, tobias_k, Tony Suffolk 66, user2314737

186 Turtle Graphics Luca Van Oort, Stephen Leppik

187 Type Hints
alecxe, Annonymous, Antti Haapala, Elazar, Jim Fasarakis 
Hilliard, Jonatan, RamenChef, Seth M. Larson, Simplans, 
Stephen Leppik

188 Unicode wim

189 Unicode and bytes Claudiu, KeyWeeUsr

190 Unit Testing

Alireza Savand, Ami Tavory, antimatter15, Arpit Solanki, 
bijancn, Claudiu, Dartmouth, engineercoding, Ffisegydd, J F, 
JGreenwell, jmunsch, joel3000, Kevin Brown, Kinifwyne, Mario 
Corchero, Matt Giltaji, Mattew Whitt, mgilson, muddyfish, 
pylang, strpeter

https://riptutorial.com/ 973

https://riptutorial.com/contributor/794539/blubberdiblub
https://riptutorial.com/contributor/5306152/alessandro-trinca-tornidor
https://riptutorial.com/contributor/3759777/amblina
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/5306152/alessandro-trinca-tornidor
https://riptutorial.com/contributor/4588964/fred-barclay
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3517631/ricardo
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/3334697/annonymous
https://riptutorial.com/contributor/5018771/busyant
https://riptutorial.com/contributor/2797476/christian-ternus
https://riptutorial.com/contributor/3001761/jonrsharpe
https://riptutorial.com/contributor/2810305/lutz-prechelt
https://riptutorial.com/contributor/2810305/lutz-prechelt
https://riptutorial.com/contributor/6637258/steven-elliott
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/3398583/muddyfish
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/2626000/aaron-christiansen
https://riptutorial.com/contributor/663279/david
https://riptutorial.com/contributor/2289509/elazar
https://riptutorial.com/contributor/17209/peter-shinners
https://riptutorial.com/contributor/3750257/ppperry
https://riptutorial.com/contributor/145279/will
https://riptutorial.com/contributor/1993414/xonaether
https://riptutorial.com/contributor/189134/andy
https://riptutorial.com/contributor/2797476/christian-ternus
https://riptutorial.com/contributor/4911585/jelmers
https://riptutorial.com/contributor/1394353/jl-peyret
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/5446749/vinzee
https://riptutorial.com/contributor/1274613/anaphory
https://riptutorial.com/contributor/6711420/beall619
https://riptutorial.com/contributor/759485/frustrated
https://riptutorial.com/contributor/6412179/justin
https://riptutorial.com/contributor/6727041/leon-z-
https://riptutorial.com/contributor/3389827/lukewrites
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/539465/valentin-lorentz
https://riptutorial.com/contributor/4106184/dartmouth
https://riptutorial.com/contributor/6947337/rlee827
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/3216660/tidb
https://riptutorial.com/contributor/4052384/anthony-pham
https://riptutorial.com/contributor/2367848/antoine-bolvy
https://riptutorial.com/contributor/5018771/busyant
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2289509/elazar
https://riptutorial.com/contributor/6627323/james
https://riptutorial.com/contributor/4952130/jim-fasarakis-hilliard
https://riptutorial.com/contributor/2677101/joab-mendes
https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/6840615/md-sifatul-islam
https://riptutorial.com/contributor/6840615/md-sifatul-islam
https://riptutorial.com/contributor/833530/mechanic
https://riptutorial.com/contributor/6102253/mezzode
https://riptutorial.com/contributor/5413116/nlsdfnbch
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/1459669/no-----z---
https://riptutorial.com/contributor/2011147/selcuk
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/4973666/textshell
https://riptutorial.com/contributor/1639625/tobias-k
https://riptutorial.com/contributor/3426606/tony-suffolk-66
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/7182177/luca-van-oort
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/771848/alecxe
https://riptutorial.com/contributor/3334697/annonymous
https://riptutorial.com/contributor/918959/antti-haapala
https://riptutorial.com/contributor/2289509/elazar
https://riptutorial.com/contributor/4952130/jim-fasarakis-hilliard
https://riptutorial.com/contributor/4952130/jim-fasarakis-hilliard
https://riptutorial.com/contributor/434943/jonatan
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5763213/seth-m--larson
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/674039/wim
https://riptutorial.com/contributor/15055/claudiu
https://riptutorial.com/contributor/5994041/keyweeusr
https://riptutorial.com/contributor/636136/alireza-savand
https://riptutorial.com/contributor/3510736/ami-tavory
https://riptutorial.com/contributor/205784/antimatter15
https://riptutorial.com/contributor/5250746/arpit-solanki
https://riptutorial.com/contributor/2248964/bijancn
https://riptutorial.com/contributor/15055/claudiu
https://riptutorial.com/contributor/4106184/dartmouth
https://riptutorial.com/contributor/3554071/engineercoding
https://riptutorial.com/contributor/3005188/ffisegydd
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/4667934/jgreenwell
https://riptutorial.com/contributor/2026508/jmunsch
https://riptutorial.com/contributor/390738/joel3000
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/6859882/kinifwyne
https://riptutorial.com/contributor/1210060/mario-corchero
https://riptutorial.com/contributor/1210060/mario-corchero
https://riptutorial.com/contributor/3586162/matt-giltaji
https://riptutorial.com/contributor/3264217/mattew-whitt
https://riptutorial.com/contributor/748858/mgilson
https://riptutorial.com/contributor/3398583/muddyfish
https://riptutorial.com/contributor/4531270/pylang
https://riptutorial.com/contributor/2062965/strpeter


191 Unzipping Files andrew

192 urllib Amitay Stern, ravigadila, sth, Will

193
Usage of "pip" 
module: PyPI 
Package Manager

Zydnar

194
User-Defined 
Methods

Alessandro Trinca Tornidor, Beall619, mnoronha, RamenChef, 
Stephen Leppik, Sun Qingyao

195
Using loops within 
functions

naren

196
Variable Scope and 
Binding

Anthony Pham, davidism, Elazar, Esteis, Mike Driscoll, 
SuperBiasedMan, user2314737, zvone

197
virtual environment 
with 
virtualenvwrapper

Sirajus Salayhin

198 Virtual environments

Adrian17, Artem Kolontay, ArtOfCode, Bhargav, brennan, Dair, 
Daniil Ryzhkov, Darkade, Darth Shadow, edwinksl, Fernando, 
ghostarbeiter, ha_1694, Hans Then, Iancnorden, J F, Majid, 
Marco Pashkov, Matt Giltaji, Mattew Whitt, nehemiah, Nuhil 
Mehdy, Ortomala Lokni, Preston, pylang, qwertyuip9, 
RamenChef, Régis B., Sebastian Schrader, Serenity, 
Shantanu Alshi, Shrey Gupta, Simon Fraser, Simplans, wrwrwr
, ychaouche, zopieux, zvezda

199
Web scraping with 
Python

alecxe, Amitay Stern, jmunsch, mrtuovinen, Ni., RamenChef, 
Saiful Azad, Saqib Shamsi, Simplans, Steven Maude, sth, 
sytech, talhasch, Thomas Gerot

200
Web Server Gateway 
Interface (WSGI)

David Heyman, Kevin Brown, Preston, techydesigner

201 Webbrowser Module Thomas Gerot

202 Websockets 2Cubed, Stephen Leppik, Tyler Gubala

203
Working around the 
Global Interpreter 
Lock (GIL)

Scott Mermelstein

204
Working with ZIP 
archives

Chinmay Hegde, ghostarbeiter, Jeffrey Lin, SuperBiasedMan

205 Writing extensions
Dartmouth, J F, mattgathu, Nathan Osman, techydesigner, 
ygram

https://riptutorial.com/ 974

https://riptutorial.com/contributor/7582820/andrew
https://riptutorial.com/contributor/3676450/amitay-stern
https://riptutorial.com/contributor/4201963/ravigadila
https://riptutorial.com/contributor/56338/sth
https://riptutorial.com/contributor/4107956/will
https://riptutorial.com/contributor/4392611/zydnar
https://riptutorial.com/contributor/5306152/alessandro-trinca-tornidor
https://riptutorial.com/contributor/6711420/beall619
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/5399734/sun-qingyao
https://riptutorial.com/contributor/1193863/naren
https://riptutorial.com/contributor/4052384/anthony-pham
https://riptutorial.com/contributor/400617/davidism
https://riptutorial.com/contributor/2289509/elazar
https://riptutorial.com/contributor/473899/esteis
https://riptutorial.com/contributor/393194/mike-driscoll
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/389289/zvone
https://riptutorial.com/contributor/717600/sirajus-salayhin
https://riptutorial.com/contributor/2468469/adrian17
https://riptutorial.com/contributor/5198222/artem-kolontay
https://riptutorial.com/contributor/3160466/artofcode
https://riptutorial.com/contributor/2054527/bhargav
https://riptutorial.com/contributor/6085135/brennan
https://riptutorial.com/contributor/667648/dair
https://riptutorial.com/contributor/1241619/daniil-ryzhkov
https://riptutorial.com/contributor/1002410/darkade
https://riptutorial.com/contributor/3476387/darth-shadow
https://riptutorial.com/contributor/486919/edwinksl
https://riptutorial.com/contributor/2992065/fernando
https://riptutorial.com/contributor/6274563/ghostarbeiter
https://riptutorial.com/contributor/5149740/ha-1694
https://riptutorial.com/contributor/1004725/hans-then
https://riptutorial.com/contributor/5284676/iancnorden
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/877541/majid
https://riptutorial.com/contributor/2210287/marco-pashkov
https://riptutorial.com/contributor/3586162/matt-giltaji
https://riptutorial.com/contributor/3264217/mattew-whitt
https://riptutorial.com/contributor/968442/nehemiah
https://riptutorial.com/contributor/1061236/nuhil-mehdy
https://riptutorial.com/contributor/1061236/nuhil-mehdy
https://riptutorial.com/contributor/1807667/ortomala-lokni
https://riptutorial.com/contributor/3906487/preston
https://riptutorial.com/contributor/4531270/pylang
https://riptutorial.com/contributor/5183342/qwertyuip9
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/356528/regis-b-
https://riptutorial.com/contributor/2350268/sebastian-schrader
https://riptutorial.com/contributor/2666859/serenity
https://riptutorial.com/contributor/3655904/shantanu-alshi
https://riptutorial.com/contributor/1543403/shrey-gupta
https://riptutorial.com/contributor/3527520/simon-fraser
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/5466926/wrwrwr
https://riptutorial.com/contributor/212044/ychaouche
https://riptutorial.com/contributor/180709/zopieux
https://riptutorial.com/contributor/1112852/zvezda
https://riptutorial.com/contributor/771848/alecxe
https://riptutorial.com/contributor/3676450/amitay-stern
https://riptutorial.com/contributor/2026508/jmunsch
https://riptutorial.com/contributor/5749443/mrtuovinen
https://riptutorial.com/contributor/2907819/ni-
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1919324/saiful-azad
https://riptutorial.com/contributor/2935155/saqib-shamsi
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/1678416/steven-maude
https://riptutorial.com/contributor/56338/sth
https://riptutorial.com/contributor/5747944/sytech
https://riptutorial.com/contributor/3720614/talhasch
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/6051861/david-heyman
https://riptutorial.com/contributor/359284/kevin-brown
https://riptutorial.com/contributor/3906487/preston
https://riptutorial.com/contributor/6309608/techydesigner
https://riptutorial.com/contributor/7343856/thomas-gerot
https://riptutorial.com/contributor/6119465/2cubed
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/6767685/tyler-gubala
https://riptutorial.com/contributor/1404311/scott-mermelstein
https://riptutorial.com/contributor/4168903/chinmay-hegde
https://riptutorial.com/contributor/6274563/ghostarbeiter
https://riptutorial.com/contributor/1440897/jeffrey-lin
https://riptutorial.com/contributor/4374739/superbiasedman
https://riptutorial.com/contributor/4106184/dartmouth
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/3078304/mattgathu
https://riptutorial.com/contributor/193619/nathan-osman
https://riptutorial.com/contributor/6309608/techydesigner
https://riptutorial.com/contributor/337997/ygram


206
Writing to CSV from 
String or List

Hriddhi Dey, Thomas Crowley

https://riptutorial.com/ 975

https://riptutorial.com/contributor/5800744/hriddhi-dey
https://riptutorial.com/contributor/8330953/thomas-crowley

	About
	Chapter 1: Getting started with Python Language
	Remarks
	Versions
	Python 3.x
	Python 2.x
	Examples
	Getting Started

	Verify if Python is installed

	Hello, World in Python using IDLE
	Hello World Python file

	Launch an interactive Python shell
	Other Online Shells
	Run commands as a string
	Shells and Beyond
	Creating variables and assigning values
	User Input
	IDLE - Python GUI
	Troubleshooting
	Datatypes


	Built-in Types
	Booleans
	Numbers
	Strings
	Sequences and collections

	Built-in constants
	Testing the type of variables
	Converting between datatypes
	Explicit string type at definition of literals
	Mutable and Immutable Data Types
	Built in Modules and Functions
	Block Indentation

	Spaces vs. Tabs
	Collection Types
	Help Utility
	Creating a module
	String function - str() and repr()
	repr()
	str()
	Installing external modules using pip

	Finding / installing a package
	Upgrading installed packages
	Upgrading pip
	Installation of Python 2.7.x and 3.x

	Chapter 2: *args and **kwargs
	Remarks

	h11
	h12
	h13
	Examples
	Using *args when writing functions
	Using **kwargs when writing functions
	Using *args when calling functions
	Using **kwargs when calling functions
	Using *args when calling functions
	Keyword-only and Keyword-required arguments
	Populating kwarg values with a dictionary
	**kwargs and default values


	Chapter 3: 2to3 tool
	Syntax
	Parameters
	Remarks
	Examples
	Basic Usage

	Unix
	Windows
	Unix
	Windows

	Chapter 4: Abstract Base Classes (abc)
	Examples
	Setting the ABCMeta metaclass
	Why/How to use ABCMeta and @abstractmethod


	Chapter 5: Abstract syntax tree
	Examples
	Analyze functions in a python script


	Chapter 6: Accessing Python source code and bytecode
	Examples
	Display the bytecode of a function
	Exploring the code object of a function
	Display the source code of an object
	Objects that are not built-in
	Objects defined interactively
	Built-in objects


	Chapter 7: Alternatives to switch statement from other languages
	Remarks
	Examples
	Use what the language offers: the if/else construct.
	Use a dict of functions
	Use class introspection
	Using a context manager


	Chapter 8: ArcPy
	Remarks
	Examples
	Printing one field's value for all rows of feature class in file geodatabase using Search Cursor
	createDissolvedGDB to create a file gdb on the workspace


	Chapter 9: Arrays
	Introduction
	Parameters
	Examples
	Basic Introduction to Arrays
	Access individual elements through indexes
	Append any value to the array using append() method
	Insert value in an array using insert() method
	Extend python array using extend() method
	Add items from list into array using fromlist() method
	Remove any array element using remove() method
	Remove last array element using pop() method
	Fetch any element through its index using index() method
	Reverse a python array using reverse() method
	Get array buffer information through buffer_info() method
	Check for number of occurrences of an element using count() method
	Convert array to string using tostring() method
	Convert array to a python list with same elements using tolist() method
	Append a string to char array using fromstring() method


	Chapter 10: Asyncio Module
	Examples
	Coroutine and Delegation Syntax
	Asynchronous Executors
	Using UVLoop
	Synchronization Primitive: Event


	Concept
	Example
	A Simple Websocket
	Common Misconception about asyncio

	Chapter 11: Attribute Access
	Syntax
	Examples
	Basic Attribute Access using the Dot Notation
	Setters, Getters & Properties


	Chapter 12: Audio
	Examples
	Audio With Pyglet
	Working with WAV files


	winsound
	wave
	Convert any soundfile with python and ffmpeg
	Playing Windows' beeps

	Chapter 13: Basic Curses with Python
	Remarks
	Examples
	Basic Invocation Example
	The wrapper() helper function.


	Chapter 14: Basic Input and Output
	Examples
	Using input() and raw_input()
	Using the print function
	Function to prompt user for a number
	Printing a string without a newline at the end
	Read from stdin
	Input from a File


	Chapter 15: Binary Data
	Syntax
	Examples
	Format a list of values into a byte object
	Unpack a byte object according to a format string
	Packing a structure


	Chapter 16: Bitwise Operators
	Introduction
	Syntax
	Examples
	Bitwise AND
	Bitwise OR
	Bitwise XOR (Exclusive OR)
	Bitwise Left Shift
	Bitwise Right Shift
	Bitwise NOT
	Inplace Operations


	Chapter 17: Boolean Operators
	Examples
	and
	or
	not
	Short-circuit evaluation
	`and` and `or` are not guaranteed to return a boolean
	A simple example


	Chapter 18: Call Python from C#
	Introduction
	Remarks
	Examples
	Python script to be called by C# application
	C# code calling Python script


	Chapter 19: Checking Path Existence and Permissions
	Parameters
	Examples
	Perform checks using os.access


	Chapter 20: ChemPy - python package
	Introduction
	Examples
	Parsing formulae
	Balancing stoichiometry of a chemical reaction
	Balancing reactions
	Chemical equilibria
	Ionic strength
	Chemical kinetics (system of ordinary differential equations)


	Chapter 21: Classes
	Introduction
	Examples
	Basic inheritance


	Built-in functions that work with inheritance
	Class and instance variables
	Bound, unbound, and static methods
	New-style vs. old-style classes
	Default values for instance variables
	Multiple Inheritance
	Descriptors and Dotted Lookups
	Class methods: alternate initializers
	Class composition
	Monkey Patching
	Listing All Class Members
	Introduction to classes
	Properties
	Singleton class

	Chapter 22: CLI subcommands with precise help output
	Introduction
	Remarks
	Examples
	Native way (no libraries)
	argparse (default help formatter)
	argparse (custom help formatter)


	Chapter 23: Code blocks, execution frames, and namespaces
	Introduction
	Examples
	Code block namespaces


	Chapter 24: Collections module
	Introduction
	Remarks
	Examples
	collections.Counter
	collections.defaultdict
	collections.OrderedDict
	collections.namedtuple
	collections.deque
	collections.ChainMap


	Chapter 25: Comments and Documentation
	Syntax
	Remarks
	Examples
	Single line, inline and multiline comments
	Programmatically accessing docstrings

	An example function
	Another example function
	Advantages of docstrings over regular comments
	Write documentation using docstrings

	Syntax conventions
	PEP 257
	Sphinx
	Google Python Style Guide


	Chapter 26: Common Pitfalls
	Introduction
	Examples
	Changing the sequence you are iterating over
	Mutable default argument
	List multiplication and common references
	Integer and String identity
	Accessing int literals' attributes
	Chaining of or operator
	sys.argv[0] is the name of the file being executed


	h14
	Dictionaries are unordered
	Global Interpreter Lock (GIL) and blocking threads
	Variable leaking in list comprehensions and for loops
	Multiple return
	Pythonic JSON keys

	Chapter 27: Commonwealth Exceptions
	Introduction
	Examples
	IndentationErrors (or indentation SyntaxErrors)


	IndentationError/SyntaxError: unexpected indent
	Example

	IndentationError/SyntaxError: unindent does not match any outer indentation level
	Example

	IndentationError: expected an indented block
	Example

	IndentationError: inconsistent use of tabs and spaces in indentation
	Example
	How to avoid this error
	TypeErrors


	TypeError: [definition/method] takes ? positional arguments but ? was given
	Example

	TypeError: unsupported operand type(s) for [operand]: '???' and '???'
	Example

	TypeError: '???' object is not iterable/subscriptable:
	Example

	TypeError: '???' object is not callable
	Example
	NameError: name '???' is not defined

	It's simply not defined nowhere in the code
	Maybe it's defined later:
	Or it wasn't imported:
	Python scopes and the LEGB Rule:
	Other Errors


	AssertError
	KeyboardInterrupt
	ZeroDivisionError
	Syntax Error on good code

	Chapter 28: Comparisons
	Syntax
	Parameters
	Examples
	Greater than or less than
	Not equal to
	Equal To
	Chain Comparisons


	Style
	Side effects
	Comparison by `is` vs `==`
	Comparing Objects
	Common Gotcha: Python does not enforce typing

	Chapter 29: Complex math
	Syntax
	Examples
	Advanced complex arithmetic
	Basic complex arithmetic


	Chapter 30: Conditionals
	Introduction
	Syntax
	Examples
	if, elif, and else
	Conditional Expression (or "The Ternary Operator")
	If statement
	Else statement
	Boolean Logic Expressions


	And operator
	Or operator
	Lazy evaluation
	Testing for multiple conditions
	Truth Values
	Using the cmp function to get the comparison result of two objects
	Conditional Expression Evaluation Using List Comprehensions
	Testing if an object is None and assigning it

	Chapter 31: configparser
	Introduction
	Syntax
	Remarks
	Examples
	Basic usage
	Creating configuration file programatically


	Chapter 32: Connecting Python to SQL Server
	Examples
	Connect to Server, Create Table, Query Data


	Chapter 33: Context Managers (“with” Statement)
	Introduction
	Syntax
	Remarks
	Examples
	Introduction to context managers and the with statement
	Assigning to a target
	Writing your own context manager
	Writing your own contextmanager using generator syntax
	Multiple context managers
	Manage Resources


	Chapter 34: Copying data
	Examples
	Performing a shallow copy
	Performing a deep copy
	Performing a shallow copy of a list
	Copy a dictionary
	Copy a set


	Chapter 35: Counting
	Examples
	Counting all occurence of all items in an iterable: collections.Counter
	Getting the most common value(-s): collections.Counter.most_common()
	Counting the occurrences of one item in a sequence: list.count() and tuple.count()
	Counting the occurrences of a substring in a string: str.count()
	Counting occurences in numpy array


	Chapter 36: Create virtual environment with virtualenvwrapper in windows
	Examples
	Virtual environment with virtualenvwrapper for windows


	Chapter 37: Creating a Windows service using Python
	Introduction
	Examples
	A Python script that can be run as a service
	Running a Flask web application as a service


	Chapter 38: Creating Python packages
	Remarks
	Examples
	Introduction
	Uploading to PyPI


	Setup a .pypirc File
	Register and Upload to testpypi (optional)
	Testing
	Register and Upload to PyPI
	Documentation
	Readme

	Licensing
	Making package executable

	Chapter 39: ctypes
	Introduction
	Examples
	Basic usage
	Common pitfalls


	Failing to load a file
	Failing to access a function
	Basic ctypes object
	ctypes arrays
	Wrapping functions for ctypes
	Complex usage

	Chapter 40: Data Serialization
	Syntax
	Parameters
	Remarks
	Examples
	Serialization using JSON
	Serialization using Pickle


	Chapter 41: Data Visualization with Python
	Examples
	Matplotlib
	Seaborn
	MayaVI
	Plotly


	Chapter 42: Database Access
	Remarks
	Examples
	Accessing MySQL database using MySQLdb
	SQLite


	The SQLite Syntax: An in-depth analysis
	Getting started
	h21
	Important Attributes and Functions of Connection
	Important Functions of Cursor
	SQLite and Python data types
	PostgreSQL Database access using psycopg2

	Establishing a connection to the database and creating a table
	Inserting data into the table:
	Retrieving table data:
	Oracle database
	Connection
	Using sqlalchemy


	Chapter 43: Date and Time
	Remarks
	Examples
	Parsing a string into a timezone aware datetime object
	Simple date arithmetic
	Basic datetime objects usage
	Iterate over dates
	Parsing a string with a short time zone name into a timezone aware datetime object
	Constructing timezone-aware datetimes
	Fuzzy datetime parsing (extracting datetime out of a text)
	Switching between time zones
	Parsing an arbitrary ISO 8601 timestamp with minimal libraries
	Converting timestamp to datetime
	Subtracting months from a date accurately
	Computing time differences
	Get an ISO 8601 timestamp


	Without timezone, with microseconds
	With timezone, with microseconds
	With timezone, without microseconds
	Chapter 44: Date Formatting
	Examples
	Time between two date-times
	Parsing string to datetime object
	Outputting datetime object to string


	Chapter 45: Debugging
	Examples
	The Python Debugger: Step-through Debugging with _pdb_
	Via IPython and ipdb
	Remote debugger


	Chapter 46: Decorators
	Introduction
	Syntax
	Parameters
	Examples
	Decorator function
	Decorator class


	Decorating Methods
	Warning!
	Making a decorator look like the decorated function

	As a function
	As a class
	Decorator with arguments (decorator factory)

	Decorator functions
	Important Note:
	Decorator classes
	Create singleton class with a decorator
	Using a decorator to time a function

	Chapter 47: Defining functions with list arguments
	Examples
	Function and Call


	Chapter 48: Deployment
	Examples
	Uploading a Conda Package


	Chapter 49: Deque Module
	Syntax
	Parameters
	Remarks
	Examples
	Basic deque using
	limit deque size
	Available methods in deque
	Breadth First Search


	Chapter 50: Descriptor
	Examples
	Simple descriptor
	Two-way conversions


	Chapter 51: Design Patterns
	Introduction
	Examples
	Strategy Pattern
	Introduction to design patterns and Singleton Pattern
	Proxy


	Chapter 52: Dictionary
	Syntax
	Parameters
	Remarks
	Examples
	Accessing values of a dictionary
	The dict() constructor
	Avoiding KeyError Exceptions
	Accessing keys and values
	Introduction to Dictionary


	creating a dict
	literal syntax
	dict comprehension
	built-in class: dict()

	modifying a dict
	Dictionary with default values
	Creating an ordered dictionary
	Unpacking dictionaries using the ** operator
	Merging dictionaries

	Python 3.5+
	Python 3.3+
	Python 2.x, 3.x
	The trailing comma
	All combinations of dictionary values
	Iterating Over a Dictionary
	Creating a dictionary
	Dictionaries Example

	Chapter 53: Difference between Module and Package
	Remarks
	Examples
	Modules
	Packages


	Chapter 54: Distribution
	Examples
	py2app
	cx_Freeze


	Chapter 55: Django
	Introduction
	Examples
	Hello World with Django


	Chapter 56: Dynamic code execution with `exec` and `eval`
	Syntax
	Parameters
	Remarks
	Examples
	Evaluating statements with exec
	Evaluating an expression with eval
	Precompiling an expression to evaluate it multiple times
	Evaluating an expression with eval using custom globals
	Evaluating a string containing a Python literal with ast.literal_eval
	Executing code provided by untrusted user using exec, eval, or ast.literal_eval


	Chapter 57: Enum
	Remarks
	Examples
	Creating an enum (Python 2.4 through 3.3)
	Iteration


	Chapter 58: Exceptions
	Introduction
	Syntax
	Examples
	Raising Exceptions
	Catching Exceptions
	Running clean-up code with finally
	Re-raising exceptions
	Chain exceptions with raise from
	Exception Hierarchy
	Exceptions are Objects too
	Creating custom exception types
	Do not catch everything!
	Catching multiple exceptions
	Practical examples of exception handling


	User input
	Dictionaries
	Else

	Chapter 59: Exponentiation
	Syntax
	Examples
	Square root: math.sqrt() and cmath.sqrt
	Exponentiation using builtins: ** and pow()
	Exponentiation using the math module: math.pow()
	Exponential function: math.exp() and cmath.exp()
	Exponential function minus 1: math.expm1()
	Magic methods and exponentiation: builtin, math and cmath
	Modular exponentiation: pow() with 3 arguments
	Roots: nth-root with fractional exponents
	Computing large integer roots


	Chapter 60: Files & Folders I/O
	Introduction
	Syntax
	Parameters
	Remarks

	Avoiding the cross-platform Encoding Hell
	Examples
	File modes
	Reading a file line-by-line
	Getting the full contents of a file
	Writing to a file
	Copying contents of one file to a different file
	Check whether a file or path exists
	Copy a directory tree
	Iterate files (recursively)
	Read a file between a range of lines
	Random File Access Using mmap
	Replacing text in a file
	Checking if a file is empty


	Chapter 61: Filter
	Syntax
	Parameters
	Remarks
	Examples
	Basic use of filter
	Filter without function
	Filter as short-circuit check
	Complementary function: filterfalse, ifilterfalse


	Chapter 62: Flask
	Introduction
	Syntax
	Examples
	The basics
	Routing URLs
	HTTP Methods
	Files and Templates
	Jinja Templating
	The Request Object


	URL Parameters
	File Uploads
	Cookies
	Chapter 63: Functional Programming in Python
	Introduction
	Examples
	Lambda Function
	Map Function
	Reduce Function
	Filter Function


	Chapter 64: Functions
	Introduction
	Syntax
	Parameters
	Remarks
	Additional resources

	Examples
	Defining and calling simple functions
	Returning values from functions
	Defining a function with arguments
	Defining a function with optional arguments


	Warning
	Defining a function with multiple arguments
	Defining a function with an arbitrary number of arguments

	Arbitrary number of positional arguments:
	Arbitrary number of keyword arguments
	Warning
	Note on Naming
	Note on Uniqueness
	Note on Nesting Functions with Optional Arguments
	Defining a function with optional mutable arguments

	Explanation
	Solution
	Lambda (Inline/Anonymous) Functions
	Argument passing and mutability
	Closure
	Recursive functions
	Recursion limit
	Nested functions
	Iterable and dictionary unpacking
	Forcing the use of named parameters
	Recursive Lambda using assigned variable

	Description of code

	Chapter 65: Functools Module
	Examples
	partial
	total_ordering
	reduce
	lru_cache
	cmp_to_key


	Chapter 66: Garbage Collection
	Remarks
	Generational Garbage Collection
	Examples
	Reference Counting
	Garbage Collector for Reference Cycles
	Effects of the del command
	Reuse of primitive objects
	Viewing the refcount of an object
	Forcefully deallocating objects
	Managing garbage collection
	Do not wait for the garbage collection to clean up


	Chapter 67: Generators
	Introduction
	Syntax
	Examples
	Iteration
	The next() function
	Sending objects to a generator
	Generator expressions
	Introduction
	Using a generator to find Fibonacci Numbers
	Infinite sequences


	Classic example - Fibonacci numbers
	Yielding all values from another iterable
	Coroutines
	Yield with recursion: recursively listing all files in a directory
	Iterating over generators in parallel
	Refactoring list-building code
	Searching

	Chapter 68: getting start with GZip
	Introduction
	Examples
	Read and write GNU zip files


	Chapter 69: graph-tool
	Introduction
	Examples
	PyDotPlus
	Installation
	PyGraphviz


	Chapter 70: groupby()
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Example 1
	Example 2
	Example 3
	Example 4


	Chapter 71: hashlib
	Introduction
	Examples
	MD5 hash of a string
	algorithm provided by OpenSSL


	Chapter 72: Heapq
	Examples
	Largest and smallest items in a collection
	Smallest item in a collection


	Chapter 73: Hidden Features
	Examples
	Operator Overloading


	Chapter 74: HTML Parsing
	Examples
	Locate a text after an element in BeautifulSoup
	Using CSS selectors in BeautifulSoup
	PyQuery


	Chapter 75: Idioms
	Examples
	Dictionary key initializations
	Switching variables
	Use truth value testing
	Test for "__main__" to avoid unexpected code execution


	Chapter 76: ijson
	Introduction
	Examples
	Simple Example


	Chapter 77: Immutable datatypes(int, float, str, tuple and frozensets)
	Examples
	Individual characters of strings are not assignable
	Tuple's individual members aren't assignable
	Frozenset's are immutable and not assignable


	Chapter 78: Importing modules
	Syntax
	Remarks
	Examples
	Importing a module
	Importing specific names from a module
	Importing all names from a module
	The __all__ special variable
	Programmatic importing
	Import modules from an arbitrary filesystem location
	PEP8 rules for Imports
	Importing submodules
	__import__() function
	Re-importing a module

	Python 2
	Python 3

	Chapter 79: Incompatibilities moving from Python 2 to Python 3
	Introduction
	Remarks
	Examples
	Print statement vs. Print function
	Strings: Bytes versus Unicode
	Integer Division
	Reduce is no longer a built-in
	Differences between range and xrange functions

	Compatibility
	Unpacking Iterables
	Raising and handling Exceptions
	.next() method on iterators renamed
	Comparison of different types
	User Input
	Dictionary method changes
	exec statement is a function in Python 3
	hasattr function bug in Python 2
	Renamed modules

	Compatibility
	Octal Constants
	All classes are "new-style classes" in Python 3.
	Removed operators <> and ``, synonymous with != and repr()
	encode/decode to hex no longer available
	cmp function removed in Python 3
	Leaked variables in list comprehension
	map()
	filter(), map() and zip() return iterators instead of sequences
	Absolute/Relative Imports
	More on Relative Imports
	File I/O
	The round() function tie-breaking and return type
	round() tie breaking
	round() return type
	True, False and None
	Return value when writing to a file object
	long vs. int
	Class Boolean Value


	Chapter 80: Indentation
	Examples
	Indentation Errors
	Simple example

	Spaces or Tabs?
	How Indentation is Parsed


	Chapter 81: Indexing and Slicing
	Syntax
	Parameters
	Remarks
	Examples
	Basic Slicing
	Making a shallow copy of an array
	Reversing an object
	Indexing custom classes: __getitem__, __setitem__ and __delitem__
	Slice assignment
	Slice objects
	Basic Indexing


	Chapter 82: Input, Subset and Output External Data Files using Pandas
	Introduction
	Examples
	Basic Code to Import, Subset and Write External Data Files Using Pandas


	Chapter 83: Introduction to RabbitMQ using AMQPStorm
	Remarks
	Examples
	How to consume messages from RabbitMQ
	How to publish messages to RabbitMQ
	How to create a delayed queue in RabbitMQ


	Chapter 84: IoT Programming with Python and Raspberry PI
	Examples
	Example - Temperature sensor


	Chapter 85: Iterables and Iterators
	Examples
	Iterator vs Iterable vs Generator
	What can be iterable
	Iterating over entire iterable
	Verify only one element in iterable
	Extract values one by one
	Iterator isn't reentrant!


	Chapter 86: Itertools Module
	Syntax
	Examples
	Grouping items from an iterable object using a function
	Take a slice of a generator
	itertools.product
	itertools.count
	itertools.takewhile
	itertools.dropwhile
	Zipping two iterators until they are both exhausted
	Combinations method in Itertools Module
	Chaining multiple iterators together
	itertools.repeat
	Get an accumulated sum of numbers in an iterable
	Cycle through elements in an iterator
	itertools.permutations


	Chapter 87: JSON Module
	Remarks

	Types
	Defaults
	De-serialisation types:
	Serialisation types:

	Custom (de-)serialisation
	Serialisation:
	De-serialisation:
	Further custom (de-)serialisation:

	Examples
	Creating JSON from Python dict
	Creating Python dict from JSON
	Storing data in a file
	Retrieving data from a file
	`load` vs `loads`, `dump` vs `dumps`
	Calling `json.tool` from the command line to pretty-print JSON output
	Formatting JSON output


	Setting indentation to get prettier output
	Sorting keys alphabetically to get consistent output
	Getting rid of whitespace to get compact output
	JSON encoding custom objects

	Chapter 88: kivy - Cross-platform Python Framework for NUI Development
	Introduction
	Examples
	First App


	Chapter 89: Linked List Node
	Examples
	Write a simple Linked List Node in python


	Chapter 90: Linked lists
	Introduction
	Examples
	Single linked list example


	Chapter 91: List
	Introduction
	Syntax
	Remarks
	Examples
	Accessing list values
	List methods and supported operators
	Length of a list
	Iterating over a list
	Checking whether an item is in a list
	Reversing list elements
	Checking if list is empty
	Concatenate and Merge lists
	Any and All
	Remove duplicate values in list
	Accessing values in nested list
	Comparison of lists
	Initializing a List to a Fixed Number of Elements


	Chapter 92: List comprehensions
	Introduction
	Syntax
	Remarks
	Examples
	List Comprehensions


	else
	Double Iteration
	In-place Mutation and Other Side Effects
	Whitespace in list comprehensions
	Dictionary Comprehensions
	Generator Expressions
	Use cases
	Set Comprehensions
	Avoid repetitive and expensive operations using conditional clause
	Comprehensions involving tuples
	Counting Occurrences Using Comprehension
	Changing Types in a List


	Chapter 93: List Comprehensions
	Introduction
	Syntax
	Remarks
	Examples
	Conditional List Comprehensions
	List Comprehensions with Nested Loops
	Refactoring filter and map to list comprehensions

	Refactoring - Quick Reference
	Nested List Comprehensions
	Iterate two or more list simultaneously within list comprehension


	Chapter 94: List destructuring (aka packing and unpacking)
	Examples
	Destructuring assignment

	Destructuring as values
	Destructuring as a list
	Ignoring values in destructuring assignments
	Ignoring lists in destructuring assignments
	Packing function arguments

	Packing a list of arguments
	Packing keyword arguments
	Unpacking function arguments


	Chapter 95: List slicing (selecting parts of lists)
	Syntax
	Remarks
	Examples
	Using the third "step" argument
	Selecting a sublist from a list
	Reversing a list with slicing
	Shifting a list using slicing


	Chapter 96: Logging
	Examples
	Introduction to Python Logging
	Logging exceptions


	Chapter 97: Loops
	Introduction
	Syntax
	Parameters
	Examples
	Iterating over lists
	For loops


	Iterable objects and iterators
	Break and Continue in Loops

	break statement
	continue statement
	Nested Loops
	Use return from within a function as a break
	Loops with an "else" clause

	Why would one use this strange construct?
	Iterating over dictionaries
	While Loop
	The Pass Statement
	Iterating different portion of a list with different step size


	Iteration over the whole list
	Iterate over sub-list
	The "half loop" do-while
	Looping and Unpacking


	Chapter 98: Manipulating XML
	Remarks
	Examples
	Opening and reading using an ElementTree
	Modifying an XML File
	Create and Build XML Documents
	Opening and reading large XML files using iterparse (incremental parsing)
	Searching the XML with XPath


	Chapter 99: Map Function
	Syntax
	Parameters
	Remarks
	Examples
	Basic use of map, itertools.imap and future_builtins.map
	Mapping each value in an iterable
	Mapping values of different iterables
	Transposing with Map: Using "None" as function argument (python 2.x only)
	Series and Parallel Mapping


	Chapter 100: Math Module
	Examples
	Rounding: round, floor, ceil, trunc
	Warning!
	Warning about the floor, trunc, and integer division of negative numbers
	Logarithms
	Copying signs
	Trigonometry
	Calculating the length of the hypotenuse
	Converting degrees to/from radians
	Sine, cosine, tangent and inverse functions
	Hyperbolic sine, cosine and tangent
	Constants
	Imaginary Numbers
	Infinity and NaN ("not a number")
	Pow for faster exponentiation
	Complex numbers and the cmath module


	Chapter 101: Metaclasses
	Introduction
	Remarks
	Examples
	Basic Metaclasses
	Singletons using metaclasses
	Using a metaclass


	Metaclass syntax
	Python 2 and 3 compatibility with six
	Custom functionality with metaclasses
	Introduction to Metaclasses
	What is a metaclass?
	The Simplest Metaclass
	A Metaclass which does Something
	The default metaclass


	Chapter 102: Method Overriding
	Examples
	Basic method overriding


	Chapter 103: Mixins
	Syntax
	Remarks
	Examples
	Mixin
	Overriding Methods in Mixins


	Chapter 104: Multidimensional arrays
	Examples
	Lists in lists
	Lists in lists in lists in...


	Chapter 105: Multiprocessing
	Examples
	Running Two Simple Processes
	Using Pool and Map


	Chapter 106: Multithreading
	Introduction
	Examples
	Basics of multithreading
	Communicating between threads
	Creating a worker pool
	Advanced use of multithreads

	Advanced printer (logger)
	Stoppable Thread with a while Loop


	Chapter 107: Mutable vs Immutable (and Hashable) in Python
	Examples
	Mutable vs Immutable


	Immutables
	Exercise

	Mutables
	Exercise
	Mutable and Immutable as Arguments

	Exercise

	Chapter 108: Neo4j and Cypher using Py2Neo
	Examples
	Importing and Authenticating
	Adding Nodes to Neo4j Graph
	Adding Relationships to Neo4j Graph
	Query 1 : Autocomplete on News Titles
	Query 2 : Get News Articles by Location on a particular date
	Cypher Query Samples


	Chapter 109: Non-official Python implementations
	Examples
	IronPython


	Hello World
	External links
	Jython

	Hello World
	External links
	Transcrypt

	Code size and speed
	Integration with HTML
	Integration with JavaScript and DOM
	Integration with other JavaScript libraries
	Relation between Python and JavaScript code
	External links
	Chapter 110: Operator module
	Examples
	Operators as alternative to an infix operator
	Methodcaller
	Itemgetter


	Chapter 111: Operator Precedence
	Introduction
	Remarks
	Examples
	Simple Operator Precedence Examples in python.


	Chapter 112: Optical Character Recognition
	Introduction
	Examples
	PyTesseract
	PyOCR


	Chapter 113: os.path
	Introduction
	Syntax
	Examples
	Join Paths
	Absolute Path from Relative Path
	Path Component Manipulation
	Get the parent directory
	If the given path exists.
	check if the given path is a directory, file, symbolic link, mount point etc.


	Chapter 114: Overloading
	Examples
	Magic/Dunder Methods
	Container and sequence types
	Callable types
	Handling unimplemented behaviour
	Operator overloading


	Chapter 115: Pandas Transform: Preform operations on groups and concatenate the results
	Examples
	Simple transform

	First, Lets create a dummy dataframe
	Now, we will use pandas transform function to count the number of orders per customer
	Multiple results per group


	Using transform functions that return sub-calculations per group
	Chapter 116: Parallel computation
	Remarks
	Examples
	Using the multiprocessing module to parallelise tasks
	Using Parent and Children scripts to execute code in parallel
	Using a C-extension to parallelize tasks
	Using PyPar module to parallelize


	Chapter 117: Parsing Command Line arguments
	Introduction
	Examples
	Hello world in argparse
	Basic example with docopt
	Setting mutually exclusive arguments with argparse
	Using command line arguments with argv
	Custom parser error message with argparse
	Conceptual grouping of arguments with argparse.add_argument_group()
	Advanced example with docopt and docopt_dispatch


	Chapter 118: Partial functions
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Raise the power


	Chapter 119: Performance optimization
	Remarks
	Examples
	Code profiling


	Chapter 120: Pickle data serialisation
	Syntax
	Parameters
	Remarks

	Pickleable types
	pickle and security
	Examples
	Using Pickle to serialize and deserialize an object


	To serialize the object
	To deserialize the object
	Using pickle and byte objects
	Customize Pickled Data

	Chapter 121: Pillow
	Examples
	Read Image File
	Convert files to JPEG


	Chapter 122: pip: PyPI Package Manager
	Introduction
	Syntax
	Remarks
	Examples
	Install Packages


	Install from requirements files
	Uninstall Packages
	To list all packages installed using `pip`
	Upgrade Packages
	Updating all outdated packages on Linux
	Updating all outdated packages on Windows
	Create a requirements.txt file of all packages on the system
	Create a requirements.txt file of packages only in the current virtualenv
	Using a certain Python version with pip
	Installing packages not yet on pip as wheels
	Note on Installing Pre-Releases
	Note on Installing Development Versions

	Chapter 123: Plotting with Matplotlib
	Introduction
	Examples
	A Simple Plot in Matplotlib
	Adding more features to a simple plot : axis labels, title, axis ticks, grid, and legend
	Making multiple plots in the same figure by superimposition similar to MATLAB
	Making multiple Plots in the same figure using plot superimposition with separate plot commands
	Plots with Common X-axis but different Y-axis : Using twinx()
	Plots with common Y-axis and different X-axis using twiny()


	Chapter 124: Plugin and Extension Classes
	Examples
	Mixins
	Plugins with Customized Classes


	Chapter 125: Polymorphism
	Examples
	Basic Polymorphism
	Duck Typing


	Chapter 126: PostgreSQL
	Examples
	Getting Started

	Installation using pip
	Basic usage

	Chapter 127: Processes and Threads
	Introduction
	Examples
	Global Interpreter Lock
	Running in Multiple Threads
	Running in Multiple Processes
	Sharing State Between Threads
	Sharing State Between Processes


	Chapter 128: Profiling
	Examples
	%%timeit and %timeit in IPython
	timeit() function
	timeit command line
	line_profiler in command line
	Using cProfile (Preferred Profiler)


	Chapter 129: Property Objects
	Remarks
	Examples
	Using the @property decorator
	Using the @property decorator for read-write properties
	Overriding just a getter, setter or a deleter of a property object
	Using properties without decorators


	Chapter 130: py.test
	Examples
	Setting up py.test

	The Code to Test
	The Testing Code
	Running The Test
	Failing Tests
	Intro to Test Fixtures

	py.test fixtures to the rescue!
	Cleaning up after the tests are done.

	Chapter 131: pyaudio
	Introduction
	Remarks
	Examples
	Callback Mode Audio I/O
	Blocking Mode Audio I/O


	Chapter 132: pyautogui module
	Introduction
	Examples
	Mouse Functions
	Keyboard Functions
	ScreenShot And Image Recognition


	Chapter 133: pygame
	Introduction
	Syntax
	Parameters
	Examples
	Installing pygame
	Pygame's mixer module


	Initializing
	Possible Actions
	Channels
	Chapter 134: Pyglet
	Introduction
	Examples
	Hello World in Pyglet
	Installation of Pyglet
	Playing Sound in Pyglet
	Using Pyglet for OpenGL
	Drawing Points Using Pyglet and OpenGL


	Chapter 135: PyInstaller - Distributing Python Code
	Syntax
	Remarks
	Examples
	Installation and Setup
	Using Pyinstaller
	Bundling to One Folder


	Advantages:
	Disadvantages
	Bundling to a Single File

	Chapter 136: Python and Excel
	Examples
	Put list data into a Excel's file.
	OpenPyXL
	Create excel charts with xlsxwriter
	Read the excel data using xlrd module
	Format Excel files with xlsxwriter


	Chapter 137: Python Anti-Patterns
	Examples
	Overzealous except clause
	Looking before you leap with processor-intensive function

	Dictionary keys

	Chapter 138: Python concurrency
	Remarks
	Examples
	The threading module
	The multiprocessing module
	Passing data between multiprocessing processes


	Chapter 139: Python Data Types
	Introduction
	Examples
	Numbers data type
	String Data Type
	List Data Type
	Tuple Data Type
	Dictionary Data Type
	Set Data Types


	Chapter 140: Python HTTP Server
	Examples
	Running a simple HTTP server
	Serving files
	Programmatic API of SimpleHTTPServer
	Basic handling of GET, POST, PUT using BaseHTTPRequestHandler


	Chapter 141: Python Lex-Yacc
	Introduction
	Remarks
	Examples
	Getting Started with PLY
	The "Hello, World!" of PLY - A Simple Calculator
	Part 1: Tokenizing Input with Lex


	Breakdown
	h22
	h23
	h24
	h25
	h26
	h27
	h28
	h29
	h210
	h211
	Part 2: Parsing Tokenized Input with Yacc


	Breakdown
	h212

	Chapter 142: Python Networking
	Remarks
	Examples
	The simplest Python socket client-server example
	Creating a Simple Http Server
	Creating a TCP server
	Creating a UDP Server
	Start Simple HttpServer in a thread and open the browser


	Chapter 143: Python Persistence
	Syntax
	Parameters
	Examples
	Python Persistence
	Function utility for save and load


	Chapter 144: Python Requests Post
	Introduction
	Examples
	Simple Post
	Form Encoded Data
	File Upload
	Responses
	Authentication
	Proxies


	Chapter 145: Python Serial Communication (pyserial)
	Syntax
	Parameters
	Remarks
	Examples
	Initialize serial device
	Read from serial port
	Check what serial ports are available on your machine


	Chapter 146: Python Server Sent Events
	Introduction
	Examples
	Flask SSE
	Asyncio SSE


	Chapter 147: Python speed of program
	Examples
	Notation
	List operations
	Deque operations
	Set operations
	Algorithmic Notations...


	Chapter 148: Python Virtual Environment - virtualenv
	Introduction
	Examples
	Installation
	Usage
	Install a package in your Virtualenv
	Other useful virtualenv commands


	Chapter 149: Queue Module
	Introduction
	Examples
	Simple example


	Chapter 150: Raise Custom Errors / Exceptions
	Introduction
	Examples
	Custom Exception
	Catch custom Exception


	Chapter 151: Random module
	Syntax
	Examples
	Random and sequences: shuffle, choice and sample


	shuffle()
	choice()
	sample()
	Creating random integers and floats: randint, randrange, random, and uniform

	randint()
	randrange()
	random
	uniform
	Reproducible random numbers: Seed and State
	Create cryptographically secure random numbers
	Creating a random user password
	Random Binary Decision

	Chapter 152: Reading and Writing CSV
	Examples
	Writing a TSV file


	Python
	Output file
	Using pandas

	Chapter 153: Recursion
	Remarks
	Examples
	Sum of numbers from 1 to n
	The What, How, and When of Recursion
	Tree exploration with recursion
	Increasing the Maximum Recursion Depth
	Tail Recursion - Bad Practice
	Tail Recursion Optimization Through Stack Introspection


	Chapter 154: Reduce
	Syntax
	Parameters
	Remarks
	Examples
	Overview
	Using reduce
	Cumulative product
	Non short-circuit variant of any/all
	First truthy/falsy element of a sequence (or last element if there is none)


	Chapter 155: Regular Expressions (Regex)
	Introduction
	Syntax
	Examples
	Matching the beginning of a string
	Searching
	Grouping


	Named groups
	Non-capturing groups
	Escaping Special Characters
	Replacing

	Replacing strings
	Using group references
	Using a replacement function
	Find All Non-Overlapping Matches
	Precompiled patterns
	Checking for allowed characters
	Splitting a string using regular expressions
	Flags
	Flags keyword
	Inline flags
	Iterating over matches using `re.finditer`
	Match an expression only in specific locations


	Chapter 156: Searching
	Remarks
	Examples
	Getting the index for strings: str.index(), str.rindex() and str.find(), str.rfind()
	Searching for an element
	List
	Tuple
	String
	Set
	Dict
	Getting the index list and tuples: list.index(), tuple.index()
	Searching key(s) for a value in dict
	Getting the index for sorted sequences: bisect.bisect_left()
	Searching nested sequences
	Searching in custom classes: __contains__ and __iter__


	Chapter 157: Secure Shell Connection in Python
	Parameters
	Examples
	ssh connection


	Chapter 158: Security and Cryptography
	Introduction
	Syntax
	Remarks
	Examples
	Calculating a Message Digest
	Available Hashing Algorithms
	Secure Password Hashing
	File Hashing
	Symmetric encryption using pycrypto
	Generating RSA signatures using pycrypto
	Asymmetric RSA encryption using pycrypto


	Chapter 159: Set
	Syntax
	Remarks
	Examples
	Get the unique elements of a list
	Operations on sets
	Sets versus multisets
	Set Operations using Methods and Builtins


	Intersection
	Union
	Difference
	Symmetric Difference
	Subset and superset
	Disjoint sets
	Testing membership
	Length
	Set of Sets

	Chapter 160: setup.py
	Parameters
	Remarks
	Examples
	Purpose of setup.py
	Adding command line scripts to your python package
	Using source control metadata in setup.py
	Adding installation options


	Chapter 161: shelve
	Introduction
	Remarks
	Warning:

	Restrictions
	Examples
	Sample code for shelve
	To summarize the interface (key is a string, data is an arbitrary object):
	Creating a new Shelf
	Write-back


	Chapter 162: Similarities in syntax, Differences in meaning: Python vs. JavaScript
	Introduction
	Examples
	`in` with lists


	Chapter 163: Simple Mathematical Operators
	Introduction
	Remarks

	Numerical types and their metaclasses
	Examples
	Addition
	Subtraction
	Multiplication
	Division
	Exponentation

	Special functions
	Logarithms
	Inplace Operations
	Trigonometric Functions
	Modulus


	Chapter 164: Sockets
	Introduction
	Parameters
	Examples
	Sending data via UDP
	Receiving data via UDP
	Sending data via TCP
	Multi-threaded TCP Socket Server
	Raw Sockets on Linux


	Chapter 165: Sockets And Message Encryption/Decryption Between Client and Server
	Introduction
	Remarks
	Examples
	Server side Implementation
	Client side Implementation


	Chapter 166: Sorting, Minimum and Maximum
	Examples
	Getting the minimum or maximum of several values
	Using the key argument
	Default Argument to max, min
	Special case: dictionaries


	By value
	Getting a sorted sequence
	Minimum and Maximum of a sequence
	Make custom classes orderable
	Extracting N largest or N smallest items from an iterable

	Chapter 167: Sqlite3 Module
	Examples
	Sqlite3 - Not require separate server process.
	Getting the values from the database and Error handling


	Chapter 168: Stack
	Introduction
	Syntax
	Remarks
	Examples
	Creating a Stack class with a List Object
	Parsing Parentheses


	Chapter 169: String Formatting
	Introduction
	Syntax
	Remarks
	Examples
	Basics of String Formatting
	Alignment and padding
	Format literals (f-string)
	String formatting with datetime
	Format using Getitem and Getattr
	Float formatting
	Formatting Numerical Values
	Custom formatting for a class
	Nested formatting
	Padding and truncating strings, combined
	Named placeholders
	Using a dictionary (Python 2.x)
	Using a dictionary (Python 3.2+)

	Without a dictionary:

	Chapter 170: String Methods
	Syntax
	Remarks
	Examples
	Changing the capitalization of a string
	str.casefold()
	str.upper()
	str.lower()
	str.capitalize()
	str.title()
	str.swapcase()
	Usage as str class methods
	Split a string based on a delimiter into a list of strings
	str.split(sep=None, maxsplit=-1)
	str.rsplit(sep=None, maxsplit=-1)
	Replace all occurrences of one substring with another substring
	str.replace(old, new[, count]):
	str.format and f-strings: Format values into a string
	Counting number of times a substring appears in a string
	str.count(sub[, start[, end]])
	Test the starting and ending characters of a string
	str.startswith(prefix[, start[, end]])
	str.endswith(prefix[, start[, end]])
	Testing what a string is composed of
	str.isalpha
	str.isupper, str.islower, str.istitle
	str.isdecimal, str.isdigit, str.isnumeric
	str.isalnum
	str.isspace
	str.translate: Translating characters in a string
	Stripping unwanted leading/trailing characters from a string
	str.strip([chars])
	str.rstrip([chars]) and str.lstrip([chars])
	Case insensitive string comparisons
	Join a list of strings into one string
	String module's useful constants
	string.ascii_letters:
	string.ascii_lowercase:
	string.ascii_uppercase:
	string.digits:
	string.hexdigits:
	string.octaldigits:
	string.punctuation:
	string.whitespace:
	string.printable:
	Reversing a string
	Justify strings
	Conversion between str or bytes data and unicode characters
	String Contains


	Chapter 171: String representations of class instances: __str__ and __repr__ methods
	Remarks

	A note about implemeting both methods
	Notes
	Examples
	Motivation


	The Problem
	The Solution (Part 1)
	The Solution (Part 2)
	About those duplicated functions...
	Summary
	Both methods implemented, eval-round-trip style __repr__()

	Chapter 172: Subprocess Library
	Syntax
	Parameters
	Examples
	Calling External Commands
	More flexibility with Popen


	Launching a subprocess
	Waiting on a subprocess to complete
	Reading output from a subprocess
	Interactive access to running subprocesses
	Writing to a subprocess
	Reading a stream from a subprocess
	How to create the command list argument


	Chapter 173: sys
	Introduction
	Syntax
	Remarks
	Examples
	Command line arguments
	Script name
	Standard error stream
	Ending the process prematurely and returning an exit code


	Chapter 174: tempfile NamedTemporaryFile
	Parameters
	Examples
	Create (and write to a) known, persistant temporary file


	Chapter 175: Templates in python
	Examples
	Simple data output program using template
	Changing delimiter


	Chapter 176: The __name__ special variable
	Introduction
	Remarks
	Examples
	__name__ == '__main__'
	Situation 1
	Situation 2
	function_class_or_module.__name__
	Use in logging


	Chapter 177: The base64 Module
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Encoding and Decoding Base64
	Encoding and Decoding Base32
	Encoding and Decoding Base16
	Encoding and Decoding ASCII85
	Encoding and Decoding Base85


	Chapter 178: The dis module
	Examples
	Constants in the dis module
	What is Python bytecode?
	Disassembling modules


	Chapter 179: The Interpreter (Command Line Console)
	Examples
	Getting general help
	Referring to the last expression
	Opening the Python console
	The PYTHONSTARTUP variable
	Command line arguments
	Getting help about an object


	Chapter 180: The locale Module
	Remarks
	Examples
	Currency Formatting US Dollars Using the locale Module


	Chapter 181: The os Module
	Introduction
	Syntax
	Parameters
	Examples
	Create a directory
	Get current directory
	Determine the name of the operating system
	Remove a directory
	Follow a symlink (POSIX)
	Change permissions on a file
	makedirs - recursive directory creation


	Chapter 182: The pass statement
	Syntax
	Remarks
	Examples
	Ignore an exception
	Create a new Exception that can be caught


	Chapter 183: The Print Function
	Examples
	Print basics
	Print parameters


	Chapter 184: tkinter
	Introduction
	Remarks
	Examples
	A minimal tkinter Application
	Geometry Managers


	Place
	Pack
	Grid
	Chapter 185: Tuple
	Introduction
	Syntax
	Remarks
	Examples
	Indexing Tuples
	Tuples are immutable
	Tuple Are Element-wise Hashable and Equatable
	Tuple
	Packing and Unpacking Tuples
	Reversing Elements
	Built-in Tuple Functions


	Comparison
	Tuple Length
	Max of a tuple
	Min of a tuple
	Convert a list into tuple
	Tuple concatenation
	Chapter 186: Turtle Graphics
	Examples
	Ninja Twist (Turtle Graphics)


	Chapter 187: Type Hints
	Syntax
	Remarks
	Examples
	Generic Types
	Adding types to a function
	Class Members and Methods
	Variables and Attributes
	NamedTuple
	Type hints for keyword arguments


	Chapter 188: Unicode
	Examples
	Encoding and decoding


	Chapter 189: Unicode and bytes
	Syntax
	Parameters
	Examples
	Basics


	Unicode to bytes
	Bytes to unicode
	Encoding/decoding error handling

	Encoding
	Decoding
	Morale
	File I/O

	Chapter 190: Unit Testing
	Remarks
	Examples
	Testing Exceptions
	Mocking functions with unittest.mock.create_autospec
	Test Setup and Teardown within a unittest.TestCase
	Asserting on Exceptions
	Choosing Assertions Within Unittests
	Unit tests with pytest


	Chapter 191: Unzipping Files
	Introduction
	Examples
	Using Python ZipFile.extractall() to decompress a ZIP file
	Using Python TarFile.extractall() to decompress a tarball


	Chapter 192: urllib
	Examples
	HTTP GET

	Python 2
	Python 3
	HTTP POST

	Python 2
	Python 3
	Decode received bytes according to content type encoding


	Chapter 193: Usage of "pip" module: PyPI Package Manager
	Introduction
	Syntax
	Examples
	Example use of commands
	Handling ImportError Exception
	Force install


	Chapter 194: User-Defined Methods
	Examples
	Creating user-defined method objects
	Turtle example


	Chapter 195: Using loops within functions
	Introduction
	Examples
	Return statement inside loop in a function


	Chapter 196: Variable Scope and Binding
	Syntax
	Examples
	Global Variables
	Local Variables
	Nonlocal Variables
	Binding Occurrence
	Functions skip class scope when looking up names
	The del command


	del v
	del v.name
	del v[item]
	del v[a:b]
	Local vs Global Scope

	What are local and global scope?
	What happens with name clashes?

	Functions within functions
	global vs nonlocal (Python 3 only)
	Chapter 197: virtual environment with virtualenvwrapper
	Introduction
	Examples
	Create virtual environment with virtualenvwrapper


	Chapter 198: Virtual environments
	Introduction
	Remarks
	Examples
	Creating and using a virtual environment


	Installing the virtualenv tool
	Creating a new virtual environment
	Activating an existing virtual environment
	Saving and restoring dependencies

	Exiting a virtual environment
	Using a virtual environment in a shared host
	Built-in virtual environments
	Installing packages in a virtual environment
	Creating a virtual environment for a different version of python
	Managing multiple virtual enviroments with virtualenvwrapper
	Installation
	Usage
	Project Directories
	Discovering which virtual environment you are using
	Specifying specific python version to use in script on Unix/Linux
	Using virtualenv with fish shell
	Making virtual environments using Anaconda
	Create an environment
	Activate and deactivate your environment
	View a list of created environments
	Remove an environment
	Checking if running inside a virtual environment


	Chapter 199: Web scraping with Python
	Introduction
	Remarks

	Useful Python packages for web scraping (alphabetical order)
	Making requests and collecting data
	requests
	requests-cache
	scrapy
	selenium

	HTML parsing
	BeautifulSoup
	lxml

	Examples
	Basic example of using requests and lxml to scrape some data
	Maintaining web-scraping session with requests
	Scraping using the Scrapy framework
	Modify Scrapy user agent
	Scraping using BeautifulSoup4
	Scraping using Selenium WebDriver
	Simple web content download with urllib.request
	Scraping with curl


	Chapter 200: Web Server Gateway Interface (WSGI)
	Parameters
	Examples
	Server Object (Method)


	Chapter 201: Webbrowser Module
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Opening a URL with Default Browser
	Opening a URL with Different Browsers


	Chapter 202: Websockets
	Examples
	Simple Echo with aiohttp
	Wrapper Class with aiohttp
	Using Autobahn as a Websocket Factory


	Chapter 203: Working around the Global Interpreter Lock (GIL)
	Remarks

	Why is there a GIL?
	Details on how the GIL operates:
	Benefits of the GIL
	Consequences of the GIL
	References:
	Examples
	Multiprocessing.Pool


	David Beazley's code that showed GIL threading problems
	Cython nogil:

	David Beazley's code that showed GIL threading problems
	Re-written using nogil (ONLY WORKS IN CYTHON):
	Chapter 204: Working with ZIP archives
	Syntax
	Remarks
	Examples
	Opening Zip Files
	Examining Zipfile Contents
	Extracting zip file contents to a directory
	Creating new archives


	Chapter 205: Writing extensions
	Examples
	Hello World with C Extension
	Passing an open file to C Extensions
	C Extension Using c++ and Boost


	C++ Code
	Chapter 206: Writing to CSV from String or List
	Introduction
	Parameters
	Remarks
	Examples
	Basic Write Example
	Appending a String as a newline in a CSV file


	Credits



