
rx-java

#rx-java

Table of Contents

About 1

Chapter 1: Getting started with rx-java 2

Remarks 2

Versions 2

Examples 2

Installation or Setup 2

Hello, World! 3

An introduction to RxJava 4

Understanding Marble Diagrams 5

Chapter 2: Android with RxJava 7

Remarks 7

Examples 7

RxAndroid - AndroidSchedulers 7

RxLifecycle components 7

Rxpermissions 9

Chapter 3: Backpressure 10

Examples 10

Introduction 10

The onBackpressureXXX operators 12

Increasing the buffer sizes 13

Batching/skipping values with standard operators 13

onBackpressureBuffer() 14

onBackpressureBuffer(int capacity) 14

onBackpressureBuffer(int capacity, Action0 onOverflow) 14

onBackpressureBuffer(int capacity, Action0 onOverflow, BackpressureOverflow.Strategy strat 15

onBackpressureDrop() 15

onBackpressureLatest() 16

Creating backpressured data sources 16

just 16

fromCallable 17

from 17

create(SyncOnSubscribe) 18

create(emitter) 20

Chapter 4: Observable 23

Examples 23

Create an Observable 23

Emitting an exiting value 23

Emitting a value that should be computed 23

Alternative way to Emitting a value that should be computed 23

Hot and Cold Observables 23

Cold Observable 24

Hot Observable 24

Chapter 5: Operators 26

Remarks 26

Examples 26

Operators, an introduction 26

flatMap Operator 27

filter Operator 28

map Operator 28

doOnNext operator 29

repeat operator 29

Chapter 6: Retrofit and RxJava 33

Examples 33

Set up Retrofit and RxJava 33

Making serial requests 33

Making parallel requests 33

Chapter 7: RxJava2 Flowable and Subscriber 34

Introduction 34

Remarks 34

Examples 34

producer consumer example with backpressure support in the producer 34

Chapter 8: Schedulers 37

Examples 37

Basic Examples 37

Chapter 9: Subjects 39

Syntax 39

Parameters 39

Remarks 39

Examples 39

Basic Subjects 39

PublishSubject 40

Chapter 10: Unit Testing 45

Remarks 45

Examples 45

TestSubscriber 45

Getting Started 45

Getting all events 46

Asserting on events 46

Testing Observable#error 46

TestScheduler 47

Credits 49

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: rx-java

It is an unofficial and free rx-java ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official rx-java.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/rx-java
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with rx-java

Remarks

This section provides a basic overview and superficial introduction to rx-java.

RxJava is a Java VM implementation of Reactive Extensions: a library for composing
asynchronous and event-based programs by using observable sequences.

Learn more about RxJava on the Wiki Home.

Versions

Version Status Latest Stable Version Release Date

1.x Stable 1.3.0 2017-05-05

2.x Stable 2.1.1 2017-06-21

Examples

Installation or Setup

rx-java set up

Gradle

compile 'io.reactivex:rxjava2:rxjava:2.1.1'

1.

Maven

<dependency>
 <groupId>io.reactivex.rxjava2</groupId>
 <artifactId>rxjava</artifactId>
 <version>2.1.1</version>
</dependency>

2.

Ivy

<dependency org="io.reactivex.rxjava2" name="rxjava" rev="2.1.1" />

3.

Snapshots from JFrog

repositories {
maven { url 'https://oss.jfrog.org/libs-snapshot' }

4.

https://riptutorial.com/ 2

http://reactivex.io/
https://github.com/ReactiveX/RxJava/wiki

}

dependencies {
 compile 'io.reactivex:rxjava:2.0.0-SNAPSHOT'
}

If you need to download the jars instead of using a build system, create a Maven pom file like
this with the desired version:

<?xml version="1.0"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.netflix.rxjava.download</groupId>
 <artifactId>rxjava-download</artifactId>
 <version>1.0-SNAPSHOT</version>
 <name>Simple POM to download rxjava and dependencies</name>
 <url>http://github.com/ReactiveX/RxJava</url>
 <dependencies>
 <dependency>
 <groupId>io.reactivex</groupId>
 <artifactId>rxjava</artifactId>
 <version>2.0.0</version>
 <scope/>
 </dependency>
 </dependencies>
</project>

5.

Then execute:

$ mvn -f download-rxjava-pom.xml dependency:copy-dependencies

That command downloads rxjava-*.jar and its dependencies into ./target/dependency/.

You need Java 6 or later.

Hello, World!

The following prints the message Hello, World! to console

public void hello() {
 Observable.just("Hello, World!") // create new observable
 .subscribe(new Action1<String>() { // subscribe and perform action

 @Override
 public void call(String st) {
 System.out.println(st);
 }

 });
}

Or using Java 8 lambda notation

https://riptutorial.com/ 3

public void hello() {
 Observable.just("Hello, World!") // create new observable
 .subscribe(onNext -> { // subscribe and perform action
 System.out.println(onNext);
 });
}

An introduction to RxJava

The core concepts of RxJava are its Observables and Subscribers. An Observable emits objects,
while a Subscriber consumes them.

Observable

Observable is a class that implements the reactive design pattern. These Observables provide
methods that allow consumers to subscribe to event changes. The event changes are triggered by
the observable. There is no restriction to the number of subscribers that an Observable can have, or
the number of objects that an Observable can emit.

Take for example:

Observable<Integer> integerObservable = Observable.just(1, 2, 3); // Integer observable
Observable<String> stringObservable = Observable.just("Hello, ", "World", "!"); // String
observable

Here, an observable object called integerObservable and stringObservable are created from the
factory method just provided by the Rx library. Notice that Observable is generic and can thus can
emit any object.

Subscriber

A Subscriber is the consumer. A Subscriber can subscribe to only one observable. The Observable
calls the onNext(), onCompleted(), and onError() methods of the Subscriber.

Subscriber<Integer> mSubscriber = new Subscriber<Integer>() {
 // NOTE THAT ALL THESE ARE CALLED BY THE OBSERVABLE
 @Override
 public void onCompleted() {
 // called when all objects are emitted
 System.out.println("onCompleted called!");
 }

 @Override
 public void onError(Throwable throwable) {
 // called when an error occurs during emitting objects
 System.out.println("onError called!");
 }

 @Override
 public void onNext(Integer integer) {
 // called for each object that is emitted
 System.out.println("onNext called with: " + integer);
 }
 };

https://riptutorial.com/ 4

Notice that Subscriber is also generic and can support any object. A Subscriber must subscribe to
the observable by calling the subscribe method on the observable.

integerObservable.subscribe(mSubscriber);

The above, when run, will produce the following output:

onNext called with: 1
onNext called with: 2
onNext called with: 3
onCompleted called!

Understanding Marble Diagrams

An Observable can be thought of as just a stream of events. When you define an Observable, you
have three listeners: onNext, onComplete and onError. onNext will be called every time the
observable acquires a new value. onComplete will be called if the parent Observable notifies that it
finished producing any more values. onError is called if an exception is thrown any time during the
execution of the Observable chain. To show operators in Rx, the marble diagram is used to
display what happens with a particular operation. Below is an example of a simple Observable
operator "Just."

https://riptutorial.com/ 5

Marble diagrams have a horizontal block that represents the operation being performed, a vertical
bar to represent the completed event, a X to represent an error, and any other shape represents a
value. With that in mind, we can see that "Just" will just take our value and do an onNext and then
finish with onComplete. There are a lot more operations then just "Just." You can see all the
operations that are part of the ReactiveX project and there implementations in RxJava at the
ReativeX site. There are also interactive marble diagrams via RxMarbles site.

Read Getting started with rx-java online: https://riptutorial.com/rx-java/topic/974/getting-started-
with-rx-java

https://riptutorial.com/ 6

http://i.stack.imgur.com/Mixu4.png
http://reactivex.io/documentation/operators.html
http://rxmarbles.com/
https://riptutorial.com/rx-java/topic/974/getting-started-with-rx-java
https://riptutorial.com/rx-java/topic/974/getting-started-with-rx-java

Chapter 2: Android with RxJava

Remarks

RxAndroid used to be a library with lot of features. It has been splitted in many different libraries
moving from version 0.25.0 to 1.x.

A list of libraries that implement the features available before the 1.0 is maintained here.

Examples

RxAndroid - AndroidSchedulers

This is literally the only thing you need to start using RxJava on Android.

Include RxJava and RxAndroid in your gradle dependencies:

 // use the last version
compile 'io.reactivex.rxjava2:rxjava:2.1.1'
compile 'io.reactivex.rxjava2:rxandroid:2.0.1'

RxAndroid main addition to RxJava is a Scheduler for the Android Main Thread or UI Thread.

In your code:

Observable.just("one", "two", "three", "four", "five")
 .subscribeOn(Schedulers.newThread())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(
 data -> doStuffOnMainThread(),
 error -> handleErrorOnMainThread()
)

Or you can create a Scheduler for a custom Looper:

Looper backgroundLooper = // ...
Observable.just("one", "two", "three", "four", "five")
 .subscribeOn(Schedulers.newThread())
 .observeOn(AndroidSchedulers.from(backgroundLooper))
 .subscribe(
 data -> doStuffOnMainThread(),
 error -> handleErrorOnMainThread()
)

For most everything else you can refer to standard RxJava documentation.

RxLifecycle components

The RxLifecycle library makes it easier binding observable subscriptions to Android activities and

https://riptutorial.com/ 7

https://github.com/ReactiveX/RxAndroid/wiki
https://github.com/ReactiveX/RxAndroid
https://github.com/trello/RxLifecycle

fragment lifecycle.

Keep in mind that forgetting to unsubscribe an Observable can cause memory leaks and keeping
your activity / fragment alive event after it has been destroyed by the system.

Add the library to the dependencies:

// use the last version available
compile 'com.trello:rxlifecycle:0.6.1'
compile 'com.trello:rxlifecycle-components:0.6.1'

Then extends Rx* classes:

RxActivity / support.RxFragmentActivity / support.RxAppCompatActivity•
RxFragment / support.RxFragment•
RxDialogFragment / support.RxDialogFragment•
support.RxAppCompatDialogActivity•

You are all set, when you subscribe to an Observable you can now:

someObservable
 .compose(bindToLifecycle())
 .subscribe();

If you execute this in the onCreate() method of the activity it will automatically unsubscribed in the
onDestroy().

Tha same happens for:

onStart() -> onStop()•
onResume() -> onPause()•
onAttach() -> onDetach() (fragment only)•
onViewCreated() -> onDestroyView() (fragment only)•

As an alternative you can specify the event when you want the unsubscription to happen:

From an activity:

someObservable
 .compose(bindUntilEvent(ActivityEvent.DESTROY))
 .subscribe();

From a Fragment:

someObservable
 .compose(bindUntilEvent(FragmentEvent.DESTROY_VIEW))
 .subscribe();

You can also obtain the lifecycle observable using the method lifecycle() to listen lifecycle events
directly.

https://riptutorial.com/ 8

RxLifecycle can also be used directly passing to it the lifecycle observable:

.compose(RxLifecycleAndroid.bindActivity(lifecycle))

If you need to handle Single or Completable you can do it by just adding respectively forSingle() or
forCompletable after the bind method:

someSingle
 .compose(bindToLifecycle().forSingle())
 .subscribe();

It can also be used with Navi library.

Rxpermissions

This library allows the usage of RxJava with the new Android M permission model.

Add the library to the dependencies:

Rxjava

dependencies {
 compile 'com.tbruyelle.rxpermissions:rxpermissions:0.8.0@aar'
}

Rxjava2

dependencies {
 compile 'com.tbruyelle.rxpermissions2:rxpermissions:0.8.1@aar'
}

Usage

Example (with Retrolambda for brevity, but not required):

// Must be done during an initialization phase like onCreate
RxPermissions.getInstance(this)
 .request(Manifest.permission.CAMERA)
 .subscribe(granted -> {
 if (granted) { // Always true pre-M
 // I can control the camera now
 } else {
 // Oups permission denied
 }
 });

Read more: https://github.com/tbruyelle/RxPermissions.

Read Android with RxJava online: https://riptutorial.com/rx-java/topic/7125/android-with-rxjava

https://riptutorial.com/ 9

https://github.com/trello/navi/
https://github.com/tbruyelle/RxPermissions
https://riptutorial.com/rx-java/topic/7125/android-with-rxjava

Chapter 3: Backpressure

Examples

Introduction

Backpressure is when in an Observable processing pipeline, some asynchronous stages can't
process the values fast enough and need a way to tell the upstream producer to slow down.

The classic case of the need for backpressure is when the producer is a hot source:

PublishSubject<Integer> source = PublishSubject.create();

source
.observeOn(Schedulers.computation())
.subscribe(v -> compute(v), Throwable::printStackTrace);

for (int i = 0; i < 1_000_000; i++) {
 source.onNext(i);
}

Thread.sleep(10_000);

In this example, the main thread will produce 1 million items to an end consumer which is
processing it on a background thread. It is likely the compute(int) method takes some time but the
overhead of the Observable operator chain may also add to the time it takes to process items.
However, the producing thread with the for loop can't know this and keeps onNexting.

Internally, asynchronous operators have buffers to hold such elements until they can be
processed. In the classical Rx.NET and early RxJava, these buffers were unbounded, meaning
that they would likely hold nearly all 1 million elements from the example. The problem starts when
there are, for example, 1 billion elements or the same 1 million sequence appears 1000 times in a
program, leading to OutOfMemoryError and generally slowdowns due to excessive GC overhead.

Similar to how error-handling became a first-class citizen and received operators to deal with it (via
onErrorXXX operators), backpressure is another property of dataflows that the programmer has to
think about and handle (via onBackpressureXXX operators).

Beyond the PublishSubjectabove, there are other operators that don't support backpressure,
mostly due to functional reasons. For example, the operator interval emits values periodically,
backpressuring it would lead to shifting in the period relative to a wall clock.

In modern RxJava, most asynchronous operators now have a bounded internal buffer, like
observeOn above and any attempt to overflow this buffer will terminate the whole sequence with
MissingBackpressureException. The documentation of each operator has a description about its
backpressure behavior.

However, backpressure is present more subtly in regular cold sequences (which don't and

https://riptutorial.com/ 10

shouldn't yield MissingBackpressureException). If the first example is rewritten:

Observable.range(1, 1_000_000)
.observeOn(Schedulers.computation())
.subscribe(v -> compute(v), Throwable::printStackTrace);

Thread.sleep(10_000);

There is no error and everything runs smoothly with small memory usage. The reason for this is
that many source operators can "generate" values on demand and thus the operator observeOn can
tell the range generate at most so many values the observeOn buffer can hold at once without
overflow.

This negotiation is based on the computer science concept of co-routines (I call you, you call me).
The operator range sends a callback, in the form of an implementation of the Producer interface, to
the observeOn by calling its (inner Subscriber's) setProducer. In return, the observeOn calls
Producer.request(n) with a value to tell the range it is allowed to produce (i.e., onNext it) that many
additional elements. It is then the observeOn's responsibility to call the request method in the right
time and with the right value to keep the data flowing but not overflowing.

Expressing backpressure in end-consumers is rarely necessary (because they are synchronous in
respect to their immediate upstream and backpressure naturally happens due to call-stack
blocking), but it may be easier to understand the workings of it:

Observable.range(1, 1_000_000)
.subscribe(new Subscriber<Integer>() {
 @Override
 public void onStart() {
 request(1);
 }

 public void onNext(Integer v) {
 compute(v);

 request(1);
 }

 @Override
 public void onError(Throwable ex) {
 ex.printStackTrace();
 }

 @Override
 public void onCompleted() {
 System.out.println("Done!");
 }
});

Here the onStart implementation indicates range to produce its first value, which is then received in
onNext. Once the compute(int) finishes, the another value is then requested from range. In a naive
implementation of range, such call would recursively call onNext, leading to StackOverflowError
which is of course undesirable.

https://riptutorial.com/ 11

To prevent this, operators use so-called trampolining logic that prevents such reentrant calls. In
range's terms, it will remember that there was a request(1) call while it called onNext() and once
onNext() returns, it will make another round and call onNext() with the next integer value.
Therefore, if the two are swapped, the example still works the same:

@Override
public void onNext(Integer v) {
 request(1);

 compute(v);
}

However, this is not true for onStart. Although the Observable infrastructure guarantees it will be
called at most once on each Subscriber, the call to request(1) may trigger the emission of an
element right away. If one has initialization logic after the call to request(1) which is needed by
onNext, you may end up with exceptions:

Observable.range(1, 1_000_000)
.subscribe(new Subscriber<Integer>() {

 String name;

 @Override
 public void onStart() {
 request(1);

 name = "RangeExample";
 }

 @Override
 public void onNext(Integer v) {
 compute(name.length + v);

 request(1);
 }

 // ... rest is the same
});

In this synchronous case, a NullPointerException will be thrown immediately while still executing
onStart. A more subtle bug happens if the call to request(1) triggers an asynchronous call to onNext
on some other thread and reading name in onNext races writing it in onStart post request.

Therefore, one should do all field initialization in onStart or even before that and call request() last.
Implementations of request() in operators ensure proper happens-before relation (or in other
terms, memory release or full fence) when necessary.

The onBackpressureXXX operators

Most developers encounter backpressure when their application fails with
MissingBackpressureException and the exception usually points to the observeOn operator. The actual
cause is usually the non-backpressured use of PublishSubject, timer() or interval() or custom
operators created via create().

https://riptutorial.com/ 12

There are several ways of dealing with such situations.

Increasing the buffer sizes

Sometimes such overflows happen due to bursty sources. Suddenly, the user taps the screen too
quickly and observeOn's default 16-element internal buffer on Android overflows.

Most backpressure-sensitive operators in the recent versions of RxJava now allow programmers
to specify the size of their internal buffers. The relevant parameters are usually called bufferSize,
prefetch or capacityHint. Given the overflowing example in the introduction, we can just increase
the buffer size of observeOn to have enough room for all values.

PublishSubject<Integer> source = PublishSubject.create();

source.observeOn(Schedulers.computation(), 1024 * 1024)
 .subscribe(e -> { }, Throwable::printStackTrace);

for (int i = 0; i < 1_000_000; i++) {
 source.onNext(i);
}

Note however that generally, this may be only a temporary fix as the overflow can still happen if
the source overproduces the predicted buffer size. In this case, one can use one of the following
operators.

Batching/skipping values with standard operators

In case the source data can be processed more efficiently in batch, one can reduce the likelihood
of MissingBackpressureException by using one of the standard batching operators (by size and/or by
time).

PublishSubject<Integer> source = PublishSubject.create();

source
 .buffer(1024)
 .observeOn(Schedulers.computation(), 1024)
 .subscribe(list -> {
 list.parallelStream().map(e -> e * e).first();
 }, Throwable::printStackTrace);

for (int i = 0; i < 1_000_000; i++) {
 source.onNext(i);
}

If some of the values can be safely ignored, one can use the sampling (with time or another
Observable) and throttling operators (throttleFirst, throttleLast, throttleWithTimeout).

PublishSubject<Integer> source = PublishSubject.create();

source
 .sample(1, TimeUnit.MILLISECONDS)

https://riptutorial.com/ 13

 .observeOn(Schedulers.computation(), 1024)
 .subscribe(v -> compute(v), Throwable::printStackTrace);

for (int i = 0; i < 1_000_000; i++) {
 source.onNext(i);
}

Note hovewer that these operators only reduce the rate of value reception by the downstream and
thus they may still lead to MissingBackpressureException.

onBackpressureBuffer()

This operator in its parameterless form reintroduces an unbounded buffer between the upstream
source and the downstream operator. Being unbounded means as long as the JVM doesn't run
out of memory, it can handle almost any amount coming from a bursty source.

 Observable.range(1, 1_000_000)
 .onBackpressureBuffer()
 .observeOn(Schedulers.computation(), 8)
 .subscribe(e -> { }, Throwable::printStackTrace);

In this example, the observeOn goes with a very low buffer size yet there is no
MissingBackpressureException as onBackpressureBuffer soaks up all the 1 million values and hands
over small batches of it to observeOn.

Note however that onBackpressureBuffer consumes its source in an unbounded manner, that is,
without applying any backpressure to it. This has the consequence that even a backpressure-
supporting source such as range will be completely realized.

There are 4 additional overloads of onBackpressureBuffer

onBackpressureBuffer(int capacity)

This is a bounded version that signals BufferOverflowErrorin case its buffer reaches the given
capacity.

Observable.range(1, 1_000_000)
 .onBackpressureBuffer(16)
 .observeOn(Schedulers.computation())
 .subscribe(e -> { }, Throwable::printStackTrace);

The relevance of this operator is decreasing as more and more operators now allow setting their
buffer sizes. For the rest, this gives an opportunity to "extend their internal buffer" by having a
larger number with onBackpressureBuffer than their default.

onBackpressureBuffer(int capacity, Action0 onOverflow)

This overload calls a (shared) action in case an overflow happens. Its usefulness is rather limited
as there is no other information provided about the overflow than the current call stack.

https://riptutorial.com/ 14

onBackpressureBuffer(int capacity, Action0 onOverflow,
BackpressureOverflow.Strategy strategy)

This overload is actually more useful as it let's one define what to do in case the capacity has
been reached. The BackpressureOverflow.Strategy is an interface actually but the class
BackpressureOverflow offers 4 static fields with implementations of it representing typical actions:

ON_OVERFLOW_ERROR: this is the default behavior of the previous two overloads, signalling a
BufferOverflowException

•

ON_OVERFLOW_DEFAULT: currently it is the same as ON_OVERFLOW_ERROR•
ON_OVERFLOW_DROP_LATEST : if an overflow would happen, the current value will be simply
ignored and only the old values will be delivered once the downstream requests.

•

ON_OVERFLOW_DROP_OLDEST : drops the oldest element in the buffer and adds the current value to
it.

•

Observable.range(1, 1_000_000)
 .onBackpressureBuffer(16, () -> { },
 BufferOverflowStrategy.ON_OVERFLOW_DROP_OLDEST)
 .observeOn(Schedulers.computation())
 .subscribe(e -> { }, Throwable::printStackTrace);

Note that the last two strategies cause discontinuity in the stream as they drop out elements. In
addition, they won't signal BufferOverflowException.

onBackpressureDrop()

Whenever the downstream is not ready to receive values, this operator will drop that elemenet
from the sequence. One can think of it as a 0 capacity onBackpressureBuffer with strategy
ON_OVERFLOW_DROP_LATEST.

This operator is useful when one can safely ignore values from a source (such as mouse moves or
current GPS location signals) as there will be more up-to-date values later on.

 component.mouseMoves()
 .onBackpressureDrop()
 .observeOn(Schedulers.computation(), 1)
 .subscribe(event -> compute(event.x, event.y));

It may be useful in conjunction with the source operator interval(). For example, if one wants to
perform some periodic background task but each iteration may last longer than the period, it is
safe to drop the excess interval notification as there will be more later on:

 Observable.interval(1, TimeUnit.MINUTES)
 .onBackpressureDrop()
 .observeOn(Schedulers.io())
 .doOnNext(e -> networkCall.doStuff())
 .subscribe(v -> { }, Throwable::printStackTrace);

There exist one overload of this operator: onBackpressureDrop(Action1<? super T> onDrop) where the

https://riptutorial.com/ 15

(shared) action is called with the value being dropped. This variant allows cleaning up the values
themselves (e.g., releasing associated resources).

onBackpressureLatest()

The final operator keeps only the latest value and practically overwrites older, undelivered values.
One can think of this as a variant of the onBackpressureBuffer with a capacity of 1 and strategy of
ON_OVERFLOW_DROP_OLDEST.

Unlike onBackpressureDrop there is always a value available for consumption if the downstream
happened to be lagging behind. This can be useful in some telemetry-like situations where the
data may come in some bursty pattern but only the very latest is interesting for processing.

For example, if the user clicks a lot on the screen, we'd still want to react to its latest input.

component.mouseClicks()
.onBackpressureLatest()
.observeOn(Schedulers.computation())
.subscribe(event -> compute(event.x, event.y), Throwable::printStackTrace);

The use of onBackpressureDrop in this case would lead to a situation where the very last click gets
dropped and leaves the user wondering why the business logic wasn't executed.

Creating backpressured data sources

Creating backpressured data sources is the relatively easier task when dealing with backpressure
in general because the library already offers static methods on Observable that handle
backpressure for the developer. We can distinguish two kinds of factory methods: cold
"generators" that either return and generate elements based on downstream demand and hot
"pushers" that usually bridge non-reactive and/or non-backpressurable data sources and layer
some backpressure handling on top of them.

just

The most basic backpressure aware source is created via just:

Observable.just(1).subscribe(new Subscriber<Integer>() {
 @Override
 public void onStart() {
 request(0);
 }

 @Override
 public void onNext(Integer v) {
 System.out.println(v);
 }

 // the rest is omitted for brevity
}

https://riptutorial.com/ 16

Since we explicitly don't request in onStart, this will not print anything. just is great when there is a
constant value we'd like to jump-start a sequence.

Unfortunately, just is often mistaken for a way to compute something dynamically to be consumed
by Subscribers:

int counter;

int computeValue() {
 return ++counter;
}

Observable<Integer> o = Observable.just(computeValue());

o.subscribe(System.out:println);
o.subscribe(System.out:println);

Surprising to some, this prints 1 twice instead of printing 1 and 2 respectively. If the call is
rewritten, it becomes obvious why it works so:

int temp = computeValue();

Observable<Integer> o = Observable.just(temp);

The computeValue is called as part of the main routine and not in response to the subscribers
subscribing.

fromCallable

What people actually need is the method fromCallable:

Observable<Integer> o = Observable.fromCallable(() -> computeValue());

Here the computeValue is executed only when a subscriber subscribes and for each of them,
printing the expected 1 and 2. Naturally, fromCallable also properly supports backpressure and
won't emit the computed value unless requested. Note however that the computation does happen
anyway. In case the computation itself should be delayed until the downstream actually requests,
we can use just with map:

Observable.just("This doesn't matter").map(ignored -> computeValue())...

just won't emit its constant value until requested when it is mapped to the result of the
computeValue, still called for each subscriber individually.

from

If the data is already available as an array of objects, a list of objects or any Iterable source, the
respective from overloads will handle the backpressure and emission of such sources:

https://riptutorial.com/ 17

 Observable.from(Arrays.asList(1, 2, 3, 4, 5)).subscribe(System.out::println);

For convenience (and avoiding warnings about generic array creation) there are 2 to 10 argument
overloads to just that internally delegate to from.

The from(Iterable) also gives an interesting opportunity. Many value generation can be expressed
in a form of a state-machine. Each requested element triggers a state transition and computation
of the returned value.

Writing such state machines as Iterables is somewhat complicated (but still easier than writing an
Observable for consuming it) and unlike C#, Java doesn't have any support from the compiler to
build such state machines by simply writing classically looking code (with yield return and yield
break). Some libraries offer some help, such as Google Guava's AbstractIterable and IxJava's
Ix.generate() and Ix.forloop(). These are by themselves worthy of a full series so let's see some
very basic Iterable source that repeats some constant value indefinitely:

Iterable<Integer> iterable = () -> new Iterator<Integer>() {
 @Override
 public boolean hasNext() {
 return true;
 }

 @Override
 public Integer next() {
 return 1;
 }
};

Observable.from(iterable).take(5).subscribe(System.out::println);

If we'd consume the iterator via classic for-loop, that would result in an infinite loop. Since we
build an Observable out of it, we can express our will to consume only the first 5 of it and then stop
requesting anything. This is the true power of lazily evaluating and computing inside Observables.

create(SyncOnSubscribe)

Sometimes, the data source to be converted into the reactive world itself is synchronous (blocking)
and pull-like, that is, we have to call some get or read method to get the next piece of data. One
could, of course, turn that into an Iterable but when such sources are associated with resources,
we may leak those resources if the downstream unsubscribes the sequence before it would end.

To handle such cases, RxJava has the SyncOnSubscribe class. One can extend it and implement its
methods or use one of its lambda-based factory methods to build an instance.

SyncOnSubscribe<Integer, InputStream> binaryReader = SyncOnSubscribe.createStateful(
 () -> new FileInputStream("data.bin"),
 (inputstream, output) -> {
 try {
 int byte = inputstream.read();
 if (byte < 0) {
 output.onCompleted();

https://riptutorial.com/ 18

 } else {
 output.onNext(byte);
 }
 } catch (IOException ex) {
 output.onError(ex);
 }
 return inputstream;
 },
 inputstream -> {
 try {
 inputstream.close();
 } catch (IOException ex) {
 RxJavaHooks.onError(ex);
 }
 }
);

 Observable<Integer> o = Observable.create(binaryReader);

Generally, SyncOnSubscribe uses 3 callbacks.

The first callbacks allows one to create a per-subscriber state, such as the FileInputStream in the
example; the file will be opened independently to each individual subscriber.

The second callback takes this state object and provides an output Observer whose onXXX methods
can be called to emit values. This callback is executed as many times as the downstream
requested. At each invocation, it has to call onNext at most once optionally followed by either
onError or onCompleted. In the example we call onCompleted() if the read byte is negative, indicating
and end of file, and call onError in case the read throws an IOException.

The final callback gets invoked when the downstream unsubscribes (closing the inputstream) or
when the previous callback called the terminal methods; it allows freeing up resources. Since not
all sources need all these features, the static methods of SyncOnSubscribe let's one create instances
without them.

Unfortunately, many method calls across the JVM and other libraries throw checked exceptions
and need to be wrapped into try-catches as the functional interfaces used by this class don't allow
throwing checked exceptions.

Of course, we can imitate other typical sources, such as an unbounded range with it:

SyncOnSubscribe.createStateful(
 () -> 0,
 (current, output) -> {
 output.onNext(current);
 return current + 1;
 },
 e -> { }
);

In this setup, the current starts out with 0 and next time the lambda is invoked, the parameter
current now holds 1.

There is a variant of SyncOnSubscribe called AsyncOnSubscribe that looks quite similar with the

https://riptutorial.com/ 19

exception that the middle callback also takes long value that represents the request amount from
downstream and the callback should generate an Observable with the exact same length. This
source then concatenates all these Observable into a single sequence.

 AsyncOnSubscribe.createStateful(
 () -> 0,
 (state, requested, output) -> {
 output.onNext(Observable.range(state, (int)requested));
 return state + 1;
 },
 e -> { }
);

There is an ongoing (heated) discussion about the usefulness of this class and generally not
recommended because it routinely breaks expectations about how it will actually emit those
generated values and how it will respond to, or even what kind of request values it will receive in
more complex consumer scenarios.

create(emitter)

Sometimes, the source to be wrapped into an Observable is already hot (such as mouse moves) or
cold but not backpressurable in its API (such as an asynchronous network callback).

To handle such cases, a recent version of RxJava introduced the create(emitter) factory method.
It takes two parameters:

a callback that will be called with an instance of the Emitter<T> interface for each incoming
subscriber,

•

a Emitter.BackpressureMode enumeration that mandates the developer to specify the
backpressure behavior to be applied. It has the usual modes, similar to onBackpressureXXX in
addition to signalling a MissingBackpressureException or simply ignoring such overflow inside it
altogether.

•

Note that it currently doesn't support additional parameters to those backpressure modes. If one
needs those customization, using NONE as the backpressure mode and applying the relevant
onBackpressureXXX on the resulting Observable is the way to go.

The first typical case for its use when one wants to interact with a push-based source, such as
GUI events. Those APIs feature some form of addListener/removeListener calls that one can utilize:

Observable.create(emitter -> {
 ActionListener al = e -> {
 emitter.onNext(e);
 };

 button.addActionListener(al);

 emitter.setCancellation(() ->
 button.removeListener(al));

}, BackpressureMode.BUFFER);

https://riptutorial.com/ 20

The Emitter is relatively straightforward to use; one can call onNext, onError and onCompleted on it
and the operator handles backpressure and unsubscription management on its own. In addition, if
the wrapped API supports cancellation (such as the listener removal in the example), one can use
the setCancellation (or setSubscription for Subscription-like resources) to register a cancellation
callback that gets invoked when the downstream unsubscribes or the onError/onCompleted is called
on the provided Emitterinstance.

These methods allow only a single resource to be associated with the emitter at a time and setting
a new one unsubscribes the old one automatically. If one has to handle multiple resources, create
a CompositeSubscription, associate it with the emitter and then add further resources to the
CompositeSubscription itself:

Observable.create(emitter -> {
 CompositeSubscription cs = new CompositeSubscription();

 Worker worker = Schedulers.computation().createWorker();

 ActionListener al = e -> {
 emitter.onNext(e);
 };

 button.addActionListener(al);

 cs.add(worker);
 cs.add(Subscriptions.create(() ->
 button.removeActionListener(al));

 emitter.setSubscription(cs);

}, BackpressureMode.BUFFER);

The second scenario usually involves some asynchronous, callback-based API that has to be
converted into an Observable.

Observable.create(emitter -> {

 someAPI.remoteCall(new Callback<Data>() {
 @Override
 public void onSuccess(Data data) {
 emitter.onNext(data);
 emitter.onCompleted();
 }

 @Override
 public void onFailure(Exception error) {
 emitter.onError(error);
 }
 });

}, BackpressureMode.LATEST);

In this case, the delegation works the same way. Unfortunately, usually, these classical callback-
style APIs don't support cancellation, but if they do, one can setup their cancellation just like in the
previoius examples (with perhaps a more involved way though). Note the use of the LATEST

https://riptutorial.com/ 21

backpressure mode; if we know there will be only a single value, we don't need the BUFFER strategy
as it allocates a default 128 element long buffer (that grows as necessary) that is never going to
be fully utilized.

Read Backpressure online: https://riptutorial.com/rx-java/topic/2341/backpressure

https://riptutorial.com/ 22

https://riptutorial.com/rx-java/topic/2341/backpressure

Chapter 4: Observable

Examples

Create an Observable

There are several ways to create an Observable in RxJava. The most powerful way is to use the
Observable.create method. But it's also the most complicated way. So you must avoid using it,
as much as possible.

Emitting an exiting value

If you already have a value, you can use Observable.just to emit your value.

 Observable.just("Hello World").subscribe(System.out::println);

Emitting a value that should be computed

If you want to emit a value that is not already computed, or that can take long to be computed, you
can use Observable.fromCallable to emit your next value.

Observable.fromCallable(() -> longComputation()).subscribe(System.out::println);

longComputation() will only be called when you subscribe to your Observable. This way, the
computation will be lazy.

Alternative way to Emitting a value that
should be computed

Observable.defer builds an Observable just like Observable.fromCallable but it is used when you need
to return an Observable instead of a value. It is useful when you want to manage the errors in your
call.

Observable.defer(() -> {
 try {
 return Observable.just(longComputation());
 } catch(SpecificException e) {
 return Observable.error(e);
 }).subscribe(System.out::println);

Hot and Cold Observables

https://riptutorial.com/ 23

Observables are broadly categorised as Hot or Cold, depending on their emission behaviour.
A Cold Observable is one which starts emitting upon request(subscription), whereas a Hot
Observable is one that emits regardless of subscriptions.

Cold Observable

/* Demonstration of a Cold Observable */
Observable<Long> cold = Observable.interval(500, TimeUnit.MILLISECONDS); // emits a long every
500 milli seconds
cold.subscribe(l -> System.out.println("sub1, " + l)); // subscriber1
Thread.sleep(1000); // interval between the two subscribes
cold.subscribe(l -> System.out.println("sub2, " + l)); // subscriber2

The output of the above code looks like (may vary):

sub1, 0 -> subscriber1 starts
sub1, 1
sub1, 2
sub2, 0 -> subscriber2 starts
sub1, 3
sub2, 1
sub1, 4
sub2, 2

Notice that even though sub2 starts late, it receives values from the start. To conclude, a Cold
Observable only emits items when requested for. Multiple request start multiple pipelines.

Hot Observable

Note: Hot observables emit values independent of individual subscriptions. They have their own
timeline and events occur whether someone is listening or not.

A Cold Observale can be converted to a Hot Observable with a simple publish.

Observable.interval(500, TimeUnit.MILLISECONDS)
 .publish(); // publish converts cold to hot

publish returns a ConnectableObservable that adds functionalities to connect and disconnect from
the observable.

ConnectableObservable<Long> hot = Observable
 .interval(500, TimeUnit.MILLISECONDS)
 .publish(); // returns ConnectableObservable
hot.connect(); // connect to subscribe

hot.subscribe(l -> System.out.println("sub1, " + l));
Thread.sleep(1000);
hot.subscribe(l -> System.out.println("sub2, " + l));

The above yields:

https://riptutorial.com/ 24

sub1, 0 -> subscriber1 starts
sub1, 1
sub1, 2
sub2, 2 -> subscriber2 starts
sub1, 3
sub2, 3

Notice that even though sub2 starts observing late, it is in sync with sub1.
Disconnect is a little more complicated! Disconnect happens on the Subscription and not the
Observable.

ConnectableObservable<Long> hot = Observable
 .interval(500, TimeUnit.MILLISECONDS)
 .publish(); // same as above
Subscription subscription = hot.connect(); // connect returns a subscription object, which we
store for further use

hot.subscribe(l -> System.out.println("sub1, " + l));
Thread.sleep(1000);
hot.subscribe(l -> System.out.println("sub2, " + l));
Thread.sleep(1000);
subscription.unsubscribe(); // disconnect, or unsubscribe from subscription

System.out.println("reconnecting");
/* reconnect and redo */
subscription = hot.connect();
hot.subscribe(l -> System.out.println("sub1, " + l));
Thread.sleep(1000);
hot.subscribe(l -> System.out.println("sub2, " + l));
Thread.sleep(1000);
subscription.unsubscribe();

The above produces:

sub1, 0 -> subscriber1 starts
sub1, 1
sub1, 2
sub2, 2 -> subscriber2 starts
sub1, 3
sub2, 3
reconnecting -> reconnect after unsubscribe
sub1, 0
...

Upon disconnect, the Observable essentially "terminates" and restarts when a new subscription is
added.

Hot Observable can be used for creating an EventBus. Such EventBuses are generally light and
super fast. The only downside of an RxBus is that all events must be manually implemented and
passed to the bus.

Read Observable online: https://riptutorial.com/rx-java/topic/1418/observable

https://riptutorial.com/ 25

https://riptutorial.com/rx-java/topic/1418/observable

Chapter 5: Operators

Remarks

This document describes the basic behaviour of an operator.

Examples

Operators, an introduction

An operator can be used to manipulate the flow of objects from Observable to Subscriber.

Observable<Integer> integerObservable = Observable.just(1, 2, 3); // creating a simple Integer
observable
Subscriber<String> mSubscriber = new Subscriber<String>() {
 @Override
 public void onCompleted() {
 System.out.println("onCompleted called!");
 }

 @Override
 public void onError(Throwable throwable) {
 System.out.println("onError called");
 }

 @Override
 public void onNext(String string) {
 System.out.println("onNext called with: " + string);
 }
}; // a simple String subscriber

integerObservable
 .map(new Func1<Integer, String>() {
 @Override
 public String call(Integer integer) {
 switch (integer) {
 case 1:
 return "one";
 case 2:
 return "two";
 case 3:
 return "three";
 default:
 return "zero";
 }
 }
}).subscribe(mSubscriber);

The output would be:

onNext called with: one
onNext called with: two

https://riptutorial.com/ 26

onNext called with: three
onCompleted called!

The mapoperator changed the Integer observable to a String observable, thereby manipulating the
flow of objects.

Operator Chaining

Multiple operators can be chained together to for more powerful transforms and manipulations.

integerObservable // emits 1, 2, 3
 .map(i -> i + 10) // adds 10 to each item; emits 11, 12, 13
 .filter(i -> i > 11) // emits items that satisfy condition; 12, 13
 .last() // emits last item in observable; 13
 // unlimited operators can be added ...
 .subscribe(System.out::println); // prints 13

Any number of operators can be added in between the Observable and Subscriber.

flatMap Operator

The flatMap operator help you to transform one event to another Observable (or transform an event
to zero, one, or more events).

It's a perfect operator when you want to call another method which return an Observable

 public Observable<String> perform(int i) {
 // ...
 }

 Observable.just(1, 2, 3)
 .flatMap(i -> perform(i))
 .subscribe(result -> System.out.println("result ->" + result);

flatMap will serialize perform subscriptions but events emited by perform may not be ordered. So
you may receive events emitted by the last perform call before events from the first perform call
(you should use concatMap instead).

If your creating another Observable in your subscriber, you should use flatMap instead. The main
idea is : never leave the Observable

For example :

 Observable.just(1, 2, 3)
 .subscribe(i -> perform(i));

can easily be replaced by :

 Observable.just(1, 2, 3)
 .flatMap(i -> perform(i))
 .subscribe();

https://riptutorial.com/ 27

Reactivex.io documentation : http://reactivex.io/documentation/operators/flatmap.html

filter Operator

You can use the filter operator to filter out items from the values stream based on a result of a
predicate method.

In other words, the items passing from the Observer to the Subscriber will be discarded based on
the Function you pass filter, if the function returns false for a certain value, that value will be
filtered out.

Example:

List<Integer> integers = Arrays.asList(0, 1, 2, 3, 4, 5, 6, 7, 8, 9);

Observable.from(integers)
 .filter(number -> {
 return (number % 2 == 0);
 // odd numbers will return false, that will cause them to be filtered
 })
 .map(i -> {
 return Math.pow(i, 2); // take each number and multiply by power of 2
 })
 .subscribe(onNext -> {
 System.out.println(onNext); // print out the remaining numbers
 });

This code will print out

0.0
4.0
16.0
36.0
64.0

map Operator

You can use the map operator to map the values of a stream to different values based on the
outcome for each value from the function passed to map. The outcome stream is a new copy and
will not modify the provided stream of values, the result stream will have the same length of the
input stream but may be of different types.

The function passed to .map(), must return a value.

Example:

List<Integer> numbers = Arrays.asList(1, 2, 3);
Observable.from(numbers)
 .map(number -> {
 return number.toString(); // convert each integer into a string and return it
 })
 .subscribe(onNext -> {
 System.out.println(onNext); // print out the strings

https://riptutorial.com/ 28

http://reactivex.io/documentation/operators/flatmap.html

 });

This code will print out

"1"
"2"
"3"

In this example the Observable accepted a List<Integer> the list will be transformed to a
List<String> in the pipeline and the .subscribe will emit String's

doOnNext operator

doOnNext operator called every time when source Observable emits an item. It can be used for
debugging purposes, applying some action to the emitted item, logging, etc...

Observable.range(1, 3)
 .doOnNext(value -> System.out.println("before transform: " + value))
 .map(value -> value * 2)
 .doOnNext(value -> System.out.println("after transform: " + value))
 .subscribe();

In the example below doOnNext is never called because the source Observable emits nothing
because Observable.empty() calls onCompleted after subscribing.

Observable.empty()
 .doOnNext(item -> System.out.println("item: " + item))
 .subscribe();

repeat operator

repeat operator allow to repeat whole sequence from source Observable.

Observable.just(1, 2, 3)
 .repeat()
 .subscribe(
 next -> System.out.println("next: " + next),
 error -> System.out.println("error: " + error),
 () -> System.out.println("complete")
);

Output of the example above

next: 1
next: 2
next: 3
next: 1
next: 2
next: 3

This sequence repeats infinite number of times and never completes.

https://riptutorial.com/ 29

To repeat sequence finite number of times just pass integer as an argument to repeat operator.

Observable.just(1, 2, 3)
 // Repeat three times and complete
 .repeat(3)
 .subscribe(
 next -> System.out.println("next: " + next),
 error -> System.out.println("error: " + error),
 () -> System.out.println("complete")
);

This example prints

next: 1
next: 2
next: 3
next: 1
next: 2
next: 3
next: 1
next: 2
next: 3
complete

It is very important to understand that repeat operator resubscribes to source Observable when
source Observable sequence completes. Let's rewrite example above using Observable.create.

Observable.<Integer>create(subscriber -> {

 //Same as Observable.just(1, 2, 3) but with output message
 System.out.println("Subscribed");
 subscriber.onNext(1);
 subscriber.onNext(2);
 subscriber.onNext(3);
 subscriber.onCompleted();
})
 .repeat(3)
 .subscribe(
 next -> System.out.println("next: " + next),
 error -> System.out.println("error: " + error),
 () -> System.out.println("complete")
);

This example prints

Subscribed
next: 1
next: 2
next: 3
Subscribed
next: 1
next: 2
next: 3
Subscribed
next: 1
next: 2

https://riptutorial.com/ 30

next: 3
complete

When using operator chaining it is important to know that repeat operator repeats whole
sequence rather than preceding operator.

Observable.<Integer>create(subscriber -> {
 System.out.println("Subscribed");
 subscriber.onNext(1);
 subscriber.onNext(2);
 subscriber.onNext(3);
 subscriber.onCompleted();
})
 .map(value -> value * 2) //First chain operator
 .map(value -> "modified " + value) //Second chain operator
 .repeat(3)
 .subscribe(
 next -> System.out.println("next: " + next),
 error -> System.out.println("error: " + error),
 () -> System.out.println("complete")
);

This example prints

Subscribed
next: modified 2
next: modified 4
next: modified 6
Subscribed
next: modified 2
next: modified 4
next: modified 6
Subscribed
next: modified 2
next: modified 4
next: modified 6
complete

This example shows that repeat operator repeats whole sequence resubscribing to Observable
rather than repeating last map operator and it doesn't matter in which place in the sequence repeat
operator used.

This sequence

Observable.<Integer>create(subscriber -> {
 //...
 })
 .map(value -> value * 2) //First chain operator
 .map(value -> "modified " + value) //Second chain operator
 .repeat(3)
 .subscribe(
 /*....*/
);

is equal to this sequence

https://riptutorial.com/ 31

Observable.<Integer>create(subscriber -> {
 //...
 })
 .repeat(3)
 .map(value -> value * 2) //First chain operator
 .map(value -> "modified " + value) //Second chain operator
 .subscribe(
 /*....*/
);

Read Operators online: https://riptutorial.com/rx-java/topic/2316/operators

https://riptutorial.com/ 32

https://riptutorial.com/rx-java/topic/2316/operators

Chapter 6: Retrofit and RxJava

Examples

Set up Retrofit and RxJava

Retrofit2 comes with support for multiple pluggable execution mechanisms, one of them is
RxJava.

To use retrofit with RxJava you first need to add the Retrofit RxJava adapter to your project:

compile 'com.squareup.retrofit2:adapter-rxjava:2.1.0'

then you need to add the adapter when building your retrofit instance:

Retrofit retrofit = new Retrofit.Builder()
 .baseUrl("https://api.example.com")
 .addCallAdapterFactory(RxJavaCallAdapterFactory.create())
 .build();

In your interface when you define the API the return type should be Observable eg:

public interface GitHubService {
 @GET("users/{user}/repos")
 Observable<List<Repo>> listRepos(@Path("user") String user);
}

You can also use Single instead of Observable.

Making serial requests

RxJava is handy when making serial request. If you want to use the result from one request to
make another you can use the flatMap operator:

api.getRepo(repoId).flatMap(repo -> api.getUser(repo.getOwnerId())
 .subscribe(/*do something with the result*/);

Making parallel requests

You can use the zip operator to make request in parallel and combine the results eg:

Observable.zip(api.getRepo(repoId1), api.getRepo(repoId2), (repo1, repo2) ->
 {
 //here you can combine the results
 }).subscribe(/*do something with the result*/);

Read Retrofit and RxJava online: https://riptutorial.com/rx-java/topic/2950/retrofit-and-rxjava

https://riptutorial.com/ 33

https://riptutorial.com/rx-java/topic/2950/retrofit-and-rxjava

Chapter 7: RxJava2 Flowable and Subscriber

Introduction

This topic shows examples and documentation with regard to the reactive concepts of Flowable
and Subscriber that were introduced in rxjava version2

Remarks

the example needs rxjava2 as a dependency, the maven coordinates for the used version are:

 <dependency>
 <groupId>io.reactivex.rxjava2</groupId>
 <artifactId>rxjava</artifactId>
 <version>2.0.8</version>
 </dependency>

Examples

producer consumer example with backpressure support in the producer

The TestProducerfrom this example produces Integerobjects in a given range and pushes them to
its Subscriber. It extends the Flowable<Integer> class. For a new subscriber, it creates a
Subscription object whose request(long) method is used to create and publish the Integer values.

It is important for the Subscription that is passed to the subscriber that the request() method which
calls onNext()on the subscriber can be recursively called from within this onNext() call. To prevent a
stack overflow, the shown implementation uses the outStandingRequests counter and the
isProducing flag.

class TestProducer extends Flowable<Integer> {
 static final Logger logger = LoggerFactory.getLogger(TestProducer.class);
 final int from, to;

 public TestProducer(int from, int to) {
 this.from = from;
 this.to = to;
 }

 @Override
 protected void subscribeActual(Subscriber<? super Integer> subscriber) {
 subscriber.onSubscribe(new Subscription() {

 /** the next value. */
 public int next = from;
 /** cancellation flag. */
 private volatile boolean cancelled = false;
 private volatile boolean isProducing = false;
 private AtomicLong outStandingRequests = new AtomicLong(0);

https://riptutorial.com/ 34

 @Override
 public void request(long n) {
 if (!cancelled) {

 outStandingRequests.addAndGet(n);

 // check if already fulfilling request to prevent call between request()
an subscriber .onNext()
 if (isProducing) {
 return;
 }

 // start producing
 isProducing = true;

 while (outStandingRequests.get() > 0) {
 if (next > to) {
 logger.info("producer finished");
 subscriber.onComplete();
 break;
 }
 subscriber.onNext(next++);
 outStandingRequests.decrementAndGet();
 }
 isProducing = false;
 }
 }

 @Override
 public void cancel() {
 cancelled = true;
 }
 });
 }
}

The Consumer in this example extends DefaultSubscriber<Integer> and on start and after
consuming an Integer requests the next one. On consuming the Integer values, there is a little
delay, so the backpressure will be built up for the producer.

class TestConsumer extends DefaultSubscriber<Integer> {

 private static final Logger logger = LoggerFactory.getLogger(TestConsumer.class);

 @Override
 protected void onStart() {
 request(1);
 }

 @Override
 public void onNext(Integer i) {
 logger.info("consuming {}", i);
 if (0 == (i % 5)) {
 try {
 Thread.sleep(500);
 } catch (InterruptedException ignored) {
 // can be ignored, just used for pausing
 }

https://riptutorial.com/ 35

 }
 request(1);
 }

 @Override
 public void onError(Throwable throwable) {
 logger.error("error received", throwable);
 }

 @Override
 public void onComplete() {
 logger.info("consumer finished");
 }
}

in the following main method of a test class the producer and consumer are created and wired up:

public static void main(String[] args) {
 try {
 final TestProducer testProducer = new TestProducer(1, 1_000);
 final TestConsumer testConsumer = new TestConsumer();

 testProducer
 .subscribeOn(Schedulers.computation())
 .observeOn(Schedulers.single())
 .blockingSubscribe(testConsumer);

 } catch (Throwable t) {
 t.printStackTrace();
 }
}

When running the example, the logfile shows that the consumer runs continuously, while the
producer only gets active when the internal Flowable buffer of rxjava2 needs to be refilled.

Read RxJava2 Flowable and Subscriber online: https://riptutorial.com/rx-java/topic/9810/rxjava2-
flowable-and-subscriber

https://riptutorial.com/ 36

https://riptutorial.com/rx-java/topic/9810/rxjava2-flowable-and-subscriber
https://riptutorial.com/rx-java/topic/9810/rxjava2-flowable-and-subscriber

Chapter 8: Schedulers

Examples

Basic Examples

Schedulers are an RxJava abstraction about processing unit. A scheduler can be backed by a
Executor service, but you can implement your own scheduler implementation.

A Scheduler should meet this requirement :

Should process undelayed task sequencially (FIFO order)•
Task can be delayed•

A Scheduler can be used as parameter in some operators (example : delay), or used with the
subscribeOn / observeOn method.

With some operator, the Scheduler will be used to process the task of the specific operator. For
example, delay will schedule a delayed task that will emit the next value. This is a Scheduler that
will retain and execute it later.

The subscribeOn can be used once per Observable. It will define in which Scheduler the code of the
subscription will be executer.

The observeOn can be used multiple times per Observable. It will define in which Scheduler will be
used to execute all tasks defined after the observeOn method. observeOn will help you to perform
thread hopping.

subscribeOn specific Scheduler

// this lambda will be executed in the `Schedulers.io()`
Observable.fromCallable(() -> Thread.currentThread().getName())
 .subscribeOn(Schedulers.io())
 .subscribe(System.out::println);

observeOn with specific Scheduler

Observable.fromCallable(() -> "Thread -> " + Thread.currentThread().getName())
 // next tasks will be executed in the io scheduler
 .observeOn(Schedulers.io())
 .map(str -> str + " -> " + Thread.currentThread().getName())
 // next tasks will be executed in the computation scheduler
 .observeOn(Schedulers.computation())
 .map(str -> str + " -> " + Thread.currentThread().getName())
 // next tasks will be executed in the io scheduler
 .observeOn(Schedulers.newThread())
 .subscribe(str -> System.out.println(str + " -> " +
Thread.currentThread().getName()));

https://riptutorial.com/ 37

Specifying a specific Scheduler with an operator

Some operators can take a Scheduler as parameter.

Observable.just(1)
 // the onNext method of the delay operator will be executed in a new thread
 .delay(1, TimeUnit.SECONDS, Schedulers.newThread())
 .subscribe(System.out::println);

Publish To Subscriber:

TestScheduler testScheduler = Schedulers.test();
EventBus sut = new DefaultEventBus(testScheduler);
TestSubscriber<Event> subscriber = new TestSubscriber<Event>();
sut.get().subscribe(subscriber);
sut.publish(event);
testScheduler.advanceTimeBy(1, TimeUnit.SECONDS);

Thread Pool:

this.poolName = schedulerFig.getIoSchedulerName();
final int poolSize = schedulerFig.getMaxIoThreads();
final BlockingQueue<Runnable> queue = new ArrayBlockingQueue<Runnable>(poolSize);
final MaxSizeThreadPool threadPool = new MaxSizeThreadPool(queue, poolSize);
this.scheduler = Schedulers.from(threadPool);

Web Socket Observable:

final Subscription subscribe = socket.webSocketObservable()
 .subscribeOn(Schedulers.io())
 .doOnNext(new Action1<RxEvent>() {
 @Override
 public void call(RxEvent rxEvent) {
 System.out.println("Event: " + rxEvent);
 }
 })
 .subscribe();

Read Schedulers online: https://riptutorial.com/rx-java/topic/2321/schedulers

https://riptutorial.com/ 38

https://riptutorial.com/rx-java/topic/2321/schedulers

Chapter 9: Subjects

Syntax

Subject<T, R> subject = AsyncSubject.create(); // Default AsyncSubject•
Subject<T, R> subject = BehaviorSubject.create(); // Default BehaviorSubject•
Subject<T, R> subject = PublishSubject.create(); // Default PublishSubject•
Subject<T, R> subject = ReplaySubject.create(); // Default ReplaySubject•
mySafeSubject = new SerializedSubject(unSafeSubject); // Convert an unsafeSubject to a
safeSubject - generally for multi threaded Subjects

•

Parameters

Parameters Details

T Input type

R Output type

Remarks

This documentation provides details and explanations about Subject. For more information and
further reading, please visit the official documentation.

Examples

Basic Subjects

A Subject in RxJava is a class that is both an Observable and an Observer. This basically means that
it can act as an Observable and pass inputs to subscribers and as an Observer to get inputs from
another Observable.

Subject<String, String> subject = PublishSubject.create();
subject.subscribe(System.out::print);
subject.onNext("Hello, World!");

The above prints "Hello, World!" to console using Subjects.

Explanation

The first line of code defines a new Subject of type PublishSubject

Subject<String, String> subject = PublishSubject.create();
 | | | | |

1.

https://riptutorial.com/ 39

http://reactivex.io/documentation/subject.html

 subject<input, output> name = default publish subject

The second line subscribes to the subject, showing the Observer behaviour.

subject.subscribe(System.out::print);

This enables the Subject to take inputs like a regular subscriber

2.

The third line calls the onNext method of the subject, showing the Observable behaviour.

subject.onNext("Hello, World!");

This enables the Subject to give inputs to all subscribing to it.

3.

Types

A Subject (in RxJava) can be of any of these four types:

AsyncSubject•
BehaviorSubject•
PublishSubject•
ReplaySubject•

Also, a Subject can be of type SerializedSubject. This type ensures that the Subject does not
violate to the Observable Contract (which specifies that all calls must be Serialized)

Further reading:

To Use or Not to Use Subject from Dave Sexton’s blog•

PublishSubject

PublishSubject emits to an Observer only those items that are emitted by the source Observable
subsequent to the time of the subscription.

A simple PublishSubject example:

Observable<Long> clock = Observable.interval(500, TimeUnit.MILLISECONDS);
Subject<Long, Long> subjectLong = PublishSubject.create();

clock.subscribe(subjectLong);

System.out.println("sub1 subscribing...");
subjectLong.subscribe(l -> System.out.println("sub1 -> " + l));
Thread.sleep(3000);
System.out.println("sub2 subscribing...");
subjectLong.subscribe(l -> System.out.println("sub2 -> " + l));
Thread.sleep(5000);

Output:

https://riptutorial.com/ 40

http://davesexton.com/blog/post/To-Use-Subject-Or-Not-To-Use-Subject.aspx

sub1 subscribing...
sub1 -> 0
sub1 -> 1
sub2 subscribing...
sub1 -> 2
sub2 -> 2
sub1 -> 3
sub2 -> 3

In the above example, a PublishSubject subscribes to an Observable which acts like a clock, and
emits items(Long) every 500 milli seconds. As seen in the output, the PublishSubject passes on
the vales it gets from the source (clock) to its subscribers(sub1 and sub2).

A PublishSubject can start emitting items as soon as it is created, without any observer, which runs
the risk of one or more items being lost till a observer can sunscribe.

createClock(); // 3 lines moved for brevity. same as above example

Thread.sleep(5000); // introduces a delay before first subscribe

sub1andsub2(); // 6 lines moved for brevity. same as above example

Output:

sub1 subscribing...
sub1 -> 10
sub1 -> 11
sub2 subscribing...
sub1 -> 12
sub2 -> 12
sub1 -> 13
sub2 -> 13

Notice that sub1 emits values starting from 10. The 5 second delay introduced caused a loss of
items. These cannot be reproduces. This essentially makes PublishSubject a Hot Observable.

Also, note that if an observer subscribes to the PublishSubject after it has emitted n items, these n
items cannot be reproduced for this observer.

Below is the marble diagram of PublishSubject

https://riptutorial.com/ 41

The PublishSubject emits items to all that have subscribed, at any point of time before the
onCompleted of the source Observable is called.

If the source Observable terminates with an error, the PublishSubject will not emit any items to
subsequent observers, but will simply pass along the error notification from the source
Observable.

https://riptutorial.com/ 42

http://i.stack.imgur.com/UKFxw.jpg

Use Case
Suppose you want to create an application that will monitor the stock prices of a certain company
and forward it to all clients who request for it.

/* Dummy stock prices */
Observable<Integer> prices = Observable.just(11, 12, 14, 11, 10, 12, 15, 11, 10);

/* Your server */
PublishSubject<Integer> watcher = PublishSubject.create();
/* subscribe to listen to stock price changes and push to observers/clients */

https://riptutorial.com/ 43

http://i.stack.imgur.com/BlLyD.jpg

prices.subscribe(watcher);

/* Client application */
stockWatcher = getWatcherInstance(); // gets subject
Subscription steve = stockWatcher.subscribe(i -> System.out.println("steve watching " + i));
Thread.sleep(1000);
System.out.println("steve stops watching");
steve.unsubscribe();

In the above example use case, the PublishSubject acts as a bridge to pass on the values from
your server to all the clients that subscribe to your watcher.

Further reading:

PublishSubject javadocs•
Blog by Thomas Nield (Advanced reading)•

Read Subjects online: https://riptutorial.com/rx-java/topic/3287/subjects

https://riptutorial.com/ 44

http://reactivex.io/RxJava/javadoc/rx/subjects/PublishSubject.html
http://tomstechnicalblog.blogspot.in/2016/03/rxjava-problem-with-subjects.html
https://riptutorial.com/rx-java/topic/3287/subjects

Chapter 10: Unit Testing

Remarks

Because all the Schedulers methods are static, unit tests utilizing the RxJava hooks cannot be ran
in parallel on the same JVM instance. If they where, one TestScheduler would be removed in the
middle of a unit test. That is basically the downside of using the Schedulers class.

Examples

TestSubscriber

TestSubscribers allow you to avoid the work creating your own Subscriber or subscribe Action<?>
to verify that certain values where delivered, how many there are, if the Observable completed, an
exception was raised and a whole lot more.

Getting Started

This example just shows an assertion that the values 1,2,3 and 4 where passed into the
Observable via onNext.

TestSubscriber<Integer> ts = TestSubscriber.create();
Observable.just(1,2,3,4).subscribe(ts);
ts.assertValues(1,2,3,4); // Success

assertValues asserts that the count is correct. If you were to only pass some of the values, the
assert would fail.

TestSubscriber<Integer> ts = TestSubscriber.create();
Observable.just(1,2,3,4).subscribe(ts);
ts.assertValues(1,2,3); // Fail

assertValues uses the equals method when doing asserts. This lets you easily test classes that are
treated as data.

TestSubscriber<Object> ts = TestSubscriber.create();
Observable.just(new Object(), new Object()).subscribe(ts);
ts.assertValues(new Object(), new Object()); // Fail

This example shows a class that has a equals defined and asserting the values from the
Observable.

public class Room {

 public String floor;

https://riptutorial.com/ 45

 public String number;

 @Override
 public boolean equals(Object o) {
 if (o == this) {
 return true;
 }
 if (o instanceof Room) {
 Room that = (Room) o;
 return (this.floor.equals(that.floor))
 && (this.number.equals(that.number));
 }
 return false;
 }
}

TestSubscriber<Room> ts = TestSubscriber.create();
Observable.just(new Room("1", "10")).subscribe(ts);
ts.assertValue(new Room("1", "10"); // Success

Also take note that we use the shorter assertValue because we only need to check for one item.

Getting all events

If need be you can also ask for all the events as a list.

TestSubscriber<Integer> ts = TestSubscriber.create();
Observable.just(1,2,3,4).subscribe(ts);
List<Integer> onNextEvents = ts.getOnNextEvents();
List<Throwable> onErrorEvents = ts.getOnErrorEvents();
List<Notification<Integer>> onCompletedEvents = ts.getOnCompletedEvents();

Asserting on events

If you want to do more extensive tests on your events, you can combine getOnNextEvents (or
getOn*Events) with your favorite assertion library:

Observable<Integer> obs = Observable.just(1,2,3,4)
 .filter(x -> x % 2 == 0);

// note that we instanciate TestSubscriber via the constructor here
TestSubscriber<Integer> ts = new TestSubscriber();
obs.subscribe(ts);

// Note that we are not using Observable#forEach here
// but java.lang.Iterable#forEach.
// You should never use Observable#forEach unless you know
// exactly what you're doing
ts.getOnNextEvents()
 .forEach(integer -> assertTrue(integer % 2 == 0));

https://riptutorial.com/ 46

Testing Observable#error

You can make sure that the correct exception class is emitted:

Observable<Integer> obs = Observable.error(new Exception("I am a Teapot"));

TestSubscriber<Integer> ts = new TestSubscriber<>();
obs.subscribe(ts);

ts.assertError(Exception.class);

You can also make sure that the exact Exception was thrown:

Exception e = new Exception("I am a Teapot");
Observable<Integer> obs = Observable.error(e);

TestSubscriber<Integer> ts = new TestSubscriber<>();
obs.subscribe(ts);

ts.assertError(e);

TestScheduler

TestSchedulers allows you to control time and execution of Observables instead of having to do
busy waits, joining threads or anything to manipulate system time. This is VERY important if you
want to write unit tests that are predictable, consistent and fast. Because you are manipulating
time, there is no longer the chance that a thread got starved, that your test fails on a slower
machine or that you waste execution time busy waiting for a result.

TestSchedulers can be provided via the overload that takes a Scheduler for any RxJava
operations.

TestScheduler testScheduler = new TestScheduler();
TestSubscriber<Integer> subscriber = TestSubscriber.create();
Observable.just(1,2,3)
 .delay(10, TimeUnit.SECONDS, testScheduler)
 .subscribe(subscriber);

try {
 Thread.sleep(TimeUnit.SECONDS.toMillis(11));
} catch (InterruptedException ignored) { }
subscriber.assertValues(1,2,3); // fails

testScheduler.advanceTimeBy(10, TimeUnit.SECONDS);
subscriber.assertValues(1,2,3); // success

The TestScheduler is pretty basic. It only consists of three methods.

testScheduler.advanceTimeBy(amount, timeUnit);
testScheduler.advanceTimeTo(when, timeUnit);
testScheduler.triggerActions();

https://riptutorial.com/ 47

This lets you manipulate when the TestScheduler should fire all the actions pertaining to some
time in the future.

While passing the scheduler works, this is not how the TestScheduler is commonly used because
of how ineffective it is. Passing schedulers into classes ends up providing a lot of extra code for
little gain. Instead, you can hook into RxJava's Schedulers.io()/computation()/etc. This is done with
RxJava's Hooks. This lets you define what gets returned from a call from one of the Schedulers
methods.

public final class TestSchedulers {

 public static TestScheduler test() {
 final TestScheduler testScheduler = new TestScheduler();
 RxJavaHooks.reset();
 RxJavaHooks.setOnComputationScheduler((scheduler) -> {
 return testScheduler;
 });
 RxJavaHooks.setOnIOScheduler((scheduler) -> {
 return testScheduler;
 });
 RxJavaHooks.setOnNewThreadScheduler((scheduler) -> {
 return testScheduler;
 });
 return testScheduler;
 }
}

This class allows the user to get the test scheduler that will be hooked up for all calls to
Schedulers. A unit test would just need to get this scheduler in its setup. It is highly recommend
aquiring it in the setup and not as any plain old field because your TestScheduler might try to
triggerActions in from another unit test when you advance time. Now our example above becomes

TestScheduler testScheduler = new TestScheduler();
TestSubscriber<Integer> subscriber = TestSubscriber.create();
Observable.just(1,2,3)
 .delay(10, TimeUnit.SECONDS, testScheduler)
 .subscribe(subscriber);
testScheduler.advanceTimeBy(9, TimeUnit.SECONDS);
subscriber.assertValues(); // success (delay hasn't finished)
testScheduler.advanceTimeBy(10, TimeUnit.SECONDS);
subscriber.assertValues(1,2,3); // success (delay has finished)

That's how you can effectively remove the system clock from your unit test (at least as far as
RxJava is concerned)

Read Unit Testing online: https://riptutorial.com/rx-java/topic/5207/unit-testing

https://riptutorial.com/ 48

https://riptutorial.com/rx-java/topic/5207/unit-testing

Credits

S.
No

Chapters Contributors

1
Getting started with
rx-java

Buttink, Community, dimsuz, Dmitry Avtonomov, Hans Wurst,
hello_world, Omar Al Halabi, Saulius Next, Sneh Pandya,
svarog, Tom

2 Android with RxJava
akarnokd, Athafoud, Daniele Segato, Eugen Martynov, Geng
Jiawen, Sneh Pandya

3 Backpressure
akarnokd, Bartek Lipinski, Chris A, Cristian, dwursteisen, Niklas,
Sebas LG

4 Observable Aki K, dwursteisen, hello_world, JonesV

5 Operators dwursteisen, hello_world, svarog, Vadeg

6 Retrofit and RxJava LordRaydenMK

7
RxJava2 Flowable
and Subscriber

P.J.Meisch

8 Schedulers dwursteisen, Gal Dreiman

9 Subjects hello_world, mavHarsha

10 Unit Testing Buttink, Sir Celsius

https://riptutorial.com/ 49

https://riptutorial.com/contributor/249602/buttink
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/258848/dimsuz
https://riptutorial.com/contributor/88814/dmitry-avtonomov
https://riptutorial.com/contributor/7057156/hans-wurst
https://riptutorial.com/contributor/2625032/hello-world
https://riptutorial.com/contributor/5562711/omar-al-halabi
https://riptutorial.com/contributor/7301044/saulius-next
https://riptutorial.com/contributor/6248491/sneh-pandya
https://riptutorial.com/contributor/1410465/svarog
https://riptutorial.com/contributor/864936/tom
https://riptutorial.com/contributor/61158/akarnokd
https://riptutorial.com/contributor/2279200/athafoud
https://riptutorial.com/contributor/902276/daniele-segato
https://riptutorial.com/contributor/981715/eugen-martynov
https://riptutorial.com/contributor/1713757/geng--jiawen
https://riptutorial.com/contributor/1713757/geng--jiawen
https://riptutorial.com/contributor/6248491/sneh-pandya
https://riptutorial.com/contributor/61158/akarnokd
https://riptutorial.com/contributor/1993204/bartek-lipinski
https://riptutorial.com/contributor/450243/chris-a
https://riptutorial.com/contributor/244296/cristian
https://riptutorial.com/contributor/476690/dwursteisen
https://riptutorial.com/contributor/1979703/niklas
https://riptutorial.com/contributor/5250468/sebas-lg
https://riptutorial.com/contributor/1216516/aki-k
https://riptutorial.com/contributor/476690/dwursteisen
https://riptutorial.com/contributor/2625032/hello-world
https://riptutorial.com/contributor/1368342/jonesv
https://riptutorial.com/contributor/476690/dwursteisen
https://riptutorial.com/contributor/2625032/hello-world
https://riptutorial.com/contributor/1410465/svarog
https://riptutorial.com/contributor/430426/vadeg
https://riptutorial.com/contributor/1011435/lordraydenmk
https://riptutorial.com/contributor/4393565/p-j-meisch
https://riptutorial.com/contributor/476690/dwursteisen
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/2625032/hello-world
https://riptutorial.com/contributor/2270241/mavharsha
https://riptutorial.com/contributor/249602/buttink
https://riptutorial.com/contributor/3465375/sir-celsius

	About
	Chapter 1: Getting started with rx-java
	Remarks
	Versions
	Examples
	Installation or Setup
	Hello, World!
	An introduction to RxJava
	Understanding Marble Diagrams

	Chapter 2: Android with RxJava
	Remarks
	Examples
	RxAndroid - AndroidSchedulers
	RxLifecycle components
	Rxpermissions

	Chapter 3: Backpressure
	Examples
	Introduction
	The onBackpressureXXX operators

	Increasing the buffer sizes
	Batching/skipping values with standard operators
	onBackpressureBuffer()
	onBackpressureBuffer(int capacity)
	onBackpressureBuffer(int capacity, Action0 onOverflow)
	onBackpressureBuffer(int capacity, Action0 onOverflow, BackpressureOverflow.Strategy strategy)

	onBackpressureDrop()
	onBackpressureLatest()
	Creating backpressured data sources

	just
	fromCallable
	from
	create(SyncOnSubscribe)
	create(emitter)

	Chapter 4: Observable
	Examples
	Create an Observable

	Emitting an exiting value
	Emitting a value that should be computed
	Alternative way to Emitting a value that should be computed
	Hot and Cold Observables
	Cold Observable
	Hot Observable

	Chapter 5: Operators
	Remarks
	Examples
	Operators, an introduction
	flatMap Operator
	filter Operator
	map Operator
	doOnNext operator
	repeat operator

	Chapter 6: Retrofit and RxJava
	Examples
	Set up Retrofit and RxJava
	Making serial requests
	Making parallel requests

	Chapter 7: RxJava2 Flowable and Subscriber
	Introduction
	Remarks
	Examples
	producer consumer example with backpressure support in the producer

	Chapter 8: Schedulers
	Examples
	Basic Examples

	Chapter 9: Subjects
	Syntax
	Parameters
	Remarks
	Examples
	Basic Subjects
	PublishSubject

	Chapter 10: Unit Testing
	Remarks
	Examples
	TestSubscriber

	Getting Started
	Getting all events
	Asserting on events

	Testing Observable#error
	TestScheduler

	Credits

