
rest

#rest

Table of Contents

About 1

Chapter 1: Getting started with rest 2

Remarks 2

Examples 2

REST Overview 2

REST over HTTP 3

Richardson Maturity Model 4

HTTP requests and responses 4

Usual HTTP response statuses 5

Success 5

Redirection 5

Client errors 5

Server errors 5

Notes 6

HATEOAS 6

Media types 6

Stateless > stateful 7

Why? 7

How? 7

Side notes 7

Cacheable API with conditional requests 8

With the Last-Modified header 8

With the ETag header 8

Additional notes 9

ETag > date 9

Shallow ETags 9

Common pitfalls 9

Why shouldn't I put verbs in a URLs? 9

How to partially update a resource? 9

What about actions that don't fit into the world of CRUD operations? 10

Common practices 11

Blogs management through a RESTful HTTP API 11

Get blog 123 12

Request 12

Response 12

Create a new article in blog 123 12

Request 12

Response 13

Get article 789 of blog 123 13

Request 13

Response 13

Get the 4th page of 25 articles of blog 123 13

Request 14

Response 14

Update article 789 of blog 123 15

Request 15

Response 15

Notes 15

Delete article 789 of blog 123 16

Request 16

Response 16

Violating REST 16

Credits 17

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: rest

It is an unofficial and free rest ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official rest.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/rest
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with rest

Remarks

This section provides an overview of what rest is, and why a developer might want to use it.

It should also mention any large subjects within rest, and link out to the related topics. Since the
Documentation for rest is new, you may need to create initial versions of those related topics.

Examples

REST Overview

REST stands for REpresentational State Transfer and was coined by Roy Fielding in his doctoral
thesis Architectural Styles and the Design of Network-based Software Architectures. In it he
identifies specific architectural principles like:

Addressable Resources: the key abstraction of information and data in REST is a resource
and each resource must be addressable via a URI.

•

A uniform, constrained interface: use of small set of well-defined methods to manipulate our
resources.

•

Representation-oriented: A resource referenced by one URI can have different formats and
different platforms need different formats, for example browsers need HTML, JavaScript
needs JSON and Java applications may need XML, JSON, CSV, text, etc. So we interact
with services using representation of that service.

•

Communicate statelessly: stateless applications are easier to scale.•

Hypermedia As The Engine Of Application State: let our data formats drive state transitions
in our applications.

•

The set of these architectural principles is called REST. The concepts of REST are inspired by
that of HTTP. Roy Fielding who gave REST to us is also one of the authors of HTTP
specifications.

Web Services and RESTful Web Services are services which are exposed to internet for
programmatic access. They are online api which we can call from our code. There are two types of
“Big” web services SOAP and REST web services.

RESTful Web Services: Web services which are written by applying the REST architectural
concepts are called RESTful Web Services, which focus on system resources and how state of a
resource can be transferred over HTTP protocol to different clients.

This document is solely focused on RESTful web services so we will not get into the details of
SOAP WS.

https://riptutorial.com/ 2

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://docs.oracle.com/javaee/6/tutorial/doc/gijvh.html
https://docs.oracle.com/javaee/6/tutorial/doc/giqsx.html
https://docs.oracle.com/javaee/6/tutorial/doc/giqsx.html#gkcaw

There are no strict rules while designing RESTful web services like

No protocol standard•
No communication channel standard•
No service definition standard•

But SOAP has strict rules for all these. All SOAP web services follow SOAP specification which
dictates what every SOAP web services should be. This specification is developed and managed
by a committee and if SOAP WS does not follow even a single rule then by definition it is not
SOAP.

Concepts of RESTful Web Services

There are few guidelines which needs to be considered while designing/developing RESTful api:

Resource based locations/URI1.
Proper use of HTTP methods2.
HATEOAS (Hypermedia As The Engine Of Application State)3.

The main approach while developing RESTful APIs should be to make the API “as RESTful as
possible”.

REST over HTTP

REST is a protocol-agnostic architecture proposed by Roy Fielding in his dissertation (chapter 5
being the presentation of REST), that generalizes the proven concept of web browsers as clients
in order to decouple clients in a distributed system from servers.

In order for a service or API to be RESTful, it must adhere to given constraints like:

Client-server•
Stateless•
Cacheable•
Layered system•
Uniform interface

Resources identification○

Resources representation○

Self-descriptive messages○

Hypermedia○

•

Besides the constraints mentioned in Fielding's dissertation, in his blog post REST APIs must be
hypertext-driven, Fielding clarified that just invoking a service via HTTP does not make it
RESTful. A service should therefore also respect further rules which are summarized as follow:

The API should adhere to and not violate the underlying protocol. Although REST is used via
HTTP most of the time, it is not restricted to this protocol.

•

Strong focus on resources and their presentation via media-types.•

https://riptutorial.com/ 3

https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Roy_Fielding
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

Clients should not have initial knowledge or assumptions on the available resources or their
returned state ("typed" resource) in an API but learn them on the fly via issued requests and
analyzed responses. This gives the server the opportunity to move around or rename
resources easily without breaking a client implementation.

•

Richardson Maturity Model

The Richardson Maturity Model is a way to apply REST constraints over HTTP in order to obtain
RESTful web services.

Leonard Richardson divided applications into these 4 layers:

Level 0: use of HTTP for the transport•
Level 1: use of URL to identify resources•
Level 2: use of HTTP verbs and statuses for the interactions•
Level 3: use of HATEOAS•

As the focus is on the representation of the state of a resource, supporting multiple
representations for the same resource is encouraged. A representation could therefore present an
overview of the resource state while an other returns the full details of the same resource.

Note also that given Fielding constraints, an API is effectively RESTful only once the 3rd level
of the RMM is implemented.

HTTP requests and responses

An HTTP request is:

A verb (aka method), most of the time one of GET, POST, PUT, DELETE or PATCH•
A URL•
Headers (key-value pairs)•
Optionally a body (aka payload, data)•

An HTTP response is:

A status, most of the time one of 2xx (successful), 4xx (client error) or 5xx (server error)•
Headers (key-value pairs)•
A body (aka payload, data)•

HTTP verbs characteristics:

Verbs that have a body: POST, PUT, PATCH•
Verbs that must be safe (i.e. that mustn't modify resources): GET•
Verbs that must be idempotent (i.e. that mustn't affect resources again when run multiple
times): GET (nullipotent), PUT, DELETE

•

https://riptutorial.com/ 4

http://soabits.blogspot.co.at/2012/04/restful-resources-are-not-typed.html
http://martinfowler.com/articles/richardsonMaturityModel.html
https://en.wikipedia.org/wiki/HATEOAS
https://tools.ietf.org/html/rfc7231#section-4.3.1
https://tools.ietf.org/html/rfc7231#section-4.3.3
https://tools.ietf.org/html/rfc7231#section-4.3.4
https://tools.ietf.org/html/rfc7231#section-4.3.5
https://tools.ietf.org/html/rfc5789
https://tools.ietf.org/html/rfc7231#section-6.3
https://tools.ietf.org/html/rfc7231#section-6.5
https://tools.ietf.org/html/rfc7231#section-6.6

 body safe idempotent
GET ✗ ✔ ✔
POST ✔ ✗ ✗
PUT ✔ ✗ ✔
DELETE ✗ ✗ ✔
PATCH ✔ ✗ ✗

Consequently, HTTP verbs can be compared to the CRUD functions:

Create: POST•
READ: GET•
UPDATE: PUT, PATCH•
DELETE: DELETE•

Note that a PUT request asks clients to send the entire resource with the updated values. To
partially update a resource, a PATCH verb could be used (see How to partially update a resource?).

Usual HTTP response statuses

Success

201 (CREATED): resource has been created•
202 (ACCEPTED): request accepted, but process still in progress•
204 (NO CONTENT): request fulfilled, and no additional content•
Otherwise: 200 (OK)•

Redirection

304 (NOT MODIFIED): client can use the cached version it has of the requested resource•

Client errors

401 (UNAUTHORIZED): an anonymous request accesses a protected API•
403 (FORBIDDEN): an authenticated request hasn't enough rights to access a protected API•
404 (NOT FOUND): resource not found•
409 (CONFLICT): resource state in conflict (e.g. a user trying to create an account with an
already registered email)

•

410 (GONE): same as 404, but the resource existed•
412 (PRECONDITION FAILED): request tries to modify a resource that is in an unexpected
state

•

422 (UNPROCESSABLE ENTITY): request payload is syntactically valid, but semantically
erroneous (e.g. a required field that has not been valued)

•

423 (LOCKED): resource is locked•
424 (FAILED DEPENDENCY): requested action depended on another action that failed•
429 (TOO MANY REQUESTS): user sent too many requests in a given amount of time•
Otherwise: 400 (BAD REQUEST)•

Server errors

https://riptutorial.com/ 5

https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
http://www.riptutorial.com/http/example/11811/create-a-resource
http://www.riptutorial.com/http/example/11811/create-a-resource
http://www.riptutorial.com/http/example/11812/edit-a-resource
http://www.riptutorial.com/http/example/11812/edit-a-resource
http://www.riptutorial.com/http/example/11813/delete-a-resource
http://www.riptutorial.com/http/example/11813/delete-a-resource
http://tools.ietf.org/html/rfc7231#section-6.3.2
http://tools.ietf.org/html/rfc7231#section-6.3.3
http://tools.ietf.org/html/rfc7231#section-6.3.5
http://tools.ietf.org/html/rfc7231#section-6.3.1
https://tools.ietf.org/html/rfc7232#section-4.1
http://tools.ietf.org/html/rfc7235#section-3.1
http://tools.ietf.org/html/rfc7231#section-6.5.3
http://tools.ietf.org/html/rfc7231#section-6.5.4
http://tools.ietf.org/html/rfc7231#section-6.5.8
http://tools.ietf.org/html/rfc7231#section-6.5.9
https://tools.ietf.org/html/rfc7232#section-4.2
http://tools.ietf.org/html/rfc4918#section-11.2
http://tools.ietf.org/html/rfc4918#section-11.3
http://tools.ietf.org/html/rfc4918#section-11.4
http://tools.ietf.org/html/rfc6585#section-4
http://tools.ietf.org/html/rfc7231#section-6.5.1

501 (NOT IMPLEMENTED): server does not support the functionality required to fulfill the
request

•

503 (SERVICE UNAVAILABLE): server is currently unable to handle the request due to a
temporary overload or scheduled maintenance

•

507 (INSUFFICIENT STORAGE): server is unable to store the representation needed to
successfully complete the request

•

Otherwise: 500 (INTERNAL SERVER ERROR)•

Notes

Nothing stops you from adding a body to erroneous responses, to make the rejection clearer for
clients. For example, the 422 (UNPROCESSABLE ENTITY) is a bit vague: response body should
provide the reason why the entity could not be processed.

HATEOAS

Each resource must provide hypermedia to the resources it is linked to. A link is at least composed
by:

A rel (for relation, aka name): describes the relation between the main resource and the
linked one(s)

•

A href: the URL targeting the linked resource(s)•

Additional attributes can be used as well to help with deprecation, content negotiation, etc.

Cormac Mulhall explains that the client should decide what HTTP verb to use based on what it is
trying to do. When in doubt, the API documentation should anyway help you understanding the
available interactions with all hypermedia.

Media types

Media types help having self-descriptive messages. They play the part of the contract between
clients and servers, so that they can exchange resources and hypermedias.

Although application/json and application/xml are quite popular media-types, they do not contain
much semantics. They just describe the overall syntax used in the document. More specialized
media-types that support the HATEOAS requirements should be used (or extended through
vendor media types), such as:

Atom•
RSS 2.0•
HAL•
collection+json•
JSON-LD•

https://riptutorial.com/ 6

http://tools.ietf.org/html/rfc7231#section-6.6.2
http://tools.ietf.org/html/rfc7231#section-6.6.4
http://tools.ietf.org/html/rfc4918#section-11.5
http://tools.ietf.org/html/rfc7231#section-6.6.1
http://tools.ietf.org/html/rfc4918#section-11.2
http://stackoverflow.com/a/19960059/1225328
https://en.wikipedia.org/wiki/Media_type#Vendor_tree
https://tools.ietf.org/html/rfc4287
https://validator.w3.org/feed/docs/rss2.html
https://tools.ietf.org/html/draft-kelly-json-hal-06
https://github.com/collection-json/spec
https://www.w3.org/TR/json-ld-api/

Siren•

A client tells a server which media types it understands by adding the Accept header to his request,
for example:

Accept: application/hal+json

If the server isn't able to produce requested resource in such a representation, it returns a 406
(NOT ACCEPTABLE). Otherwise, it adds the media type in the Content-Type header of the
response holding the represented resource, for example:

Content-Type: application/hal+json

Stateless > stateful

Why?

A stateful server implies that the clients sessions are stored in a server-instance-local storage
(almost always in web server sessions). This starts to be an issue when trying to scale horizontally
: if you hide several server instances behind a load balancer, if one client is first dispatched to
instance #1 when signing in, but afterwards to instance #2 when fetching a protected resource for
example, then the second instance will handle the request as an anonymous one, as the client
session has been stored locally in instance #1.

Solutions have been found to tackle this issue (e.g. by configuring session replication and/or sticky
session), but the REST architecture proposes another approach: just don't make you server
stateful, make it stateless. According to Fielding:

Each request from client to server must contain all of the information necessary to
understand the request, and cannot take advantage of any stored context on the
server. Session state is therefore kept entirely on the client.

In other words, a request must be handled exactly the same way, regardless of whether it is
dispatched to instance #1 or instance #2. This is why stateless applications are considered easier
to scale.

How?

A common approach is a token-based authentication, especially with the trendy JSON Web
Tokens. Note that JWT still have some issues though, particularly concerning invalidation and
automatic prolongation of expiration (i.e. the remember me feature).

Side notes

https://riptutorial.com/ 7

https://github.com/kevinswiber/siren
https://tools.ietf.org/html/rfc7231#section-6.5.6
https://tools.ietf.org/html/rfc7231#section-6.5.6
http://stackoverflow.com/a/11715598/1225328
http://stackoverflow.com/a/11045462/1225328
http://stackoverflow.com/a/11045462/1225328
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_3
http://stackoverflow.com/a/35316102/1225328
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
http://stackoverflow.com/q/21978658/1225328
http://stackoverflow.com/q/26739167/1225328

Using cookies or headers (or anything else) has nothing to do with whether the server is stateful or
stateless: these are just media that are here used to transport tokens (session identifier for stateful
servers, JWT, etc.), nothing more.

When a RESTful API is only used by browsers, (HttpOnly and secure) cookies can be quite
convenient as browsers will automatically attach them to outgoing requests. It's worth mentioning
that if you opt for cookies, be aware of CSRF (a nice way of preventing it is to have the clients
generate and send the same unique secret value in both a cookie and a custom HTTP header).

Cacheable API with conditional requests

With the Last-Modified header

The server can provide a Last-Modified date header to the responses holding resources that are
cacheable. Clients should then store this date together with the resource.

Now, each time clients request the API to read the resource, they can add to their requests an If-
Modified-Since header containing the latest Last-Modified date they received and stored. The
server has then to compare the request's header and the actual last modified date of the resource.
If they are equal, the server returns a 304 (NOT MODIFIED) with an empty body: the requesting
client should use the currently cached resource it has.

Also, when clients request the API to update the resource (i.e. with an unsafe verb), they can add
an If-Unmodified-Since header. This helps dealing with race conditions: if the header and the
actual last modified date are different, the server returns a 412 (PRECONDITION FAILED). The
client should then read the new state of the resource before retrying to modify the resource.

With the ETag header

An ETag (entity tag) is an identifier for a specific state of a resource. It can be a MD5 hash of the
resource for a strong validation, or a domain-specific identifier for a weak validation.

Basically, the process is the same as with the Last-Modified header: the server provides an ETag
header to the responses holding resources that are cacheable, and clients should then store this
identifier together with the resource.

Then, clients provide an If-None-Match header when they want to read the resource, containing the
latest ETag they received and stored. The server can now return a 304 (NOT MODIFIED) if the
header matches the actual ETag of the resource.

Again, clients can provide an If-Match header when they want to modify the resource, and the
server has to return a 412 (PRECONDITION FAILED) if the provided ETag doesn't match the
actual one.

https://riptutorial.com/ 8

https://en.wikipedia.org/wiki/HTTP_cookie#HttpOnly_cookie
https://en.wikipedia.org/wiki/HTTP_cookie#Secure_cookie
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://blog.jdriven.com/2014/10/stateless-spring-security-part-1-stateless-csrf-protection/
https://blog.jdriven.com/2014/10/stateless-spring-security-part-1-stateless-csrf-protection/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Conditional_requests
https://tools.ietf.org/html/rfc7232#section-2.2
https://tools.ietf.org/html/rfc7232#section-2.2
https://tools.ietf.org/html/rfc7232#section-3.3
https://tools.ietf.org/html/rfc7232#section-3.3
https://tools.ietf.org/html/rfc7232#section-3.3
https://tools.ietf.org/html/rfc7232#section-4.1
https://tools.ietf.org/html/rfc7232#section-3.4
https://tools.ietf.org/html/rfc7232#section-3.4
https://tools.ietf.org/html/rfc7232#section-4.2
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Conditional_requests#Strong_validation
https://developer.mozilla.org/en-US/docs/Web/HTTP/Conditional_requests#Weak_validation
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7232#section-3.2
https://tools.ietf.org/html/rfc7232#section-3.2
https://tools.ietf.org/html/rfc7232#section-4.1
https://tools.ietf.org/html/rfc7232#section-3.1
https://tools.ietf.org/html/rfc7232#section-3.1
https://tools.ietf.org/html/rfc7232#section-4.2

Additional notes

ETag > date

If clients provide both date and ETag in their requests, the date must be ignored. From RFC 7232
(here and here):

A recipient MUST ignore If-Modified-Since/If-Unmodified-Since if the request contains
an If-None-Match/If-Match header field; the condition in If-None-Match/If-Match is
considered to be a more accurate replacement for the condition in If-Modified-Since/
If-Unmodified-Since, and the two are only combined for the sake of interoperating with
older intermediaries that might not implement If-None-Match/If-Match.

Shallow ETags

Also, while it's quite obvious that the last modified dates are persisted along with the resources
server-side, several approaches are available with ETag.

A usual approach is to implement shallow ETags: the server processes the request as if no
conditional headers were given, but at the very end only, it generates the ETag of the response it
is about to return (e.g. by hashing it), and compares it with the provided one. This is relatively easy
to implement as only an HTTP interceptor is needed (and many implementations already exist
depending on the server). That being said, it's worth mentioning that this approach will save
bandwidth but not server performance:

A deeper implementation of the ETag mechanism could potentially provide much
greater benefits – such as serving some requests from the cache and not having to
perform the computation at all – but the implementation would most definitely not be as
simple, nor as pluggable as the shallow approach described here.

Common pitfalls

Why shouldn't I put verbs in a URLs?

HTTP is not RPC: what makes HTTP significantly different from RPC is that the requests are
directed to resources. After all, URL stands for Uniform Resource Locator, and a URL is a URI: a
Uniform Resource Idenfitier. The URL targets the resource you want to deal with, the HTTP
method indicates what you want to do with it. HTTP methods are also known as verbs: verbs
in URLs makes then no sense. Note that HATEOAS relations shouldn't contain verbs neither, as
links are targeting resources as well.

How to partially update a resource?

As PUT requests ask clients to send the entire resource with the updated values, PUT /users/123

https://riptutorial.com/ 9

https://tools.ietf.org/html/rfc7232#section-3.3
https://tools.ietf.org/html/rfc7232#section-3.4
http://stackoverflow.com/q/12049642/1225328
http://www.baeldung.com/etags-for-rest-with-spring
http://www.baeldung.com/etags-for-rest-with-spring
http://www.ics.uci.edu/~fielding/pubs/dissertation/evaluation.htm#sec_6_5_2
https://tools.ietf.org/html/rfc3986#section-1.1.3

cannot be used to simply update a user's email for example. As explained by William Durand in
Please. Don't Patch Like An Idiot., several REST-compliant solutions are available:

Expose the resource's properties and use the PUT method to send an updated value, as the
PUT specification states that partial content updates are possible by targeting a separately
identified resource with state that overlaps a portion of the larger resource:

•

PUT https://example.com/api/v1.2/users/123/email
body:
 new.email@example.com

Use a PATCH request that contains a set of instructions describing how the resource must be
modified (e.g. following JSON Patch):

•

PATCH https://example.com/api/v1.2/users/123
body:
 [
 { "op": "replace", "path": "/email", "value": "new.email@example.com" }
]

Use a PATCH request containing a partial representation of the resource, as proposed in Matt
Chapman's comment:

•

PATCH https://example.com/api/v1.2/users/123
body:
 {
 "email": "new.email@example.com"
 }

What about actions that don't fit into the world of CRUD
operations?

Quoting Vinay Sahni in Best Practices for Designing a Pragmatic RESTful API:

This is where things can get fuzzy. There are a number of approaches:

Restructure the action to appear like a field of a resource. This works if the action
doesn't take parameters. For example an activate action could be mapped to a
boolean activated field and updated via a PATCH to the resource.

1.

Treat it like a sub-resource with RESTful principles. For example, GitHub's API
lets you star a gist with PUT /gists/:id/star and unstar with DELETE
/gists/:id/star.

2.

Sometimes you really have no way to map the action to a sensible RESTful
structure. For example, a multi-resource search doesn't really make sense to be
applied to a specific resource's endpoint. In this case, /search would make the
most sense even though it isn't a resource. This is OK - just do what's right from
the perspective of the API consumer and make sure it's documented clearly to

3.

https://riptutorial.com/ 10

http://williamdurand.fr/2014/02/14/please-do-not-patch-like-an-idiot/
https://tools.ietf.org/html/rfc7231#section-4.3.4
https://tools.ietf.org/html/rfc7231#section-4.3.4
http://jsonpatch.com/
http://williamdurand.fr/2014/02/14/please-do-not-patch-like-an-idiot/#comment-1495702936
http://williamdurand.fr/2014/02/14/please-do-not-patch-like-an-idiot/#comment-1495702936
http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#restful
http://developer.github.com/v3/gists/#star-a-gist
http://developer.github.com/v3/gists/#unstar-a-gist

avoid confusion.

Common practices

API is documented. Tools are available to help you building your documentation, e.g.
Swagger or Spring REST Docs.

•

API is versioned, either via headers or through the URL:•

https://example.com/api/v1.2/blogs/123/articles
 ^^^^

Resources have plural names:•

https://example.com/api/v1.2/blogs/123/articles
 ^^^^^ ^^^^^^^^

URLs use kebab-case (words are lowercased and dash-separated):•

https://example.com/api/v1.2/quotation-requests
 ^^^^^^^^^^^^^^^^^^

HATEOAS provides a "self" link to resources, targeting themselves:•

{
 ...,
 _links: {
 ...,
 self: { href: "https://example.com/api/v1.2/blogs/123/articles/789" }
 ^^^^
 }
}

HATEOAS relations use lowerCamelCase (words are lowercased, then capitalized except
the first one, and spaces are omitted), to allow JavaScript clients to use the dot notation
while respecting the JavaScript naming conventions when accessing the links:

•

{
 ...,
 _links: {
 ...,
 firstPage: { "href":
"https://example.com/api/v1.2/blogs/123/articles?pageIndex=1&pageSize=25" }
 ^^^^^^^^^
 }
}

Blogs management through a RESTful HTTP API

https://riptutorial.com/ 11

http://swagger.io/
http://projects.spring.io/spring-restdocs/
http://stackoverflow.com/a/398564/1225328
http://stackoverflow.com/a/21809963/1225328
http://stackoverflow.com/a/18450653/1225328
http://stackoverflow.com/a/14185434/1225328
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Property_Accessors#Dot_notation

The following examples use HAL to express HATEOAS, and make use of:

CURIE (Compact URI): used to provide links to API documentation•
URI templates: URI that includes parameters that must be substituted before the URI is
resolved

•

Get blog 123

Request

GET https://example.com/api/v1.2/blogs/123
headers:
 Accept: application/hal+json

Response

status: 200 (OK)
headers:
 Content-Type: application/hal+json
body:
 {
 "id": 123,
 "title": "The blog title",
 "description": "The blog description",
 "_links": {
 "curies": [{ "name": "doc", "href": "https://example.com/docs/{rel}", "templated": true
}],
 "self": { "href": "https://example.com/api/v1.2/blogs/123" },
 "doc:articles": { "href":
"https://example.com/api/v1.2/blogs/123/articles{?pageIndex,pageSize}", "templated": true }
 }
 }

Create a new article in blog 123

Request

POST https://example.com/api/v1.2/blogs/123/articles
headers:
 Content-Type: application/json
 Accept: application/hal+json
 X-Access-Token: XYZ
body:
 {
 "title": "The title 2",
 "content": "The content 2"
 }

https://riptutorial.com/ 12

http://stateless.co/hal_specification.html
https://www.w3.org/TR/2010/NOTE-curie-20101216/
https://tools.ietf.org/html/rfc6570

Response

status: 201 (CREATED)
headers:
 Content-Type: application/hal+json
body:
 {
 "id": 789,
 "title": "The title 2",
 "content": "The content 2",
 "_links": {
 "curies": [{ "name": "doc", "href": "https://example.com/docs/{rel}", "templated": true
}],
 "self": { "href": "https://example.com/api/v1.2/blogs/123/articles/789" },
 "doc:blog": { "href": "https://example.com/api/v1.2/blogs/123", "title": "The blog
title" },
 "doc:comments": { "href":
"https://example.com/api/v1.2/blogs/123/articles/789/comments{?pageIndex,pageSize}",
"templated": true }
 }
 }

Get article 789 of blog 123

Request

GET https://example.com/api/v1.2/blogs/123/articles/789
headers:
 Accept: application/hal+json

Response

status: 200 (OK)
headers:
 Content-Type: application/hal+json
body:
 {
 "id": 789,
 "title": "The title 2",
 "content": "The content 2",
 "_links": {
 "curies": [{ "name": "doc", "href": "https://example.com/docs/{rel}", "templated": true
}],
 "self": { "href": "https://example.com/api/v1.2/blogs/123/articles/789" },
 "doc:blog": { "href": "https://example.com/api/v1.2/blogs/123", "title": "The blog
title" },
 "doc:comments": { "href":
"https://example.com/api/v1.2/blogs/123/articles/789/comments{?pageIndex,pageSize}",
"templated": true }
 }
 }

https://riptutorial.com/ 13

Get the 4th page of 25 articles of blog 123

Request

GET https://example.com/api/v1.2/blogs/123/articles?pageIndex=4&pageSize=25
headers:
 Accept: application/hal+json

Response

status: 200 (OK)
headers:
 Content-Type: application/hal+json
body:
 {
 "pageIndex": 4,
 "pageSize": 25,
 "totalPages": 26,
 "totalArticles": 648,
 "_link": {
 "firstPage": { "href":
"https://example.com/api/v1.2/blogs/123/articles?pageIndex=1&pageSize=25" },
 "previousPage": { "href":
"https://example.com/api/v1.2/blogs/123/articles?pageIndex=3&pageSize=25" },
 "self": { "href":
"https://example.com/api/v1.2/blogs/123/articles?pageIndex=4&pageSize=25" },
 "nextPage": { "href":
"https://example.com/api/v1.2/blogs/123/articles?pageIndex=5&pageSize=25" },
 "lastPage": { "href":
"https://example.com/api/v1.2/blogs/123/articles?pageIndex=26&pageSize=25" }
 },
 "_embedded": [
 {
 ...
 }, {
 "id": 456,
 "title": "The title 1",
 "content": "The content 1",
 "_links": {
 "curies": [{ "name": "doc", "href": "https://example.com/docs/{rel}", "templated":
true }],
 "self": { "href": "https://example.com/api/v1.2/blogs/123/articles/456" },
 "doc:blog": { "href": "https://example.com/api/v1.2/blogs/123", "title": "The blog
title" },
 "doc:comments": { "href":
"https://example.com/api/v1.2/blogs/123/articles/456/comments{?pageIndex,pageSize}",
"templated": true }
 }
 }, {
 "id": 789,
 "title": "The title 2",
 "content": "The content 2",
 "_links": {
 "curies": [{ "name": "doc", "href": "https://example.com/docs/{rel}", "templated":
true }],

https://riptutorial.com/ 14

 "self": { "href": "https://example.com/api/v1.2/blogs/123/articles/789" },
 "doc:blog": { "href": "https://example.com/api/v1.2/blogs/123", "title": "The blog
title" },
 "doc:comments": { "href":
"https://example.com/api/v1.2/blogs/123/articles/789/comments{?pageIndex,pageSize}",
"templated": true }
 }
 }, {
 ...
 }
]
 }

Update article 789 of blog 123

Request

PUT https://example.com/api/v1.2/blogs/123/articles/789
headers:
 Content-Type: application/json
 Accept: application/hal+json
 X-Access-Token: XYZ
body:
 {
 "id": 789,
 "title": "The title 2 updated",
 "content": "The content 2 updated"
 }

Response

status: 200 (OK)
headers:
 Content-Type: application/hal+json
body:
 {
 "id": 789,
 "title": "The title 2 updated",
 "content": "The content 2 updated",
 "_links": {
 "curies": [{ "name": "doc", "href": "https://example.com/docs/{rel}", "templated": true
}],
 "self": { "href": "https://example.com/api/v1.2/blogs/123/articles/789" },
 "doc:blog": { "href": "https://example.com/api/v1.2/blogs/123", "title": "The blog
title" },
 "doc:comments": { "href":
"https://example.com/api/v1.2/blogs/123/articles/789/comments{?pageIndex,pageSize}",
"templated": true }
 }
 }

Notes

https://riptutorial.com/ 15

The identifier that is used to identify the resource to update is the one in the URL: the one in
the body (if any) must be silently ignored.

•

As a PUT request updates the whole resource, if no content would have been sent, it should
have been removed from the persisted resource.

•

Delete article 789 of blog 123

Request

DELETE https://example.com/api/v1.2/blogs/123/articles/789
headers:
 Accept: application/hal+json
 X-Access-Token: XYZ

Response

status: 204 (NO CONTENT)
headers:
 Content-Type: application/hal+json
body:
 {
 "_links": {
 "curies": [{ "name": "doc", "href": "https://example.com/docs/{rel}", "templated": true
}],
 "doc:blog": { "href": "https://example.com/api/v1.2/blogs/123", "title": "The blog
title" }
 }
 }

Violating REST

<stock>
 <add>
 <item>
 <name>Milk</name>
 <quantity>2</quantity>
 </item>
 </add>
</stock>

Putting this body to an resource like /stocks/123 violates the idea behind REST. While this body is
put and it contains all informations neccessary, it also comes along with an method call to add
somewhere when the body is processed. Following REST one would post the item to
/stocks/123/items/.

Read Getting started with rest online: https://riptutorial.com/rest/topic/1664/getting-started-with-
rest

https://riptutorial.com/ 16

https://riptutorial.com/rest/topic/1664/getting-started-with-rest
https://riptutorial.com/rest/topic/1664/getting-started-with-rest

Credits

S.
No

Chapters Contributors

1
Getting started with
rest

Community, Jason, Najeeb Arif, Roman Vottner, Shog9,
slartidan, sp00m, ssanrao, sschrass, zretscen

https://riptutorial.com/ 17

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1320693/jason
https://riptutorial.com/contributor/3297753/najeeb-arif
https://riptutorial.com/contributor/1377895/roman-vottner
https://riptutorial.com/contributor/811/shog9
https://riptutorial.com/contributor/476791/slartidan
https://riptutorial.com/contributor/1225328/sp00m
https://riptutorial.com/contributor/3915609/ssanrao
https://riptutorial.com/contributor/1087479/sschrass
https://riptutorial.com/contributor/3388008/zretscen

	About
	Chapter 1: Getting started with rest
	Remarks
	Examples
	REST Overview
	REST over HTTP

	Richardson Maturity Model

	HTTP requests and responses
	Usual HTTP response statuses
	Success
	Redirection
	Client errors
	Server errors
	Notes

	HATEOAS
	Media types
	Stateless > stateful
	Why?
	How?
	Side notes

	Cacheable API with conditional requests
	With the Last-Modified header
	With the ETag header
	Additional notes
	ETag > date
	Shallow ETags

	Common pitfalls
	Why shouldn't I put verbs in a URLs?
	How to partially update a resource?
	What about actions that don't fit into the world of CRUD operations?

	Common practices
	Blogs management through a RESTful HTTP API

	Get blog 123
	Request
	Response

	Create a new article in blog 123
	Request
	Response

	Get article 789 of blog 123
	Request
	Response

	Get the 4th page of 25 articles of blog 123
	Request
	Response

	Update article 789 of blog 123
	Request
	Response
	Notes

	Delete article 789 of blog 123
	Request
	Response
	Violating REST

	Credits

