
racket

#racket

Table of Contents

About 1

Chapter 1: Getting started with racket 2

Remarks 2

Versions 2

Examples 3

Hello, World! 3

Racket 4

Installation 4

Simple Recursive Function Definition 4

Find Racket sources in all subdirs 4

Installation or Setup 5

Chapter 2: Closures 6

Introduction 6

Remarks 6

Examples 6

Closure with static environment 6

Chapter 3: Comments 8

Remarks 8

Examples 8

Single line comments 8

Block comments 8

S-expression comments 8

Comments in at-exps 8

Chapter 4: Functions 10

Syntax 10

Examples 10

Simple Function Calls 10

Keyword arguments 10

The `apply` function 11

Function Definitions 11

Chapter 5: Higher Order Functions 13

Examples 13

Map 13

Fold 13

Filter 13

Compose 14

Curry 14

Chapter 6: Installation steps (Linux) 16

Examples 16

Installation or Setup 16

Installation steps for Linux: 16

Downloading 16

Starting the installer 16

Installing 17

Starting DrRacket 17

Running your first program 17

Chapter 7: Installation steps (macOS) 19

Examples 19

Installation or Setup 19

Installation steps for macOS: 19

Downloading 19

Starting the installer 19

Setting up command-line tools 19

Running your first program 19

Chapter 8: Installation steps (Windows) 21

Examples 21

Installation or Setup 21

Installation steps for Windows: 21

Downloading 21

Starting the installer 21

Setting up command-line tools 21

Running your first program 21

Chapter 9: Recursion 23

Examples 23

Using define 23

Using let-rec 23

Using a named let 23

Using rec 24

Using higher-order functions instead of recursion 24

Chapter 10: Scribble 25

Introduction 25

Examples 25

Paragraphs and sections 25

Documenting a binding provided by a package 25

Credits 27

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: racket

It is an unofficial and free racket ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official racket.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/racket
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with racket

Remarks

This section provides an overview of what racket is, and why a developer might want to use it.

It should also mention any large subjects within racket, and link out to the related topics. Since the
Documentation for racket is new, you may need to create initial versions of those related topics.

Versions

Version Documentation Release date

Nightly builds Latest Documentation 2999-12-31

Version 6.9 Documentation 2017-04-01

Version 6.8 Documentation 2017-01-01

Version 6.7 Documentation 2016-10-01

Version 6.6 Documentation 2016-07-01

Version 6.5 Documentation 2016-04-01

Version 6.4 Documentation 2016-02-01

Version 6.3 Documentation 2015-11-01

Version 6.2.1 Documentation 2015-08-01

Version 6.2 Documentation 2015-06-01

Version 6.1.1 Documentation 2014-11-01

Version 6.1 Documentation 2014-08-01

Version 6.0.1 Documentation 2014-05-01

Version 6.0 Documentation 2014-02-01

Version 5.93 Documentation 2014-01-01

Version 5.92 Documentation 2014-01-01

Version 5.3.6 Documentation 2013-08-01

Version 5.3.5 Documentation 2013-06-01

https://riptutorial.com/ 2

https://pre.racket-lang.org/installers/
https://plt.eecs.northwestern.edu/snapshots/current/doc
https://download.racket-lang.org/racket-v6.9.html
https://download.racket-lang.org/docs/6.9/html
https://download.racket-lang.org/racket-v6.8.html
https://download.racket-lang.org/docs/6.8/html
https://download.racket-lang.org/racket-v6.7.html
https://download.racket-lang.org/docs/6.7/html
https://download.racket-lang.org/racket-v6.6.html
https://download.racket-lang.org/docs/6.6/html
https://download.racket-lang.org/racket-v6.5.html
https://download.racket-lang.org/docs/6.5/html
https://download.racket-lang.org/racket-v6.4.html
https://download.racket-lang.org/docs/6.4/html
https://download.racket-lang.org/racket-v6.3.html
https://download.racket-lang.org/docs/6.3/html
https://download.racket-lang.org/racket-v6.2.1.html
https://download.racket-lang.org/docs/6.2.1/html
https://download.racket-lang.org/racket-v6.2.html
https://download.racket-lang.org/docs/6.2/html
https://download.racket-lang.org/racket-v6.1.1.html
https://download.racket-lang.org/docs/6.1.1/html
https://download.racket-lang.org/racket-v6.1.html
https://download.racket-lang.org/docs/6.1/html
https://download.racket-lang.org/racket-v6.0.1.html
https://download.racket-lang.org/docs/6.0.1/html
https://download.racket-lang.org/racket-v6.0.html
https://download.racket-lang.org/docs/6.0/html
https://download.racket-lang.org/racket-v5.93.html
https://download.racket-lang.org/docs/5.93/html
https://download.racket-lang.org/racket-v5.92.html
https://download.racket-lang.org/docs/5.92/html
https://download.racket-lang.org/racket-v5.3.6.html
https://download.racket-lang.org/docs/5.3.6/html
https://download.racket-lang.org/racket-v5.3.5.html
https://download.racket-lang.org/docs/5.3.5/html

Version Documentation Release date

Version 5.3.4 Documentation 2013-05-01

Version 5.3.3 Documentation 2013-02-01

Version 5.3.2 Documentation 2013-02-01

Version 5.3.1 Documentation 2012-11-01

Version 5.3 Documentation 2012-08-01

Version 5.2.1 Documentation 2012-03-01

Version 5.2 Documentation 2011-11-01

Version 5.1.3 Documentation 2011-08-01

Version 5.1.2 Documentation 2011-08-01

Version 5.1.1 Documentation 2011-04-01

Version 5.1 Documentation 2011-02-01

Version 5.0.2 Documentation 2010-11-01

Version 5.0.1 Documentation 2010-08-01

Version 5.0 Documentation 2010-06-01

Examples

Hello, World!

The following example declares a piece of code to be written in Racket, and then prints the string
Hello, world.

#lang racket
"Hello, world!"

Racket code can either be run directly from the command line or on the DrRacket IDE. Typing
racket on the command line will start a REPL, and typing racket followed by a file name will
evaluate the contents of the file. For example, suppose the file hello.rkt contains the above code.
Here is an example of running Racket on the command line.

$ racket
Welcome to Racket v6.5.
> "Hello, world!"
"Hello, world!"
> (exit)

https://riptutorial.com/ 3

https://download.racket-lang.org/racket-v5.3.4.html
https://download.racket-lang.org/docs/5.3.4/html
https://download.racket-lang.org/racket-v5.3.3.html
https://download.racket-lang.org/docs/5.3.3/html
https://download.racket-lang.org/racket-v5.3.2.html
https://download.racket-lang.org/docs/5.3.2/html
https://download.racket-lang.org/racket-v5.3.1.html
https://download.racket-lang.org/docs/5.3.1/html
https://download.racket-lang.org/racket-v5.3.html
https://download.racket-lang.org/docs/5.3/html
https://download.racket-lang.org/racket-v5.2.1.html
https://download.racket-lang.org/docs/5.2.1/html
https://download.racket-lang.org/racket-v5.2.html
https://download.racket-lang.org/docs/5.2/html
https://download.racket-lang.org/racket-v5.1.3.html
https://download.racket-lang.org/docs/5.1.3/html
https://download.racket-lang.org/racket-v5.1.2.html
https://download.racket-lang.org/docs/5.1.2/html
https://download.racket-lang.org/racket-v5.1.1.html
https://download.racket-lang.org/docs/5.1.1/html
https://download.racket-lang.org/racket-v5.1.html
https://download.racket-lang.org/docs/5.1/html
https://download.racket-lang.org/racket-v5.0.2.html
https://download.racket-lang.org/docs/5.0.2/html
https://download.racket-lang.org/racket-v5.0.1.html
https://download.racket-lang.org/docs/5.0.1/html
https://download.racket-lang.org/racket-v5.0.html
https://download.racket-lang.org/docs/5.0/html

$ racket hello.rkt
"Hello, world!"

Racket

Racket is a full-spectrum programming language. It goes beyond Lisp and Scheme with dialects
that support objects, types, laziness, and more. Racket enables programmers to link components
written in different dialects, and it empowers programmers to create new, project-specific dialects.
Racket's libraries support applications from web servers and databases to GUIs and charts.

The offical, comprehensive and very well-written documentation can be found at [
http://docs.racket-lang.org/][1]. On this site (Stack Overflow Documentation) you can find user-
contributed examples.

Installation

Go to http://racket-lang.org and click the download button.

Simple Recursive Function Definition

In Racket, we use recursion very frequently. Here is an example of a function that sums all of the
numbers from zero to the parameter, n.

(define (sum n)
 (if (zero? n)
 0
 (+ n (sum (sub1 n)))))

Note that there are many helpful convenience based functions used here, such as zero? and sub1.
Each respectively does just what you might expect: zero? returns a boolean which says whether
the given number was equal to zero, and sub1 subtracts one from its argument.

Find Racket sources in all subdirs

#lang racket
(for ([path (in-directory)]
 #:when (regexp-match? #rx"[.]rkt$" path))
 (printf "source file: ~a\n" path))

The #lang line specifies the programming language of this file. #lang racket we are using the
baseline, battery-included Racket programming language. Other languages ranen from Racket
flavors such as Type Racket (#lang typed/racket) or the documentation language Scribble (#lang
scribble), to small convenience languages such as the language for defining packages (#lang info
).

The in-directory function constructs a sequence that walks a directory tree (starting with the
current directory, by default) and generates paths in the tree. The for form binds path to each path
in the sequence, and regexp-match? applies a pattern to the path.

https://riptutorial.com/ 4

http://docs.racket-lang.org/%5D%5B1%5D
http://racket-lang.org

To run the example, install Racket, start DrRacket, paste the example program into the top area in
DrRacket, and click the Run button. Alternatively, save the program to a file and run racket from
the command line on the file.

Installation or Setup

The installation is very simple. If you are used to this kind of thing, just go to
https://download.racket-lang.org. If you prefer, there are more detailed step-by-step installation
instructions for the following systems:

Installation steps (Windows)•
Installation steps (Linux)•
Installation steps (macOS)•

Read Getting started with racket online: https://riptutorial.com/racket/topic/1134/getting-started-
with-racket

https://riptutorial.com/ 5

https://download.racket-lang.org
http://www.riptutorial.com/racket/topic/9871/installation-steps--windows-
http://www.riptutorial.com/racket/topic/9870/installation-steps--linux-
http://www.riptutorial.com/racket/topic/9872/installation-steps--macos-
https://riptutorial.com/racket/topic/1134/getting-started-with-racket
https://riptutorial.com/racket/topic/1134/getting-started-with-racket

Chapter 2: Closures

Introduction

From the StackOverflow closure tag:

A closure is a first-class function that refers to (closes over) variables from the scope in which it
was defined. If the closure still exists after its defining scope ends, the variables it closes over will
continue to exist as well.

Remarks

It is sometimes useful to consider closures and objects as similar.

The venerable master Qc Na was walking with his student, Anton. Hoping to prompt the master
into a discussion, Anton said "Master, I have heard that objects are a very good thing - is this
true?" Qc Na looked pityingly at his student and replied, "Foolish pupil - objects are merely a poor
man's closures." Chastised, Anton took his leave from his master and returned to his cell, intent on
studying closures. He carefully read the entire "Lambda: The Ultimate..." series of papers and its
cousins, and implemented a small Scheme interpreter with a closure-based object system. He
learned much, and looked forward to informing his master of his progress.

On his next walk with Qc Na, Anton attempted to impress his master by saying "Master, I have
diligently studied the matter, and now understand that objects are truly a poor man's closures." Qc
Na responded by hitting Anton with his stick, saying "When will you learn? Closures are a poor
man's object." At that moment, Anton became enlightened.

Source: http://c2.com/cgi/wiki?ClosuresAndObjectsAreEquivalent

Examples

Closure with static environment

A closure is a procedure that holds internal state:

Define a procedure that returns a closure

The procedure make-an-adder takes one argument x and returns a function that closes over the
value. Or to put it another way, x is within the lexical scope of the returned function.

#lang racket
(define (make-an-adder x)
 (lambda (y)
 (+ y x)))

Usage

https://riptutorial.com/ 6

http://stackoverflow.com/tags/closures/info
http://c2.com/cgi/wiki?ClosuresAndObjectsAreEquivalent

Calling the procedure make-an-adder returns a procedure that is a closure.

Welcome to DrRacket, version 6.6 [3m].
Language: racket, with debugging; memory limit: 128 MB.
> (define 3adder (make-an-adder 3))
> (3adder 4)
7
> (define 8adder (make-an-adder 8))
> (8adder 4)
12

Read Closures online: https://riptutorial.com/racket/topic/7176/closures

https://riptutorial.com/ 7

https://riptutorial.com/racket/topic/7176/closures

Chapter 3: Comments

Remarks

The most common comment types are line and s-expression comment (using ; and #;
respectively).

It is common to use from 1 to 3 semi colons depending on the type of comment made. Refer to
???

Examples

Single line comments

; We make single line comments by writing out text after a semicolon

Block comments

#| We make
block comments
like this |#

S-expression comments

#;(define (commented-out-function x)
 (print (string-append "This entire "
 "s-expression is commented out!")))

Comments in at-exps

When a module is using at expressions, such as:

#lang at-exp racket/base

or

#lang scribble/manual

You have access to the following types of comments:

@;{Block text that goes
 until the closing
 brace.}

As well as:

https://riptutorial.com/ 8

@; Single line text.

Note that if you are using a language that only uses at-exps (such as most scribble languages),
you will need ot use one of these types of comments.

Read Comments online: https://riptutorial.com/racket/topic/3147/comments

https://riptutorial.com/ 9

https://riptutorial.com/racket/topic/3147/comments

Chapter 4: Functions

Syntax

(define (name arguments ...) body)•

(function arguments ...)•

Examples

Simple Function Calls

You can call a function in Racket by wrapping it in parentheses with the arguments after it. This
looks like (function argument ...).

> (define (f x) x)
> (f 1)
1
> (f "salmon")
"salmon"
> (define (g x y) (string-append x y))
> (g "large" "salmon")
"largesalmon"
> (g "large " "salmon")
"large salmon"

Operations like + and * are functions as well, and they use the same syntax as calling f or g.

> (+ 1 2)
3
> (* 3 4)
12
> (+ (* 3 3) (* 4 4))
25

For more information and examples, see Function Calls in the Racket Guide.

Keyword arguments

Racket functions can also have keyword arguments, which are specified with a keyword followed
by the argument expression. A keyword begins with the characters #:, so a keyword argument
looks like #:keyword arg-expr. Within a function call this looks like (function #:keyword arg-expr).

> (define (hello #:name n)
 (string-append "Hello " n))
> (hello #:name "John")
"Hello John"
> (hello #:name "Sarah")
"Hello Sarah"

https://riptutorial.com/ 10

http://docs.racket-lang.org/guide/syntax-overview.html#%28part._.Function_.Calls__.Procedure_.Applications_%29

> (define (kinetic-energy #:mass m #:velocity v)
 (* 1/2 m (sqr v)))
> (kinetic-energy #:mass 2 #:velocity 1)
1
> (kinetic-energy #:mass 6 #:velocity 2)
12

For more information and examples, see Keyword Arguments in the Racket Guide.

The `apply` function

If you have a list, and you want to use the elements of that list as the arguments to a function,
what you want is apply:

> (apply string-append (list "hello" " " "and hi" " " "are both words"))
"hello and hi are both words"
> (apply + (list 1 2 3 4))
10
> (apply append (list (list "a" "b" "c") (list 1 2 3) (list "do" "re" "mi")))
(list "a" "b" "c" 1 2 3 "do" "re" "me")

apply takes two arguments. The first argument is the function to apply, and the second argument is
the list containing the arguments.

An apply call like

(apply + (list 1 2 3 4))

Is equivalent to

(+ 1 2 3 4)

The major advantage of apply is that it works on arbitrary computed lists, including appended lists
and lists that come from function arguments.

> (apply + (append (list 1 2 3 4) (list 2 3 4)))
19
> (define (sum lst)
 (apply + lst))
> (sum (list 1 2 3 4))
10
> (sum (append (list 1 2 3 4) (list 2 3 4)))
19

For more information and examples, see The apply function in the Racket Guide.

Function Definitions

Functions in Racket can be created with the lambda form. The form takes a list of arguments and a
body.

https://riptutorial.com/ 11

http://docs.racket-lang.org/guide/application.html#%28part._keyword-args%29
http://docs.racket-lang.org/guide/application.html#%28part._apply%29
http://docs.racket-lang.org/guide/application.html#%28part._apply%29
http://docs.racket-lang.org/guide/application.html#%28part._apply%29
http://docs.racket-lang.org/guide/lambda.html

(lambda (x y) (* x y))

In the example above, the function takes in two arguments and returns the result of multiplying
them.

> ((lambda (x y) (* x y)) 4 4)
16
> ((lambda (x y) (* x y)) 3 2)
6

It's tedious to re-write the function and its body every time we want to multiply two numbers, so
let's give it a name. To give it a name, use the define form. This will bind functions to a name.

(define multiply (lambda (x y) (* x y)))

Now we can refer to our function by calling multiply

> (multiply 5 2)
10

Since it is very common to bind procedures to names, Racket provides a shorthand to define
functions using the define form.

(define (multiply x y) (* x y))

For more information and examples, see Functions: lambda in the Racket Guide.

Read Functions online: https://riptutorial.com/racket/topic/1935/functions

https://riptutorial.com/ 12

http://docs.racket-lang.org/guide/define.html
http://docs.racket-lang.org/guide/lambda.html
https://riptutorial.com/racket/topic/1935/functions

Chapter 5: Higher Order Functions

Examples

Map

Map applies a function to every element of a list:

map: (a -> b) (listof a) -> (listof b)

> (map (lambda (x) (* x 2)) (list 1 2 3 4 5)
(list 2 4 6 8 10)

> (map sqrt (list 1 4 9))
(list 1 2 3)

> (map (lambda (x) (if (even? x) "even" "odd")) (list 1 2 3))
(list "odd" "even" "odd")

Fold

Fold Right successively applies a two-argument function to every element in a list from left to right
starting with a base value:

foldr: (a b -> b) b (listof a) -> b

> (foldr + 0 (list 1 2 3 4))
10

> (foldr string-append "" (list "h" "e" "l" "l" "o"))
"hello"

> (foldr cons empty (list 1 2 3 4))
(list 1 2 3 4)

Fold Left performs the same action in the opposite direction:

foldl: (a b -> b) b (listof a) -> b

> (foldl + 0 (list 1 2 3 4)
10

> (foldl string-append "" (list "h" "e" "l" "l" "o"))
"olleh"

> (foldl cons empty (list 1 2 3 4))
(list 4 3 2 1)

Filter

filter returns a list of each item in the given list for which the given predicate returns a non-#f

https://riptutorial.com/ 13

value.

;; Get only even numbers in a list
> (filter even? '(1 2 3 4))
'(2 4)

;; Get all square numbers from 1 to 100
> (filter (lambda (n) (integer? (sqrt n))) (range 1 100))
'(1 4 9 16 25 36 49 64 81)

Compose

Lets you compose several functions f₀ f₁ … f�. It returns a function that will successively apply f�
to its arguments, then f�₋₁ to the result of f� and so on. Function are applied from right to left, like
for mathematical function composition: (f ∘ g ∘ h)(x) = f(g(h(x))).

> ((compose sqrt +) 16 9)
5
> ((compose - sqrt) 16)
-4

The arity of each function should include the the number of returned values of the function
immediately to its right. The rightmost function determines the arity of the whole composition. The
compose1 function imposes that the functions return 1 value and expect 1 argument. However,
compose1 does not restrict the input arity of the last function, nor the output arity of the first
function.

[n input]--> first-function -->[1 output]--> ... last function -->[m output].

((compose + values) 1 2 3 4)
10
> ((compose1 + values) 1 2 3 4)
XX result arity mismatch;
 expected number of values not received
 expected: 1
 received: 4
 values...:

Curry

Returns a partially applied function.

> ((curry + 10) 20)
30

curryr can be used when the arguments need to be inserted at the end. In other words, (curryr
list 1 2) will produce a function expecting some new-arguments When called, that new
function will in turn call (list new-arguments ... 1 2).

> (((curryr list) 1 2) 3 4)
'(3 4 1 2)

https://riptutorial.com/ 14

> ((curryr list 1 2) 3 4)
'(3 4 1 2)
> ((curryr - 30) 40)
10
> (((curryr -) 30 40))
10

Read Higher Order Functions online: https://riptutorial.com/racket/topic/4433/higher-order-
functions

https://riptutorial.com/ 15

https://riptutorial.com/racket/topic/4433/higher-order-functions
https://riptutorial.com/racket/topic/4433/higher-order-functions

Chapter 6: Installation steps (Linux)

Examples

Installation or Setup

Visit https://download.racket-lang.org and choose between the two available distributions:

Racket is the main distribution, it comes with several additional packages like math/number-
theory as well as the DrRacket IDE.

•

Minimal Racket is far smaller and comes only with the needed packages.•

Installation steps for Linux:

The installation is very simple. If you are used to this kind of thing, just follow these four steps. A
more detailed step-by-step walkthrough is detailed afterwards, if you prefer.

download it from https://download.racket-lang.org1.
chmod +x racket-6.6-x86_64-linux.sh2.
./racket-6.6-x86_64-linux.sh3.
Answer the questions, and possibly update your $PATH.4.

For a more detailed step-by-step guide, see below.

Downloading

Go to https://download.racket-lang.org .1.
Select Platform: Linux i386 if you have a 32-bit system, or Platform: Linux x86_64.2.
Click the download button labeled racket-6.9-x86_64-linux.sh (113M) (the label may be
slightly different depending on the version).

3.

Starting the installer

Open a terminal.4.
If you downloaded the file to the /home/YOUR_USER_NAME/Downloads, type the following
command:

5.

cd /home/YOUR_USER_NAME/Downloads

Be sure to replace YOUR_USER_NAME by your actual user name and /Downloads by the actual path to
the folder to which you downloaded Racket.

Type chmod +x racket-6.6-x86_64-linux.sh (change the version number and the x86_64 to
match the file you downloaded).

6.

If you want to install Racket system-wide, type sudo ./racket-6.6-x86_64-linux.sh (change 7.

https://riptutorial.com/ 16

https://download.racket-lang.org
http://docs.racket-lang.org/math/number-theory.html
http://docs.racket-lang.org/math/number-theory.html
https://download.racket-lang.org
https://download.racket-lang.org

the version number and the x86_64 to match the file you downloaded).

Otherwise, if you are not an administrator on the computer, simply type ./racket-6.6-x86_64-
linux.sh to install it in your own home directory (change the version number and the x86_64 to
match the file you downloaded).

Installing

The installer will ask the following questions:

Do you want a Unix-style distribution?8.

Answer no (the default).

Where do you want to install the "racket-6.6.0.4" directory tree?9.

Select /usr/racket (type 1 Enter �) or /usr/local/racket (type 2 Enter �) if you are installing Racket
system-wide. Otherwise, to install it in your own home directory (e.g. if you are not an
administrator), select ~/racket (/home/YOUR_USER_NAME/racket) (type 3 Enter �).

If you want to install new system links within the "bin", "man" and "share/applications"
subdirectories…

10.

If you are doing a system-wide installation it is a good idea to type /usr/local or /usr here (to know
which, check which one is present in your PATH, by typing echo $PATH in another terminal window). If
you are installing it in your own home directory, leave the answer empty and just press Enter �.

Starting DrRacket

Depending on your answer to steps 9 and 10, you need to type one of the following commands in
a terminal to start DrRacket:

drracket (if step 10 was successful)•
/usr/racket/bin/drracket•
/usr/local/racket/bin/drracket•
/home/YOUR_USER_NAME/racket/bin/drracket (replace YOUR_USER_NAME by your actual username,
or simply type ~/racket/bin/drracket)

•

To avoid typing such a long command each time, you can add the following command to the file
~/.bashrc, where /path/to/the/containing/folder/ should be one of /usr/racket/bin/,
/usr/local/racket/bin/ or /home/YOUR_USER_NAME/racket/bin/:

export PATH="/path/to/the/containing/folder/:$PATH"

Running your first program

To run a program, open DrRacket as explained above, enter the program starting with #lang
racket, and click the Run button near the top-right corner. Here is a first example program:

https://riptutorial.com/ 17

#lang racket
(displayln "Hello Racket!")

Read Installation steps (Linux) online: https://riptutorial.com/racket/topic/9870/installation-steps--
linux-

https://riptutorial.com/ 18

https://riptutorial.com/racket/topic/9870/installation-steps--linux-
https://riptutorial.com/racket/topic/9870/installation-steps--linux-

Chapter 7: Installation steps (macOS)

Examples

Installation or Setup

Visit https://download.racket-lang.org and choose between the two available distributions:

Racket is the main distribution, it comes with several additional packages like math/number-
theory as well as the DrRacket IDE.

•

Minimal Racket is far smaller and comes only with the needed packages.•

Installation steps for macOS:

The installation is very simple. If you are used to this kind of thing, just go to
https://download.racket-lang.org, then download and install the .dmg file. A more detailed step-by-
step walkthrough is detailed afterwards, if you prefer.

Downloading

Go to https://download.racket-lang.org .1.
Select Platform: Mac OS (Intel 32-bit) if you have a 32-bit system, or Platform: Mac OS
(Intel 64-bit) if you have a 64-bit system.

2.

Click the download button labeled racket-6.9-x86_64-macosx.dmg (106M) (the label may be
slightly different depending on the version).

3.

Starting the installer

FIXME: If you have macOS, please fill in this section4.

Setting up command-line tools

On Mac OS X, you can visit the Help menu of DrRacket and use "Configure Command Line for
Racket..." to set up racket tools for command line use. On Windows you will need to add the
Racket installation folder to your PATH variable.

Running your first program

To run a program, open DrRacket, enter the program starting with #lang racket, and click the Run
button near the top-right corner. Here is a first example program:

#lang racket

https://riptutorial.com/ 19

https://download.racket-lang.org
https://docs.racket-lang.org/math/number-theory.html
https://docs.racket-lang.org/math/number-theory.html
https://download.racket-lang.org
https://download.racket-lang.org
https://docs.racket-lang.org/drracket/Menus.html#%28part._.Help%29

(displayln "Hello Racket!")

Read Installation steps (macOS) online: https://riptutorial.com/racket/topic/9872/installation-steps--
macos-

https://riptutorial.com/ 20

https://riptutorial.com/racket/topic/9872/installation-steps--macos-
https://riptutorial.com/racket/topic/9872/installation-steps--macos-

Chapter 8: Installation steps (Windows)

Examples

Installation or Setup

Visit https://download.racket-lang.org and choose between the two available distributions:

Racket is the main distribution, it comes with several additional packages like math/number-
theory as well as the DrRacket IDE.

•

Minimal Racket is far smaller and comes only with the needed packages.•

To run a program, open DrRacket, enter the program starting with #lang racket, and click the Run
button near the top-right corner.

Installation steps for Windows:

The installation is very simple. If you are used to this kind of thing, just go to
https://download.racket-lang.org, then download and run the installer. A more detailed step-by-
step walkthrough is detailed afterwards, if you prefer.

Downloading

Go to https://download.racket-lang.org .1.
Select Platform: Windows (x86, 32-bit) if you have a 32-bit system, or Platform: Windows
(x64, 64-bit) if you have a 64-bit system. If in doubt, choose the 32-bit version.

2.

Click the download button labeled racket-6.9-i386-win32.exe (73M) (the label may be slightly
different depending on the version).

3.

Starting the installer

Open the directory where the file was downloaded, and double-click on the racket-….exe file.4.
Follow the installer's instructions.5.

Setting up command-line tools

To set up the command-line tools, open DrRacket, click the Help menu, and click "Configure
Command Line for Racket." This will install the racket and raco commands. (On Windows, the
racket command is Racket.exe).

Running your first program

https://riptutorial.com/ 21

https://download.racket-lang.org
https://docs.racket-lang.org/math/number-theory.html
https://docs.racket-lang.org/math/number-theory.html
https://download.racket-lang.org
https://download.racket-lang.org
http://docs.racket-lang.org/reference/running-sa.html
http://docs.racket-lang.org/raco/index.html
http://docs.racket-lang.org/reference/running-sa.html

To run a program, open DrRacket, enter the program starting with #lang racket, and click the Run
button near the top-right corner. Here is a first example program:

#lang racket
(displayln "Hello Racket!")

Read Installation steps (Windows) online: https://riptutorial.com/racket/topic/9871/installation-
steps--windows-

https://riptutorial.com/ 22

https://riptutorial.com/racket/topic/9871/installation-steps--windows-
https://riptutorial.com/racket/topic/9871/installation-steps--windows-

Chapter 9: Recursion

Examples

Using define

#lang racket
(define (sum-of-list l)
 (if (null? l)
 0
 (+ (car l)
 (sum-of-list (cdr l)))))
(sum-of-list '(1 2 3 4 5)) ;; => 15

Using let-rec

#lang racket
(letrec ([sum-of-list (λ (l)
 (if (null? l)
 0
 (+ (car l) (sum-of-list (cdr l)))))])
 (sum-of-list '(1 2 3 4 5)))
;; => 15

It is possible to write mutually recursive functions with letrec:

#lang racket
(letrec ([even? (λ (n) (if (= n 0) #t (odd? (sub1 n))))]
 [odd? (λ (n) (if (= n 0) #f (even? (sub1 n))))])
 (list (even? 3)
 (odd? 5)))
;; => '(#f #t)

Using a named let

A normal let form binds each value to its corresponding identifier, before executing the body. With
a "named let", the body can then recursively be re-executed, passing a new value for each
identifier.

#lang racket
(let sum-of-list ([l '(1 2 3)])
 (if (null? l)
 0
 (+ (car l) (sum-of-list (cdr l)))))
;; => 15

It is common to use rec as the name for the let, which gives:

#lang racket

https://riptutorial.com/ 23

(let rec ([l '(1 2 3 4 5)])
 (if (null? l)
 0
 (+ (car l) (rec (cdr l)))))
;; => 15

Using rec

#lang racket
(require mzlib/etc)
((rec sum-of-list
 (λ (l)
 (if (null? l)
 0
 (+ (car l) (sum-of-list (cdr l))))))
 '(1 2 3 4 5))
;; => 15

;; Outside of the rec form, sum-of-list gives an error:
;; sum-of-list: undefined;
;; cannot reference an identifier before its definition

This is similar to define, but the sum-of-list identifier is not visible outside of the rec form.

To avoid using an explicit λ, it is possible to replace sum-of-list with (sum-of-list args ...):

#lang racket
(require mzlib/etc)
((rec (sum-of-list l)
 (if (null? l)
 0
 (+ (car l) (sum-of-list (cdr l)))))
 '(1 2 3 4 5))
;; => 15

Using higher-order functions instead of recursion

It is common practice to use higher order functions instead of recursion, if there is a higher order
function which expresses the right recursion pattern. In our case, sum-of-numbers can be defined
using foldl:

#lang racket
(define (sum-of-numbers l)
 (foldl + 0 l))
(sum-of-numbers '(1 2 3 4 5)) ;; => 15

It is possible to call foldl directly on the list:

#lang racket
(foldl + 0 '(1 2 3 4 5)) ;; => 15

Read Recursion online: https://riptutorial.com/racket/topic/6465/recursion

https://riptutorial.com/ 24

http://www.riptutorial.com/racket/topic/4433/higher-order-functions
https://riptutorial.com/racket/topic/6465/recursion

Chapter 10: Scribble

Introduction

Scribble is the tool used to create Racket's documentation, and you can document your own
packages with it too! When published, their documentation will appear at https://docs.racket-
lang.org/, alongside the main Racket documentation.

Scribble is implemented as a language for the Racket platform. Scribble documents will therefore
usually start with #lang scribble/manual

Examples

Paragraphs and sections

#lang scribble/manual

@section{Introduction}

First paragraph. Some text, some text, some text,
some text, some text, some text.

@section{More stuff}

@subsection{This is a subsection}

Second paragraph. More text, more text, more text,
more text, more text, more text.

Documenting a binding provided by a package

#lang scribble/manual

@; Make sure that code highlighting recognises identifiers from my-package:
�require[@for-label[my-package]]

@; Indicate which module is exporting the identifiers documented here.
@defmodule[my-package]

@defproc[(my-procedure [arg1 number?] [arg2 string?]) symbol?]{
 The @racket[my-procedure] function repeats the @racket[arg2] string
 @racket[arg1] times, and transforms the result into a symbol.

 @history[#:added "1.0"
 #:changed "1.1" @elem{Improved performance,
 from @tt{O(n²)} to @tt{O(n)}}]
}

As a rule of thumb, a module (something that could appear on the right of a (require foo/bar), i.e.
foo/bar) should be documented by a single .scribble file. A .scribble file can document several

https://riptutorial.com/ 25

https://docs.racket-lang.org/
https://docs.racket-lang.org/
https://docs.racket-lang.org/

modules, as long as each one is documented in a separate @section.

Read Scribble online: https://riptutorial.com/racket/topic/9881/scribble

https://riptutorial.com/ 26

https://riptutorial.com/racket/topic/9881/scribble

Credits

S.
No

Chapters Contributors

1
Getting started with
racket

Alex Knauth, belph, bitrauser, Community, eyqs, Georges
Dupéron, Guillaume Marceau, John Gallagher, Kronos, Leif
Andersen, mnoronha, soegaard

2 Closures ben rudgers

3 Comments eyqs, Leif Andersen, pvdsp, soegaard

4 Functions Alex Knauth, eyqs, Jason Yeo

5
Higher Order
Functions

4444, Anjali Pal, Brendan, Georges Dupéron, Majora320, mathk

6
Installation steps
(Linux)

Alex Knauth, bitrauser, eyqs, Georges Dupéron

7
Installation steps
(macOS)

Georges Dupéron

8
Installation steps
(Windows)

Georges Dupéron

9 Recursion Georges Dupéron

10 Scribble Georges Dupéron

https://riptutorial.com/ 27

https://riptutorial.com/contributor/5432501/alex-knauth
https://riptutorial.com/contributor/1451908/belph
https://riptutorial.com/contributor/6620496/bitrauser
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5452232/eyqs
https://riptutorial.com/contributor/324969/georges-duperon
https://riptutorial.com/contributor/324969/georges-duperon
https://riptutorial.com/contributor/35902/guillaume-marceau
https://riptutorial.com/contributor/4897257/john-gallagher
https://riptutorial.com/contributor/8030861/kronos
https://riptutorial.com/contributor/288439/leif-andersen
https://riptutorial.com/contributor/288439/leif-andersen
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/23567/soegaard
https://riptutorial.com/contributor/2101909/ben-rudgers
https://riptutorial.com/contributor/5452232/eyqs
https://riptutorial.com/contributor/288439/leif-andersen
https://riptutorial.com/contributor/6596948/pvdsp
https://riptutorial.com/contributor/23567/soegaard
https://riptutorial.com/contributor/5432501/alex-knauth
https://riptutorial.com/contributor/5452232/eyqs
https://riptutorial.com/contributor/382740/jason-yeo
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/6646298/anjali-pal
https://riptutorial.com/contributor/5090391/brendan
https://riptutorial.com/contributor/324969/georges-duperon
https://riptutorial.com/contributor/5802468/majora320
https://riptutorial.com/contributor/343957/mathk
https://riptutorial.com/contributor/5432501/alex-knauth
https://riptutorial.com/contributor/6620496/bitrauser
https://riptutorial.com/contributor/5452232/eyqs
https://riptutorial.com/contributor/324969/georges-duperon
https://riptutorial.com/contributor/324969/georges-duperon
https://riptutorial.com/contributor/324969/georges-duperon
https://riptutorial.com/contributor/324969/georges-duperon
https://riptutorial.com/contributor/324969/georges-duperon

	About
	Chapter 1: Getting started with racket
	Remarks
	Versions
	Examples
	Hello, World!
	Racket

	Installation
	Simple Recursive Function Definition
	Find Racket sources in all subdirs
	Installation or Setup

	Chapter 2: Closures
	Introduction
	Remarks
	Examples
	Closure with static environment

	Chapter 3: Comments
	Remarks
	Examples
	Single line comments
	Block comments
	S-expression comments
	Comments in at-exps

	Chapter 4: Functions
	Syntax
	Examples
	Simple Function Calls
	Keyword arguments
	The `apply` function
	Function Definitions

	Chapter 5: Higher Order Functions
	Examples
	Map
	Fold
	Filter
	Compose
	Curry

	Chapter 6: Installation steps (Linux)
	Examples
	Installation or Setup

	Installation steps for Linux:
	Downloading
	Starting the installer
	Installing
	Starting DrRacket
	Running your first program

	Chapter 7: Installation steps (macOS)
	Examples
	Installation or Setup

	Installation steps for macOS:
	Downloading
	Starting the installer
	Setting up command-line tools
	Running your first program

	Chapter 8: Installation steps (Windows)
	Examples
	Installation or Setup

	Installation steps for Windows:
	Downloading
	Starting the installer
	Setting up command-line tools
	Running your first program

	Chapter 9: Recursion
	Examples
	Using define
	Using let-rec
	Using a named let
	Using rec
	Using higher-order functions instead of recursion

	Chapter 10: Scribble
	Introduction
	Examples
	Paragraphs and sections
	Documenting a binding provided by a package

	Credits

