
Salesforce

#salesforce

Table of Contents

About 1

Chapter 1: Getting started with Salesforce 2

Remarks 2

Examples 2

Installation or Setup 2

Salesforce Products 2

Sales Cloud 2

Service Cloud 2

Marketing Cloud 2

Community Cloud 2

Analytics Cloud aka Wave Analytics 2

App Cloud 3

IoT Cloud 3

Industry Specific Products 3

Financial Services Cloud 3

Health Cloud 3

Heroku 3

Chapter 2: Apex Testing 4

Examples 4

Assert Methods 4

Basic Test Class 4

Using testSetup 5

Using static blocks 5

Assertion Methods 6

Chapter 3: Apex Triggers 7

Syntax 7

Parameters 7

Examples 7

Basic trigger 7

Trigger context variables 7

Manipulating records that fired the trigger 8

Chapter 4: Approval Process Objects 10

Remarks 10

Examples 11

ProcessDefinition 11

ProcessNode 12

ProcessInstance 12

ProcessInstanceStep & ProcessInstanceWorkitem 12

ProcessInstanceHistory* 13

Chapter 5: Custom Settings 14

Remarks 14

Introduction 14

List Custom Settings 14

Examples 15

Creating & Managing Custom Settings 15

Creation 15

Management 15

Using Hierarchy Custom Settings To Disable Workflow / Validation Rules 16

Custom Setting 16

Custom Setting Field 17

Custom Setting Field Value 17

Validation Rule 18

Workflow Rules 19

Using Hierarchy Custom Settings To Disable Apex Code 19

Explanation 19

Apex Class 19

Unit Test 19

Updating Hierarchy Custom Settings in Apex Code 21

Chapter 6: Date Time Manipulation 26

Examples 26

Easily Find Last Day of a Month 26

Chapter 7: Global Variables in classes 27

Introduction 27

Examples 27

UserInfo 27

Chapter 8: Global Variables on Visualforce pages 28

Examples 28

$Resource 28

$Label 28

$User 28

Chapter 9: Page Navigation with help of list wrapper class in sales force. 29

Introduction 29

Examples 29

Pagination Controller 29

Chapter 10: SalesForce CI Integration 33

Introduction 33

Examples 33

How to configure Jenkins to deploy code on Development or Production org ? 33

Jenkins CI tools which can be used for SalesForce Automation 33

Chapter 11: Salesforce Object Query Language (SOQL) 34

Syntax 34

Examples 34

Basic SOQL Query 34

SOQL Query With Filtering 34

SOQL Query With Ordering 35

Using SOQL to Construct a Map 35

SOQL Query to Reference Parent Object's Fields 35

SOQL Queries in Apex 36

Variable References in Apex SOQL Queries 36

Potential Exceptions in Apex SOQL Queries 36

Using a Semi-Join 37

Dynamic SOQL 37

Chapter 12: Salesforce REST API 38

Introduction 38

Examples 38

OAuth2 access_token and list of services 38

Chapter 13: Tools for Development 39

Examples 39

IDEs 39

Browser extensions 39

Debuggers 39

Salesforce ETL tools 40

Static Analysis Tools 40

Chapter 14: Trigger Bulkification 41

Examples 41

Bulkification 41

Chapter 15: Visualforce Page Development 42

Examples 42

Basic page 42

Using Standard Controllers 42

Chapter 16: Working with External Systems 43

Examples 43

Making an outbound callout 43

Credits 44

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: salesforce

It is an unofficial and free Salesforce ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official Salesforce.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/salesforce
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Salesforce

Remarks

This section provides an overview of what salesforce is, and why a developer might want to use it.

It should also mention any large subjects within salesforce, and link out to the related topics. Since
the Documentation for salesforce is new, you may need to create initial versions of those related
topics.

Examples

Installation or Setup

The best way to get started with Salesforce is to get your own Developer Edition.

Developer Edition (often referred to as a "DE org") is a fully-featured development environment
with limits on data and users. Developer Edition is where you can get familiar with the
environment, try out stuff and mess around in Salesforce.com. Developer edition is an
environment lets you instantly start developing, testing and deploying your app in the cloud.

Salesforce Products

The Salesforce application consists of several products which can be integrated with each other:

Sales Cloud

Marketing Page, Salesforce Documentation

Service Cloud

Marketing Page, Salesforce Documentation, Trailhead

Marketing Cloud

Marketing Page

Community Cloud

Marketing Page, Salesforce Documentation

Analytics Cloud aka Wave Analytics

https://riptutorial.com/ 2

https://developer.salesforce.com/signup
http://www.salesforce.com/uk/sales-cloud/overview/
https://help.salesforce.com/apex/HTViewHelpDoc?id=users_welcome.htm&language=en_US
http://www.salesforce.com/uk/service-cloud/overview/
https://help.salesforce.com/apex/HTViewHelpDoc?id=support_agents_intro.htm&language=en_US
https://developer.salesforce.com/trailhead/module/service_basics
http://www.salesforce.com/uk/marketing-cloud/overview/
http://www.salesforce.com/uk/communities/overview/
https://help.salesforce.com/apex/HTViewHelpDoc?id=networks_overview.htm&language=en_US

Marketing Page, Salesforce Documentation, Trailhead

App Cloud

Marketing Page

IoT Cloud

Marketing Page

Industry Specific Products

Financial Services Cloud

Marketing Page, Salesforce Documentation

Health Cloud

Marketing Page, Salesforce Documentation

Heroku

Marketing Page

Read Getting started with Salesforce online: https://riptutorial.com/salesforce/topic/3768/getting-
started-with-salesforce

https://riptutorial.com/ 3

http://www.salesforce.com/uk/analytics-cloud/overview/
https://help.salesforce.com/apex/HTViewHelpDoc?id=bi.htm&language=en_US
https://developer.salesforce.com/trailhead/trail/wave_analytics_explorer
http://www.salesforce.com/uk/platform/overview/
http://www.salesforce.com/uk/iot-cloud/
http://www.salesforce.com/industries/financial-services/financialservices-cloud/
https://help.salesforce.com/apex/HTViewHelpDoc?id=fsc.htm&language=en_US
http://www.salesforce.com/industries/healthcare/health-cloud/
http://www.salesforce.com/industries/healthcare/health-cloud/
https://www.heroku.com/platform
https://riptutorial.com/salesforce/topic/3768/getting-started-with-salesforce
https://riptutorial.com/salesforce/topic/3768/getting-started-with-salesforce

Chapter 2: Apex Testing

Examples

Assert Methods

static TestMethod void DmlTest() {
 List<Contact> allContacts = [SELECT Id FROM Contact];
 System.assert(allContacts.isEmpty());

 Contact testContact = new Contact(FirstName = 'John', LastName = 'Doe');
 insert testContact;
 allContacts = [SELECT Id FROM Contact];
 System.assertNotEquals(0, allContacts.size(), 'Optional message in case of failure');

 delete allContacts;
 allContacts = [SELECT Id FROM Contact];
 System.assertEquals(0, allContacts.size());
}

Basic Test Class

This test class will test the IsBlank(...) method of SomeClass. Below is the example SomeClass. This
class has only the one, basic static method, but you will be unable to deploy it to a production
instance for use until you have reached the code coverage threshold.

public class SomeClass {

 public static Boolean IsBlank(String someData) {
 if (someData == null) {
 return true;
 } else if (someData == '') {
 return true;
 } else {
 return false;
 }
 }

}

As one can see, this method is simply a if statement with three branches. To write an effective
test class, we must cover each branch with code, and use System.assertEquals(...) statements to
verify that the proper data was received from IsBlank(...).

@isTest
public class SomeClass_test {

 @isTest
 public static void SomeClass_IsBlank_test() {

 String testData;

https://riptutorial.com/ 4

 // SomeClass.IsBlank() returns true for Null values
 System.assertEquals(true, SomeClass.IsBlank(testData));

 testData = '';

 // SomeClass.IsBlank() returns true for empty strings
 System.assertEquals(true, SomeClass.IsBlank(testData));

 testData = 'someData';

 // SomeClass.IsBlank() returns false when testData is neither
 // an empty string nor Null
 System.assertEquals(false, SomeClass.IsBlank(testData));

 }

}

Using testSetup

You can use a method annotated with @testSetup to write code that will have been executed before
each test run:

public class AccountService {
 public static Account fetchAccount() {
 return [SELECT Id, Name FROM Account LIMIT 1];
 }
}

@isTest
public class AccountServiceTest {
 private static final String TEST_ACCOUNT_NAME = 'My Test Account';

 @testSetup
 public static void setUpAccountData() {
 Account a = new Account(Name = TEST_ACCOUNT_NAME);
 }

 @isTest
 public static void testFetchAccount() {
 Account a = AccountService.fetchAccount();
 System.assertNotEquals(null, a, 'Account should not be null');
 System.assertEquals(TEST_ACCOUNT_NAME, a.Name, 'Account name should be correct');
 }
}

Using static blocks

While you can use the @testSetup annotation to designate a method to be run before tests are
executed, this method will usually only be run once. If you need code to be run before each test,
you can use a static block:

@isTest
public class MyTest {
 static {

https://riptutorial.com/ 5

 // code here will be run before each test is executed
 }
}

Assertion Methods

System.assert can be used to check that a boolean expression evaluates to true:

System.assert(Service.isActive());
System.assert(!Service.getItems().isEmpty(), 'items should not be empty');

System.assertEquals and System.assertNotEquals can be used to check equality of two values. The
expected value is passed as the first parameter, and the value under test is passed as the second.

System.assertEquals(4, Service.getItems().size());
System.assertNotEquals(null, Service.getItems());

// failure messages are optional:
System.assertEquals(true, Service.doWork(), 'doWork should return true');
System.assertNotEquals(null, Service.doWork(), 'doWork should not be null');

Read Apex Testing online: https://riptutorial.com/salesforce/topic/4930/apex-testing

https://riptutorial.com/ 6

https://riptutorial.com/salesforce/topic/4930/apex-testing

Chapter 3: Apex Triggers

Syntax

trigger <name> on <object-api-name> (<events>) { // your trigger logic }•

Parameters

parameter description

name Name of the trigger

object-api-
name

Object on which the trigger will fire. Can be any standard or custom object.

events
Events which will fire the trigger. Are a combination of either before/after with
any of insert/update/delete. There's also after undelete without before
counterpart.

Examples

Basic trigger

trigger AccountTrigger on Account (before insert) {
 System.debug('Account(s) are about to be inserted');
}

Trigger context variables

trigger ContactTrigger on Contact (before insert, after insert,
 before update, after update,
 before delete, after delete,
 after undelete) {
 /** Before or After trigger execution**/
 //Returns true if trigger is before
 System.debug('Trigger:Time:Before : ' + Trigger.isBefore);
 //Returns true if trigger is after
 System.debug('Trigger:Time:After : ' + Trigger.isAfter);

 /**DML Operation trigger execution **/
 //Returns true if trigger is insert
 System.debug('Trigger:DML:Insert : ' + Trigger.isInsert);
 //Returns true if trigger is update
 System.debug('Trigger:DML:Update : ' + Trigger.isUpdate);
 //Returns true if trigger is delete
 System.debug('Trigger:DML:Delete : ' + Trigger.isDelete);
 //Returns true if trigger is undelete
 System.debug('Trigger:DML:Undelete: ' + Trigger.isUndelete);

https://riptutorial.com/ 7

 /** Records on Trigger execution **/
 //Returns data in state before DML. Records are read only
 //Not available for Insert Operation
 //Format: List<sObject>
 List<Contact> old_contacts = Trigger.old;
 System.debug('Trigger:Data:Old : ' + old_contacts);
 //Returns data in state before DML. Records are read only
 //Not available for Insert Operation
 //Format: Map<Id, sObject>
 Map<Id, Contact> old_contacts_map = Trigger.oldMap;
 System.debug('Trigger:Data:OldMap : ' + old_contacts_map);
 //Returns data in state after DML.
 //Allowed for modifications in before context only
 //Not available for Delete Operation
 //Format: List<sObject>
 List<Contact> new_contacts = Trigger.new;
 System.debug('Trigger:Data:New : ' + new_contacts);
 //Returns data in after before DML.
 //Allowed for modifications in before context only
 //Not available for InsertOperation
 //Format: Map<Id, sObject>
 Map<Id, Contact> new_contacts_map = Trigger.newMap;
 System.debug('Trigger:Data:NewMap : ' + new_contacts_map);

 /** Another context variables **/
 //Returns amount of record in DML for trigger execution
 System.debug('Trigger:Size :' + Trigger.size);
 //Returns true if the current context for the Apex code
 //is a trigger, not VF, web service or anonymous apex
 System.debug('Trigger:isExecuting :' + Trigger.isExecuting);

 //Simple example how to use above context variables
 //for different scenarios in combination
 if (Trigger.isBefore && Trigger.isUpdate) {
 // actions for before update
 } else if (Trigger.isAfter) {
 if (Trigger.isUpdate) {
 // actions for after update
 } else if (Trigger.isInsert) {
 // actions for after insert
 }
 }
}

Manipulating records that fired the trigger

trigger MyTrigger on SomeObject__c (after insert, after update) {
 if (Trigger.isAfter && Trigger.isInsert) {
 System.debug('The following records were inserted: ');
 for (SomeObject__c o : Trigger.new) {
 System.debug(o.Name);
 }
 } else if (Trigger.isAfter && Trigger.isUpdate) {
 for (Id key : Trigger.newMap) {
 SomeObject__c theOldOne = Trigger.newMap.get(key);
 SomeObject__c theNewOne = Trigger.oldMap.get(key);
 if (theNewOne.Name != theOldOne.Name) {
 System.debug('The name of ' + key + ' has been changed');

https://riptutorial.com/ 8

 }
 }
 }
}

Read Apex Triggers online: https://riptutorial.com/salesforce/topic/4864/apex-triggers

https://riptutorial.com/ 9

https://riptutorial.com/salesforce/topic/4864/apex-triggers

Chapter 4: Approval Process Objects

Remarks

Approval Process is a very amazing feature in Salesforce to automate the business process. An
approval process is a set of the steps necessary for a particular record to be approved or rejected
by approver or set of approvers.

A step can apply to all records included in the process, or just records that meet certain
administrator-defined criteria. An approval process also specifies the actions to take when a
record is approved, rejected, recalled, or first submitted for approval.

ProcessDefinition and ProcessNode objects act as a template and store the master
configurations for Approval Process itself.

https://riptutorial.com/ 10

Examples

ProcessDefinition

Represents the definition of a single approval process. Use this object to read the description of an
approval process. The definition is read-only. We can not modify the record created in
ProcessDefinition Object. But we can describe, query, search and retrieve the approval processes
information.

~ Query ~

SELECT CreatedById,CreatedDate,Description,DeveloperName,LastModifiedById,
LastModifiedDate,LockType,Name,State,SystemModstamp,TableEnumOrId,Type,Id

https://riptutorial.com/ 11

http://i.stack.imgur.com/tccW7.jpg

FROM ProcessDefinition

The records are created when we create a new approval process using Salesforce user interface
of Approval Process.

ProcessNode

Represents the Process Steps created for particular approval process(ProcessDefinition). This
object is used to read the description of process step. In simple words ProcessNode records
describes a step in a process definition. We can describe, query, search and retrieve the approval
processes Steps.

~ Query ~

SELECT Description,DeveloperName,Name,ProcessDefinitionId,SystemModstamp
,Id,FROM ProcessNode

As we can see ProcessDefinitionId field is acting like a foreign key which is referring
ProcessDefinition Object or Table for which steps or process nodes are created. This object is
also read only as ProcessDefinition Object.

ProcessInstance

Represents an instance of a single, complete approval process. ProcessInstance record is created
every time for particular object record which is submitted for approval. Its is also read-only object.
We can describe, query and retrieve the approval processes Instance.

~ Query ~

SELECT CompletedDate,CreatedById,CreatedDate,ElapsedTimeInDays,
ElapsedTimeInHours,ElapsedTimeInMinutes,Id,IsDeleted,LastActorId,
LastModifiedById,LastModifiedDate,ProcessDefinitionId,Status,
SubmittedById,SystemModstamp,TargetObjectId FROM ProcessInstance

All ProcessInstance fields are automatically populated once the record is submitted for approval,
with two exceptions fields: CompletedDate and LastActorId that are populated only after the
approval process instance is complete. The ProcessDefinitionId field is the reference or foreign
key ID of the ProcessDefinition Object.

ProcessInstanceStep & ProcessInstanceWorkitem

Both objects ProcessInstanceStep & ProcessInstanceWorkItem are instances of process steps
that are created for particular ProcessInstance. ProcessInstanceStep represents a step instance in
an approval process (ProcessInstance) on which users has already acted and
ProcessInstanceWorkItem represents a step instance in an approval process(ProcessInstance) on
which is pending and users has to perform some action next on it. We can describe, query and
retrieve the approval processes steps and workItems.

https://riptutorial.com/ 12

~ Query ~

SELECT CreatedById,CreatedDate,ElapsedTimeInDays,ElapsedTimeInHours,
ElapsedTimeInMinutes,Id,IsDeleted,OriginalActorId,ProcessInstanceId,
ActorId,SystemModstamp FROM ProcessInstanceWorkitem

SELECT ActorId,Comments,CreatedById,CreatedDate,ElapsedTimeInDays,Id,
ElapsedTimeInHours,ElapsedTimeInMinutes,OriginalActorId,ProcessInstanceId
,StepNodeId,StepStatus,SystemModstamp FROM ProcessInstanceStep

ProcessInstanceHistory*

The ProcessInstanceHistory is the object which is neither searchable nor queryable & this is the
read-only object which shows all steps and pending approval requests associated with an
approval process (ProcessInstance). But we can use this object to replicate the related list
functionality of the Salesforce user interface for approval processes which will be shown in my
next blog post soon. We can use ProcessInstanceHistory for a single read-only view of the both
ProcessInstanceStep and ProcessInstanceWorkitem objects. We can query
ProcessInstanceHistory by querying it in a nested soql query on the parent ProcessInstance
object. The nested soql query references StepsAndWorkitems, which is the child relationship
name for ProcessInstanceHistory in the ProcessInstance object. This is very useful object to solve
various business problems.

~ Query ~

SELECT CompletedDate, CreatedById, CreatedDate,Id,IsDeleted,LastActorId,
LastModifiedById,LastModifiedDate,ProcessDefinitionId,Status,SubmittedById
,SystemModstamp,TargetObjectId, (SELECT ID, ProcessNodeId, StepStatus,
Comments,TargetObjectId,ActorId,CreatedById,IsDeleted,IsPending,
OriginalActorId,ProcessInstanceId,RemindersSent,CreatedDate
FROM StepsAndWorkitems) FROM ProcessInstance

Read Approval Process Objects online: https://riptutorial.com/salesforce/topic/6387/approval-
process-objects

https://riptutorial.com/ 13

https://riptutorial.com/salesforce/topic/6387/approval-process-objects
https://riptutorial.com/salesforce/topic/6387/approval-process-objects

Chapter 5: Custom Settings

Remarks

Introduction

Unlike custom objects which have records based on them, custom settings let you utilize custom
data sets across your org, or distinguish particular users or profiles based on custom criteria. This
means, for example, that admins can edit hierarchy custom settings to deactivate Workflow /
Validation Rules for single users or profiles, without having to switch them off for the whole org
(see the Using Hierarchy Custom Settings To Disable Workflow / Validation Rules example
above).

Validation rules commonly need to be disabled temporarily when:

Code is updating old records, which were last edited before a validation rule was activated &
therefore don't meet the newer rule's criteria.

•

Code is inserting new records without the values required by a validation rule's criteria.•

Workflow rules commonly need to be disabled temporarily when:

They would trigger an Email Alert or Field Update which would overwrite or interfere the
changes you are making to the record.

•

Use of a custom setting grants admins some declarative control over code so one of the many use
cases is that when utilized, they can make it unnecessary to deploy code in order to disable
triggers (see the Using Hierarchy Custom Settings To Disable Apex Code example above).

A key benefit for developers is that custom setting's data is exposed in the application cache,
which enables efficient access without the cost of repeated queries to the database. This data can
then be used by formula fields, validation rules, flows, Apex, and the SOAP API - see the
Salesforce documentation.

The limits & considerations for custom settings are documented here.

List Custom Settings

It is possible to create List Custom Settings too, common use cases include storing two-letter state
abbreviations, international dialing prefixes, and catalog numbers for products. However
Salesforce is now promoting the use Custom Metadata Types, instead of List Custom Settings.

When you go to create a new Custom Setting, the following message will be displayed

Tip: Use Custom Metadata Types for App Configuration
If you're thinking of using list custom settings, consider using custom metadata types
instead. Unlike list custom settings, you can migrate the records of custom metadata

https://riptutorial.com/ 14

https://help.salesforce.com/apex/HTViewHelpDoc?id=cs_about.htm
https://help.salesforce.com/HTViewHelpDoc?id=cs_limits.htm&language=en_US

types using using packages or Metadata API tools.

Custom Metadata Types have additional benefits vs List Custom Settings as described in this
answer. And according to the lead developer of CMDs "There’s a lot more planned for custom
metadata types than custom settings on steroids."

Examples

Creating & Managing Custom Settings

Creation

To create a Custom Setting, go to:

Classic
Setup > Develop > Custom Settings > New

Lightning
Setup > Custom Code > Custom Settings > New

Create your setting (see the Remarks later in this document for the differences between Hierarchy
& List custom settings). You can ignore the Visibility picklist, unless you plan to deploy your setting
in a managed package.

To create your setting fields click the New button and follow the usual process for creating a
custom field.

Management

Once you have created your field(s) you can start configuring the setting by clicking the Manage
button.

It's easier to manage the setting if you create a new view and include any fields that you've
created to give yourself a comprehensive overview of the setting, at a glance. The Setup Owner is
the user or profile that the setting applies to.

To manage the setting at the org level, click the New button above the Default Organization Level
Value header (in red box below).

To manage the setting at the user or profile level, click the New button in the blue box below.

https://riptutorial.com/ 15

http://salesforce.stackexchange.com/a/93357/10720
http://salesforce.stackexchange.com/a/74139/10720
http://salesforce.stackexchange.com/a/74139/10720
https://help.salesforce.com/HTViewHelpDoc?id=adding_fields.htm

Using Hierarchy Custom Settings To Disable Workflow / Validation Rules

Custom Setting

https://riptutorial.com/ 16

http://i.stack.imgur.com/iWFMH.jpg

Custom Setting Field

Custom Setting Field Value

When the field is checked the validation rule will be disabled, for the running user or in this

https://riptutorial.com/ 17

http://i.stack.imgur.com/XchCX.jpg
http://i.stack.imgur.com/W2uCa.jpg

example, their profile -

The rule can also be disabled for a whole Salesforce org -

Validation Rule

AND(
 /* the below is the reference to the Val_Rule_Cntrlr__c custom setting's checkbox field
All_Opportunity_Disabled__c
 */
 $Setup.Val_Rule_Cntrlr__c.All_Opportunity_Disabled__c = FALSE,

 /* the below is the remainder of the validation rule's formula
 */
 CloseDate < TODAY()
)

https://riptutorial.com/ 18

http://i.stack.imgur.com/GKRJC.jpg
http://i.stack.imgur.com/DD4sE.jpg

In the above rule, both pieces of criteria must evaluate to TRUE in order for the rule to be triggered.

Since All_Opportunity_Disabled__c checkbox will evaluate to TRUE when the running user's profile is
System Administrator, the rule will evaluate to FALSE.

Workflow Rules

The same approach can be applied in order to deactivate Workflow Rules.

Using Hierarchy Custom Settings To Disable Apex Code

Explanation

In this example a simple Trigger has been created to change the Close Date of an Opportunity,
that's about to be inserted or updated, to a date 10 days in the future.

The Apex Controller custom setting's checkbox field enables the code to be disabled at the user /
profile / org level.

Apex Class

trigger CloseDateUpdate on Opportunity (before insert, before update) {

 Id userId;
 Apx_Cntrlr__c userApexController;
 Boolean userSetting;

 userId = userinfo.getUserId();
 userApexController = Apx_Cntrlr__c.getInstance(userId);
 userSetting = userApexController.Close_Date_Update_Disabled__c;

 if (userSetting == false) {
 for(Opportunity opp : Trigger.new) {
 opp.CloseDate = date.today().addDays(10);
 }
 }

}

Unit Test

@isTest
public class CloseDateUpdateTest {

 @testSetup
 static void dataSetup() {

 Profile p = [SELECT Id FROM Profile WHERE Name = 'System Administrator' LIMIT 1];

 User u = new User(LastName = 'Test',Alias = 't1',Email = 'example@gmail.com',Username
= 'sotest@gmail.com',ProfileId = p.Id,TimeZoneSidKey = 'America/Denver',LocaleSidKey =

https://riptutorial.com/ 19

https://developer.salesforce.com/trailhead/en/apex_triggers/apex_triggers_intro

'en_US',EmailEncodingKey = 'UTF-8',LanguageLocaleKey = 'en_US');
 insert u;
 }

 static testMethod void testCloseDateUpdateEnabled() {

 User u = [SELECT Id FROM User WHERE Username = 'sotest@gmail.com'];
 // set the custom setting field to FALSE so that the trigger is not deactivated
 Apx_Cntrlr__c apexController = new Apx_Cntrlr__c(SetupOwnerId =
u.Id,Close_Date_Update_Disabled__c = false);
 upsert apexController;

 Opportunity[] opportunities1 = new Opportunity[]{};

 test.startTest();
 system.runAs(u){

 for(integer i = 0; i < 200; i++) {
 opportunities1.add(new Opportunity(
 Name = 'Test Opp ' + i,
 OwnerId = u.Id,
 StageName = 'Prospecting',
 CloseDate = date.today().addDays(1),
 Amount = 100));
 }
 insert opportunities1;
 }
 test.stopTest();

 List<Opportunity> opportunities2 = [SELECT CloseDate FROM Opportunity];

 for(Opportunity o : opportunities2){
 system.assertEquals(date.today().addDays(10), o.closeDate, 'CloseDateUpdate
trigger should have changed the Opportunity close date as it was not disabled by the
apexController custom setting');
 }
 }

 static testMethod void testCloseDateUpdateDisabled() {

 User u = [SELECT Id FROM User WHERE Username = 'sotest@gmail.com'];
 // set the custom setting field to TRUE to deactivate the trigger
 Apx_Cntrlr__c apexController = new Apx_Cntrlr__c(SetupOwnerId =
u.Id,Close_Date_Update_Disabled__c = true);
 upsert apexController;

 Opportunity[] opportunities1 = new Opportunity[]{};

 test.startTest();
 system.runAs(u){

 for(integer i = 0; i < 200; i++) {
 opportunities1.add(new Opportunity(
 Name = 'Test Opp ' + i,
 OwnerId = u.Id,
 StageName = 'Prospecting',
 CloseDate = date.today().addDays(1),
 Amount = 100));
 }
 insert opportunities1;
 }

https://riptutorial.com/ 20

 test.stopTest();

 List<Opportunity> opportunities2 = [SELECT CloseDate FROM Opportunity];

 for(Opportunity o : opportunities2){
 system.assertEquals(date.today().addDays(1), o.closeDate, 'CloseDateUpdate trigger
should not have changed the Opportunity close date as it was disabled by the apexController
custom setting');
 }
 }

}

Updating Hierarchy Custom Settings in Apex Code

You may wish to update your custom setting's during the execution of your code, to switch off
validation or workflow rules.

In the below code, I have created a Schedulable Apex Class which will update the Close Date of
any Opportunities whose Close Date is less than or equal to 6 days from the current date,
changing the date to 20 days in the future.

I will use my Custom Setting Val_Rule_Cntrlr__c to deactivate any validation rules which would
prevent me from updating the Opportunities that meet my criteria.

global class Scheduled_OppCloseDateUpdate implements Schedulable {

 global void execute(SchedulableContext SC) {
 updOpportunityCloseDates();
 }

 global void updOpportunityCloseDates() {

 Id userId;
 Val_Rule_Cntrlr__c setting;
 Boolean validationRulesAlreadyDisabled;
 List<Opportunity> processedOpps = new List<Opportunity>();
 Date d;

 // get running user's Id
 userId = userinfo.getUserId();
 // retrieve Custom Setting status, for running user
 setting = Val_Rule_Cntrlr__c.getInstance(userId);

 // if the setting field is false, update it to disable validation rules
 if (setting.All_Opportunity_Disabled__c == false) {
 setting.All_Opportunity_Disabled__c = true;
 upsert setting;
 }
 // if the setting field was already true, there's no need to disable it
 // but it shouldn't be switched to false by this class once the process has been
completed
 else {
 validationRulesAlreadyDisabled = true;
 }

 // execute code to manage business process

https://riptutorial.com/ 21

https://help.salesforce.com/apex/HTViewHelpDoc?id=code_schedule_batch_apex.htm&language=en

 d = system.today().addDays(6);

 for(Opportunity o : [SELECT Id, CloseDate
 FROM Opportunity
 WHERE CloseDate <= :d
 // class only updates open Opportunities
 AND Probability > 0 AND Probability < 100])
 {
 o.CloseDate = System.today().addDays(20);
 processedOpps.add(o);
 }

 if (processedOpps.size() > 0) {
 update processedOpps;
 }

 // reactivate validation rules
 if (validationRulesAlreadyDisabled == false) {
 setting.All_Opportunity_Disabled__c = false;
 upsert setting;
 }

 }

}

To make sure that my validation rules are being deactivated by the changes to my custom setting
in my class, I have created a checkbox field Trigger_Validation_Rule__c (which would not be visible
to users or added to page layouts) & a validation rule with this criteria:

AND(
 $Setup.Val_Rule_Cntrlr__c.All_Opportunity_Disabled__c = FALSE,
 Trigger_Validation_Rule__c = TRUE,

 /* allow the above criteria to be met while inserting the Opportunities, without triggering
the rule, in the @testSetup portion of the test */
 NOT(ISNEW())
)

I then set the checkbox field to true when creating my Opportunities so that the rules criteria would
be met, if the custom setting field is not edited by my code.

@isTest
private class WE_ScheduledCloseDateUpdateTest {

 @testSetup
 static void dataSetup() {

 Profile p = [SELECT Id FROM Profile WHERE Name = 'System Administrator' LIMIT 1];

 User u = new User(LastName = 'Test',Alias = 't1',Email = 'example@gmail.com',Username
= 'sotest@gmail.com',ProfileId = p.Id,TimeZoneSidKey = 'America/Denver',LocaleSidKey =
'en_US',EmailEncodingKey = 'UTF-8',LanguageLocaleKey = 'en_US');
 insert u;

 Val_Rule_Cntrlr__c valRuleCntrlr = new Val_Rule_Cntrlr__c(SetupOwnerId =
u.Id,All_Opportunity_Disabled__c = false);

https://riptutorial.com/ 22

 upsert valRuleCntrlr;

 List<Opportunity> testOpps = new List<Opportunity>();

 // create the Opportunities that will be updated by the class
 for(integer i = 0; i < 200; i++) {
 testOpps.add(new Opportunity(
 Name = 'Test Opp Update' + i,
 OwnerId = u.Id,
 StageName = 'Prospecting',
 CloseDate = date.today().addDays(1),
 Amount = 100,
 // set checkbox field to true, to trigger validation rules if they've not been
deactivated by class
 Trigger_Validation_Rule__c = true));
 }
 // create the Opportunities that won't be updated by the class
 for(integer i = 0; i < 200; i++) {
 testOpps.add(new Opportunity(
 Name = 'Test Opp Skip' + i,
 OwnerId = u.Id,
 StageName = 'Prospecting',
 CloseDate = date.today().addDays(15),
 Amount = 100,
 Trigger_Validation_Rule__c = true));
 }
 insert testOpps;

 }

 // code required to test a scheduled class, see
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_scheduler.htm
for more details
 public static String CRON_EXP = '0 0 0 15 3 ? 2022';

 static testmethod void testCloseDateUpdates() {

 // execute scheduled class

 Test.startTest();

 String jobId = System.schedule('ScheduleApexClassTest',
 CRON_EXP,
 new Scheduled_OppCloseDateUpdate());

 CronTrigger ct = [SELECT Id, CronExpression, TimesTriggered, NextFireTime
 FROM CronTrigger
 WHERE id = :jobId];

 System.assertEquals(CRON_EXP, ct.CronExpression);
 System.assertEquals(0, ct.TimesTriggered);
 System.assertEquals('2022-03-15 00:00:00', String.valueOf(ct.NextFireTime));

 Test.stopTest();

 // test results

 Integer updateCount = 0;
 Integer skipCount = 0;

 List <Opportunity> opportunitys = [SELECT Id, Name, CloseDate FROM Opportunity];

https://riptutorial.com/ 23

 for(Opportunity o : opportunitys) {
 if (o.Name.contains('Update') &&
 updateCount == 0)
 {
 System.assertEquals(date.today().addDays(20), o.CloseDate, 'Opportunity\'s
Close Date should have been updated as it was less than 7 days away');
 updateCount = 1;
 }
 if (o.Name.contains('Skip') &&
 skipCount == 0)
 {
 System.assertEquals(date.today().addDays(15), o.CloseDate, 'Opportunity should
not have been updated as it\'s Close Date is more than 7 days away');
 skipCount = 1;
 }
 }
 // check that both lists of Opportunities have been tested
 System.assertEquals(2, updateCount + skipCount, 'Count should be 2 once all assertions
have been executed');

 }

 // check that the class does not change the custom setting's field to false, if it was
true before class was executed
 static testmethod void testSettingUpdates() {

 User u = [SELECT Id FROM User WHERE UserName = 'sotest@gmail.com'];

 // switch the custom setting field to true before the scheduled job executes
 Val_Rule_Cntrlr__c setting;
 setting = Val_Rule_Cntrlr__c.getInstance(u.Id);
 setting.All_Opportunity_Disabled__c = true;
 upsert setting;

 System.runAs(u) {

 Test.startTest();

 String jobId = System.schedule('ScheduleApexClassTest',
 CRON_EXP,
 new Scheduled_OppCloseDateUpdate());

 CronTrigger ct = [SELECT Id, CronExpression, TimesTriggered, NextFireTime
 FROM CronTrigger
 WHERE id = :jobId];

 System.assertEquals(CRON_EXP, ct.CronExpression);
 System.assertEquals(0, ct.TimesTriggered);
 System.assertEquals('2022-03-15 00:00:00', String.valueOf(ct.NextFireTime));

 Test.stopTest();
 }
 setting = Val_Rule_Cntrlr__c.getInstance(u.Id);

 // check that the class did not change the All_Opportunity_Disabled__c field to false
 System.assertEquals(true, setting.All_Opportunity_Disabled__c);
 }

}

https://riptutorial.com/ 24

Read Custom Settings online: https://riptutorial.com/salesforce/topic/4927/custom-settings

https://riptutorial.com/ 25

https://riptutorial.com/salesforce/topic/4927/custom-settings

Chapter 6: Date Time Manipulation

Examples

Easily Find Last Day of a Month

If you need to find the last day of the month, you can do complicated DateTime gymnastics or you
can use the following method.

Say you want to find the last day of February 2021. Do the following:

Integer month = 2;
Integer day = null;
Integer year = 2021;

// Create a new DateTime object for the first day of the month following
// the date you're looking for.
DateTime dtTarget = DateTime.newInstance(year, month, 1);
//In this case we would be sure that month would not be out of bound
dtTarget = dtTarget.addMonths(1);
// Then use the .addDays() method to add negative 1 days. This gives you
// the last day of the target month.
DateTime lastDayOfMonth = dtTarget.addDays(-1);
day = lastDayOfMonth.day();

System.debug(lastDayOfMonth);
System.debug(day);

This produces the following output in the Logs:

18:19:57:005 USER_DEBUG [15]|DEBUG|2021-02-28 08:00:00
18:21:10:003 USER_DEBUG [16]|DEBUG|28

This works for all the add methods, allowing you easily and quickly find DateTimes in the past.

Read Date Time Manipulation online: https://riptutorial.com/salesforce/topic/4928/date-time-
manipulation

https://riptutorial.com/ 26

https://riptutorial.com/salesforce/topic/4928/date-time-manipulation
https://riptutorial.com/salesforce/topic/4928/date-time-manipulation

Chapter 7: Global Variables in classes

Introduction

In this topic I would like to mention all possible global variables which can be used in Apex code.
Like [UserInfo Class][1]. I suggest we just list a global classes/variables and links. If you know
about a global class/variable but can't find a documentation, please provide as much information
as possible. [1]: https://developer.salesforce.com/docs/atlas.en-
us.apexcode.meta/apexcode/apex_methods_system_userinfo.htm

Examples

UserInfo

getFirstName() - returns the context user's first name.
getLastName() - returns the context user's last name.

Read Global Variables in classes online: https://riptutorial.com/salesforce/topic/8174/global-
variables-in-classes

https://riptutorial.com/ 27

https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_methods_system_userinfo.htm#apex_System_UserInfo_getFirstName
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_methods_system_userinfo.htm#apex_System_UserInfo_getLastName
https://riptutorial.com/salesforce/topic/8174/global-variables-in-classes
https://riptutorial.com/salesforce/topic/8174/global-variables-in-classes

Chapter 8: Global Variables on Visualforce
pages

Examples

$Resource

Use the $Resource variable to reference static resources.

Can be used in conjunction with the URLFOR function to reference files inside of a zipped static
resource:

<apex:includeScript value="{!URLFOR($Resource.myResources, 'js/app.js')}" />

$Label

The $Label variable can be used to display text defined in your custom labels.

<apex:outputText value="{!$Label.Welcome_Message}" />

You can do formatting with labels as well. Suppose you have a custom label named
Welcome_Message defined as

Welcome to our site, {0}!

You could use the label to display a formatted message:

<apex:outputText value="{!$Label.Welcome_Message}"
rendered="{!NOT(ISBLANK($User.ContactId))}">
 <apex:param value="{!$User.Contact.FirstName}" />
</apex:outputText>

$User

The $User variable gives you access to all the standard and custom fields on the User object for the
currently logged in user.

You are logged in as a user from {!$User.CompanyName}.

Read Global Variables on Visualforce pages online:
https://riptutorial.com/salesforce/topic/5184/global-variables-on-visualforce-pages

https://riptutorial.com/ 28

https://riptutorial.com/salesforce/topic/5184/global-variables-on-visualforce-pages

Chapter 9: Page Navigation with help of list
wrapper class in sales force.

Introduction

Slaesforce StandardSetController hold only List of sObject, It will not holdslist of wrapper class
object. Below source code demonstrates the usage of Paginating using Wrapper Class in sales-
force.

Examples

Pagination Controller

Code example : Now Start with Creating the Pagination Controller

public with sharing class Pagination {

}

i am going to show all the contacts in the form of pagination and there should be one checkbox for
each contact to selected or deselect contact to perform delete operation on contacts. So i need to
be create a wrapper class to hold contact and Boolean Variable for selection. First create Wrapper
class for controller Pagination Insert below code into pagination controller.

 public class contactWrapper{
 public Contact cont {get;set;}
 public Boolean isSelected{get;set;}
 public contactWrapper(contact c,Boolean s)
 {
 cont=c;
 isSelected=s;
 }
 }

Now Retrieving Data in Apex to Paginate with the help of StandardSetController. The
StandardSetController is an extremely powerful tool with built-in functionality that you can use to
greatly simplify the custom code in your Visualforce pages. Because the server returns only the
data for the page being requested, the StandardSetController can significantly reduce view state,
especially compared to the view state you would get while using SOQL.

 Public Integer noOfRecords{get; set;} // Future reference in Visual force Page
 Public Integer size{get;set;} // Future reference in Visual force Page
 public final Integer Page_Size=10; // Number records in a Page should be displayed

 public ApexPages.StandardSetController setCon {
 get{
 if(setCon == null){

https://riptutorial.com/ 29

 size=Page_Size;
 string queryString = 'Select Id,Name, Email, Birthdate, Phone, MobilePhone
from Contact order by Name';
 setCon = new
ApexPages.StandardSetController(Database.getQueryLocator(queryString));
 setCon.setPageSize(size);
 noOfRecords = setCon.getResultSize();
 }
 return setCon;
 }set;
 }

Now you have the contacts in the Variable setCon , whenever your requested for
setCon.getRecords() it will retrieve the first 10 contact records from the setCon. Here i have create
simple wrapper class to show you the demo. You can create your own wrapper class based on
requirement. But always you must be aware that ApexPages.StandardSetController hold only List
of sObject, it will not hold the list of wrapper class object . That's the reason i have written extra
code below to accomplish this future in different way. Below code convert list of contacts into list of
wrapper class objects, So that when ever you call contacts in visual force page it will receive the
list of wrapper class object.

 public list<contactWrapper> contWpr{get;set;}
 public set<id> selectedContactIds{ get;private set;} // to maintain state of the selected
contact
 // through out paginating

 public Pagination() {
 selectedContactIds=new set<id>();
 }

 Public list<contactWrapper> getContacts(){
 contWpr =new list<contactWrapper>();
 for(Contact c: (List<Contact>)setCon.getRecords())
 if(selectedContactIds.contains(c.id))
 contWpr.add(new contactWrapper(c,true));
 else
 contWpr.add(new contactWrapper(c,false));
 return contWpr;
 }

Now you have written code for generating result But how to navigate across the page? This can
be done with easy step with ApexPages.StandardSetController.Look at the below code beauty of
the StandardSetController, No need to maintain page number,offset and limit etc.. Just use the
StandardSetController methods. Copy the below code into Pagination controller.

public Boolean hasNext {
 get {
 return setCon.getHasNext();
 }
 set;
 }
 public Boolean hasPrevious {
 get {
 return setCon.getHasPrevious();
 }

https://riptutorial.com/ 30

 set;
 }

 public Integer pageNumber {
 get {
 return setCon.getPageNumber();
 }
 set;
 }

 public void first() {
 setCon.first();
 // do you operation here
 }

 public void last() {
 setCon.last();
 // do you operation here
 }

 public void previous() {
 setCon.previous();
 // do you operation here
 }

 public void next() {
 setCon.next();
 // do you operation here
 }

Your almost done with Paginating the contacts. Last few methods i have added to fulfill my entire
page functionality. As i mention earlier we have additional checkbox for selecting contact and
perform delete operation on selected contacts.

public void contactSelection()
 {
 Id id=(Id)ApexPages.currentPage().getParameters().get('cId');
 if(selectedContactIds.contains(id))
 selectedContactIds.remove(id);
 else
 selectedContactIds.add(id);
 }

 public void deleteContacts()
 {
 List<contact> contactToDelete=[select id from contact where id in
:selectedContactIds];
 if(contactToDelete.size()!=0) // if(!contactToDelete.isEmpty()) // Best Practice
 {
 try { delete contactToDelete; } // You may get Exception if you try to
delete the
 // related contact ,include try block to avoid
error.
 catch(exception ex){ System.debug(ex); }
 refresh();
 }
 }

 public pageReference refresh() {

https://riptutorial.com/ 31

 setCon = null;
 selectedContactIds=new set<id>();
 getContacts();
 setCon.setPageNumber(1);
 return null;
 }

Read Page Navigation with help of list wrapper class in sales force. online:
https://riptutorial.com/salesforce/topic/10744/page-navigation-with-help-of-list-wrapper-class-in-
sales-force-

https://riptutorial.com/ 32

https://riptutorial.com/salesforce/topic/10744/page-navigation-with-help-of-list-wrapper-class-in-sales-force-
https://riptutorial.com/salesforce/topic/10744/page-navigation-with-help-of-list-wrapper-class-in-sales-force-

Chapter 10: SalesForce CI Integration

Introduction

Place to use Jenkins and Sonar for CI

Examples

How to configure Jenkins to deploy code on Development or Production org ?

How we can use jenkins in our SalesForce product development. What are the tools plugins are
available for Jenkins Integration How to solve CI configuration issue.....etc

Jenkins CI tools which can be used for SalesForce Automation

Jenkins: The leading open source automation server, Jenkins provides hundreds of plugins
to support building, deploying and automating any project.

1.

Sonar Qube: SonarQube provides the capability to not only show health of an application but
also to highlight issues newly introduced.

2.

Apache Ant: Apache Ant is a Java library and command-line tool whose mission is to drive
processes described in build files as targets and extension points dependent upon each
other.

3.

Apache Maven: Apache Maven is a software project management and comprehension tool.
Based on the concept of a project object model (POM), Maven can manage a project's build,
reporting and documentation from a central piece of information.

4.

SfApexDoc: Support for JavaDoc like documentation creation tool. Can be used by
Ant/Jenkins to create Documents.

5.

JUnit format Report for APEX: Extends the Force.com com.salesforce.ant.DeployTask to
accept an optional junitreportdir argument that defines the folder that a JUnitReport XML file
is output into. This file can be consumed directly by the Jenkins continuous integration tool to
produce trend graphs and test result details or by the JUnitReport Ant task.

6.

Version Control System: Can use GIT, SVN or any other Version Control system7.
PMD Apex: Contains the PMD implementation to support the Apex programming language.8.
Sonar for Apex(enforce-sonarqube-plugin): The plugin has support for the Apex language
grammar, the current list of checks is focused mainly on test components. The support for
more SFDC components is in progress.

9.

Read SalesForce CI Integration online: https://riptutorial.com/salesforce/topic/10044/salesforce-ci-
integration

https://riptutorial.com/ 33

https://jenkins.io/
https://www.sonarqube.org
http://ant.apache.org/
http://maven.apache.org/
http://force-code.com/sfapexdoc/
https://github.com/beamso/force-deploy-with-xml-report-task
http://pmd.sourceforge.net/snapshot/pmd-apex/
https://github.com/fundacionjala/enforce-sonarqube-plugin
https://riptutorial.com/salesforce/topic/10044/salesforce-ci-integration
https://riptutorial.com/salesforce/topic/10044/salesforce-ci-integration

Chapter 11: Salesforce Object Query
Language (SOQL)

Syntax

SELECT Id FROM Account•
SELECT Id, Name FROM Account•
SELECT Id FROM Account WHERE Name = 'SomeAccountName'•
SELECT Id, Name, (SELECT Id, Name FROM Contacts) FROM Account•
SELECT Id, Name FROM Account WHERE Id = :apexVariableName•

Examples

Basic SOQL Query

SELECT Id, Name FROM Account

This will return the Id and Name fields from the Account table. No filtering or sorting will be
applied.

SOQL Query With Filtering

SELECT Name FROM User WHERE IsActive = true

This will return the name of all active Users.

SELECT Name, Phone FROM Contact WHERE CreatedDate >= 2016-01-01T00:00:00.000Z

This will return Contacts created on or after January 1st, 2016.

SELECT Id, Name FROM Account LIMIT 100

This will return the first 100 Accounts from an unordered list.

SELECT Id, Name, Phone FROM Lead WHERE Phone LIKE '(%) %-%'

This will return Leads with a phone number matching the specified format. "%" acts as a wild card
character.

Using LIKE '% %' also enables a developer to replicate a CONTAINS() formula.

SELECT Email FROM Lead WHERE LeadSource LIKE '%Google%'

https://riptutorial.com/ 34

Will return Leads with a lead source that contains Google i.e. 'Google AdWords' & 'Google Natural
Search'.

SOQL Query With Ordering

SELECT Id, Name FROM User ORDER BY LastName

SELECT Id, Name FROM Contact ORDER BY LastModifiedDate DESC

SELECT Name, Title FROM User ORDER BY Title ASC NULLS FIRST

SELECT Id FROM Contact ORDER BY LastName ASC NULLS LAST, FirstName ASC NULLS FIRST

Using SOQL to Construct a Map

A very useful feature many people overlook is the ability to construct a Map using a SOQL query.

Map<Id, Account> accounts = new Map<Id, Account>([SELECT Id, Name FROM Account]);
System.debug(accounts);

When you run this code, accounts then contains a Map of your Account objects, keyed on Id. The
output to the debug log would look similar to this:

11:15:10:025 USER_DEBUG [13]|DEBUG|{
 XXXXXXXXXXXXXXXXXX=Account:{Id=XXXXXXXXXXXXXXXXXX, Name=Account 1},
 YYYYYYYYYYYYYYYYYY=Account:{Id=YYYYYYYYYYYYYYYYYY, Name=Account 2},
 ZZZZZZZZZZZZZZZZZZ=Account:{Id=ZZZZZZZZZZZZZZZZZZ, Name=Account 3},
 ...
}

You are now able to look up the Account objects using their Id. Furthermore, if you want a
collection of unique IDs, you can call the keySet() function of the Map class, like so:

System.debug(accounts.keySet());

which looks something like this in the debug log:

11:23:21:010 USER_DEBUG [15]|DEBUG|{XXXXXXXXXXXXXXXXXX, YYYYYYYYYYYYYYYYYY,
ZZZZZZZZZZZZZZZZZZ, ...}

This is very useful when you need to query to get records and access them repeatedly in your
code.

SOQL Query to Reference Parent Object's Fields

When object's are linked by a lookup or master-detail relationship, the parent records field's can
be referenced from the child record or 'base object' in a query. This is also known as upwards
traversal.

https://riptutorial.com/ 35

SELECT FirstName, Account.Name, Account.Category__c FROM Contact

It's possible to traverse five records upwards.

SELECT Account.Owner.Profile.CreatedBy.Name FROM Contact

When the base object is a custom lookup field, the __c in field's name Primary_Influencer__c, for
example, will be changed to __r.

SELECT Primary_Influencer__r.Nickname__c FROM Contact

SOQL Query to get child Records

SELECT Id, Name, (SELECT Id, FirstName, LastName FROM Contacts) FROM Account

SOQL Queries in Apex

To perform a query in Apex, surround the query with square brackets. The result can be assigned
to a list, or to a single object.

List<Account> allAccounts = [SELECT Id, Name FROM Account];
Account oldestAccount = [SELECT Id, Name FROM Account ORDER BY CreatedDate LIMIT 1];

Variable References in Apex SOQL Queries

To reference a variable in a query, add a colon (:) before the variable name.

Datetime targetDate = Datetime.now().addDays(-7);
List<Lead> recentLeads = [SELECT Id FROM Lead WHERE CreatedDate > :targetDate];

string targetName = 'Unknown';
List<Contact> incompleteContacts = [SELECT Id FROM Contact WHERE FirstName = :targetName];

Potential Exceptions in Apex SOQL Queries

When assigning to a single object, a query that returns anything other than a single row will throw
a QueryException.

try {
 Account a = [SELECT Id FROM Account WHERE Name = 'Non-existent Account'];
} catch (QueryException e) {
 // List has no rows for assignment to SObject
}

try {
 Account a = [SELECT Id FROM Account];
} catch (QueryException e) {
 // List has more than 1 row for assignment to SObject
}

https://riptutorial.com/ 36

Attempting to use a field that you did not include in the query will throw a SObjectException

Account a = [SELECT Id FROM Account LIMIT 1];
try {
 System.debug(a.Name);
} catch (SObjectException e) {
 // SObject row was retrieved via SOQL without querying the requested field: Name
}

Using a Semi-Join

Selecting all accounts that have open opportunity records under them

SELECT Id, Name FROM Account WHERE AccountId IN
 (SELECT Id FROM Opportunity WHERE IsClosed = false)

Dynamic SOQL

You can execute a database query from a String rather than a regular SOQL expression:

String tableName = 'Account';
String queryString = 'SELECT Id FROM ' + tableName + ' WHERE CreatedDate >= YESTERDAY';
List<SObject> objects = Database.query(queryString);

Since dynamic SOQL queries are not compiled, their schema references are not validated, so it is
preferable to use Apex variable interpolation using the :variable syntax where possible.

Read Salesforce Object Query Language (SOQL) online:
https://riptutorial.com/salesforce/topic/4217/salesforce-object-query-language--soql-

https://riptutorial.com/ 37

https://riptutorial.com/salesforce/topic/4217/salesforce-object-query-language--soql-

Chapter 12: Salesforce REST API

Introduction

Force.com REST API Documentation. Full list of API's is here

Examples

OAuth2 access_token and list of services

To get OAuth2 access token simply do
curl https://login.salesforce.com/services/oauth2/token -d "grant_type=password" -d
"client_id=myclientid" -d "client_secret=myclientsecret" -d "username=mylogin@salesforce.com" -d
"password=mypassword123456"

You should get response something like

{
 "access_token":
"00D6F0xxx001g1qs!ARsAQL7BRiQQ0lgTW7zXu3kILJBxxxxxHvDnChF2ETBFJpX0T2LsBsm8MVABhAvINAyZqgDIAHhJDp6QjuF6ZAYFE",

 "instance_url": "https://ap4.salesforce.com",
 "id": "https://login.salesforce.com/id/00D6F000001xxxxAA/0056F000006DMcxxxx",
 "token_type": "Bearer",
 "issued_at": "14878401xxxxx",
 "signature": "Ra5Sdm6gq4xxxeZYk3H2yBIVpZ6hBUDgkQ4Tjp9Q="
}

Then do

{
 "tooling": "/services/data/v20.0/tooling",
 "eclair": "/services/data/v20.0/eclair",
 "prechatForms": "/services/data/v20.0/prechatForms",
 "async-queries": "/services/data/v20.0/async-queries",
 "query": "/services/data/v20.0/query",
 "chatter": "/services/data/v20.0/chatter",
 "wave": "/services/data/v20.0/wave",
 "search": "/services/data/v20.0/search",
 "identity": "https://login.salesforce.com/id/00D6F000001g1qsUAA/0056F000006DMcMQAW",
 "sobjects": "/services/data/v20.0/sobjects",
 "serviceTemplates": "/services/data/v20.0/serviceTemplates",
 "recent": "/services/data/v20.0/recent",
 "connect": "/services/data/v20.0/connect",
 "licensing": "/services/data/v20.0/licensing"
}

Read Salesforce REST API online: https://riptutorial.com/salesforce/topic/9210/salesforce-rest-api

https://riptutorial.com/ 38

https://resources.docs.salesforce.com/sfdc/pdf/api_rest.pdf
https://riptutorial.com/salesforce/topic/9210/salesforce-rest-api

Chapter 13: Tools for Development

Examples

IDEs

A list of available IDEs to create classes, triggers, Visualforce/Lightning pages/components.

Force.com IDE – plugin for Eclipse•
JedIDE – plugin for IntelliJ IDEA & standalone Force.com IDE•
MavensMate – plugin for Sublime Text and Atom and VS Code•
FuseIT SFDC Explorer - This is a standalone tool•
Welkin Suite – This is a standalone tool;•
Illuminated Cloud - plugin for IntelliJ IDE•
Aside.io - Web-based IDE•
Cloud 9 - Web-based IDE•
VimAwesome - VIM plugin for Force.com•
HaoIDE - Sublime Text plugin for Force.com•
Metaforce - A lightweight Chrome app for Salesforce develoment•

Browser extensions

Salesforce Navigator (Google Chrome)•
Force.com Logins (Google Chrome, Firefox)•
Salesforce Developer Tool Suite (Google Chrome)•
Salesforce Lighting Components Inspector (Google Chrome)•
Salesforce Developer Tool Suite (Google Chrome)•
Salesforce Schema Builder Expander (Google Chrome)•
Boostr for Salesforce (Google Chrome)•
Salesforce API Fieldnames (GoogleChrome)•
Changeset Helper (Google Chrome)•
Salesforce Inspector (Google Chrome, Firefox)•
Salesforce Mass Editor (Google Chrome)•
Space (Google Chrome)•

Debuggers

Official Apex Debugger

Realtime debugging○

Force.com IDE○

requires special licensing from salesforce○

•

Welkin Suit

Log replay debugging○

•

https://riptutorial.com/ 39

https://developer.salesforce.com/page/Force.com_IDE
https://plugins.jetbrains.com/plugin/9238
https://jedide.com/
http://mavensmate.com/
https://www.sublimetext.com/
https://atom.io/
https://code.visualstudio.com/
http://www.fuseit.com/products/fuseit-sfdc-explorer/
https://welkinsuite.com/
https://plugins.jetbrains.com/plugin/7831
https://www.aside.io
https://c9.io/
http://vimawesome.com/plugin/vim-force-com
https://github.com/xjsender/haoide
http://metaforce.org/
https://chrome.google.com/webstore/detail/toggle-it-by-oyecode/cjpcmpioceijmelkgknddeiljogoakbl?hl=en
https://chrome.google.com/webstore/detail/forcecom-logins/ldjbglicecgnpkpdhpbogkednmmbebec?hl=en
https://addons.mozilla.org/en-us/firefox/addon/salesforce-login/
https://chrome.google.com/webstore/detail/salesforce-developer-tool/fiaakhiohminpblhmlihfcdhclmphjcd?utm_source=chrome-app-launcher-info-dialog
https://chrome.google.com/webstore/detail/salesforce-lightning-insp/pcpmcffcomlcjgpcheokdfcjipanjdpc
https://chrome.google.com/webstore/detail/salesforce-developer-tool/fiaakhiohminpblhmlihfcdhclmphjcd?hl=en
https://chrome.google.com/webstore/detail/salesforce-schema-builder/mhmpcpfhhfdoeiejndcmogmnlomkfdkk?hl=en
https://chrome.google.com/webstore/detail/boostr-for-salesforce/kegohbhdgaoaoanbpconbeleanhdodlo?utm_source=chrome-app-launcher-info-dialog
https://chrome.google.com/webstore/detail/salesforce-api-fieldnames/oghajcjpbolpfoikoccffglngkphjgbo?utm_source=chrome-app-launcher-info-dialog
https://chrome.google.com/webstore/detail/salesforce-change-set-hel/gdjfanbphogooppaefebaaoohdcigpoi?utm_source=chrome-app-launcher-info-dialog
https://chrome.google.com/webstore/detail/salesforce-inspector/aodjmnfhjibkcdimpodiifdjnnncaafh
https://addons.mozilla.org/en-US/firefox/addon/salesforce-inspector/
https://chrome.google.com/webstore/detail/salesforce-mass-editor/mnmlmkmjjhpbfemhmhpcpfkdlgadbigf
https://chrome.google.com/webstore/detail/space/kicieipmmpngkocobjnkpobkffbbebbk
https://developer.salesforce.com/docs/atlas.en-us.eclipse.meta/eclipse/debugger_overview.htm
https://welkinsuite.com/blog/debugging-options/

Stand alone IDE○

Subscription required○

Illuminated Cloud:

Log replay debugging○

JetBrains Extension○

Subscription required○

•

Salesforce Apex Debug

Log replay debugging○

VS Code Extension○

Free and open source○

Currently still in alpha○

•

Salesforce ETL tools

Salesforce DataLoader•
Dataloader.io•
Jitterbit•
SFXOrgData•
DreamFactory Monarch•
Pentaho Kettle•
Talend•

Static Analysis Tools

CodeClimate: Cloud Service•
CodeScan: Cloud Service•
Clayton.io: Cloud Service•
VSCode Apex PMD: VS Code extension for realtime static analysis as you code•
Apex PMD: command line core that runs most the above tools•

Read Tools for Development online: https://riptutorial.com/salesforce/topic/4095/tools-for-
development

https://riptutorial.com/ 40

http://www.illuminatedcloud.com/home/offlinedebugger
https://marketplace.visualstudio.com/items?itemName=chuckjonas.apex-debug
https://github.com/ChuckJonas/vscode-apex-debug
https://resources.docs.salesforce.com/202/latest/en-us/sfdc/pdf/salesforce_data_loader.pdf
http://dataloader.io/
https://www.jitterbit.com/solutions/solutionssalesforce-integration/salesforce-data-loader/
https://www.sfapex.com/
http://www.dreamfactory.com/force.com/monarch
http://community.pentaho.com/projects/data-integration/
https://www.talend.com/products/talend-open-studio
https://codeclimate.com/
https://www.code-scan.com/
https://www.clayton.io/
https://marketplace.visualstudio.com/items?itemName=chuckjonas.apex-pmd
http://pmd.sourceforge.net/snapshot/pmd-apex/
https://riptutorial.com/salesforce/topic/4095/tools-for-development
https://riptutorial.com/salesforce/topic/4095/tools-for-development

Chapter 14: Trigger Bulkification

Examples

Bulkification

If you do row-by-row processing in Salesforce, you'll probably reach the governor limit quickly.
This is especially true with triggers and things that fire when you don't expect them. One
documented method of escaping the governor limit is bulkification.

Note: The following information is based on the official Salesforce docs.

Bulkifying Apex code means making sure that the code properly handles more than one record at
a time. When a batch of records initiate Apex, a single instance of that Apex code is executed, but
that instance needs to handle all of the records in that given batch.

Not Bulkified:

trigger accountTestTrggr on Account (before insert, before update)
{

 //This only handles the first record in the Trigger.new collection
 //But if more than 1 Account initiated this trigger, those additional records
 //will not be processed
 Account acct = Trigger.new[0];
 List<Contact> contacts = [select id, salutation, firstname, lastname, email
 from Contact where accountId = :acct.Id];

}

Bulkified:

trigger accountTestTrggr on Account (before insert, before update)
{
 List<String> accountNames = new List<String>{};
 //Loop through all records in the Trigger.new collection
 for(Account a: Trigger.new){
 //Concatenate the Name and billingState into the Description field
 a.Description = a.Name + ':' + a.BillingState
 }
}

Read Trigger Bulkification online: https://riptutorial.com/salesforce/topic/4272/trigger-bulkification

https://riptutorial.com/ 41

https://riptutorial.com/salesforce/topic/4272/trigger-bulkification

Chapter 15: Visualforce Page Development

Examples

Basic page

A basic VisualForce page can be created like this:

<apex:page>
 <h1>Hello, world!</h1>
</apex:page>

Using Standard Controllers

If your page is for displaying or editing information about a particular type of record, it may be
helpful to use a standard controller to reduce the amount of boilerplate code you need to write.

By using a standard controller, your page will be displayed with an ?id=SALESFORCE_ID parameter,
and you automatically get access to all merge fields on the record.

Add a standard controller to your page by specifying the standardController attribute on
<apex:page>:

<apex:page standardController="Account">
 This is a page for {!Account.Name}
</apex:page>

You also get the standard controller methods for free:

cancel() - returns the PageReference for the cancel page (usually navigates back to a list view)•
delete() - deletes the record and returns the PageReference for the delete page•
edit() - returns the PageReference for the standard edit page•
save() - saves the record and returns the PageReference to the updated record•
view() - returns the PageReference for the standard view page•

You can use them like this:

<apex:page standardController="Account">
 Name: <apex:inputField value="{!Account.Name}" />
 <apex:commandButton value="Update record" action="{!save}" />
</apex:page>

Read Visualforce Page Development online:
https://riptutorial.com/salesforce/topic/6372/visualforce-page-development

https://riptutorial.com/ 42

https://riptutorial.com/salesforce/topic/6372/visualforce-page-development

Chapter 16: Working with External Systems

Examples

Making an outbound callout

This is an example on how to call a web service from salesforce. The code below is calling a
REST based service hosted on data.gov to find farmers markets close to the zipcode.

Please remember in order to invoke a HTTP callout from your org, you need to tweak the remote
settings for the org.

string url= 'http://search.ams.usda.gov/farmersmarkets/v1/data.svc/zipSearch?zip=10017';
Http h = new Http();
HttpRequest req = new HttpRequest();
HttpResponse res = new HttpResponse();
req.setEndpoint(url);
req.setMethod('GET');
res = h.send(req);
System.Debug('response body '+res.getBody());

Read Working with External Systems online: https://riptutorial.com/salesforce/topic/4926/working-
with-external-systems

https://riptutorial.com/ 43

https://riptutorial.com/salesforce/topic/4926/working-with-external-systems
https://riptutorial.com/salesforce/topic/4926/working-with-external-systems

Credits

S.
No

Chapters Contributors

1
Getting started with
Salesforce

abhi, Alex S, Andrii Muzychuk, Ashwani, Community, Reshma

2 Apex Testing Andree Wille, battery.cord, Ben, Eric Dobbs

3 Apex Triggers kurunve, Pedro Otero

4
Approval Process
Objects

Ajay Gupta

5 Custom Settings Alex S

6
Date Time
Manipulation

kurunve, LDP, RamenChef

7
Global Variables in
classes

Andrii Muzychuk

8
Global Variables on
Visualforce pages

Ben

9
Page Navigation with
help of list wrapper
class in sales force.

NITHESH K

10
SalesForce CI
Integration

Sanjay Kharwar

11
Salesforce Object
Query Language
(SOQL)

abhi, Alex S, Andrii Muzychuk, battery.cord, Ben, ca_peterson,
Doug B, Eric Dobbs, LDP, Ratan Paul

12
Salesforce REST
API

radbrawler

13
Tools for
Development

abhi, Andrii Muzychuk, Daniel Ballinger, Force2b, Gres, hleb not
bread, itzmukeshy7, Mahmood, NSjonas, Pavel Slepiankou,
pchittum, Ratan Paul, sorenkrabbe, wintermute

14 Trigger Bulkification abhi, hillary.fraley, LDP

15
Visualforce Page
Development

Ben

https://riptutorial.com/ 44

https://riptutorial.com/contributor/360821/abhi
https://riptutorial.com/contributor/4189568/alex-s
https://riptutorial.com/contributor/1032742/andrii-muzychuk
https://riptutorial.com/contributor/2135051/ashwani
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3872617/reshma
https://riptutorial.com/contributor/1248224/andree-wille
https://riptutorial.com/contributor/3865753/battery-cord
https://riptutorial.com/contributor/2045366/ben
https://riptutorial.com/contributor/3885449/eric-dobbs
https://riptutorial.com/contributor/1754139/kurunve
https://riptutorial.com/contributor/3307454/pedro-otero
https://riptutorial.com/contributor/3856314/ajay-gupta
https://riptutorial.com/contributor/4189568/alex-s
https://riptutorial.com/contributor/1754139/kurunve
https://riptutorial.com/contributor/6622517/ldp
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1032742/andrii-muzychuk
https://riptutorial.com/contributor/2045366/ben
https://riptutorial.com/contributor/7156315/nithesh-k
https://riptutorial.com/contributor/702389/sanjay-kharwar
https://riptutorial.com/contributor/360821/abhi
https://riptutorial.com/contributor/4189568/alex-s
https://riptutorial.com/contributor/1032742/andrii-muzychuk
https://riptutorial.com/contributor/3865753/battery-cord
https://riptutorial.com/contributor/2045366/ben
https://riptutorial.com/contributor/740787/ca-peterson
https://riptutorial.com/contributor/3200128/doug-b
https://riptutorial.com/contributor/3885449/eric-dobbs
https://riptutorial.com/contributor/6622517/ldp
https://riptutorial.com/contributor/4366769/ratan-paul
https://riptutorial.com/contributor/5536005/radbrawler
https://riptutorial.com/contributor/360821/abhi
https://riptutorial.com/contributor/1032742/andrii-muzychuk
https://riptutorial.com/contributor/54026/daniel-ballinger
https://riptutorial.com/contributor/3813092/force2b
https://riptutorial.com/contributor/4649439/gres
https://riptutorial.com/contributor/1145792/hleb-not-bread
https://riptutorial.com/contributor/1145792/hleb-not-bread
https://riptutorial.com/contributor/2922854/itzmukeshy7
https://riptutorial.com/contributor/827856/mahmood
https://riptutorial.com/contributor/800619/nsjonas
https://riptutorial.com/contributor/798335/pavel-slepiankou
https://riptutorial.com/contributor/2115197/pchittum
https://riptutorial.com/contributor/4366769/ratan-paul
https://riptutorial.com/contributor/331010/sorenkrabbe
https://riptutorial.com/contributor/2052750/wintermute
https://riptutorial.com/contributor/360821/abhi
https://riptutorial.com/contributor/6628786/hillary-fraley
https://riptutorial.com/contributor/6622517/ldp
https://riptutorial.com/contributor/2045366/ben

16
Working with
External Systems

abhi, mnoronha

https://riptutorial.com/ 45

https://riptutorial.com/contributor/360821/abhi
https://riptutorial.com/contributor/2608433/mnoronha

	About
	Chapter 1: Getting started with Salesforce
	Remarks
	Examples
	Installation or Setup
	Salesforce Products

	Sales Cloud
	Service Cloud
	Marketing Cloud
	Community Cloud
	Analytics Cloud aka Wave Analytics
	App Cloud
	IoT Cloud
	Industry Specific Products
	Financial Services Cloud
	Health Cloud
	Heroku

	Chapter 2: Apex Testing
	Examples
	Assert Methods
	Basic Test Class
	Using testSetup
	Using static blocks
	Assertion Methods

	Chapter 3: Apex Triggers
	Syntax
	Parameters
	Examples
	Basic trigger
	Trigger context variables
	Manipulating records that fired the trigger

	Chapter 4: Approval Process Objects
	Remarks
	Examples
	ProcessDefinition
	ProcessNode
	ProcessInstance
	ProcessInstanceStep & ProcessInstanceWorkitem
	ProcessInstanceHistory*

	Chapter 5: Custom Settings
	Remarks
	Introduction
	List Custom Settings
	Examples
	Creating & Managing Custom Settings

	Creation
	Management
	Using Hierarchy Custom Settings To Disable Workflow / Validation Rules

	Custom Setting
	Custom Setting Field
	Custom Setting Field Value
	Validation Rule
	Workflow Rules
	Using Hierarchy Custom Settings To Disable Apex Code

	Explanation
	Apex Class
	Unit Test
	Updating Hierarchy Custom Settings in Apex Code

	Chapter 6: Date Time Manipulation
	Examples
	Easily Find Last Day of a Month

	Chapter 7: Global Variables in classes
	Introduction
	Examples
	UserInfo

	Chapter 8: Global Variables on Visualforce pages
	Examples
	$Resource
	$Label
	$User

	Chapter 9: Page Navigation with help of list wrapper class in sales force.
	Introduction
	Examples
	Pagination Controller

	Chapter 10: SalesForce CI Integration
	Introduction
	Examples
	How to configure Jenkins to deploy code on Development or Production org ?
	Jenkins CI tools which can be used for SalesForce Automation

	Chapter 11: Salesforce Object Query Language (SOQL)
	Syntax
	Examples
	Basic SOQL Query
	SOQL Query With Filtering
	SOQL Query With Ordering
	Using SOQL to Construct a Map
	SOQL Query to Reference Parent Object's Fields
	SOQL Queries in Apex
	Variable References in Apex SOQL Queries
	Potential Exceptions in Apex SOQL Queries
	Using a Semi-Join
	Dynamic SOQL

	Chapter 12: Salesforce REST API
	Introduction
	Examples
	OAuth2 access_token and list of services

	Chapter 13: Tools for Development
	Examples
	IDEs
	Browser extensions
	Debuggers
	Salesforce ETL tools
	Static Analysis Tools

	Chapter 14: Trigger Bulkification
	Examples
	Bulkification

	Chapter 15: Visualforce Page Development
	Examples
	Basic page
	Using Standard Controllers

	Chapter 16: Working with External Systems
	Examples
	Making an outbound callout

	Credits

