
sas

#sas

Table of Contents

About 1

Chapter 1: Getting started with sas 2

Examples 2

Installation or Setup 2

Overview of Base SAS 2

Hello World! 3

SAS Server Architecture 3

Versioning 4

Chapter 2: Copy a file, byte for byte 5

Introduction 5

Examples 5

Copying any file, byte by byte 5

Chapter 3: Creating Macro Variables 6

Introduction 6

Examples 6

Using %LET 6

Using PROC SQL 6

Using Call Symput() in a DATA step 7

Chapter 4: data step 8

Examples 8

getting data with data setp 8

Chapter 5: DO Loop 9

Examples 9

DO Loop 9

Macro do loop 9

Chapter 6: Informats in SAS 10

Introduction 10

Remarks 10

Examples 10

Importing excel data into SAS 10

Importing character vs numeric 11

Chapter 7: Proc SQL 12

Examples 12

Create an empty dataset based on an existing dataset 12

SELECT Syntax 12

Chapter 8: Reading Data 14

Introduction 14

Examples 14

Read text file with comma delimiter 14

Read data from excel file 14

PROC IMPORT for Excel, importing a specific sheet 14

Chapter 9: Resolving Macro Variables in quotes within PROC SQL Pass-throughs 15

Introduction 15

Remarks 15

Examples 15

Pass-through with Macro Variable that is a Date 15

Chapter 10: SAS Formats 17

Introduction 17

Remarks 17

Examples 18

Using the format statement 18

Using the format statement to group data 18

Custom Formats 19

Using informats to read data 20

Chapter 11: SAS Labels 21

Remarks 21

Examples 21

Create Permanent Variable Labels in DATA step 21

Chapter 12: Sending an email with SAS 22

Introduction 22

Parameters 22

Examples 22

Sending a basic text email with SAS 22

Attaching an excel file to your SAS email 22

Sending a SAS email with an HTML body 23

Chapter 13: Using Joins in SAS 25

Introduction 25

Parameters 25

Remarks 25

Examples 25

Vertical Joining 25

Inner Join 26

Left Join 26

Right join 26

Full Join 27

Chapter 14: Variable Length 28

Syntax 28

Parameters 28

Examples 28

Assigning length to a character variable 28

Credits 29

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: sas

It is an unofficial and free sas ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official sas.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/sas
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with sas

Examples

Installation or Setup

SAS can be run in client-server model, using either the Enterprise Guide thick client or the SAS
Studio thin (web-enabled) client, or in "local server" mode where a fully functional SAS system is
present on a local machine (Windows or Unix/Linux desktop or server running in interactive mode)
and run either in Display Manager mode (the local client) or through one of the client-server clients
above (connected to the locally installed server).

SAS installation typically is performed by a SAS administrator, who will install the software from a
software depot that is customized for the site (and often provided by SAS Institute directly).

For the purpose of learning SAS, there is also the free SAS University Edition, which can be
installed for free for educational purposes by anyone on a Windows, Mac, or Unix/Linux computer.
It is available from SAS directly, currently at the SAS University Edition page, either by running an
AWS instance (on the free tier) or by downloading a virtual machine locally. See the installation
guide on SAS.com for up to date instructions, or below for the current (July 2016) instructions.

To install it locally, you first download and install Oracle Virtualbox 5.0 (Windows/Mac/Linux). Then
download the newest SAS University Edition disk image, which is around 2GB and requires setting
up a SAS.com profile.

Once you've done so, you need to set up the virtual machine in VirtualBox. Import the SAS VM as
an appliance ("Import Appliance" in VirtualBox). Create a folder for SAS to use as its local storage
(so you can put files in a location SAS can see them), and set that up as a Shared Folder in the
machine settings dialog box. Set it up to auto-mount.

Then, start the SAS virtual machine, and once it's started you can connect via your web browser,
connecting to http://localhost:10080/ if you used the default settings.

If you have issues, the SAS Community Forums - Analytics U are the vendor forums to obtain
support, or ask a question on Stack Overflow.

Overview of Base SAS

SAS is an integrated system of software solutions that enables you to perform the following tasks:

data entry, retrieval, and management•
report writing and graphics design•
statistical and mathematical analysis•
business forecasting and decision support•
operations research and project management•
applications development•

https://riptutorial.com/ 2

http://www.sas.com/en_us/software/university-edition.html
http://www.sas.com/en_us/software/university-edition/download-software.html
http://www.sas.com/en_us/software/university-edition/download-software.html
https://www.virtualbox.org/wiki/Download_Old_Builds_5_0
http://www.sas.com/store/expresscheckout.ep?item=DPUNVE001_VirtualBox
http://localhost:10080/
https://communities.sas.com/t5/SAS-Analytics-U/bd-p/sas_analytics_u
https://stackoverflow.com

How you use SAS depends on what you want to accomplish. Some people use many of the
capabilities of the SAS System, and others use only a few.

Hello World!

Due to the stucture of SAS, there are three main ways to create "Hello World!" examples:

Within a data step to put a message into the SAS log (_null_ denotes that no output dataset
should be created):

1.

data _null_;
 put "Hell" "o World!";
run;

Within a data step to store "Hello World!" within a variable (foo denotes that an output
dataset called foo should be created that a) contains only one record and b) contains only
one variable: bar, which has a value of Hello World!):

2.

data foo ;
 bar="Hello" ;
 put bar= "World!";
run ;

Via the SAS Macro language (in 'open code' outside of any data steps). & identifies a call to a
macro variable and . identifies the end of the variable (if a white space character is not
wanted):

3.

%let foo=Hello;
%put &foo.o World!;

Hybrid: Using a macro variable within a data step:4.

%let foo=Hello;

data _null_ ;
 put "&foo World!";
run ;

SAS Server Architecture

Overview: There are typically two types of SAS Deployments:

SAS Foundation only installation (BASE SAS). This is typically is installed on a PC. It does
not run any server software.

1.

SAS Planned Deployment for their server architecture which will install the SAS server
environment along with possibly any SAS client software.

2.

Which one of these you have will be indicated in your SAS Software Order email by indicating
planning or non-planning. If you are doing a planned installation you will need a plan file for your

https://riptutorial.com/ 3

order that first your topology.

Installation Note 44320: Using deployment plans during a SAS® installation

SAS Server Architecture

The SAS server environment is broken into 3 different tiers:

SAS Metadata Server(s) - The SAS Metadata server is responsible for managing the SAS
server environment including libraries, users, and server configuration.

1.

2. SAS Application Server(s) - The SAS Application Server is mostly a compute server where
your clients would typically launch jobs from.

3. SAS Middle Tier (s) = The SAS Middle Tier is primarily your Web tier which runs your web
applications.

4. Client Tier - The client tier is your users client applications they use to connect to the
environment such as SAS Enterprise Guide.

Paper 363-2011| Understanding the Anatomy of a SAS® Deployment: What's in My Server Soup?
Mark Schneider, Donna Bennett, and Connie Robison, SAS Institute Inc., Cary, NC

Topology:

The SAS Metadata Tier, SAS Application Server tier, and SAS Middle Tier can be installed on a
single machine server, or spread out across multiple servers. This is determined by the plan file
you have, it should meet the desired topology for your deployment.

Typically most, if not all of the client tier are Windows based applications, so the client tier would
be on your SAS users workstations. Optionally they could probably be installed on the server(s) as
well if they are Windows based.

SAS Supported Operating Systems

Versioning

The main current versions of SAS are 9.4 and 9.3 these are the versions of the base SAS engine
most commonly used today. The link to release notes for versions 9.1 + and other related
documentation are included below.

Please note also, there are various packages and functions which extend the functionality
of SAS, and these have their own self standing documentation and functionality.

SAS 9.4 - Key Documentation and Release Notes•
SAS 9.3 - Key Documentation and Release Notes•
SAS 9.2 - Key Documentation and Release Notes•
SAS 9.1.x - Key Documentation and Release Notes•

Read Getting started with sas online: https://riptutorial.com/sas/topic/2108/getting-started-with-sas

https://riptutorial.com/ 4

http://support.sas.com/kb/44/320.html
http://support.sas.com/resources/papers/proceedings11/363-2011.pdf
http://support.sas.com/resources/papers/proceedings11/363-2011.pdf
http://support.sas.com/supportos/list
https://support.sas.com/documentation/onlinedoc/base/index.html#base94
https://support.sas.com/documentation/onlinedoc/base/index.html#base93
https://support.sas.com/documentation/onlinedoc/base/index.html#base92
https://support.sas.com/documentation/onlinedoc/base/index.html#base913
https://riptutorial.com/sas/topic/2108/getting-started-with-sas

Chapter 2: Copy a file, byte for byte

Introduction

If you're using SAS to produce reporting of some sort, you're going to find yourself needing to copy
a file at some point. I've mostly used this method for copying an excel template, and then dumping
data via PROC EXPORT into the new file I've created.

This is a great example I've found from Chris Hemedinger (
http://blogs.sas.com/content/sasdummy/2011/06/17/how-to-use-sas-data-step-to-copy-a-file-from-
anywhere/).

Examples

Copying any file, byte by byte

/* these IN and OUT filerefs can point to anything */
filename in "anyfilehere.xlsx";
filename out "anyfilehere.xlsx";

/* copy the file byte-for-byte */
data _null_;
 length filein 8 fileid 8;
 filein = fopen('in','I',1,'B');
 fileid = fopen('out','O',1,'B');
 rec = '20'x;
 do while(fread(filein)=0);
 rc = fget(filein,rec,1);
 rc = fput(fileid, rec);

 rc =fwrite(fileid);
 end;
 rc = fclose(filein);
 rc = fclose(fileid);
run;

filename in clear;
filename out clear;

Read Copy a file, byte for byte online: https://riptutorial.com/sas/topic/9394/copy-a-file--byte-for-
byte

https://riptutorial.com/ 5

http://blogs.sas.com/content/sasdummy/2011/06/17/how-to-use-sas-data-step-to-copy-a-file-from-anywhere/)
http://blogs.sas.com/content/sasdummy/2011/06/17/how-to-use-sas-data-step-to-copy-a-file-from-anywhere/)
https://riptutorial.com/sas/topic/9394/copy-a-file--byte-for-byte
https://riptutorial.com/sas/topic/9394/copy-a-file--byte-for-byte

Chapter 3: Creating Macro Variables

Introduction

Using Macro Variables throughout your SAS programs is a basic functionality that every SAS
programmer must be familiar with. Using Macro Variables can help you to keep your code simple
and generic. Generic code is reusable code.

Examples

Using %LET

I would describe %LET as being the most simple way to creating a Macro Variable in SAS.

%LET variableName = variableValue;

Now, anywhere you use &variableName, it will resolve to variableValue.

NOTE:you may want to consider that variableValue all on its own might bring you
syntax errors, depening on what the value is and how it's used. For example, if it is a
date and you're using it in the WHERE of a PROC SQL statement, it will need to be
written as "&variableName"d to work properly.

Using PROC SQL

Using PROC SQL is a good way to get quick results from a table and throw them into variables. I
usually find that when I want to get a count of records I just loaded to a table, I can get that count
into a variable with a quick PROC SQL call.

PROC SQL;
SELECT
 COUNT(*) INTO:aVariable
FROM
 MyTable

;QUIT;

In the example above, aVariable will represent how many records exist in MyTable.

You can also use PROC SQL for creating multiple Macro Variables.

PROC SQL;
SELECT
 a,
 b,
 c INTO:aVariable, :bVariable, :cVariable
FROM
 MyTable

https://riptutorial.com/ 6

;QUIT;

In the example above, the variables created in the INTO statement will match up to the columns
pulled in the order they are returned from the SELECT statement. However, only the first row of
results will be used to fill those 3 variables.

If you want to store more than a single row, and you're on version 6.11 or beyond, use the
following example:

PROC SQL;
 SELECT DISTINCT
 a,
 b,
 c INTO :aVariable1 - :aVariable5,
 :bVariable1 - :bVariable5,
 :cVariable1 - :cVariable5
 FROM
 MyTable
;QUIT;

The keywords THROUGH and THRU can he used en lieu of the dash -

Using Call Symput() in a DATA step

DATA _null_;
 CALL SYMPUT('testVariable','testValueText');
;RUN;

In the example above, %PUT &testVariable; will resolve to testvalueText.

You may find the need to format your variable within the SYMPUT() call.

DATA _null_;
 CALL SYMPUT('testDate',COMPRESS(PUT(today(),date9.)));
;RUN;

In the example above,%PUT &testDate; will resolve to 10MAR2017

Read Creating Macro Variables online: https://riptutorial.com/sas/topic/9403/creating-macro-
variables

https://riptutorial.com/ 7

https://riptutorial.com/sas/topic/9403/creating-macro-variables
https://riptutorial.com/sas/topic/9403/creating-macro-variables

Chapter 4: data step

Examples

getting data with data setp

data newclass(keep=first_name sex weight yearborn);
 set sashelp.class(drop=height rename=(name=first_name));
 yearborn=year(date())-age;
 if yearborn >2002;
run;

Data specifies the target data set. Keep option specifies columns to print to target.

Set specifies source data set. Drop specifies columns not to take. Rename renames name to
first_name.

Yearborn is a calculated implicit numeric variable (column).

Filter and implicit output data with if for pupils born after 2002.

Read data step online: https://riptutorial.com/sas/topic/10673/data-step

https://riptutorial.com/ 8

https://riptutorial.com/sas/topic/10673/data-step

Chapter 5: DO Loop

Examples

DO Loop

DATA salary;
 /*define variables*/
 raise=0.1;
 salary=50000;
 year=1;
 /*do loop*/
 DO year=1 to 20 by 2;
 salary + salary*raise;
 output; /*generates an observation for each iteration of the do loop, optional*/
 END;
RUN;

Macro do loop

%macro doloop;
 %do age=11 %to 15 %by 2;
 title Age=&age.;
 proc print data=sashelp.class(where=(age=&age.));
 run;
 %end;
%mend;
%doloop;

Read DO Loop online: https://riptutorial.com/sas/topic/7919/do-loop

https://riptutorial.com/ 9

https://riptutorial.com/sas/topic/7919/do-loop

Chapter 6: Informats in SAS

Introduction

SAS informats instruct SAS on how to read data from any input location (such as a file, an excel
spreadsheet, a named pipe, or even another SAS variable, etc.) into a variable.

SAS has just two data types - character and numeric, and each informat is specific to storing the
value into either a character or numeric variable. If the destination variable is a character, then the
informat will begin with a $ symbol, anything else will be a numeric informat.

Remarks

Informats are very important especially when we import data from other datasets. For example,
most of the times while working on real time data, we extract data from various data sources
(Oracle,Mysql,Teradata etc). Every time we import data we need to specify the informat statement
so SAS can read the data properly.

Examples

Importing excel data into SAS

For example, say below is the sample data in an Excel 'Test',

Purchase_Date Customer_Name Price
05-05-2017 Adam 1075
06-05-2017 Noah 1093
07-05-2017 Peter 1072
08-05-2017 Louis 1101
09-05-2017 Zoe 1248
10-05-2017 Kevin 1045
11-05-2017 Messiah 1072
12-05-2017 John 1046
13-05-2017 Stephen 1043
14-05-2017 Solly 1113
15-05-2017 Jeevan 1137

You should use the below code to import this successfully,

Data Test;
Infile 'D:\Test.csv';
Delimiter=',' Missover DSD Getnames=Yes;
Informat Purchase_Date date9.;
Informat Price dollarx10.2;
Format Purchase_Date date9.;
Format Price dollarx10.2;
run;

https://riptutorial.com/ 10

Informat in the above code helps SAS to read the data from Excel.
Format in the above code helps to write the data properly into SAS Data set.

Importing character vs numeric

The example below uses the input statement to read a value from a source (in this case the string
123) into a both a character destination and a numeric destination.

data test;
 source = '123';
 numeric_destination = input(source, best.);
 character_destination = input(source, $3.);
run;

Read Informats in SAS online: https://riptutorial.com/sas/topic/9888/informats-in-sas

https://riptutorial.com/ 11

https://riptutorial.com/sas/topic/9888/informats-in-sas

Chapter 7: Proc SQL

Examples

Create an empty dataset based on an existing dataset

Method 1:

 proc sql;
 create table foo like sashelp.class;
 quit;

Method 2:

proc sql;
create table bar as
 select * from sashelp.class (obs=0);
quit;

Method 1 should be the preferred option

SELECT Syntax

PROC SQL options;
 SELECT column(s)
FROM table-name | view-name
 WHERE expression
 GROUP BY column(s)
 HAVING expression
ORDER BYcolumn(s);
QUIT;

Example 1:

proc sql;
select name
 ,sex
 from sashelp.class ;
quit;

The SELECT statement is specified in this order :

1.select;
2.from;
3.where;
4.group by;
5.having;
6.order by.

https://riptutorial.com/ 12

"select" and "from" are required. The other clauses are optional.

Read Proc SQL online: https://riptutorial.com/sas/topic/5870/proc-sql

https://riptutorial.com/ 13

https://riptutorial.com/sas/topic/5870/proc-sql

Chapter 8: Reading Data

Introduction

Reading data into a SAS dataset can be accomplished using multiple approaches including the
datalines statement, from an external file using an infile statement in the data step, or reading
data from an external file using proc import. In addition you can read in data from external sources
that are odbc compliant (e.g. SQL databases) using the odbc drivers.

Examples

Read text file with comma delimiter

DATA table-name;
 INFILE "file-path/file-name.csv" dsd;
 INPUT Name $ City $ Age;
RUN;

Read data from excel file

PROC IMPORT DATAFILE = "file-path/file-name.xlsx" OUT=data_set DBMS=XLSX REPLACE;

PROC IMPORT for Excel, importing a specific sheet

There will be times where you only want to import a specific sheet from an excel file with multiple
sheets. To do that, we'll use "SHEET=".

PROC IMPORT
 OUT= YourNewTable
 DATAFILE= "myfolder/excelfilename.xlsx"
 DBMS=xlsx
 REPLACE;
 SHEET="Sheet1";
 GETNAMES=YES;
RUN;

Also take note of the ability to specify whether or not the top row imported contains
column names or not (GETNAMES=YES (or NO).

Read Reading Data online: https://riptutorial.com/sas/topic/7989/reading-data

https://riptutorial.com/ 14

https://riptutorial.com/sas/topic/7989/reading-data

Chapter 9: Resolving Macro Variables in
quotes within PROC SQL Pass-throughs

Introduction

One of the challenges I faced when I first started using SAS was not only passing Macro Variable
data into a PROC SQL pass-through, but having it resolve properly if it needed quotes around it.
When passing a string like value or date/datetime into a PROC SQL pass-through, it most likely
needs to have single quotes around it when it resolves.

I have found the best results when using the %BQUOTE function to accomplish this.

Remarks

More information on the %BQUOTE function can be found here:
https://v8doc.sas.com/sashtml/macro/z4bquote.htm

Examples

Pass-through with Macro Variable that is a Date

First, I will place my date into a Macro Variable.

NOTE: I find that date9. works great with IBM® Netezza® SQL and Transact-SQL. Use
whichever format that works for the type of SQL you're executing.

data _null_;
 call symput('testDate',COMPRESS(put(today(),date9.)));
;RUN;
%PUT &testDate;

My %PUT statement resolves to: 10MAR2017

Next, I want to run a PROC SQL Pass-through and resolve that Macro Variable inside to specify a
date.

PROC SQL;
CONNECT TO odbc AS alias (dsn=myServer user=userName password= pass);
CREATE TABLE TableName AS
SELECT *
FROM connection to alias
 (
 SELECT *
 FROM
 Database.schema.MyTable
 WHERE
 DateColumn = %bquote('&testDate')

https://riptutorial.com/ 15

https://v8doc.sas.com/sashtml/macro/z4bquote.htm

);
QUIT;

%bquote('&testDate') will resolve to '10MAR2017' when the code executes.

Read Resolving Macro Variables in quotes within PROC SQL Pass-throughs online:
https://riptutorial.com/sas/topic/9396/resolving-macro-variables-in-quotes-within-proc-sql-pass-
throughs

https://riptutorial.com/ 16

https://riptutorial.com/sas/topic/9396/resolving-macro-variables-in-quotes-within-proc-sql-pass-throughs
https://riptutorial.com/sas/topic/9396/resolving-macro-variables-in-quotes-within-proc-sql-pass-throughs

Chapter 10: SAS Formats

Introduction

Informats and formats are used to tell SAS how to read and write the data respectively. Informats
are commonly used in a datastep when reading data from an external file. Informats are rarely
used in PROCs. Formats are commonly used in both data steps and PROCs.

Remarks

SAS Formats convert either numeric or character values to character values. A format can either
be applied using a format or put statement, which changes the way a value is displayed, or using
the put function to store the formatted value in a new variable.

There are four categories of formats :

Character - instructs SAS to write character data values from character variables.•
Date and Time - instructs SAS to write data values from variables that represent dates,
times, and datetimes.

•

ISO 8601 - instructs SAS to write date, time, and datetime values using the ISO 8601
standard.

•

Numeric - instructs SAS to write numeric data values from numeric variables.•

Formats usually take the form <formatname><w>.<d>;, w being the width (including any decimals and
the point), d being the number of decimal places.

Common date formats (applied to SAS date values) :

date9. e.g. 02AUG2016•
ddmmyyn8. e.g. 02082016•
ddmmyy8. e.g. 02/08/16•
yymmdd10. e.g. 20160802•
year4. e.g. 2016•

Common numeric formats (applied to numbers) :

comma11.0 e.g. 1,234,567•
comma12.2 e.g. 1,234,567.00•
dollar11.2 e.g. $5,789.12•
nlmnlgbp11.2 e.g. £2,468.02•

Other formats :

$hex8., convert string to hex•

https://riptutorial.com/ 17

$upcase., convert string to upper-case•
$quote., enclose a string in quotes•

A full list of formats can be found here >
https://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a001263753.htm

Examples

Using the format statement

The format statement applies the given format to the specified variable for display purposes only,
i.e. the underlying value does not change.

data example1 ;
 Date = '02AUG2016'd ; /* stored as a SAS date, i.e. a number */
 Date2 = '31AUG2016'd ;
 format Date monyy7. Date2 yymmddn8. ;
run ;

Date Date2

AUG2016 20160831

Using the format statement to group data

You can apply formats within a procedure, e.g. to change the groupings within a proc summary or
proc freq.

Grouping SAS dates

data example2 ;
 do Date = '01JUN2016'dt to '31AUG2016'dt ;
 Days = 1 ;
 output ;
 end ;
run ;

/* Summarise by year & month */
proc summary data=example2 nway ;
 class Date ;
 var Days ;
 output out=example2_sum (drop=_TYPE_ _FREQ_) sum= ;
 format Date yymmn6. ; /* e.g. 201606 */
run ;

Date Days

201606 30

201607 31

https://riptutorial.com/ 18

https://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a001263753.htm

Date Days

201608 31

/* Summarise by month & year */
proc summary data=example2 nway ;
 class Date ;
 var Days ;
 output out=example2_sum2 (drop=_TYPE_ _FREQ_) sum= ;
 format Date monyy7. ; /* e.g. JUN2016 */
run ;

Date Days

JUN2016 30

JUL2016 31

AUG2016 31

The benefit of using a format is that the natural sort order is retained.

Using sashelp.class as an example, say you wanted to compare the frequency of the first letter of
each name. You could use the substr() function to find the first letter, and run a proc freq on the
new variable. Alternatively, you can apply the $1. format to the Name variable :

proc freq data=sashelp.class ;
 table Name ;
 format Name $1. ;
run ;

Name COUNT

A 7

B 4

C 2

etc.

Custom Formats

Custom formats, also known as user defined formats, can be created and used like any other
default formats.

/*Create new character format for state variables*/
PROC FORMAT;
VALUE $statef 'CA' = 'California'

https://riptutorial.com/ 19

 'MA' = 'Massachusetts'
 'NY' = 'New York';

/*Once created, you can use your custom format in PROC and DATA steps*/
PROC PRINT DATA=table;
FORMAT state-var $statef.;
RUN;

The variable state-var will be printed according to the new format. For example, the value 'CA' will
be printed as 'California'. If a value was not formatted, such as 'CT', then that value will be
printed as it appears in the data set.

Using informats to read data

Informats are used to tell SAS how to read in the data and are identified with an informat
statement.

data test;
 infile test.csv;
 informat id $6.
 date mmddyy10.
 cost comma10.2
 ;
 input @1 id
 @7 date
 @20 cost
 ;
run;

Informats and Formats can also be used together to read in the data and write it out in a different
format such as with the salary variable below:

DATA workers;
 informat first last $16.;
 informat salary 12.1;
 informat birthdate 8.;
 input
 first $
 last $
 birthdate
 salary;
 format salary dollar10.;
datalines;
John Smith 19810505 54998.5
Jane Doe 19950925 45884.5
Frank James 19600222 70000.5
Jamie Love 19630530 292000.5
;
run;

Read SAS Formats online: https://riptutorial.com/sas/topic/5010/sas-formats

https://riptutorial.com/ 20

https://riptutorial.com/sas/topic/5010/sas-formats

Chapter 11: SAS Labels

Remarks

Labels can be used to describe a variable which helps improve the readability of your outputs.
Labels can be permanently created in the DATA step or temporarily created in a PROC step.

Examples

Create Permanent Variable Labels in DATA step

data table;
 set table;
 label variable1 = 'label1'
 variable2 = 'label2'
 variable3 = 'label3';
run;

Read SAS Labels online: https://riptutorial.com/sas/topic/7877/sas-labels

https://riptutorial.com/ 21

https://riptutorial.com/sas/topic/7877/sas-labels

Chapter 12: Sending an email with SAS

Introduction

There are several reasons you might come across for needing email capabilities in SAS. You
could be sending an email to notify someone that a process passed/failed, you could be sending
an email containing Macro Variables that show how many records have been loaded at the end of
your data feed, or maybe you need to send some files that contain reports. Whatever your need is,
there are several ways to go about sending emails and files in SAS.

Parameters

Tag/Attribute Value

LRECL

This parameter is used to define record length when reading and writing files.
I've solved many issues by just setting this to its max value, which is 32767.
It's very possible that setting something like this to its max value is less
efficient, but at the end of the day it gets the job done for me without any felt
performance loss. (the range for LRECL is 1-32767)

Examples

Sending a basic text email with SAS

Filename myEmail EMAIL
 Subject = "My Email Subject"
 From = "myFromAddress@email.com"
 To = 'toAddress@email.com'
 CC = 'ccAddress@email.com'
 Type = 'Text/Plain';

Data _null_; File myEmail;
 PUT "Email content";
 PUT "&recordsCount loaded to your favorite table today!";
RUN;

Attaching an excel file to your SAS email

Filename myEmail EMAIL
 Subject = "My Email Subject"
 From = "myFromAddress@email.com"
 To = 'toAddress@email.com'
 CC = 'ccAddress@email.com'
 Type = 'Text/Plain'
 ATTACH = ("my/excel/file/path/file.extension" content_type="application/vnd.ms-excel"
LRECL= 32767);

https://riptutorial.com/ 22

Data _null_; File myEmail;
 PUT "Email contentent";
 PUT "&recordsCount loaded to your favorite table today!";
RUN;

Sending a SAS email with an HTML body

Take note of the email type: Type = 'text/html';

Filename myEmail EMAIL
 Subject = "My Email Subject"
 From = "myFromAddress@email.com"
 To = 'toAddress@email.com'
 CC = 'ccAddress@email.com'
 Type = 'text/html';

Data _null_; File myEmail;
PUT "
<html>
 <head>
 <style>
 table, th, td {
 border: 1px solid black;
 border-collapse: collapse;
 }
 </style>
 </head>
 <body>
 <p>Here is your email</p>
 <p>Go ahead, organize your data within an HTML table tag here!</p>
 <table>
 <tr>
 <th>
 column 1
 </th>
 <th>
 column 2
 </th>
 </tr>
 <tr>
 <td>
 &countOfRecords1
 </td>
 <td>
 &countOfRecords2
 </td>
 </tr>
 </table>
 </body>
</html>
";
RUN;

It is very possible that after building out an HTML email in SAS, you find the HTML is
distorted when you receive the email. This is a result of SAS putting breaks to the next
line in the text of your PUT. A break was probably placed right in the middle of one of

https://riptutorial.com/ 23

your tag's text. Should this happen to you, try moving your HTML tags around. It may
not be pretty, but you may have to have some tags share a line to avoid this
happening. This happened to me, and this is exactly how I fixed that issues.

Read Sending an email with SAS online: https://riptutorial.com/sas/topic/9398/sending-an-email-
with-sas

https://riptutorial.com/ 24

https://riptutorial.com/sas/topic/9398/sending-an-email-with-sas
https://riptutorial.com/sas/topic/9398/sending-an-email-with-sas

Chapter 13: Using Joins in SAS

Introduction

Each database is a collection of different tables and each table contains different data in an
organized way. While working with data, most of the times information we need is scattered in
more than one table. We need joins/merge to get the desired output.

In SAS we use joins while working with Proc SQL and use merge while working with Data step. We
will now talk only about joins inside Proc SQL.

Parameters

Type of join Output

Proc Sql SQL procedure inside SAS

Create Table Creates a SAS dataset

Select Selects required variables from respective datasets

Where Specifies particular condition

Quit End the procedure

Remarks

As mentioned in the introduction, we can also use Mergeinside a data step which will be discussed
under a separate topic. Joins play a very important role to blend and unify data according to the
requirement.

Examples

Vertical Joining

Vertical join appends dataset B to dataset A providing both of them have similar variables. For
example, we have sales for the month of Jan'17 in dataset A and sales for Feb'17 in dataset B. To
create a dataset C that has sales of both Jan and Feb we use Vertical Join.

PROC SQL;
CREATE TABLE C AS
SELECT *
FROM A
UNION
SELECT *

https://riptutorial.com/ 25

FROM B;
QUIT;

Now dataset C has observations from both A and B and is appended vertically.

Inner Join

Inner join creates a dataset that contains records that have matching values from both the tables.
For example, we have a dataset A that contains customer information and a dataset B that
contains credit card details. To get the credit card details of customers in dataset A, let us create
dataset C

PROC SQL;
CREATE TABLE C AS
SELECT A.*, B.CC_NUM
FROM CUSTOMER A, CC_DETAILS B
WHERE A.CUSTOMERID=B.CUSTOMERID
QUIT;

Dataset C will have only matching observations from both the datasets.

Left Join

Left join returns all the observations in the left data set regardless of their key values but only
observations with matching key values from the right data set. Considering the same example as
above,

PROC SQL;
CREATE TABLE C AS
SELECT A.*, B.CC_NUMBER, B.START_DATE
FROM CUSTOMER A LEFT JOIN CC_DETAILS B
ON A.CUSTOMERID=B.CUSTOMERID
QUIT;

Dataset C contains all the values from the left table, plus matched values from the right table or
missing values in the case of no match.

Right join

Like left join, right join selects all the observations from the right dataset and the matched records
from the left table.

PROC SQL;
CREATE TABLE C AS
SELECT A.*, B.CC_NUMBER, B.START_DATE
FROM CUSTOMER A RIGHT JOIN CC_DETAILS B
ON A.CUSTOMERID=B.CUSTOMERID
QUIT;

Dataset C contains all the values from the right table, plus matched values from the left table or

https://riptutorial.com/ 26

missing values in the case of no match.

Full Join

Full join selects all the observations from both data sets but there are missing values where the
key value in each observation is found in one table only.

PROC SQL;
CREATE TABLE C AS
SELECT A.*, B.CC_NUMBER, B.START_DATE
FROM CUSTOMER A FULL JOIN CC_DETAILS B
ON A.CUSTOMERID=B.CUSTOMERID
QUIT;

Dataset C will contain all records from both the tables and fill in . for missing matches on either
side.

Read Using Joins in SAS online: https://riptutorial.com/sas/topic/9900/using-joins-in-sas

https://riptutorial.com/ 27

https://riptutorial.com/sas/topic/9900/using-joins-in-sas

Chapter 14: Variable Length

Syntax

LENGTH variable(s) <$>length;•

Parameters

Parameter Details

variable(s) variable(s) you wish to assign a length to

$ optional parameter that specifies if your variable is a character variable

length integer that specifies the length of the variable

Examples

Assigning length to a character variable

data table;
set table;
length state_full $8;
if state = 'KS' then state_full = 'Kansas';
else if state = 'CO' then state_full = 'Colorado';
else state_full = 'Other';
run;

Read Variable Length online: https://riptutorial.com/sas/topic/7883/variable-length

https://riptutorial.com/ 28

https://riptutorial.com/sas/topic/7883/variable-length

Credits

S.
No

Chapters Contributors

1
Getting started with
sas

Bendy, brusso, Chris J, Community, dcudonk, fl0r3k, Jay
Stevens, Joe

2
Copy a file, byte for
byte

Joshua Schlichting

3
Creating Macro
Variables

Joshua Schlichting

4 data step zuluk

5 DO Loop heyydrien, zuluk

6 Informats in SAS Praneeth Rachumallu, Robert Penridge

7 Proc SQL Altons, D. O., Jay Stevens

8 Reading Data GForce, heyydrien, Joshua Schlichting

9

Resolving Macro
Variables in quotes
within PROC SQL
Pass-throughs

Joshua Schlichting

10 SAS Formats Chris J, GForce, heyydrien, Robert Penridge

11 SAS Labels heyydrien

12
Sending an email
with SAS

Joshua Schlichting

13 Using Joins in SAS Praneeth Rachumallu

14 Variable Length heyydrien

https://riptutorial.com/ 29

https://riptutorial.com/contributor/3972769/bendy
https://riptutorial.com/contributor/3415577/brusso
https://riptutorial.com/contributor/108797/chris-j
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3208752/dcudonk
https://riptutorial.com/contributor/6695762/fl0r3k
https://riptutorial.com/contributor/52522/jay-stevens
https://riptutorial.com/contributor/52522/jay-stevens
https://riptutorial.com/contributor/1623007/joe
https://riptutorial.com/contributor/3589609/joshua-schlichting
https://riptutorial.com/contributor/3589609/joshua-schlichting
https://riptutorial.com/contributor/2373000/zuluk
https://riptutorial.com/contributor/3421038/heyydrien
https://riptutorial.com/contributor/2373000/zuluk
https://riptutorial.com/contributor/5307599/praneeth-rachumallu
https://riptutorial.com/contributor/214994/robert-penridge
https://riptutorial.com/contributor/651359/altons
https://riptutorial.com/contributor/7164307/d--o-
https://riptutorial.com/contributor/52522/jay-stevens
https://riptutorial.com/contributor/6500578/gforce
https://riptutorial.com/contributor/3421038/heyydrien
https://riptutorial.com/contributor/3589609/joshua-schlichting
https://riptutorial.com/contributor/3589609/joshua-schlichting
https://riptutorial.com/contributor/108797/chris-j
https://riptutorial.com/contributor/6500578/gforce
https://riptutorial.com/contributor/3421038/heyydrien
https://riptutorial.com/contributor/214994/robert-penridge
https://riptutorial.com/contributor/3421038/heyydrien
https://riptutorial.com/contributor/3589609/joshua-schlichting
https://riptutorial.com/contributor/5307599/praneeth-rachumallu
https://riptutorial.com/contributor/3421038/heyydrien

	About
	Chapter 1: Getting started with sas
	Examples
	Installation or Setup
	Overview of Base SAS
	Hello World!
	SAS Server Architecture
	Versioning

	Chapter 2: Copy a file, byte for byte
	Introduction
	Examples
	Copying any file, byte by byte

	Chapter 3: Creating Macro Variables
	Introduction
	Examples
	Using %LET
	Using PROC SQL
	Using Call Symput() in a DATA step

	Chapter 4: data step
	Examples
	getting data with data setp

	Chapter 5: DO Loop
	Examples
	DO Loop
	Macro do loop

	Chapter 6: Informats in SAS
	Introduction
	Remarks
	Examples
	Importing excel data into SAS
	Importing character vs numeric

	Chapter 7: Proc SQL
	Examples
	Create an empty dataset based on an existing dataset
	SELECT Syntax

	Chapter 8: Reading Data
	Introduction
	Examples
	Read text file with comma delimiter
	Read data from excel file
	PROC IMPORT for Excel, importing a specific sheet

	Chapter 9: Resolving Macro Variables in quotes within PROC SQL Pass-throughs
	Introduction
	Remarks
	Examples
	Pass-through with Macro Variable that is a Date

	Chapter 10: SAS Formats
	Introduction
	Remarks
	Examples
	Using the format statement
	Using the format statement to group data
	Custom Formats
	Using informats to read data

	Chapter 11: SAS Labels
	Remarks
	Examples
	Create Permanent Variable Labels in DATA step

	Chapter 12: Sending an email with SAS
	Introduction
	Parameters
	Examples
	Sending a basic text email with SAS
	Attaching an excel file to your SAS email
	Sending a SAS email with an HTML body

	Chapter 13: Using Joins in SAS
	Introduction
	Parameters
	Remarks
	Examples
	Vertical Joining
	Inner Join
	Left Join
	Right join
	Full Join

	Chapter 14: Variable Length
	Syntax
	Parameters
	Examples
	Assigning length to a character variable

	Credits

