
sails.js

#sails.js

Table of Contents

About 1

Chapter 1: Getting started with sails.js 2

Remarks 2

Versions 2

Releases prior to 0.10.1 omitted from list. See earlier releases 3

Examples 3

Installation 3

Creating a new project 3

Launch app 4

Hello world 4

Generating sails project without frontend 5

Chapter 2: Blueprint API 6

Remarks 6

How does Blueprint API works? 6

Examples 6

Blueprint Routes 6

Order of routes matching 7

Blueprint Actions 8

Disabling Blueprint Routes 8

Chapter 3: Configuring mysql with sails.js 10

Examples 10

How to configure mysql database connection in sails.js 10

Chapter 4: Controllers 12

Remarks 12

Examples 12

ES2015 Syntax 12

Using ES2015 generators with co.js 12

Chapter 5: JSON web token authentication with Sails 14

Examples 14

Configuration 14

Step one 14

Step two 14

Step three 15

Step four 16

Step five 16

Installation 17

Chapter 6: Models 18

Remarks 18

Examples 18

Basic Model 18

Chapter 7: MongoDB Adapter for Sails 21

Examples 21

Configuration 21

Installation 21

Chapter 8: PostgreSQL Database Adapter for Sails 22

Examples 22

Install 22

Configuration 22

Chapter 9: Routing 23

Remarks 23

Examples 24

Custom RESTful route definitions 24

Redirect 24

Define custom variable for all views 24

Skip assets (urls with dots in them) from wildcard route 24

Routes with RegEx 25

URL slugs 25

Credits 26

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: sails-js

It is an unofficial and free sails.js ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official sails.js.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/sails-js
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with sails.js

Remarks

sails.js is an MVC (Model View Controller) web framework for node.js that emulates familiar MVC
frameworks like Ruby on Rails. sails.js is based on Express and provides websocket support via
socket.io.

sails.js provides a set of conventions and default configurations to quickly get a new website
project started. It is highly configurable and allows you to easily override the default conventions.

sails.js comes with an ORM called Waterline which abstracts data access. Waterline allows you to
use various datastores such as MySQL, PostgreSQL, MongoDB, Redis, etc. and have a clear API
for working with your model data.

Versions

Version Release notes Changelog Release Date

0.12.13 Release notes 2017-03-06

0.12.12 Release notes Changelog 2017-03-03

0.12.11 Release notes Changelog 2016-11-24

0.12.10 Release notes Changelog 2016-11-17

0.12.9 Release notes Changelog 2016-11-02

0.12.8 Release notes Changelog 2016-10-22

0.12.7 Release notes Changelog 2016-10-06

0.12.6 Release notes Changelog 2016-09-28

0.12.5 Release notes Changelog 2016-09-28

0.12.4 Release notes Changelog 2016-08-01

0.12.3 Release notes Changelog 2016-04-04

0.12.2 Release notes Changelog 2016-04-02

0.12.1 Release notes Changelog 2016-02-15

0.12.0 Release notes Changelog 2016-02-06

0.11.5 Release notes Changelog 2016-02-05

https://riptutorial.com/ 2

https://github.com/balderdashy/sails/releases/tag/v0.12.13
https://github.com/balderdashy/sails/releases/tag/v0.12.12
https://github.com/balderdashy/sails/blob/v0.12.12/CHANGELOG.md#01212
https://github.com/balderdashy/sails/releases/tag/v0.12.11
https://github.com/balderdashy/sails/blob/master/CHANGELOG.md#01211
https://github.com/balderdashy/sails/releases/tag/v0.12.10
https://github.com/balderdashy/sails/blob/master/CHANGELOG.md#01210
https://github.com/balderdashy/sails/releases/tag/v0.12.9
https://github.com/balderdashy/sails/blob/master/CHANGELOG.md#0129
https://github.com/balderdashy/sails/releases/tag/v0.12.8
https://github.com/balderdashy/sails/blob/master/CHANGELOG.md#0128
https://github.com/balderdashy/sails/releases/tag/v0.12.7
https://github.com/balderdashy/sails/blob/master/CHANGELOG.md#0127
https://github.com/balderdashy/sails/releases/tag/v0.12.6
https://github.com/balderdashy/sails/blob/master/CHANGELOG.md#0126
https://github.com/balderdashy/sails/releases/tag/v0.12.5
https://github.com/balderdashy/sails/blob/master/CHANGELOG.md#0125
https://github.com/balderdashy/sails/releases/tag/v0.12.4
https://github.com/balderdashy/sails/blob/master/CHANGELOG.md#0124
https://github.com/balderdashy/sails/releases/tag/v0.12.3
https://github.com/balderdashy/sails/blob/master/CHANGELOG.md#0123
https://github.com/balderdashy/sails/releases/tag/v0.12.2
https://github.com/balderdashy/sails/blob/master/CHANGELOG.md#0122
https://github.com/balderdashy/sails/releases/tag/v0.12.1
https://github.com/balderdashy/sails/blob/master/CHANGELOG.md#0121
https://github.com/balderdashy/sails/releases/tag/v0.12.0
https://github.com/balderdashy/sails/blob/master/CHANGELOG.md#0120
https://github.com/balderdashy/sails/releases/tag/v0.11.5
https://github.com/balderdashy/sails/blob/master/CHANGELOG.md#0115

Version Release notes Changelog Release Date

0.11.4 Release notes Changelog 2016-01-06

0.11.3 Release notes Changelog 2015-11-23

0.11.2 Release notes Changelog 2015-09-23

0.11.0 Release notes Changelog 2015-02-11

0.10.5 Release notes Changelog 2014-08-30

0.10.4 Release notes 2014-08-13

0.10.3 Release notes 2014-08-07

0.10.2 Release notes 2014-08-06

0.10.1 Release notes 2014-08-02

Releases prior to 0.10.1 omitted from list. See earlier releases

Examples

Installation

Prerequisites

nodejs•

To install the latest stable release of sails with the command-line tool issue following command:

$ sudo npm install sails -g

Depending on your OS you might not need to use sudo.

Creating a new project

Once you have Sails installed, just type

$ sails new <project_name>

This will create a skeleton Sails project in a new folder called <project_name>.

You can also create a new project in an empty folder by typing

$ sails new

https://riptutorial.com/ 3

https://github.com/balderdashy/sails/releases/tag/v0.11.4
https://github.com/balderdashy/sails/blob/master/CHANGELOG.md#0114
https://github.com/balderdashy/sails/releases/tag/v0.11.3
https://github.com/balderdashy/sails/blob/master/CHANGELOG.md#0113
https://github.com/balderdashy/sails/releases/tag/v0.11.2
https://github.com/balderdashy/sails/blob/master/CHANGELOG.md#0112
https://github.com/balderdashy/sails/releases/tag/v0.11.0
https://github.com/balderdashy/sails/blob/master/CHANGELOG.md#0110
https://github.com/balderdashy/sails/releases/tag/v0.10.5
https://github.com/balderdashy/sails/blob/master/CHANGELOG.md#0105
https://github.com/balderdashy/sails/releases/tag/v0.10.4
https://github.com/balderdashy/sails/releases/tag/v0.10.3
https://github.com/balderdashy/sails/releases/tag/v0.10.2
https://github.com/balderdashy/sails/releases/tag/v0.10.1
https://github.com/balderdashy/sails/releases?after=v0.10.1

Launch app

Once your project has been created, you can launch the app by typing

$ sails lift

By default, you can access the app in the browser on port 1337. The URL with the port is shown in
the terminal.

Another way to start the Sails app is with the node command:

$ node app.js

However, you lose some development features of the lift command like auto-reloading of the app
when assets and view files are modified.

For development you can also use:

$ sails console

This allows you to execute command directly in command line. It's very useful for debugging
Models.

Hello world

This example shows how to develop our first application step by step, assuming you already have
Sails installed and a project created.

Create an empty controller file by typing1.

$ sails generate controller hello

Find the new controller file at api/controllers/HelloControllers.js and add the hello method
to it.

2.

module.exports = {

 hello : function (req, res) {
 var myName = 'Luis';
 return res.view('hello' , {name : myName});
 }
}

Create a new view file under the folder views named hello.ejs with the following HTML:3.

<html>
 <head></head>
 <body>
 <p>Hello {{}}.</p>

https://riptutorial.com/ 4

 </body>
</html>

Define a route in config/routes.js that calls the hello method in the HelloController
controller.

4.

'GET /' : 'HelloController.hello',

Now we have implemented all the code needed for this example. Let's try it:

Start the server1.

$ sails lift

Open the browser and type http://localhost:1337. If it's not coming up, check the URL in the
sails lift output. The port may be different.

2.

You should see the following output:

Hello Luis

3.

Generating sails project without frontend

If there is no need for frontend in your next project, you can run sails new with additional flag --no-
frontend.

sails new NameOfProject --no-frontend

This will generate everything needed for backend and will omit view, assets and grunt files.

More about command line and sails-new: http://sailsjs.org/documentation/reference/command-
line-interface/sails-new

Read Getting started with sails.js online: https://riptutorial.com/sails-js/topic/1205/getting-started-
with-sails-js

https://riptutorial.com/ 5

http://sailsjs.org/documentation/reference/command-line-interface/sails-new
http://sailsjs.org/documentation/reference/command-line-interface/sails-new
https://riptutorial.com/sails-js/topic/1205/getting-started-with-sails-js
https://riptutorial.com/sails-js/topic/1205/getting-started-with-sails-js

Chapter 2: Blueprint API

Remarks

How does Blueprint API works?

When sails initially starts using sails lift, sails looks to see if you have any controller defined. In
our example, we have one controller, the User controller. Sails then provides access to blueprint
actions for this user controller as if we built them in the controller ourselves. Sails also
automatically creates blueprint routes at the time of lifting the server. So even if no routes is
defined in /config/routes.js and no action is defined in /api/controllers/UserController.js
explicitly, after lifting the server all these routes and actions are available to use.

Examples

Blueprint Routes

When you run sails lift with blueprints enabled, the framework inspects your controllers, models,
and configuration in order to bind certain routes automatically. These implicit blueprint routes allow
your app to respond to certain requests without you having to bind those routes manually in your
config/routes.js file. By default, the blueprint routes point to their corresponding blueprint actions,
any of which can be overridden with custom code.

There are three types of blueprint routes in Sails:

RESTful routes, where the path is always /:model/:id?. When the User model and controller
is defined, blueprint binds RESTful routes implicitly in following way -

'GET /user/:id?': {
 controller: 'User',
 action: 'find'
},
'POST /user': {
 controller: 'User',
 action: 'create'
},
'PUT /user/:id?': {
 controller: 'User',
 action: 'update'
},
'DELETE /user/:id?': {
 controller: 'User',
 action: 'destroy'
}

These routes use the HTTP verb to determine the action to take even if the route is same.
So, a POST request to /user will create a new user, a PUT request to /user/123 will update the
user with primary key 123 and a DELETE request to /user/123 will delete the user whose
primary key is 123. In a production environment, RESTful routes should generally be

•

https://riptutorial.com/ 6

protected by policies to avoid unauthorized access.

Shortcut routes, where the action to take is encoded in the path. For our User model and
controller Sails binds following four shortcut routes implicitly.

'GET /user/find/:id?': {
 controller: 'User',
 action: 'find'
},
'GET /user/create/:id?': {
 controller: 'User',
 action: 'create'
},
'GET /user/update/:id?': {
 controller: 'User',
 action: 'update'
},
'GET /user/destroy/:id?': {
 controller: 'User',
 action: 'destroy'
}

As example, the /user/create?name=joe shortcut creates a new user, while
/user/update/1?name=mike updates the name field of user #1. Note that these routes only
respond to GET requests. Shortcut routes are very handy for development, but generally
should be disabled in a production environment. It's not designed to be used in production.

•

Action routes, which automatically create routes for your custom controller actions. For
example, let query be a custom action defined in User controller. Then following routes would
be implicitly available to sails -

'GET /user/query/:id?': {
 controller: 'User',
 action: 'query'
},
'POST /user/query/:id?': {
 controller: 'User',
 action: 'query'
},
'PUT /user/query/:id?': {
 controller: 'User',
 action: 'query'
},
'DELETE /user/query/:id?': {
 controller: 'User',
 action: 'query'
}

If request is made in /user/query/:id? route then independent on the HTTP verb the action
would be same. Unlike RESTful and shortcut routes, action routes do not require that a
controller has a corresponding model file. Which means, if you define a controller in
/api/controllers/FooController.js file but no model in /api/models/Foo.js file, there would be
no RESTful or shortcut route with /foo but there will still be action routes available to use.

•

https://riptutorial.com/ 7

Order of routes matching

When a request comes, sails will first match the route against explicitly defined routes. If it
matches then no further matching is done and corresponding action is executed. But if it doesn't
match then the route is matched firstly against blueprint action routes, if doesn't match then
against rest routes and if it doesn't match either then shortcut routes. So if your /config/routes.js
file has some entry like the following-

 '/user/query/:id?': {
 controller: 'User',
 action: 'find'
 }

Then you can't expect query action routes to work. Because the same route as query action route
would be matched against the explicitly define routes and find action of User controller would be
executed.

Blueprint Actions

Blueprint actions (not to be confused with blueprint action routes) are generic actions designed to
work with any of your controllers that have a model of the same name (e.g. ParrotController would
need a Parrot model). Think of them as the default behavior for your application. For instance, if
you have a User.js model and an empty UserController.js controller, find, create, update, destroy,
populate, add and remove actions exist implicitly, without you having to write them.

By default, the blueprint RESTful routes and shortcut routes are bound to their corresponding
blueprint actions. However, any blueprint action can be overridden for a particular controller by
creating a custom action in that controller file (e.g. ParrotController.find). Alternatively, you can
override the blueprint action everywhere in your app by creating your own custom blueprint action.

Sails ships with the following blueprint actions:

find•
findOne•
create•
update•
destroy•
populate•
add•
remove•

Disabling Blueprint Routes

Global basis: Blueprint API configuration is defined in /config/blueprint.js file. You can
enable or disable all three types of blueprint routes for all controllers from there. As example,
if you want to disable blueprint shortcut routes for all of your controllers but want to keep
both action and rest routes enabled, then your /config/blueprint.js should be like this -

•

https://riptutorial.com/ 8

module.exports.blueprints = {
 action: true,
 rest: true,
 shortcut: false
}

On per-controller basis: You may also override any of the settings from
/config/blueprints.js on a per-controller basis by defining a '_config' key in your controller
defintion, and assigning it a configuration object with overrides for the settings in this file. As
example if you want to have shortcut routes enabled only for your user controller but not for
any more controllers then with the above blueprint configuration you have to have following
key value pair in user controller.

module.exports = {
 _config: {
 actions: true,
 shortcuts: true,
 rest: true
 }
}

•

Read Blueprint API online: https://riptutorial.com/sails-js/topic/3749/blueprint-api

https://riptutorial.com/ 9

https://riptutorial.com/sails-js/topic/3749/blueprint-api

Chapter 3: Configuring mysql with sails.js

Examples

How to configure mysql database connection in sails.js

To do this first locate config folder in your root. Then open connections.js

Locate

 // someMysqlServer: {
 // adapter: 'sails-mysql',
 // host: 'YOUR_MYSQL_SERVER_HOSTNAME_OR_IP_ADDRESS',
 // user: 'YOUR_MYSQL_USER', //optional
 // password: 'YOUR_MYSQL_PASSWORD', //optional
 // database: 'YOUR_MYSQL_DB' //optional
 // },

Uncomment these lines.

Give suitable name for the connector like this someMysqlServer to mysql_connection or any name
as your wish

 mysql_connection: {
 adapter: 'sails-mysql',
 host: '127.0.0.1', // can user localhost or mysql connection either
 user: 'root', // your mysql username
 password: 'xxxxxxxxx', // your mysql password
 database: 'your database name here' // database name
 },

Save file

Go to your root folder and run following command :

$ npm install sails-mysql --save

Note: by running above command we are installing mysql driver package for sails.js.

Your are done.

Now you can use mysql_connection as connection name in your model config. When you lift your
app using following command:

$ sails lift

you model schema will automatically get updated in MySQL database

Read Configuring mysql with sails.js online: https://riptutorial.com/sails-js/topic/5317/configuring-

https://riptutorial.com/ 10

https://riptutorial.com/sails-js/topic/5317/configuring-mysql-with-sails-js

mysql-with-sails-js

https://riptutorial.com/ 11

https://riptutorial.com/sails-js/topic/5317/configuring-mysql-with-sails-js

Chapter 4: Controllers

Remarks

Controllers (the C in MVC) are the principal objects in your Sails application that are responsible
for responding to requests from a web browser, mobile application or any other system capable of
communicating with a server. They often act as a middleman between your models and views. For
many applications, the controllers will contain the bulk of your project’s business logic.

Examples

ES2015 Syntax

'use strict';

// This is an example of a /api/controllers/HomeController.js
module.exports = {
 // This is the index action and the route is mapped via /config/routes.js
 index(req, res) {
 // Return a view without view model data
 // This typically will return the view defined at /views/home/index.<view engine
extension>
 return res.view();
 },
 foo(req, res) {
 // Return the 'foo' view with a view model that has a `bar` variable set to the query
string variable `foobar`
 return res.view({
 bar: req.param('foobar'),
 });
 },
};

Using ES2015 generators with co.js

'use strict';

const co = require('co');

module.exports = {
 // This is the index action and the route is mapped via /config/routes.js
 index(req, res) {
 co(function* index() {
 // Return a view without view model data
 // This typically will return the view defined at /views/home/index.<view engine
extension>
 return res.view();
 }).catch(res.negotiate); // Catch any thrown errors and pass the error to the `negotiate`
policy.
 },
 foo(req, res) {
 co(function* foo() {

https://riptutorial.com/ 12

 // Get an array of `FooBar` items from the database
 const items = yield FooBar.find();

 // Return the 'foo' view with a view model containing the array of `FooBar` items
 return res.view({
 items,
 });
 }).catch(res.negotiate); // Catch any thrown errors and pass the error to the `negotiate`
policy.
 },
};

Read Controllers online: https://riptutorial.com/sails-js/topic/3521/controllers

https://riptutorial.com/ 13

https://riptutorial.com/sails-js/topic/3521/controllers

Chapter 5: JSON web token authentication
with Sails

Examples

Configuration

Step one

We need to create a service called jwToken. Go to api/services directory and create jwToken.js.

'use strict';

const jwt = require('jsonwebtoken'),
 tokenSecret = "secretissecret";

module.exports = {
 // Generates a token from supplied payload
 issue(payload) {
 return jwt.sign(
 payload,
 tokenSecret, // Token Secret that we sign it with
 {
 expiresIn: "30 days" // Token Expire time
 });
 },

 // Verifies token on a request
 verify(token, callback) {
 return jwt.verify(
 token, // The token to be verified
 tokenSecret, // Same token we used to sign
 {}, // No Option, for more see https://github.com/auth0/node-
jsonwebtoken#jwtverifytoken-secretorpublickey-options-callback
 callback //Pass errors or decoded token to callback
);
 }
};

Step two

Encrypt our password using bcrypt. Go to api/models/User.js.

'use strict';
const bcrypt = require('bcrypt');

module.exports = {

 attributes: {

https://riptutorial.com/ 14

 // your code...
 },

 // Here we encrypt password before creating a User
 beforeCreate(values, next) {
 bcrypt.genSalt(10, (err, salt) => {
 if (err) {
 sails.log.error(err);
 return next();
 }

 bcrypt.hash(values.password, salt, (err, hash) => {
 if (err) {
 sails.log.error(err);
 return next();
 }
 values.encryptedPassword = hash; // Here is our encrypted password
 return next();
 });
 });
 },

 comparePassword(password, encryptedPassword) {

 return new Promise(function(resolve, reject) {
 bcrypt.compare(password, encryptedPassword, (err, match) => {
 if (err) {
 sails.log.error(err);
 return reject("Something went wrong!");
 }
 if (match) return resolve();
 else return reject("Mismatch passwords");
 });
 });
 }
};

Step three

Create isAuthorized policy to check if a user has valid token in the request header. Go to
api/policies and create isAuthorized.js.

'use strict';

module.exports = (req, res, next) => {
 let token;

 if (req.headers && req.headers.token) {
 token = req.headers.token;
 if (token.length <= 0) return res.json(401, {err: 'Format is Authorization: Bearer
[token]'});

 } else if (req.param('token')) {
 token = req.param('token');
 // We delete the token from param to not mess with blueprints
 delete req.query.token;

https://riptutorial.com/ 15

 } else {
 return res.json(401, {err: 'No Authorization header was found'});
 }

 jwToken.verify(token, function (err, token) {
 if (err) return res.json(401, {err: 'Invalid Token!'});
 req.token = token; // This is the decrypted token or the payload you provided
 next();
 });
};

Step four

We use config/policies.js to protect our controllers

module.exports.policies = {

 '*': ['isAuthorized'], // Everything resctricted here
 'UserController': { // Name of your controller
 'create': true // We dont need authorization here, allowing public access
 }
};

Step five

Let's test our implementation. Go to api/controllers and create UserController.js

'use strict';

module.exports = {
 create(req, res) {
 const data = req.body;
 if (data.password !== data.confirmPassword) return res.badRequest("Password not the
same");

 User.create({
 email: data.email,
 password: data.password,
 name: data.name
 //etc...
 })
 .then((user) => {
 res.send({ token: jwToken.issue({ id: user.id }) }); // payload is { id:
user.id}
 })
 .catch((err) => {
 sails.log.error(err);
 return res.serverError("Something went wrong");
 });
 },

 login(req, res) {
 const data = req.body;

https://riptutorial.com/ 16

 if (!data.email || !data.password) return res.badRequest('Email and password
required');

 User.findOne({ email: email })
 .then((user) => {
 if (!user) return res.notFound();

 User.comparePassword(password, user.password)
 .then(() => {
 return res.send({ token: jwToken.issue({ id: user.id }) })
 })
 .catch((err) => {
 return res.forbidden();
 });
 })
 .catch((err) => {
 sails.log.error(err);
 return res.serverError();
 });
 }
};

Installation

We need two dependencies:

bcrypt for encryption npm install bcrypt --save1.
JSON Web token npm install jsonwebtoken --save2.

Read JSON web token authentication with Sails online: https://riptutorial.com/sails-
js/topic/7050/json-web-token-authentication-with-sails

https://riptutorial.com/ 17

https://riptutorial.com/sails-js/topic/7050/json-web-token-authentication-with-sails
https://riptutorial.com/sails-js/topic/7050/json-web-token-authentication-with-sails

Chapter 6: Models

Remarks

Sails comes installed with a powerful ORM/ODM called Waterline, a datastore-agnostic tool that
dramatically simplifies interaction with one or more databases. It provides an abstraction layer on
top of the underlying database, allowing you to easily query and manipulate your data without
writing vendor-specific integration code.

Examples

Basic Model

This example shows how to define a simple model in Sails.js

You can generate an empty model file by typing

sails generate model car

You'll find the new file Car.js in api/models/.

Next, you fill in some details.

modules.exports = {

 tableName : 'cars',
 connection : 'mongodb',

 attributes : {

 id : {
 type : 'integer',
 unique : true,
 primaryKey : true,
 autoIncrement : true
 },

 brand : {
 type : 'string',
 size : 25
 },

 description : {
 type: 'text',
 defaultsTo : ''
 },

 price : {
 type : 'float',
 required : true
 },

https://riptutorial.com/ 18

 seats : {
 type : 'integer'
 },

 sell_date : {
 type : 'datetime'
 },

 has_cooler : {
 type : 'boolean',
 columnName : 'cooler'
 },

 chassis_number : {
 unique : true,
 type : 'string'
 },

 color : {
 type : 'string',
 enum: ['white', 'red', 'black']
 }

 }

};

The example above uses nearly every possible model option, which are explained below.

1. tableName

This parameter defines the name of the table that will be created in the database. If not defined,
the model name will be used (car in this example).

2. connection

This particular defines the database connection used for the model. The details of that connection
are defined under the mongodb key inside config/connections.js. Here's the format of a connection:

mongodb : {

 // The driver that connect our models with the database
 adapter : '<adapter>',

 // The database parameters
 user : '<username>',
 port : <port>,
 host : '<host>',
 database : '<database>'

}

3. attributes

Each attribute references a column in the database table for the model. In this example, nine
columns will be created. Each column can be configured with one or more of the following keys:

https://riptutorial.com/ 19

type : The data type of the column. This page lists all the available types.•
unique : If true, an error will occur if you try to create an object that has the same value for
this column as one already in the database.

•

primaryKey : If true, the column will work as primary key.•
autoIncrement : A sequence will be associated to the column with an auto incrementable
number starting at 0.

•

size : The maximum length of the column.•
required : If true, it can't be null.•
columnName : This configures the column in the database, which defaults to the attribute
name.

•

enum : We can set an array of possible options for an attribute.•

Read Models online: https://riptutorial.com/sails-js/topic/4646/models

https://riptutorial.com/ 20

http://sailsjs.org/documentation/concepts/models-and-orm/attributes#?attribute-options
https://riptutorial.com/sails-js/topic/4646/models

Chapter 7: MongoDB Adapter for Sails

Examples

Configuration

You can configure the database settings in config/connections.js.

Example:

someMongoDb: {
 adapter: 'sails-mongo',
 host: 'localhost', // defaults to `localhost` if omitted
 port: 27017, // defaults to 27017 if omitted
 user: 'username_here', // or omit if not relevant
 password: 'password_here', // or omit if not relevant
 database: 'database_name_here' // or omit if not relevant
}

Alternatively, you can specify your Mongo configuration as a URL

someMongoDb: {
 adapter: 'sails-mongo',
 url: mongodb://username:password@hostname:port/database
}

Installation

Install from NPM.

npm install sails-mongo --save

Read MongoDB Adapter for Sails online: https://riptutorial.com/sails-js/topic/7047/mongodb-
adapter-for-sails

https://riptutorial.com/ 21

https://riptutorial.com/sails-js/topic/7047/mongodb-adapter-for-sails
https://riptutorial.com/sails-js/topic/7047/mongodb-adapter-for-sails

Chapter 8: PostgreSQL Database Adapter for
Sails

Examples

Install

You can install the postgreSQL adapter via NPM.

npm install sails-postgresql

Configuration

You can configure the database settings in config/connections.js.

Here's an example:

postgresql: {
 database: 'databaseName',
 host: 'localhost',
 user: 'root',
 password: '',
 port: 5432,
 poolSize: 10,
 ssl: false
};

Alternatively, you can supply the connection information in URL format:

postgresql: {
 url: 'postgres://username:password@hostname:port/database',
 ssl: false
};

Read PostgreSQL Database Adapter for Sails online: https://riptutorial.com/sails-
js/topic/4676/postgresql-database-adapter-for-sails

https://riptutorial.com/ 22

https://riptutorial.com/sails-js/topic/4676/postgresql-database-adapter-for-sails
https://riptutorial.com/sails-js/topic/4676/postgresql-database-adapter-for-sails

Chapter 9: Routing

Remarks

Routes are rules that tell Sails what to do when faced with an incoming request.

Routes are defined in config/routes.js. The order of the routes is significant, as routes are
matched top down. This means if you have a specific route that also could be matched by a
wildcard route, the specific route should be defined above the wildcard route.

When a request enters your application sails.js grabs all the parameters that came with it and
makes them available for you as params on the request object.

Properties in the route target object will be passed through to the route handler in the req.options
object. The following are reserved properties that can affect the behavior of the route handler:

Property
Applicable
Target
Types

Data Type Details

skipAssets all Boolean

Set to true if you don't want the route to match
URLs with dots in them (e.g. myImage.jpg). This
will keep your routes with wildcard notation from
matching URLs of static assets. Useful when
creating URL slugs.

skipRegex all Regexp

If skipping every URL containing a dot is too
permissive, or you need a route's handler to be
skipped based on different criteria entirely, you
can use skipRegex. This option allows you to
specify a regular expression or array of regular
expressions to match the request URL against; if
any of the matches are successful, the handler is
skipped. Note that unlike the syntax for binding a
handler with a regular expression, skipRegex
expects _actual RegExp objects, not strings.

locals

controller,
view,
blueprint,
response

Dictionary
Sets default local variables to pass to any view
that is rendered while handling the request.

cors all
Dictionary
or Boolean
or String

Specifies how to handle requests for this route
from a different origin.

https://riptutorial.com/ 23

Property
Applicable
Target
Types

Data Type Details

populate blueprint Boolean

Indicates whether the results in a "find" or
"findOne" blueprint action should have
associated model fields populated. Defaults to
the value set in config/blueprints.js.

skip, limit,
sort, where

blueprint Dictionary Set criteria for "find" blueprint.

Examples

Custom RESTful route definitions

module.exports.routes = {
 'GET /foo': 'FooController.index',
 'GET /foo/new': 'FooController.new',
 'POST /foo/create': 'FooController.create',
 'GET /foo/:id/edit': 'FooController.edit',
 'PUT /foo/:id/update': 'FooController.update',
 'GET /foo/:id': 'FooController.show',
 'DELETE /foo/:id': 'FooController.delete',
};

Redirect

module.exports.routes = {
 '/foo': '/bar',
 'GET /google': 'http://www.google.com'
};

Define custom variable for all views

module.exports.routes = {
 // This function will be executed for all http verbs on all urls
 'all /*', function (req, res, next) {
 // Expose the function `fooBar` to all views (via the locals object)
 res.locals.fooBar = function (arg1) {
 return 'foobar' + arg1;
 };
 },
};

Skip assets (urls with dots in them) from wildcard route

module.exports.routes = {
 'GET /foo/*': {
 fn: function(req, res) {

https://riptutorial.com/ 24

 res.send("FOO!");
 },
 skipAssets: true
 },
};

Routes with RegEx

module.exports.routes = {
 // sends matching regex (few patterns) as 'page' param
 'r|/foo/([0-9]+)|page': 'FooController.get',
 'r|/foo/(.*)|page': 'FooController.get',
 'r|/foo/(\\w+)|page': 'FooController.get'
};

URL slugs

module.exports.routes = {
 'GET /blog/:year/:month/:day/:posttitle/': 'BlogController.showPost',
 'GET /blog/:year/:month/:day/': 'BlogController.showDayArchive',
 'GET /blog/:year/:month/': 'BlogController.showMonthArchive',
 'GET /blog/:year/': 'BlogController.showYearArchive',
};

The parameters passed in the URL can then be accessed in the corresponding controller actions
using req.param('year'), req.param('month') etc.

For example, a GET request to /blog/2016/08/ triggers the BlogController.showMonthArchive controller
action, with req.param('year') having the value 2016 and req.param('month') having the value 08.

Read Routing online: https://riptutorial.com/sails-js/topic/4577/routing

https://riptutorial.com/ 25

https://riptutorial.com/sails-js/topic/4577/routing

Credits

S.
No

Chapters Contributors

1
Getting started with
sails.js

Bonanza, Community, hlozancic, Jim Geurts, Lost in OWL, Luis
González, mouche, Sebastialonso, Viktor, Yann Bertrand

2 Blueprint API taufique

3
Configuring mysql
with sails.js

vijeeshin, Yann Bertrand

4 Controllers Jim Geurts

5
JSON web token
authentication with
Sails

SkyQ, Viktor

6 Models Luis González, mouche, Viktor

7
MongoDB Adapter
for Sails

SkyQ

8
PostgreSQL
Database Adapter
for Sails

Luis González, mouche

9 Routing Bonanza, Jim Geurts, Viktor

https://riptutorial.com/ 26

https://riptutorial.com/contributor/729041/bonanza
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2039846/hlozancic
https://riptutorial.com/contributor/3085/jim-geurts
https://riptutorial.com/contributor/401025/lost-in-owl
https://riptutorial.com/contributor/3750462/luis-gonzalez
https://riptutorial.com/contributor/3750462/luis-gonzalez
https://riptutorial.com/contributor/128040/mouche
https://riptutorial.com/contributor/1296980/sebastialonso
https://riptutorial.com/contributor/802246/viktor
https://riptutorial.com/contributor/3215167/yann-bertrand
https://riptutorial.com/contributor/1735865/taufique
https://riptutorial.com/contributor/6680925/vijeeshin
https://riptutorial.com/contributor/3215167/yann-bertrand
https://riptutorial.com/contributor/3085/jim-geurts
https://riptutorial.com/contributor/4759423/skyq
https://riptutorial.com/contributor/802246/viktor
https://riptutorial.com/contributor/3750462/luis-gonzalez
https://riptutorial.com/contributor/128040/mouche
https://riptutorial.com/contributor/802246/viktor
https://riptutorial.com/contributor/4759423/skyq
https://riptutorial.com/contributor/3750462/luis-gonzalez
https://riptutorial.com/contributor/128040/mouche
https://riptutorial.com/contributor/729041/bonanza
https://riptutorial.com/contributor/3085/jim-geurts
https://riptutorial.com/contributor/802246/viktor

	About
	Chapter 1: Getting started with sails.js
	Remarks
	Versions
	Releases prior to 0.10.1 omitted from list. See earlier releases
	Examples
	Installation
	Creating a new project
	Launch app
	Hello world
	Generating sails project without frontend

	Chapter 2: Blueprint API
	Remarks
	How does Blueprint API works?

	Examples
	Blueprint Routes

	Order of routes matching
	Blueprint Actions
	Disabling Blueprint Routes

	Chapter 3: Configuring mysql with sails.js
	Examples
	How to configure mysql database connection in sails.js

	Chapter 4: Controllers
	Remarks
	Examples
	ES2015 Syntax
	Using ES2015 generators with co.js

	Chapter 5: JSON web token authentication with Sails
	Examples
	Configuration

	Step one
	Step two
	Step three
	Step four
	Step five
	Installation

	Chapter 6: Models
	Remarks
	Examples
	Basic Model

	Chapter 7: MongoDB Adapter for Sails
	Examples
	Configuration
	Installation

	Chapter 8: PostgreSQL Database Adapter for Sails
	Examples
	Install
	Configuration

	Chapter 9: Routing
	Remarks
	Examples
	Custom RESTful route definitions
	Redirect
	Define custom variable for all views
	Skip assets (urls with dots in them) from wildcard route
	Routes with RegEx
	URL slugs

	Credits

