
Qt

#qt

Table of Contents

About 1

Chapter 1: Getting started with Qt 2

Remarks 2

Versions 2

Examples 2

Installation and Setup on Windows and Linux 2

Hello World 8

Basic application with QtCreator and QtDesigner 9

Chapter 2: About using layouts, widget parenting 13

Introduction 13

Remarks 13

Examples 13

Basic Horizontal Layout 13

Basic Vertical Layout 14

Combining Layouts 15

Grid layout example 16

Chapter 3: Build QtWebEngine from source 19

Introduction 19

Examples 19

Build on Windows 19

Chapter 4: CMakeLists.txt for your Qt project 20

Examples 20

CMakeLists.txt for Qt 5 20

Chapter 5: Common Pitfalls 22

Examples 22

Using Qt:DirectConnection when receiver object doesn't receive signal 22

Chapter 6: Communication between QML and C++ 24

Introduction 24

Examples 24

Call C++ in QML 24

Call QML in C++ 25

Chapter 7: Deploying Qt applications 30

Examples 30

Deploying on windows 30

Integrating with CMake 30

Deploying on Mac 31

Deploying on linux 32

Chapter 8: Header on QListView 33

Introduction 33

Examples 33

Custom QListView declaration 33

Implementation of the custom QListView 34

Use case: MainWindow declaration 35

Use case: Implementation 35

Use case: Sample output 36

Chapter 9: Implicit sharing 38

Remarks 38

Examples 38

Basic Concept 38

Chapter 10: Model/View 40

Examples 40

A Simple Read-only Table to View Data from a Model 40

A simple tree model 43

Chapter 11: Multimedia 47

Remarks 47

Examples 47

Video Playback in Qt 5 47

Audio Playback in Qt5 47

Chapter 12: QDialogs 49

Remarks 49

Examples 49

MyCompareFileDialog.h 49

MyCompareFileDialogDialog.cpp 49

MainWindow.h 50

MainWindow.cpp 50

main.cpp 51

mainwindow.ui 51

Chapter 13: QGraphics 53

Examples 53

Pan, zoom, and rotate with QGraphicsView 53

Chapter 14: qmake 55

Examples 55

Default "pro" file. 55

Preserving source directory structure in a build (undocumented "object_parallel_to_source" 55

Simple Example (Linux) 56

SUBDIRS example 57

Library example 59

Creating a project file from existing code 59

Chapter 15: QObject 61

Remarks 61

Examples 61

QObject example 61

qobject_cast 61

QObject Lifetime and Ownership 62

Chapter 16: Qt - Dealing with Databases 64

Remarks 64

Examples 64

Using a Database on Qt 64

Qt - Dealing with Sqlite Databases 65

Qt - Dealing with ODBC Databases 66

Qt - Dealing with in-memory Sqlite Databases 68

Remove Database connection correctly 69

Chapter 17: Qt Container Classes 71

Remarks 71

Examples 71

QStack usage 71

QVector usage 71

QLinkedList usage 72

QList 72

Chapter 18: Qt Network 75

Introduction 75

Examples 75

TCP Client 75

TCP Server 77

Chapter 19: Qt Resource System 81

Introduction 81

Examples 81

Referencing files within code 81

Chapter 20: QTimer 82

Remarks 82

Examples 82

Simple example 82

Singleshot Timer with Lambda function as slot 84

Using QTimer to run code on main thread 84

Basic Usage 84

QTimer::singleShot simple usage 85

Chapter 21: Signals and Slots 87

Introduction 87

Remarks 87

Examples 87

A Small Example 87

The new Qt5 connection syntax 88

Connecting overloaded signals/slots 90

Multi window signal slot connection 91

Chapter 22: SQL on Qt 94

Examples 94

Basic connection and query 94

Qt SQL query parameters 94

MS SQL Server Database Connection using QODBC 95

Chapter 23: Threading and Concurrency 98

Remarks 98

Examples 98

Basic usage of QThread 98

QtConcurrent Run 99

Invoking slots from other threads 100

Chapter 24: Using Style Sheets Effectively 102

Examples 102

Setting a UI widget's stylesheet 102

Credits 103

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: qt

It is an unofficial and free Qt ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official Qt.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/qt
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Qt

Remarks

As official documentation stated, Qt is a cross-platform application development framework for
desktop, embedded and mobile. Supported Platforms include Linux, OS X, Windows, VxWorks,
QNX, Android, iOS, BlackBerry, Sailfish OS and others.

This section provides an overview of what Qt is, and why a developer might want to use it.

It should also mention any large subjects within Qt, and link out to the related topics. Since the
documentation for qt is new, you may need to create initial versions of those related topics.

Versions

Version Release date

Qt 3.0 2001-10-16

Qt 3.3 2004-02-05

Qt 4.1 2005-12-20

Qt 4.8 2011-12-15

Qt 5.0 2012-12-19

Qt 5.6 2016-03-16

Qt 5.7 2016-06-16

Qt 5.8 2017-01-23

Qt 5.9 2017-05-31

Examples

Installation and Setup on Windows and Linux

Download Qt for Linux Open Source Version

Go to https://www.qt.io/download-open-source/ and click on Download Now, make sure that you
are downloading the Qt installer for Linux.

https://riptutorial.com/ 2

http://wiki.qt.io/About_Qt
https://wiki.qt.io/Qt_5.6_Release
https://wiki.qt.io/Qt_5.7_Release
https://wiki.qt.io/Qt_5.8_Release
https://wiki.qt.io/Qt_5.9_Release
https://www.qt.io/download-open-source/

A file with the name qt-unified-linux-x-online.run will be downloaded, then add exec permission

chmod +x qt-unified-linux-x-online.run

Remember to change 'x' for the actual version of the installer. Then run the installer

./qt-unified-linux-x-online.run

Download Qt for Windows Open Source Version

Go to https://www.qt.io/download-open-source/. The following screenshot shows the download
page on Windows:

https://riptutorial.com/ 3

https://i.stack.imgur.com/6Kun2.png
https://www.qt.io/download-open-source/

What you should do now depends on which IDE you're going to use. If you're going to use Qt
Creator, which is included in the installer program, just click on Download Now and run the
executable.

If you're going to use Qt in Visual Studio, normally the Download Now button should also work.
Make sure the file downloaded is called qt-opensource-windows-x86-msvc2015_64-x.x.x.exe or
qt-opensource-windows-x86-msvc2015_32-x.x.x.exe (where x.x.x is the version of Qt, for example
5.7.0). If that's not the case, click on View All Downloads and select one of the first four options
under Windows Host.

If you're going to use Qt in Code::Blocks, click on View All Downloads and select Qt x.x.x for
Windows 32-bit (MinGW x.x.x, 1.2 GB) under Windows Host.

Once you've downloaded the appropriate installer file, run the executable and follow the
instructions below. Note that you need to be an administrator to install Qt. If you're not an

https://riptutorial.com/ 4

https://i.stack.imgur.com/PPlm9.png

administrator, you can find several alternative solutions here.

Install Qt in any operative system

Once you've downloaded Qt and opened the installer program, the installation procedure is the
same for all operative systems, although the screenshots might look a bit different. The
screenshots provided here are from Linux.

Login with a existing Qt account or create a new one:

Select a path to install the Qt libraries and tools

https://riptutorial.com/ 5

http://stackoverflow.com/questions/40239376/install-qt-without-admin-rights
https://i.stack.imgur.com/usf35.png

Select the library version and the features you want

https://riptutorial.com/ 6

https://i.stack.imgur.com/75Y5D.png

After downloading and the installation is finished, go to the Qt installation directory and launch Qt
Creator or run it directly from the command line.

https://riptutorial.com/ 7

https://i.stack.imgur.com/qr7iS.png

Hello World

In this example, we simply create and show a push button in a window frame on the desktop. The
push button will have the label Hello world!

This represents the simplest possible Qt program.

First of all we need a project file:

helloworld.pro

QT += core gui

greaterThan(QT_MAJOR_VERSION, 4): QT += widgets

https://riptutorial.com/ 8

https://i.stack.imgur.com/9NXKJ.png

TARGET = helloworld
TEMPLATE = app

SOURCES += main.cpp

QT is used to indicate what libraries (Qt modules) are being used in this project. Since our
first app is a small GUI, we will need QtCore and QtGui. As Qt5 separate QtWidgets from
QtGui, we need add greaterThan line in order to compile it with Qt5.

•

TARGET is the name of the app or the library.•
TEMPLATE describes the type to build. It can be an application (app), a library (lib), or
simply subdirectories (subdirs).

•

SOURCES is a list of source code files to be used when building the project.•

We also need the main.cpp containing a Qt application:

main.cpp

#include <QApplication>
#include <QPushButton>

int main(int argc, char *argv[])
{
 QApplication a(argc, argv);

 QPushButton button ("Hello world!");
 button.show();

 return a.exec(); // .exec starts QApplication and related GUI, this line starts 'event
loop'
}

QApplication object. This object manages application-wide resources and is necessary to
run any Qt program that has a GUI. It needs argv and args because Qt accepts a few
command line arguments. When calling a.exec() the Qt event loop is launched.

•

QPushButton object. The push button with the label Hello world!. The next line,
button.show(), shows the push button on the screen in its own window frame.

•

Finally, to run the application, open a command prompt, and enter the directory in which you have
the .cpp file of the program. Type the following shell commands to build the program.

qmake -project
qmake
make

Basic application with QtCreator and QtDesigner

QtCreator is, at the moment, the best tool to create a Qt application. In this example, we will see
how to create a simple Qt application which manage a button and write text.

To create a new application click on File->New File or Project:

https://riptutorial.com/ 9

Then choose the Projects->Application->Qt Widgets Application

Then you can choose the name and path of your project :

Next, you can choose the kits you will be using. If you don't have any kit, QtCreator will create a kit

Then you can choose the name of your main window class, the inherited class, the name of the fi

The last step can be to choose a subproject of this project and to add a version control such as git

Then click on the Finish Button. Now you should be here:

This is the base of your application. if you run it now by clicking on Build->Run or ctrl+R (by defaul
Now we will add a text and a button. to do that, we will use Qt Designer. Double click on the mai

Here Qt Designer ! Seems quite complicated. But once you get used to it, it really great. We will a

You should have something like this now:

By double clicking of the object, you can change the text on them. Or you can see at the bottom r
Now if you save and run (better click on the edit button then save again to be sure your modificati

Huh? Why my label and button are like that when I run ? It's because there is no layout in our cen

A floating layout.
So now right click on the main window, anywhere except on the label and button. c\Click on Lay

In your designer. And if you run you application:

Here you can see your application with the label and the button. And if you resize your window, t
But our button is still doing nothing. We can change it in 2 different ways. The first is to connect t

connect(ui->pushButton, SIGNAL(clicked(bool)), this, SLOT(whenButtonIsClicked()));

In the constructor of your MainWindow AFTER the ui->setupUI(this); which initialize the ui.
Then we can create the MainWindow::whenButtonIsClicked() in our .cpp class which could change

void MainWindow::whenButtonIsClicked()

And in our mainwindow.h, we need to add:

public slots:

Public slots mean that this method can be called when a signal is received. connect link the signal

So now if we run our application and click on the button, we get:

Which mean that our connect is working. But with Qt Designer we have an even simpler way to do

Then you should be moved to this function:

void MainWindow::on_pushButton_clicked()

This is the function which will be called when you click on the button. So you can add

ui->label->setText("it's even easier !");

Into it. Go to the mainwindow.h to save the change (when you do a go to slot, it create a method l
And now when you run your application and press the button, you can see the new message (if y

We can also add an int, double, etc in our label thanks to the QVariant

https://riptutorial.com/ 10

https://i.stack.imgur.com/5tDKT.png
https://i.stack.imgur.com/9my43.png
https://i.stack.imgur.com/aXlRh.png
https://i.stack.imgur.com/sZb2L.png
https://i.stack.imgur.com/UfjWq.png
https://i.stack.imgur.com/DLC1i.png
https://i.stack.imgur.com/J0GvW.png
https://i.stack.imgur.com/yrn4g.png
https://i.stack.imgur.com/q36L3.png
https://i.stack.imgur.com/Dfe7c.png
https://i.stack.imgur.com/1kVGJ.png
https://i.stack.imgur.com/fwdsk.png
https://i.stack.imgur.com/1w8az.png
https://i.stack.imgur.com/HHDRs.png
https://i.stack.imgur.com/gNoYI.png
https://i.stack.imgur.com/xkjfU.png

which is an awesome class which can convert many thing in many others things. So left add an int
which increase when we push the button.

So the .h:

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>

namespace Ui {
class MainWindow;
}

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

public slots:
 void whenButtonIsClicked();

private slots:
 void on_pushButton_clicked();

private:
 Ui::MainWindow *ui;
 double _smallCounter;
};

#endif // MAINWINDOW_H

The .cpp:

#include "mainwindow.h"
#include "ui_mainwindow.h"

MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);
// connect(ui->pushButton, SIGNAL(clicked(bool)), this, SLOT(whenButtonIsClicked()));
 _smallCounter = 0.0f;
}

MainWindow::~MainWindow()
{
 delete ui;
}

void MainWindow::whenButtonIsClicked()
{
 ui->label->setText("the button has been clicked !");
}

https://riptutorial.com/ 11

void MainWindow::on_pushButton_clicked()
{
 _smallCounter += 0.5f;
 ui->label->setText("it's even easier ! " + QVariant(_smallCounter).toString());
}

And now, we can save and run again. Every time you click on the button, it show "it's even easier !
" with the value of _smallCounter. So you should have something like:

This tutorial is done. If you want to learn more about Qt, let's see the other examples and
documentation of Qt on the StackOverflow Documentation or the Qt Documentation

Read Getting started with Qt online: https://riptutorial.com/qt/topic/902/getting-started-with-qt

https://riptutorial.com/ 12

https://i.stack.imgur.com/xFMnB.png
http://www.riptutorial.com/topic/902
https://doc.qt.io/qt-5/gettingstarted.html
https://riptutorial.com/qt/topic/902/getting-started-with-qt

Chapter 2: About using layouts, widget
parenting

Introduction

The layouts are a necessary in every Qt application. They manage the object, their position, their
size, how they are resized.

Remarks

From Qt layout documentation:

When you use a layout, you do not need to pass a parent when constructing the child
widgets. The layout will automatically reparent the widgets (using
QWidget::setParent()) so that they are children of the widget on which the layout is
installed.

So do :

QGroupBox *box = new QGroupBox("Information:", widget);
layout->addWidget(box);

or do :

QGroupBox *box = new QGroupBox("Information:", nullptr);
layout->addWidget(box);

is exactly the same.

Examples

Basic Horizontal Layout

The horizontal layout set up the object inside it horizontally.

basic code:

#include <QApplication>

#include <QMainWindow>
#include <QWidget>
#include <QHBoxLayout>
#include <QPushButton>

int main(int argc, char *argv[])
{

https://riptutorial.com/ 13

http://doc.qt.io/qt-5/layout.html

 QApplication a(argc, argv);

 QMainWindow window;
 QWidget *widget = new QWidget(&window);
 QHBoxLayout *layout = new QHBoxLayout(widget);

 window.setCentralWidget(widget);
 widget->setLayout(layout);

 layout->addWidget(new QPushButton("hello world", widget));
 layout->addWidget(new QPushButton("I would like to have a layout !", widget));
 layout->addWidget(new QPushButton("layouts are so great !", widget));

 window.show();

 return a.exec();
}

this will output:

Basic Vertical Layout

The vertical layout set up the object inside it vertically.

#include "mainwindow.h"
#include <QApplication>

#include <QMainWindow>
#include <QWidget>
#include <QVBoxLayout>
#include <QPushButton>

int main(int argc, char *argv[])
{
 QApplication a(argc, argv);

 QMainWindow window;
 QWidget *widget = new QWidget(&window);
 QVBoxLayout *layout = new QVBoxLayout(widget);

 window.setCentralWidget(widget);
 widget->setLayout(layout);

 layout->addWidget(new QPushButton("hello world", widget));
 layout->addWidget(new QPushButton("I would like to have a layout !", widget));

https://riptutorial.com/ 14

https://i.stack.imgur.com/yTYgz.png

 layout->addWidget(new QPushButton("layouts are so great !", widget));

 window.show();

 return a.exec();
}

output:

Combining Layouts

You can combine mulple layout thanks to other QWidgets in your main layout to do more specifics
effects like an information field: for example:

#include <QApplication>

#include <QMainWindow>
#include <QWidget>
#include <QVBoxLayout>
#include <QPushButton>
#include <QLabel>
#include <QLineEdit>
#include <QGroupBox>

#include <QTextEdit>

int main(int argc, char *argv[])
{
 QApplication a(argc, argv);

 QMainWindow window;
 QWidget *widget = new QWidget(&window);
 QVBoxLayout *layout = new QVBoxLayout(widget);

 window.setCentralWidget(widget);
 widget->setLayout(layout);

 QGroupBox *box = new QGroupBox("Information:", widget);
 QVBoxLayout *boxLayout = new QVBoxLayout(box);

 layout->addWidget(box);

 QWidget* nameWidget = new QWidget(box);
 QWidget* ageWidget = new QWidget(box);
 QWidget* addressWidget = new QWidget(box);

 boxLayout->addWidget(nameWidget);
 boxLayout->addWidget(ageWidget);

https://riptutorial.com/ 15

https://i.stack.imgur.com/pN1wX.png

 boxLayout->addWidget(addressWidget);

 QHBoxLayout *nameLayout = new QHBoxLayout(nameWidget);
 nameLayout->addWidget(new QLabel("Name:"));
 nameLayout->addWidget(new QLineEdit(nameWidget));

 QHBoxLayout *ageLayout = new QHBoxLayout(ageWidget);
 ageLayout->addWidget(new QLabel("Age:"));
 ageLayout->addWidget(new QLineEdit(ageWidget));

 QHBoxLayout *addressLayout = new QHBoxLayout(addressWidget);
 addressLayout->addWidget(new QLabel("Address:"));
 addressLayout->addWidget(new QLineEdit(addressWidget));

 QWidget* validateWidget = new QWidget(widget);
 QHBoxLayout *validateLayout = new QHBoxLayout(validateWidget);
 validateLayout->addWidget(new QPushButton("Validate", validateWidget));
 validateLayout->addWidget(new QPushButton("Reset", validateWidget));
 validateLayout->addWidget(new QPushButton("Cancel", validateWidget));

 layout->addWidget(validateWidget);

 window.show();

 return a.exec();
}

will output :

Grid layout example

The grid layout is a powerful layout with which you can do an horizontal and vertical layout a once.

example:

#include "mainwindow.h"
#include <QApplication>

https://riptutorial.com/ 16

https://i.stack.imgur.com/6YOxe.png

#include <QMainWindow>
#include <QWidget>
#include <QVBoxLayout>
#include <QPushButton>
#include <QLabel>
#include <QLineEdit>
#include <QGroupBox>

#include <QTextEdit>

int main(int argc, char *argv[])
{
 QApplication a(argc, argv);

 QMainWindow window;
 QWidget *widget = new QWidget(&window);
 QGridLayout *layout = new QGridLayout(widget);

 window.setCentralWidget(widget);
 widget->setLayout(layout);

 QGroupBox *box = new QGroupBox("Information:", widget);
 layout->addWidget(box, 0, 0);

 QVBoxLayout *boxLayout = new QVBoxLayout(box);

 QWidget* nameWidget = new QWidget(box);
 QWidget* ageWidget = new QWidget(box);
 QWidget* addressWidget = new QWidget(box);

 boxLayout->addWidget(nameWidget);
 boxLayout->addWidget(ageWidget);
 boxLayout->addWidget(addressWidget);

 QHBoxLayout *nameLayout = new QHBoxLayout(nameWidget);
 nameLayout->addWidget(new QLabel("Name:"));
 nameLayout->addWidget(new QLineEdit(nameWidget));

 QHBoxLayout *ageLayout = new QHBoxLayout(ageWidget);
 ageLayout->addWidget(new QLabel("Age:"));
 ageLayout->addWidget(new QLineEdit(ageWidget));

 QHBoxLayout *addressLayout = new QHBoxLayout(addressWidget);
 addressLayout->addWidget(new QLabel("Address:"));
 addressLayout->addWidget(new QLineEdit(addressWidget));

 layout->addWidget(new QPushButton("Validate", widget), 1, 0);
 layout->addWidget(new QPushButton("Reset", widget), 1, 1);
 layout->addWidget(new QPushButton("Cancel", widget), 1, 2);

 window.show();

 return a.exec();
}

give :

https://riptutorial.com/ 17

so you can see that the group box is only in the first column and first row as the addWidget was
layout->addWidget(box, 0, 0);

However, if you change it to layout->addWidget(box, 0, 0, 1, 3);, the new 0 and 3 represent how
many line and column you want for your widget so it give :

exactly the same as you created a horizontal and then a vertical layout in a subwidget.

Read About using layouts, widget parenting online: https://riptutorial.com/qt/topic/9380/about-
using-layouts--widget-parenting

https://riptutorial.com/ 18

https://i.stack.imgur.com/RwUw1.png
https://i.stack.imgur.com/XhhzL.png
https://riptutorial.com/qt/topic/9380/about-using-layouts--widget-parenting
https://riptutorial.com/qt/topic/9380/about-using-layouts--widget-parenting

Chapter 3: Build QtWebEngine from source

Introduction

Sometimes we need to build QtWebEngine from source for some reason, such as for mp3
support.

Examples

Build on Windows

Requirements

Windows 10, please set your system locale to English, otherwise there may be errors•
Visual Studio 2013 or 2015•
QtWebEngine 5.7 source code (could be downloaded from here)•
Qt 5.7 install version, install it and add qmake.exe folder to system path•
Python 2, add python.exe folder to system path•
Git, add git.exe folder to system path•
gperf, add gperf.exe folder to system path•
flex-bison, add win_bison.exe folder to system path, and rename it to bison.exe•

Note: I didn't test for Visual Studio versions, all Qt versions.. Let's just take an example
here, other versions should be about the same.

Steps to build

Decompress source code to a folder, let's call it ROOT1.
Open Developer Command Prompt for VS2013, and go to ROOT folder2.
Run qmake WEBENGINE_CONFIG+=use_proprietary_codecs qtwebengine.pro. We add this flag to
enable mp3 support.

3.

Run nmake4.

Note: Mp3 is not supported by QtWebEngine by default, due to license issue. Please
make sure to get a license for the codec you added.

Read Build QtWebEngine from source online: https://riptutorial.com/qt/topic/8718/build-
qtwebengine-from-source

https://riptutorial.com/ 19

http://download.qt.io/archive/qt/5.7/
https://riptutorial.com/qt/topic/8718/build-qtwebengine-from-source
https://riptutorial.com/qt/topic/8718/build-qtwebengine-from-source

Chapter 4: CMakeLists.txt for your Qt project

Examples

CMakeLists.txt for Qt 5

A minimal CMake project file that uses Qt5 can be:

cmake_minimum_required(VERSION 2.8.11)

project(myproject)

find_package(Qt5 5.7.0 REQUIRED COMPONENTS
 Core
)

set(CMAKE_AUTOMOC ON)

add_executable(${PROJECT_NAME}
 main.cpp
)

target_link_libraries(${PROJECT_NAME}
 Qt5::Core
)

cmake_minimum_required is called to set minimum required version for CMake. The minimum
required version for this example to work is 2.8.11 -- previous versions of CMake need additional
code for a target to use Qt.

find_package is called to search an installation of Qt5 with a given version -- 5.7.0 in the example --
and wanted components -- Core module in the example. For a list of available modules, see Qt
Documentation. Qt5 is marked as REQUIRED in this project. The path to the installation can be hinted
by setting the variable Qt5_DIR.

AUTOMOC is a boolean specifying whether CMake will handle the Qt moc preprocessor automatically,
i.e. without having to use the QT5_WRAP_CPP() macro.

Other "AUTOMOC-like" variables are:

AUTOUIC: a boolean specifying whether CMake will handle the Qt uic code generator
automatically, i.e. without having to use the QT5_WRAP_UI() macro.

•

AUTORCC: a boolean specifying whether CMake will handle the Qt rcc code generator
automatically, i.e. without having to use the QT5_ADD_RESOURCES() macro.

•

add_executable is called to create an executable target from the given source files. The target is
then linked to the listed Qt's modules with the command target_link_libraries. From CMake
2.8.11, target_link_libraries with Qt's imported targets handles linker parameters, as well as
include directories and compiler options.

https://riptutorial.com/ 20

http://doc.qt.io/qt-5/qtmodules.html
http://doc.qt.io/qt-5/qtmodules.html

Read CMakeLists.txt for your Qt project online: https://riptutorial.com/qt/topic/1991/cmakelists-txt-
for-your-qt-project

https://riptutorial.com/ 21

https://riptutorial.com/qt/topic/1991/cmakelists-txt-for-your-qt-project
https://riptutorial.com/qt/topic/1991/cmakelists-txt-for-your-qt-project

Chapter 5: Common Pitfalls

Examples

Using Qt:DirectConnection when receiver object doesn't receive signal

Some times you see a signal is emitted in sender thread but connected slot doesn't called (in other
words it doesn't receive signal), you have asked about it and finaly got that the connection type
Qt::DirectConnection would fix it, so the problem found and everything is ok.

But generaly this is bad idea to use Qt:DirectConnection until you really know what is this and
there is no other way. Lets explain it more, Each thread created by Qt (including main thread and
new threads created by QThread) have Event loop, the event loop is responsible for receiving
signals and call aproporiate slots in its thread. Generaly executing a blocking operation inside an
slot is bad practice, because it blocks the event loop of that threads so no other slots would be
called.

If you block an event loop (by making very time consuming or blocking operation) you will not
receive events on that thread until the event loop will be unblocked. If the blocking operation,
blocks the event loop forever (such as busy while), the slots could never be called.

In this situation you may set the connection type in connect to Qt::DirectConnection, now the slots
will be called even the event loop is blocked. so how this could make broke everything? In
Qt::DirectConnection Slots will be called in emiter threads, and not receiver threads and it can
broke data synchronizations and ran into other problems. So never use Qt::DirectConnection
unless you know what are you doing. If your problem will be solved by using Qt::DirectConnection,
you have to carefull and look at your code and finding out why your event loop is blocked. Its not a
good idea to block the event loop and its not recomended in Qt.

Here is small example which shows the problem, as you can see the nonBlockingSlot would be
called even the blockingSlot blocked event loop with while(1) which indicates bad coding

class TestReceiver : public QObject{
 Q_OBJECT
public:
 TestReceiver(){
 qDebug() << "TestReceiver Constructed in" << QThread::currentThreadId();
 }
public slots:
 void blockingSlot()
 {
 static bool firstInstance = false;
 qDebug() << "Blocking slot called in thread" << QThread::currentThreadId();
 if(!firstInstance){
 firstInstance = true;
 while(1);
 }
 }
 void nonBlockingSlot(){
 qDebug() << "Non-blocking slot called" << QThread::currentThreadId();

https://riptutorial.com/ 22

 }
};

class TestSender : public QObject{
 Q_OBJECT
public:
 TestSender(TestReceiver * receiver){
 this->nonBlockingTimer.setInterval(100);
 this->blockingTimer.setInterval(100);

 connect(&this->blockingTimer, &QTimer::timeout, receiver,
&TestReceiver::blockingSlot);
 connect(&this->nonBlockingTimer, &QTimer::timeout, receiver,
&TestReceiver::nonBlockingSlot, Qt::DirectConnection);
 this->nonBlockingTimer.start();
 this->blockingTimer.start();
 }
private:
 QTimer nonBlockingTimer;
 QTimer blockingTimer;
};

int main(int argc, char *argv[])
{
 QCoreApplication a(argc, argv);

 TestReceiver TestReceiverInstance;
 TestSender testSenderInstance(&TestReceiverInstance);
 QThread receiverThread;
 TestReceiverInstance.moveToThread(&receiverThread);
 receiverThread.start();

 return a.exec();
}

Read Common Pitfalls online: https://riptutorial.com/qt/topic/8238/common-pitfalls

https://riptutorial.com/ 23

https://riptutorial.com/qt/topic/8238/common-pitfalls

Chapter 6: Communication between QML and
C++

Introduction

We may use QML to build hybrid applications, since it's much more easier than C++. So we
should know how they communicate with each other.

Examples

Call C++ in QML

Register C++ classes in QML

At C++ side, imagine we have a class named QmlCppBridge, it implements a method called
printHello().

class QmlCppBridge : public QObject
{
 Q_OBJECT
public:
 Q_INVOKABLE static void printHello() {
 qDebug() << "Hello, QML!";
 }
};

We want to use it in QML side. We should register the class by calling qmlRegisterType():

// Register C++ class as a QML module, 1 & 0 are the major and minor version of the QML module
qmlRegisterType<QmlCppBridge>("QmlCppBridge", 1, 0, "QmlCppBridge");

In QML, use following code to call it:

import QmlCppBridge 1.0 // Import this module, so we can use it in our QML script

QmlCppBridge {
 id: bridge
}
bridge.printHello();

Using QQmlContext to inject C++ classes or variables to QML

We still use the C++ class in previous example:

QQmlApplicationEngine engine;
QQmlContext *context = engine.rootContext();

https://riptutorial.com/ 24

// Inject C++ class to QML
context->setContextProperty(QStringLiteral("qmlCppBridge"), new QmlCppBridge(&engine));

// Inject C++ variable to QML
QString demoStr = QStringLiteral("demo");
context->setContextProperty(QStringLiteral("demoStr"), demoStr);

At QML side:

qmlCppBridge.printHello(); // Call to C++ function
str: demoStr // Fetch value of C++ variable

Note: This example is based on Qt 5.7. Not sure if it fits earlier Qt versions.

Call QML in C++

To call the QML classes in C++, you need to set the objectName property.

In your Qml:

import QtQuick.Controls 2.0

Button {
 objectName: "buttonTest"
}

Then, in your C++, you can get the object with QObject.FindChild<QObject*>(QString)

Like that:

QQmlApplicationEngine engine;
QQmlComponent component(&engine, QUrl(QLatin1String("qrc:/main.qml")));

QObject *mainPage = component.create();
QObject* item = mainPage->findChild<QObject *>("buttonTest");

Now you have your QML object in your C++. But that could seems useless since we cannot really
get the components of the object.

However, we can use it to send signals between the QML and the C++. To do that, you need to
add a signal in your QML file like that: signal buttonClicked(string str). Once you create this, you
need to emit the signal. For example:

import QtQuick 2.0
import QtQuick.Controls 2.1

 Button {
 id: buttonTest
 objectName: "buttonTest"

 signal clickedButton(string str)
 onClicked: {
 buttonTest.clickedButton("clicked !")

https://riptutorial.com/ 25

 }
 }

Here we have our qml button. When we click on it, it goes to the onClicked method (a base
method for buttons which is called when you press the button). Then we use the id of the button
and the name of the signal to emit the signal.

And in our cpp, we need to connect the signal with a slot. like that:

main.cpp

#include <QGuiApplication>
#include <QQmlApplicationEngine>
#include <QQmlComponent>

#include "ButtonManager.h"

int main(int argc, char *argv[])
{
 QCoreApplication::setAttribute(Qt::AA_EnableHighDpiScaling);
 QGuiApplication app(argc, argv);

 QQmlApplicationEngine engine;
 QQmlComponent component(&engine, QUrl(QLatin1String("qrc:/main.qml")));

 QObject *mainPage = component.create();
 QObject* item = mainPage->findChild<QObject *>("buttonTest");

 ButtonManager buttonManager(mainPage);
 QObject::connect(item, SIGNAL(clickedButton(QString)), &buttonManager,
SLOT(onButtonClicked(QString)));

 return app.exec();
}

As you can see, we get our qml button with findChild as before and we connect the signal to a
Button manager which is a class created and who look like that. ButtonManager.h

#ifndef BUTTONMANAGER_H
#define BUTTONMANAGER_H

#include <QObject>

class ButtonManager : public QObject
{
 Q_OBJECT
public:
 ButtonManager(QObject* parent = nullptr);
public slots:
 void onButtonClicked(QString str);
};

#endif // BUTTONMANAGER_H

ButtonManager.cpp

https://riptutorial.com/ 26

#include "ButtonManager.h"
#include <QDebug>

ButtonManager::ButtonManager(QObject *parent)
 : QObject(parent)
{

}

void ButtonManager::onButtonClicked(QString str)
{
 qDebug() << "button: " << str;
}

So when the signal will be received, it will call the method onButtonClicked which will write "button:
clicked !"

output:

https://riptutorial.com/ 27

Read Communication between QML and C++ online:

https://riptutorial.com/ 28

https://i.stack.imgur.com/Qxb37.png

https://riptutorial.com/qt/topic/8735/communication-between-qml-and-cplusplus

https://riptutorial.com/ 29

https://riptutorial.com/qt/topic/8735/communication-between-qml-and-cplusplus

Chapter 7: Deploying Qt applications

Examples

Deploying on windows

Qt provides a deployment tool for Windows: windeployqt. The tool inspects a Qt application
executable for its dependecies to Qt modules and creates a deployment directory with the
necessary Qt files to run the inspected executable. A possible script may look like:

set PATH=%PATH%;<qt_install_prefix>/bin
windeployqt --dir /path/to/deployment/dir /path/to/qt/application.exe

The set command is called to add Qt's bin directory to the PATH environment variable. windeployqt
is then called:

The path to the deployment directory is given an optional argument given with the parameter
--dir (default is the path where windeployqt is called).

•

The path to the executable to be inspected is given as last argument.•

The deployment directory can then be bundled with the executable.

NOTE:

If you are using pre-compiled Qt5.7.0 with vs2013 on Windows (not sure if all versions has this
issue), there is a chance, that you need to manually copy <QTDIR>\5.7\msvc2015\qml to your bin
directory of your program. Otherwise the program will auto quit after start.

See also Qt documentation.

Integrating with CMake

It is possible to run windeployqt and macdeployqt from CMake, but first the path to the executables
must be found:

Retrieve the absolute path to qmake and then use that path to find
the binaries
get_target_property(_qmake_executable Qt5::qmake IMPORTED_LOCATION)
get_filename_component(_qt_bin_dir "${_qmake_executable}" DIRECTORY)
find_program(WINDEPLOYQT_EXECUTABLE windeployqt HINTS "${_qt_bin_dir}")
find_program(MACDEPLOYQT_EXECUTABLE macdeployqt HINTS "${_qt_bin_dir}")

In order for windeployqt to find the Qt libraries in their installed location, the folder must be added to
%PATH%. To do this for a target named myapp after being built:

add_custom_command(TARGET myapp POST_BUILD
 COMMAND "${CMAKE_COMMAND}" -E
 env PATH="${_qt_bin_dir}" "${WINDEPLOYQT_EXECUTABLE}"

https://riptutorial.com/ 30

http://doc.qt.io/qt-5/windows-deployment.html

 "$<TARGET_FILE:myapp>"
 COMMENT "Running windeployqt..."
)

For running macdeployqt on a bundle, it would be done this way:

add_custom_command(TARGET myapp POST_BUILD
 COMMAND "${MACDEPLOYQT_EXECUTABLE}"
 "$<TARGET_FILE_DIR:myapp>/../.."
 -always-overwrite
 COMMENT "Running macdeployqt..."
)

Deploying on Mac

Qt offers a deployment tool for Mac: The Mac Deployment Tool.

The Mac deployment tool can be found in QTDIR/bin/macdeployqt. It is designed to automate the
process of creating a deployable application bundle that contains the Qt libraries as private
frameworks.

The mac deployment tool also deploys the Qt plugins, according to the following rules (unless -no-
plugins option is used):

The platform plugin is always deployed.•
Debug versions of the plugins are not deployed.•
The designer plugins are not deployed.•
The image format plugins are always deployed.•
The print support plugin is always deployed.•
SQL driver plugins are deployed if the application uses the Qt SQL module.•
Script plugins are deployed if the application uses the Qt Script module.•
The SVG icon plugin is deployed if the application uses the Qt SVG module.•
The accessibility plugin is always deployed.•

To include a 3rd party library in the application bundle, copy the library into the bundle manually,
after the bundle is created.

To use macdeployqt tool you can open terminal and type:

$ QTDIR/bin/macdeployqt <path to app file generated by build>/appFile.app

The app file will now contain all the Qt Libraries used as private frameworks.

macdeployqt also supports the following options

Option Description

-verbose=<0-3> 0 = no output, 1 = error/warning (default), 2 = normal, 3 = debug

-no-plugins Skip plugin deployment

https://riptutorial.com/ 31

Option Description

-dmg Create a .dmg disk image

-no-strip Don't run 'strip' on the binaries

-use-debug-libs Deploy with debug versions of frameworks and plugins (implies -no-strip)

-executable= Let the given executable also use the deployed frameworks

-qmldir= Deploy imports used by .qml files in the given path

Detailed informations can be fount on Qt Documentation

Deploying on linux

There is a a deployment tool for linux on GitHub. While not perfect, it is linked to from the Qt wiki.
It's based conceptually on the Qt Mac Deployment Tool and functions similarly by providing an
AppImage.

Given that a desktop file should be provided with an AppImage, linuxdeployqt can use that to
determine the parameters of the build.

linuxdeployqt ./path/to/appdir/usr/share/application_name.desktop

Where the desktop file specifies the executable to be run (with EXEC=), the name of the application,
and an icon.

Read Deploying Qt applications online: https://riptutorial.com/qt/topic/5857/deploying-qt-
applications

https://riptutorial.com/ 32

http://doc.qt.io/qt-5/osx-deployment.html
https://github.com/probonopd/linuxdeployqt
http://appimage.org/
https://specifications.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html
https://riptutorial.com/qt/topic/5857/deploying-qt-applications
https://riptutorial.com/qt/topic/5857/deploying-qt-applications

Chapter 8: Header on QListView

Introduction

The QListView widget is part of the Model/View programming mechanisms of Qt. Basically, it
allows to display items stored in a Model under the form of a list. In this topic we will not get deep
into the Model/View mechanisms of Qt, but rather focus on the graphical aspect of one View
widget: the QListView, and especially how to add a header on top of this object through the use of
the QPaintEvent object.

Examples

Custom QListView declaration

/*!
 * \class MainMenuListView
 * \brief The MainMenuListView class is a QListView with a header displayed
 * on top.
 */
class MainMenuListView : public QListView
{
Q_OBJECT

 /*!
 * \class Header
 * \brief The header class is a nested class used to display the header of a
 * QListView. On each instance of the MainMenuListView, a header will
 * be displayed.
 */
 class Header : public QWidget
 {
 public:
 /*!
 * \brief Constructor used to defined the parent/child relation
 * between the Header and the QListView.
 * \param parent Parent of the widget.
 */
 Header(MainMenuListView* parent);

 /*!
 * \brief Overridden method which allows to get the recommended size
 * for the Header object.
 * \return The recommended size for the Header widget.
 */
 QSize sizeHint() const;

 protected:
 /*!
 * \brief Overridden paint event which will allow us to design the
 * Header widget area and draw some text.
 * \param event Paint event.
 */
 void paintEvent(QPaintEvent* event);

https://riptutorial.com/ 33

 private:
 MainMenuListView* menu; /*!< The parent of the Header. */
 };

public:
 /*!
 * \brief Constructor allowing to instanciate the customized QListView.
 * \param parent Parent widget.
 * \param header Text which has to be displayed in the header
 * (Header by default)
 */
 MainMenuListView(QWidget* parent = nullptr, const QString& header = QString("Header"));

 /*!
 * \brief Catches the Header paint event and draws the header with
 * the specified text in the constructor.
 * \param event Header paint event.
 */
 void headerAreaPaintEvent(QPaintEvent* event);

 /*!
 * \brief Gets the width of the List widget.
 * This value will also determine the width of the Header.
 * \return The width of the custom QListView.
 */
 int headerAreaWidth();

 protected:
 /*!
 * \brief Overridden method which allows to resize the Header.
 * \param event Resize event.
 */
 void resizeEvent(QResizeEvent* event);

private:
 QWidget* headerArea; /*!< Header widget. */
 QString headerText; /*!< Header title. */
};

Implementation of the custom QListView

QSize MainMenuListView::Header::sizeHint() const
{
 // fontmetrics() allows to get the default font size for the widget.
 return QSize(menu->headerAreaWidth(), fontMetrics().height());
}

void MainMenuListView::Header::paintEvent(QPaintEvent* event)
{
 // Catches the paint event in the parent.
 menu->headerAreaPaintEvent(event);
}

MainMenuListView::MainMenuListView(QWidget* parent, const QString& header) :
QListView(parent), headerText(header)
{
 headerArea = new Header(this);

https://riptutorial.com/ 34

 // Really important. The view port margins define where the content
 // of the widget begins.
 setViewportMargins(0, fontMetrics().height(), 0, 0);
}

void MainMenuListView::headerAreaPaintEvent(QPaintEvent* event)
{
 // Paints the background of the header in gray.
 QPainter painter(headerArea);
 painter.fillRect(event->rect(), Qt::lightGray);

 // Display the header title in black.
 painter.setPen(Qt::black);

 // Writes the header aligned on the center of the widget.
 painter.drawText(0, 0, headerArea->width(), fontMetrics().height(), Qt::AlignCenter,
headerText);
}

int MainMenuListView::headerAreaWidth()
{
 return width();
}

void MainMenuListView::resizeEvent(QResizeEvent* event)
{
 // Executes default behavior.
 QListView::resizeEvent(event);

 // Really important. Allows to fit the parent width.
 headerArea->adjustSize();
}

Use case: MainWindow declaration

class MainMenuListView;

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 MainWindow(QWidget* parent = 0);
 ~MainWindow();

private:
 MainMenuListView* menuA;
 MainMenuListView* menuB;
 MainMenuListView* menuC;
};

Use case: Implementation

MainWindow::MainWindow(QWidget *parent) : QMainWindow(parent)
{
 QWidget* w = new QWidget(this);

https://riptutorial.com/ 35

 QHBoxLayout* hbox = new QHBoxLayout();

 QVBoxLayout* vBox = new QVBoxLayout();
 menuA = new MainMenuListView(w, "Images");
 menuB = new MainMenuListView(w, "Videos");
 menuC = new MainMenuListView(w, "Devices");
 vBox->addWidget(menuA);
 vBox->addWidget(menuB);
 vBox->addWidget(menuC);
 vBox->setSpacing(0);
 hbox->addLayout(vBox);

 QPlainTextEdit* textEdit = new QPlainTextEdit(w);
 hbox->addWidget(textEdit);

 w->setLayout(hbox);
 setCentralWidget(w);

 move((QApplication::desktop()->screenGeometry().width() / 2) - (size().width() / 2),
 (QApplication::desktop()->screenGeometry().height() / 2) - (size().height() / 2));

}

MainWindow::~MainWindow() {}

Use case: Sample output

Here is a sample output:

https://riptutorial.com/ 36

As you can seen above, it can be useful for creating stacked menus. Note that this sample is
trivial. The two widgets have the same size constraints.

Read Header on QListView online: https://riptutorial.com/qt/topic/9382/header-on-qlistview

https://riptutorial.com/ 37

https://i.stack.imgur.com/fhEsY.png
https://riptutorial.com/qt/topic/9382/header-on-qlistview

Chapter 9: Implicit sharing

Remarks

STL style iterators on Qt Container can have some negative side effect due to the implicit-sharing.
It is advised to avoid copying a Qt container while you have iterators active on them.

QVector<int> a,b; //2 vectors
a.resize(1000);
b = a; // b and a now point to the same memory internally

auto iter = a.begin(); //iter also points to the same memory a and b do
a[4] = 1; //a creates a new copy and points to different memory.
//Warning 1: b and iter point sill to the same even if iter was "a.begin()"

b.clear(); //delete b-memory
//Warning 2: iter only holds a pointer to the memory but does not increase ref-count.
// so now the memory iter points to is invalid. UB!

Examples

Basic Concept

Several Qt Objects and Containers use a concept calles implicit sharing, which can also be
refered to as copy-on-write.

Implicit sharing means that the classes who use this concept share the same data on initialization.

One of these classes to use the concept is QString.

QString s1("Hello World");

This is a simplified model of a QString. Internally it has a memory block, with the actual string data
and and a reference counter.

QString s2 = s1;

https://riptutorial.com/ 38

http://i.stack.imgur.com/P40g5.png
http://i.stack.imgur.com/rvDtH.png

If we now copy this QString both objects will internally point to the same content, thus avoiding
unnecessary copy operations. Note how the reference count also got upped. So in case the first
string gets deleted the shared-data still knows it is referenced by another QString.

s2 += " and all the other Worlds!"

Now when the QString is actually modified the object "detaches" itself from the memory block,
copying it's content and modifies the content.

Read Implicit sharing online: https://riptutorial.com/qt/topic/6801/implicit-sharing

https://riptutorial.com/ 39

http://i.stack.imgur.com/wzrRD.png
https://riptutorial.com/qt/topic/6801/implicit-sharing

Chapter 10: Model/View

Examples

A Simple Read-only Table to View Data from a Model

This is a simple example to display read-only data that is tabular in nature using Qt's Model/View
Framework. Specifically, the Qt Objects QAbstractTableModel (sub-classed in this example) and
QTableView are used.

Implementations of the methods rowCount(), columnCount(), data() and headerData() are required
to give the QTableView object a means to obtain information about the data contained in the
QAbstractTableModel object.

The method populateData() was added to this example to provide a means to populate the
QAbstractTableModel object with data from some arbitrary source.

mainwindow.h

#ifndef MAINWINDOW_H
#define MAINWINDOW_H
#include <QMainWindow>
#include <QAbstractTableModel>

namespace Ui {
 class MainWindow;
}

class TestModel : public QAbstractTableModel
{
 Q_OBJECT

public:
 TestModel(QObject *parent = 0);

 void populateData(const QList<QString> &contactName,const QList<QString> &contactPhone);

 int rowCount(const QModelIndex &parent = QModelIndex()) const Q_DECL_OVERRIDE;
 int columnCount(const QModelIndex &parent = QModelIndex()) const Q_DECL_OVERRIDE;

 QVariant data(const QModelIndex &index, int role = Qt::DisplayRole) const Q_DECL_OVERRIDE;
 QVariant headerData(int section, Qt::Orientation orientation, int role = Qt::DisplayRole)
const Q_DECL_OVERRIDE;

private:
 QList<QString> tm_contact_name;
 QList<QString> tm_contact_phone;

};

class MainWindow : public QMainWindow
{
 Q_OBJECT

https://riptutorial.com/ 40

http://doc.qt.io/qt-5/model-view-programming.html
http://doc.qt.io/qt-5/model-view-programming.html
http://doc.qt.io/qt-5/qabstracttablemodel.html#details
http://doc.qt.io/qt-5/qtableview.html#details
http://doc.qt.io/qt-5/qabstractitemmodel.html#rowCount
http://doc.qt.io/qt-5/qabstractitemmodel.html#columnCount
http://doc.qt.io/qt-5/qabstractitemmodel.html#data
http://doc.qt.io/qt-5/qabstractitemmodel.html#headerData

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

private:
 Ui::MainWindow *ui;

};

#endif // MAINWINDOW_H

mainwindow.cpp

#include "mainwindow.h"
#include "ui_mainwindow.h"

MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);

 QList<QString> contactNames;
 QList<QString> contactPhoneNums;

 // Create some data that is tabular in nature:
 contactNames.append("Thomas");
 contactNames.append("Richard");
 contactNames.append("Harrison");
 contactPhoneNums.append("123-456-7890");
 contactPhoneNums.append("222-333-4444");
 contactPhoneNums.append("333-444-5555");

 // Create model:
 TestModel *PhoneBookModel = new TestModel(this);

 // Populate model with data:
 PhoneBookModel->populateData(contactNames,contactPhoneNums);

 // Connect model to table view:
 ui->tableView->setModel(PhoneBookModel);

 // Make table header visible and display table:
 ui->tableView->horizontalHeader()->setVisible(true);
 ui->tableView->show();
}

MainWindow::~MainWindow()
{
 delete ui;
}

TestModel::TestModel(QObject *parent) : QAbstractTableModel(parent)
{
}

// Create a method to populate the model with data:
void TestModel::populateData(const QList<QString> &contactName,const QList<QString>
&contactPhone)
{

https://riptutorial.com/ 41

 tm_contact_name.clear();
 tm_contact_name = contactName;
 tm_contact_phone.clear();
 tm_contact_phone = contactPhone;
 return;
}

int TestModel::rowCount(const QModelIndex &parent) const
{
 Q_UNUSED(parent);
 return tm_contact_name.length();
}

int TestModel::columnCount(const QModelIndex &parent) const
{
 Q_UNUSED(parent);
 return 2;
}

QVariant TestModel::data(const QModelIndex &index, int role) const
{
 if (!index.isValid() || role != Qt::DisplayRole) {
 return QVariant();
 }
 if (index.column() == 0) {
 return tm_contact_name[index.row()];
 } else if (index.column() == 1) {
 return tm_contact_phone[index.row()];
 }
 return QVariant();
}

QVariant TestModel::headerData(int section, Qt::Orientation orientation, int role) const
{
 if (role == Qt::DisplayRole && orientation == Qt::Horizontal) {
 if (section == 0) {
 return QString("Name");
 } else if (section == 1) {
 return QString("Phone");
 }
 }
 return QVariant();
}

Using Qt Creator/Design, place a Table View object, named tableView in this example, in the main
window:

https://riptutorial.com/ 42

The resulting program displays as:

A simple tree model

QModelIndex does not actually know about it's parent/child indexes, it only contains a row, a
column and a pointer, and it is the models responsibility to use this data to provide information an
index's relations. The model therefore needs to do a lot of conversions from the void* stored inside
the QModelIndex to an internal data type and back.

TreeModel.h:

#pragma once

#include <QAbstractItemModel>

class TreeModel : public QAbstractItemModel

https://riptutorial.com/ 43

http://i.stack.imgur.com/lobjJ.png
http://i.stack.imgur.com/1ALiZ.png
http://doc.qt.io/qt-5/qmodelindex.html#details

{
 Q_OBJECT
public:
 explicit TreeModel(QObject *parent = nullptr);

 // Reimplementation of QAbstractItemModel methods
 int rowCount(const QModelIndex &index) const override;
 int columnCount(const QModelIndex &index) const override;
 QModelIndex index(const int row, const int column,
 const QModelIndex &parent) const override;
 QModelIndex parent(const QModelIndex &childIndex) const override;
 QVariant data(const QModelIndex &index, const int role) const override;
 bool setData(const QModelIndex &index, const QVariant &value,
 const int role) override;
 Qt::ItemFlags flags(const QModelIndex &index) const override;

 void addRow(const QModelIndex &parent, const QVector<QVariant> &values);
 void removeRow(const QModelIndex &index);

private:
 struct Item
 {
 ~Item();

 // This could individual members, or maybe some other object that
 // contains the data we want to display/edit
 QVector<QVariant> values;

 // It is this information that the model needs to be able to answer
 // questions like "What's the parent QModelIndex of this QModelIndex?"
 QVector<Item *> children;
 Item *parent = nullptr;

 // Convenience method that's used in several places
 int rowInParent() const;
 };
 Item *m_root;
};

TreeModel.cpp:

#include "TreeModel.h"

// Adapt this to own needs
static constexpr int COLUMNS = 3;

TreeModel::Item::~Item()
{
 qDeleteAll(children);
}
int TreeModel::Item::rowInParent() const
{
 if (parent) {
 return parent->children.indexOf(const_cast<Item *>(this));
 } else {
 return 0;
 }
}

TreeModel::TreeModel(QObject *parent)

https://riptutorial.com/ 44

 : QAbstractItemModel(parent), m_root(new Item) {}

int TreeModel::rowCount(const QModelIndex &parent) const
{
 // Parent being invalid means we ask for how many rows the root of the
 // model has, thus we ask the root item
 // If parent is valid we access the Item from the pointer stored
 // inside the QModelIndex
 return parent.isValid()
 ? static_cast<Item *>(parent.internalPointer())->children.size()
 : m_root->children.size();
}
int TreeModel::columnCount(const QModelIndex &parent) const
{
 return COLUMNS;
}

QModelIndex TreeModel::index(const int row, const int column,
 const QModelIndex &parent) const
{
 // hasIndex checks if the values are in the valid ranges by using
 // rowCount and columnCount
 if (!hasIndex(row, column, parent)) {
 return QModelIndex();
 }

 // In order to create an index we first need to get a pointer to the Item
 // To get started we have either the parent index, which contains a pointer
 // to the parent item, or simply the root item

 Item *parentItem = parent.isValid()
 ? static_cast<Item *>(parent.internalPointer())
 : m_root;

 // We can now simply look up the item we want given the parent and the row
 Item *childItem = parentItem->children.at(row);

 // There is no public constructor in QModelIndex we can use, instead we need
 // to use createIndex, which does a little bit more, like setting the
 // model() in the QModelIndex to the model that calls createIndex
 return createIndex(row, column, childItem);
}
QModelIndex TreeModel::parent(const QModelIndex &childIndex) const
{
 if (!childIndex.isValid()) {
 return QModelIndex();
 }

 // Simply get the parent pointer and create an index for it
 Item *parentItem = static_cast<Item*>(childIndex.internalPointer())->parent;
 return parentItem == m_root
 ? QModelIndex() // the root doesn't have a parent
 : createIndex(parentItem->rowInParent(), 0, parentItem);
}

QVariant TreeModel::data(const QModelIndex &index, const int role) const
{
 // Usually there will be more stuff here, like type conversion from
 // QVariant, handling more roles etc.
 if (!index.isValid() || role != Qt::DisplayRole) {
 return QVariant();

https://riptutorial.com/ 45

 }
 Item *item = static_cast<Item *>(index.internalPointer());
 return item->values.at(index.column());
}
bool TreeModel::setData(const QModelIndex &index, const QVariant &value,
 const int role)
{
 // As in data there will usually be more stuff here, like type conversion to
 // QVariant, checking values for validity etc.
 if (!index.isValid() || role != Qt::EditRole) {
 return false;
 }
 Item *item = static_cast<Item *>(index.internalPointer());
 item->values[index.column()] = value;
 emit dataChanged(index, index, QVector<int>() << role);
 return true;
}
Qt::ItemFlags TreeModel::flags(const QModelIndex &index) const
{
 if (index.isValid()) {
 return Qt::ItemIsEnabled | Qt::ItemIsSelectable | Qt::ItemIsEditable;
 } else {
 return Qt::NoItemFlags;
 }
}

// Simple add/remove functions to illustrate {begin,end}{Insert,Remove}Rows
// usage in a tree model
void TreeModel::addRow(const QModelIndex &parent,
 const QVector<QVariant> &values)
{
 Item *parentItem = parent.isValid()
 ? static_cast<Item *>(parent.internalPointer())
 : m_root;
 beginInsertRows(parent,
 parentItem->children.size(), parentItem->children.size());
 Item *item = new Item;
 item->values = values;
 item->parent = parentItem;
 parentItem->children.append(item);
 endInsertRows();
}
void TreeModel::removeRow(const QModelIndex &index)
{
 if (!index.isValid()) {
 return;
 }
 Item *item = static_cast<Item *>(index.internalPointer());
 Q_ASSERT(item != m_root);
 beginRemoveRows(index.parent(), item->rowInParent(), item->rowInParent());
 item->parent->children.removeOne(item);
 delete item;
 endRemoveRows();
}

Read Model/View online: https://riptutorial.com/qt/topic/3938/model-view

https://riptutorial.com/ 46

https://riptutorial.com/qt/topic/3938/model-view

Chapter 11: Multimedia

Remarks

Qt Multimedia is a module providing handling of multimedia (audio, video) and also camera and
radio functionality.

However, the supported files of QMediaPlayer depends on the platform. Indeed, on windows,
QMediaPlayer uses DirectShow, on Linux, it uses GStreamer. So depending on the platform some
files may work on Linux but not on Windows or the opposite.

Examples

Video Playback in Qt 5

Let's create very simple video player using QtMultimedia module of Qt 5.

In .pro file of your application you will need the following lines:

QT += multimedia multimediawidgets

Note that multimediawidgets is necessary for usage of QVideoWidget.

#include <QtMultimedia/QMediaPlayer>
#include <QtMultimedia/QMediaPlaylist>
#include <QtMultimediaWidgets/QVideoWidget>

QMediaPlayer *player;
QVideoWidget *videoWidget;
QMediaPlaylist *playlist;

player = new QMediaPlayer;

playlist = new QMediaPlaylist(player);
playlist->addMedia(QUrl::fromLocalFile("actualPathHere"));

videoWidget = new QVideoWidget;
player->setVideoOutput(videoWidget);

videoWidget->show();
player->play();

That's all - after launching the application (if necessary codecs are installed in the system), video
file playback will be started.

The same way you can play video from URL in Internet, not just local file.

Audio Playback in Qt5

https://riptutorial.com/ 47

As this is an audio, we don't need a QVideoWidget. So we can do:

_player = new QMediaPlayer(this);
QUrl file = QUrl::fromLocalFile(QFileDialog::getOpenFileName(this, tr("Open Music"), "",
tr("")));
if (file.url() == "")
 return ;
_player->setMedia(file);
_player->setVolume(50);
_player->play();

in the .h:

QMediaPlayer *_player;

this will open a dialog where you can choose your music and it will play it.

Read Multimedia online: https://riptutorial.com/qt/topic/7675/multimedia

https://riptutorial.com/ 48

https://riptutorial.com/qt/topic/7675/multimedia

Chapter 12: QDialogs

Remarks

The QDialog class is the base class of dialog windows. A dialog window is a top-level window
mostly used for short-term tasks and brief communications with the user. QDialogs may be modal
or modeless.

Note that QDialog (and any other widget that has type Qt::Dialog) uses the parent widget slightly
differently from other classes in Qt. A dialog is always a top-level widget, but if it has a parent,
its default location is centered on top of the parent's top-level widget (if it is not top-level
itself). It will also share the parent's taskbar entry.

A modal dialog is a dialog that blocks input to other visible windows in the same application.
Dialogs that are used to request a file name from the user or that are used to set application
preferences are usually modal. Dialogs can be application modal (the default) or window modal.

The most common way to display a modal dialog is to call its exec() function. When the user
closes the dialog, exec() will provide a useful return value.

A modeless dialog is a dialog that operates independently of other windows in the same
application. Modeless dialogs are displayed using show(), which returns control to the caller
immediately.

Examples

MyCompareFileDialog.h

#ifndef MYCOMPAREFILEDIALOG_H
#define MYCOMPAREFILEDIALOG_H

#include <QtWidgets/QDialog>

class MyCompareFileDialog : public QDialog
{
 Q_OBJECT

public:
 MyCompareFileDialog(QWidget *parent = 0);
 ~MyCompareFileDialog();
};

#endif // MYCOMPAREFILEDIALOG_H

MyCompareFileDialogDialog.cpp

#include "MyCompareFileDialog.h"

https://riptutorial.com/ 49

#include <QLabel>

MyCompareFileDialog::MyCompareFileDialog(QWidget *parent)
: QDialog(parent)
{
 setWindowTitle("Compare Files");
 setWindowFlags(Qt::Dialog);
 setWindowModality(Qt::WindowModal);

 resize(300, 100);
 QSizePolicy sizePolicy(QSizePolicy::Preferred, QSizePolicy::Preferred);
 setSizePolicy(sizePolicy);
 setMinimumSize(QSize(300, 100));
 setMaximumSize(QSize(300, 100));

 QLabel* myLabel = new QLabel(this);
 myLabel->setText("My Dialog!");
}

MyCompareFileDialog::~MyCompareFileDialog()
{ }

MainWindow.h

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>

namespace Ui {
class MainWindow;
}

class MyCompareFileDialog;

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

private:
 Ui::MainWindow *ui;
 MyCompareFileDialog* myDialog;
};

#endif // MAINWINDOW_H

MainWindow.cpp

#include "mainwindow.h"
#include "ui_mainwindow.h"
#include "mycomparefiledialog.h"

MainWindow::MainWindow(QWidget *parent) :

https://riptutorial.com/ 50

 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);

 myDialog = new MyCompareFileDialog(this);

 connect(ui->pushButton,SIGNAL(clicked()),myDialog,SLOT(exec()));
}

MainWindow::~MainWindow()
{
 delete ui;
}

main.cpp

#include "mainwindow.h"
#include <QApplication>

int main(int argc, char *argv[])
{
 QApplication a(argc, argv);
 MainWindow w;
 w.show();

 return a.exec();
}

mainwindow.ui

<?xml version="1.0" encoding="UTF-8"?>
<ui version="4.0">
 <class>MainWindow</class>
 <widget class="QMainWindow" name="MainWindow">
 <property name="geometry">
 <rect>
 <x>0</x>
 <y>0</y>
 <width>400</width>
 <height>300</height>
 </rect>
 </property>
 <property name="windowTitle">
 <string>MainWindow</string>
 </property>
 <widget class="QWidget" name="centralWidget">
 <widget class="QPushButton" name="pushButton">
 <property name="geometry">
 <rect>
 <x>140</x>
 <y>80</y>
 <width>111</width>
 <height>23</height>
 </rect>
 </property>
 <property name="text">

https://riptutorial.com/ 51

 <string>Show My Dialog</string>
 </property>
 </widget>
 </widget>
 <widget class="QMenuBar" name="menuBar">
 <property name="geometry">
 <rect>
 <x>0</x>
 <y>0</y>
 <width>400</width>
 <height>21</height>
 </rect>
 </property>
 </widget>
 <widget class="QToolBar" name="mainToolBar">
 <attribute name="toolBarArea">
 <enum>TopToolBarArea</enum>
 </attribute>
 <attribute name="toolBarBreak">
 <bool>false</bool>
 </attribute>
 </widget>
 <widget class="QStatusBar" name="statusBar"/>
 </widget>
 <layoutdefault spacing="6" margin="11"/>
 <resources/>
 <connections/>
</ui>

Read QDialogs online: https://riptutorial.com/qt/topic/7819/qdialogs

https://riptutorial.com/ 52

https://riptutorial.com/qt/topic/7819/qdialogs

Chapter 13: QGraphics

Examples

Pan, zoom, and rotate with QGraphicsView

QGraphics can be used to organize complicated scenes of visual objects into a framework that
makes them easier to handle.

There are three major types of objects used in this framework QGraphicsView, QGraphicsScene,
and QGraphicsItems. QGraphicsItems are the basic visual items that exist in the scene.

There are many types that are pre-built and can be used such as Ellipses, Lines, Paths, Pixmaps,
Polygons, Rectangles, and Text.

You can also make your own items by inheriting QGraphicsItem. These items are then put into a
QGraphicsScene which is basically the world you are planning to look at. The items can move within
the scene which is like having them move in the world you are looking at. The items positioning
and orientation is handled by transformation matrices called QTransforms. Qt has nice functions
built in so you usually do not need to work with the QTransforms directly, instead you call functions
such as rotate or scale which create the proper transforms for you. The scene is then viewed by
the perspective defined in the QGraphicsView (again with QTransforms), which is the piece you would
put into a widget in you UI.

In the following example there is a very simple scene with just one item (a pixmap), which is put
into a scene and displayed in a view. By turning on the DragMode flag the scene can be panned
around with the mouse and by using the scale and rotate functions it can be scaled in and out with
the scroll on the mouse and rotated with the arrow keys.

If you would like to run this example create a instance of View that will be displayed and create a
resource file with the prefix /images containing a image my_image.png.

#include <QGraphicsView>
#include <QGraphicsScene>
#include <QGraphicsPixmapItem>
#include <QWheelEvent>
#include <QKeyEvent>

class View : public QGraphicsView
{
 Q_OBJECT
public:
 explicit View(QWidget *parent = 0) :
 QGraphicsView(parent)
 {
 setDragMode(QGraphicsView::ScrollHandDrag);

 QGraphicsPixmapItem *pixmapItem = new
QGraphicsPixmapItem(QPixmap(":/images/my_image.png"));
 pixmapItem->setTransformationMode(Qt::SmoothTransformation);

https://riptutorial.com/ 53

http://doc.qt.io/qt-5/qgraphicsview.html
http://doc.qt.io/qt-5/qgraphicsscene.html
http://doc.qt.io/qt-5/qgraphicsitem.html
http://doc.qt.io/qt-5/qgraphicsellipseitem.html
http://doc.qt.io/qt-5/qgraphicslineitem.html
http://doc.qt.io/qt-5/qgraphicspathitem.html
http://doc.qt.io/qt-5/qgraphicspixmapitem.html
http://doc.qt.io/qt-5/qgraphicspolygonitem.html
http://doc.qt.io/qt-5/qgraphicsrectitem.html
http://doc.qt.io/qt-5/qgraphicstextitem.html
http://doc.qt.io/qt-5/qt3dcore-qtransform.html
http://doc.qt.io/qt-5/resources.html

 QGraphicsScene *scene = new QGraphicsScene();
 scene->addItem(pixmapItem);
 setScene(scene);
 }

protected Q_SLOTS:
 void wheelEvent(QWheelEvent *event)
 {
 if(event->delta() > 0)
 scale(1.25, 1.25);
 else
 scale(0.8, 0.8);
 }

 void keyPressEvent(QKeyEvent *event)
 {
 if(event->key() == Qt::Key_Left)
 rotate(1);
 else if(event->key() == Qt::Key_Right)
 rotate(-1);
 }
};

Read QGraphics online: https://riptutorial.com/qt/topic/7539/qgraphics

https://riptutorial.com/ 54

https://riptutorial.com/qt/topic/7539/qgraphics

Chapter 14: qmake

Examples

Default "pro" file.

qmake is a build automation tool, which is shipped with Qt framework. It does similar job to tools
such as CMake or GNU Autotools, but it is designed to be used specifically with Qt. As such it is
well integrated with Qt ecosystem, notably Qt Creator IDE.

If you start Qt Creator and select File -> New File or Project -> Application -> Qt Widgets
application, Qt Creator will generate a project skeleton for you along with a "pro" file. The "pro" file
is processed by qmake in order to generate files, which are in turn processed by underlying build
systems (for example GNU Make or nmake).

If you named your project "myapp", then "myapp.pro" file will appear. Here's how such default file
looks like, with comments, that describe each qmake variable, added.

Tells build system that project uses Qt Core and Qt GUI modules.
QT += core gui

Prior to Qt 5 widgets were part of Qt GUI module. In Qt 5 we need to add Qt Widgets module.
greaterThan(QT_MAJOR_VERSION, 4): QT += widgets

Specifies name of the binary.
TARGET = myapp

Denotes that project is an application.
TEMPLATE = app

List of source files (note: Qt Creator will take care about this list, you don't need to
update is manually).
SOURCES += main.cpp\
 mainwindow.cpp

List of header files (note: Qt Creator will take care about this list).
HEADERS += mainwindow.h

List of "ui" files for a tool called Qt Designer, which is embedded into Qt Creator in newer
versions of IDE (note: Qt Creator will take care about this list).
FORMS += mainwindow.ui

Preserving source directory structure in a build (undocumented
"object_parallel_to_source" option).

If you like to organize your project by keeping source files in different subdirectories, you should
know that during a build qmake will not preserve this directory structure and it will keep all the ".o"
files in a single build directory. This can be a problem if you had conflicting file names in different
directories like following.

https://riptutorial.com/ 55

src/file1.cpp
src/plugin/file1.cpp

Now qmake will decide to create two "file1.o" files in a build directory, causing one of them to be
overwritten by another. The buld will fail. To prevent this you can add CONFIG +=
object_parallel_to_source configuration option to your "pro" file. This will tell qmake to generate
build files that preserve your source directory structure. This way your build directory will reflect
source directory structure and object files will be created in separate subdirectories.

src/file1.o
src/plugin/file1.o

Complete example.

QT += core
TARGET = myapp
TEMPLATE = app

CONFIG += object_parallel_to_source

SOURCES += src/file1.cpp \
 src/plugin/file1.cpp

HEADERS += src/plugin/file1.h

Note that object_parallel_to_source CONFIG option is not officially documented.

Simple Example (Linux)

Window.h

#include <QWidget>

class Window : public QWidget
{
 Q_OBJECT
public:
 Window(QWidget *parent = Q_NULLPTR) : QWidget(parent) {}
}

main.cpp

#include <QApplication>
#include "Window.h"

int main()
{
 QApplication app;
 Window window;
 window.show();
 return app.exec();
}

https://riptutorial.com/ 56

example.pro

The QT variable controls what modules are included in compilation.
Note that the 'core' and 'gui' modules are included by default.
For widget-based GUI applications, the 'widgets' module needs to be added.
QT += widgets

HEADERS = Window.h # Everything added to the HEADER variable will be checked
 # to see if moc needs to run on it, and it will be run if
 # so.

SOURCES = main.cpp # Everything added to the SOURCES variable will be compiled
 # and (in the simple example) added to the resulting
 # executable.

Command Line

Assuming you are in a folder that contains the above files.
> qmake # You can also add the example.pro file if needed
> make # qmake creates a Makefile, this runs make on it.
> ./example # The name of the executable defaults to the .pro file name.

SUBDIRS example

The SUBDIRS ability of qmake can be used to compile a set of libraries, each of which depend on
another. The example below is slightly convoluted to show variations with the SUBDIRS ability.

Directory Structure

Some of the following files will be omitted in the interest of brevity. They can be assumed to be the
format as non-subdir examples.

project_dir/
-project.pro
-common.pri
-build.pro
-main.cpp
-logic/
----logic.pro
----some logic files
-gui/
----gui.pro
----gui files

project.pro

This is the main file that enables the example. This is also the file that would be called with qmake
on the command line (see below).

TEMPLATE = subdirs # This changes to the subdirs function. You can't combine
 # compiling code and the subdirs function in the same .pro
 # file.

By default, you assign a directory to the SUBDIRS variable, and qmake looks

https://riptutorial.com/ 57

inside that directory for a <dirname>.pro file.
SUBDIRS = logic

You can append as many items as desired. You can also specify the .pro file
directly if need be.
SUBDIRS += gui/gui.pro

You can also create a target that isn't a subdirectory, or that refers to a
different file(*).
SUBDIRS += build
build.file = build.pro # This specifies the .pro file to use
You can also use this to specify dependencies. In this case, we don't want
the build target to run until after the logic and gui targets are complete.
build.depends = logic gui/gui.pro

(*) See The reference documentation for the other options for a subdirs target.

common.pri

#Includes common configuration for all subdirectory .pro files.
INCLUDEPATH += . ..
WARNINGS += -Wall

TEMPLATE = lib

The following keeps the generated files at least somewhat separate
from the source files.
UI_DIR = uics
MOC_DIR = mocs
OBJECTS_DIR = objs

logic/logic.pro

Check if the config file exists
! include(../common.pri) {
 error("Couldn't find the common.pri file!")
}

HEADERS += logic.h
SOURCES += logic.cpp

By default, TARGET is the same as the directory, so it will make
liblogic.so (in linux). Uncomment to override.
TARGET = target

gui/gui.pro

! include(../common.pri) {
 error("Couldn't find the common.pri file!")
}

FORMS += gui.ui
HEADERS += gui.h
SOURCES += gui.cpp

By default, TARGET is the same as the directory, so it will make
libgui.so (in linux). Uncomment to override.

https://riptutorial.com/ 58

http://doc.qt.io/qt-5/qmake-variable-reference.html#subdirs

TARGET = target

build.pro

TEMPLATE = app

SOURCES += main.cpp

LIBS += -Llogic -Lgui -llogic -lgui

This renames the resulting executable
TARGET = project

Command Line

Assumes you are in the project_dir directory
> qmake project.pro # specific the .pro file since there are multiple here.
> make -n2 # This makes logic and gui concurrently, then the build Makefile.
> ./project # Run the resulting executable.

Library example

A simple example to make a library (rather than an executable, which is the default). TEMPLATE
variable specifies type of the project you are making. lib option allows makefile to build a library.

library.pro

HEADERS += library.h
SOURCES += library.cpp

TEMPLATE = lib

By default, qmake will make a shared library. Uncomment to make the library
static.
CONFIG += staticlib

By default, TARGET is the same as the directory, so it will make
liblibrary.so or liblibrary.a (in linux). Uncomment to override.
TARGET = target

When you are building a library, you can add options dll (default), staticlib or plugin to CONFIG.

Creating a project file from existing code

If you have a directory with existing source files, you can use qmake with the -project-option to
create a project file.

Let's assume, the folder MyProgram contains the following files:

main.cpp•
foo.h•
foo.cpp•

https://riptutorial.com/ 59

bar.h•
bar.cpp•
subdir/foobar.h•
subdir/foobar.cpp•

Then by calling

qmake -project

a file MyProgram.pro is created with the following content:

Automatically generated by qmake (3.0) Mi. Sep. 7 23:36:56 2016

TEMPLATE = app
TARGET = MyProgram
INCLUDEPATH += .

Input
HEADERS += bar.h foo.h subdir/foobar.h
SOURCES += bar.cpp foo.cpp main.cpp subdir/foobar.cpp

The code can then be built as described in this simple example.

Read qmake online: https://riptutorial.com/qt/topic/4438/qmake

https://riptutorial.com/ 60

http://www.riptutorial.com/qt/example/16534/simple-example--linux-
https://riptutorial.com/qt/topic/4438/qmake

Chapter 15: QObject

Remarks

QObject class is the base class for all Qt objects.

Examples

QObject example

Q_OBJECT macro appears in private section of a class. Q_OBJECT requires the class to be subclass of
QObject. This macro is necessary for the class to declare its signals/slots and to use Qt meta-
object system.

If Meta Object Compiler (MOC) finds class with Q_OBJECT, it processes it and generates C++ source
file containing meta object source code.

Here is the example of class header with Q_OBJECT and signal/slots:

#include <QObject>

class MyClass : public QObject
{
 Q_OBJECT

public:

public slots:
 void setNumber(double number);

signals:
 void numberChanged(double number);

private:
}

qobject_cast

T qobject_cast(QObject *object)

A functionality which is added by deriving from QObject and using the Q_OBJECT macro is the ability
to use the qobject_cast.

Example:

class myObject : public QObject
{
 Q_OBJECT
 //...

https://riptutorial.com/ 61

};

QObject* obj = new myObject();

To check whether obj is a myObject-type and to cast it to such in C++ you can generally use a
dynamic_cast. This is dependent on having RTTI enabled during compilation.

The Q_OBJECT macro on the other hands generates the conversion-checks and code which can
be used in the qobject_cast.

myObject* my = qobject_cast<myObject*>(obj);
if(!myObject)
{
 //wrong type
}

This is not reliant of RTTI. And also allows you to cast across dynamic library boundaries (via Qt
interfaces/plugins).

QObject Lifetime and Ownership

QObjects come with their own alternative lifetime concept compared to native C++'s raw,unique or
shared pointers.

QObjects have the possibility to build an objecttree by declaring parent/child relationships.

The simplest way to declare this relationship is by passing the parent object in the constructor. As
an lternative you can manually set the parent of a QObject by calling setParent. This is the only
direction to declare this relationship. You cannot add a child to a parents class but only the other
way round.

QObject parent;
QObject child* = new QObject(&parent);

When parent now gets deleted in stack-unwind child will also be deleted.

When we delete a QObject it will "unregister" itself form the parent object;

QObject parent;
QObject child* = new QObject(&parent);
delete child; //this causes no problem.

The same applies for stack variables:

QObject parent;
QObject child(&parent);

child will get deleted before parent during stack-unwind and unregister itself from it's parent.

Note: You can manually call setParent with a reverse order of declaration which will break the

https://riptutorial.com/ 62

http://stackoverflow.com/documentation/c%2b%2b/5660/casts#t=201609131207283939046

automatic destruction.

Read QObject online: https://riptutorial.com/qt/topic/6304/qobject

https://riptutorial.com/ 63

https://riptutorial.com/qt/topic/6304/qobject

Chapter 16: Qt - Dealing with Databases

Remarks

You will need the Qt SQL plugin corresponding to the type given to QSqlDatabase::addDatabase•
If you don't have the required SQL plugin, Qt will warn you that it can't find the requested
driver

•

If you don't have the required SQL plugin you will have to compile them from the Qt source•

Examples

Using a Database on Qt

In the Project.pro file we add :

CONFIG += sql

in MainWindow.h we write :

#include <QMainWindow>
#include <QSql>
#include <QDebug>

namespace Ui
{
 class MainWindow;
}

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

private slots:

private:
 Ui::MainWindow *ui;
 QSqlDatabase db;
};

Now in MainWindow.cpp :

#include "mainwindow.h"
#include "ui_mainwindow.h"

MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)

https://riptutorial.com/ 64

{
 ui->setupUi(this);

 db = QSqlDatabase::addDatabase("QT SQL DRIVER" , "CONNECTION NAME");
 db.setDatabaseName("DATABASE NAME");
 if(!db.open())
 {
 qDebug() << "Can't Connect to DB !";
 }
 else
 {
 qDebug() << "Connected Successfully to DB !";
 QSqlQuery query;
 query.prepare("QUERY TO BE SENT TO THE DB");
 if(!query.exec())
 {
 qDebug() << "Can't Execute Query !";
 }
 else
 {
 qDebug() << "Query Executed Successfully !";
 }
 }
}

MainWindow::~MainWindow()
{
 delete ui;
}

Qt - Dealing with Sqlite Databases

In the Project.pro file we add : CONFIG += sql

in MainWindow.h we write :

#include <QMainWindow>
#include <QSql>
#include <QDebug>

namespace Ui
{
 class MainWindow;
}

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

private slots:

private:
 Ui::MainWindow *ui;
 QSqlDatabase db;
};

https://riptutorial.com/ 65

Now in MainWindow.cpp :

#include "mainwindow.h"
#include "ui_mainwindow.h"

MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);

 db = QSqlDatabase::addDatabase("QSQLITE" , "CONNECTION NAME");
 db.setDatabaseName("C:\\sqlite_db_file.sqlite");
 if(!db.open())
 {
 qDebug() << "Can't Connect to DB !";
 }
 else
 {
 qDebug() << "Connected Successfully to DB !";
 QSqlQuery query;
 query.prepare("SELECT name , phone , address FROM employees WHERE ID = 201");
 if(!query.exec())
 {
 qDebug() << "Can't Execute Query !";
 }
 else
 {
 qDebug() << "Query Executed Successfully !";
 while(query.next())
 {
 qDebug() << "Employee Name : " << query.value(0).toString();
 qDebug() << "Employee Phone Number : " << query.value(1).toString();
 qDebug() << "Employee Address : " << query.value(1).toString();
 }
 }
 }
}

MainWindow::~MainWindow()
{
 delete ui;
}

Qt - Dealing with ODBC Databases

In the Project.pro file we add : CONFIG += sql

in MainWindow.h we write :

#include <QMainWindow>
#include <QSql>
#include <QDebug>

namespace Ui
{
 class MainWindow;
}

https://riptutorial.com/ 66

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

private slots:

private:
 Ui::MainWindow *ui;
 QSqlDatabase db;
};

Now in MainWindow.cpp :

#include "mainwindow.h"
#include "ui_mainwindow.h"

MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);

 db = QSqlDatabase::addDatabase("QODBC" , "CONNECTION NAME");
 db.setDatabaseName("DRIVER={SQL Server};SERVER=localhost;DATABASE=WorkDatabase"); //
"WorkDatabase" is the name of the database we want
 db.setUserName("sa"); // Set Login Username
 db.setPassword(""); // Set Password if required
 if(!db.open())
 {
 qDebug() << "Can't Connect to DB !";
 }
 else
 {
 qDebug() << "Connected Successfully to DB !";
 QSqlQuery query;
 query.prepare("SELECT name , phone , address FROM employees WHERE ID = 201");
 if(!query.exec())
 {
 qDebug() << "Can't Execute Query !";
 }
 else
 {
 qDebug() << "Query Executed Successfully !";
 while(query.next())
 {
 qDebug() << "Employee Name : " << query.value(0).toString();
 qDebug() << "Employee Phone Number : " << query.value(1).toString();
 qDebug() << "Employee Address : " << query.value(1).toString();
 }
 }
 }
}

MainWindow::~MainWindow()
{

https://riptutorial.com/ 67

 delete ui;
}

Qt - Dealing with in-memory Sqlite Databases

In the Project.pro file we add : CONFIG += sql

in MainWindow.h we write :

#include <QMainWindow>
#include <QSql>
#include <QDebug>

namespace Ui
{
 class MainWindow;
}

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

private slots:

private:
 Ui::MainWindow *ui;
 QSqlDatabase db;
};

Now in MainWindow.cpp :

#include "mainwindow.h"
#include "ui_mainwindow.h"

MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);

 db = QSqlDatabase::addDatabase("QSQLITE" , "CONNECTION NAME");
 db.setDatabaseName(":memory:");
 if(!db.open())
 {
 qDebug() << "Can't create in-memory Database!";
 }
 else
 {
 qDebug() << "In-memory Successfully created!";
 QSqlQuery query;

 if (!query.exec("CREATE TABLE employees (ID INTEGER, name TEXT, phone TEXT, address
TEXT)"))

https://riptutorial.com/ 68

 {
 qDebug() << "Can't create table!";
 return;
 }
 if (!query.exec("INSERT INTO employees (ID, name, phone, address) VALUES (201, 'Bob',
'5555-5555', 'Antarctica')"))
 {
 qDebug() << "Can't insert record!";
 return;
 }

 qDebug() << "Database filling completed!";
 if(!query.exec("SELECT name , phone , address FROM employees WHERE ID = 201"))
 {
 qDebug() << "Can't Execute Query !";
 return;
 }
 qDebug() << "Query Executed Successfully !";
 while(query.next())
 {
 qDebug() << "Employee Name : " << query.value(0).toString();
 qDebug() << "Employee Phone Number : " << query.value(1).toString();
 qDebug() << "Employee Address : " << query.value(1).toString();
 }
 }
}

MainWindow::~MainWindow()
{
 delete ui;
}

Remove Database connection correctly

If we want to remove some database connection from the list of database connections. we need to
use QSqlDatabase::removeDatabase(),however it's a static function and the way it work is a little
wired.

// WRONG WAY
 QSqlDatabase db = QSqlDatabase::database("sales");
 QSqlQuery query("SELECT NAME, DOB FROM EMPLOYEES", db);
 QSqlDatabase::removeDatabase("sales"); // will output a warning

 // "db" is now a dangling invalid database connection,
 // "query" contains an invalid result set

The correct way that Qt Document suggest us is below.

 {
 QSqlDatabase db = QSqlDatabase::database("sales");
 QSqlQuery query("SELECT NAME, DOB FROM EMPLOYEES", db);
 }
 // Both "db" and "query" are destroyed because they are out of scope
 QSqlDatabase::removeDatabase("sales"); // correct

Read Qt - Dealing with Databases online: https://riptutorial.com/qt/topic/1993/qt---dealing-with-

https://riptutorial.com/ 69

https://riptutorial.com/qt/topic/1993/qt---dealing-with-databases

databases

https://riptutorial.com/ 70

https://riptutorial.com/qt/topic/1993/qt---dealing-with-databases

Chapter 17: Qt Container Classes

Remarks

Qt provides its own template container classes. They are all implicitly shared. They provide two
kinds of iterators (Java style and STL style.)

Qt sequential containers include: QVector, QList, QLinkedList, QStack, QQueue.

Qt associative containers include: QMap, QMultiMap, QHash, QMultiHash, QSet.

Examples

QStack usage

QStack<T> is a template Qt class providing stack. Its analogue in STL is std::stack. It is last in, first
out structure (LIFO).

QStack<QString> stack;
stack.push("First");
stack.push("Second");
stack.push("Third");
while (!stack.isEmpty())
{
 cout << stack.pop() << endl;
}

It will output: Third, Second, First.

QStack inherits from QVector so its implementation is quite different from STL. In STL std::stack is
implemented as a wrapper to type passed as a template argument (deque by default). Still main
operations are the same for QStack and for std::stack.

QVector usage

QVector<T> provides dynamic array template class. It provides better performance in most cases
than QList<T> so it should be first choice.

It can be initialized in various ways:

QVector<int> vect;
vect << 1 << 2 << 3;

QVector<int> v {1, 2, 3, 4};

The latest involves initialization list.

QVector<QString> stringsVector;

https://riptutorial.com/ 71

stringsVector.append("First");
stringsVector.append("Second");

You can get i-th element of vector this way:

v[i] or at[i]

Make sure that i is valid position, even at(i) doesn't make a check, this is a difference from
std::vector.

QLinkedList usage

In Qt you should use QLinkedList in case you need to implement linked list.

It is fast to append, prepend, insert elements into QLinkedList - O(1), but index lookup is slower
than in QList or QVector - O(n). This is normal taking into attention you have to iterate through
nodes to find something in linked list.

Full algorithmic compexity table can be found here.

Just to insert some elements into QLinkedList you can use operator <<():

QLinkedList<QString> list;
list << "string1" << "string2" << "string3";

To insert elements in the middle of QLinkedList or modify all or some of its elements you can use
Java style or STL style iterators. Here is a simple example how we multiply all the elements of
QLinkedList by 2:

QLinkedList<int> integerList {1, 2, 3};
QLinkedList<int>::iterator it;
for (it = integerList.begin(); it != integerList.end(); ++it)
{
 *it *= 2;
}

QList

The QList class is a template class that provides lists. It stores items in a list that provides fast
index-based access and index-based insertions and removals.

To insert items into the list, you can use operator<<(), insert(), append() or prepend(). For example:

operator<<()

QList<QString> list;
list << "one" << "two" << "three";

insert()

https://riptutorial.com/ 72

https://en.wikipedia.org/wiki/Linked_list
http://doc.qt.io/qt-5/containers.html#algorithmic-complexity

QList<QString> list;
list << "alpha" << "beta" << "delta";
list.insert(2, "gamma");

append()

QList<QString> list;
list.append("one");
list.append("two");
list.append("three");

prepend()

QList<QString> list;
list.prepend("one");
list.prepend("two");
list.prepend("three");

To access the item at a particular index position, you can use operator[]() or at(). at() may be
faster than operator[](), it never causes deep copy of container and should work in constant-time.
Neither of them does argument-check. Examples:

if (list[0] == "mystring")
 cout << "mystring found" << endl;

Or

if (list.at(i) == "mystring")
 cout << "mystring found at position " << i << endl;

To remove items, there are functions such as removeAt(), takeAt(), takeFirst(), takeLast(),
removeFirst(), removeLast(), or removeOne(). Examples:

takeFirst()

// takeFirst() removes the first item in the list and returns it
QList<QWidget *> list;
...
while (!list.isEmpty())
 delete list.takeFirst();

removeOne()

// removeOne() removes the first occurrence of value in the list
QList<QString> list;
list << "sun" << "cloud" << "sun" << "rain";
list.removeOne("sun");

To find all occurrences of a particular value in a list, you can use indexOf() or lastIndexOf().
Example:

indexOf()

https://riptutorial.com/ 73

int i = list.indexOf("mystring");
if (i != -1)
 cout << "First occurrence of mystring is at position " << i << endl;

Read Qt Container Classes online: https://riptutorial.com/qt/topic/6303/qt-container-classes

https://riptutorial.com/ 74

https://riptutorial.com/qt/topic/6303/qt-container-classes

Chapter 18: Qt Network

Introduction

Qt Network provide tools to easily use many network protocols in your application.

Examples

TCP Client

To create a TCP connection in Qt, we will use QTcpSocket. First, we need to connect with
connectToHost.

So for example, to connect to a local tcp serveur: _socket.connectToHost(QHostAddress("127.0.0.1"),
4242);

Then, if we need to read datas from the server, we need to connect the signal readyRead with a
slot. Like that:

connect(&_socket, SIGNAL(readyRead()), this, SLOT(onReadyRead()));

and finally, we can read the datas like that:

void MainWindow::onReadyRead()
{
 QByteArray datas = _socket.readAll();
 qDebug() << datas;
}

To write datas, you can use the write(QByteArray) method:

_socket.write(QByteArray("ok !\n"));

So a basic TCP Client can look like that:

main.cpp:

#include "mainwindow.h"
#include <QApplication>

int main(int argc, char *argv[])
{
 QApplication a(argc, argv);
 MainWindow w;
 w.show();

 return a.exec();
}

https://riptutorial.com/ 75

http://doc.qt.io/qt-5/qtcpsocket.html

mainwindow.h:

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>
#include <QTcpSocket>

namespace Ui {
class MainWindow;
}

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

public slots:
 void onReadyRead();

private:
 Ui::MainWindow *ui;
 QTcpSocket _socket;
};

#endif // MAINWINDOW_H

mainwindow.cpp:

#include "mainwindow.h"
#include "ui_mainwindow.h"

#include <QDebug>
#include <QHostAddress>

MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow),
 _socket(this)
{
 ui->setupUi(this);
 _socket.connectToHost(QHostAddress("127.0.0.1"), 4242);
 connect(&_socket, SIGNAL(readyRead()), this, SLOT(onReadyRead()));
}

MainWindow::~MainWindow()
{
 delete ui;
}

void MainWindow::onReadyRead()
{
 QByteArray datas = _socket.readAll();
 qDebug() << datas;
 _socket.write(QByteArray("ok !\n"));
}

https://riptutorial.com/ 76

mainwindow.ui: (empty here)

<?xml version="1.0" encoding="UTF-8"?>
<ui version="4.0">
 <class>MainWindow</class>
 <widget class="QMainWindow" name="MainWindow">
 <property name="geometry">
 <rect>
 <x>0</x>
 <y>0</y>
 <width>400</width>
 <height>300</height>
 </rect>
 </property>
 <property name="windowTitle">
 <string>MainWindow</string>
 </property>
 <widget class="QWidget" name="centralWidget"/>
 <widget class="QMenuBar" name="menuBar">
 <property name="geometry">
 <rect>
 <x>0</x>
 <y>0</y>
 <width>400</width>
 <height>25</height>
 </rect>
 </property>
 </widget>
 <widget class="QToolBar" name="mainToolBar">
 <attribute name="toolBarArea">
 <enum>TopToolBarArea</enum>
 </attribute>
 <attribute name="toolBarBreak">
 <bool>false</bool>
 </attribute>
 </widget>
 <widget class="QStatusBar" name="statusBar"/>
 </widget>
 <layoutdefault spacing="6" margin="11"/>
 <resources/>
 <connections/>
</ui>

TCP Server

Create a TCP server in Qt is also very easy, indeed, the class QTcpServer already provide all we
need to do the server.

First, we need to listen to any ip, a random port and do something when a client is connected. like
that:

 _server.listen(QHostAddress::Any, 4242);
 connect(&_server, SIGNAL(newConnection()), this, SLOT(onNewConnection()));

Then, When here is a new connection, we can add it to the client list and prepare to read/write on
the socket. Like that:

https://riptutorial.com/ 77

http://doc.qt.io/qt-5/qtcpserver.html

 QTcpSocket *clientSocket = _server.nextPendingConnection();
 connect(clientSocket, SIGNAL(readyRead()), this, SLOT(onReadyRead()));
 connect(clientSocket, SIGNAL(stateChanged(QAbstractSocket::SocketState)), this,
SLOT(onSocketStateChanged(QAbstractSocket::SocketState)));
 _sockets.push_back(clientSocket);

The stateChanged(QAbstractSocket::SocketState) allow us to remove the socket to our list when the
client is disconnected.

So here a basic chat server:

main.cpp:

#include "mainwindow.h"
#include <QApplication>

int main(int argc, char *argv[])
{
 QApplication a(argc, argv);
 MainWindow w;
 w.show();

 return a.exec();
}

mainwindow.h:

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>
#include <QTcpServer>
#include <QTcpSocket>

namespace Ui {
class MainWindow;
}

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

public slots:
 void onNewConnection();
 void onSocketStateChanged(QAbstractSocket::SocketState socketState);
 void onReadyRead();
private:
 Ui::MainWindow *ui;
 QTcpServer _server;
 QList<QTcpSocket*> _sockets;
};

#endif // MAINWINDOW_H

https://riptutorial.com/ 78

mainwindow.cpp:

#include "mainwindow.h"
#include "ui_mainwindow.h"

#include <QDebug>
#include <QHostAddress>
#include <QAbstractSocket>

MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow),
 _server(this)
{
 ui->setupUi(this);
 _server.listen(QHostAddress::Any, 4242);
 connect(&_server, SIGNAL(newConnection()), this, SLOT(onNewConnection()));
}

MainWindow::~MainWindow()
{
 delete ui;
}

void MainWindow::onNewConnection()
{
 QTcpSocket *clientSocket = _server.nextPendingConnection();
 connect(clientSocket, SIGNAL(readyRead()), this, SLOT(onReadyRead()));
 connect(clientSocket, SIGNAL(stateChanged(QAbstractSocket::SocketState)), this,
SLOT(onSocketStateChanged(QAbstractSocket::SocketState)));

 _sockets.push_back(clientSocket);
 for (QTcpSocket* socket : _sockets) {
 socket->write(QByteArray::fromStdString(clientSocket-
>peerAddress().toString().toStdString() + " connected to server !\n"));
 }
}

void MainWindow::onSocketStateChanged(QAbstractSocket::SocketState socketState)
{
 if (socketState == QAbstractSocket::UnconnectedState)
 {
 QTcpSocket* sender = static_cast<QTcpSocket*>(QObject::sender());
 _sockets.removeOne(sender);
 }
}

void MainWindow::onReadyRead()
{
 QTcpSocket* sender = static_cast<QTcpSocket*>(QObject::sender());
 QByteArray datas = sender->readAll();
 for (QTcpSocket* socket : _sockets) {
 if (socket != sender)
 socket->write(QByteArray::fromStdString(sender-
>peerAddress().toString().toStdString() + ": " + datas.toStdString()));
 }
}

(use the same mainwindow.ui that the previous example)

https://riptutorial.com/ 79

Read Qt Network online: https://riptutorial.com/qt/topic/9683/qt-network

https://riptutorial.com/ 80

https://riptutorial.com/qt/topic/9683/qt-network

Chapter 19: Qt Resource System

Introduction

The Qt Resource system is a way to embed files within your project. Each resource file can have
one or more prefixes and each prefix can have files in it.

Each file in the resources is a link to a file on the file system. When the executable is built, the files
are bundled into the executable, so the original file does not need to be distributed with the binary.

Examples

Referencing files within code

Let's say that inside a resources file, you had a file called /icons/ok.png

The full url of this file within code is qrc:/icons/ok.png. In most cases, this can be shortened to
:/icons/ok.png

For example, if you wanted to create a QIcon and set it as the icon of a button from that file, you
could use

QIcon icon(":/icons/ok.png"); //Alternatively use qrc:/icons/ok.png
ui->pushButton->setIcon(icon);

Read Qt Resource System online: https://riptutorial.com/qt/topic/8776/qt-resource-system

https://riptutorial.com/ 81

https://riptutorial.com/qt/topic/8776/qt-resource-system

Chapter 20: QTimer

Remarks

QTimer can also be used to request a function to run as soon as the event loop has processed all
the other pending events. To do this, use an interval of 0 ms.

// option 1: Set the interval to 0 explicitly.
QTimer *timer = new QTimer;
timer->setInterval(0);
timer->start();

// option 2: Passing 0 with the start call will set the interval as well.
QTimer *timer = new QTimer;
timer->start(0);

// option 3: use QTimer::singleShot with interval 0
QTimer::singleShot(0, [](){
 // do something
});

Examples

Simple example

The following example shows how to use a QTimer to call a slot every 1 second.

In the example, we use a QProgressBar to update its value and check the timer is working properly.

main.cpp

#include <QApplication>

#include "timer.h"

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);

 Timer timer;
 timer.show();

 return app.exec();
}

timer.h

#ifndef TIMER_H
#define TIMER_H

#include <QWidget>

https://riptutorial.com/ 82

class QProgressBar;

class Timer : public QWidget
{
 Q_OBJECT

public:
 Timer(QWidget *parent = 0);

public slots:
 void updateProgress();

private:
 QProgressBar *progressBar;
};

#endif

timer.cpp

#include <QLayout>
#include <QProgressBar>
#include <QTimer>

#include "timer.h"

Timer::Timer(QWidget *parent)
 : QWidget(parent)
{
 QHBoxLayout *layout = new QHBoxLayout();

 progressBar = new QProgressBar();
 progressBar->setMinimum(0);
 progressBar->setMaximum(100);

 layout->addWidget(progressBar);
 setLayout(layout);

 QTimer *timer = new QTimer(this);
 connect(timer, &QTimer::timeout, this, &Timer::updateProgress);
 timer->start(1000);

 setWindowTitle(tr("Timer"));
 resize(200, 200);
}

void Timer::updateProgress()
{
 progressBar->setValue(progressBar->value()+1);
}

timer.pro

QT += widgets

HEADERS = \
 timer.h
SOURCES = \

https://riptutorial.com/ 83

 main.cpp \
 timer.cpp

Singleshot Timer with Lambda function as slot

If a singleshot timer is required, it is quiet handy to have the slot as lambda function right in the
place where the timer is declared:

QTimer::singleShot(1000, []() { /*Code here*/ });

Due to this Bug (QTBUG-26406), this is way is only possible since Qt5.4.

In earlier Qt5 versions it has to be done with more boiler plate code:

 QTimer *timer = new QTimer(this);
 timer->setSingleShot(true);

 connect(timer, &QTimer::timeout, [=]() {
 /*Code here*/
 timer->deleteLater();
 });

Using QTimer to run code on main thread

void DispatchToMainThread(std::function<void()> callback)
{
 // any thread
 QTimer* timer = new QTimer();
 timer->moveToThread(qApp->thread());
 timer->setSingleShot(true);
 QObject::connect(timer, &QTimer::timeout, [=]()
 {
 // main thread
 callback();
 timer->deleteLater();
 });
 QMetaObject::invokeMethod(timer, "start", Qt::QueuedConnection, Q_ARG(int, 0));
}

This is useful when you need to update a UI element from a thread. Keep in mind lifetime of
anything the callback references.

DispatchToMainThread([]
{
 // main thread
 // do UI work here
});

Same code could be adapted to run code on any thread that runs Qt event loop, thus
implementing a simple dispatch mechanism.

Basic Usage

https://riptutorial.com/ 84

https://bugreports.qt.io/browse/QTBUG-26406

QTimer add the functionality to have a specific function/slot called after a certain interval (repeatedly
or just once).

The QTimer thus allows a GUI application to "check" things regularly or handle timeouts without
having to manually start an extra thread for this and be careful about race conditions, because the
timer will be handled in the main-event loop.

A timer can simply be used like this:

QTimer* timer = new QTimer(parent); //create timer with optional parent object
connect(timer,&QTimer::timeout,[this](){ checkProgress(); }); //some function to check
something
timer->start(1000); //start with a 1s interval

The timer triggers the timeout signal when the time is over and this will be called in the main-event
loop.

QTimer::singleShot simple usage

The QTimer::singleShot is used to call a slot/lambda asynchronously after n ms.

The basic syntax is :

QTimer::singleShot(myTime, myObject, SLOT(myMethodInMyObject()));

with myTime the time in ms, myObject the object which contain the method and
myMethodInMyObject the slot to call

So for example if you want to have a timer who write a debug line "hello !" every 5 seconds:

.cpp

void MyObject::startHelloWave()
{
 QTimer::singleShot(5 * 1000, this, SLOT(helloWave()));
}

void MyObject::helloWave()
{
 qDebug() << "hello !";
 QTimer::singleShot(5 * 1000, this, SLOT(helloWave()));
}

.hh

class MyObject : public QObject {
 Q_OBJECT
 ...
 void startHelloWave();

private slots:
 void helloWave();

https://riptutorial.com/ 85

 ...
};

Read QTimer online: https://riptutorial.com/qt/topic/4309/qtimer

https://riptutorial.com/ 86

https://riptutorial.com/qt/topic/4309/qtimer

Chapter 21: Signals and Slots

Introduction

Signals and slots are used for communication between objects. The signals and slots mechanism
is a central feature of Qt. In GUI programming, when we change one widget, we often want
another widget to be notified. More generally, we want objects of any kind to be able to
communicate with one another. Signals are emitted by objects when they change their state in a
way that may be interesting to other objects. Slots can be used for receiving signals, but they are
also normal member functions.

Remarks

Official documentation on this topic can be found here.

Examples

A Small Example

Signals and slots are used for communication between objects. The signals and slots mechanism
is a central feature of Qt and probably the part that differs most from the features provided by
other frameworks.

The minimal example requires a class with one signal, one slot and one connection:

counter.h

#ifndef COUNTER_H
#define COUNTER_H

#include <QWidget>
#include <QDebug>

class Counter : public QWidget
{
 /*
 * All classes that contain signals or slots must mention Q_OBJECT
 * at the top of their declaration.
 * They must also derive (directly or indirectly) from QObject.
 */
 Q_OBJECT

public:
 Counter (QWidget *parent = 0): QWidget(parent)
 {
 m_value = 0;

 /*
 * The most important line: connect the signal to the slot.
 */

https://riptutorial.com/ 87

http://doc.qt.io/qt-5/signalsandslots.html

 connect(this, &Counter::valueChanged, this, &Counter::printvalue);
 }

 void setValue(int value)
 {
 if (value != m_value) {
 m_value = value;
 /*
 * The emit line emits the signal valueChanged() from
 * the object, with the new value as argument.
 */
 emit valueChanged(m_value);
 }
 }

public slots:
 void printValue(int value)
 {
 qDebug() << "new value: " << value;
 }

signals:
 void valueChanged(int newValue);

private:
 int m_value;

};

#endif

The main sets a new value. We can check how the slot is called, printing the value.

#include <QtGui>
#include "counter.h"

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);

 Counter counter;
 counter.setValue(10);
 counter.show();

 return app.exec();
}

Finally, our project file:

SOURCES = \
 main.cpp
HEADERS = \
 counter.h

The new Qt5 connection syntax

The conventional connect syntax that uses SIGNAL and SLOT macros works entirely at runtime, which

https://riptutorial.com/ 88

has two drawbacks: it has some runtime overhead (resulting also in binary size overhead), and
there's no compile-time correctness checking. The new syntax addresses both issues. Before
checking the syntax in an example, we'd better know what happens in particular.

Let's say we are building a house and we want to connect the cables. This is exactly what connect
function does. Signals and slots are the ones needing this connection. The point is if you do one
connection, you need to be careful about the further overlaping connections. Whenever you
connect a signal to a slot, you are trying to tell the compiler that whenever the signal was emitted,
simply invoke the slot function. This is what exactly happens.

Here's a sample main.cpp:

#include <QApplication>
#include <QDebug>
#include <QTimer>

inline void onTick()
{
 qDebug() << "onTick()";
}

struct OnTimerTickListener {
 void onTimerTick()
 {
 qDebug() << "OnTimerTickListener::onTimerTick()";
 }
};

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);

 OnTimerTickListener listenerObject;

 QTimer timer;
 // Connecting to a non-member function
 QObject::connect(&timer, &QTimer::timeout, onTick);
 // Connecting to an object member method
 QObject::connect(&timer, &QTimer::timeout, &listenerObject,
&OnTimerTickListener::onTimerTick);
 // Connecting to a lambda
 QObject::connect(&timer, &QTimer::timeout, [](){
 qDebug() << "lambda-onTick";
 });

 return app.exec();
}

Hint: the old syntax (SIGNAL/SLOT macros) requires that the Qt metacompiler (MOC) is run for any
class that has either slots or signals. From the coding standpoint that means that such classes
need to have the Q_OBJECT macro (which indicates the necessity to run MOC on this class).

The new syntax, on the other hand, still requires MOC for signals to work, but not for slots. If a
class only has slots and no signals, it need not have the Q_OBJECT macro and hence may not invoke
the MOC, which not only reduces the final binary size but also reduces compilation time (no MOC

https://riptutorial.com/ 89

call and no subsequent compiler call for the generated *_moc.cpp file).

Connecting overloaded signals/slots

While being better in many regards, the new connection syntax in Qt5 has one big weakness:
Connecting overloaded signals and slots. In order to let the compiler resolve the overloads we
need to use static_casts to member function pointers, or (starting in Qt 5.7) qOverload and friends:

#include <QObject>

class MyObject : public QObject
{
 Q_OBJECT
public:
 explicit MyObject(QObject *parent = nullptr) : QObject(parent) {}

public slots:
 void slot(const QString &string) {}
 void slot(const int integer) {}

signals:
 void signal(const QString &string) {}
 void signal(const int integer) {}
};

int main(int argc, char **argv)
{
 QCoreApplication app(argc, argv);

 // using pointers to make connect calls just a little simpler
 MyObject *a = new MyObject;
 MyObject *b = new MyObject;

 // COMPILE ERROR! the compiler does not know which overloads to pick :(
 QObject::connect(a, &MyObject::signal, b, &MyObject::slot);

 // this works, now the compiler knows which overload to pick, it is very ugly and hard to
remember though...
 QObject::connect(
 a,
 static_cast<void(MyObject::*)(int)>(&MyObject::signal),
 b,
 static_cast<void(MyObject::*)(int)>(&MyObject::slot));

 // ...so starting in Qt 5.7 we can use qOverload and friends:
 // this requires C++14 enabled:
 QObject::connect(
 a,
 qOverload<int>(&MyObject::signal),
 b,
 qOverload<int>(&MyObject::slot));

 // this is slightly longer, but works in C++11:
 QObject::connect(
 a,
 QOverload<int>::of(&MyObject::signal),
 b,
 QOverload<int>::of(&MyObject::slot));

https://riptutorial.com/ 90

 // there are also qConstOverload/qNonConstOverload and QConstOverload/QNonConstOverload,
the names should be self-explanatory
}

Multi window signal slot connection

A simple multiwindow example using signals and slots.

There is a MainWindow class that controls the Main Window view. A second window controlled by
Website class.

The two classes are connected so that when you click a button on the Website window something
happens in the MainWindow (a text label is changed).

I made a simple example that is also on GitHub:

mainwindow.h

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>
#include "website.h"

namespace Ui {
class MainWindow;
}

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

public slots:
 void changeText();

private slots:
 void on_openButton_clicked();

private:
 Ui::MainWindow *ui;

 //You want to keep a pointer to a new Website window
 Website* webWindow;
};

#endif // MAINWINDOW_H

mainwindow.cpp

#include "mainwindow.h"
#include "ui_mainwindow.h"

https://riptutorial.com/ 91

https://github.com/LucaAngioloni/QTMultiwindowExample

MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);
}

MainWindow::~MainWindow()
{
 delete ui;
}

void MainWindow::changeText()
{
 ui->text->setText("New Text");
 delete webWindow;
}

void MainWindow::on_openButton_clicked()
{
 webWindow = new Website();
 QObject::connect(webWindow, SIGNAL(buttonPressed()), this, SLOT(changeText()));
 webWindow->show();
}

website.h

#ifndef WEBSITE_H
#define WEBSITE_H

#include <QDialog>

namespace Ui {
class Website;
}

class Website : public QDialog
{
 Q_OBJECT

public:
 explicit Website(QWidget *parent = 0);
 ~Website();

signals:
 void buttonPressed();

private slots:
 void on_changeButton_clicked();

private:
 Ui::Website *ui;
};

#endif // WEBSITE_H

website.cpp

#include "website.h"

https://riptutorial.com/ 92

#include "ui_website.h"

Website::Website(QWidget *parent) :
 QDialog(parent),
 ui(new Ui::Website)
{
 ui->setupUi(this);
}

Website::~Website()
{
 delete ui;
}

void Website::on_changeButton_clicked()
{
 emit buttonPressed();
}

Project composition:

SOURCES += main.cpp\
 mainwindow.cpp \
 website.cpp

HEADERS += mainwindow.h \
 website.h

FORMS += mainwindow.ui \
 website.ui

Consider the Uis to be composed:

Main Window: a label called "text" and a button called "openButton"•
Website Window: a button called "changeButton"•

So the keypoints are the connections between signals and slots and the management of windows
pointers or references.

Read Signals and Slots online: https://riptutorial.com/qt/topic/2136/signals-and-slots

https://riptutorial.com/ 93

https://riptutorial.com/qt/topic/2136/signals-and-slots

Chapter 22: SQL on Qt

Examples

Basic connection and query

The QSqlDatabase class provides an interface for accessing a database through a connection. An
instance of QSqlDatabase represents the connection. The connection provides access to the
database via one of the supported database drivers. Make sure to Add

QT += SQL

in the .pro file. Assume an SQL DB named TestDB with a countryTable that contines the next
column:

country
USA

In order to query and get sql data from TestDB:

#include <QtGui>
#include <QtSql>

int main(int argc, char *argv[])
{
 QCoreApplication app(argc, argv);

 QSqlDatabase db = QSqlDatabase::addDatabase("QPSQL"); // Will use the driver referred to
by "QPSQL" (PostgreSQL Driver)
 db.setHostName("TestHost");
 db.setDatabaseName("TestDB");
 db.setUserName("Foo");
 db.setPassword("FooPass");

 bool ok = db.open();
 if(ok)
 {
 QSqlQuery query("SELECT country FROM countryTable");
 while (query.next())
 {
 QString country = query.value(0).toString();
 qWarning() << country; // Prints "USA"
 }
 }

 return app.exec();
}

Qt SQL query parameters

https://riptutorial.com/ 94

http://doc.qt.io/qt-5/qsqldatabase.html

It's often convenient to separate the SQL query from the actual values. This can be done using
placeholders. Qt supports two placeholder syntaxes: named binding and positional binding.

named binding:

QSqlQuery query;
query.prepare("INSERT INTO employee (id, name, salary) VALUES (:id, :name, :salary)");
query.bindValue(":id", 1001);
query.bindValue(":name", "Thad Beaumont");
query.bindValue(":salary", 65000);
query.exec();

positional binding:

QSqlQuery query;
query.prepare("INSERT INTO employee (id, name, salary) VALUES (?, ?, ?)");
query.addBindValue(1001);
query.addBindValue("Thad Beaumont");
query.addBindValue(65000);
query.exec();

Note that before calling bindValue() or addBindValue() you need to call QSqlQuery::prepare() once.

MS SQL Server Database Connection using QODBC

When trying to open a Database Connection with QODBC please ensure

You have QODBC driver available•
Your server has an ODBC interface and is enabled to (this depends on your ODBC driver
installations)

•

use shared memory access, TCP/IP connections or named pipe connection.•

All connections only require the DatabaseName to be set by calling QSqlDatabase
::setDatabaseName.

Open Connection using shared memory access

For this option to work you will need to have access to memory of the machine and must have
permissions to access shared memory. For using a shared memory connection it is required to set
lpc: in front of the Server string. Connection using the SQL Server Native Client 11 is made using
these steps:

QString connectString = "Driver={SQL Server Native Client 11.0};"; //
Driver is now {SQL Server Native Client 11.0}
connectString.append("Server=lpc:"+QHostInfo::localHostName()+"\\SQLINSTANCENAME;"); //
Hostname,SQL-Server Instance
connectString.append("Database=SQLDBSCHEMA;"); // Schema
connectString.append("Uid=SQLUSER;"); // User
connectString.append("Pwd=SQLPASS;"); // Pass
db.setDatabaseName(connectString);

https://riptutorial.com/ 95

http://doc.qt.io/qt-4.8/qsqlquery.html
http://doc.qt.io/qt-5/qsqldatabase.html

if(db.open())
{
 ui->statusBar->showMessage("Connected");
}
else
{
 ui->statusBar->showMessage("Not Connected");
}

Open Connection using Named Pipe

This option requires your ODBC Connection to have a full DSN. The Server string is setup by
using the Windows Computername and the Instancename of the SQL Server. The example
connection will be opened using SQL Server Native Client 10.0

QString connectString = "Driver={SQL Server Native Client 10.0};"; // Driver can also be {SQL
Server Native Client 11.0}
connectString.append("Server=SERVERHOSTNAME\\SQLINSTANCENAME;"); // Hostname,SQL-Server
Instance
connectString.append("Database=SQLDBSCHEMA;"); // Schema
connectString.append("Uid=SQLUSER;"); // User
connectString.append("Pwd=SQLPASS;"); // Pass
db.setDatabaseName(connectString);

if(db.open())
{
 ui->statusBar->showMessage("Connected");
}
else
{
 ui->statusBar->showMessage("Not Connected");
}

Open Connection using TCP/IP

For opening a TCP/IP connection the server should be configured to allow connections on a fixed
port, otherwise you will first have to query for the currently active port. In this example we have a
fixed port at 5171. You can find an example for setting up the server to allow connections on a
fixed port at 1. For open a connection using TCP/IP use a tuple of the servers IP and Port:

QString connectString = "Driver={SQL Server};"; // Driver is now {SQL Server}
connectString.append("Server=10.1.1.15,5171;"); // IP,Port
connectString.append("Database=SQLDBSCHEMA;"); // Schema
connectString.append("Uid=SQLUSER;"); // User
connectString.append("Pwd=SQLPASS;"); // Pass
db.setDatabaseName(connectString);

if(db.open())
{
 ui->statusBar->showMessage("Connected");
}
else
{
 ui->statusBar->showMessage("Not Connected");
}

https://riptutorial.com/ 96

http://doc.qt.io/qt-5/qsqldatabase.html

Read SQL on Qt online: https://riptutorial.com/qt/topic/10628/sql-on-qt

https://riptutorial.com/ 97

https://riptutorial.com/qt/topic/10628/sql-on-qt

Chapter 23: Threading and Concurrency

Remarks

A few notes that are already mentioned in the official docs here and here:

If an object has a parent, it has to be in the same thread as the parent, i.e. it cannot be
moved to a new thread, nor can you set a parent to an object if the parent and the object live
in different threads

•

When an object is moved to a new thread, all of its children are also moved to the new
thread

•

You can only push objects to a new thread. You cannot pull them to a new thread, i.e. you
can only call moveToThread from the thread where the object is currently living in

•

Examples

Basic usage of QThread

QThread is a handle to a platform thread. It lets you manage the thread by monitoring its lifetime,
and requesting that it finishes its work.

In most cases inhering from the class is not recommended. The default run method starts an event
loop that can dispatch events to objects living in the class. Cross-thread signal-slot connections
are implemented by dispatching a QMetaCallEvent to the target object.

A QObject instance can be moved to a thread, where it will process its events, such as timer events
or slot/method calls.

To do work on a thread, first create your own worker class that derives from QObject. Then move it
to the thread. The object can run its own code automatically e.g. by using
QMetaObject::invokeMethod().

#include <QObject>

class MyWorker : public QObject
{
 Q_OBJECT
public:
 Q_SLOT void doWork() {
 qDebug() << "doWork()" << QThread::currentThread();
 // and do some long operation here
 }
 MyWorker(QObject * parent = nullptr) : QObject{parent} {}
};

class MyController : public QObject
{
 Q_OBJECT
 Worker worker;

https://riptutorial.com/ 98

http://doc.qt.io/qt-5/qobject.html#thread-affinity
http://doc.qt.io/qt-5/qobject.html#moveToThread
http://doc.qt.io/qt-5/qmetaobject.html#invokeMethod

 QThread workerThread;
public:
 MyController() {
 worker.moveToThread(&workerThread);
 // provide meaningful debug output
 workerThread.setObjectName("workerThread");
 workerThread.start();
 // the thread starts the event loop and blocks waiting for events
 }
 ~MyController() {
 workerThread.quit();
 workerThread.wait();
 }
 void operate() {
 // Qt::QueuedConnection ensures that the slot is invoked in its own thread
 QMetaObject::invokeMethod(&worker, "doWork", Qt::QueuedConnection);
 }
};

If your worker should be ephemeral and only exist while its work is being done, it's best to submit
a functor or a thread-safe method for execution in the thread pool via QtConcurrent::run.

QtConcurrent Run

If you find managing QThreads and low-level primitives like mutexes or semaphores too complex,
Qt Concurrent namespace is what you are looking for. It includes classes which allow more high-
level thread management.

Let's look at Concurrent Run. QtConcurrent::run() allows to run function in a new thread. When
would you like to use it? When you have some long operation and you don't want to create thread
manually.

Now the code:

#include <qtconcurrentrun.h>

void longOperationFunction(string parameter)
{
 // we are already in another thread
 // long stuff here
}

void mainThreadFunction()
{
 QFuture<void> f = run(longOperationFunction, "argToPass");
 f.waitForFinished();
}

So things are simple: when we need to run another function in another thread, just call
QtConcurrent::run, pass function and its parameters and that's it!

QFuture presents the result of our asynchronous computation. In case of QtConcurrent::run we can't
cancel the function execution.

https://riptutorial.com/ 99

Invoking slots from other threads

When a Qt event loop is used to perform operations and a non-Qt-saavy user needs to interact
with that event loop, writing the slot to handle regular invocations from another thread can simplify
things for other users.

main.cpp:

#include "OperationExecutioner.h"
#include <QCoreApplication>
#include <QThread>

int main(int argc, char** argv)
{
 QCoreApplication app(argc, argv);

 QThread thrd;
 thrd.setObjectName("thrd");
 thrd.start();
 while(!thrd.isRunning())
 QThread::msleep(10);

 OperationExecutioner* oe = new OperationExecutioner;
 oe->moveToThread(&thrd);
 oe->doIt1(123,'A');
 oe->deleteLater();
 thrd.quit();
 while(!thrd.isFinished())
 QThread::msleep(10);

 return 0;
}

OperationExecutioner.h:

#ifndef OPERATION_EXECUTIONER_H
#define OPERATION_EXECUTIONER_H

#include <QObject>

class OperationExecutioner : public QObject
{
 Q_OBJECT
public slots:
 void doIt1(int argi, char argc);
};

#endif // OPERATION_EXECUTIONER_H

OperationExecutioner.cpp:

#include "OperationExecutioner.h"
#include <QMetaObject>
#include <QThread>
#include <QDebug>

https://riptutorial.com/ 100

void OperationExecutioner::doIt1(int argi, char argc)
{
 if (QThread::currentThread() != thread()) {
 qInfo() << "Called from thread" << QThread::currentThread();
 QMetaObject::invokeMethod(this, "doIt1", Qt::QueuedConnection,
 Q_ARG(int,argi), Q_ARG(char,argc));
 return;
 }

 qInfo() << "Called from thread" << QThread::currentThread()
 << "with args" << argi << argc;
}

OperationExecutioner.pro:

HEADERS += OperationExecutioner.h
SOURCES += main.cpp OperationExecutioner.cpp
QT -= gui

Read Threading and Concurrency online: https://riptutorial.com/qt/topic/5022/threading-and-
concurrency

https://riptutorial.com/ 101

https://riptutorial.com/qt/topic/5022/threading-and-concurrency
https://riptutorial.com/qt/topic/5022/threading-and-concurrency

Chapter 24: Using Style Sheets Effectively

Examples

Setting a UI widget's stylesheet

You can set the desired UI widget's stylesheet using any valid CSS. The example below will set a
QLabel's text color a border around it.

#include "mainwindow.h"
#include "ui_mainwindow.h"

MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);
 QString style = "color: blue; border: solid black 5px;";
 ui->myLabel->setStylesheet(style); //This can use colors RGB, HSL, HEX, etc.
}

MainWindow::~MainWindow()
{
 delete ui;
}

Read Using Style Sheets Effectively online: https://riptutorial.com/qt/topic/5931/using-style-sheets-
effectively

https://riptutorial.com/ 102

https://riptutorial.com/qt/topic/5931/using-style-sheets-effectively
https://riptutorial.com/qt/topic/5931/using-style-sheets-effectively

Credits

S.
No

Chapters Contributors

1
Getting started with
Qt

agilob, Christopher Aldama, Community, demonplus, devbean,
Dmitriy, Donald Duck, fat, Gabriel de Grimouard, Kamalpreet
Grewal, Maxito, Tarod, thiagofalcao

2
About using layouts,
widget parenting

Gabriel de Grimouard

3
Build QtWebEngine
from source

Martin Zhai

4
CMakeLists.txt for
your Qt project

Athena, demonplus, Robert, Velkan, wasthishelpful

5 Common Pitfalls e.jahandar

6
Communication
between QML and
C++

Gabriel de Grimouard, Martin Zhai

7
Deploying Qt
applications

Luca Angioloni, Martin Zhai, Nathan Osman, TriskalJM,
wasthishelpful

8 Header on QListView Papipone

9 Implicit sharing Hayt

10 Model/View Jan, KernelPanic, Tim D

11 Multimedia demonplus, Gabriel de Grimouard

12 QDialogs Wilmort

13 QGraphics Chris, demonplus

14 qmake Caleb Huitt - cjhuitt, demonplus, doc, Gregor, Jon Harper

15 QObject demonplus, Hayt

16
Qt - Dealing with
Databases

Jan, Rinat, Shihe Zhang, Zylva

17
Qt Container
Classes

demonplus, Tarod

https://riptutorial.com/ 103

https://riptutorial.com/contributor/1238944/agilob
https://riptutorial.com/contributor/6620815/christopher-aldama
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/462639/demonplus
https://riptutorial.com/contributor/2995647/devbean
https://riptutorial.com/contributor/1737869/dmitriy
https://riptutorial.com/contributor/4284627/donald-duck
https://riptutorial.com/contributor/1035174/fat
https://riptutorial.com/contributor/4538963/gabriel-de-grimouard
https://riptutorial.com/contributor/2828747/kamalpreet-grewal
https://riptutorial.com/contributor/2828747/kamalpreet-grewal
https://riptutorial.com/contributor/2313339/maxito
https://riptutorial.com/contributor/4719550/tarod
https://riptutorial.com/contributor/1532769/thiagofalcao
https://riptutorial.com/contributor/4538963/gabriel-de-grimouard
https://riptutorial.com/contributor/1790154/martin-zhai
https://riptutorial.com/contributor/6225498/athena
https://riptutorial.com/contributor/462639/demonplus
https://riptutorial.com/contributor/2152166/robert
https://riptutorial.com/contributor/4742108/velkan
https://riptutorial.com/contributor/6612932/wasthishelpful
https://riptutorial.com/contributor/4490542/e-jahandar
https://riptutorial.com/contributor/4538963/gabriel-de-grimouard
https://riptutorial.com/contributor/1790154/martin-zhai
https://riptutorial.com/contributor/6782589/luca-angioloni
https://riptutorial.com/contributor/1790154/martin-zhai
https://riptutorial.com/contributor/193619/nathan-osman
https://riptutorial.com/contributor/4433546/triskaljm
https://riptutorial.com/contributor/6612932/wasthishelpful
https://riptutorial.com/contributor/6488109/papipone
https://riptutorial.com/contributor/152359/hayt
https://riptutorial.com/contributor/953222/jan
https://riptutorial.com/contributor/1720972/kernelpanic
https://riptutorial.com/contributor/4317946/tim-d
https://riptutorial.com/contributor/462639/demonplus
https://riptutorial.com/contributor/4538963/gabriel-de-grimouard
https://riptutorial.com/contributor/3629327/wilmort
https://riptutorial.com/contributor/4625961/chris
https://riptutorial.com/contributor/462639/demonplus
https://riptutorial.com/contributor/9876/caleb-huitt---cjhuitt
https://riptutorial.com/contributor/462639/demonplus
https://riptutorial.com/contributor/205955/doc
https://riptutorial.com/contributor/6552284/gregor
https://riptutorial.com/contributor/4732082/jon-harper
https://riptutorial.com/contributor/462639/demonplus
https://riptutorial.com/contributor/152359/hayt
https://riptutorial.com/contributor/953222/jan
https://riptutorial.com/contributor/5245349/rinat
https://riptutorial.com/contributor/1278112/shihe-zhang
https://riptutorial.com/contributor/3780331/zylva
https://riptutorial.com/contributor/462639/demonplus
https://riptutorial.com/contributor/4719550/tarod

18 Qt Network Gabriel de Grimouard

19 Qt Resource System Victor Tran

20 QTimer
avb, Caleb Huitt - cjhuitt, Eugene, Gabriel de Grimouard, Hayt,
Rinat, Tarod, thuga, tpr, Victor Tran

21 Signals and Slots
Athena, devbean, fat, immerhart, Jan, Luca Angioloni, Robert,
Tarod, Violet Giraffe

22 SQL on Qt Noam M

23
Threading and
Concurrency

demonplus, gmabey, Kuba Ober, Nathan Osman, RamenChef,
thuga

24
Using Style Sheets
Effectively

Nicholas Johnson

https://riptutorial.com/ 104

https://riptutorial.com/contributor/4538963/gabriel-de-grimouard
https://riptutorial.com/contributor/4247082/victor-tran
https://riptutorial.com/contributor/3095014/avb
https://riptutorial.com/contributor/9876/caleb-huitt---cjhuitt
https://riptutorial.com/contributor/114488/eugene
https://riptutorial.com/contributor/4538963/gabriel-de-grimouard
https://riptutorial.com/contributor/152359/hayt
https://riptutorial.com/contributor/5245349/rinat
https://riptutorial.com/contributor/4719550/tarod
https://riptutorial.com/contributor/2257050/thuga
https://riptutorial.com/contributor/2962431/tpr
https://riptutorial.com/contributor/4247082/victor-tran
https://riptutorial.com/contributor/6225498/athena
https://riptutorial.com/contributor/2995647/devbean
https://riptutorial.com/contributor/1035174/fat
https://riptutorial.com/contributor/1347198/immerhart
https://riptutorial.com/contributor/953222/jan
https://riptutorial.com/contributor/6782589/luca-angioloni
https://riptutorial.com/contributor/2152166/robert
https://riptutorial.com/contributor/4719550/tarod
https://riptutorial.com/contributor/634821/violet-giraffe
https://riptutorial.com/contributor/4761806/noam-m
https://riptutorial.com/contributor/462639/demonplus
https://riptutorial.com/contributor/7375241/gmabey
https://riptutorial.com/contributor/1329652/kuba-ober
https://riptutorial.com/contributor/193619/nathan-osman
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2257050/thuga
https://riptutorial.com/contributor/5101446/nicholas-johnson

	About
	Chapter 1: Getting started with Qt
	Remarks
	Versions
	Examples
	Installation and Setup on Windows and Linux
	Hello World
	Basic application with QtCreator and QtDesigner

	Chapter 2: About using layouts, widget parenting
	Introduction
	Remarks
	Examples
	Basic Horizontal Layout
	Basic Vertical Layout
	Combining Layouts
	Grid layout example

	Chapter 3: Build QtWebEngine from source
	Introduction
	Examples
	Build on Windows

	Chapter 4: CMakeLists.txt for your Qt project
	Examples
	CMakeLists.txt for Qt 5

	Chapter 5: Common Pitfalls
	Examples
	Using Qt:DirectConnection when receiver object doesn't receive signal

	Chapter 6: Communication between QML and C++
	Introduction
	Examples
	Call C++ in QML
	Call QML in C++

	Chapter 7: Deploying Qt applications
	Examples
	Deploying on windows
	Integrating with CMake
	Deploying on Mac
	Deploying on linux

	Chapter 8: Header on QListView
	Introduction
	Examples
	Custom QListView declaration
	Implementation of the custom QListView
	Use case: MainWindow declaration
	Use case: Implementation
	Use case: Sample output

	Chapter 9: Implicit sharing
	Remarks
	Examples
	Basic Concept

	Chapter 10: Model/View
	Examples
	A Simple Read-only Table to View Data from a Model
	A simple tree model

	Chapter 11: Multimedia
	Remarks
	Examples
	Video Playback in Qt 5
	Audio Playback in Qt5

	Chapter 12: QDialogs
	Remarks
	Examples
	MyCompareFileDialog.h
	MyCompareFileDialogDialog.cpp
	MainWindow.h
	MainWindow.cpp
	main.cpp
	mainwindow.ui

	Chapter 13: QGraphics
	Examples
	Pan, zoom, and rotate with QGraphicsView

	Chapter 14: qmake
	Examples
	Default "pro" file.
	Preserving source directory structure in a build (undocumented "object_parallel_to_source" option).
	Simple Example (Linux)
	SUBDIRS example
	Library example
	Creating a project file from existing code

	Chapter 15: QObject
	Remarks
	Examples
	QObject example
	qobject_cast
	QObject Lifetime and Ownership

	Chapter 16: Qt - Dealing with Databases
	Remarks
	Examples
	Using a Database on Qt
	Qt - Dealing with Sqlite Databases
	Qt - Dealing with ODBC Databases
	Qt - Dealing with in-memory Sqlite Databases
	Remove Database connection correctly

	Chapter 17: Qt Container Classes
	Remarks
	Examples
	QStack usage
	QVector usage
	QLinkedList usage
	QList

	Chapter 18: Qt Network
	Introduction
	Examples
	TCP Client
	TCP Server

	Chapter 19: Qt Resource System
	Introduction
	Examples
	Referencing files within code

	Chapter 20: QTimer
	Remarks
	Examples
	Simple example
	Singleshot Timer with Lambda function as slot
	Using QTimer to run code on main thread
	Basic Usage
	QTimer::singleShot simple usage

	Chapter 21: Signals and Slots
	Introduction
	Remarks
	Examples
	A Small Example
	The new Qt5 connection syntax
	Connecting overloaded signals/slots
	Multi window signal slot connection

	Chapter 22: SQL on Qt
	Examples
	Basic connection and query
	Qt SQL query parameters
	MS SQL Server Database Connection using QODBC

	Chapter 23: Threading and Concurrency
	Remarks
	Examples
	Basic usage of QThread
	QtConcurrent Run
	Invoking slots from other threads

	Chapter 24: Using Style Sheets Effectively
	Examples
	Setting a UI widget's stylesheet

	Credits

