
redis

#redis

Table of Contents

About 1

Chapter 1: Getting started with redis 2

Remarks 2

Versions 2

Examples 2

Overview 2

Redis command line interface 3

Redis "Hello World" 4

Install Redis by using Docker 5

Redis installtion on Windows, with Node.js example 5

Chapter 2: Backup 6

Introduction 6

Examples 6

Backup of a remote Redis instance to a local instance 6

Password? 6

Start replication 6

Checking sync progress 7

Saving a data dump to disk 7

Halting replication 7

Chapter 3: Connecting to redis using Python 8

Introduction 8

Remarks 8

Examples 8

Add element to list 8

Adding fields to a Hash 8

Setting up a Connection to Redis 9

Creating a transaction 9

Executing Commands Directly 9

Chapter 4: Geo 10

Introduction 10

Syntax 10

Examples 10

GEOADD 10

GEODIST 10

Chapter 5: How to Connect to Redis in Java using Jedis 11

Introduction 11

Remarks 11

Examples 11

Getting Jedis 11

Connecting to Redis 12

Executing Basic Get/Set Commands 12

Executing Commands 13

Chapter 6: Installation and Setup 14

Examples 14

Installing Redis 14

Starting Redis 14

Check if Redis is working 14

Access Redis Cli 14

Redis data types 14

Installing and running Redis Server on Windows 15

Chapter 7: Lua Scripting 17

Introduction 17

Examples 17

Commands For Scripting 17

Chapter 8: Pub/Sub 18

Introduction 18

Syntax 18

Remarks 18

Examples 18

Publish & subscribe with redis 18

Chapter 9: Redis Keys 20

Introduction 20

Syntax 20

Remarks 20

Examples 21

Valid Keys 21

Key Naming Schemes 21

Listing all keys 22

TTL and Key Expiration 22

Deleting Keys 23

Scanning the Redis Keyspace 23

Chapter 10: Redis List Datatype 25

Introduction 25

Syntax 25

Remarks 25

Examples 25

Adding Items to a List 25

Getting Items from a List 25

Size of a List 26

Chapter 11: Redis Persistence Storage 27

Introduction 27

Examples 27

Disable all persistence storage in Redis 27

Get persistence storage status 27

Chapter 12: Redis Set Datatype 28

Introduction 28

Syntax 28

Remarks 28

Examples 28

Size of a Set 28

Adding Items to a Set 28

Testing for Membership 29

Chapter 13: Redis String datatype 30

Introduction 30

Syntax 30

Examples 30

Working with String as Integers 30

Working with Strings as Floating Point Numbers 31

Chapter 14: Sorted Sets 32

Introduction 32

Syntax 32

Remarks 32

Examples 32

Adding Items to a Sorted Set 32

Counting Items in a Sorted Set 33

Credits 35

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: redis

It is an unofficial and free redis ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official redis.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/redis
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with redis

Remarks

This section provides an overview of what Redis is, and why a developer might want to use it.

It should also mention any large subjects within Redis, and link out to the related topics. Since the
documentation for Redis is new, you may need to create initial versions of those related topics.

Versions

Version Release Date

3.2.3 2016-08-02

3.2.2 2016-07-28

Examples

Overview

Redis is an in-memory remote database that offers high performance, replication, and a unique
data model to produce a platform for solving problems. Redis is an open source (BSD licensed),
in-memory data structure , used as database, cache and message broker. It is categorized as a
NoSQL key-value store. It supports data structures such as strings, hashes, lists, sets, sorted sets
with range queries, bitmaps, hyperloglogs and geospatial indexes with radius queries. Supporting
five different types of data structures,

STRING (Operate on the whole string, parts, integers and floats)1.
LIST (Push or pop items from both ends)2.
SET (Add, fetch, remove, check, intersect, union, difference etc)3.
HASH (store, fatch, remove in hash)4.
ZSET (same as set but in ordered way)5.
GEO (Add, update, delete latitude and longitude, get within given redius)6.

Redis has built-in replication, Lua scripting, LRU eviction, transactions and different levels of on-
disk persistence(sync/async).

Prior to version 3, Redis works in master-slave mode and required Redis-Sentinel to provide high-
availability.Only master accepts writes and syncs data to its slaves by forking.

From version 3, Redis works & recommends multi-master mode where failover,
sharding/paritioning, resharding features are in-built. Redis-Sentinel is not required from version-3.
In order for the redis cluster to operate a minimum of 3 master nodes/processes are required.

https://riptutorial.com/ 2

Additional features are replication, persistence, and client-side sharding. Redis accommodates a
wide variety of problems that can be naturally mapped into what Redis offers, allowing you to
solve your problems without having to perform the conceptual work required by other databases.

Redis command line interface

redis-cli is the Redis command line interface program that allows to send commands to Redis
and read the replies sent by the server, directly from the terminal. Basic command line usage is
below:

Access to redis:

$ redis-cli
127.0.0.1:6379>

Access to redis with authentication:

$ redis-cli -a myPassword
127.0.0.1:6379>

Select database and show database size (default database number is 0):

127.0.0.1:6379> dbsize
(integer) 2
127.0.0.1:6379> select 1
OK
127.0.0.1:6379[1]> dbsize
(integer) 20

Get information and statistics about the server:

127.0.0.1:6379> info
redis_version:2.4.10
redis_git_sha1:00000000
redis_git_dirty:0
arch_bits:64
multiplexing_api:epoll
gcc_version:4.4.6
process_id:947
uptime_in_seconds:873394
uptime_in_days:10
lru_clock:118108
used_cpu_sys:19.55
used_cpu_user:397.46
used_cpu_sys_children:0.00
used_cpu_user_children:0.00
connected_clients:1
connected_slaves:0
client_longest_output_list:0
client_biggest_input_buf:0
blocked_clients:0
used_memory:14295792
used_memory_human:13.63M
used_memory_rss:19853312

https://riptutorial.com/ 3

used_memory_peak:14295760
used_memory_peak_human:13.63M
mem_fragmentation_ratio:1.39
mem_allocator:jemalloc-2.2.5
loading:0
aof_enabled:0
changes_since_last_save:0
bgsave_in_progress:0
last_save_time:1468314087
bgrewriteaof_in_progress:0
total_connections_received:2
total_commands_processed:2
expired_keys:0
evicted_keys:0
keyspace_hits:0
keyspace_misses:0
pubsub_channels:0
pubsub_patterns:0
latest_fork_usec:0
vm_enabled:0
role:master
db0:keys=2,expires=0
db1:keys=20,expires=0

Exiting from the redis-cli:

127.0.0.1:6379> exit

Redis "Hello World"

First you need to install and start your Redis server, check the link below that can help you to
install redis on you server or local machine.

Installation and Setup

Now open your command prompt and run command redis-cli :

To save first set >SET 'keyname' then 'value'

127.0.0.1:6379> SET hkey "Hello World!"

Press Enter you should see

OK

Then enter:

GET hkey

you should see:

"Hello World!"

https://riptutorial.com/ 4

http://www.riptutorial.com/redis/topic/2898/installation-and-setup

Screen output example:

Install Redis by using Docker

It is simple to start using Redis using docker:

docker pull redis
docker run -p 6379:6379 --rm --name redis redis

Now you have running instance on port 6397

Attention: All data will be deleted, when Redis will be stopped.

To connect the redis-cli, start another docker:

docker run -it --link redis:redis --rm redis redis-cli -h redis -p 6379

Now you can play around with your redis docker.

Redis installtion on Windows, with Node.js example

Redis has a Windows port provided by 'Microsoft Open Technologies'. You can use the msi
installer found on: https://github.com/MSOpenTech/redis/releases

After installation completes you can see 'Redis' is a Windows service (and it's status should be
"Started")

To write an 'Hello world' example that uses Redis in Node.js (in windows as well) you can use the
following npm module : https://www.npmjs.com/package/redis

code sample:

var redis = require('redis'),
 client = redis.createClient();

client.set('mykey', 'Hello World');
client.get('mykey', function(err,res){
 console.log(res);
});

Read Getting started with redis online: https://riptutorial.com/redis/topic/1724/getting-started-with-
redis

https://riptutorial.com/ 5

http://i.stack.imgur.com/QrdcP.png
https://github.com/MSOpenTech/redis/releases
https://www.npmjs.com/package/redis
https://riptutorial.com/redis/topic/1724/getting-started-with-redis
https://riptutorial.com/redis/topic/1724/getting-started-with-redis

Chapter 2: Backup

Introduction

Backing up a remote Redis instance can be achieved with replication. This is useful if you want to
take a snapshot of a dataset prior to upgrading, deleting or changing a Redis database.

Examples

Backup of a remote Redis instance to a local instance

On the machine where you'd like to make the backup, jump to the Redis CLI:

redis-cli

Password?

If your master Redis DB (the one you want to replicate) has a password:

config set masterauth <password>

Start replication

Run the following to begin replication:

SLAVEOF <host> <port>

To check the replication is underway run:

INFO replication

And you should see output like this:

Replication
role:slave
master_host:some-host.compute-1.amazonaws.com
master_port:6519
master_link_status:up
master_last_io_seconds_ago:3
master_sync_in_progress:0
slave_repl_offset:35492914
slave_priority:100
slave_read_only:1
connected_slaves:0
master_repl_offset:0
repl_backlog_active:0

https://riptutorial.com/ 6

repl_backlog_size:1048576
repl_backlog_first_byte_offset:0
repl_backlog_histlen:0

Note the master_link_status should be up.

Checking sync progress

When the sync is complete, the INFO replication should show:

master_sync_in_progress:0

To check the dataset has been synced you could compare the size of the database:

DBSIZE

Saving a data dump to disk

To save the DB to disk asynchronously:

BGSAVE
CONFIG GET dir

Then you should find a dump.rdb file in the directory listed by the config command.

Halting replication

You can stop replication with:

SLAVEOF NO ONE

Reference: Redis replication guide

Read Backup online: https://riptutorial.com/redis/topic/9369/backup

https://riptutorial.com/ 7

https://redis.io/topics/replication
https://riptutorial.com/redis/topic/9369/backup

Chapter 3: Connecting to redis using Python

Introduction

Connecting to Redis in Python requires the use of a client library. Many different client libraries
exist for Python, but redis-py is one of the most popular clients in use.

Once you install your client library, you can then access Redis in your application by importing the
appropriate module, establishing a connection, then executing a command.

Remarks

To connect on redis with python you need to install a client. You can install with pip using:

pip install redis

this will install redis-py

Optionally, you may want to install hiredis-py which delegates parsing of protocol messages to
the C hiredis client. This can provide significant performance improvement in many situations. You
can install hiredis with pip by executing:

pip install hiredis

Examples

Add element to list

import redis

r = redis.StrictRedis(host='localhost', port=6379, db=0)

r.lpush('myqueue','myelement')

Adding fields to a Hash

There are two main functions in Redis (HSET and HMSET) for adding fields to a hash key. Both
functions are available in redis-py.

Using HSET:

import redis

r = redis.StrictRedis(host='myserver', port=6379, db=0)
r.hset('my_key', 'field0', 'value0')

https://riptutorial.com/ 8

https://redis.io/clients#python
https://github.com/andymccurdy/redis-py

Using HMSET:

import redis

r = redis.StrictRedis(host='myserver', port=6379, db=0)
r.hmset('my_key', {'field0': 'value0', 'field1':'value1', 'field2':'value2'}

Setting up a Connection to Redis

The redis-py client provides two classes StrictRedis and Redis to establish a basic connection to a
Redis database. The Redis class is provided for backwards compatibility and new projects should
use the StrictRedis class.

One of the recommended ways to establish a connection, is to define the connection parameters
in a dictionary and pass the dictionary to the StrictRedis constructor using the ** syntax.

conn_params = {
 "host": "myredis.somedomain.com",
 "port": 6379,
 "password": "sekret",
 "db": 0
}

r = redis.StrictRedis(**config)

Creating a transaction

You can establish a transaction by calling the pipeline method on the StrictRedis. Redis
commands executed against the transaction are performed in a single block.

defaults to transaction=True
tx = r.pipeline()
tx.hincrbyfloat(debit_account_key, 'balance', -amount)
tx.hincrbyfloat(credit_account_key, 'balance', amount)
tx.execute()

Executing Commands Directly

Redis-py provides the execute_command method to directly invoke Redis operations. This
functionality can be used to access any modules that may not have a supported interface in the
redis-py client. For example, you can use the execute_command to list all of the modules loaded into
a Redis server:

r.execute_command('MODULE', 'LIST')

Read Connecting to redis using Python online: https://riptutorial.com/redis/topic/9103/connecting-
to-redis-using-python

https://riptutorial.com/ 9

https://riptutorial.com/redis/topic/9103/connecting-to-redis-using-python
https://riptutorial.com/redis/topic/9103/connecting-to-redis-using-python

Chapter 4: Geo

Introduction

Redis provides the GEO datatype to work with geospatial indexed data.

Syntax

GEOADD key longitude latitude member [longitude latitude member ...]•
GEODIST key member1 member2 [unit]•

Examples

GEOADD

The GEOADD command allows a user to add geospatial information (item name, longitude,
latitude) to a particular key.

The GEOADD command can be used to add a single item to a key:

GEOADD meetup_cities -122.43 37.77 "San Francisco"

or multiple items to a key:

GEOADD meetup_cities -122.43 37.77 "San Francisco" -104.99 39.74 "Denver"

GEODIST

The GEODIST command allows a user to determine the distance between two members within a
geospatial index while specifying the units.

To find the distance between two meetup cities:

GEODIST meetup_cities "San Francisco" "Denver" mi

Read Geo online: https://riptutorial.com/redis/topic/9091/geo

https://riptutorial.com/ 10

https://riptutorial.com/redis/topic/9091/geo

Chapter 5: How to Connect to Redis in Java
using Jedis

Introduction

There are more than ten different client libraries to use with Redis in Java. One of the most
popular clients is Jedis.

Remarks

Further information:

Java Redis Clients•
Jedis Github Repository•
Jedis Documentation/Wiki•

Examples

Getting Jedis

The Jedis library is generally added to Java project using a dependency management system built
into the build environment of the project. Two popular Java build systems are Maven and Gradle.

Using Gradle

To add the Jedis library to a Gradle project, you will need configure a repository and add a
dependency. The following snippet shows how to add version 2.9.0 of the Jedis library to a Gradle
project.

repositories {
 mavenCentral()
}

dependencies {
 compile 'redis.clients:jedis:2.9.0'
}

Using Maven

To add Jedis to a Maven project, you need to add a dependency to your dependency list and
provide the coordinates of the library. The following snippet would be added to your pom.xml file:

<dependencies>
 <dependency>
 <groupId>redis.clients</groupId>
 <artifactId>jedis</artifactId>

https://riptutorial.com/ 11

https://github.com/xetorthio/jedis
https://redis.io/clients#java
https://github.com/xetorthio/jedis
https://github.com/xetorthio/jedis/wiki

 <version>2.9.0</version>
 </dependency>
</dependencies>

Connecting to Redis

Using a Pool

Most code will want to connect to Redis using a pool of shared connection objects. Connecting to
Redis using a pool involves two different code block. At initialization time, your application needs
to create the connection pool:

 JedisPoolConfig poolCfg = new JedisPoolConfig();
 poolCfg.setMaxTotal(3);

 pool = new JedisPool(poolCfg, hostname, port, 500, password, false);

The JedisPoolConfig provides options for tuning the pool.

As your application processes it's workload, you will need to get a connection from the shared pool
using the following code:

 try (Jedis jedis = pool.getResource()) {

 ...
 }

Best practice is to get the Jedis connection object from the pool within a try-with-resources block.

Without Pools

In some cases, such as a simple application or an integration test, you may not want to deal with
shared pools and instead create the Jedis connection object directly. That can be accomplished
with the following code:

try (Jedis jedis = new Jedis(hostname, port)) {
 jedis.connect();
 jedis.auth(password);
 jedis.select(db);

 . . .
}

Again, best practice is to create the Jedis client object within a try-with-resources block.

Executing Basic Get/Set Commands

Once you have established a connection to Redis you can get and set values using the Jedis
connection object:

Get

https://riptutorial.com/ 12

String value = jedis.get(myKey);

Set

jedis.put(myKey, "some value");

Executing Commands

To execute a Redis command using Jedis, you make method calls against the Jedis object you
created from the pool. Jedis exposes Redis commands as method calls, some example are:

- String get(String key)
- Long geoadd(String key, double longitude, double latitude, String member)
- List<String> hmget(String key, String... fields)
- Long hsetnx(String key, String field, String value)

If you wanted to set the value of a String key in Redis you would use a code block similar to:

try (Jedis jedis = pool.getResource()) {

 String myKey = "users:20";
 String myValue = "active";

 jedis.set(myKey, myValue);
}

Read How to Connect to Redis in Java using Jedis online:
https://riptutorial.com/redis/topic/9712/how-to-connect-to-redis-in-java-using-jedis

https://riptutorial.com/ 13

https://riptutorial.com/redis/topic/9712/how-to-connect-to-redis-in-java-using-jedis

Chapter 6: Installation and Setup

Examples

Installing Redis

wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make

Starting Redis

redis-server

Check if Redis is working

redis-cli ping

This should return PONG

Access Redis Cli

Assuming that you are running redis server on localhost you can type command

redis-cli

After this command appear redis command line prompt

127.0.0.1:6379>

Redis data types

The following is the list of all the data structures supported by Redis:

Binary-safe strings•
Lists: collections of string elements sorted according to the order of insertion.•
Sets: collections of unique, unsorted string elements.•
Sorted sets: similar to Sets but where every string element is associated to a floating
number value, called score.

•

Hashes: are maps composed of fields associated with values.•
HyperLogLogs: this is a probabilistic data structure which is used in order to estimate the
cardinality of a set.

•

https://riptutorial.com/ 14

Based on redis.io official documentation

Installing and running Redis Server on Windows

Note: The Redis project does not officially support Windows.

However, the Microsoft Open Tech group develops and maintains this Windows port targeting
Win64. Official redis.io/download

You can choose to download different versions or the latest version of Redis
github.com/MSOpenTech/redis/releases

Download either .msi or .zip file, this tutorial will let you download latest zip file
Redis-x64-3.2.100.zip.

1.

Extract the zip file to prepared directory. 2.

Run redis-server.exe, you can either directly run redis-server.exe by clicking or run via
command prompt.

3.

https://riptutorial.com/ 15

https://redis.io/download
https://github.com/MSOpenTech/redis/releases
https://github.com/MSOpenTech/redis/releases/download/win-3.2.100/Redis-x64-3.2.100.zip
https://i.stack.imgur.com/7mhpp.png

Run redis-cli.exe, after successfully running the redis-server. You can access it and test
commands by running redis-cli.exe Te

4.

PING command is used to test if a connection is still alive.

You can now start using Redis , please refer for more commands in official documentations

Read Installation and Setup online: https://riptutorial.com/redis/topic/2898/installation-and-setup

https://riptutorial.com/ 16

https://i.stack.imgur.com/lKqjc.png
https://i.stack.imgur.com/BenT1.png
https://i.stack.imgur.com/MA66K.png
https://redis.io/commands
https://riptutorial.com/redis/topic/2898/installation-and-setup

Chapter 7: Lua Scripting

Introduction

Redis provides a couple of mechanisms for extending the functionality of the database. One
mechanism is through the use of server-side LUA scripts that can be executed to manipulate data.
Lua scripts can be useful to perform expensive operations or to implement atomic operations that
require logic.

Examples

Commands For Scripting

Redis provides seven different operations for working with scripts:

Eval operations (EVAL, EVALSHA)•
SCRIPT operations (DEBUG, EXISTS, FLUSH, KILL, LOAD)•

The EVAL command evaluates a script provided as a string argument to the server. Scripts can
access the specified Redis keys named as arguments to the command and and additional string
parameters that the user wants to pass to the script.

For example, the command:

EVAL "return {KEYS[1],KEYS[2],ARGV[1],ARGV[2]}" 2 key1 key2 first second

causes the execution of a user defined Lua script that simply returns the values supplied. The call
is involved with 2 Redis keys (key1 and key2) and two parameters.

Another way to execute a Lua script is to first load it into the database then execute it using a SHA
hash of the script.:

> script load "return {KEYS[1],KEYS[2],ARGV[1],ARGV[2]}"
"a42059b356c875f0717db19a51f6aaca9ae659ea"
> evalsha "a42059b356c875f0717db19a51f6aaca9ae659ea" 2 key1 key2 foo bar
1) "key1"
2) "key2"
3) "foo"
4) "bar"

The script load command loads the script and stores it in the database. A sha signature of the
script is returned so it can be referenced by future calls. The EVALSHA function takes the sha and
executes the corresponding script from the database.

Read Lua Scripting online: https://riptutorial.com/redis/topic/9112/lua-scripting

https://riptutorial.com/ 17

https://riptutorial.com/redis/topic/9112/lua-scripting

Chapter 8: Pub/Sub

Introduction

Redis provides an implementation of the Publish/Subscribe (Pub/Sub) messaging pattern. Instead
of sending messages to specific receivers, Publishers send messages to interested receivers via
some indirection mechanism. Receivers specify interest in particular messages. In Redis this
functionality is accessed using the PUBLISH and SUBSCRIBE commands on channels.

Syntax

SUBSCRIBE channel [channel ...]•
UNSUBSCRIBE [channel [channel ...]]•
PUBLISH channel message•
PSUBSCRIBE pattern [pattern ...]•
PUNSUBSCRIBE [pattern [pattern ...]]•

Remarks

To handle the pub/sub in redis, need to have one client for subscribe & different client for
publish. Both can't be handled by same client. Though all other commands can be still handled
with same client.

Examples

Publish & subscribe with redis

Redis has publish/subscribe for sending messages. This is handled by subscribing to a channel &
publishing to channel. Yes, subscribers will subscribe to one or more channels. Publisher need not
know who are all subscribers. Instead, publisher will publish to specific channel. All the
subscribers who are subscribed for that channel will get the message. This decoupling of
publishers and subscribers can allow for greater scalability and a more dynamic network topology.

Example: User is subscribing to 2 channels say foo & boo

SUBSCRIBE foo boo

In console of redis-client1:

127.0.0.1:6379> SUBSCRIBE foo boo
Reading messages... (press Ctrl-C to quit)
1) "subscribe"
2) "foo"
3) (integer) 1
1) "subscribe"

https://riptutorial.com/ 18

2) "boo"
3) (integer) 2

It will start to listen for message. On publish will get data for corresponding channel.

For example: When want to send message to all subscribers who are connected with boo, need
to publish to that channel.

PUBLISH boo "Hello Boo"

In console of redis-client1:

1) "message"
2) "boo" //channel name
3) "Hello Boo" //Actual data

To unsubscribe from channel at any point, use

UNSUBSCRIBE // to unsubscribe from all channels
UNSUBSCRIBE foo // to unsubscribe from specific channel

Can do subscribe based on pattern too. When the channel name is not sure/want to subscribe
based on pattern use PSUBSCRIBE.

Similarly to unsubscribe based on pattern use PUNSUBSCRIBE

Read Pub/Sub online: https://riptutorial.com/redis/topic/5071/pub-sub

https://riptutorial.com/ 19

https://riptutorial.com/redis/topic/5071/pub-sub

Chapter 9: Redis Keys

Introduction

The Redis keyspace can be thought of as a hash table or dictionary mapping keys to data
structures in the database.

Redis provides a wide range of commands that work with keys to manage the keyspace, including
the ability to remove keys, inspect key metadata, search for keys, and modify certain properties of
keys.

Syntax

KEYS pattern•
PERSIST key•
EXPIRE key seconds•
EXPIREAT key timestamp•
TTL key•
PEXPIRE key milliseconds•
PEXPIREAT key milliseconds-timestamp•
PTTL key•
UNLINK key [key ...]•
DEL key [key ...]•
SCAN cursor [MATCH pattern] [COUNT count]•

Remarks

For valid characters in Redis keys, the manual explains this completely:

Redis keys are binary safe, this means that you can use any binary sequence as a key,
from a string like "foo" to the content of a JPEG file. The empty string is also a valid
key.

A few other rules about keys:

Very long keys are not a good idea, for instance a key of 1024 bytes is a bad idea not
only memory-wise, but also because the lookup of the key in the dataset may require
several costly key-comparisons. Even when the task at hand is to match the existence
of a large value, to resort to hashing it (for example with SHA1) is a better idea,
especially from the point of view of memory and bandwidth.

Very short keys are often not a good idea. There is little point in writing "u1000flw" as a
key if you can instead write "user:1000:followers". The latter is more readable and the
added space is minor compared to the space used by the key object itself and the
value object. While short keys will obviously consume a bit less memory, your job is to

https://riptutorial.com/ 20

http://redis.io/topics/data-types-intro

find the right balance.

Try to stick with a schema. For instance "object-type:id" is a good idea, as in
"user:1000". Dots or dashes are often used for multi-word fields, as in
"comment:1234:reply.to" or "comment:1234:reply-to".

The maximum allowed key size is 512 MB.

Be careful with using the KEYS command against a production system, it can cause
serious performance problems. If you need to do a search against the keyspace the
SCAN commands are a better alternative.

Examples

Valid Keys

Redis keys are binary-safe, so literally anything can be used as a key. The only limitations are that
they must be less than 512MB.

Examples of valid keys:

7
++++
`~!@#$%^&*()-_=+
user:10134
search/9947372/?query=this%20is%20a%28test%29%20query
<div id="div64">

Any other string less than 512MB in size.
The raw binary content of an image or other binary file.
An entire multi-line text document.
An entire SQL query.
Any integer, hexadecimal, octal, or binary value.
Anything else you can think of less than 512MB in size.

Invalid Redis keys:

Anything larger than 512MB.

Key Naming Schemes

For clarity and maintainability, it is often recommended to develop a system or schema for naming
your Redis keys. Here are some examples of common and maintainable systems for naming your
keys:

user:10134
user:10134:favorites
user:10134:friends
user:10134:friends-of-friends

user:10134

https://riptutorial.com/ 21

https://redis.io/commands/scan

user:10134/favorites
user:10134/friends
user:10134/friends.of.friends

user/10134
user/10134/favorites
user/10134/friends
user/10134/friends of friends

Note that, while allowed, larger keys use more memory and result in slower lookup times, so using
a 500MB key might not be a great idea for performance. A better idea might be to use a SHA-1,
SHA-256, or MD5 hash of a large binary object as a key instead:

image/9517bb726d33efdc503a43582e6ea2eea309482b
image52e9df0577fca2ce022d4e8c86b1eccb070d37bef09dec36df2fabbfa7711f5c

Listing all keys

You can list all of the keys in a Redis database by executing the following commands from redis-
cli:

KEYS *

The parameter to KEYS is a glob-style pattern matching expression. Examples of suppored
patterns include:

h?llo matches hello, hallo and hxllo
h*llo matches hllo and heeeello
h[ae]llo matches hello and hallo, but not hillo
h[^e]llo matches hallo, hbllo, ... but not hello
h[a-b]llo matches hallo and hbllo

Using the KEYS * command can have adverse affects on performance, so it is not recommended
against production instances. Use the SCAN operation to search for keys in production code.

TTL and Key Expiration

The expiration values of a key can be managed by a user outside of the update commands. Redis
allows a user to determine the current time to live (TTL) of a key using the TTL command:

TTL key

This command will return the TTL of a key in seconds or will return the special values -1 or -2. A -1
indicates that the key is persistent (won't expire) and a -2 indicates that the key does not exist.

An expiring key can be made persistent using the PERSIST command:

PERSIST KEY

https://riptutorial.com/ 22

and a persistent key can be made to expire using the EXPIRE command:

EXPIRE KEY seconds

Expire can also be used to modify the TTL of an existing key. Alternatively, you can use the
EXPIREAT command with a UNIX timestamp to set an expire time.

There are millisecond versions of TTL, EXPIRE and EXPIREAT commands that are prefixed with
a P.

Deleting Keys

Redis provides two functions for removing keys from the database: del and unlink.

The del function removes one or more keys from the database. The del command causes Redis to
immediately reclaim the memory for the deleted key on the current thread of execution. The
execution time for del is proportional to the number of individual elements deleted from all the
keys.

The unlink function acts like the del command, it removes one or more keys from the database.
However, unlike the del command, any memory used by those keys is reclaimed asynchronously
on another thread.

Scanning the Redis Keyspace

Redis provides the SCAN command to iterate over the keys in the database matching a particular
pattern. Redis supports glob style pattern matching in the SCAN command.

The SCAN command provides a cursor-based iterator over the Redis keyspace. The iterative call
sequence to SCAN starts with the user making a call with the cursor argument set to 0. The result
of that call is a batch of items and an updated cursor which is supplied to the next call to SCAN.
This iteration continues until Redis returns a 0 cursor.

The following Python function demonstrates the basic usage of SCAN:

def scan_keys(r, pattern):
 "Returns a list of all the keys matching a given pattern"

 result = []
 cur, keys = r.scan(cursor=0, match=pattern, count=2)
 result.extend(keys)
 while cur != 0:
 cur, keys = r.scan(cursor=cur, match=pattern, count=2)
 result.extend(keys)

 return result

The SCAN command is the recommended way to search for keys in the database, and is
recommended over the KEYS * command.

https://riptutorial.com/ 23

Read Redis Keys online: https://riptutorial.com/redis/topic/3916/redis-keys

https://riptutorial.com/ 24

https://riptutorial.com/redis/topic/3916/redis-keys

Chapter 10: Redis List Datatype

Introduction

The List datatype in Redis is an ordered collection of items referenced by a Redis key. Redis
allows you to access and modify a list by index or push/pop operations. In Redis, the two ends of a
list are referred to as the left and the right. The left corresponds to the first element or head of a list
and the right coresponds to the last element or tail of a list.

Syntax

LPUSH key value [value ...]•
RPUSH key value [value ...]•
LPOP key•
RPOP key•
LLEN key•

Remarks

More detail on the List datatype and all the commands that can be used in conjunction with them
can be found in the official Redis documentation at Redis.io.

Examples

Adding Items to a List

Redis allows you to add items to either the right or the left of a list.

If I was working with a list, my_list and I wanted to prepend 3 to the list, I could do that using the
Redis LPUSH command:

LPUSH my_list 3

If I wanted to append 3 to my_list, I would instead use the RPUSH command:

RPUSH my_list 3

Both the LPUSH and RPUSH command will automatically create a new list for you if the supplied
key doesn't exist. Two alternative commands LPUSHX and RPUSHX can be used to only operate
on the list key if it already exists.

Getting Items from a List

Redis provides the LPOP and RPOP commands as a counterpart to the LPUSH and RPUSH

https://riptutorial.com/ 25

https://redis.io/commands#list

commands for fetching data items.

If I was working with a list my_list that had several data items in it already, I can get the first item in
the list using the LPOP command:

LPOP my_list

The result of this command will return the value of the first element from the list and remove it from
my_list. For example, if I had the list [1, 3, 2, 4] and I applied LPOP to it, I would have the list [3, 2,
4] in memory afterwards.

Similarly, I can remove from the end of the list using RPOP:

RPOP my_list

would return the value fo the last element form the list and then remove it from my_list. Using our
example, [1, 2, 3, 4] after calling RPOP on this list, the list in memory would be [1, 2, 3].

Size of a List

The size of a Redis list can be deterimed using the LLEN command. If I have a four element list
stored at the key my_list, I can get the size using:

LLEN my_list

which will return 4.

If a user specifies a key that doesn't exist to LLEN, it will return a zero, but if a key is used that
points to an item of a different datatype, an error will be returned.

Read Redis List Datatype online: https://riptutorial.com/redis/topic/9107/redis-list-datatype

https://riptutorial.com/ 26

https://riptutorial.com/redis/topic/9107/redis-list-datatype

Chapter 11: Redis Persistence Storage

Introduction

Redis supports two main modes of persistence: RDB and AOF. The RDB mode of persistence
takes a snapshot of your database at a point in time. In the RDB mode, Redis forks off a process
to persist the database to disk. AOF logs every operation executed against the server into a replay
log that can be processed at startup to restore the state of the database.

Examples

Disable all persistence storage in Redis

There are two kinds of persistent storage modes in Redis: AOF and RDB. To temporarily disable
RDB execute the following commands on the Redis command line:

config set save ""

to temporarily disable AOF execute the following from the Redis command line:

config set appendonly no

The changes will persist until the server is restarted, then the server will revert back to whatever
modes are configured in the server's redis.conf file.

The CONFIG REWRITE command can be used to modify the redis.conf file to reflect any dynamic
changes to the configuration.

Get persistence storage status

The following code will get the current configuration for the persistent storage state. These values
can be modified dynamically, so they may differ from the configuration in redis.conf:

get
config get appendonly
config get save

Read Redis Persistence Storage online: https://riptutorial.com/redis/topic/7871/redis-persistence-
storage

https://riptutorial.com/ 27

https://riptutorial.com/redis/topic/7871/redis-persistence-storage
https://riptutorial.com/redis/topic/7871/redis-persistence-storage

Chapter 12: Redis Set Datatype

Introduction

Redis supports a set datatype analogous to mathematical sets for modeling data in the database.
Sets are a compound datatype consisting of a group of unique, unordered members. Sets support
adding and removing members, size operations, as well as combination operations that take two
sets and generate a third set. Sets in Redis are similar to Sets in most programming languages.

Syntax

SADD key member [member ...]•
SISMEMBER key member•
SCARD key•
SADD key member [member ...]•

Remarks

The full documentation on the Redis set datatype can be found at Redis.io.

Examples

Size of a Set

The size of a set can be determined using the SCARD command. SCARD will return the
cardinality of a set or the number of members in the set. For example, if I had a Redis set my_set
stored in the database that looked like (Apple, Orange, Banana), I could get the size using the
following code:

SCARD my_set

In the case of my example set, this would return 3. If the user executes an SCARD command on a
key that does not exist, Redis will return 0.

Adding Items to a Set

The basic Redis command for adding an item to a set is SADD. It takes a key and one or more
members and adds them to the set stored at the given key.

For example, lets say that I wanted to create a set with the items apple, pear and banana. I could
execute either of the following:

SADD fruit apple
SADD fruit pear

https://riptutorial.com/ 28

https://redis.io/commands#set

SADD fruit banana

or

SADD fruit apple pear banana

After executing either, I will have the set fruit with 3 items.

Attempting to add an item that is already in the set will have no effect. After setting up my fruit set
using the code above, if I try to add apple again:

SADD fruit apple

Redis will attempt to add apple to the fruit set, but since it is already in the set nothing will change.

The result of the SADD command is always the number of items Redis added to a set. So
attempting to re-add apple, will return a result of 0.

Member items in Redis are case sensitive, so apple and Apple are treated as two separate items.

Testing for Membership

Redis supplies the SISMEMBER command to test if a particular item is already a member of a set.
Using the SISMEMBER command I can test and see if apple is already a member of my fruit set.

If I construct my fruit set from the previous example, I can check and see if it contains apple using
the following test:

SISMEMBER fruit apple

SISMEMBER will return a 1 since the item is already there.

If I tried to see if dog is a member of my fruit set:

SISMEMBER fruit dog

Redis will return a 0 since dog isn't in the fruit set.

If a user attempts to use the SISMEMBER command with a key that doesn't exist, Redis will return
a 0 indicating no membership, but if you use SISMEMBER with a key that already holds a non-set
datatype, Redis will return an error.

Read Redis Set Datatype online: https://riptutorial.com/redis/topic/9109/redis-set-datatype

https://riptutorial.com/ 29

https://riptutorial.com/redis/topic/9109/redis-set-datatype

Chapter 13: Redis String datatype

Introduction

Redis provides a string datatype that is used to associate data with a particular key. Redis string
are the most basic datatype available in Redis and one of the first datatypes that users learn to
work with.

Strings are often associated with text data, but Redis strings are more like buffers that can be
used to store a wide range of different data. Redis strings can be used to represent integers,
floating point numbers, bitmaps, text, and binary data.

Syntax

SET key value [EX seconds] [PX milliseconds] [NX|XX]•
INCR key•
INCRBY key increment•
INCRBYFLOAT key increment•
DECR key•
DECRBY key decrement•

Examples

Working with String as Integers

Several commands allow you to work with Strings representing integer values.

A user can set the integer value of a key using the command:

SET intkey 2

The set command will create the key if necessary or update it if it already exists.

The value of an integer key can be updated on the server using either the INCR or INCRBY
commands. INCR will increase the value of a key by 1 and INCRBY will increase the value of the
key by the provided step value.

INCR intkey
INCRBY intkey 2

If the value of the key specified to INCR or INCRBY can't be expressed as an integer, Redis will
return an error. If the key doesn't exist, the key will be created and the operation will be applied to
the default value of 0.

The DECR and DECRBY ccommands work in reverse to decrement the value.

https://riptutorial.com/ 30

Working with Strings as Floating Point Numbers

Redis allow you to use the String data type to store floating point numbers.

A user can set the float value of a key using the command:

SET floatkey 2.0

The set command will create the key if necessary or update it if it already exists.

The value of the key can be updated on the server using either the INCRBYFLOAT command.
INCRBYFLOAT will increase the value of a key by the provided increment value.

INCRBYFLOAT floatkey 2.1

If the value of the key specified to INCRBYFLOAT can't be expressed as a floating point, Redis
will return an error. If the key doesn't exist, the key will be created and the operation will be applied
to the default value of 0.0.

Keys can be decremented by passing a negative increment to the INCRBYFLOAT command.

Read Redis String datatype online: https://riptutorial.com/redis/topic/9507/redis-string-datatype

https://riptutorial.com/ 31

https://riptutorial.com/redis/topic/9507/redis-string-datatype

Chapter 14: Sorted Sets

Introduction

The Sorted Set datatype in Redis is an ordered version of the Set datatype. A Redis sorted set
consists of a collection of unique members. Each member in the sorted set can be thought of as a
pair consisting of the member and a score. The score is used to order the members within the set
in ascending order.

Syntax

ZADD key [NX|XX] [CH] [INCR] score member [score member ...]•
ZCARD key•
ZCOUNT key min max•
ZLEXCOUNT key min max•

Remarks

The official documentation for Sorted Sets can be found at the Redis.io site.

Sorted sets are sometimes referred to as zsets. If you use the TYPE command on a sorted set
key, the value zset will be returned.

Examples

Adding Items to a Sorted Set

Redis provides the ZADD command to add items to a sorted set. The basic form of the ZADD
command is to specify the set, the item to add and it's score. For example, if I wanted to construct
an ordered set of my favorite food (from least to most), I could use either of:

zadd favs 1 apple
zadd favs 2 pizza
zadd favs 3 chocolate
zadd favs 4 beer

or alternatively:

zadd favs 1 apple 2 pizza 3 chocolate 4 beer

The ZADD function operates very similarly to the unsorted set function SADD. The result of the
ZADD command is the number of items that were added. So after creating my set as above, if I
attempted to ZADD beer again:

https://riptutorial.com/ 32

https://redis.io/commands#sorted_set

ZADD favs 4 beer

I would get a 0 result, if I decided I like chocolate better than beer, I could execute:

ZADD favs 3 beer 4 chocolate

to update my preferences, but I would still get a 0 return result since both beer and chocolate are
already in the set.

Counting Items in a Sorted Set

Redis provides three commands to count the items within a sorted set: ZCARD, ZCOUNT,
ZLEXCOUNT.

The ZCARD command is the basic test for the cardinality of a set. (It is analogous to the SCARD
command for sets.) . ZCARD returns the count of the members of a set. Executing the following
code to add items to a set:

zadd favs 1 apple
zadd favs 2 pizza
zadd favs 3 chocolate
zadd favs 4 beer

running ZCard:

zcard favs

returns a value of 4.

The ZCOUNT and ZLEXCOUNT commands allow you to count a subset of the items in a sorted
set based on a range of values. ZCOUNT allows you to count items within a particular range of
scores and ZLEXCOUNT allowes you to count the number of items within a particular lexographic
range.

Using our set above:

zcount favs 2 5

would return a 3, since there are three items (pizza, chocolate, beer) that have scores between 2
and 5 inclusive.

ZLEXCOUNT is designed to work with sets where every item has the same score, forcing and
ordering on the elemement names. If we created a set like:

zadd favs 1 apple
zadd favs 1 pizza
zadd favs 1 chocolate
zadd favs 1 beer

https://riptutorial.com/ 33

we could use ZLEXCOUNT to get the number of elements in particular lexographical range (this is
done by byte-wise comparison using the memcpy function).

zlexcount favs [apple (chocolate

would return 2, since two elements (apple, beer) fall within the range apple (inclusive) and
chocolate (exclusive). We could alternatively make both ends inclusive:

zlexcount favs [apple [chocolate

and get the result 3.

Read Sorted Sets online: https://riptutorial.com/redis/topic/9111/sorted-sets

https://riptutorial.com/ 34

https://riptutorial.com/redis/topic/9111/sorted-sets

Credits

S.
No

Chapters Contributors

1
Getting started with
redis

Ahamed Mustafa M, Alexander V., Aminadav, Community,
Florian Hämmerle, Itamar Haber, Prashant Barve, RLaaa,
Sagar Ranglani, sirin

2 Backup odlp

3
Connecting to redis
using Python

Gianluca D'Ardia, Tague Griffith, ystark

4 Geo Tague Griffith

5
How to Connect to
Redis in Java using
Jedis

Tague Griffith

6
Installation and
Setup

Cristiana214, Gianluca D'Ardia, Sagar Ranglani

7 Lua Scripting Tague Griffith

8 Pub/Sub jerry, Tague Griffith

9 Redis Keys Tague Griffith, Will

10 Redis List Datatype Tague Griffith

11
Redis Persistence
Storage

Aminadav, Tague Griffith

12 Redis Set Datatype JonyD, Tague Griffith

13
Redis String
datatype

Tague Griffith

14 Sorted Sets Tague Griffith

https://riptutorial.com/ 35

https://riptutorial.com/contributor/1384784/ahamed-mustafa-m
https://riptutorial.com/contributor/444110/alexander-v-
https://riptutorial.com/contributor/1229624/aminadav
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/8088868/florian-hammerle
https://riptutorial.com/contributor/3160475/itamar-haber
https://riptutorial.com/contributor/2339869/prashant-barve
https://riptutorial.com/contributor/2522759/rlaaa
https://riptutorial.com/contributor/1007325/sagar-ranglani
https://riptutorial.com/contributor/351113/sirin
https://riptutorial.com/contributor/703903/odlp
https://riptutorial.com/contributor/5556597/gianluca-d-ardia
https://riptutorial.com/contributor/7524570/tague-griffith
https://riptutorial.com/contributor/1334174/ystark
https://riptutorial.com/contributor/7524570/tague-griffith
https://riptutorial.com/contributor/7524570/tague-griffith
https://riptutorial.com/contributor/2314592/cristiana214
https://riptutorial.com/contributor/5556597/gianluca-d-ardia
https://riptutorial.com/contributor/1007325/sagar-ranglani
https://riptutorial.com/contributor/7524570/tague-griffith
https://riptutorial.com/contributor/2404065/jerry
https://riptutorial.com/contributor/7524570/tague-griffith
https://riptutorial.com/contributor/7524570/tague-griffith
https://riptutorial.com/contributor/145279/will
https://riptutorial.com/contributor/7524570/tague-griffith
https://riptutorial.com/contributor/1229624/aminadav
https://riptutorial.com/contributor/7524570/tague-griffith
https://riptutorial.com/contributor/6158542/jonyd
https://riptutorial.com/contributor/7524570/tague-griffith
https://riptutorial.com/contributor/7524570/tague-griffith
https://riptutorial.com/contributor/7524570/tague-griffith

	About
	Chapter 1: Getting started with redis
	Remarks
	Versions
	Examples
	Overview
	Redis command line interface
	Redis "Hello World"
	Install Redis by using Docker
	Redis installtion on Windows, with Node.js example

	Chapter 2: Backup
	Introduction
	Examples
	Backup of a remote Redis instance to a local instance

	Password?
	Start replication
	Checking sync progress
	Saving a data dump to disk
	Halting replication

	Chapter 3: Connecting to redis using Python
	Introduction
	Remarks
	Examples
	Add element to list
	Adding fields to a Hash
	Setting up a Connection to Redis
	Creating a transaction
	Executing Commands Directly

	Chapter 4: Geo
	Introduction
	Syntax
	Examples
	GEOADD
	GEODIST

	Chapter 5: How to Connect to Redis in Java using Jedis
	Introduction
	Remarks
	Examples
	Getting Jedis
	Connecting to Redis
	Executing Basic Get/Set Commands
	Executing Commands

	Chapter 6: Installation and Setup
	Examples
	Installing Redis
	Starting Redis
	Check if Redis is working
	Access Redis Cli
	Redis data types
	Installing and running Redis Server on Windows

	Chapter 7: Lua Scripting
	Introduction
	Examples
	Commands For Scripting

	Chapter 8: Pub/Sub
	Introduction
	Syntax
	Remarks
	Examples
	Publish & subscribe with redis

	Chapter 9: Redis Keys
	Introduction
	Syntax
	Remarks
	Examples
	Valid Keys
	Key Naming Schemes
	Listing all keys
	TTL and Key Expiration
	Deleting Keys
	Scanning the Redis Keyspace

	Chapter 10: Redis List Datatype
	Introduction
	Syntax
	Remarks
	Examples
	Adding Items to a List
	Getting Items from a List
	Size of a List

	Chapter 11: Redis Persistence Storage
	Introduction
	Examples
	Disable all persistence storage in Redis
	Get persistence storage status

	Chapter 12: Redis Set Datatype
	Introduction
	Syntax
	Remarks
	Examples
	Size of a Set
	Adding Items to a Set
	Testing for Membership

	Chapter 13: Redis String datatype
	Introduction
	Syntax
	Examples
	Working with String as Integers
	Working with Strings as Floating Point Numbers

	Chapter 14: Sorted Sets
	Introduction
	Syntax
	Remarks
	Examples
	Adding Items to a Sorted Set
	Counting Items in a Sorted Set

	Credits

