
redux

#redux

Table of Contents

About 1

Chapter 1: Getting started with redux 2

Remarks 2

Versions 2

Examples 3

Installation or Setup 3

Vanilla Redux Example (without React or others) 4

Chapter 2: Asynchronous Data Flow 6

Examples 6

Redux-thunk: basics 6

Using redux-thunk with jQuery.ajax 6

Middleware 7

Action creators 7

Use custom middleware + Superagent 7

Using redux-thunk with Promises 9

Chapter 3: How to link redux and react 10

Syntax 10

Parameters 10

Examples 10

Provider 10

Map state to properties 10

Memoizing derived data 11

Chapter 4: Pure Redux - Redux without any framework 13

Parameters 13

Remarks 13

Examples 13

Full example 13

index.html 13

index.js 13

Chapter 5: Reducer 15

Remarks 15

Examples 15

Basic reducer 15

Using Immutable 16

Basic example using ES6 spread 16

Chapter 6: Testing Redux apps 18

Examples 18

Redux + Mocha 18

Testing a Redux store with Mocha and Chai 18

Credits 20

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: redux

It is an unofficial and free redux ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official redux.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/redux
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with redux

Remarks

Redux is a JavaScript library that implements state container of the Flux-based architecture.

Redux can be described in three fundamental principles:

Single source of truth (Single store)1.
State is read only (need actions to signal change)2.
Changes are made with pure functions (This creates new state according to the actions)3.

Main parts:

store constructor•
store.dispatch(action)•
middleware•
reducers•

Redux is astonishingly simple. It uses a function called a reducer (a name derived from the
JavaScript reduce method) that takes two parameters: An action, and a next state.

The reducer has access to the current (soon to be previous) state, applies the given action to that
state, and returns the desired next state.

Reducers are designed to be pure functions; meaning, they produce no side effects. If you pass
the same input values to a reducer 100 times, you will get the exact same output value 100 times.
Nothing weird happens. They are completely predictable. As someone with a prominent "NO
SURPRISES" sticky note on my monitor, this is a wonderful idea to contemplate.

Reducers do not store state, and they do NOT mutate state. They are passed state, and they
return state. This is what reducers look like in action. http://redux.js.org/docs/basics/Reducers.html

Reference: http://redux.js.org/docs/introduction/Motivation.html

Versions

Versions Release Date

v3.6.0 2016-09-04

v3.5.0 2016-04-20

v3.4.0 2016-04-09

v3.3.0 2016-02-06

https://riptutorial.com/ 2

http://redux.js.org/docs/basics/Reducers.html
http://redux.js.org/docs/introduction/Motivation.html
https://github.com/reactjs/redux/releases/tag/v3.6.0
https://github.com/reactjs/redux/releases/tag/v3.5.0
https://github.com/reactjs/redux/releases/tag/v3.4.0
https://github.com/reactjs/redux/releases/tag/v3.3.0

Versions Release Date

v3.2.0 2016-02-01

v3.1.0 2016-01-28

v3.0.0 2015-09-13

v2.0.0 2015-09-01

v1.0.0 2015-08-14

Examples

Installation or Setup

Basic installation:

You can download redux javascript file, using this link.

Also you can install redux, using bower :

bower install https://npmcdn.com/redux@latest/dist/redux.min.js

Next, you need to include redux to your page:

<html>
 <head>
 <script type="text/javascript" src="/path/to/redux.min.js"></script>
 </head>
 <body>
 <div id="app"></div>
 <script>
 // Redux is available as `window.Redux` variable.
 </script>
 </body>
</html>

Npm installation:

If you are using npm, to install redux, you need to run:

npm install redux --save

Next, to use redux, you need to require it (assuming you are using module bundler, like webpack):

var redux = require('redux');

Or if you are using es6 transpiler, like babel:

https://riptutorial.com/ 3

https://github.com/reactjs/redux/releases/tag/v3.2.0
https://github.com/reactjs/redux/releases/tag/v3.2.0
https://github.com/reactjs/redux/releases/tag/v3.0.0
https://github.com/reactjs/redux/releases/tag/v2.0.0
https://github.com/reactjs/redux/releases/tag/v1.0.0
https://npmcdn.com/redux@latest/dist/redux.min.js
http://bower.io
https://www.npmjs.com/
http://webpack.github.io
http://babeljs.io

import redux from 'redux';

Vanilla Redux Example (without React or others)

You can see the running demo by clicking here.

HTML:

<p>
 Counter State

 (Will increase each minute):
 <p>

 </p>
</p>

<p>
 <button id="increment-action">+ Increase +</button>
 <button id="decrement-action">- Decrease -</button>
</p>

REDUX LOGIC:

// ------------------------ reducer helpers ------------------------
let reducers = {}

let addReducer = (reducers, actionType, reducer) =>
 reducers[actionType] = (state, action) => {
 if (action.type == actionType) {
 return reducer(state, action)
 }
 }

let reducer = (state, action) => {
 if (reducers[action.type]) {
 return reducers[action.type](state, action)
 }
 return state
}

// ------------------------ redux setup ------------------------

const {
 createStore,
 applyMiddleware
 } = Redux

// apply logging middleware (not necessary)
// open the console to see the action logger output on each time new action dispatched
const actionLogger = ({ dispatch, getState }) => next => action => {
 console.log("action logger: action.type=%s state=%d", action.type, getState())
 return next(action)
}

https://riptutorial.com/ 4

https://jsfiddle.net/inancgumus/e3067seu/

// ------------------------ reducers ------------------------
// those will be creating new states and returning it,
// depending on the dispatched actions
addReducer(reducers, 'INCREMENT', (state, action) => ++state)
addReducer(reducers, 'DECREMENT', (state, action) => --state)

const DEFAULT_STATE = 0

const store = createStore(
 reducer,
 DEFAULT_STATE,
 applyMiddleware(actionLogger)
);

console.log(createStore)

// ------------------------ rendering ------------------------
let render = () => document.getElementById('counter-state').innerHTML = store.getState()

//
// IMPORTANT BINDING:
//
// store will be dispatching the new state to the render method each time the state changes
//
store.subscribe(render)

//
// render with the state for the first time
//
render()

// ------------------------ redux actions ------------------------

// continously increment the counter (the state) each second
setInterval(() => store.dispatch({type: 'INCREMENT'}), 1000)

// only increment the counter on click to the increase button
document
 .getElementById('increment-action')
 .addEventListener('click', () => store.dispatch({type: 'INCREMENT'}))

// only decrement the counter on click to the decrease button
document
 .getElementById('decrement-action')
 .addEventListener('click', () => store.dispatch({type: 'DECREMENT'}))

Read Getting started with redux online: https://riptutorial.com/redux/topic/1101/getting-started-
with-redux

https://riptutorial.com/ 5

https://riptutorial.com/redux/topic/1101/getting-started-with-redux
https://riptutorial.com/redux/topic/1101/getting-started-with-redux

Chapter 2: Asynchronous Data Flow

Examples

Redux-thunk: basics

While redux itself is entirely synchronous, you can use a middleware such as redux-thunk to handle
asynchronous actions.

A "thunk" is another name for a callback. It is a function that is usually passed as an
argument to be called at a later time.

To use, apply the middleware to your redux store:

import ReduxThunk from 'redux-thunk';

const store = createStore(
 reducer,
 applyMiddleware(ReduxThunk)
);

This allows you to pass a thunk to dispatch instead of a plain object. The middleware will
recognize the thunk and call it. The thunk takes the store's dispatch method as a parameter:

// an asynchronous action - "thunk"
// This will wait 1 second, and then dispatch the 'INCREMENT' action
const delayedIncrement = dispatch => setTimeout(() => {
 dispatch({
 type: 'INCREMENT'
 });
}, 1000);

// dispatch the thunk.
// note: no () as we're passing the function itself
store.dispatch(delayedIncrement);

Using redux-thunk with jQuery.ajax

const loadUser = userId => dispatch => {
 dispatch({ type: 'USER_LOADING' });
 $.ajax('/users/' + userId, {
 type: 'GET',
 dataType : 'json'
 }).done(response => {
 dispatch({ type: 'USER_LOADED', user: response });
 }).fail((xhr, status, error) => {
 dispatch({ type: 'USER_LOAD_ERROR', status, error });
 });
};

To use, dispatch like any other action creator:

https://riptutorial.com/ 6

store.dispatch(loadUser(123));

This will result in an initial USER_LOADING action being dispatched, which can be used to display a
loading indicator (if so desired), and after the response has been received either a USER_LOADED
action or USER_LOAD_ERROR action will be dispatched, depending on the result of the $.ajax request.

Middleware

When you call store.dispatch(actionObject) it is handled synchronously. I.e. reducers would be
called and your store listeners would be notified, your react views would be re-rendered on each
dispatched action.

Middleware is what enables you to delay dispatching or even dispatch different actions in the
middle. I.e. middleware makes your asynchronous actions look synchronous.

const myAsyncMiddleware = (store) => {
 return (next) => {
 return (action) => {
 if(action.type === "ASYNC_ACTION") {
 setTimeout(() => {
 store.dispatch({ type: "ASYNC_ACTION_RESPONSE" });
 }, 1000);
 } else {
 return next(action);
 }
 }
 }
}

const store = createStore(
 reducer,
 applyMiddleware(myAsyncMiddleware)
);

Action creators

Another approach to handling asynchrony in Redux is to use action creators. In Flux, action
creators are special functions that construct action objects and dispatch them.

myActionCreator(dispatch) {
 dispatch({ type: "ASYNC_ACTION_START" });
 setTimeout(() => {
 dispatch({ type: "ASYNC_ACTION_END" });
 }, 1000)
}

Use custom middleware + Superagent

This is example has extracted from this boilerplate.

Custom middleware:

https://riptutorial.com/ 7

https://github.com/erikras/react-redux-universal-hot-example

export default function clientMiddleware() {
 return ({dispatch, getState}) => {
 return next => action => {
 if (typeof action === 'function') {
 return action(dispatch, getState);
 }

 const { promise, types, ...rest } = action; // eslint-disable-line no-redeclare
 if (!promise) {
 return next(action);
 }

 const [REQUEST, SUCCESS, FAILURE] = types;
 next({...rest, type: REQUEST});

 const client = new ApiClient();
 const actionPromise = promise(client);
 actionPromise.then(
 (result) => next({...rest, result, type: SUCCESS}),
 (error) => next({...rest, error, type: FAILURE})
).catch((error)=> {
 console.error('MIDDLEWARE ERROR:', error);
 next({...rest, error, type: FAILURE});
 });

 return actionPromise;
 };
 };
}

Wrapping Superagent library for API call:

import superagent from 'superagent';
import config from '../config';

const methods = ['get', 'post', 'put', 'patch', 'del'];

function formatUrl(path) {
 const adjustedPath = path[0] !== '/' ? '/' + path : path;
 return adjustedPath;
}

export default class ApiClient {
 constructor(req) {
 methods.forEach((method) =>
 this[method] = (path, { params, data } = {}) => new Promise((resolve, reject) => {
 const request = superagent[method](formatUrl(path));

 if (params) {
 request.query(params);
 }

 if (data) {
 request.send(data);
 }

 request.end((err, { body } = {}) => err ? reject(body || err) : resolve(body));
 }));
 }
 empty() {}

https://riptutorial.com/ 8

}

Using redux-thunk with Promises

import 'whatwg-fetch';

function checkStatus(response) {
 if (response.status >= 200 && response.status < 300) {
 return response;
 }
 const error = new Error(response.statusText);
 error.response = response;
 throw error;
}

function parseJSON(response) {
 return response.json();
}

function getJSON(endpoint, params) {
 return fetch(endpoint, params)
 .then(checkStatus)
 .then(parseJSON);
}

export function action() {
 return dispatch => getJSON('/example-endpoint')
 .then((result) => {
 dispatch({
 type: GET_SUCCESS,
 result,
 });
 })
 .catch((error) => {
 dispatch({ type: GET_FAILURE, error });
 });
}

Read Asynchronous Data Flow online: https://riptutorial.com/redux/topic/3474/asynchronous-data-
flow

https://riptutorial.com/ 9

https://riptutorial.com/redux/topic/3474/asynchronous-data-flow
https://riptutorial.com/redux/topic/3474/asynchronous-data-flow

Chapter 3: How to link redux and react

Syntax

<Provider store>•
connect([mapStateToProps], [mapDispatchToProps], [mergeProps], [options])•

Parameters

Argument Description

store Redux store

mapStateToProps User provided mapping: (state, ownProps) => resultProps

Examples

Provider

To easily link your Redux store to your React components you can use an additional library: react-
redux.

First, you need to wrap your app in a Provider, which is a component that passes your store to be
used by child components:

import { Provider } from 'react-redux';

/// ... store = createStore()

const App = () => (
 <Provider store={store}>
 <MyComponent>
 </Provider>
)

Map state to properties

After you wrapped your app into provider you can use connect function to subscribe your
component to store changes and provide mapping between Redux state properties and React
components' properties:

import { connect } from 'react-redux';

const MyComponent = ({data}) => (
 <div>{data}</div>
);

https://riptutorial.com/ 10

https://github.com/reactjs/react-redux
https://github.com/reactjs/react-redux

const mapStateToProps = (state, ownProps) => ({
 data: state.myComponentData
});

connect(mapStateToProps)(MyComponent);

Memoizing derived data

In your redux store you hold the raw data. Some times the raw data is all you need, but other
times you need to derive new data from the raw data, often by combining parts of the raw data.

A common use case for deriving data is filtering a list of data based on a criteria, where both the
list and the criteria may be changed.

The following example implements mapStateToProps and filters a list of strings to keep those who
match a search string, producing a new prop filteredStringList that can be rendered by a React
Component.

// Example without memoized selectors
const mapStateToProps(state) => {
 const {stringList, searchString} = state;

 return {
 filteredStringList: stringList
 .filter(string => string.indexOf(searchString) > -1)
 };
}

To keep the reducers simple you should only hold the list of data and the filtering criteria in the
store, which means you need to derive the data on read time (like we did in the example above).

Deriving data on read time poses two problems:

If the same data is derived many times it could compromize performance.1.
If the same data is needed in different components, you may find that you are duplicating the
code to derive data.

2.

The solution is to use memoized selectors that are defined only once. The React community
suggests using the npm library reselect to create memoized selectors. In the example below we
achieve the same result as in the first example, only with memoized selectors.

// Create memoized selector for filteredStringList
import {createSelector} from 'reselect';

const getStringList = state => state.stringList;

const getSearchString = state => state.searchString;

const getFilteredStringList = createSelector(
 getStringList,
 getSearchString,
 (stringList, searchString) => stringList
 .filter(string => string.indexOf(searchString) > -1)

https://riptutorial.com/ 11

http://www.riptutorial.com/redux/example/22579/map-state-to-properties
https://www.npmjs.com/package/reselect

);

// Use the memoized selector in mapStateToProps
const mapStateToProps(state) => {
 return {
 filteredStringList: getStringList(state)
 };
}

Note that the two first selectors getStringList and getSearchString are not memoized, because
they are so simple that it would provide no performance gain. They still need to be created
because we need to pass them as dependencies to createSelector, so that it knows when to reuse
the memoized result and when to compute a new result.

The memoized selector will use the function passed as the last argument passed to createSelector
to compute the derived data (in our example the function that returns the filtered string list). Each
time the memoized selector is called, if the dependencies are not changed since the last time it
was called, (in our example stringList and searchString), the memoized selector will return the
previous result, saving the time it would take recompute it.

You can think of selectors (memoized or not memoized) as getters for the store state, just like
action-creators are setters.

You can find more examples on computing derived data in the Redux documentation's recipes
section.

Read How to link redux and react online: https://riptutorial.com/redux/topic/6621/how-to-link-redux-
and-react

https://riptutorial.com/ 12

http://redux.js.org/docs/recipes/ComputingDerivedData.html#computing-derived-data
http://redux.js.org/docs/recipes/ComputingDerivedData.html#computing-derived-data
https://riptutorial.com/redux/topic/6621/how-to-link-redux-and-react
https://riptutorial.com/redux/topic/6621/how-to-link-redux-and-react

Chapter 4: Pure Redux - Redux without any
framework

Parameters

Paramenter Description

action
It must be an object with at least the type property. Any other property can be
passed and will be accessible within the reducer function.

Remarks

If you're not using bundlers like Webpack and Browserify, change the first line to:

const { createStore } = Redux;

Or just call it directly from the Redux global when creating the store:

const store = Redux.createStore(counter);

Examples

Full example

index.html

<button id="increment">Increment</button>
<button id="decrement">Decrement</button>
<p id="app"></p>

index.js

import { createStore } from 'redux';

function counter(state = 0, action) {
 switch (action.type) {
 case 'INCREMENT':
 return state + 1;

 case 'DECREMENT':
 return state - 1;

 default:
 return state;

https://riptutorial.com/ 13

 }
}

const store = createStore(counter);

function render() {
 const state = store.getState();
 document.querySelector('#app').innerHTML = `Counter: ${state}`;
}

const incrementButton = document.querySelector('#increment');
const decrementButton = document.querySelector('#decrement');

incrementButton.addEventListener('click', () => {
 store.dispatch({ type: 'INCREMENT' });
});

decrementButton.addEventListener('click', () => {
 store.dispatch({ type: 'DECREMENT' });
});

store.subscribe(() => {
 render();
});

render();

Read Pure Redux - Redux without any framework online:
https://riptutorial.com/redux/topic/4079/pure-redux---redux-without-any-framework

https://riptutorial.com/ 14

https://riptutorial.com/redux/topic/4079/pure-redux---redux-without-any-framework

Chapter 5: Reducer

Remarks

Reducers change the application state based on the actions fired.

The state is immutable, that means reducers should be pure: for the same input, you should
always get the same output. Because of this, mutability is forbidden in reducers.

Examples

Basic reducer

A basic reducer would look like this:

// Import the action types to recognise them
import { ACTION_ERROR, ACTION_ENTITIES_LOADED, ACTION_ENTITY_CREATED } from './actions';

// Set up a default state
const initialState = {
 error: undefined,
 entities: []
};

// If no state is provided, we take the default state
export default (state = initilState, action) => {

 // Based on the type of action received, we calculate the new state
 switch(action.type) {

 // Set the error
 case ACTION_ERROR:
 // Note that we create a new object, copy the current state into it,
 // and then we make the relevant changes, so we don't mutate the state
 return Object.assign({}, state, { error: action.error });

 // Unset any error, and load the entitites
 case ACTION_ENTITIES_LOADED:
 return Object.assign({}, state, {
 entities: action.entities,
 error: undefined
 };

 // Add only one entity. Again, note how we make a new entities array
 // combining the previous one with the new entity
 // instead of directly modifying it, so we don't mutate the state.
 case ACTION_ENTITY_CREATED:
 return Object.assign({}, state, {
 entities: [action.entity].concat(state.entities)
 }):

 // If the action is not relevant to this reducer, just return the state
 // as it was before.

https://riptutorial.com/ 15

http://redux.js.org/docs/basics/Reducers.html

 default:
 return state;
 }
};

Using Immutable

Immutable is a great library that provides us with immutable versions of widely used types of
collections, such as Lists, Stacks, Maps, and more.

It simplifies the manipulation of the state and makes it easier to make pure calculations and avoid
mutation.

Let's see how the Basic reducer can be rewritten using Immutable's Map and List structures:

import { ACTION_ERROR, ACTION_ENTITIES_LOADED, ACTION_ENTITY_CREATED } from './actions';

// Import Immutable
import Immutable from 'immutable';

// Set up a default state using a Map, a structure very similar to objects
// Note that states in Redux can be anything, not just objects
const initialState = Immutable.Map({
 error: undefined,
 entities: Immutable.List()
});

export default (state = initialState, action) => {

 switch(action.type) {

 case ACTION_ERROR:
 return state.set('error', action.error);

 case ACTION_ENTITIES_LOADED:
 return state.merge({
 entities: Immutable.List(action.entities)
 error: undefined
 });

 case ACTION_ENTITY_CREATED:
 return state.set('entities', state.entities.push(action.entity));

 default:
 return state;
 }
};

As you may have seen, handling the immutable state gets easier using Immutable.

Basic example using ES6 spread

// Import the action types to recognize them
import { ACTION_ERROR, ACTION_ENTITIES_LOADED, ACTION_ENTITY_CREATED } from './actions';

https://riptutorial.com/ 16

https://facebook.github.io/immutable-js/

// Set up a default state
const initialState = {
 error: undefined,
 entities: [],
 loading: true
};

// If no state is provided, we take the default state
export default (state = initialState, action) => {

 // Based on the type of action received, we calculate the new state
 switch(action.type) {

 // Set the error
 case ACTION_ERROR:
 // We will create new object with state,
 // which should be produced by error action
 return {
 entities: [],
 loading: false,
 error: action.error
 };

 // Unset any error, and load the entities
 case ACTION_ENTITIES_LOADED:
 return {
 entities: action.entities,
 error: undefined,
 loading: false
 };

 // Add only one entity. We will use spread operator (...) to merge
 // objects properties and to create new entity
 case ACTION_ENTITY_CREATED:
 return {
 ...state,
 entities: [action.entity].concat(state.entities)
 };

 // Every action is processed by each reducer,
 // so we need to return same state if we do not want to mutate it
 default:
 return state;
 }
};

Read Reducer online: https://riptutorial.com/redux/topic/6615/reducer

https://riptutorial.com/ 17

https://riptutorial.com/redux/topic/6615/reducer

Chapter 6: Testing Redux apps

Examples

Redux + Mocha

Redux is very functional, so unit testing is very straightforward.

Action creator:

export function showSidebar () {
 return {
 type: 'SHOW_SIDEBAR'
 }
}

Action creators unit test:

import expect from 'expect'
import actions from './actions'
import * as type from './constants'

describe('actions', () => {
 it('should show sidebar', () => {
 const expectedAction = {
 type: type.SHOW_SIDEBAR
 }
 expect(actions.showSidebar()).toEqual(expectedAction)
 })
})

Testing a Redux store with Mocha and Chai

import { expect } from 'chai';
import { createStore } from 'redux';

describe('redux store test demonstration', () => {
 describe('testReducer', () => {
 it('should increment value on TEST_ACTION', () => {
 // define a test reducer with initial state: test: 0
 const testReducer = (state = { test: 0 }, action) => {
 switch (action.type) {
 case 'TEST_ACTION':
 return { test: state.test + 1 };
 default:
 return state;
 }
 });

 // create a redux store from reducer
 const store = createStore(testReducer);

 // establish baseline values (should return initial state)

https://riptutorial.com/ 18

 expect(store.getState().test).to.equal(0);

 // dispatch TEST_ACTION and expect test to be incremented
 store.dispatch({ type: 'TEST_ACTION' });
 expect(store.getState().test).to.equal(1);

 // dispatch an unknown action and expect state to remain unchanged
 store.dispatch({ type: 'UNKNOWN_ACTION' });
 expect(store.getState().test).to.equal(1);
 });
 });
});

Read Testing Redux apps online: https://riptutorial.com/redux/topic/4059/testing-redux-apps

https://riptutorial.com/ 19

https://riptutorial.com/redux/topic/4059/testing-redux-apps

Credits

S.
No

Chapters Contributors

1
Getting started with
redux

1ven, Arijit Bhattacharya, Community, Inanc Gumus, jpdelatorre
, Random User, uddhab, Vanuan

2
Asynchronous Data
Flow

Ali Sepehri.Kh, Arijit Bhattacharya, Franco Risso, Ming Soon,
rossipedia, Vanuan

3
How to link redux
and react

ArneHugo, Vanuan

4
Pure Redux - Redux
without any
framework

Guilherme Nagatomo, Vanuan, Vishnu Y S

5 Reducer Jurosh, Marco Scabbiolo

6 Testing Redux apps Mario Tacke, Shuvo Habib, Vanuan

https://riptutorial.com/ 20

https://riptutorial.com/contributor/6041631/1ven
https://riptutorial.com/contributor/1481710/arijit-bhattacharya
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/115363/inanc-gumus
https://riptutorial.com/contributor/240716/jpdelatorre
https://riptutorial.com/contributor/414002/random-user
https://riptutorial.com/contributor/1735012/uddhab
https://riptutorial.com/contributor/99024/vanuan
https://riptutorial.com/contributor/3085633/ali-sepehri-kh
https://riptutorial.com/contributor/1481710/arijit-bhattacharya
https://riptutorial.com/contributor/4537278/franco-risso
https://riptutorial.com/contributor/7554156/ming-soon
https://riptutorial.com/contributor/115049/rossipedia
https://riptutorial.com/contributor/99024/vanuan
https://riptutorial.com/contributor/2054731/arnehugo
https://riptutorial.com/contributor/99024/vanuan
https://riptutorial.com/contributor/535025/guilherme-nagatomo
https://riptutorial.com/contributor/99024/vanuan
https://riptutorial.com/contributor/5097563/vishnu-y-s
https://riptutorial.com/contributor/1571491/jurosh
https://riptutorial.com/contributor/2002588/marco-scabbiolo
https://riptutorial.com/contributor/2859367/mario-tacke
https://riptutorial.com/contributor/2993242/shuvo-habib
https://riptutorial.com/contributor/99024/vanuan

	About
	Chapter 1: Getting started with redux
	Remarks
	Versions
	Examples
	Installation or Setup
	Vanilla Redux Example (without React or others)

	Chapter 2: Asynchronous Data Flow
	Examples
	Redux-thunk: basics
	Using redux-thunk with jQuery.ajax
	Middleware
	Action creators
	Use custom middleware + Superagent
	Using redux-thunk with Promises

	Chapter 3: How to link redux and react
	Syntax
	Parameters
	Examples
	Provider
	Map state to properties
	Memoizing derived data

	Chapter 4: Pure Redux - Redux without any framework
	Parameters
	Remarks
	Examples
	Full example

	index.html
	index.js

	Chapter 5: Reducer
	Remarks
	Examples
	Basic reducer
	Using Immutable
	Basic example using ES6 spread

	Chapter 6: Testing Redux apps
	Examples
	Redux + Mocha
	Testing a Redux store with Mocha and Chai

	Credits

