
rspec

#rspec

Table of Contents

About 1

Chapter 1: Getting started with rspec 2

Remarks 2

Examples 2

Installing RSpec 2

A simple RSpec example 3

Chapter 2: RSpec Core 5

Examples 5

Running examples with a given tag 5

Chapter 3: RSpec Expectations 6

Introduction 6

Remarks 6

Examples 6

Basic Usage 6

Chapter 4: RSpec Matcher 7

Introduction 7

Examples 7

Equality matchers 7

Chapter 5: RSpec Mocks 10

Remarks 10

Examples 10

Stubbing with allow 10

Mocking by setting a message expectation with expect 10

Credits 12

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: rspec

It is an unofficial and free rspec ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official rspec.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/rspec
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with rspec

Remarks

RSpec is a BDD tool used to specify and test Ruby programs. It is used primarily to specify and
test classes and methods, i.e. for unit testing.

The rspec gem is just a meta-gem which brings in the three parts of RSpec. Those three parts are
also a way to structure this documentation.

rspec-core provides RSpec's way of structuring and running tests: the rspec command-line
executable, the describe, context and it methods, shared examples, etc. It is documented in
the RSpec Core topic.

•

rspec-expectations provides RSpec's support for expecting test results: the expect/to
expectation syntax and RSpec's built-in matchers. (It also provides the deprecated should
expectation syntax.) It is documented in the RSpec Expectations topic.

•

rspec-mocks provides RSpec's support for test doubles: double, allow, expect, receive,
have_received, etc. It is documented in the RSpec Mocks topic.

•

There is also the rspec-rails gem, which extends RSpec with support for testing the types of
classes used in Rails applications, and with support for writing feature specs (acceptance tests)
which test the application from the user's point of view.

Official documentation for RSpec and rspec-rails is here: https://www.relishapp.com/rspec

Examples

Installing RSpec

The most common way to install the RSpec gem is using Bundler. Add this line to your
application's Gemfile:

gem 'rspec'

And then execute bundle to install the dependencies:

$ bundle

Alternatively, you can install the gem manually:

$ gem install rspec

After installing the gem, run the following command:

rspec --init

https://riptutorial.com/ 2

https://github.com/rspec/rspec
https://github.com/rspec/rspec-core
http://www.riptutorial.com/rspec/topic/5672/rspec-core
https://github.com/rspec/rspec-expectations/
http://www.riptutorial.com/rspec/topic/4304/rspec-expectations
https://github.com/rspec/rspec-mocks/
http://www.riptutorial.com/rspec/topic/5678/rspec-mocks
https://www.relishapp.com/rspec
http://bundler.io/

This will create a spec folder for your tests, along with the following config files:

a spec directory into which to put spec files•
a spec/spec_helper.rb file with default configuration options•
an .rspec file with default command-line flags•

A simple RSpec example

In greeter.rb (wherever that goes in your project):

class Greeter
 def greet
 "Hello, world!"
 end
end

In spec/greeter_spec.rb:

require_relative '../greeter.rb'

RSpec.describe Greeter do
 describe '#greet' do
 it "says hello" do
 expect(Greeter.new.greet).to eq("Hello, world!")
 end
 end
end

So our file structure looks like:

$ tree .
.
├── greeter.rb
└── spec
 └── greeter_spec.rb

1 directory, 2 files

Output

$rspec greeter_spec.rb
Finished in 0.00063 seconds (files took 0.06514 seconds to load)
1 example, 0 failures

In RSpec terminology, the file is a "spec" of Greeter and the it block is an "example". The line with
expect is an expectation. If the expectation is met, nothing happens and the test passes. If not, the
test fails.

This example also shows that describe blocks can be nested, in this case to convey that the greet
method is part of the Greet class. The # in #greet is only a convention to show that greet is an
instance method (as opposed to '.' for a class method). RSpec doesn't interpret the string at all, so
you could use a different string or omit that describe block entirely.

https://riptutorial.com/ 3

Read Getting started with rspec online: https://riptutorial.com/rspec/topic/2017/getting-started-with-
rspec

https://riptutorial.com/ 4

https://riptutorial.com/rspec/topic/2017/getting-started-with-rspec
https://riptutorial.com/rspec/topic/2017/getting-started-with-rspec

Chapter 2: RSpec Core

Examples

Running examples with a given tag

Adding tags to "describe" or "it" blocks allows you to run only those examples with a given tag.
Use the --tag (or -t) option to run examples that match a specified tag. The tag can be a simple
name or a name:value pair.

If a simple name is supplied, only examples with :name => true will run. For example, rspec
<spec_file> --tag smoke would run the example tagged with "Smoke".

describe '#Tests' do
 it 'runs the smoke test', :smoke => true do
 end

 it 'runs the regression tests', :regression => true do
 end

 it 'runs the acceptance tests', :acceptance => true do
 end
end

•

If a name:value pair is given, examples with name => value will run,where value is always a
string. For example, rspec <spec_file> --tag testId:101 would run the example tagged with
testId "101".

describe '#Tests' do
 it 'runs the test with id 99', :testId => 99 do
 end

 it 'runs the test with id 101', :testId => 101 do
 end
end

•

Read RSpec Core online: https://riptutorial.com/rspec/topic/5672/rspec-core

https://riptutorial.com/ 5

https://riptutorial.com/rspec/topic/5672/rspec-core

Chapter 3: RSpec Expectations

Introduction

RSpec::Expectations lets you express expected outcomes on an object using an example-based
DSL syntax.

Remarks

This topic gives examples of how to expect test results in RSpec using expect .to and the many
built-in matchers.

This functionality is provided by the rspec-expectations gem.

Examples

Basic Usage

Given a class as follows:

class Cube
 attr_reader :height, :width, :depth

 def initialize(args)
 @height = args[:height] || args[:y] || 1
 @width = args[:width] || args[:x] || 1
 @depth = args[:depth] || args[:z] || 1
 end

 def volume
 height * width * depth
 end
end

The following example passes if cube.volume equals 60 and fails if it doesn't. It uses the most
commonly used built-in matcher, eq, which just tests for equality.

RSpec.describe Cube do
 it "calculates it's volume" do
 cube = Cube.new(x: 3, y: 4, z: 5)
 expect(cube.volume).to eq(60)
 end
end

Read RSpec Expectations online: https://riptutorial.com/rspec/topic/4304/rspec-expectations

https://riptutorial.com/ 6

https://github.com/rspec/rspec-expectations/
https://riptutorial.com/rspec/topic/4304/rspec-expectations

Chapter 4: RSpec Matcher

Introduction

rspec-expectations ships with a number of built-in matchers. Each matcher can be used with
expect(..).to or expect(..).not_to to define positive and negative expectations respectively on an
object.

Examples

Equality matchers

compare using eq (==)

RSpec.describe "a string" do
 it "is equal to another string of the same value" do
 expect("this string").to eq("this string")
 end

 it "is not equal to another string of a different value" do
 expect("this string").not_to eq("a different string")
 end
end

RSpec.describe "an integer" do
 it "is equal to a float of the same value" do
 expect(5).to eq(5.0)
 end
end

When I run rspec then the output should contain "3 examples, 0 failures"

compare using ==

RSpec.describe "a string" do
 it "is equal to another string of the same value" do
 expect("this string").to be == "this string"
 end

 it "is not equal to another string of a different value" do
 expect("this string").not_to be == "a different string"
 end
end

RSpec.describe "an integer" do
 it "is equal to a float of the same value" do
 expect(5).to be == 5.0
 end
end

When I run rspec then the output should contain "3 examples, 0 failures"

https://riptutorial.com/ 7

compare using eql (eql?)

 RSpec.describe "an integer" do
 it "is equal to another integer of the same value" do
 expect(5).to eql(5)
 end

 it "is not equal to another integer of a different value" do
 expect(5).not_to eql(6)
 end

 it "is not equal to a float of the same value" do
 expect(5).not_to eql(5.0)
 end
end

When I run rspec then the output should contain "3 examples, 0 failures"

compare using equal (equal?)

RSpec.describe "a string" do
 it "is equal to itself" do
 string = "this string"
 expect(string).to equal(string)
 end

 it "is not equal to another string of the same value" do
 expect("this string").not_to equal("this string")
 end

 it "is not equal to another string of a different value" do
 expect("this string").not_to equal("a different string")
 end
end

When I run rspec then the output should contain "3 examples, 0 failures"

compare using be (equal?)

RSpec.describe "a string" do
 it "is equal to itself" do
 string = "this string"
 expect(string).to be(string)
 end

 it "is not equal to another string of the same value" do
 expect("this string").not_to be("this string")
 end

 it "is not equal to another string of a different value" do
 expect("this string").not_to be("a different string")
 end
end

When I run rspec then the output should contain "3 examples, 0 failures"

https://riptutorial.com/ 8

Read RSpec Matcher online: https://riptutorial.com/rspec/topic/10762/rspec-matcher

https://riptutorial.com/ 9

https://riptutorial.com/rspec/topic/10762/rspec-matcher

Chapter 5: RSpec Mocks

Remarks

This topic documents RSpec's support for test doubles (stubs, mocks, etc.). That support is
provided by the rspec-mocks gem.

Examples

Stubbing with allow

The following example uses allow and receive to stub a Cart's call to a CreditCardService so that
the example doesn't have to wait for a network call or use a credit card number that the processor
knows about.

class Cart
 def check_out
 begin
 transaction_id = CreditCardService.instance.validate credit_card_number, total_price
 order = Order.new
 order.items = cart.items
 order
 rescue CreditCardService::ValidationFailedError
 # handle the error
 end
 end
end

describe Cart do
 describe '#check_out' do
 it "places an order" do
 allow(CreditCardService.instance).
 to receive(:validate).with("1234567812345678", 3700).and_return("transaction_id")
 cart = Cart.new
 cart.items << Item.new("Propeller beanie", 3700)
 order = cart.check_out
 expect(order.transaction_id).to eq("transaction_id")
 end
 end
end

with is optional; without it, any arguments are accepted. and_return is optional too; without it the
stub returns nil.

Mocking by setting a message expectation with expect

The following example uses expect and receive to mock an Order's call to a CreditCardService, so
that the test passes only if the call is made without having to actually make it.

class Order

https://riptutorial.com/ 10

https://github.com/rspec/rspec-mocks

 def cancel
 CreditCardService.instance.refund transaction_id
 end
end

describe Order do
 describe '#cancel' do
 it "refunds the money" do
 order = Order.new
 order.transaction_id = "transaction_id"
 expect(CreditCardService.instance).to receive(:refund).with("transaction_id")
 order.cancel
 end
 end
end

In this example the mock is on the return value of CreditCardService.instance, which is presumably
a singleton.

with is optional; without it, any call to refund would satisfy the expectation. A return value could be
given with and_return; in this example it is not used, so the call returns nil.

Read RSpec Mocks online: https://riptutorial.com/rspec/topic/5678/rspec-mocks

https://riptutorial.com/ 11

https://riptutorial.com/rspec/topic/5678/rspec-mocks

Credits

S.
No

Chapters Contributors

1
Getting started with
rspec

adarsh, Ashish Bista, Community, Dave Schweisguth,
gmuraleekrishna, Mark Huk, mbigras, Scott Matthewman,
Simone Carletti, Srikanth Gurram, Vishnu Y S

2 RSpec Core Dave Schweisguth, Srikanth Gurram

3 RSpec Expectations Ashish Bista, Dave Schweisguth, Midwire

4 RSpec Matcher Faruk Hossain

5 RSpec Mocks Dave Schweisguth

https://riptutorial.com/ 12

https://riptutorial.com/contributor/1001350/adarsh
https://riptutorial.com/contributor/1166183/ashish-bista
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/634576/dave-schweisguth
https://riptutorial.com/contributor/3804420/gmuraleekrishna
https://riptutorial.com/contributor/698718/mark-huk
https://riptutorial.com/contributor/2909897/mbigras
https://riptutorial.com/contributor/1326518/scott-matthewman
https://riptutorial.com/contributor/123527/simone-carletti
https://riptutorial.com/contributor/2782837/srikanth-gurram
https://riptutorial.com/contributor/5097563/vishnu-y-s
https://riptutorial.com/contributor/634576/dave-schweisguth
https://riptutorial.com/contributor/2782837/srikanth-gurram
https://riptutorial.com/contributor/1166183/ashish-bista
https://riptutorial.com/contributor/634576/dave-schweisguth
https://riptutorial.com/contributor/260670/midwire
https://riptutorial.com/contributor/5226856/faruk-hossain
https://riptutorial.com/contributor/634576/dave-schweisguth

	About
	Chapter 1: Getting started with rspec
	Remarks
	Examples
	Installing RSpec
	A simple RSpec example

	Chapter 2: RSpec Core
	Examples
	Running examples with a given tag

	Chapter 3: RSpec Expectations
	Introduction
	Remarks
	Examples
	Basic Usage

	Chapter 4: RSpec Matcher
	Introduction
	Examples
	Equality matchers

	Chapter 5: RSpec Mocks
	Remarks
	Examples
	Stubbing with allow
	Mocking by setting a message expectation with expect

	Credits

